Une petite référence Numpy

(mise a jour la plus récente: 30 décembre 2014)

Les nouveaux programmes des CPGE scientifiques (rentrée 2013) comportent un enseignement d’informatique pour tous,
et prévoient notamment l'utilisation du langage Python.

Ce document fait suite & « Une petite référence Python », dont la version la plus récente est sur mathprepa.fr

Il est consacré & une présentation assez compléte (mais qui ne saurait étre exhaustive) du module numpy.

Ce document est mis a disposition selon les termes de la licence Creative Commons :
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.fr

Un petit mot personnel, au sujet de ce document.

J’ai voulu ’écrire pour mettre mes propres idées en place au sujet de numpy. Mais comment avoir une vue d’ensemble sans
entrer dans les détails 7 Et comment rendre compte en une soixantaine de pages d’une entité dont le manuel de référence
en fait plus de mille 7

Jai fait de mon mieux, avec un plan qui je ’espére « tient la route », malgré un coté « catalogue » un peu inévitable. Apreés
peut-étre une lecture linéaire de ce document, on préférera sans doute des accés choisis via la table des matiéres. J’ai fait
en sorte d’accompagner les fonctions d’exemples suggestifs. Dans ce document électronique, les noms des fonctions sont
eux-mémes des liens vers la documentation officielle (en anglais).

Pour toute suggestion, on peut me contacter & mon adresse académique (ci-dessous, et c’est la bonne orthographe).

J’apprécierai tout retour, méme si c¢’est pour me signaler des oublis, des erreurs, des fautes d’orthographe !
Les messages amicaux font toujours plaisir, bien str.

Jean-Michel Ferrard
Mathématiques, lycée Saint-Louis
44 Boulevard Saint-Michel,
75006, Paris

jean-miche.ferrard@Qac-paris.fr

mathprepa.fr

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 1/ 58

http://www.mathprepa.fr
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.fr
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

Table des matiéres

1 Fonction array et « data types »

1.1
1.2
1.3
1.4
1.5
1.6

Création de tableaux avec array
Attributs de dimension d’un tableau
Le «data type » d’un tableau
Copie d'un tableau avec conversion de « data type»
Les différents « data types » disponibles
Tableaux de nombres complexes

2 Lecture et écriture dans un tableau

2.1
2.2
2.3
24
2.5
2.6

Lecture de valeurs dans un vecteur, «slicing » L o
Lecture de valeurs dans une matrice L
Ecriture de valeurs dans un VECtEUT o v
Ecriture de valeurs dans une matrice
Copies de tableaux, « vues » sur des tableaux
« Fancy indexing » oL

3 Dimensions d’un tableau

3.1
3.2
3.3
3.4
3.5
3.6

Redimensionnement par « reshape » ou «resize » L L L oo
Aplatissement d'un tableau Lo
Transposition d’une matriceo
Suppressions/insertions de lignes, de colonnes L Lo
Permutations/rotations de lignes, de colonnes L oo
Opérations par blocs L e e

4 Tableaux spécifiques

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Tableaux constants L L e e e e e
Identité, matrices diagonales ou triangulaires oL L L Lo
Tableaux de valeurs échelonnées e
Tableaux répondant & une formule donnée e
Tableaux pseudo-aléatoires L e e e e e
Probabilités, lois discrétes usuelles L
Probabilités, lois continues usuelles L e e

5 Fonctions universelles

5.1
5.2
5.3
5.4
9.5
5.6

Opérations arithmétiques L 0 e
Fonctions mathématiques usuelles oL
Variantes de syntaxeo e e e
Vectorisation d’une fonction oL oL L
Opérations logiques sur tableaux booléens L Lo
Opérations binaires sur les tableaux d’entiers L

6 Tests et comparaisons sur des tableaux

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Comparaisons entre tableaux L Lo e
Tris de tableau L e
Minimum et maximuim e e e e e e e e e e e e e e e
Recherches dans un tableau L
Tableaux d’un point de vue ensembliste e e
Sommes, produits, différences Lo
Calculs statistiques, histogrammes oL L

N O O O Ut gt

10
11
11
13

15
15
16
16
16
17
19

21
21
22
23
24
25
27
29

31
32
32
33
34
35
35

TABLE DES MATIERES TABLE DES MATIERES

7 Calcul matriciel 44
7.1 Opérations linéaires o L 44
7.2 Produits matriciels L oL e 44
7.3 Inversion de matrices, résolution de systémeso Lo L e 46
7.4 Normes matricielles et vectorielles L 46
7.5 Valeurs et vecteurs propreso o e e e e 47
7.6 Décompositions matricielles Lo e 49

8 Calcul polynomial 50
8.1 Laclasse polyld 50
8.2 Le package numpy.polynomial e 52
8.3 Laclasse « Polynomial » L e 53
8.4 Les classes « Chebyshev », etc. 56

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy

jean-miche.ferrard@ac-paris.fr mathprepa.fr 3/ 58

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

TABLE DES MATIERES TABLE DES MATIERES

Introduction

Le module numpy est la boite a outils indispensable pour faire du calcul scientifique avec Python.
Pour modéliser les vecteurs, matrices, et plus généralement les tableaux a n dimensions, numpy fournit le type ndarray.

Il y a des différences majeures avec les listes (resp. les listes de listes) qui pourraient elles aussi nous servir a représenter
des vecteurs (resp. des matrices) :

— Les tableaux numpy sont homogeénes, c’est-a-dire constitués d’éléments du méme type.
On trouvera donc des tableaux d’entiers, des tableaux de flottants, des tableaux de chaines de caractéres, etc.

— La taille des tableaux numpy est fixée & la création. On ne peut donc augmenter ou diminuer la taille d’'un tableau
comme le ferait pour une liste (& moins de créer un tout nouveau tableau, bien stir).

Ces contraintes sont en fait des avantages :

— Le format d’un tableau numpy et la taille des objets qui le composent étant fixés, 'empreinte du tableau en mémoire
est invariable et ’accés a ses éléments se fait en temps constant.

— Les opérations sur les tableaux sont optimisées en fonction du type des éléments, et sont beaucoup plus rapides qu’elles
ne le seraient sur des listes équivalentes.

Traditionnellement, on charge la totalité du module numpy, mais en le renommant en np, de la maniére suivante :

>>> import numpy as np
>>>

Les fonctions de numpy sont alors accessibles par leur nom qualifié « np.nom_de_la_fonction ».

Important : dans toute la suite, on supposera que le module numpy a été importé de cette maniére.
Quand on évoquera la fonction « array » par exemple, on pensera toujours a 'utiliser avec la syntaxe « np.array »

On ne chargera jamais numpy par « from numpy import * » :le nombre de fonctions importées est en effet trop important,
et avec lui le risque d’homonymie avec les définitions déja présentes au moment de I'importation.

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 4/ 58

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

Chapitre 1

Fonction array et « data types »

1.1 Création de tableaux avec array

On utilise en général la fonction pour former un tableau a partir de la liste (ou la liste des listes) de ses éléments.

Dans ’exemple ci-dessous, on forme une matrice a & coefficients entiers, & trois lignes et quatre colonnes, & partir d’une

liste de trois sous-listes de longueur quatre.

La fonction array agit comme un mécanisme de
conversion vers ’numpy.ndarray’ qui est le type
commun & tous les tableaux numpy.

On ne confondra pas avec le résultat renvoyé par
Pattribut dtype (abréviation de data type) de a,
et qui indique le type commun & tous les éléments
de celui-ci (en l'occurrence des entiers codés sur 32
bits, c’est-a-dire quatre octets ou bytes).

>>> a = np.array([[8,3,2,4]1,[5,1,6,0],[9,7,4,111); a
array([[8, 3, 2, 4],

(5, 1, 6, 0],

o, 7, 4, 111

>>> type(a)
<class ’numpy.ndarray’>

>>> a.dtype
dtype(’int32?)

Remarque : la méthode d’un tableau numpy le transforme en la liste (éventuellement une liste de listes) de ses
éléments. Attention, ce c’est pas une fonction du module numpy. On n’écrira donc pas np.tolist(a) mais a.tolist()

>>> a = np.arange(15) .reshape(3,5); a
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],

[10, 11, 12, 13, 14]11)

>>> ¢ = np.array(b) # retour tableau
>>> ¢
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],

>>> b = a.tolist(); b # convertit a en une liste de listes [10, 11, 12, 13, 14]11)
(fo, 1, 2, 3, 41, (5, 6, 7, 8, 9], [10, 11, 12, 13, 14]]

1.2 Attributs de dimension d’un tableau

Voici quelques attributs de dimension des tableaux numpy

(les exemples s’appuient sur la définition précédente de a).

>>> a.shape

- indique le format du tableau, sous la forme du tuple du nombre d’éléments dans (3, 4)
chaque direction : ici le couple (3,4) indique qu’il y a trois lignes et quatre colonnes. >>> np.alen(a)

— la fonction (ce n’est pas un attribut) donne la premieére dimension d’un tableau (la S

taille pour un vecteur, le nombre de lignes pour une matrice). >>> a.size

- donne le nombre total d’éléments, et par exemple np pour une matrice de type

n X p. Ici notre tableau a contient 12 éléments.

variante : np.size(a,0) et np.size(a,1) donnent respectivement le nombre de lignes et

le nombre de colonnes d’une matrice.

- renvoie le nombre d’indices nécessaires au parcours du tableau (usuellement : 1

pour un vecteur, 2 pour une matrice).

12
>>> np.size(a,0)

>>> np.size(a,1)

>>> a.ndim
2

Les fonctions shape, size, et ndim peuvent étre évoquées a la fois comme des attributs d’'un tableau et comme des
fonctions du module numpy prenant un tableau en argument. Pour prendre I'exemple de shape, on peut donc écrire aussi

bien « a.shape » que « np.shape(a) ».

http://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.tolist.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.shape.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.size.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.ndim.html

1.3 Le « data type » d’un tableau CHAPITRE 1 : Fonction array et « data types »

1.3 Le « data type » d’un tableau

Le data type est automatiquement choisi par la >>> b = np.array([[8,3,2,4],[5,1,6,0],[9,7,4.0,111); b

fonction array au vu des coefficients. array([[8., 3., 2., 4.1,
[6., 1., 6., 0.1,
En modifiant & peine ’exemple précédent, il suffit [o., 7., 4., 1.1

d’un seul flottant (on a changé 4 en 4.0) pour que
le tableau tout entier soit considéré comme formé
de flottants (ici codés sur 64 bits).

Il est toujours possible de forcer le data type du tableau avec I'option de la fonction array (& condition de faire
du upcasting, c’est-a~dire de forcer le typage « vers le haut », basé sur les inclusions strictes Z & R & C).

>>> b.dtype
dtype(’float64’)

Dans ’exemple suivant, on force la création d’un tableau de nombres complexes, alors que la nature des coefficients devait
conduire & un data type entier (on aurait pu aussi bien remplacer 8 par 8+0j, par exemple) :

>>> ¢ = np.array([[8,3,2,4],[5,1,6,0]1,[9,7,4,1]1], dtype=complex); c
array([[8.+0.j, 3.40.j, 2.40.j, 4.+0.j],
[6.+0.j, 1.+0.j, 6.+0.j, 0.+0.j],
[9.+0.j, 7.+#0.j, 4.+0.j, 1.+0.3j1D
>>> c.dtype
dtype (’complex128’)

1.4 Copie d’un tableau avec conversion de « data type »

On peut créer une copie d'un tableau d’'un data type & un autre en utilisant sa méthode | astype |
Pour illustrer ces possibilités on reprend les définitions précédentes de a (dtype=int), b (dtype=float) et ¢ (dtype=complex).

On retiendra que la méthode astype crée une copie du tableau (donc n’affecte pas le contenu de la variable).

>>> a.astype(float) >>> b.astype(int) >>> c.astype(float)
array([[0., 1., 2., 3., 4.], array([[8, 3, 2, 4], array([[8., 3., 2., 4.1,
[5., 6., 7., 8., 9.1, [5, 1, 6, 01, [5., 1., 6., 0.1,
[10., 11., 12., 13., 14.11) 9, 7, 4, 111) L9., 7., 4., 1.1
effectue une copie du tableau a effectue une copie du tableau b effectue une copie du tableau ¢
en convertissant vers le type float en convertissant vers le type int en convertissant vers le type float

Un tableau numpy occupe une place constante en mémoire, égale au produit du nombre de ses éléments par la taille (fixe)
d’un élément du data type (en principe : 4 octets pour un entier, 8 pour un flottant, 16 pour un nombre complexe).

Les attributs |itemsize| et |nbytes | d'un tableau numpy >>> (a.itemsize, a.size, a.nbytes)
donnent la taille d’un élément du tableau et la taille totale (4, 15, 60)

de celui-ci (exprimées en octets). >>> (b.itemsize, b.size, b.nbytes)
En réutilisant nos tableaux a, b, ¢, on affiche ici les valeurs (8, 12, 96)
des attributs itemsize (taille d’un élément), puis size (le

. . >> .i i .si .
nombre d’éléments) puis nbytes (taille totale). > (Bodiensiag, e, emnlbyies)

(16, 12, 192)

un octet = un caractére = un byte = 8 bits.

1.5 Les différents « data types » disponibles

Les éléments d’un tableau numpy particulier sont du méme type, et on a vu les types suivants : int, float et complex.
En fait il y a d’autres types possibles et en voici la liste :
: booléen (True ou False), codé sur un octet

m : entier, équivalent de ou de , suivant les implémentations

: entier signé sur 1 octet (8 bits), intervalle [-27,27 — 1] = [-128,127]

: entier signé sur 2 octets (16 bits), intervalle [—2!5, 215 — 1] = [-32768, 32767]

: entier signé sur 4 octects (32 bits), intervalle [—23!,231 — 1] = [-2147483648, 2147483647]

: entier signé, 8 octets (64 bits), intervalle [—263,263 — 1] = [-9223372036854775808, 9223372036854775807]

: entier non signé, 1 octet (8 bits), intervalle [0, 28 — 1] = [0, 255]

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 6/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.astype.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.itemsize.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.nbytes.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

1.6 Tableaux de nombres complexes CHAPITRE 1 : Fonction array et « data types »

uint16 | : entier non signé, 2 octets (16 bits), intervalle [0,2'¢ — 1] = [0, 65535]
uint32 | : entier non signé, 4 octets (32 bits), intervalle [0, 232 — 1] = [0, 4294967295]
uint64 | : entier non signé, 8 octets (64 bits), intervalle [0, 25 — 1] = [0, 18446744073709551615]

float |: synonyme de float64
: flottant en demi-précision (un bit de signe, 5 bits d’exposant, 10 bits de mantisse)
: flottant en simple-précision (un bit de signe, 8 bits d’exposant, 23 bits de mantisse)

: flottant en double-précision (un bit de signe, 11 bits d’exposant, 52 bits de mantisse)

Q|||+]|+
ofllF||HF]|]|H
Bl|lo||lo]|]|o
el [[[
=l || |||
(0] (e} w =
M|]||o

: synonyme de complex128

complex64 | : nombre complexe sur 64 bits (32 bits pour la partie réelle, 32 bits pour la partie imaginaire)

complex128 | : nombre complexe sur 128 bits (64 bits pour la partie réelle, 64 bits pour la partie imaginaire)

On peut aussi former des tableaux de chaines de caractéres dont la longueur n’excéde pas une valeur donnée :

>>> np.array(("123",’abcbde’,"12XY5")) # vecteur de chaines de caractéres unicode, pos maxi < 6
array([’123’, ’abcbde’, ’12XY5°],
dtype=’<U6")

1.6 Tableaux de nombres complexes

Les méthodes et permettent de séparer un tableau numpy de nombres complexes en sa partie réelle et sa

partie imaginaire. On obtient le tableau conjugué de a en évaluant ’ a.conj(‘ ou ’ np.conj(a) ‘

De méme, on forme le tableau des modules (resp. des arguments) par | abs(a) | et | angle(a) |.

Voici par exemple une matrice z, de format 2 x 4, constituée de nombres complexes.

>>> z = np.array([[1j,1+1j,2-3j,4-1j1,[2j,3-1j,2+2,1+5j11); =z
array([[0.+1.j, 1.+1.j, 2.-3.j, 4.-1.j],
[0.42.3, 3.-1.j, 2.+2.3, 1.+5.311)

Dans l'exemple suivant, on met la partie réelle (resp. imaginaire) du tableau z dans le tableau x (resp. y). On voit comment
I’expression x+1j*y permet de reconstituer le tableau complexe initial. Les fonctions qui agissent ainsi terme & terme sur
les éléments d’un tableau seront étudiées dans le chapitre « Fonctions universelles ».

>>> x = z.real; x >>> x + y*1j
array([[0., 1., 2., 4.1, array([[0.+1.j, 1.+1.j, 2.-3.j, 4.-1.j],
[o0., 3., 2., 1.1 [0.+42.j, 3.-1.j, 2.+2.j, 1.+5.311)
>>> y = z.imag; y >>> z.conj ()
array([[1., 1., -3., -1.], array([[0.-1.j, 1.-1.j, 2.+3.j, 4.+1.j],
[2., -1., 2., 5.1 [0.-2.5, 3.+1.j, 2.-2.j, 1.-5.31D1)
http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy

jean-miche.ferrard@ac-paris.fr mathprepa.fr 7/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.real.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.imag.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.conj.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.absolute.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.angle.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

Chapitre 2

Lecture et écriture dans un tableau

2.1 Lecture de valeurs dans un vecteur, « slicing »

La lecture d’éléments d’un tableau numpy procéde par coupes (« slices » en anglais) suivant une ou éventuellement plusieurs
des dimensions du tableau. C’est ce mécanisme qui est a ’ceuvre dans ’accés (en lecture et en écriture) aux éléments d’une
liste (ou d’une liste de liste). Voir la doc ici : http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html

Une coupe est un mécanisme de sélection de positions réguliérement espacées dans un intervalle T = [0,p — 1].

La spécification la plus générale d’une coupe est | début (inclus) : fin(exclue) : incrément ‘ et désigne les positions de [
a partir de la valeur de début (incluse), par incrémentations successives tant qu’on reste dans l'intervalle défini par les
valeurs de début et de fin (cette derniére étant exclue : trés important).

Les positions acceptées par U'interpréteur Python forment en fait 'intervalle I’ = [—p,...,—2,-1,0,1,2,...,p—1] et elles
sont converties « modulo p » en une position effective dans I = [0,p — 1].

L’intérét de cette extension syntaxique est que les positions négatives successives —1,—2, ..., qui sont converties en les
positions p— 1,p — 2, ... (ou p représente la longueur du vecteur v) permettent de lire les éléments de v a partir de la fin.

Par défaut, la position de début (incluse) est 0 et la position de fin (exclue) est la longueur p de I donc de v.
Par défaut également, la valeur d’incrémentation est 1.
Comme ¢a parait un peu compliqué de prime abord, on va prendre quelques exemples, d’abord sur un vecteur.

On choisit ici de former le vecteur v, de longueur p = 16, tel que v[k] = 10k pour k dans I = [0, 15].

>>> v = np.array(range(0,160,10)); v
array([o, 10, 20, 30, 40, 50, 60, 7O, 80, 90, 100, 110, 120, 130, 140, 150])

On commence par lire des éléments individuels dans le vecteur v.

>>> v[0] # le ler élément >>> v[-1] # le dernier é&lément >>> v[v.size-1] # le dernier
0 150 150

>>> v[1] # le 2iéme élément >>> v[-2] # 1’avant-dernier >>> v[-16] # le premier
10 140 0

>>> v[2] # le 3iéme élément >>> v[-3] # 1’avant-avant-dernier >>> v[-v.size] # le premier
20 130 0

ici on compte & partir du début ici on compte a partir de la fin formulations peu claires : & éviter

On continue, avec le méme vecteur v, en effectuant quelques coupes de valeurs consécutives dans ’ordre des indices
croissants, c’est-a-dire avec la valeur 1 d’incrémentation par défaut :

>>> v[4:11] # de v[4] a v[10], donc 11-4 = 7 éléments consécutifs
array([40, 50, 60, 70, 80, 90, 100])

>>> v[:6] # de v[0] & v[5], les 6 premiéres valeurs de v
array([0, 10, 20, 30, 40, 50])

>>> v[6:] # (v étant de longueur p=16), de v[6] & v[p-1], les p-6 = 10 derniéres valeurs de v
array([60, 70, 80, 90, 100, 110, 120, 130, 140, 150])

>>> v[:] # la totalité du vecteur v, comme si on avait écrit v[0:p]
array([o, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150])

http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html

2.2 Lecture de valeurs dans une matrice CHAPITRE 2 : Lecture et écriture dans un tableau

Voici maintenant des coupes d’éléments consécutifs, mais a 'envers, et toujours avec le méme vecteur v :

>>> v[11:4:-1] # de v[11] & v[5], donc |4-11| = 7 éléments

array([110, 100, 90, 80, 70, 60, 50])
>>> v[:6:-1] # de v[p-1=15] & v[7], donc [|6-15| = 9 éléments
array([150, 140, 130, 120, 110, 100, 90, 80, 70])

>>> v[6::-1] # de v[6] & v[0], donc 7 éléments
array([60, 50, 40, 30, 20, 10, 0])
>>> v[::-1] # la totalité du vecteur, mais & 1l’envers
array([150, 140, 130, 120, 110, 100, 90, 80, 7O, 60, 50, 40, 30, 20, 10, 01)
Et pour finir, des coupes du méme vecteur v, mais avec un incrément différent de 1 ou —1 :
>>> v[::4] >>> v[:6:2] >>> v[:5:-3]
array([0, 40, 80, 1201) array([0, 20, 401) array([150, 120, 90, 60])
>>> v[1::4] >>> v[:7:2] >>> v[:6:-3]
array([10, 50, 90, 130]) array([0, 20, 40, 60]) array([150, 120, 90])
>>> v[::5] >>> v[10::2] >>> v[6::-3]
array([0, 50, 100, 150]) array([100, 120, 140]) array([60, 30, 0])

2.2 Lecture de valeurs dans une matrice

On proceéde comme dans la sous-section précédente, en effectuant une coupe suivant la premiére et/ou suivant la deuxiéme
dimension (ga se généralise bien siir & des tableaux de trois dimensions ou plus).

>>> m = np.array([[10*i+j for j in range(8)] for i in range(5)]); m
On se contentera de quelques array([[0, 1, 2, 3, 4, 5, 6, 71,
exemples avec cette matrice m (10, 11, 12, 13, 14, 15, 16, 171,
d’ordre 5 x 8, de terme général [20, 21, 22, 23, 24, 25, 26, 271,
mli, j] = 10i+j (en numérotant [30, 31, 32, 33, 34, 35, 36, 371,
lignes et colonnes a partir de 0) : [40, 41, 42, 43, 44, 45, 46, 471])
H >>> m[3,5] >>> m[3] >>> m[:,5]
35 array([30, 31, 32, 33, 34, 35, 36, 37]) array([5, 15, 25, 35, 45])

élément en position (3,5) vecteur-ligne en position 3 vecteur-colonne en position 5

>>> m[1:4,2:6] >>> m[1::2,1::2] >>> m[::2,::2]

array([[12, 13, 14, 15], array([[11, 13, 15, 17], array([[0, 2, 4, 6],
[22, 23, 24, 25], [31, 33, 35, 3711) [20, 22, 24, 26],

[32, 33, 34, 35]1) [40, 42, 44, 46]11)

lignes 1 & 3, colonnes 2 &4 5 lignes et colonnes impaires lignes et colonnes paires

trois premiéres lignes
deux premiéres colonnes

a partir de la ligne 2
A partir de la colonne 4

>>> m[:3,:2] >>> m[2:,4:] >>> m[::2,::3]

array([[0, 1], array([[24, 25, 26, 27], array([[0, 3, 6],
[10, 117, [34, 35, 36, 371, [20, 23, 26],
[20, 2111) [44, 45, 46, 4711) [40, 43, 46]11)

une ligne sur deux
une colonne sur trois

>>> m[::-1]

array([[40, 41, 42, 43, 44, 45, 46, 47],
[30, 31, 32, 33, 34, 35, 36, 371,
[20, 21, 22, 23, 24, 25, 26, 271,
[10, 11, 12, 13, 14, 15, 16, 171,
o, 1, 2, 3, 4, 5, 6, 711

on inverse l'ordre des lignes

>>> m[:,::-1]

array([[7, 6,
[17, 16,
[27, 26,
[37, 36,
[47, 46,

5,
15,
25,
35,
45,

4, 3, 2, 1, o],
14, 13, 12, 11, 10],
24, 23, 22, 21, 201,
34, 33, 32, 31, 30],
44, 43, 42, 41, 40]1)

on inverse ’ordre des colonnes

http://creativecommons.org/licenses/by-sa/3.0/fr/
jean-miche.ferrard@ac-paris.fr mathprepa.fr

une petite référence Numpy
9/ 58

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

2.3 Ecriture de valeurs dans un vecteur CHAPITRE 2 : Lecture et écriture dans un tableau

2.3 Ecriture de valeurs dans un vecteur

Si a est un vecteur numpy linstruction « a[n] =x » écrit la valeur = en position n.

>>> a = np.arange(10); a # le vecteur des entiers de 0 & 9
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> al[7] = 999 # écrit la valeur 999 en position 7
>>> a # affiche le nouveau contenu de a

array([0, 1, 2, 3, 4, 5, 6, 999, 8, 9])

La valeur x écrite en position n du vecteur a doit a priori étre compatible avec le « data type » de a.
Si on écrit un entier « dans un tableau a de flottants, pas de probléme (z est converti en le flottant correspondant).

Mais si on écrit un flottant = dans un tableau a d’entiers, alors x est converti en un entier (par troncature, pas par
arrondi) pour 'écriture : il n’y a donc pas de message d’erreur, ni méme d’avertissement. Le « data type » et ’adresse du
tableau a ne changent pas.

L’idée fondamentale avec les tableaux numpy est que leur « data type » et leur taille (le nombre total d’éléments) sont
fixés lors de leur création. Par souci d’efficacité et d’économie, Python limite la création de copies du tableau initial, et
donc privilégie les opérations réalisées « en place ».

Dans I'exemple ci-dessous, on voit que l'instruction a[5]=12.99 (ot a est un tableau d’entiers) a été traduite en a[51=12 :
Popération a été effectuée « en place » (’adresse du tableau en mémoire n’a pas changé).

>>> a = np.arange(10);

>>> a, id(a) # demande le contenu du tableau a, et son adresse
(array([O, 1, 2, 3, 4, 5, 6, 7, 8, 9]), 3957296)

>>> al[b] = 12.99 # on essaie d’écrire le flottant 12.99 en position 5

>>> a, id(a) # en fait, on a écrit 12, et 1l’adresse de a est inchangée
(array([O, 1, 2, 3, 4, 12, 6, 7, 8, 9]), 3957296)

On peut écrire plusieurs valeurs simultanément dans un vecteur, en utilisant une syntaxe du genre a[coupe]=.... Il faut
simplement veiller a ce que le membre de droite (la source) soit « array-like » (une liste, un tuple, un tableau) et que la coupe
spécifiée a (donc la cible) soient de méme taille. Ainsi, dans exemple ci-dessous, les instructions a[4:7] = [111,222,333],
al4:7] =(111,222,333) ou encore a[4:7] =np.array([111,222,333]) ont le méme effet :

>>> a = np.arange(10); a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> al4:7] = [111,222,333]; a # place 111, 222, 333 en positions respectives 4, 5, 6
array([0, 1, 2, 3, 111, 222, 333, 7, 8, 9])

L’exemple suivant est peut-étre moins évident. On commence par former un vecteur nul de longueur 10 (avec le data type
par défaut, donc float), puis on évalue l'instruction a[::2] = np.arange(1,6). On affecte donc respectivement les cing
valeurs du tableau array([1, 2, 3, 4, 5]) aux positions paires du tableau a.

>>> a = np.zeros(10); a, id(a) # un vecteur de 10 flottants égaux & O, et son adresse
(array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]), 19048976)
>>> a[::2] = np.arange(1,6); a # place 1,2,3,4,5 aux positions 0,2,4,6,8. Adresse inchangée

(array([1., 0., 2., 0., 3., 0., 4., 0., 5., 0.]1), 19048976)

Autre exemple un peu tordu, on copie le vecteur a & I'envers sur lui-méme :

>>> a = np.arange(10); a

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> al[::-1] = a; a

array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 10/ 58

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

2.4 Ecriture de valeurs dans une matrice CHAPITRE 2 : Lecture et écriture dans un tableau

2.4 Ecriture de valeurs dans une matrice

On procéde comme pour les vecteurs, indice par indice.

Commengons par I’écriture d’un coeflicient :

>>>m >>> m[1,2] = 999; m

array([[0, 1, 2, 3], array([[o, 1, 2, 3],
[10, 11, 12, 13], [10, 11, 999, 13],
[20, 21, 22, 231]) [20, 21, 22, 23]1)

Continuons par I’écriture d’une ligne entiére :

>>> m >>> m[2] = [6, 7, 8, 9]; m

array([[0, 1, 2, 3], array([[0, 1, 2, 3],
[10, 11, 12, 13], [10, 11, 12, 13],
[20, 21, 22, 231]1) L6, 7, 8, 91D

Terminons par ’écriture d’une colonne entiére.

Notons qu’on pourrait ici, et avec le méme effet, remplacer le tuple (444,555,666) par la liste [444,555,666], ou par
le vecteur np.array([444,555,666]), ou par la matrice-ligne np.array([[444,555,666]1]) mais (bizarrement) pas par
la matrice-colonne np.array([[444], [555], [666]]1).

>>> m >>> m[:,1] = [444, 555, 666]; m

array([[0, 1, 2, 3], array([[0, 444, 2, 3],
[10, 11, 12, 13], [10, 555, 12, 13],
[20, 21, 22, 23]]) [20, 666, 22, 2311)

Il y a énormément de possibilités, mais en dehors des trois précédentes, il faut vraiment en avoir I'utilité.

Juste pour réviser un peu 'utilisation de coupes a ’envers ::-1, citons les exemples suivants :
>>> m >>> m[::-1] = m; m >>> m[:,::-1] = m; m
array([[0, 1, 2, 3], array([[20, 21, 22, 23], array([[23, 22, 21, 20],
[10, 11, 12, 13], [10, 11, 12, 13], [13, 12, 11, 10],
[20, 21, 22, 23]1) [o, 1, 2, 31D (3, 2, 1, 01D
on a inversé l'ordre des lignes puis inversé 'ordre des colonnes

2.5 Copies de tableaux, « vues » sur des tableaux

Le module numpy permet de travailler efficacement sur des tableaux possédant un nombre fixé d’éléments, ceux-ci ayant
un type donné. Tout cela se passe a l'initialisation du tableau.

Avec ces tableaux, on applique donc un principe d’économie qui consiste a effectuer aussi peu que possible de recopies de
tableaux en mémoire, sauf demande explicite. Tout dépend de la fonction utilisée sur le tableau.

L’exemple suivant est trés important (parce que la situation évoquée ici revient souvent). Le vecteur a contenant un
tableau numpy, la variable a pointe en fait sur la position de ce tableau en mémoire. L’instruction b = a ne crée pas une
nouvelle copie du tableau a, mais elle demande a la variable b de pointer sur le méme tableau physique que a.

On exprime cette situation en disant que a et b constituent une méme vue (« view » in english) d’un tableau numpy.

La conséquence immédiate est que toute modification apportée a cette vue (que ce soit par 'intermédiaire de la variable
a ou de la variable b) affecte ce que « voient » et a et b. Ici, par exemple, aprés avoir posé b = a, I'instruction b[2,1]1=9
modifie le tableau vu par b, c’est-a-dire le tableau vu par a. C’est confirmé quand on évalue les expressions id(a) et
id(b) qui donnent un résultat identique (I’adresse de ce que voient a et b).

>>> a >>> b[2,1] = 9; b >>> a >>> id(a)
array([[0, 1, 2, 3], array([[0, 1, 2, 3], array([[0, 1, 2, 3], 19127280
[10,11,12,13], [10,11,12,13], [10,11,12,13], .
>>> id(b)
[20,21,22,23]]) [20, 9,22,23]1]1) [20, 9,22,23]1])
_ 19127280
>>> b = a
on modifie b[2,1] la modification s’est c’est normal car a et b
dans le tableau b répercutée sur a partagent une méme vue

Il est bien stir possible de « déconnecter » complétement les tableaux vus respectivement par deux identificateurs.

L’expression | a.copy () | renvoie une copie « neuve » du tableau a, indépendante de ’original.

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 11/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.copy.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

2.5 Copies de tableaux, « vues » sur des tableaux CHAPITRE 2 : Lecture et écriture dans un tableau

>>> a >>> b[2,1] = 9; b >>> a >>> id(a)
array([[0, 1, 2, 3], array([[0, 1’ 2, 3], array([[O, 1, 2, 3], 19134464
[10,11,12,13], [10,11,12,13], [10,11,12,13], .
[20,21,22,23]1]) [20, 9,22,23]1) [20,21,22,23]1) 220 A0
>>> b = a.copy() 19096112
on modifie b[2,1] la, modification ne s’est normal car a et b ne
dans le tableau b par répercutée sur a partagent pas la méme vue

L’exemple suivant est beaucoup plus subtil et intéressant et instructif!

Au départ, le tableau a contient (en fait, « il voit ») une matrice d’entiers de type 5 x 8.

Ensuite on extrait une sous-matrice b de a (au moyen d’une coupe selon chacun des deux indices).

On décide ensuite d’annuler les éléments de b (avec la méthode £i11, exposée plus loin, et qui travaille « en place »).

On demande ensuite le nouveau contenu de b (c’est-a-dire ce que voit b), et le résultat n’est pas surprenant.

>>> a >>> b = al1:4,2:6] >>> b.£il11(0)
array([[0, 1, 2, 3, 4, 5, 6, 7], >>> b >>> b
[10, 11, 12, 13, 14, 15, 16, 171, array([[12, 13, 14, 15], array([[0, 0, O, O],
[20, 21, 22, 23, 24, 25, 26, 27], [22, 23, 24, 25], [o, o, 0, 07,
[30, 31, 32, 33, 34, 35, 36, 371, [32, 33, 34, 35]11) [0, 0, 0, 011)

[40, 41, 42, 43, 44, 45, 46, 47]11)
la matrice a initiale on en extrait une sous-matrice b on annule les coefficients de b
Ce qui est plus inattendu, c’est que tous les coefficients de a et qui correspondant & 'emprunt que nous avons fait pour

créer b sont annulés eux aussi! ¢a se confirme aprés l'instruction b.£i11 (1) qui remplit de coefficients égaux a 1 le tableau
vu par b, c’est-a-dire la sous-matrice de a correspondand & la définition de b.

>>> a >>> b.fill(1); a

array([[0, 1, 2, 3, 4, 5, 6, 71, array([[0, 1, 2, 3, 4, 5, 6, 71,
(10, 11, o0, o0, 0, O, 16, 171, [10, 11, 1, 1, 1, 1, 16, 171,
(20, 21, o0, O, O, 0, 26, 271, [20, 21, 1, 1, 1, 1, 26, 27],
(30, 31, o, o, O, O, 36, 371, [30, 31, 1, 1, 1, 1, 36, 371,
[40, 41, 42, 43, 44, 45, 46, 47]1]1) [40, 41, 42, 43, 44, 45, 46, 47]]1)

annuler b, c’est annuler une vue c’est la méme chose en remplissant la matrice b
sur la partie du tableau a dont b est issue de coefficients égaux a 1

Important : on retiendra donc que lire une coupe d’un tableau numpy a, ¢a n’est pas créer un nouveau tableau, c’est
renvoyer une « vue » sur un sous-tableau de a.

Si on reprend ’exemple précédent, le tableau a est en quelque sorte le pére de b. Le terme exact est la base de b. D’ailleurs
la méthode du tableau b renvoie une vue sur le tableau a.

Il est intéressant de voir que modifier a, c’est également modifier b (exemple ci-dessous). Le lien entre les deux tableaux
a et b est donc a double sens (c’est normal : ils partagent une méme zone de données) :

>>> b.base >>> a.fill(-1)

array([[0, 1, 2, 3, 4, 5, 6, 7], >>> b
(10, 11, 1, 1, 1, 1, 16, 171, array([[-1, -1, -1, -1],
[20, 21, 1, 1, 1, 1, 26, 271, [-1, -1, -1, -11,
[30, 31, 1, 1, 1, 1, 36, 371, [-1, -1, -1, -111)

[40, 41, 42, 43, 44, 45, 46, 47]]1)
la base du tableau b c’est le tableau a modifier a, c¢’est donc aussi modifier b

Pour plus de documentation sur le sujet : http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 12/ 58

http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

2.6 « Fancy indexing » CHAPITRE 2 : Lecture et écriture dans un tableau

2.6 « Fancy indexing »

On peut accéder au contenu d’un tableau numpy tant en lecture qu’en écriture, en utilisant le « fancy indexing » (selon
la terminologie officielle...). Ici les positions dans un vecteur ou dans une matrice ne procédent plus nécessairement par
des « coupes », mais peuvent étre données dans un ordre tout a fait quelconque.

Si a est un tableau, et si I est un tableau d’indices (éventuellement une liste ou un tuple), alors a[I] renvoie le tableau
(de méme format que le tableau I) formé des éléments ali], ot ¢ est dans I.

>>> a = np.arange(0,100,10); a >>> indices = np.array([[5,2,1],[3,8,7]1])
array([0, 10, 20, 30, 40, 50, 60, 70, 80, 90]) >>> b = a[indices]:; b
>>> b = al[[6,2,1,3]]; b array([[50, 20, 10],
array([60, 20, 10, 30]) [30, 80, 7011)

on demande le tableau [ag, as, a1, as] on demande le tableau llas, az, a1]

[a3,(18,a7]]

>>> a = np.arange(24) .reshape(4,6); a >>> b = al[[3,1,0,1]]; b
array([[0, 1, 2, 3, 4, 5], array([[18, 19, 20, 21, 22, 23],

L6, 7, 8, 9, 10, 11], [e, 7, 8, 9, 10, 111,

[12, 13, 14, 15, 16, 171, to, 1, 2, 3, 4, 5],

[18, 19, 20, 21, 22, 2311) [e, 7, 8, 9, 10, 1111)

on demande le tableau des lignes as, a1, ag, a;

Subtilité : les tableaux b formés ci-dessus (et qui ne sont pas obtenus pas « slicing ») ne sont pas de simples « vues » sur
une partie de a (la notion a été discutée dans la sous-section précédente). Ils sont donc indépendants de a (modifier b
n’affecte pas a et réciproquement).

Le « fancy indexing », ¢a fonctionne aussi pour des opérations d’écriture :

>>> a = np.arange(0,100,10); a
array([0, 10, 20, 30, 40, 50, 60, 70, 80, 901)

>>> al[7, 2, 5, 3]1] = (7777, 2222, 5555, 3333); a # on modifie al7], al2], al[b] et al3]
array([0, 10, 2222, 3333, 40, 5555, 60, 7777, 80, 90])

Comme si tout cela ne suffisait pas, on peut aussi utiliser les méthodes take et put.

Avec | a.put(positions, source) | on remplace, terme a terme, les valeurs de source dans les positions indiquées.

>>> a = np.arange(10); a

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> a.put([6,1,5,2],[66,11,55,22]); a # place 66 en position 6, 11 en position 1, etc.
array([0, 11, 22, 3, 4, 55, 66, 7, 8, 91)

Avec | a.take(positions) |on lit, terme & terme, les valeurs de a dans les positions indiquées.

>>> a = np.arange(0,100,10); a

array([0, 10, 20, 30, 40, 50, 60, 70, 80, 901)

>>> np.take(a,[6, 1, 5, 0]) # renvoie le tableau des valeurs al[6], al[l], a[5], al0O]
array([60, 10, 50, 0])

Pour une matrice, on utilisera un argument supplémentaire « axis=. .. » pour spécifier dans quel sens on fait la lecture
(selon les lignes avec axis=0, selon les lignes avec axis=1). En 'absence de cette précision, la lecture s’effectue comme si
le tableau avait été « aplati ».

>>> a = np.arange(0,160,10) .reshape(4,4); a >>> a.take(i,axis=0) # lectures de lignes
array([[O, 10, 20, 30] s array([[120, 130, 140, 150] ’
[40, 50, 60, 701, [o, 10, =20, 301,
[80, 90, 100, 1101, [80, 90, 100, 11011
[120, 130, 140, 15011) >>> a.take(i,axis=1) # lectures de colonnes
>>> i = np.array([3,0,2]) # trois indices array([[30, 0, 20],
. . [70, 40, 60],
>>> a.take(i) # lecture de a "aplati"
[110, 80, 100],
array([30, 0, 20]) [150, 120, 14011)
http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy

PN Do g
jean-miche.ferrard@ac-paris.fr mathprepa.fr 13/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.put.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.take.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

2.6 « Fancy indexing » CHAPITRE 2 : Lecture et écriture dans un tableau

On peut signaler également les fonctions suivantes :

place(a,conds,b) | écrit dans a les valeurs de b aux positions de a spécifiées par le tableau de booléens conds

>>> a = np.arange(10); a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> np.place(a, np.mod(a,3) == 0, 0); a # remplace toutes les valeurs multiples de 3 par des O
array([0, 1, 2, 0, 4, 5, 0, 7, 8, 0])

La fonction est presque synonyme de la fonction (se reporter a la doc!)

>>> a = np.arange(10); a

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> np.copyto(a,-1, where=np.mod(a,3) == 0); a # remplace les valeurs multiples de 3 par des -1
array([-1, 1, 2, -1, 4, 5, -1, 7, 8, -1])

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Nqupy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 14/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.place.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.copyto.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

Chapitre 3

Dimensions d’un tableau

3.1 Redimensionnement par « reshape » ou « resize »

La principale méthode pour modifier la taille d’un tableau est . Le redimensionnement d’un tableau est quand

méme soumis a la contrainte que le nombre total d’éléments doit rester constant. On pourra ainsi passer (dans les deux
sens) d’un vecteur de taille n & une matrice de taille (p,q) ou & une matrice de taille (r, s) & condition que n = pg = rs.

Si a est un tableau numpy, l’expression a.reshape(n,p) renvoie une copie redimensionnée (le contenu de la variable
initiale n’est donc pas affecté, comme on le constate ci-dessous).

>>> a = np.array(range(6)); a >>> a.reshape(2,3) >>> a.reshape(6,1)
array([0, 1, 2, 3, 4, 51) array([[0, 1, 2], array([[0],

[3, 4, 511 [1]
>>> a.reshape(1,6) s e o])
array([[0, 1, 2, 3, 4, 5]11) array([[0, 1], (31,
>>> a [2, 31, [4],
array([0, 1, 2, 3, 4, 51) [4, 511) [511)

Il y a une autre possibilité qui consiste a réinitialiser [’attribut W d’un tableau numpy. La différence avec ce qui
précede est que le redimensionnement est fait « sur place », et donc que le contenu de la variable s’en trouve affecté.

>>> a = np.array(range(6)); >>> a.shape = (3,2); a # devient matrice 3 X 2

>>> a array([[0, 1],
array([0, 1, 2, 3, 4, 5]) [2, 3],
>>> a.shape = (2,3); a # devient matrice 2 x 3 (4, 511

array([[0, 1, 2],
[3, 4, 511)

>>> a.shape = 6; a # redevient un vecteur
array ([0, 1, 2, 3, 4, 5])

Autre possibilité, la fonction , qui permet de redimensionner un bloc, en transformant (sur place) un tableau T
(A n éléments) en un tableau 77 (& n’ éléments). Si n’ > n, le tableau T” est rempli avec répétitions des éléments de .
Sinon T est rempli par les n premiers éléments de T

>>> a = np.array(range(6)); a >>> np.resize(a, (4,3)) >>> np.resize(a, (1,7))
array([O, 1, 2, 3, 4, 5]) array([[o, 1, 2], array([[o’ 1, 2, 3, 4, 5, 011)
>>> a.resize(3,2); a (3, 4, 8], >>> np.resize(a, (2,5))
array (L0, 11, [0, 1, 21, array([[0, 1, 2, 3, 4],

[2, 31, (3, 4, 511) [5, 0, 1, 2, 311)

(4, 511D >>> a
>>> a.resize(2,3); a array([[0, 1, 2], > 8
array([[0, 1, 2], [3, 4, 511) array([[0, 1, 2],

[3, 4, 511D [3, 4, 511D

avec a.resize la modification
s’effectue « en place »

avec np.resize(a,...), un
nouveau tableau est créé

15

autres exemples
avec np.resize(a,...)

http://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.shape.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.resize.html

3.2 Aplatissement d’un tableau CHAPITRE 3 : Dimensions d’un tableau

La fonction resize permet également de créer des tableaux constants contenant une autre valeur que 0 et 1 (sinon on
utiliserait les fonctions zeros ou ones) :

>>> np.resize(1.23, 4) >>> np.resize(5, (3,6))

array([1.23, 1.23, 1.23, 1.23]) array([[5, 5, 5, 5, 5, 5],
>>> np.resize(9, 7) (5, 5, 5, 5, 5, 5],
array([9, 9, 9, 9, 9, 9, 91) (5, 5, 5, 5, 5, 5]11)

3.2 Aplatissement d’un tableau

La méthode d’un tableau numpy renvoie une copie « aplatie » de ce tableau.

Cette fonction est l'occasion de découvrir un argument facultatif souvent employé quand on est amené & parcourir un
tableau. C’est argument order=. .. dont la valeur par défaut est order=’C”’ et qui peut étre modifié¢ en order="F".

Avec order="C’ (ou ’C’ désigne le langage de programmation) le parcours s’effectue d’abord de gauche a droite sur une
ligne avant de passer a la ligne suivante (donc indice de colonne varie prioritairement). Avec order=’F’ (ou 'F’ désigne
le langage de programmation Fortran) le parcours s’effectue d’abord de haut en bas sur une colonne avant de passer a la
colonne suivante (donc l'indice de ligne varie prioritairement).

>>> a = np.array([[1,5,3],[2,7,4]1]) >>> a.flatten() # parcours par défaut (& droite d’abord)
>>> a array([1, 5, 3, 2, 7, 4])
array([[1, 5, 3], >>> a.flatten(’F’) # parcours Fortran (en bas d’abord)

[2, 7, 411) array([1, 2, 5, 7, 3, 4])

Remarque : la fonction est peu ou prou synonyme de flatten.

Si a est un tableau numpy, alors renvoie un itérateur permet d’accéder séquentiellement & tous les éléments d’un
tableau (dans l'ordre ’C’ ou 'F’ qui a présidé a la création du tableau). L’intérét est qu’ici il n’y a pas (contrairement a
la fonction flatten) de recopie du tableau.

>>> a >>> a.flat[3] >>> sum(x for x in a.flat)
array([[9, 5, 6], 8 39
(8, 7, 411)
I’élément en position 3 dans a la somme des éléments de a
Il est intéressant de comparer avec le résultat suivant :
Quand on évalue sum(x for x in a), la variable x prend >>> sum(x for x in a)
les valeurs a[0]=[9,5,6] puis a[1]=[8,7,4]. array([17, 12, 10])

La somme est donc [9,5,6]+[8,7,4]1=[17, 12, 10].

3.3 Transposition d’une matrice

La fonction (ou la méthode) , ou plus simplement la méthode , renvoient la transposée d’une matrice :

>>> a >>> a.transpose() >>> a.T

array([[1, 2, 3, 4], array([[1, 5, 9, 13], array([[1, 5, 9, 13],
[5, 6, 7, 8], [2, 6, 10, 14], [2, 6, 10, 141,
[9, 10, 11, 12], [3, 7, 11, 15], [3, 7, 11, 15],
[13, 14, 15, 16]11) [4, 8, 12, 1611) [4, 8, 12, 16]11)

3.4 Suppressions/insertions de lignes, de colonnes

‘delete(a,k,axis=0) ‘ et ‘delete(a,k,axis=1) ‘ suppriment respectivement la k-iéme ligne et la k-iéme colonne de a.

Le troisiéme argument indique donc le numéro d’indice (I’aze) selon lequel on pratique cette suppression.

L’argument axis=... est trés souvent présent (de fagon facultative) dans les fonctions du module numpy : disons pour
simplifier, que pour des matrices (deux indices), axis=0 signifie « selon I'indice de ligne » et axis=1 signifie « selon l'indice
de colonne ». Souvent, d’ailleurs, le mot axis peut étre omis.

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 16/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ones.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.flatten.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ravel.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.flat.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.transpose.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.T.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.delete.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

3.5 Permutations/rotations de lignes, de colonnes CHAPITRE 3 : Dimensions d’un tableau

>>> a >>> b = np.delete(a,2,0); >>> ¢ = np.delete(b,3,1)
array([[0, 1, 2, 3, 4], >>> b >>> ¢
[10, 11, 12, 13, 14], array([[0, 1, 2, 3, 4], array([[0, 1, 2, 4],
[20, 21, 22, 23, 24], [10, 11, 12, 13, 14], [10, 11, 12, 14],
[30, 31, 32, 33, 3411) [30, 31, 32, 33, 34]11) [30, 31, 32, 34]11)
une a matrice de type 4 x 5 la matrice b est obtenue en la matrice c est obtenue en
supprimant la ligne d’indice 2 de a supprimant la colonne d’indice 3 de b

On peut également supprimer plusieurs colonnes (ou lignes) a la fois. Voici quelques exemples :

>>> np.delete(a,np.s_[0::2],1) >>> np.delete(a,np.s_[1::2],1) >>> np.delete(a, [0,2,3],1)

array([[1, 3], array([[0, 2, 4], array([[1, 4],
[11, 13], [10, 12, 14], [11, 14],
[21, 23], [20, 22, 24], [21, 24],
(31, 331D [30, 32, 3411) (31, 341D
supprime les colonnes d’indice pair supprime les colonnes d’indice impair supprime les colonnes d’indice 0, 2, 3

Les expressions | insert(a,k,v,axis=0) ‘ et ‘insert(a,k,v,axis=1) permettent d’insérer la valeur v respectivement

avant la k-iéme ligne ou avant la k-iéme colonne de a. Voici deux exemples :

>>> a >>> np.insert(a,2,-1,axis=1) >>> np.insert(a,1,0,axis=0)
array([[0, 1, 2, 3], array([[0, 1, -1, 2, 31, array([[0, 1, 2, 3],
(10, 11, 12, 13], (1o, 11, -1, 12, 13], Lo, o0, o, 0],
[20, 21, 22, 23]11) [20, 21, -1, 22, 23]]) 10, 11, 12, 13],
[20, 21, 22, 23]11)
une matrice a de type 3 x 4 insére des —1 juste avant insére des 0 juste avant
la colonne d’indice 2 la ligne d’indice 1

Les expressions ‘ append(a,v,axis=0) |et ‘ append(a,v,axis=1) | permettent d’ajouter une matrice-colonne C' (respecti-

vement une matrice V') aprés la derniére ligne (respectivement apreés la derniére colonne) de a. Il faut veiller & ce que la
matrice ajoutée ait un format compatible avec celui de a. Voici deux exemples :

>>> a >>> np.append(a, [[7],[8],[9]1],1) >>> np.append(a, [[3,5,7,9]1],0)
array([[0, 1, 2, 3], array([[0, 1, 2, 3, 7], array([[0, 1, 2, 31,
[10, 11, 12, 13], [10, 11, 12, 13, 8], (10, 11, 12, 13],
[20, 21, 22, 23]]) [20, 21, 22, 23, 9]1) [20, 21, 22, 23],
(3, 5, 7, 91
une matrice a de type 3 x 4 ajoute une colonne [[7,8,9]] ajoute une ligne [3,5,7,9]
aprés la derniére colonne aprés la derniére ligne

En reprenant ’exemple de la matrice précédente a, on voit comment ajouter la matrice identité a droite de la matrice a
(Pargument int permet de faire en sorte que le résultat soit encore a coefficients entiers).

>>> np.append(a,np.identity(3),1) >>> np.append(a,np.identity(3,int),1)
array({[©0., 1., 2., 3., 1., 0., 0.], array([[O, 1, 2, 3, 1, 0, 0],
[10., 11., 12., 13., 0., 1., 0.1, [10, 11, 12, 13, 0, 1, O],
[20., 21., 22., 23., 0., 0., 1.1 [20, 21, 22, 23, 0, O, 11D

3.5 Permutations/rotations de lignes, de colonnes

fliplr(m) | inverse 'ordre des colonnes de m : ici « 1r » est mis pour « left right ».

Remarque : ¢a ne marche pas pour les vecteurs, car il faut qu’il y ait au moins deux dimensions.

>>> m >>> np.fliplr(m) >>>m
array([[0, 1, 2, 3], array([[3, 2, 1, 0], array([[0, 1, 2, 3],
(10, 11, 12, 13], [13, 12, 11, 10], [10, 11, 12, 13],
[20, 21, 22, 231]) [23, 22, 21, 2011) [20, 21, 22, 23]1]1)
la matrice initiale m inverse 'ordre des colonnes de m le contenu initial de m est inchangé
http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy

PN Do g
jean-miche.ferrard@ac-paris.fr mathprepa.fr 17/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.insert.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.append.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.fliplr.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

3.5 Permutations/rotations de lignes, de colonnes CHAPITRE 3 : Dimensions d’un tableau

flipud(m) |inverse l'ordre des lignes de m : ici « ud » est mis pour « up down ».

>>>m >>> np.flipud(m) >>> m
array([[O, 1, 2, 3, 4], array([[30, 31, 32, 33, 34], array([[0, 1, 2, 3, 4],
(10, 11, 12, 13, 14], [20, 21, 22, 23, 24], [10, 11, 12, 13, 14],
[20, 21, 22, 23, 24], [10, 11, 12, 13, 14], [20, 21, 22, 23, 24],
[30, 31, 32, 33, 3411) [o, 1, 2, 3, 411) [30, 31, 32, 33, 34]11)
la matrice initiale m inverse ’ordre des lignes de m le contenu initial de m est inchangé

Comme on le voit ici, c’est £1ipud qu’il faut utiliser pour I'inverser 1'ordre des éléments des vecteurs :

Entre autres variations possibles, on peut n’inverser que les k premiers éléments d’un vecteur :

Dans cet exemple, on inverse 'ordre des éléments de la ligne qui est en position 2 dans m :

>>> np.flipud(a)
array([9, 8, 7, 6, 5, 4, 3, 2, 1])

>>> a = np.arange(1,10); a
array([1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> al[:7] = np.flipud(al:7]); a
array([7, 6, 5, 4, 3, 2, 1, 8, 9])

>>> a = np.arange(1,10); a
array([1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> m >>> m[2] = np.flipud(m[2]); m
array([[0, 1, 2, 3, 4], array([[0, 1, 2, 3, 4],
(10, 11, 12, 13, 14], [10, 11, 12, 13, 14],
[20, 21, 22, 23, 24], [24, 23, 22, 21, 20],
[30, 31, 32, 33, 3411) [30, 31, 32, 33, 34]11)
Pour ceux que ¢a intéresse, | rot90(m,k=1) | renvoie une copie de la matrice m aprés k rotations d’angle /2.
>>> m >>> np.rot90(m) >>> np.rot90(m,-1) >>> np.rot90(m,2)
array([[0, 1, 2, 3], array([[3, 13, 23], array([[20, 10, 0], array([[23, 22, 21, 20],
[10, 11,12, 13], [2,12,22], [21, 11, 11, [13, 12, 11, 10],
[20, 21, 22, 23]1] [1,11,21], [22,12, 2], [3, 2, 1, 01D
[0,10,2011) [23, 13, 31D
rotation de 90 ° rotation de -90 ° rotation de 180 °

L’expression ‘roll(a,k,axis=None) ‘ renvoie une copie du tableau aprés k rotations d’une position (vers la droite si

k > 0, vers la gauche si k < 0). Les éléments qui sortent d’un coté rentrent de 'autre. Un nouveau tableau est créé, il ne
s’agit donc pas d’une rotation « en place ». Pour une matrice, 'argument axis est facultatif (par défaut c’est une rotation
sur les lignes). Pour une rotation sur les colonnes d’une matrice, on utilisera ’argument axis=1.

>>> a = np.arange(10); a >>> m >>> np.roll(m,1,axis=1)
array([O, 1, 2, 3: 4’ 5) 6: 7) 8, 9]) array([[O, 1, 2’ 3]: array([[3, 0, 1, 2],
>>> np.roll(a,l) (10, 11, 12, 13], [13, 10, 11, 12],
array([9, 0, 1, 2, 3, 4, 5, 6, 7, 8]) 20, 21, 22, 23]1) [23, 20, 21, 22]])
>>> np.roll(a,?2) >>> np.roll(m,1,axis=0) >>> np.roll(m,-2,axis=1)
array([8, 9, 0, 1, 2, 3, 4, 5, 6, 71) array([[20, 21, 22, 23], array([[2, 3, o0, 1],
[ROSRIREN2ERN 31 [12, 13, 10, 11]
>>> np.roll(a,-4) ’ ’ ’ ’
10, 11, 12, 13
array([4, 5, 6, 7, 8, 9, 0, 1, 2, 31) (10, 11, 12, 1311) [22, 23, 20, 2111
diverses rotations d’un méme vecteur rotation d’une ligne vers le bas une colonne vers la droite

ou deux colonnes vers la gauche

L’expression | swapaxes(a,axe,axe’) | effectue un échange des axes sur le tableau a. Pour les vecteurs, c’est sans effet,

pour les matrices c’est équivalent a la transposition. Ca ne peut donc avoir d’utilité pour les tableaux & n > 3 indices.

>>> np.swapaxes(a,0,1)
array([[[0, 1, 2, 3, 4],
[15, 16, 17, 18, 1911,

>>> a = np.arange(30) .reshape(2,3,5); a

array([[[0, 1, 2, 3, 4],
[5’ 6’ 7’ 8’ 9]’

[10, 11, 12, 13, 1411, (CLs, 6, 7, 8, 9],
[[15, 16, 17’ 18, 19]’ [20, 21, 22, 23, 24]],
[20, 21, 22, 23, 24], [[10, 11, 12, 13, 141,
[25, 26, 27, 28, 29111) [25, 26, 27, 28, 29111)
deux tableaux de format 3 x 5 trois tableaux de format 2 x 5
http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy

PN Do g
jean-miche.ferrard@ac-paris.fr mathprepa.fr 18/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.flipud.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.rot90.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.roll.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.swapaxes.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

3.6 Opérations par blocs CHAPITRE 3 : Dimensions d’un tableau

3.6 Opérations par blocs

permet d’accoler deux ou plusieurs tableaux (horizontalement avec axis=1, verticalement avec axis=0).
En cas de concaténation horizontale par exemple, toutes les colonnes doivent avoir la méme hauteur.

Les différents tableaux a concaténer doivent étre donnés sous la forme d’un tuple (voir exemples) :

>>> a = np.array(range(8)) .reshape(2,4) >>> np.concatenate((a,b) ,axis=1)
s> array([[0, 1, 2, 3, 0, 0, O, 0],
array([[0, 1, 2, 3], (4, 5, 6, 7, 0, 0, 0, 011)
4, 5, 6, 711) >>> np.concatenate((a,b,c),axis=1)
) array([[0, 1, 2, 3, 0, 0, O, O, 1, 1, 1, 1],
>>> b = np.zeros(a.shape,int); b 4,5, 6,7,0,0,0,0,1, 1, 1, 111)
array([[0, 0, O, O], .
0. 0. 0, 011 >>> np.concatenate((a,c),axis=0)
array([[0, 1, 2, 3],
>>> ¢ = np.ones(a.shape,int); c [4, 5, 6, 71,
array([[1, 1, 1, 1], [1, 1, 1, 11,
(1, 1, 1, 11D (1, 1, 1, 11D

On peut aussi utiliser les fonctions (concaténation horizontale) et (concaténation verticale).

Voici quelques exemples en reprenant la signification précédente des tableaux a, b, c :

>>> np.vstack((a,c)) >>> np.hstack((a,c))
array([[0, 1, 2, 3], array([[0, 1, 2, 3, 1, 1, 1, 1],
[4, 5, 6, 71, [4, 5, 6, 7, 1, 1, 1, 111)
1, 1, 1, 11, >>> np.hstack((a,b,c))
(1, 1, 1, 111 array([[0, 1, 2, 3, 0, 0, O, O, 1, 1, 1, 1],
[4, 5, 6, 7, 0, 0, O, O, 1, 1, 1, 111)

La fonction combine des vecteurs-lignes en les colonnes d’un tableau. On voit ici la différence des résultats
obtenus en utilisant hstack, vstack ou column_stack sur un tuple de deux vecteurs lignes a et b.

>>> a = np.array((1,2,3)) >>> np.vstack((a,b)) >>> np.column_stack((a,b))
>>> b = np.array((2,3,4)) array([[1, 2, 3], array([[1, 2],
>>> np.hstack((a,b)) [2, 3, 411D [2, 3],
array([1, 2, 3, 2, 3, 41) [3, 411D

Si a est un tableau de n lignes, I'expression | vsplit (a,k) | renvoie un tuple de k tableaux de n/k lignes représentant un
découpage du tableau a (le nombre n de lignes de a doit étre un multiple de k).

>>> a = np.array(range(24)) .reshape(4,6); a >>> b, ¢ = np.vsplit(a,2)
array([[0, 1, 2, 3, 4, 5], >>> b
e, 7, 8, 9, 10, 111, array([[0, 1, 2, 3, 4, 5],
[12, 13, 14, 15, 16, 17], [e, 7, 8, 9, 10, 1111)
[18, 19, 20, 21, 22, 23]11) >>> ¢
array([[12, 13, 14, 15, 16, 17],
(18, 19, 20, 21, 22, 2311)

une matrice de type 4 x 6 on la partage en deux tableaux de deux lignes

Si a est un tableau de n colonnes, I'expression | hsplit (a,k) |renvoie un tuple de k tableaux de n/k colonnes représentant

un découpage du tableau a (le nombre n de colonnes de a doit étre un multiple de k).

Voici un exemple en réutilisant la définition précédente du tableau a. On a partargé a et trois tableaux x,y, z de deux
colonnes, avant de les combiner avec hstack mais dans l'ordre z, x,y.

>>> x,y,z = np.hsplit(a,3) >>> print(y) >>> print(z) >>> print(np.hstack((z,x,y)))
>>> print(x) [[2 3] [[4 5] [[4 5 0 1 2 3]

([o 1] [8 9] [10 11] [10 11 6 7 8 9]

[6 7] [14 15] [16 17] [16 17 12 13 14 15]

[12 13] [20 21]] [22 23]] [22 23 18 19 20 21]]

[18 19]1]

En fait, les fonctions hsplit et vsplit acceptent aussi un deuxiéme argument sous la forme d’une liste croissante d’indices,
ce qui permet de choisir plus finement les séparations en lignes ou en colonnes.

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 19/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.concatenate.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.hstack.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.vstack.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.column_stack.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.vsplit.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.hsplit.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

3.6 Opérations par blocs

CHAPITRE 3 : Dimensions d’un tableau

On reprend a nouveau lexemple du tableau a précédent (et qui posséde 6 colonnes). L’argument [2,5] signifie qu'on
marque une séparation juste avant la colonne d’indice 2, puis juste avant la colonne d’indice 5. Il en résulte un partage
de a en trois tableaux ayant respectivement 2, puis 5 — 2 = 3, et enfin 6 — 5 = 1 colonnes.

>>> x, y, z = np.hsplit(a,[2,5])

>>> x

array([[O,
[6,
[12,
(18,

11,

71,
131,
1911)

>>> y
array([[2, 3, 4],
[8, 9, 10],
[14, 15, 16],
[20, 21, 2211)

>>> 7z

array([[5],
(111,
(171,
[2311)

tile(a, [n,p]) |construit un tableau en répétant n fois le tableau a dans le sens horizontal et p fois dans le sens vertical.

>>> a = [[1,2],[3,4]]
>>> np.tile(a,2)
array([[1, 2, 1, 2],
[3, 4, 3, 411)
>>> np.tile(a, [2,1])
array([[1, 2],

[3) 4] E
[1’ 2] b
(3, 411

array([[1,
(3,
(1,
(3,
(1,
(3,
(1,
(3,

>
>
>
>

>

>

2
4
2
4,
2
4
2
4

>

>>> np.tile(a, [4,

B

-

L
1
3
1,
3,
1,
3,
1,
3

B

4]1)

2,1, 2, 1, 21,
4, 3, 4, 3, 4],
2,1, 2, 1, 21,
4, 3, 4, 3, 4],
2,1, 2, 1, 2],
4, 3, 4, 3, 4],
2,1, 2, 1, 21,
4, 3, 4, 3, 411D

http://creativecommons.org/licenses/by-sa/3.0/fr/
jean-miche.ferrard@ac-paris.fr mathprepa.fr

une petite référence Numpy
20/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.tile.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

Chapitre 4

Tableaux spécifiques

Il est bien commode de fabriquer des tableaux dont le terme général répond & une formule donnée ou au contraire est
obtenu de fagon pseudo-aléatoire. On voit ici les exemples les plus utiles.

4.1 Tableaux constants

La fonction permet de former des tableaux dont tous les coefficients sont nuls.

— le premier argument, obligatoire, précise le format (shape) du tableau : un entier n pour un vecteur de longueur n, un
couple (n,p) pour une matrice de type n X p, ou encore un tuple (n,p,q,r,...) pour un tableau a plus de deux indices.
Attention : la syntaxe zeros(3,5) est incorrecte, il faut écrire zeros((3,5)).

— un argument facultatif permet de fixer le type de données (c’est float par défaut).

>>> np.zeros(5) >>> np.zeros((5,3)) >>> np.zeros((5,1),complex)
array([0., 0., 0., 0., 0.1 array([[0., 0., 0.1, array([[0.+0.j],

>>> np.zeros((1,5)) [o0., 0., 0.1, [0.+0.3]1,

array([[0., 0., 0., 0., 0.11) Lo., o., o.l, [0.+0.31,

>>> np.zeros(5,int) E 8" g" 8%]’) E g:g‘;%j)
array([0, 0, 0, 0, 0]) 7’ ? ’ T

Avec une syntaxe analogue, la fonction permet de former des tableaux dont tous les coefficients valent 1.

>>> np.ones((3,6)) >>> np.ones((3,6),int)

array([[1., 1., 1., 1., 1., 1.1, array([[1, 1, 1, 1, 1, 1],
1., 1., 1., 1., 1., 1.1, [1, 1, 1, 1, 1, 11,
(1., 1., 1., 1., 1., 1.1D (1, 1, 1, 1, 1, 11D

Rappelons que chez les booléens, false = 0 = « nul » = « vide », et True = 1 = « non nul » = « non vide » :

>>> np.zeros((3,3),bool) >>> np.ones((3,3),bool)
array([[False, False, Falsel, array([[True, True, Truel,
[False, False, Falsel], [True, True, Truel,
[False, False, Falsel], dtype=bool) [True, True, Truell, dtype=bool)

La méthode d’un tableau numpy remplit ce tableau par une valeur constante.

Comme le montrent les exemples suivants, le remplissage se fait « en place ». L’adresse du tableau en mémoire ne change
pas. En particulier, il n’est pas possible de modifier le « data type » (voir la colonne de droite, ou la valeur flottante 3.14
a été convertie en la valeur entiére 3 pour le remplissage).

>>> a = np.array([[1,5,3],[2,7,4]1]) >>> a.fill(1); >>> a.fill(3.14);
>>> a, id(a) >>> a, id(a) >>> a, id(a)
(array([[1, 5, 3], (array([[1, 1, 11, (array([[3, 3, 3],
[2, 7, 4]11), 3899264) [1, 1, 111), 3899264) [3, 3, 311), 3899264)

On peut également noter les fonctions ‘ ones_like ‘ et ’ zeros_like ‘ dont le role est former le tableau constant (valeurs
0 ou valeurs 1) ayant le méme format que le tableau passé en argument.

>>> np.ones_like(a)
array([[1, 1, 1, 1, 1],
(1, 1, 1, 1, 111)

array([[0, 1, 2, 3, 4],
(5, 6, 7, 8, 911

array([[0, O, 0, O, O],
0, o, 0, 0, 01D

>>> a = np.arange(10) .reshape(2,5); a

>>> np.zeros_like(a)

21

http://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ones.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.fill.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ones_like.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros_like.html

4.2 Identité, matrices diagonales ou triangulaires CHAPITRE 4 : Tableaux spécifiques

Rappel : si ¢ est une liste, la syntaxe £ * n renvoie la concaténation de n exemplaires de .
On en déduit une fagon trés simple de former des tableaux constants, ou du moins contenant des répétitions :

>>> np.array([[1,2],[3,4]1]1%2)
array([[1, 2],

>>> np.array([2]*5)
array([2, 2, 2, 2, 2])

>>> np.array([[1,2]1%*3)
array([[1, 2],

>>> np.array([1,2]*3) (1, 21, [3, 41,
array([1, 2, 1, 2, 1, 21) [1, 211D [1, 21,
[3, 411)

4.2 Identité, matrices diagonales ou triangulaires

La fonction | identity | fabrique la matrice identité d’ordre n (donné comme premier argument).

>>> np.identity(4) >>> np.identity(4,int) >>> np.identity(4,complex)

array([[1., 0., 0., 0.1, array([[1, 0, 0, 0], array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[0., 1., 0., 0.1, [0, 1, 0, 01, [0.40.j, 1.40.j, 0.40.3, 0.+0.3],
[0.,0., 1., 0.1, [0, 0, 1, 01, [0.40.j, 0.40.j, 1.+0.j, 0.+0.31,
(0., 0., 0., 1.1 (0, 0, 0, 111) [0.+0.j, 0.40.j, 0.+0.j, 1.+0.3j11)

La fonction permet de fabriquer la matrice identité ou plus généralement une matrice dont tous les coefficients sont
nuls sauf ceux d’une certaine « paralléle » a la diagonale et qui valent 1.

Le premier argument (obligatoire) donne le nombre n de lignes. Le second argument (facultatif) donne le nombre p de
colonnes (par défaut p = n donc la matrice est carrée). Un argument facultatif nommé k = .. permet de spécifier un
décalage de la diagonale de 1 au dessus (si k& > 0) ou en-dessous (si k£ < 0) de la diagonale principale.

Enfin, on peut ajouter un argument pour fixer le type des données (float par défaut).

>>> np.eye(5,dtype=int) >>> np.eye(5,6,dtype=int) >>> np.eye(1,5)

array([[1, 0, O, O, 0], array([[1, O, O, O, O, O], array([[1., O0., 0., 0., 0.1
(o, 1, o0, o0, 0], o, 1, 0, 0, 0, 0], >>> np.eye(1,5,1)
EO’ 0, 1, 0, 0%, EO» 0, 1, 0, 0, O%’ array([[0., 1., 0., 0., 0.11)
0, 0, 0, 1, 0], 0, 0, 0, 1, 0, 0], >>> np.eye(1,5,2)
[0, 0, 0, 0, 111 [0, 0,0, 0, 1, 011 array([[0., 0., 1., 0., 0.1D)

>>> np.eye(4,k=-2) >>> np.eye(4,k=1) >>> np.eye(4,k=3)

array([[0., 0., 0., 0.1, array([[0., 1., 0., 0.1, array([[0., 0., 0., 1.],
[0., 0., 0., 0.1, [0o., 0., 1., 0.1, [0., 0., 0., 0.1,
(1., 0., 0., 0.1, [o0., 0., 0., 1.1, (o., 0., 0., 0.1,
[o., 1., 0., 0.1D [o., 0., 0., 0.1 (o., 0., 0., 0.1

La fonction |diag | renvoie la diagonale d’une matrice. Avec un deuxiéme argument (facultatif) k, on obtient une sur-
g g g

diagonale (si k& > 0) ou une sous-diagonale (si k < 0).

>>> a >>> np.diag(a,1) >>> np.diag(a,-1)
array([[0, 1, 2, 3], array([1, 12, 23]) array([10, 21, 32])
(10, 11, 12, 13], >>> np.diag(a,2) >>> np.diag(a,-2)
[20, 21, 22, 23], array([2, 13]) array([20, 31])
(30, 31, 32, 3311)) i
. >>> np.diag(a,3) >>> np.diag(a,-3)
>>> np.diag(a) ([3]) ([301)
array([0, 11, 22, 33]) array =y

Inversement, la fonction diag, si elle est appliquée a un vecteur (ou a une liste, ou & un tuple) renvoie la matrice diagonale
formée sur les coefficients de ce vecteur :

>>> np.diag([1,2,3]) >>> np.diag((1,2,3)) >>> np.diag(np.array([1,2,3]))
p g p g p

array([[1, 0, 0],
[O’ 2’ O],
[0, 0, 31D

a partir d’une liste

array([[1, 0, 0],
[O’ 2’ 0],
(o, o, 311

a partir d’un tuple

array([[1, 0, 0],
[0’ 2’ O]’
(o, o, 31D

4 partir d’un vecteur

Remarque : on signale les fonctions a la portée un peu plus générale que diag et |diagflat |, et le fait que
diagonal est aussi un attribut des tableaux numpy.

http://creativecommons.org/licenses/by-sa/3.0/fr/

jean-miche.ferrard@ac-paris.fr

mathprepa.fr

une petite référence Numpy

22/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.identity.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.eye.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.diag.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.diagonal.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.diagflat.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

4.3 Tableaux de valeurs échelonnées CHAPITRE 4 : Tableaux spécifiques

Signalons la fonction | fill_diagonal ‘, qui comme son nom l'indique permet d’écrire sur la diagonale d’une matrice.

>>> np.diagonal(a)
array([0, 11, 22, 33])

>>> a.diagonal ()
array([0, 11, 22, 33])

>>> np.diag(a)
array([0, 11, 22, 33])

attribut diagonal de l'objet a fonction diag du module numpy fonction diagonal du module numpy

>>> a >>> np.fill_diagonal(a,0); a >>> np.fill_diagonal(a,[-1,-2,-3]1); a
array([[1, 2, 3], array([[0, 2, 3], >>> array([[-1, 2, 3],

[4, 5, 6], [4, 0, 6], [4, -2, 6],

(7, 8, 911) [7, 8, 011) [7, 8, -311)

La fonction forme une matrice dont les coefficients valent 1 le long et en-dessous d’une k-éme paralléle & la diagonale,
et 0 au-dessus. On peut préciser le « dtype » (c’est float par défaut) :

>>> np.tri(4) >>> np.tri(4,k=1) >>> np.tri(4,k=-1,dtype=int)

array([[1., 0., 0., 0.1, array([[1., 1., 0., 0.1, array([[0, O, O, O],
(1., 1., 0., 0.1, [1., 1., 1., 0.1, [1, 0, O, O],
(1., 1., 1., 0.1, [1., 1., 1., 1.1, (1, 1, 0, 0O,
L1., 1., 1., 1.1 [1., 1., 1., 1.1 [1, 1, 1, 011)

Appliquée & un tableau numpy les fonctions (L pour low) et (U pour up) renvoie une copie du tableau ou
tous les coefficients au-dessus ou en-dessous d’une certaine diagonale ont été annulés (voir exemples) :

>>> a >>> np.tril(a) >>> np.triu(a)
array([[1, 2, 3, 4], array([[1, 0, 0, O], array([[1, 2, 3, 4],
(s, 6, 7, 8], [5, 6, 0, 0], Lo, 6, 7, 81,
[9, 10, 11, 12], [9, 10, 11, 0], [0, o0, 11, 12],
[13, 14, 15, 16]]) [13, 14, 15, 1611) (o, o, 0, 1611
>>> np.tril(a,1) >>> np.tril(a,-1) >>> np.triu(a,-1)
array([[1, 2, 0, 0], array([[0, 0, 0, 0], array([[1, 2, 3, 4],
[5’ 6! 7’ 0]’ [5, O’ O’ O]’ [5’ 6, 7’ 8],
[9, 10, 11, 12], [9, 10, o0, O], [0, 10, 11, 12],
[13, 14, 15, 16]11]) [13, 14, 15, 011) [o, 0, 15, 16]11)
4.3 Tableaux de valeurs échelonnées
La fonction crée des vecteurs de valeurs réguliérement espacées.
La syntaxe est arange(d,f,h,dtype=...), et génére les valeurs de l'intervalle [d, f[avec un pas de h.

>>> np.arange(10,0,-1)

array([10, 9, 8, 7, 6, 5, 4, 3, 2, 1])
>>> np.arange(8,dtype=float)

array([0., 1., 2., 3., 4., 5., 6., 7.1)

>>> np.arange(8.)
array([0., 1., 2., 3., 4., 5., 6., 7.1)

>>> np.arange(10)

array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.arange (100,200,20)

array([100, 120, 140, 160, 180])

>>> np.arange(100,201,20)

array([100, 120, 140, 160, 180, 200])

Pour les valeurs dans le type float ou complex, et pour éviter une erreur d’arrondi qui pourrait affecter la derniére valeur

de l'intervalle, il peut étre préférable d’utiliser la fonction .

La syntaxe est linspace(a,b,n) et le résultat est un vecteur de n valeurs réguliérement échelonnées du segment |[a, b]
(donc ici les extrémités sont incluses). Par défaut, n = 50. Si b < a, les valeurs sont obtenues dans 'ordre décroissant.

>>> np.linspace(0,100,4)
array([0., 33.33333333, 66.66666667, 100.])

>>> np.linspace(0,100,7) # 7 valeurs de [0,100] dans l’ordre croissant
array([0., 16.66666667, 33.33333333, 50., 66.66666667, 83.33333333, 100.])

>>> np.linspace(100,0,7) # 7 valeurs de [0,100] dans 1l’ordre décroissant
array([100., 83.33333333, 66.66666667, 50., 33.33333333, 16.66666667, 0.])

On pourra consulter la fonction qui fournit des valeurs réguliérement espacées sur une échelle logarithmique.

une petite référence Numpy
23/ 58

http://creativecommons.org/licenses/by-sa/3.0/fr/
jean-miche.ferrard@ac-paris.fr mathprepa.fr

http://docs.scipy.org/doc/numpy/reference/generated/numpy.fill_diagonal.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.tri.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.tril.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.triu.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.logspace.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

4.4 Tableaux répondant a une formule donnée CHAPITRE 4 : Tableaux spécifiques

4.4 Tableaux répondant a une formule donnée

La fonction permet de construire un tableau dont le terme général obéit & une formule donnée.

>>> def £(i,j): return 10%i+j >>> # le méme tableau, en forgant le type int
>>> np.fromfunction(f, (4,5)) >>> np.fromfunction(f, (4,5),dtype=int)
array([[0., 1., 2., 3., 4.], array([[0, 1, 2, 3, 4],

[10., 11., 12., 13., 14.], [10, 11, 12, 13, 14],

[20., 21., 22., 23., 24.], [20, 21, 22, 23, 24],

[30., 31., 32., 33., 34.11 [30, 31, 32, 33, 3411)

>>> np.array([[£(i,j) for j in range(5)]
for i in range(4)])
array([[0, 1, 2, 3, 4],
[10, 11, 12, 13, 14],
[20, 21, 22, 23, 24],
(30, 31, 32, 33, 34]1)

Le méme tableau peut étre obtenu (et on a souvent utilisé
cette possibilité) en convertissant une liste (ou une liste
de listes) « en compréhension » avec array (qui choisit le
« data type » du tableau a partir des éléments données ici
explicitement). Cette méthode est plus « dépensiére » que
fromfunction car elle fabrique la liste avant conversion.

>>> np.fromfunction(lambda i,j: 1/(i+j+1),(4,4))
On peut utiliser une « lambda fonction » D J J

| array([[1. , 0.5 , 0.33333333, 0.25 1,
pour créer le tableau. [0.5 , 0.33333333, 0.25 , 0.2 1,
Ici on crée une matrice de Hilbert, de terme [0.33333333, 0.25 , 0.2 , 0.16666667],
général H; j = 1/(i+ j+ 1) avec 4,5 > 0. [0.25 , 0.2 , 0.16666667, 0.142857141])

> Déterminants de Vandermonde

. , . i—1
Soit & = (x;)1<i<n une famille de n scalaires, et soit A la matrice carrée d’ordre n, de terme général a;; = zJ~ .
1)1<i<n))] [

On sait que la valeur du déterminant de A est : det A = H(xJ - Z;).
i<j
Dans numpy, on dispose d’une fonction , mais attention : I'indexation n’est pas conforme a notre définition :

>>> a = np.vander([1,10,100]); print(a) >>> a = np.vander(range(1,6)); print(a)
(L 1 1 1] (r 1 1 1 1 1]

[100 10 1] [16 8 4 2 1]

[10000 100 111 [81 27 9 3 1]
>>> np.linalg.det(a) [266 64 16 4 1]
-80190.000000000102 [625 125 25 13 1]]

Voici comment écrire notre propre fonction vandermonde :

>>> def vandermonde(x): # ici on attend une liste ou un intervalle
import numpy as np; n = len(x); x = np.array(x)
return np.vstack([x**i for i in range(n)])

>>> a = vandermonde([1,10,100]); print(a) >>> vandermonde (range(1,6))

[[1 1 1] array([[1, 1, 1, 1, 1],
[1 10 100] [1, 2, 4, 8, 16],
[1 100 1000011 [1, 3P 9, 27, 811,

>>> np.linalg.det (a) [1, 4, 16, 64, 256],

80189.999999999971 [1, 5, 25, 125, 625]1])

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 24/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.fromfunction.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.vander.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

4.5 Tableaux pseudo-aléatoires CHAPITRE 4 : Tableaux spécifiques

4.5 Tableaux pseudo-aléatoires

Les fonctions qui forment des tableaux pseudo-aléatoires sont présentes dans le sous-module random du module numpy.

renvoie un tableau de valeurs pseudo-aléatoires dans U'intervalle [0, 1] (au sens de la distribution uniforme).

Elle prend comme argument un entier nj (respectivement une séquence ni, nag,...) et renvoie un vecteur de longueur n;
(respectivement un tableau de format nq X ng X - --).

La fonction ‘ random.sample ‘ fait la méme chose que random.rand mais 'argument est un tuple.

La fonction réinitialise le générateur de nombres aléatoires (argument entier).

>>> np.random.rand(6)
array([0.14243652, 0.77345108, 0.76627661, 0.41079884, 0.79899263, 0.95726012])
>>> np.random.seed(0) # réinitialise le générateur de nombres aléatoires
>>> np.random.rand(2,6) # noter la différence de syntaxe avec random.sample (ci-dessous)
array([[0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411],
[0.43758721, 0.891773 , 0.96366276, 0.38344152, 0.79172504, 0.52889492]1])

La fonction suit la méme syntaxe que random.rand, mais elle renvoie un échantillon de valeurs pseudo-
aléatoires au sens de la loi normale réduite (c’est-a-dire d’espérance 0 et d’écart-type 1).

>>> np.random.randn(6)
array([-0.75931933, 0.49230711, 0.37242323, 1.17957196, -2.26637722, 1.05330359])

Appelées avec un argument vide, les fonctions random.rand et random.randn renvoie un nombre pseudo-aléatoire (res-
pectivement pour la loi uniforme de [0, 1] ou pour la loi normale A/(0,1)).

La fonction \random.ra_ndint\ renvoie une valeur ou un tableau de valeurs entiéres pseudo-aléatoires au sens de la
distribution uniforme dans un intervalle semi-ouvert [a, b].

La syntaxe est random.randint (a,b) pour une seule valeur, random.randint (a,b,n) pour un vecteur de longueur n, et
random.randint (a,b, (n,p)) pour une matrice de format n x p.

Si on omet la valeur a, les entiers pseudo-aléatoires sont choisis dans [0, b[. Pour éviter toute ambiguité, on pourra nommer

size=... 'argument de taille et high=... 'argument donnant la valeur maximum (exclue).
>>> np.random.randint (100) # un seul entier pseudo-aléatoire dans [0,99[
72

>>> np.random.randint(1,7,size=10)
array([1, 3, 1, 5, 2, 6, 2, 4, 3, 6]) # dix lancers d’un dé a six faces
>>> np.random.randint(2,size=(2,8)) # un tableau de 2 x 8 entiers choisis dans {0,1}
array([[1, 1, 0, O, O, O, O, O],
[1’ 1’ 1’ O’ 1’ O’ 1’ 1]])

La fonction | random.random_integers() | est trés proche de la fonction random.randint.

La différence est random.random_integers(a,b, (n,p)) renvoie des valeurs entiéres dans le segment [a, b] et que si a est
absent alors la valeur minimum est 1.

>>> np.random.random_integers(0,2,size=15) # entiers choisis dans {0,1,2}
array([1, 1, 0, 0, 2, 1, 1, 2, 1, 2, 1, 1, 0, 1, 1])

La fonction \ random.choice ‘ renvoie un échantillon aléatoire de valeurs extraites d’un tableau a.

>>> a = np.array([1,8,3,1,7,4,5,3,5,4,1,7,2]) # un vecteur quelconque
>>> np.random. choice(a) # une valeur choisie dans a
4
>>> np.random.choice(a,lO) # une succession de 10 valeurs choisies dans a
array([1, 1, 7, 3, 1, 7, 3, 3, 2, 3])
>>> np.random.choice(a, (2,10)) # un tableau 2 X 10 de valeurs choisies dans a
array([[1, 1, 7, 4, 4, 5, 5, 7, 8, 71,
(6,3, 7,3,7,1,1, 4, 2, 411

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 25/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.rand.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.sample.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.seed.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randn.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randint.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.random_integers.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.choice.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

4.5 Tableaux pseudo-aléatoires CHAPITRE 4 : Tableaux spécifiques

La fonction random. choice accepte un argument nommé replace=True/False qui indique si le tirage de I’échantillon doit
s’effectuer avec ou sans remise (True par défaut), et un argument nommé p=. .. qui permet de spécifier les probabilités
avec lesquelles chacune des valeurs du tableau peut apparaitre (par défaut : probabilité uniforme).

De plus, le premier argument (le tableau a) peut étre remplacé par un entier n, et le tirage s’effectue dans [0, n[.

>>> np.random.choice(10,size=15) # 15 valeurs de [0,10[, tirage avec remise
array([0, 2, 7, 2, 9, 2, 3, 3, 2, 3, 4, 1, 2, 9, 1])

>>> np.random.choice(10,size=7,replace=False) # 7 valeurs de [0,10[, tirage sans remise
array([1, 9, 8, 5, 2, 7, 01)

>>> probs = [0.1, 0.1, 0.6, 0.1, 0.1] # une liste de 5 probabilités (somme = 1)

>>> np.random.choice(5,size=15) # 15 valeurs de [0,5[, avec équiprobabilité
array([3, 0, 2, 2, 0, 4, 3, 4, 0, 4, 3, 3, 4, 1, 3])

>>> np.random.choice(5,size=15,p=probs) # 15 valeurs de [0,5[, avec probabilités probs
array([3, 2, 3, 2, 2, 2, 4, 2, 2, 2, 0, 2, 2, 2, 2], dtype=int32)

La fonction | random. shuffle | rebat aléatoirement (et « en place ») les éléments d’un vecteur.

>>> a = np.array([1,7,3,8,5,7,1,2,7]) # un vecteur de 9 valeurs

>>> np.random.shuffle(a); a # rebat les éléments de a, sur place
array([7, 1, 8, 7, 1, 5, 2, 7, 3])

>>> a = np.arange(15); a # le vecteur des entiers de 0 & 14
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])

>>> np.random.shuffle(a); a # rebat les éléments de a, sur place
array([0, 8, 9, 14, 3, 4, 2, 12, 10, 1, 6, 11, 13, 7, 5])

La fonction random.permutation‘ est analogue & shuffle, sauf que le résultat n’est pas calculé « en place » et qu’elle

accepte un entier n comme argument (le résultat est alors une permutation de 'intervalle d’entiers [0, n[).

La fonction permutation accepte aussi un intervalle comme argument.

>>> np.random.permutation(15) # une permutation de [0,15[

array([7, 3, 4, 6, 14, 11, 10, 8, 1, 0, 2, 12, 9, 5, 13])

>>> np.random.permutation(range(10,21)) # une permutation de [10,21[
array([17, 11, 10, 15, 18, 13, 20, 19, 12, 14, 16])

>>> a = np.array([1,7,3,8,5,7,1,2,7]) # un vecteur de 9 valeurs

>>> np.random.permutation(a) # une permutation de ces neuf valeurs
array([3, 7, 5, 1, 8, 7, 2, 1, 71)

>>> a # mais le contenu de a reste inchangé
array([1, 7, 3, 8, 5, 7, 1, 2, 71)

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 26/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.shuffle.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.permutation.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

4.6 Probabilités, lois discrétes usuelles CHAPITRE 4 : Tableaux spécifiques

4.6 Probabilités, lois discrétes usuelles

Le module numpy offre des fonctions renvoyant des échantillons de valeurs répondant aux lois de probabilités usuelles.

> Loi binomiale

‘ random.binomial (n,p) | renvoie une valeur représentant une réalisation de la loi binomiale B(n,p).

Il s’agit donc du nombre de succés a l'issue de n tentatives avec une probabilité p de succés & chaque fois.

Un troisiéme argument faculatif size=... permet de définir un format de sortie sous la forme d’un tableau (vecteur,
matrice) et donc de générer autant de valeurs que nécessaire pour remplir ce tableau. Le nom size est faculatif.

>>> np.random.binomial (100,1/2) # nombre de succés aprés 100 essais avec p=1/2
46

>>> np.random.binomial(100,1/3,size=10) # répéter 10 fois une série de 100 essais avec p=1/3
array([37, 36, 36, 42, 40, 31, 32, 26, 37, 32])
>>> np.random.binomial (1000,0.75,(3,10)) # répéter 3 x 10 fois une série de 1000 essais avec p=3/4
array([[758, 771, 743, 726, 761, 754, 748, 745, 762, 723],

[738, 737, 758, 758, 740, 735, 766, 757, 724, 750],

[723, 764, 743, 769, 749, 755, 745, 740, 740, 755]])

> Loi géométrique

random.geometric(p) ‘ renvoie une réalisation de la loi géométrique de paramétre p, c’est-a-dire le temps d’attente

du premier succés (ou encore le nombre d’échecs avant celui-ci) dans une répétition de tentatives indépendantes ayant
chacune une probabilité p de succeés.

Le parameétre facultatif size=... permet de répéter cette expérience.
>>> e = np.random.geometric(1/10,size=10) >>> e = np.random.geometric(1/4,size=10000)
>>> e >>> e.mean(), e.var()

array([15, 3, 2, 38, 13, 3, 1, 30, 15, 491) (4.0233999999999996, 11.675052439999122)

10 fois de suite, on a attendu le premier 10000 fois de suite avec p = 1/4
succes, avec p = 1/10 a chaque tentative moyenne et variance des observations

Pour illustrer les deux lois précédentes, on crée un échantillon de 10000 valeurs (& gauche suivant la loi binomiale de
paramétre 1/2, a droite suivant la loi géométrique de paramétre 1/10), on forme un histogramme des valeurs obtenues en
10 intervalles égaux (& gauche, sur I'ensemble des valeurs obtenues) et en vingt intervalles (a droite, et sur [1,60]) :

>>> import matplotlib.pyplot as plt >>> a = np.random.geometric(1/10,size=10000)
>>> a = np.random.binomial(100,1/2,size=10000) >>> plt.show(plt.hist(a,bins=20,range=(1,60)))
>>> plt.show(plt.hist(a)) >>>

3000 T T T T T T

2500

2000

1500

1000

500

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 27/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.binomial.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.geometric.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

4.6 Probabilités, lois discrétes usuelles CHAPITRE 4 : Tableaux spécifiques

> Loi binomiale négative

random.negative_binomial (n,p) | renvoie une réalisation de la loi binomiale négative de paramétres (n,p).

Cette loi mesure le nombre d’échecs avant d’atteindre le n-iéme succés dans une répétition de tentatives indépendantes
ayant chacune une probabilité p de succes.

La encore le paramétre facultatif size=... permet de répéter cette expérience.

>>> np.random.negative_binomial(100,1/2) # avec p=1/2, on a connu 118 échecs avec le 100éme succés
118

>>> e = np.random.negative_binomial(100,1/3,size=10); e # répéter 10 fois 1l’expérience avec p=1/3
array([204, 206, 206, 185, 218, 179, 181, 191, 214, 219])

>>> e.mean() # on voit que la moyenne du nombre d’échecs avant le 100éme succés est proche de 200
200.30000000000001

> Loi hypergéométrique

random.hypergeometric (Rgood s Npad , N) |renvoie une réalisation de la loi hypergéométrique de parameétres (ngood, Mpad, V).

Si on considére le modéle classique d'une boite contenant 14,04 jetons gagnants et ny,q jetons perdants, cette loi mesure
le nombre de jetons gagnants obtenus aprés N tirages sans remise (on suppose donc que N < ngooq + NMbad)-

>>> e = np.random.hypergeometric(30,70,50); e # 30 jetons ok, 70 "pas ok", 50 tirages sans remise
16 # ici on a obtenu 16 jetons "ok"

>>> e = np.random.hypergeometric(30,70,50,size=15); e # répéte 15 fois la méme expérience
array([17, 17, 20, 15, 17, 13, 17, 13, 15, 13, 17, 14, 17, 14, 12])

>>> e.mean(), e.var() # moyenne et variance de 1’ensemble des 15 résultats
(15.4, 4.6399999999999997)

Pour illustrer les deux lois précédentes, on crée un échantillon de 10000 valeurs (a gauche suivant la loi binomiale négative
de paramétres 100,1/3, et a droite suivant la loi hypergéométrique de paramétres 30, 70, 50).

On forme un histogramme des valeurs obtenues en 40 intervalles égaux (a gauche) et en dix intervalles (a droite), sur
I’ensemble des valeurs obtenues :

>>> import matplotlib.pyplot as plt >>> rhyp = np.random.hypergeometric
>>> rnb = np.random.negative_binomial >>> a = rhyp(30,70,50,size=10000)
>>> a = rnb(100,1/3,s1ze=10000) >>> plt.show(plt.hist(a))
>>> plt.show(plt.hist(a,bins=40)) >>>

900 ‘ ‘ : ‘ 3500

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 28/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.negative_binomial.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.hypergeometric.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

4.7 Probabilités, lois continues usuelles CHAPITRE 4 : Tableaux spécifiques

> Loi multinomiale

‘ multinomial (n,probs) ‘ renvoie une réalisation de la loi multinomiale de paramétres n, probs. Ici p représente un vecteur

[p1, D2, - - -, pr] de probabilités (donc les p; sont dans [0, 1] et leur somme vaut 1).
11 s’agit ici de répéter n fois (indépendamment) une méme expérience possédant k résultats possibles 1,7, ..., 7 (avec
p; la probabilité du résultat r;) et de lire le vecteur [n1,ns, ..., ng| des occurences de chacun de ces résultats.

>>> np.random.multinomial (600, [1/6.]%6) # on lance 600 fois un dé honnéte

array([105, 89, 93, 92, 105, 116]) # nombre de fois ol on a obtenu 1, ou 2, ou 3, etc.

>>> np.random.multinomial (600, [1/6.]1%6,2) # répéte deux fois 1l’expérience précédente
array([[123, 82, 117, 102, 89, 87],
[94, 108, 96, 111, 90, 101]11)

Ici on effectue 6000 fois la méme expérience aléatoire comportant trois résultats possibles avec les probabilités respectives
1/2,1/3, 1/6. On obtient respectivement 3006 fois, 1932 fois, 1002 fois les trois résultats possibles :

>>> np.random.multinomial (6000, [1/2,1/3,1/6])
array([3066, 1932, 1002])

> Loi géométrique

‘random.poisson()\) ‘ renvoie des réalisations de la loi de Poisson de paramétre .
)\k
Cette loi, d’image X (Q2) = N est définie par py(X = k) = e*)‘ﬁ pour tout k£ de N.

. . A .
D’espérance), elle est une bonne approximation de la loi binomiale B(n, p= 7) avec « p petit et n grand ».
n

Si un événement rare est susceptible de se présenter avec une probabilité p < 1 (ou encore A fois) dans un grand intervalle
de temps, alors py (X, k) mesure la probabilité qu’il survienne & fois dans un tel intervalle de temps.

Dans I'exemple ci-dessous on considére un événement susceptible de se présenter deux fois dans un intervalle de temps
de longueur n (avec n grand). On répéte 25 fois I'expérience qui consiste & observer combien de fois cet événement s’est
effectivement produit dans un intervalle de temps [to, tg + 7.

>>> np.random.poisson(lam=2,size=25)
array([1, 1, 3, 2, 0, 3, 2, 1, 4, 3, 3, 4,2, 1,1, 3,6, 1, 2,4, 2,0, 4, 2, 1])

4.7 Probabilités, lois continues usuelles

‘random.uniform([low, high, size]) ‘ renvoie une/des réalisation(s) de la loi uniforme sur [low, high] (défaut [0, 1]).

Comme avec toutes les lois, 'argument facultatif size=... permet de générer un tableau de résultats :
>>> np.random.uniform(10) # une réalisation de la loi uniforme sur [0,10]
6.022781406955742
>>> np.random.uniform(10,11) # une réalisation de la loi uniforme sur [10,11]
10.440442014479052
>>> np.random.uniform(100,101,5) # loi uniforme sur [100,101], cing fois

array([100.25736027, 100.77687524, 100.114918 , 100.72635488, 100.92869012])

>>> np.random.uniform(low=-1,high=1,size=(2,6)) # loi uniforme sur [-1,1], 2 X 6 résultats
array([[0.97307878, 0.69721654, 0.78160556, 0.6497864 , -0.95157743, -0.7137485],
[0.10387055, 0.04972031, -0.18853763, 0.87346586, 0.92676752, 0.96173206]11])

1
random.exponential ([beta, sizel) |renvoie une/des réalisation(s) de la loi exponentielle de paramétre A = ik

1
C’est une loi continue, définie sur R*, dont la densité s’écrit f(x) = Ae ™ = 3 exp(—%). Son espérance est 3.
Elle est « sans mémoire » : pour tous t >0et h >0, on a: p(X >t+h|X >t) =p(X > h).

>>> np.random.exponential (scale=10,size=7) # 7 réalisations, loi exponentielle de paramétre 1/10
array ([7.06399986, 10.55772426, 1.78660195, 0.82879292, 14.49713449, 9.4533084, 10.96488939])

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 29/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.multinomial.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.poisson.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.uniform.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.exponential.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

4.7 Probabilités, lois continues usuelles CHAPITRE 4 : Tableaux spécifiques

random.normal([m, o, size]) |renvoie une/des réalisation(s) de la loi normale d’espérance m, d’écart-type o.
2

(x —m)

1
ex —_—— .
oV 2 p(202)

C’est une loi continue, définie sur R, dont la densité s’écrit f(z) =

>>> np.random.normal(5,1,6) # 6 fois la loi normale d’espérance 5 d’écart-type 1
array([4.95536402, 5.06527611, 5.99306094, 5.63459564, 5.28943576, 4.28950257])

>>> np.random.normal (loc=5,scale=1,size=6) # on recommence en nommant les arguments

array([3.29365791, 4.13874059, 3.45334375, 3.25639479, 6.81705112, 3.6577833])

>>> np.random.normal (size=6,scale=1,loc=1) # arguments nommés => ordre quelconque

array([1.38367825, -0.31248894, 3.60537642, 2.7389594 , 4.29064175, 1.57216177])

random.standard_normal ([size]) | renvoie une/des réalisation(s) de la loi normale d’espérance 0, d’écart-type 1.

>>> np.random.standard_normal (6) # 6 réalisations de la loi normale centrée réduite
array([-0.17302555, 1.18449125, -1.23138598, -0.70714673, 0.07684741, -2.28847487])

>>> e = np.random.standard_normal (1000) # 1000 réalisations (on n’affiche pas!)

>>> e.mean(), e.std() # moyenne et écart-type des résultats

(-0.021763362781015889, 0.95459943994848417)

Bon, il y en a encore pas mal comme ca...
Le mieux est d’aller voir http://docs.scipy.org/doc/numpy/reference/routines.random.html
Mais pour finir, voici deux histogrammes.

On crée un échantillon de 10000 valeurs (a gauche suivant la loi normale centrée réduite, a droite suivant la loi exponentielle
de paramétre 1), on forme un histogramme en 20 intervalles égaux (& gauche sur [—3, 3], & droite sur [0,4]) :

>>> a = np.random.exponential(1,10000)
>>> plt.show(plt.hist(a,bins=20,range=(0,4)))
>>>

>>> a = np.random.standard_normal (10000)

>>> import matplotlib.pyplot as plt
>>> plt.show(plt.hist(a,bins=20,range=(-3,3)))

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 30/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.standard_normal.html
http://docs.scipy.org/doc/numpy/reference/routines.random.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

Chapitre 5

Fonctions universelles

Pour la documentation officielle en anglais, voir : http://docs.scipy.org/doc/numpy/reference/ufuncs.html

Une fonction universelle (le terme exact est « ufunc », abréviation de wniversal function) est une fonction qui peut
s’appliquer terme & terme aux éléments d’un tableau.

Si f est une ufunc et si a = [ag,a1,...,a,—1] est un tableau, alors f(a) renvoie le tableau [f(ao), f(a1), ..., f(an—1)].

Les a, peuvent étre des tableaux, par exemple les lignes d’une matrice m. La fonction f s’applique alors récursivement
aux éléments de m. Un grand nombre de fonctions usuelles sont directement « universalisées » dans numpy.

Les fonctions mathématiques gardent le méme nom (préfixé par np si on a importé numpy par import numpy as np).

Si on effectue une opération arithmétique entre un tableau a et un scalaire x, tout se passe comme si x était élevé au rang
de tableau constant de méme format que a.

Le mieux est de commencer par quelques opérations arithmétiques simples sur un vecteur ou une matrice.

>>> a = np.arange(1,10); a >>> m = np.arange(15) .reshape(3,5); m
array([1, 2, 3, 4, 5, 6, 7, 8, 9]) array([[0, 1, 2, 3, 4],

[, 6, 7, 8, 9],

(10, 11, 12, 13, 1411)
>>> m + 10
>>> 10 * a array([[10, 11, 12, 13, 14],
array([10, 20, 30, 40, 50, 60, 70, 80, 90]) [15, 16, 17, 18, 19],

[20, 21, 22, 23, 24]]1)
>>>m * m # ce n’est pas le produit matriciel!!
array([[O, 1, 4, 9, 16],
>>> a * a [25, 36, 49, 64, 81],
array([1, 4, 9, 16, 25, 36, 49, 64, 81]) [100, 121, 144, 169, 196]])

>>> a + 1
array([2, 3, 4, 5, 6, 7, 8, 9, 10])

>>> a + a
array([2, 4, 6, 8, 10, 12, 14, 16, 18])

Continuons avec des fonctions mathématiques usuelles appliquées & un vecteur a :

>>> a = np.arange(1,13); a

array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

>>> 2 xx a # 2 a la puissance chaque élément de a

array([2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096], dtype=int32)

>>> 1/a # le vecteur des inverses

array([1. , 0.5 , 0.33333333, 0.25 , 0.2 , 0.16666667,
0.14285714, 0.125 , 0.11111111, 0.1 , 0.09090909, 0.08333333])

>>> np.log(a) # le vecteur des logarithmes népériens

array([O. , 0.69314718, 1.09861229, 1.38629436, 1.60943791, 1.79175947,
1.94591015, 2.07944154, 2.19722458, 2.30258509, 2.39789527, 2.48490665])

Deux remarques importantes :

— P'expression axb renvoie le tableau des produits terme & terme des éléments de a et b : elle ne désigne donc pas un
produit matriciel au sens o on lentend habituellement (& suivre).

— rappelons que 'opérateur ~ désigne le « ou exclusif » sur les entiers, et pas I’élévation a une puissance.

>>> 2 **x np.arange(10) # on calcule ici les dix premiéres puissances de 2
array([1, 2, 4, 8, 16, 32, 64, 128, 256, 512], dtype=int32)

31

http://docs.scipy.org/doc/numpy/reference/ufuncs.html

5.1 Opérations arithmétiques CHAPITRE 5 : Fonctions universelles

5.1 Opérations arithmétiques

add(a,b) | additionne terme a terme les éléments de a et b (autre syntaxe possible : a + b)

subtract(a,b) ‘ soustrait terme a terme les éléments de b a ceux de a (autre syntaxe possible : a — b)

‘multiply(a,b) ‘ multiplie terme & terme les éléments de a et b (autre syntaxe possible : a x b)

divide(a,b) | quotients (flottants) terme a terme des éléments de a par ceux de b (autre syntaxe : a/b)

>>> a = np.arange(0,600,step=120) ;a >>> np.divide(a,b)

array([0, 120, 240, 360, 480]) array([0., 12., 2.4, 0.36, 0.048])
>>> b = np.array([10**k for k in range (5)]); b >>> a/b

array([1, 10, 100, 1000, 10000]) array([0., 12., 2.4, 0.36, 0.048])

floor_divide(a,b) | quotients (entiers) des divisions des éléments de a par ceux de b (autre syntaxe : a//b)

>>> a = np.arange(0,600,step=120) ;a >>> np.floor_divide(a,b)

array([0, 120, 240, 360, 4801) array([0, 12, 2, 0, 0], dtype=int32)
>>> b = np.array([10**k for k in range (5)]1); b >>>a // b

array([1, 10, 100, 1000, 10000]) array([0, 12, 2, 0, 0], dtype=int32)

power (a,b) | éléve les éléments de a & la puissance les éléments de b
mod (a,b) | donne les restes dans les divisions des éléments de a par ceux de b

On dispose aussi des possibilités suivantes, qui prennent en argument un tableau a :

(tableaux des opposés : autre syntaxe possible —a), | absolute(a) | (modules), (signes)

Pour les arrondis :

(a Dentier), ‘floor(a) ‘, A ‘trunc(a) ‘ (troncature), (arrondi & n décimales)

Pour la racine carrée et I’élévation au carré (toujours terme a terme) : | sqrt | et [square].

ceil(a)

5.2 Fonctions mathématiques usuelles

Toutes les fonctions mathématiques usuelles sont présentes sous forme universelle dans le module numpy. Elles gardent le
méme nom, mais comme nous ’avons déja indiqué, il faut bien penser a les préfixer par np.

On dispose notamment des fonctions trigonométriques (circulaires et hyperboliques) directes et inverses :

\sin cos tan arcsin arccos arctan sinh cosh +tanh arcsinh arccosh arctanh\

Et puisqu’on est dans la trigonométrie, et pour toute correspondance entre un x de a et un y de b :
renvoie les hypoténuses \/W renvoie les angles polaires des points (y, x)
(ou encore rad2deg) convertit les angles « de radians en degrés
(ou encore deg2rad) convertit les angles « de degrés en radians

On dispose bien sir des fonctions exponentielles et logarithmiques :

: expml (x) signifie e* — 1 et est plus précis que exp(x) -1 pour z proche de 0.

‘1og‘ ‘loglo‘ ’ 1og2‘ : logarithme népérien (resp. de base 10, de base 2)
: loglp(x) signifie In(1 +) et est plus précis que log(1+x) pour x proche de 0).

: exp2(x) signifie 2%*x, c’est-a-dire 27.

>>> x = 10**np.arange(-10,-15,-1.); x

array([1.00000000e-10, 1.00000000e-11, 1.00000000e-12, 1.00000000e-13, 1.00000000e-14])
>>> np.log(1+x)/x

array([1.00000008, 1.00000008, 1.0000889 , 0.99920072, 0.99920072])

>>> np.loglp(x)/x

array([1., 1., 1., 1., 1.1)

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 32/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.add.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.subtract.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.multiply.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.divide.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.floor_divide.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.power.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.mod.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.negative.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.absolute.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.sign.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.rint.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.floor.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ceil.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.trunc.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.round.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.sqrt.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.square.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.sin.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.cos.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.tan.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.arcsin.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.arccos.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.arctan.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.sinh.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.cosh.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.tanh.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.arcsinh.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.arccosh.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.arctanh.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.hypo.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.arctan2.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.degrees.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.rad2deg.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.radians.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.deg2rad.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.exp.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.expm1.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.log.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.log10.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.log2.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.log1p.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.exp2.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

5.3 Variantes de syntaxe

CHAPITRE 5 : Fonctions universelles

>>> a = np.arange(1,6); a
array([1, 2, 3, 4, 5])
>>> np.sqrt(a)

array([1. , 1.41421356,

>>> np.exp(a)
array([2.71828183,

>>> a
array([1, 2, 3, 4, 5])

>>> np.exp(a,a)

5.3 Variantes de syntaxe

7.3890561, 20.08553692, 54.59815003,

a ce stade le contenu de a n’a pas changé

ne pas oublier le préfixe np

1.73205081, 2. , 2.23606798])

148.4131591])

ici le résultat va dans a, mais le data-type est inchangé!!!

array([2, 7, 20, 54, 148])
>>> a # la preuve
array([2, 7, 20, 54, 148])

Toutes les fonctions universelles acceptent un argument supplémentaire facultatif sous la forme d’un identificateur dési-
gnant lui-méme un tableau numpy devant recevoir le résultat de 'opération (attention : le tableau cible conserve son data
type, indépendamment du type du résultat).

Les « fonctions universelles » du module numpy sont intelligentes au point d’accepter des arguments du type « array like »
(des listes, des tuples) et de les convertir en le tableau correspondant avant d’effectuer 'opération. Il est impossible de
décrire le nombre de possibilités qui résultent de cette tolérance...

>>> a = np.array([10, 17, 5, 28])
>>> b = np.array([3, 5, 2, 8])

>>> np.add(a,b,a) # a+b va dans a
array([13, 22, 7, 36])

>>> b

array([3, 5, 2, 8])

>>> a

array([13, 22, 7, 36])

>>> np.add([1,2,3],(4,5,6)) # une liste, un tuple
array([5, 7, 91)

>>> np.add([[1,2],[3,4]]1,10) # liste de liste, un scalaire
array([[11, 12],
[13, 1411)
>>> np.power(2,[(1,2),(3,4)]) # improbable!
array([[2, 4],
[8, 16]]1, dtype=int32)

u
Sur 'exemple suivant, on illustre la convergence vers ¢ = 2 de la suite définie par ug > 0 et u, 1 = 7" + —

Pour cela, on forme 1’échantillon [1,2,...,7] de valeurs de a.

On évalue alors plusieurs fois ’expression np.add(a/2,2/a,a)

2

Un

qui calcule le tableau des x/2 + 2/x pour chaque z de a

et qui, par « effet de bord », place le résultat dans le tableau a lui-méme. On peut ainsi suivre la convergence (rapide car

quadratique) de sept suites (u,) en paralléle.

Attention! si on reprend 'exemple précédent, mais apres
avoir défini @ par a = np.arange(1,8) (donc avec un type
entier), alors a reste de type entier (la « convergence » vers
2 n’a ici plus du tout la méme signification)

Ce comportement est normal, car tout cela s’effectue « en
place » sans création d’un nouveau tableau en mémoire.

>>> a = np.arange(1,8,dtype=float); a

array([1., 2., 3., 4., 5., 6., 7.1)

>>> np.add(a/2,2/a,a)

array([2.5 , 2. , 2.16666667, 2.5 , 2.9 , 3.33333333, 3.78571429])
>>> np.add(a/2,2/a,a)

array([2.05 5 Ao , 2.00641026, 2.05 , 2.13965517, 2.26666667, 2.42115903])
>>> np.add(a/2,2/a,a)

array([2.00060976, 2. , 2.00001024, 2.00060976, 2.00455764, 2.01568627, 2.03663017])
>>> np.add(a/2,2/a,a)

array([2.00000009, 2. 5 Ao , 2.00000009, 2.00000518, 2.00006104, 2.00032941])

>>> a = np.arange(1,8); a

array([1, 2, 3, 4, 5, 6, 71)
>>> np.add(a/2,2/a,a)
array([2, 2, 2, 2, 2,
>>> np.add(a/2,2/a,a)
array([2, 2, 2, 2, 2,

3, 3D

2, 2D

http://creativecommons.org/licenses/by-sa/3.0/fr/
jean-miche.ferrard@ac-paris.fr mathprepa.fr

une petite référence Numpy
33/ 58

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

5.4 Vectorisation d’une fonction CHAPITRE 5 : Fonctions universelles

5.4 Vectorisation d’une fonction

Pour qu’une fonction f puisse s’appliquer, terme a terme, a tous les éléments d’un ou de plusieurs tableaux (selon que f
accepte un ou plusieurs arguments), il faut la « vectoriser ».

x + sin(x
Considérons par exemple la fonction f : x +— +7()
x + cos(x)

| >>> def £(x): return (x+sin(x))/(x+cos(x))

Tenter d’appliquer la fonction f & un tableau numpy conduit & une erreur :

Il faut donc utiliser la fonction pour rendre f universelle :

>>> vf = np.vectorize(f) # la version vectorisée de f
>>> vf(a) # on peut applique f terme & terme aux éléments de a
array([1.1955257 , 1.83684794, 1.56274044, 0.96917278, 0.76482477, 0.82190295])

>>> f(a)
TypeError: only length-1 arrays can be converted to Python scalars

>>> a = np.arange(1,7); a
array([1, 2, 3, 4, 5, 6])

L’exemple précédent ne nécessitait pas en fait qu’on vectorise f. Celle-ci est en fait une composée de fonctions et d’opé-
rations usuelles (toutes déja vectorisées), et on pouvait donc obtenir le méme résultat de la maniére suivante :

>>> (at+np.sin(a))/(at+np.cos(a))
array([1.1955257 , 1.83684794, 1.56274044, 0.96917278, 0.76482477, 0.82190295])

Il n’est cependant pas certain que cette deuxiéme méthode soit la plus efficace, car elle occasionne plusieurs créations de
tableaux avant de rendre son résultat (la méthode avec vectorize(f) se contenant d’une boucle sur le tableau initial).

Voici un autre exemple, ou il est nécessaire de vectoriser I'application f car sa définition comporte un test. Ici f(z,y)
renvoie 0 si x < y et elle renvoie y sinon :

>>> a = np.arange(1,7) >>> def f(x,y): return 0 if x < y else y
>>> a >>> vf = np.vectorize(f)

array([1, 2, 3, 4, 5, 6]) >>> vf(a,b)

>>> b = np.array([4,1,8,7,2,9]) array([0, 1, 0, 0, 2, 0])

>>> b >>> vf(b,a)

array([4, 1, 8, 7, 2, 9]) array([1, 0, 3, 4, 0, 6])

En continuant sur cet exemple, on voit bien que la vectorisée de f agit comme une « ufunc » (fonction universelle) :

>>> vf(a,3) >>> vf(5,[[1,6,2],[3,4,8],[6,3,21])
array([0, 0, 3, 3, 3, 3]) array([[1, 0, 21,
>>> vf(3,b) [3, 4, 0],
array([0, 1, 0, 0, 2, 0]) [0, 3, 211D

>>> a = np.random.random_integers(O,100,10); a
array([14, 35, 22, 55, 47, 71, 35, 65, 79, 61])

>>> np.piecewise(a, [a < 30, a < 70, a >= 70], [-1,0,1])
array([0, 0, O, 0, O, 1, 0, O, 1, 01)

>>> a = np.random.random_integers(0,100,10); a
array([71, 74, 55, 15, 2, 44, 16, 41, 92, 75])

>>> np.piecewise(a, [a < 30, a < 70, a >= 70], [-1,0,1])
array([1, 1, 0, 0, 0, O, 0, O, 1, 11)

‘piecewise(a, [conds], [images] ‘permet de

calculer I'image d’un tableau par une fonc-
tion f par morceaux. Chaque f(z) est cal-
culé en choisissant dans images ce qui corres-
pond au premier test vérifié dans conds. Ici,
par exemple, on associe —1 (resp. 0, 1) suivant
que ’élément = du tableau a vérifie z < 30
(resp. 30 < x < 70, x > 70).

‘ apply_along_axis ‘ permet d’appliquer une méme fonction suivant les lignes, ou suivant les colonnes.

>>> m = np.arange(15) .reshape(3,5); m >>> np.apply_along_axis(np.mean,0,m) # moyenne lignes
array([[0, 1, 2, 3, 4], array([5., 6., 7., 8., 9.1)
L5, 6, 7, 8, 9], >>> np.apply_along_axis(np.mean,1,m) # moyenne colonnes
[10, 11, 12, 13, 14]11) array([2., 7., 12.1)

A voir aussi, les méthodes ’ reduce ‘, ‘ accumulate ‘ et ‘ reduceat ‘ des fonctions universelles.

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 34/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.vectorize.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.piecewise.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.apply_along_axis.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ufunc.reduce.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ufunc.accumulate.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ufunc.reduceat.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

5.5 Opérations logiques sur tableaux booléens CHAPITRE 5 : Fonctions universelles

5.5 Opérations logiques sur tableaux booléens

Si a est un tableau de booléens, ’expression ‘ logical_not(a) ‘ renvoie le tableau des valeurs booléennes contraires.

>>> a = np.array([False, True, False, False, True, False, True, True])
>>> print(a)

[False True False False True False True Truel

>>> print(np.logical_not(a))

[True False True True False True False Falsel

Les fonctions logical_and‘ ‘ 1ogica1_or‘ ’ logical_xor | prennent en argument deux tableaux a et b de booléens.

Elles appliquent une certaine fonction logique aux éléments de a et b, terme a terme, et renvoient le tableau des résultats.

Avec un troisiéme argument, on peut spécifier le nom d’un tableau de booléens destiné & recevoir le résultat.

>>> a = np.array([False, True, False, False, True, False, True, True])

>>> Db

np.array([True, True, False, True, True, False, False, True])

>>> np.logical_and(a,b)

array([False, True, False, False, True, False, False, True], dtype=bool)
>>> np.logical_or(a,b)

array([True, True, False, True, True, False, True, True], dtype=bool)

5.6 Opérations binaires sur les tableaux d’entiers

Les fonctions ‘bitwise_and‘ ‘bitwise_or‘ ’bitwise_xor ‘ prennent en argument deux tableaux a et b d’entiers.

Elles appliquent une fonction logique « bit a bit » aux éléments de a, b et renvoient le tableau des résultats terme & terme.

Avec un troisiéme argument, on peut spécifier le nom d’un tableau de booléens destiné a recevoir le résultat.

>>> a = np.random.random_integers(128,255,size=8); a # place dans a huit entiers dans [128,255]
array([128, 246, 220, 230, 252, 232, 216, 142])
>>> [np.binary_repr(x) for x in al # leur représentation sous forme de chaine binaire

[>10000000°, 211110110°, °11011100°, ’11100110°, >11111100°, °11101000°, °11011000°, ’10001110°]

>>> b = np.random.random_integers(128,255,size=8); b # place dans b huit entiers dans [128,255]
array([187, 175, 237, 151, 152, 243, 187, 156])

>>> [np.binary_repr(x) for x in b] # leur représentation sous forme de chaine binaire
[>10111011°, >10101111°, °11101101°, °10010111°, >10011000°, °11110011°, ’10111011°, °10011100°]
>>> ¢ = np.bitwise_and(a,b); c # place dans c le "et binaire" entre a et b
array([128, 166, 204, 134, 152, 224, 152, 140], dtype=int32)

>>> [np.binary_repr(x) for x in c] # la représentation des résultats

[>10000000°, ’10100110°, 211001100°, °>10000110°, >10011000°, ’11100000’, ’10011000°, 210001100°]

>>> a = np.random.random_integers(128,255,size=5); a

| invert (a) |, ou encore [np.bitwise_not (a) \ array([177, 216, 216, 135, 201])
renvoie le tableau des négations binaires (donc les >>> d = np.bitwise_not(a); d
tableaux des —r — 1, quand z parcourt a). array([-178, -217, -217, -136, -202], dtype=int32)

On pourra également considérer les fonctions ‘ left_shift(x1, x2[, out]) ‘ et ’ right_shift(x1, x2[, outl)

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 35/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_not.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_and.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_or.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_xor.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.bitwise_and.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.bitwise_or.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.bitwise_xor.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.invert.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.np.bitwise_not.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.left_shift.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.right_shift.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

Chapitre 6

Tests et comparaisons sur des tableaux

6.1 Comparaisons entre tableaux

’ array_equal(a,b) ‘ répond True si les tableaux a et b ont méme format et méme contenu, et False sinon.

>>> a = np.arange(0,12) .reshape(3,4); a >>> b = b.reshape((4,3)); b # mémes élts, forme #
array([[0, 1, 2, 3], array([[0, 1, 2],

[4’ 5’ 6’ 7] b [3) 4’ 5] b

[8, 9, 10, 1111) [e, 7, 8],
>>> b = np.copy(a) (9, 10, 111D
>>> np.array_equal(a,b) # mémes tableaux >>> np.array_equal(a,b) # donc tableaux #
True False

greater(a,b) | renvoie le tableau des booléens ay > by, ol ai et by se correspondent dans a et b.

>>> a = np.random.rand(7); a
array([0.45268328, 0.89699802, 0.47090844, 0.06040679, 0.92796843, 0.69654813, 0.64937467])

>>> b = np.random.rand(7); b

array([0.73789601, 0.70574489, 0.1792136 , 0.48761371, 0.91307424, 0.54268789, 0.81540996])
>>> np.greater(a,b) # pour chaque k, teste si al[k] > bl[k]

array([False, True, True, False, True, True, False], dtype=bool)

On a des possibilités analogues avec :

’greater_equal(a,b) ‘ (test ap > by), (test ax < by),
(test ap = by) et ’not_equal(a,b) ‘ (test ag # by) .

Les scalaires sont étendus en des tableaux constants pour permettre les comparaisons terme a terme :

less_equal(a,b) ‘ (test ar < by),

>>> a = np.random.random_integers(100,1000,10); a
array([866, 305, 892, 849, 763, 433, 322, 442, 849, 239])

>>> np.less(a,500) # teste si les alk] vérifient al[k]<500

array([False, True, False, False, False, True, True, True, False, True], dtype=bool)
>>> a = np.random.random_integers(10,size=12); a

array([6, 9, 4, 5, 5, 2, 3, 7, 9, 8, 41)

>>> np.equal(a,b) # teste si les éléments sont égaux & 5
array([False, False, False, True, True, False, False, False, False, False, False, dtype=bool)

On pourra consulter la fonction qui teste si deux tableaux a et b sont identiques & une certaine précision pres.

Autre fonction digne d’intérét : ’real_if_close ‘

36

http://docs.scipy.org/doc/numpy/reference/generated/numpy.array_equal.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.greater.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.greater_equal.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.less.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.less_equal.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.equal.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.not_equal.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.real_if_close.html

6.2 Tris de tableau CHAPITRE 6 : Tests et comparaisons sur des tableaux

6.2 Tris de tableau

L’expression renvoie une copie triée du tableau a (I’original n’est donc pas modifié).

Mais attention : ’expression trie le tableau a sur place (il y a donc une différence importante entre la fonction
sort du module numpy et la méthode sort d’un objet numpy particulier).

>>> a = np.random.randint(100,1000,size=13); a

array([514, 553, 400, 234, 449, 887, 240, 252, 317, 231, 522, 578, 548])

>>> np.sort(a) # on utilise la fonction sort du module numpy.
array([231, 234, 240, 252, 317, 400, 449, 514, 522, 548, 553, 578, 887])

>>> a # le tableau a original n’est donc pas été modifié
array([514, 553, 400, 234, 449, 887, 240, 252, 317, 231, 522, 578, 548])

>>> a.sort() # on utilise la méthode sort de 1l’objet

>>> a # cette fois-ci le tri a été effecuté sur place
array([231, 234, 240, 252, 317, 400, 449, 514, 522, 548, 553, 578, 887])

L’expression renvoie le tableau des indices i tel que a;) est la k-éme plus petite valeur de a :

>>> a = np.random.randint(100,1000,size=13); a

array([357, 136, 784, 999, 965, 172, 159, 935, 330, 609, 128, 518, 986])

>>> i = np.argsort(a); i # le tableau des indices des éléments de a dans 1l’ordre croissant
array([10, 1, 6, 5, 8, 0, 11, 9, 2, 7, 4, 12, 3], dtype=int32)

>>> al[i[0]] # le plus petit élément de a

128

>>> al[i[5]] # le cinquiéme plus petit élément de a

357

>>> afli] # permet de retrouver une copie triée de a

array([128, 136, 159, 172, 330, 357, 518, 609, 784, 935, 965, 986, 999])

sort_complex(a) | trie le tableau a de nombres complexes, suivant les parties réelles puis les parties imaginaires :

>>> a = np.random.randint(1,9,size=13); a

array([8, 4, 2, 3, 2, 6, 5, 7, 1, 3, 8, 4,

>>> b = np.random.randint(1,9,size=13); b

array([5, 5, 1, 2, 5, 6, 4, 6, 4, 4, 1, 1,

>>> c = a + bxlj; ¢

array([8.+5.j, 4.+5.j, 2.+1.j, 3.+2.j, 2.+5.j, 6.+6.j, b5.+4.j,
7.46.3, 1.+4.j, 3.+4.j, 8.+#1.j, 4.+1.j, 3.+1.31)

>>> d = np.sort_complex(c); d

array([1.+4.j, 2.+1.j, 2.+5.j, 3.+1.j, 3.+2.j, 3.+4.j, 4.+1.j,
4.+45.j, 5.+4.j, 6.+6.j, T7.+6.j, 8.+1.j, 8.+5.j1)

3D

11D

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 37/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.sort.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.argsort.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.sort_complex.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

6.3 Minimum et maximum CHAPITRE 6 : Tests et comparaisons sur des tableaux

6.3 Minimum et maximum

‘ amin(a[,axis,out,keepdims]) ‘ renvoie le(s) minimum(s) d’un tableau, éventuellement selon un « axe » (une direction)

>>> a = np.random.random_integers(100,1000, size=(5,6)); a
array([[690, 266, 954, 806, 903, 473],

[636, 351, 939, 331, 552, 162],

[745, 981, 423, 224, 927, 840],

[149, 849, 884, 961, 158, 494],

[354, 318, 604, 214, 124, 253]11)

>>> np.amin(a) # le minimum de a aplati >>> np.amin(a,1,keepdims=True)
124 array ([[266],
>>> np.amin(a,0) # suivant le premier indice [162],
array([149, 266, 423, 214, 124, 162]) [224],
>>> np.amin(a,1) [149],
array([266, 162, 224, 149, 124]) # suivant le deuxiéme indice [124]1])

‘ amax (a[,axis,out,keepdims]) | est 'analogue de amin, mais pour la recherche de maximum.

‘ptp(a[, axis,out]) |, oil ptp signifie « peak to peak », donne I’écart maximum entre deux éléments du tableau (soit sur

la version aplatie du tableau, soit suivant une direction). Il s’agit en fait de calculer amax (a)-amin(a).
On reprend ici le tableau a de ’exemple précédent.

>>> np.amax(a), np.amin(a), np.ptp(a)

(981, 124, 857)

>>> np.amax(a,0), np.amin(a,0)

(array([745, 981, 954, 961, 927, 840]), array([149, 266, 423, 214, 124, 162]))

>>> np.ptp(a,0)

array([596, 715, 531, 747, 803, 678])

argmax(al,axis]) ‘ et ‘ argmin(al,axis]) ‘ renvoie les indices ou se trouvent le ou les éléments maximum(s) (respecti-

vement minimum(s)) dans un tableau. On reprend & nouveau le tableau a de I’exemple précédent.

>>> np.argmin(a), np.argmax(a) # la position du min (resp du max) dans le tableau & plat
(28, 13)

>>> np.argmin(a,0) # n° de ligne des éléments minimuns, colonne par colonne
array([3, 0, 2, 4, 4, 1], dtype=int32)

>>> np.argmax(a,0) # n° de ligne des éléments maximums, colonne par colonne
array([2, 2, 0, 3, 2, 2], dtype=int32)

>>> np.argmin(a,1) # n° de colonne des éléments minimuns, ligne par ligne
array([1, 5, 3, 0, 4], dtype=int32)

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 38/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.amin.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.amax.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ptp.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.argmin.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

6.4 Recherches dans un tableau CHAPITRE 6 : Tests et comparaisons sur des tableaux

6.4 Recherches dans un tableau

any (a) | teste si le tableau a contient au moins un élément « vrai » (au sens booléen ou scalaire non nul).

>>> a = np.random.random_integers(10,99,size=20); a

array([19, 15, 34, 54, 76, 16, 75, 30, 90, 21, 25, 49, 47, 57, 94, 52, 39, 34, 21, 15])
>>> np.any(a>90)

True

>>> a = np.random.random_integers(10,99,size=(5,6)); a
array([[64, 13, 69, 42, 44, 46],

[72, 97, 82, 27, 27, 34],

[75, 14, 36, 11, 16, 86],

[83, 23, 51, 57, 41, 38],

[21, 97, 92, 85, 12, 41]11)

>>> np.any(a>90,axis=0) # colonne par colonne, teste s’il y a au moins un élément > 90
array([False, True, True, False, False, False], dtype=bool)

>>> np.any(a>90,axis=1) # ligne par ligne, teste s’il y a au moins un é&lément > 90
array([False, True, False, False, Truel], dtype=bool)

all(a) | teste si tous les éléments du tableau a sont « vrais » (au sens booléen ou scalaire non nul).

>>> a = np.random.random_integers(10,99,size=20); a

array([68, 50, 46, 51, 86, 12, 42, 45, 74, 36, 64, 88, 98, 87, 63, 18, 81, 99, 90, 54])
>>> np.all(a>10) # est-ce que tous les éléments de a sont > 10 7

True

>>> a = np.random.random_integers(10,99,size=(3,10)); a
array([[72, 37, 46, 28, 64, 30, 40, 22, 58, 46],

[77, 74, 98, 21, 28, 90, 53, 56, 66, 38],

[49, 75, 54, 28, 55, 90, 74, 68, 81, 7111)

>>> np.all(a % 2 == 0, axis=0) # colonne par colonne, est-ce que tous les éléments sont pairs?
array([False, False, True, False, False, True, False, True, False, False], dtype=bool)

>>> np.all(a % 17, axis=1) # ligne par ligne, tous les éléments sont-ils non divisibles par 17 7
array([True, True, False], dtype=bool)

argwhere (a) |renvoie le tableau des positions ot les éléments du tableau a sont « vrais » (au sens booléen ou scalaire non

nul). On reprend le tableau a des exemples précédents, et on cherche la position des éléments de a qui sont strictement
supérieurs a 500. Le résultat a été transposé pour plus de lisibilité.

>>> a = np.random.random_integers(100,1000, size=(5,6)); a
array([[690, 266, 954, 806, 903, 473],
[536, 351, 939, 331, 552, 162],
[745, 981, 423, 224, 927, 840],
[149, 849, 884, 961, 158, 494],
[354, 318, 604, 214, 124, 253]11)
>>> np.argwhere(a>500).T # les élts > 500 de a sont en position (0,0), (0,2), etc. (4,2)
array([[0, O, 0, O, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4],
[0, 2, 3, 4, 0, 2, 4, 0, 1, 4, 5, 1, 2, 3, 2]], dtype=int32)

L’expression | nonzero(a) | renvoie le tableau des positions des éléments non nuls de a.

>>> a = np.random.random_integers(-1,1,15); a
array([-1, -1, &, -1, O, O, -1, -1, O, O, 1, O, O, 1, -11)

>>> i = np.nonzero(a); i # tableaux des positions des éléments non nuls de a
(array([0, 1, 2, 3, 6, 7, 10, 13, 14], dtype=int32),)
>>> afli] # récupére le tableau des éléments non nuls

array([-1, -1, 1, -1, -1, -1, 1, 1, -1]1)

Dans le cas d’une matrice, la fonction nonzero renvoie un tuple (ici un couple) formé des indices des éléments non nuls.
Le résultat est donc sous la forme [¢1, 42, ..., 0], [c1,¢2,. .., ¢p] OU les [¢;, ;] sont les positions des éléments non nuls.

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 39/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.any.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.all.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.argwhere.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.nonzero.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

6.4 Recherches dans un tableau CHAPITRE 6 : Tests et comparaisons sur des tableaux

>>> a = np.random.random_integers(-1,1,(3,5)); a
array([[-1, O, -1, o0, 1],
[-1, 1, o, 1, -1],
[o, 0, 0O, 1, 01D
>>> i = np.nonzero(a); i
(array([0, 0, O, 1, 1, 1, 1, 2], dtype=int32), array([0, 2, 4, 0, 1, 3, 4, 3], dtype=int32))
>>> ali]
array([-1, -1, 1, -1, 1, 1, -1, 11)

‘ count_nonzero ‘ renvoie seulement le nombre d’éléments non nuls du tableau

>>> a = np.random.random_integers(-1,1,15); a
array([0, 1, o0, 1, 0, O, 1, O, 1, 1, O, O, O, -1, 0D

>>> np.count_nonzero (a) # compte le nombre d’éléments non nuls du tableau a
6

where(condition) | renvoie le tableau des positions des éléments d’un vecteur qui possédent une propriété particuliére.

>>> a = np.random.random_integers(100,1000,15); a
array([318, 789, 611, 310, 254, 453, 864, 155, 400, 342, 377, 117, 796, 297, 949])

>>> i = np.where(a % 2); i # tableau des positions des éléments impairs
(array([1, 2, 5, 7, 10, 11, 13, 14], dtype=int32),)
>>> ali] # récupére le tableau de ces éléments impairs

array([789, 611, 453, 155, 377, 117, 297, 949])

La fonction where admet deux arguments facultatifs sous la forme d’un tableau a et d’un tableau b. A chaque fois que la
condition qui est le premier argument de where est vraie, c’est ’élément correspondant de a qui est renvoyé, sinon c’est
I’élément de b. Tout ¢a demande un peu d’habitude mais peut conduire & des constructions assez élégantes.

Dans 'exemple ci-dessous, on crée deux tableaux pseudo-aléatoires d’entiers de lintervalle [1,9]. On voit d’ailleurs

comment la ligne rdi = ... nous permet de définir un raccourci pour désigner une fonction au nom un peu long...
>>> rdi = np.random.random_integers # un raccourci commode >>> b = rdi(1,9, size=(5,6))
>>> a = rdi(1,9, size=(5,6)); a >>> b
array([[2, 1, 7, 1, 8, 2], array([[6, 4, 1, 6, 8, 7],
[2’ 3’ 43 8’ 9: 3]: [1; 3’ 37 8: 3’ 1]:
[5: 6, 7: 6: 6, 7]: [9’ 4: 8’ 25 8: 3]:
(s, 2, 8, 6, 7, 8], (6, 8, 4, 4, 9, 5],
2, 1, 7, 3, 1, 311 (4, 2, 8, 3, 6, 411)
>>> np.where(a<5,a,b) >>> np.where(a<5,0,b) >>> np.where(a<5,0,1)
array([[2, 1, 1, 1, 8, 2], array([[0, O, 1, O, 8, O], array([[0, O, 1, O, 1, O],
(2, 3, 4, 8, 3, 31, (o, o, o, 8, 3, 01, (o, o, o, 1, 1, 01,
[9’ 43 8) 2’ 83 3], [9) 4, 83 2) 83 3]3 [13 1’ 13 1, 1) 1],
[6’ 2’ 4, 4, 9’ 5], [6’ 0, 4, 4’ 9, 5]’ [1, O’ 1’ 1, 1’ 1],
2, 1, 8, 3, 1, 31D (o, 0, 8, 0, 0, 011) (o, o, 1, 0, 0, 011)
On pourra également consulter | extract(condition, arr) ‘et‘searchsorted(a, v[, side, sorter])
http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy

PN Do g
jean-miche.ferrard@ac-paris.fr mathprepa.fr 40/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.count_nonzero.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.extract.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.searchsorted.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

6.5 Tableaux d’un point de vue ensembliste CHAPITRE 6 : Tests et comparaisons sur des tableaux

6.5 Tableaux d’un point de vue ensembliste

L’expression | unique (a) | renvoie les éléments de a triés, avec suppression des doublons :

>>> a = np.array([5,8,3,2,4,2,3,5,7])

>>> np.unique(a)

array([2,3,4,5,7,8])

>>> np.unique(a,True) # ajoute la position des éléments uniques sélectionnés
(array([2,3,4,5,7,8]), array([3,2,4,0,8,1], dtype=int32))

>>> np.unique(a,True,True) # renvoie en plus les indices pour reconstruire le tableau initial
(array([2,3,4,5,7,8]), array([3,2,4,0,8,1], dtype=int32), array([3,5,1,0,2,0,1,3,4], dtype=int32))

La fonction unique accepte deux arguments supplémentaires sous forme booléenne. Reprenons I’exemple précédent :

>>> a = np.array([5,8,3,2,4,2,3,5,7]) # le tableau initial

>>> b, ¢, d = np.unique(a,True,True)

>>> b # le tableau trié des valeurs uniques de a
array([2, 3, 4, 5, 7, 8])

>>> ¢ # les positions dans a des éléments uniques

array([3, 2, 4, 0, 8,

>>> np.take(a,c)
array([2, 3, 4, 5, 7,

1], dtype=int32)

on reconstitue donc ici le tableau b

81)

>>> d # tableau des positions dans le tableau b...
array([3, 5, 1, 0, 2, 0, 1, 3, 4], dtype=int32)
>>> np.take(b,d) # ... permettant de reconstruire le tableau a

array([5, 8, 3, 2, 4, 2, 3, 5, 7])

inid(a,b) |renvoie le vecteur des tests de 'appartenance des éléments du vecteur a dans le vecteur b.

>>> a = np.arange(0,25,3); a

array([0, 3, 6, 9, 12, 15, 18, 21, 24])
>>> b = np.arange(0,25,6); b

array([0, 6, 12, 18, 24])

>>> np.inld(a,b)
array([True, False,
>>> np.inld(b,a)
array([True, True,

les éléments de a sont-ils dans b ?

True, False, True, False, True, False, True], dtype=bool)

les éléments de b sont-ils dans a 7
True], dtype=bool)

True, True,

‘ intersectid(a,b) ‘ renvoie 'intersection des deux vecteurs a et b.

unionid(a,b) | renvoie I'union ensembliste des deux vecteurs a et b.

‘ setdiffid(a,b) ‘ renvoie les éléments de a qui ne sont pas dans b.

‘ setxorld(a,b) ‘ renvoie la différence symétrique des vecteurs a et b.

>>> a = np.arange(0,25,2); a # multiples de 2 dans 1’intervalle [0,25[
array([0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24])

>>> b = np.arange(24,-1,-3); b # multiples de 3 dans 1’intervalle [0,25[
array([24, 21, 18, 15, 12, 9, 6, 3, 0])

>>> np.intersectld(a,b) # multiples & la fois de 2 et de 3
array([0, 6, 12, 18, 24])

>>> np.unionld(a,b) # multiples de 2 ou de 3

array([0, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24])

>>> np.setdiffid(a,b) # multiples de 2, mais pas de 3

array([2, 4, 8, 10, 14, 16, 20, 22])

>>> np.setxorld(a,b) # multiples de 2 ou de 3, mais pas de 6
array([2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 21, 22])

http://creativecommons.org/licenses/by-sa/3.0/fr/
mathprepa.fr

jean-miche.ferrard@ac-paris.fr

une petite référence Numpy

http://docs.scipy.org/doc/numpy/reference/generated/numpy.unique.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.in1d.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.intersect1d.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.union1d.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.setdiff1d.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.setxor1d.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

6.6 Sommes, produits, différences

CHAPITRE 6 : Tests et comparaisons sur des tableaux

6.6 Sommes, produits, différences

L’expression renvoie la somme des éléments de a.
On dispose aussi de (sommes cumulées), | a.prod() | (produit) et | a.cumprod() | (produits cumulés).

On dispose comme souvent de deux syntaxes possibles : utiliser la méthode du tableau a (par exemple a.sum()) ou une
fonction du module numpy appliquée au tableau a (par exemple np.sum(a)).

Voici quelques exemples sur un vecteur :
>>> a = np.array([5,8,3,2,6]); a
array([5, 8, 3, 2, 6])

>>> np.sum(a)
24

>>> a.sum()
24

>>> np.cumsum(a)

>>> a.prod()
1440

>>> a.cumprod()

array([5, 13, 16, 18, 24], dtype=int32)

array([5, 40, 120, 240, 1440], dtype=int32)

diff(al,n,axis]) ‘ calcule les différences d’éléments consécutifs, éventuellement le long d’un axe (0 pour l'indice de

ligne, 1 pour l'indice de colonne), cette opération étant éventuellement répétée n fois (par défaut n = 1).

>>> a = np.arange(1,15)**2; a
array([1, 4, 9, 16, 25,

>>> b = np.diff(a); b
array([3, 5, 7,

>>> ¢ = np.diff(b); c

>>> d = np.diff(c); d

36,

les entiers ap = k2, avec 1 < k<15
196])

49, 64, 81, 100, 121, 144, 169,

9, 11, 13, 15, 17, 19, 21, 23, 25, 27])
array([2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

array([O0, 0, 0, O, O, O, O, O, O, O, 0])

Voici par exemple un test élégant pour vérifier que les valeurs d’un tableau sont dans ’ordre strictement croissant :

>>> np.all(np.diff (a)>0)
False

>>> a = np.array([1,2,4,7,5,9,11,13,17,19])
vérifie si les différences entre élts consécutifs sont > O

On pourra également consulter |ediffid(ary[, to_end, to_begin]) ‘ et ‘gradient (f, *varargs) ‘

renvoie le produit vectoriel des deux vecteurs a et b (mais il y a beaucoup d’options!)

>>> a = np.array([1,5,2]); b
array([-3, 5, -11]1)

>>> xa, ya, za = tuple(a); xb, yb, zb = tuple(b)

= np.array([3,4,1]); np.cross(a,b)

>>> yaxzb - zaxyb, za*xb -xa*xzb, xa*yb - ya*xb

(_3’ 5: '11)

L’expression | trapz(y[,x,h,axis]) ‘ illustre la « méthode des trapézes ».

on refait le calcul ’a la main’

. i + Yi i + Ys . .
Elle calcule la somme des aires des trapézes Z(J)H_l) LT oy hz y172%+1 suivant I’option.

>>> x = np.linspace(0,np.pi,100)

>>> np.trapz(np.sin(x),x)
1.9998321638939924

>>> x = np.linspace(0,np.pi,1000)

>>> np.trapz(np.sin(x),x)
1.9999983517708528

2

2 K3

100 valeurs réguliérement espacées, de 0 a w

intégre la fonction sin par les trapézes sur ces abscisses

on recommence, mais avec 1000 points

http://creativecommons.org/licenses/by-sa/3.0/fr/
jean-miche.ferrard@ac-paris.fr mathprepa.fr

une petite référence Numpy
42/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.sum.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.cumsum.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.prod.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.cumprod.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.diff.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ediff1d.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.gradient.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.cross.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.trapz.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

6.7 Calculs statistiques, histogrammes CHAPITRE 6 : Tests et comparaisons sur des tableaux

6.7 Calculs statistiques, histogrammes

On dispose des fonctions (moyenne arithmétique), (variance) et (écart-type)

>>> a.mean() # moyenne arithmétique >>> a.std() # écart-type
4.7999999999999998 2.1354156504062622

>>> a.var() # variance >>> a.std()**2 # (écart-type)? => variance
4.5600000000000005 4.5599999999999996

Toutes ces fonctions s’appliquent a une matrice. On peut alors préciser un axe de calcul (axis=0 pour un calcul sur les
lignes et axis=1 pour un calcul sur les colonnes). Si on ne précise pas cet argument, le calcul est fait « & plat ».

>>> a = np.arange(20) .reshape(4,5) >>> a.sum() # somme du tableau « aplati »
>>> a 190
array([[0, 1, 2, 3, 41, >>> a.sum(axis=0) # somme des lignes

[5’ 6, 7’ 8, 9], array([SO, 34, 38, 42, 46])

[10, 11, 12, 13, 14], >>> a.sum(axis=1) # somme des colonnes

[15, 16, 17, 18, 1911) array([10, 35, 60, 85])

On dispose également des fonctions (matrice de covariance), et (coefficients de corrélation).

average(al,axis,weights,returned]) ‘ renvoie la moyenne, éventuellement pondérée, éventuellement suivant un axe.

Si le dernier argument (booléen et facultatif) returned est présent et vaut true, la somme des poids est ajoutée au résultat.

>>> rdi = np.random.random_integers >>> np.average(a) # moyenne du tableau
>>> a = rdi(10,size=(5,6)) 5.5999999999999996
55> a >>> np.sum(a) /np.size(a) # on vérifie !
array([[5, 2, 1, 6, 2, 51, 5.5999999999999996
[8, 6, 9, 8, 2, 10], >>> np.average(a,axis=0) # moyenne des lignes
[6, 6, 10, 7, 6, 4], array([5.4, 4.2, 8., 5.8, 4.8, 5.4])
(7, 6,10, 3, 9, 71, >>> np.average(a,axis=1) # moyenne des colonnes
(1, 1,10, 5, 5, 11D array([3.5, 7.16666667, 6.5, 7., 3.83333333])
>>> a = rdi(10,size=5); a >>> np.average(a,weights=p)
array([5, 6, 8, 1, 21) 5.1875
>>> p = np.array([1,4,6,4,11); p >>> np.average(a,weights=p,returned=True)
array([1, 4, 6, 4, 11) (5.1875, 16.0)

median(a, [axis]) | calcule la valeur médiane (ou les valeurs médianes suivant un axe d’une matrice)

>>> a >>> np.median(a) # médiane du tableau aplati
array([[5, 2, 1, 6, 2, 5], 6.0
(s, 6, 9, 8, 2, 10], >>> np.median(a,axis=0) # médianes suivant les lignes
[6, 6, 10, 7, 6, 41, array([6., 6., 10., 6., 5., 5. 1)
L7, 6, 10, 3, 9, 71, >>> np.median(a,axis=1) # médianes suivant les colonnes
[1, 1, 10, 5, 5, 111 array([3.5, 8., 6., 7., 3.1

percentile(a,n[,axis]) ‘ calcule le(s) n-iéme(s) percentile(s), éventuellement selon un axe dans le cas d’une matrice.

>>> a = np.random.rand(1000); a >>> np.percentile(a,10) # valeur qui atteint les 10%
array([2.26465441e-01, 0.10722367362854898
5.15893347e-01, >>> np.percentile(a,50) # valeur qui atteint les 50%
2.28513526e-01, 0.52090862254043635
2.70221350e-01, >>> np.median(a) # 50-iéme percentile = médiane
8.83760443e-01]) 0.52090862254043635

On se borne a signaler les fonctions suivantes, et a renvoyer & la documentation « officielle » :

’histogram(a[,bins ,range,normed,weights,...]) ‘ calcule un histogramme de valeurs de a (traité « a plat »)

’histogram2d(x, y[, bins, range, normed, weights])‘ ’histogramdd(sa.mple[, bins, range, normed, ...])‘

’bincount(x[, weights, minlength])‘ ’digitize(x, bins[, right])

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 43/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.var.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.cov.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.corrcoef.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.average.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.median.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.percentile.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram2d.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.histogramdd.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.bincount.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.digitize.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

Chapitre 7

Calcul matriciel

7.1 Opérations linéaires

Les combinaisons linéaires de vecteurs ou de matrices s’effectuent de fagon trés naturelle :

>>> x = 100
>>> y = -1

>>> a = np.arange(6); a
array ([0, 1, 2, 3, 4, 5])

On pourra aussi considérer la (curieuse) fonction
trace | calcule la trace (et plus que ¢a) d’une matrice.

>>> b = np.arange(1,13,2); b

array([1, 3, 5, 7, 9, 111)

>>> x*a+y*b

array([-1, 97, 195, 293, 391, 489])

Il y a plusieurs arguments facultatifs, mais on ne considérera ici que le deuxiéme (qu’on peut nommer offset=...) qui
permet de sélectionner une sur-diagonale ou une sous-diagonale.

La fonction trace peut aussi étre évoquée comme une méthode du tableau, donc np.trace(m) et m.trace() se valent.

>>> m = np.arange(36) .reshape(6,6)

>>>m

array([[0, 1, 2, 3, 4, 5],
L6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 171,
[18, 19, 20, 21, 22, 23],
[24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35]1)

7.2 Produits matriciels

>>> m.trace() # la trace comme méthode de m
60

>>> np.trace(m) # avec la fonction numpy
60

>>> np.trace(m,1) # lére sur-diagonale
40

>>> np.trace(m,-1) # 1lére sous-diagonale
56

’dot(a,b[,out]) ‘ effectue le produit matriciel ab, et (facultativement) place le résultat dans out.

Pour deux vecteurs a = [ay,...,a,] et b= [by,...

Un vecteur v est considéré comme une ligne & gauche, et une colonne a droite.

>>> a = np.arange(1,5); a
array([1, 2, 3, 4])

>>> b = np.arange(11,15); b
array([11, 12, 13, 141)

>>> ¢ = np.arange(21,26); ¢
array([21, 22, 23, 24, 25])

>>> m = np.arange(20) .reshape(4,5); m
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],

[10, 11, 12, 13, 14],

(15, 16, 17, 18, 19]11)

n

,bn], on calcule ici le produit scalaire réel Z arbs.

k=1

>>> np.dot(a,b) # produit scalaire a.b
130

>>> np.dot(a,m) # vecteur-ligne par matrice
array([100, 110, 120, 130, 140])

>>> np.dot(m,c) # matrice par vecteur-colonne
array([240, 815, 1390, 1965])

>>> np.dot(m,m.T) # calcule m.m*
array([[30, 80, 130, 180],
[80, 255, 430, 605],
[130, 430, 730, 1030],
[180, 605, 1030, 1455]])

http://docs.scipy.org/doc/numpy/reference/generated/numpy.einsum.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.trace.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html

7.2 Produits matriciels

CHAPITRE 7 : Calcul matriciel

vdot (a,b) |effectue le produit scalaire hermitien de deux vecteurs (le tableau a est conjugué).
n

Sia=lay,...,a,] et b=1[by,...,by,], on calcule donc ici la somme

>>> a = np.array([1+4j,2-1j,-1j1);

array([1.+4.j, 2.-1.j, -0.-1.31)

>>> b = np.array([3-1j,1+3j,1j1); b
array([3.-1.j, 1.+3.j, 0.+1.31)

>>> np.dot(a,b) # ici) a[k|b[k]

(13+163)

a

ag bk.
k=1

>>> np.vdot(a,b) # ici Y. a[k]b[k]

(-3-63)
>>> np.vdot (b,a) # ici Y. b[k]alk]

(-3+63)

>>> np.vdot(a,a) # carré norme hermitienne
(23+07)

Si a, b sont deux vecteurs, | outer(a,b) | calcule la matrice de terme général m; ; = a; b;.

>>> a = np.array([1,10,100])

np.array([1,2,3,4,5])

>>> np.outer(a,b)

array([[1, 2, 3, 4, 5],
[10, 20, 30, 40, 501,
[100, 200, 300, 400, 50011)

>>> b

>>> np.outer(b,a)

array([[1, 10, 100],
[2, 20, 200],
[3, 30, 300],
[4, 40, 400],
[5, 50, 50011)

Il y a une variante, ol outer est une méthode de la classe ufunc : si a et b sont deux vecteurs, I’expression | . outer(a,b)

calcule la matrice des f(z,y) ou f est une fonction universelle, et ou (x,y) parcourt le produit cartésien a x b.

>>> np.add.outer([1,2,3], [40,50])
array([[41, 511,

[42, 52],

(43, 5311)
>>> np.add.outer([40,50],[1,2,3])
array([[41, 42, 43],

(51, 52, 53]1)

>>> np.multiply.outer([1,2,3], [40,50])
array([[40, 50],

[80, 1007,

[120, 15011)
>>> np.multiply.outer([40,50],[1,2,3])
array([[40, 80, 120],

[50, 100, 15011)

linalg.matrix_power (M,n) | calcule la puissance n-iéme de la matrice M.

>>> m = np.random.rand(3,3); m

array([[0.87036519, 0.19566762, O.
[0.78488071, 0.03240106,
[0.56204791, 0.3552536 , O.

>>> np.linalg.matrix_power (m,2)

array([[1.16159833, 0.33496745, 0.
[0.71575569, 0.15917134, 0.
[1.0411246 , 0.29410724, 0.

>>> np.dot (m,m)

array([[1.16159833, 0.33496745, 0.
[0.71575569, 0.15917134,
[1.0411246 , 0.29410724, O.

o

o

445668471,

.01279585] ,

48591225]11)

60695382] ,
35642884] ,
49114351]1])

60695382] ,

.35642884],

49114351]1])

>>> np.linalg.matrix_power(m,5)

array([[3.05133098, 0.85347532, 1.54321714],
[1.81056991, 0.50624713, 0.91515234],
[2.6543686 , 0.74279929, 1.34279836]1])

>>> print(np.linalg.matrix_power (m,-3))

(L 2.75837736 -26.07305165 15.05139821]
[195.03228433 -91.77058847 -161.33223914]
[-112.56378676 102.52375103 59.85757815]]

>>> np.linalg.matrix_power (m,0)

kron(a,b) | effectue le produit de Kronecker de deux tableaux a et b :

>>> a = np.array([[1,2],[3,4]11); a;
array([[1, 2],

[3, 411
>>> b = np.array([[1,5],[10,15]1);
array([[1, 5],

[10, 1511)

>>> np.kron(a,b)

array([[1,

b

array([[1., 0., 0.1,
[o0., 1., 0.1,
[ROEERN O R BN)
>>> np.kron(b,a)
5, 2, 10], array([[1, 2, 5, 10],
15, 20, 30], [3, 4, 15, 20],
15, 4, 20], [10, 20, 15, 301,

45, 40, 6011) [30, 40, 45, 601])

W (b2 i (@ Da
on reconnail 3b 4b on reconnail 10a 15a

On pourra également considérer les fonctions \ inner \ et \ tensordot \

http://creativecommons.org/licenses/by-sa/3.0/fr/
jean-miche.ferrard@ac-paris.fr mathprepa.fr

une petite référence Numpy
45/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.vdot.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.outer.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ufunc.outer.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.matrix_power.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.kron.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.inner.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.tensordot.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

7.3 Inversion de matrices, résolution de systémes CHAPITRE 7 : Calcul matriciel

7.3 Inversion de matrices, résolution de systémes

‘ linalg.inv(a) ‘ calcule l'inverse de la matrice carrée a :

>>> a = np.fromfunction(lambda i,j:1/(i+j+1),shape=(4,4)); a >>> print(np.linalg.inv(a))
array([[1. , 0.5 , 0.33333333, 0.25 1, [[16. -120. 240. -140.]
[0.5 , 0.33333333, 0.25 , 0.2 1, [-120. 1200. -2700. 1680.]
[0.33333333, 0.25 , 0.2 , 0.16666667], [240. -2700. 6480. -4200.]
[0.25 , 0.2 , 0.16666667, 0.142857141]) [-140. 1680. -4200. 2800.1]11]
une matrice de Hilbert son inverse est & coefficients entiers

Pour les amateurs, on pourra consulter | 1inalg.tensorinv(al,ind])

linalg.det(a) | calcule le déterminant de la matrice carrée a.

>>> a = np.vander([1,2,3,4,5]); a >>> np.linalg.det(a)
array([[1, 1, 1, 1, 17, 287.99999999999494
[16, 8, 4, 2, 1], >>> d = [j-i for j in range(5) for i in range(j)]; d
[81, 27, G 3P 1], (1, 2, 1, 3, 2, 1, 4, 3, 2, 1]
(256, 64, 16, 4, 11, >>> np.multiply.reduce(d)
[625, 125, 25, 5, 111) 288
une matrice de Vandermonde on calcule son déterminant, et on le retrouve

linalg.solve(a,b) | résout le systéme ax = b.

>>> a = np.array([[1,-2,3],[2,1,4],[5,-1,2]11); a >>> b = np.array([14,12,13]); b
array([[1, -2, 3], array([14, 12, 13])

[2, 1, 4], >>> np.linalg.solve(a,b)

[5, -1, 211D array([1., -2., 3.1)

linalg.lstsq(a,b[,rcond]) | calcule la meilleure solution du systéme ax = b au sens des moindes carrés.

On se reportera a la documentation officielle pour les détails de syntaxe.

>>> a = np.array([[1,-2],[2,1],[5,-1]11); a >>> x = np.linalg.lstsq(a,b) [0]; x
array([[1, -2], array([3.0516129 , -2.29032258])

(2, 1], >>> y = np.dot(a,x); y

[5, -11D array ([7.63225806, 3.81290323, 17.5483871 1)
>>> b = np.array([14,12,13]); b >>> np.dot(y-b,a)
array([14, 12, 13]) array ([-3.55271368e-15, 1.95399252e-14])

une matrice a de type 3 x 2 x la solution « bestfit » du systéme ax = b.
un vecteur b de taille 3 on vérifie que y = ax est orthogonal & 'image de a

Ceux que ¢a intéresse pourront consulter la fonction ‘ linalg.tensorsolve(a,b[,axes])

7.4 Normes matricielles et vectorielles

‘ linalg.norm(x[,pl) ‘ calcule une norme d’un vecteur ou d’une matrice.

Le deuxiéme argument p détermine le type de norme (essentiellement 'fro’, ou np.inf, ou 1)
Par défaut, il s’agit de la norme de Frobenius : | M|| = /> [m; ;> = /tr(M *M)

>>> m = np.arange(-10,10) .reshape(5,4); m >>> x = np.linalg.norm(m); x
array([[-10, -9, -8, -71, 25.88435821108957

[-6, -5, -4, -3], >>> np.trace(np.dot(m,m.T))
[_2: =il > O’ 1] > 670
[2: 3: 4, 5]) >>> k%2
[6, 7, 8, 911) 670.0
une matrice de taille 4 x 5 on calcule z = ||m||2 et on veérifie z = \/tr(M * M)
http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy

PN Do g
jean-miche.ferrard@ac-paris.fr mathprepa.fr 46/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.inv.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.tensorinv.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.det.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.solve.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.lstsq.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.tensorsolve.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.norm.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

7.5 Valeurs et vecteurs propres CHAPITRE 7 : Calcul matriciel

Reprenons la matrice de ’exemple précédent :

>>> np.linalg.norm(m,1) >>> np.linalg.norm(m,np.inf)
26 34
>>> np.sum(np.abs(m) ,axis=0) >>> np.sum(np.abs(m) ,axis=1)
array([26, 25, 24, 25]) array([34, 18, 4, 14, 30])
on calcule ||m/|; et on vérifie que c’est le maximum on calcule ||m||« et on vérifie que c’est le maximum
de la somme des |m;_ ;| le long d’une colonne de la somme des |m; ;| le long d’une ligne

linalg.cond(x[,pl) ‘ calcule le conditionnement d’une matrice.

Le deuxiéme argument p détermine le type de norme (essentiellement ’fro’, np.inf, 1)
Par défaut, il s’agit de la norme de Frobenius : | M|| = /> [m; ;> = /tr(M *M)
Le conditionnement d’une matrice m est un indicateur de la précision avec laquelle ou peut résoudre des systémes linéaires

mx = b : s’ est « élevé » (trés supérieur & 1), une faible perturbation sur les coefficients de b ou de m peut entrainer une
forte variation sur la solution = (tout ¢a mérite évidemment des explications plus sérieuses) :

>>> m >>> np.linalg.solve(m,b)
array([[10, 7, 8, 7], array([1., 1., 1., 1.1)
(7, 5, 6, 5], >>> np.linalg.cond(m)
(8, 6,10, 9], 2984.0927016757551

L7, 5, 9, 1011

>>> b = np.array([32,23,33,31]); b
array([32, 23, 33, 31])

>>> b2 = np.array([32.1,22.9,33.1,30.9])

>>> np.linalg.solve(m,b2)
array([9.2, -12.6, 4.5, -1.11)

une matrice m dont on va voir qu’elle est résout mx = b, et calcule le conditionnement de m
trés mal conditionnée, et un vecteur b. on légérement perturbe b : solution fortement déviée

Soit ms la matrice obtenue en perturbant légérement notre matrice m mal conditionnée.
On constate que la solution du systéme moxz = b est trés éloignée de celle de mx = 0.

>>> m2 = m + np.random.randn(4,4)*1le-2; m2 # on perturbe légérement la matrice m
array([[9.99139341, 7.00645197, 8.00176469, 6.978316641],

[7.01449654, 5.0015422 , 5.99109133, 4.9888675 1,

[8.01091316, 6.00359532, 10.0033713 , 8.98368763],

[6.98199067, 5.01979424, 9.00508571, 0.01918998]]1)

>>> np.linalg.solve(m2,b) # solution fortement déviée
array([1.85278963, -0.39366723, 1.32302275, 0.81104713])

On consultera aussi la fonction | linalg.pinv | qui calcule la pseudo-inverse de Moore-Penrose de a.

7.5 Valeurs et vecteurs propres

‘ linalg.eigvals(a) ‘ renvoie le vecteur des valeurs propres de a (éventuellement répétées).

Voici un exemple d’une matrice 5 X 5 avec une valeur propre triple et une valeur propre double :

>>>m
array([[1, 1, -1, 2, -1],
[2, o, 1, -4, -1,
o, 1, 1, 1, 11,
o, 1, 2, o, 11,
(o, o, -3, 3, -11D
>>> valp = np.linalg.eigvals(m); valp # les valeurs propres, réelles aux erreurs d’arrondis prés

array([1.00001556 +0.00000000e+00j, 0.99999222 +1.34784311e-05j, 0.99999222 -1.34784311e-05j,
-1.00000000 +0.00000000e+00j, -1.00000000 +0.00000000e+00j])

>>> valp = np.round(valp.real,4); valp # ici on a arrondi les résultats
array([1., 1., 1., -1., -1.1)

>>> np.linalg.det (m-np.identity(5)) # on vérifie que m-Id n’est pas inversible
0.0
>>> np.linalg.det (m+np.identity(5)) # on vérifie que m+Id n’est pas inversible
0.0
http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy

PN Do g
jean-miche.ferrard@ac-paris.fr mathprepa.fr 47/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.cond.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.pinv.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigvals.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

7.5 Valeurs et vecteurs propres CHAPITRE 7 : Calcul matriciel

Si le calcul des valeurs propres de la matrice précédente était entaché d’une erreur d’arrondi certaine, c’était a cause des
multiplicités élevées. Voici une matrice 5 x 5 dont toutes les valeurs propres sont distinctes :

>>> m
array([[5, 4, 8, -4],

[_2: _1’ 6’ O] ’

['2: -1] O: 1] >

[25 4: 20: _5]])
>>> valp = np.linalg.eigvals(m); valp # on trouve les valeurs propres distinctes -3, 2, 1, -1
array([-3., 2., 1., -1.1)
>>> [np.linalg.det(m-x*np.identity(4)) for x in valp] # vérifie que les det(m — AI) sont nuls
[2.1760371282653116e-13, -2.66453525910037e-14, -7.105427357600993e-14, 2.6645352591003795e-14]

linalg.eig(a) ‘ fait comme linalg.eigvals mais en plus elle renvoie les vecteurs propres (unitaires).

Le résultat est un couple (valeurs propres, matrice de passage).

>>> m
array([[5, 4, 8, -4],
[-2, -1, 6, o],
[-2, -1, o0, 11,
[2, 4, 20, -511)

>>> valp, vectp = np.linalg.eig(m); valp

array([-3., 2., 1., -1.1)

>>> print(vectp)

[[-3.01511345e-01 1.06787647e-16 1.79605302e-01 2.71947991e-15]
[-3.01511345e-01 4.36435780e-01 3.59210604e-01 -7.07106781e-01]

[1.40906305e-16 2.18217890e-01 1.79605302e-01 6.79869978e-16]
[-9.04534034e-01 8.72871561e-01 8.98026510e-01 -7.07106781e-01]]

‘ linalg.eigvalsh(a) | renvoie le vecteur des valeurs propres d’une matrice symétrique (réelle ou hermitienne).

Aucune vérification n’est faite pour savoir si a est bien symétrique. En fait, le second argument, facultatif et nommé
UPLO=. .. indique si la fonction doit prendre en compte la partie sous-diagonale (UPLO="L’) ou surdiagonale (UPLO="U’).

‘ linalg.eigh(a) ‘ fait comme linalg.eigvalsh mais en plus renvoie les vecteurs propres (unitaires).

>>> np.linalg.eigvalsh([[1,1,3],[1,2,2],([3,2,4]11)
array([-0.87298335, 1. , 6.87298335])

>>> np.linalg.eigvalsh([[1,3],[3,111) ‘
array([-2., 4.1)

Le résultat est un couple (valeurs propres, matrice de passage).

>>> m >>> valp # les valeurs propres, toutes simples
array([[-1, 1, 7, -3], array([-12., -4., 4., 8.1)
[1, -1, -3, 71, >>> vectp # une matrice de passage orthogonale
L7 -3 -1, 1], array([[-0.5, -0.5, -0.5, 0.5],
-3, 7, 1, -11D [0.5, -0.5, -0.5, -0.5],
>>> valp, vectp = np.linalg.eigh(m) [0.5, 0.5, -0.5, 0.5],
[-0.5, 0.5, -0.5, -0.5]1)

Meéme en cas de valeur propre multiple, la matrice de passage obtenue est orthogonale :

>>> m >>> vectp
array([[1, 3, 3, -3], array([[-0.5, 0.74166396, 0.44714044, O. 1,
L3 1, -3, 31, [0.5, -0.05087231, 0.64348945, 0.57735027],
[3 -3, 1, 3], [0.5, 0.65442479, -0.52637439, 0.21132487],
-3, 3, 3, 11D [-0.5, -0.13811148, -0.33002538, 0.78867513]1)
>>> valp, vectp = np.linalg.eigh(m) >>> np.dot(vectp,vectp.T) .round(8)
>>> valp array([[1., 0., 0., -0.]1,
array([-8., 4., 4., 4.1) to., 1., 0., 0.,
[o0., 0., 1., 0.1,
[-0., 0., 0., 1.1
matrice symétrique avec une valeur propre triple la famille des vecteurs propres est bien orthonormée
http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy

PN Do g
jean-miche.ferrard@ac-paris.fr mathprepa.fr 48/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigvalsh.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

7.6 Décompositions matricielles CHAPITRE 7 : Calcul matriciel

7.6 Décompositions matricielles

‘ linalg.cholesky(a) ‘ calcule la décomposition A = L*L d’une matrice symétrique définie positive.

Ici la matrice L est triangulaire inférieure (L pour Low), & coefficients diagonaux strictement positifs.

>>> M >>> L = np.linalg.cholesky(m); L
array([[4, -1, -1, 0], array([[2. , -0. , -0. , 0. 1,
[-1, 4, o, -11, [-0.5, 1.93649167, O. , 0. 1,
-1, 0, 4, -11, [-0.5, -0.12909944, 1.93218357, -0. 1,
(o, -1, -1, 41D [0., -0.51639778, -0.55205245, 1.8516402 11)
>>> np.linalg.eigvals(M) >>> np.allclose(np.dot(L,L.T),M)
array([2., 4., 6., 4.1) True
une matrice symétrique définie positive vérifie que L®L = M aux erreurs d’arrondi prés
‘ linalg.qr(al,mode]) | calcule la décomposition M = QR d’une matrice inversible.
Ici @ est orthogonale et R est triangulaire supérieure a coefficients positifs.
Le résulat est obtenu sous la forme du couple (Q, R).
>>> M >>> Q >>> R
array([[1, 5, 5, 1], array([[0.5, 0.5, 0.5, 0.51, | array([[2., 4., 6., 8.1,
[1, 5, 3, 3l, [0.5, 0.5, -0.5, -0.5], [o0., 6., 2., 6.1,
[1, -1, 3, -1], [0.5, -0.5, 0.5, -0.51, [0., 0., 2., 2.1,
[1, -1, 1, 31D [0.5, -0.5, -0.5, 0.511) (o., 0., 0., 6.1
>>> Q, R = np.linalg.qr(M)
Signalons enfin 'existence de la fonction | linalg.svd | (singular value decomposition)
http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy

jean-miche.ferrard@ac-paris.fr mathprepa.fr 49/ 58

http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.cholesky.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.qr.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.svd.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

Chapitre 8

Calcul polynomial

8.1 La classe polyld

La classe | poly1d | offre des outils communs pour travailler sur des polynémes P = a,, X" + An 1 X" 1+ + a1 X +ap
définis et manipulés a travers le vecteur [ay, an—1, ..., ao] de leurs coefficients (dans l'ordre des degrés décroissants).
Dans l’exemple suivant, on forme le polynéme P = X° +4X* 4+ 2X2 +7X + 6.

>>> p = np.poly1d([1,4,0,2,7,6]) >>> p.order # le degré de p
>>> p 5
polyid([1, 4, 0, 2, 7, 6]) >>> p.c # les coefficients de p
>>> type(p) array([1, 4, 0, 2, 7, 6])
<class ’numpy.lib.polynomial.polyld’> >>> p[1] # coeff du terme de degré 1
>>> print(p) # affichage rudimentaire de p 7
5 4 2 >>> p(10) # la valeur de p en 10
1x+4x+2x+7x+6 140276

La méthode r d’un objet polyld renvoie les racines, réelles ou complexes, de ce polynome.

>>> p = np.polyld([1,0,3,1,-1]) # le polynéme p= X*+3X24+ X -1

>>> p.r # deux racines réelles, deux complexes conjuguées
array([0.13632751+1.83095723j, 0.13632751-1.83095723j, -0.69778453+0.j, 0.42512951+0.j 1)

>>> p = np.polyld([1, -4, -1, 16, -12]) # le polyndme p = X*—4X3— X2+4 16X — 12

>>> p.r # quatre racines réelles distinctes
array([-2., 3., 2., 1.1)

Attention : en cas de racines multiples, le résultat obtenu peut souffrir d’une certaine imprécision, due & la méthode de
calcul (numpy forme la matrice compagnon avant d’appliquer un algorithme de recherche des valeurs propres).

>>> p = np.polyld([1, -4, 6, -4, 1]) # le polyndme p= X*—-4X34+6X2—-4X +1

>>> p.r # racine quadruple 1, grosse imprécision
array([1.00021716+0.j, 0.99999997+0.00021713j, 0.99999997-0.00021713j, 0.99978290+0.j 1)

Le constructeur polyld accepte un deuxiéme argument r=. .., de type booléen (avec la valeur False par défaut).
S’il a la valeur True, on forme un polyndéme par la liste de ses racines.

Ce méme constructeur admet aussi un argument facultatif variable=... qui permet de spécifier une variable a afficher
avec print (par défaut c’est x).

>>> p = np.polyld([1,2,3,4],r=True) >>> p = np.polyld([1,2,3,4]); print(p)
>>> print(p) 3 2
4 3 2 1x+2x+3x+4
1x-10x+35x-50x+24 >>> p = np.polyld([1,2,3,4],variable="y’); print(p)
>>> p.r 3 2
array([4., 3., 2., 1.1) ly+2y+3y+4

Remarque : on peut simplifier la saisie d’un polyndéme en écrivant, par exemple, P = np.polyld.

50

http://docs.scipy.org/doc/numpy/reference/generated/numpy.poly1d.html

8.1 La classe poly1d CHAPITRE 8 : Calcul polynomial

> Opérations usuelles sur les polyndémes
Pour les polyndmes de la classe polyld, les opérations arithmétiques usuelles (addition, produit, quotient, reste) sont
directement disponibles sous leur forme infixée habituelle.

Attention quand méme : les opérateurs // et % ne sont pas disponibles pour la classe poly1d.
Il faut utiliser 'opérateur / qui renvoie le couple (quotient,reste) dans la division euclidienne.

>>> a = np.polyld([1, 4, 2, 3, 5, 6]) >>> b*x*x2 # élévation au carré

>>> b = np.polyld([1, 1, 2, 3]) polyld([1, 2, 5, 10, 10, 12, 91

>>> a + b >>>q, r=a /b # division euclidienne

polyld([1, 4, 3, 4, 7, 91) >>> q

>>> 2%a-3*b # combinaison linéaire polyld(l 1., 3., -3.1)

polyid([2, 8, 1, 3, 4, 3]) >>> r

>>> axb # produit des deux polyndmes polytd(L -8, 2., 15.1)

polyid([1, 5, 8, 16, 24, 23, 25, 27, 18]) >>> qxb+r # on retrouve le polyndme a
polyid([1., 4., 2., 3., 5., 6.1)

Un polynéme de la classe polyld peut étre dérivé ou intégré au moyen de ses méthodes deriv et integ.

Ces deux méthodes acceptent un argument (facultatif) précisant 'ordre de dérivation ou de primitivation (par défaut 1).

La méthode integ accepte un deuxiéme argument k=. . ., facultatif, précisant la valeur en 0 de la primitive demandée.
>>> a = np.polyld([1,5,0,2,3,1]) >>> b.integ() # primitive = 0 & 1’origine
>>> a.deriv() # dérivée premiére polyld([6., 20., 0., 4., 0.1
poly1d([5, 20, O, 4, 3]) >>> b.integ(k=1) # primitive = 1 & 1’origine
>>> b = a.deriv(2); b # dérivée seconde polyld([5., 20., 0., 4., 1.1
poly1d([20, 60, O, 4]) >>> b.integ(2,k=-1)

poly1da([1., 5., 0., 2., -1., -1.1)

Il nous semble préférable d’utiliser les méthodes des objets de la classe polyid, plutot que d’appliquer des fonctions de
numpy sur des polyndmes ou des listes de coefficients.

Par exemple, on préfére écrire a.deriv() pour dériver un polynome a de la classe polyld plutot que d’écrire polyder(a).

Pour plus d’information, voir : http://docs.scipy.org/doc/numpy/reference/routines.polynomials.polyld.html

> Interpolation polynomiale

L’expression ‘ interp(x, xp, ypl, left, right]) |renvoie les images y des abscisses x, obtenues par interpolation sur

la base des points zp, yp.

>>> xp = [0, 1, 2, 3, 4] # abscisses des données connues
>>> yp = [4, 1, 3, 2, 5] # ordonnées yp des connées connues

>>> x = np.linspace(0,4,num=17); x # 17 abscisses a interpoler (16 intervalles de longueur 0.25)
array([0. , 0.25, 0.5, 0.75, 1. , 1.25, 1.5, 1.75, 2. ,
2.25, 2.5, 2.75, 3. , 3.25, 3.5, 3.75, 4. 1)

>>> y = np.interp(x,xp,yp); ¥ # les 17 valeurs interpolées correspondantes
array([4. , 3.2, 2.5, 1.7, 1. , 1.6, 2. , 2.5, 3. ,
2.75, 2.5, 2.25, 2. , 2.75, 3.5, 4.25, 5. 1)

> Approximation au sens des moindres carrés

polyfit(x,y,d) |renvoie le polynéme de meilleure approximation, au sens des moindres carrés, des points (z,y).

>>> x = [0,1,2,3,4]; y = [4,1,3,2,56] # abscisses et ordonnées du nuage de points

>>> np.polyfit(x,y,1) # [a,b] => droite y = ax+b des moindres carrés
array([0.3, 2.4])
>>> np.polyfit(x,y,2) # [a,b,c] => approximation y = ax?+bx+c

array([0.64285714, -2.27142857, 3.68571429])

Pour cette fonction polyfit, il y a plusieurs options possibles, et on se reportera a la documentation officielle.

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 51/ 58

http://docs.scipy.org/doc/numpy/reference/routines.polynomials.poly1d.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.interp.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

8.2 Le package numpy.polynomial CHAPITRE 8 : Calcul polynomial

8.2 Le package numpy.polynomial

Attention, ce paragraphe contient des détails un peu techniques, qui peuvent étre largement ignorés en premiére lecture.

Il suffira de se plier aux deux suggestions encadrées ci-dessous pour travailler avec les exemples.

A lintérieur de numpy, on trouve un package nommé polynomial.

Il offre des outils communs pour travailler sur des polyndémes définis et manipulés & travers la liste de leurs coefficients.
Mais ces coefficients sont des coordonnées dans une base, et il faut décider de la base utilisée.

La base la plus courante, dite canonique, est formée des monoémes 1, X, X2, ..., X", ..

Le polynéme A(X) =1+ 3X +5X? + 2X%, par exemple, sera identifié par le vecteur [1 3,5,0,2] de ses coefficients.
La base canonique suffit largement & traiter tout ce qui reléve du « calcul polynomial » au sens général.

Mais les polyndémes ca sert également a réaliser des approximations.

Et selon l'intervalle ott on doit travailler, certaines bases sont beaucoup plus intéressantes que la base canonique.

Ces bases particuliéres consistent en une suite (P, (X))n>0 & degrés échelonnés (c’est-a-dire deg(Py) = k pour tout k).
Dans ce cas, un polynéome A(X) = agPo(X) + a1 P1(X) + -+ 4+ an P (X) est décrit par le vecteur [ag, a1, ..., an].
Pour prévoir tous les cas de figure, le package numpy.polynomial contient plusieurs modules :

— le module numpy.polynomial.polynomial pour travailler avec la base canonique

le module numpy .polynomial.chebyshev pour travailler avec la base des polyndémes de Chebyshev.
— le module numpy.polynomial.legendre pour travailler avec la base des polynémes de Legendre.

— le module numpy.polynomial.laguerre pour travailler avec la base des polynoémes de Laguerre.

le module numpy.polynomial.hermite pour travailler avec la base des polynémes de Hermite.
(on trouve également le module numpy.polynomial.hermite_e)

Le package numpy.polynomial contient aussi des classes pour former des « objets polynémes dans une base donnée ».
Le nom d’une classe est celui du module correspondant, a ceci prés qu’il commence par une majuscule.
Chaque objet est créé (on dit instancié) par un constructeur qui porte lui aussi ce nom a majuscule.

On trouvera par exemple la classe (le constructeur) Polynomial pour fabriquer (instancier) des polyndmes représentés
par le vecteur de leurs coefficients dans la base canonique.

On dispose également des classes (constructeurs) Chebyshev, Legendre, Laguerre, Hermite, HermiteE.

Quelle que soit la base utilisée, les polynémes sont toujours définis par leur coefficients dans le sens des degrés croissants
(c’est 1a une différence essentielle avec les polynomes de la classe poly1d).

Pour débuter, il est prudent de se limiter aux polynémes exprimés dans la base canonique 1, X, X?2,..., X",

On propose le principe suivant, qui permettra d’éviter d’utiliser des noms trop longs :

On importe la classe Polynomial du package numpy.polynomial et on lui donne le nom P

‘from numpy.polynomial import Polynomial as P

> La classe polyld ou le package polynomial ?

Laissons parler la documentation officielle : prior to NumPy 1.4, numpy.polyld was the class of choice and it is still
available in order to maintain backward compatibility. However, the newer Polynomial package is more complete than
numpy.polyld and its convenience classes are better behaved in the numpy environment. Therefore Polynomial is recom-
mended for new coding.

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 52/ 58

http://docs.scipy.org/doc/numpy/reference/routines.polynomials.classes.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.polynomial.Polynomial.html
http://docs.scipy.org/doc/numpy/reference/routines.polynomials.chebyshev.html
http://docs.scipy.org/doc/numpy/reference/routines.polynomials.legendre.html
http://docs.scipy.org/doc/numpy/reference/routines.polynomials.laguerre.html
http://docs.scipy.org/doc/numpy/reference/routines.polynomials.hermite.html
http://docs.scipy.org/doc/numpy/reference/routines.polynomials.hermite_e.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

8.3 La classe « Polynomial » CHAPITRE 8 : Calcul polynomial

8.3 La classe « Polynomial »

Le titre de cette section devrait étre, on le sait : la classe « numpy.polynomial.polynomial.Polynomial »....
La classe la plus naturelle, « Polynomial », permet de former des combinaisons linéaires A(X) =ag+ a1 X +---+a, X™.
Formons par exemple le polynéme a = —1 4+ 2X + X3 — 4X° 4+ 2X6.

>>> from numpy.polynomial import Polynomial as P # IMPORTANT, ON SUPPOSERA QUE C’EST FAIT

>>> a = P([—l, 27 O: 1’ _4, 2]); a
Polynomial([-1., 2., O., 1., -4., 2.1, [-1., 1.1, [-1., 1.1)

> Quelques remarques a faire trés vite

Il y a trois parties dans un polynéme, la premiére étant le vecteur numpy des coefficients (selon les degrés croissants).

Dans notre exemple, les coefficients, au départ entiers, ont automatiquement été convertis au format float.

La seconde partie est le « domaine » du polynome, et la troisiéme partie est sa « fenétre ».

Ce sont toutes deux des intervalles, par défaut [—1,1]. Le domaine et la fenétre d’'un polynéme n’interviennent que
lorsqu’on en vient aux problémes d’approximation, et pas dans les opérations algébriques.

Le « domaine » est I'intervalle ot pourront se trouver les abscisses des données devant faire I'objet de I’approximation, et
la « fenétre » est 'intervalle sur lequel on pourra tracer le polynéme résultant de cette approximation.

On peut extraire chacune des trois parties par la méthode adéquate (ici notre polynéme a).

La méthode print permet de n’afficher que le vecteur des coefficients. Le préfixe poly est la pour nous indiquer qu’il
s’agit bien d'un polynéme. Quant au type de notre polynéme a, on voit qu’il est assez étonnant.

On peut définir un polynoéme a coefficients complexes.

>>> a.window
array([-1., 1.1)

>>> a.coef
array([-1., 2., 0., 1., -4., 2.1)

>>> a.domain
array([-1., 1.]

>>> type(a)
<class ’numpy.polynomial.polynomial.Polynomial’>

>>> print(a)
poly([-1. 2. 0. 1. -4. 2.1)

Ses attributs « domain » et « window » sont encore des intervalles de R (et toujours [—1, 1] par défaut) :

>>> P([1,1+1j,23,0,3-13]1) # le polyndme 1+ (1+4)X +2iX2+ (3 —10)X*
Polynomial([1.+0.j, 1.+1.j, 0.+2.j, 0.+0.j, 3.-1.j1, [-1.40.j, 1.+0.j]1, [-1.+0.j, 1.+0.j1)

> Opérations arithmétiques usuelles
Pour les polyndmes formés a l’aide du constructeur Polynomial (abrégé en P), les principaux opérateurs arithmétiques
(addition, produit, quotient, reste) sont directement disponibles sous leur forme infixée habituelle.

Pour voir de quoi il s’agit, rappelons la définition de notre polynéme a et formons un deuxiéme polynoéme b :

>>> a = P([—l, 2, O: 19 _4) 2]); a
Polynomial([-1., 2., O., 1., -4., 2.1, [-1., 1.1, [-1., 1.1)

>>> b = P([1, -1, 2, 11); b
Polynomial([1., -1., 2., 1.1, [-1., 1.1, [-1., 1.1)

Dés lors, on peut additionner les polynémes, les multiplier, etc. de fagon trés naturelle.

Dans les exemples qui suivent, on utilisera print pour éviter d’étre distrait par les intervalles de domaine et de fenétre.

>>> print(a) # le polyndme a >>> print (a*b) # le polyndme ab

poly([-1. 2. 0. 1. -4. 2.1) poly([-1. 3. -4. 4. -3. 8. -9. 0. 2.1

>>> print(b) # le polyndme b >>> print(a // b) # quotient dans div euclidienne

poly([1. -1. 2. 1.1) poly([19. -8. 2.1)

>>> print (a+b) # le polyndme a+b >>> print(a % b) # reste dans division euclidienne

poly([0. 1. 2. 2. -4. 2.]) poly([-20. 29. -48.])

>>> print(2*a+3*b) # le polyndme 2a + 3b >>> print (P([1,1]1)#*4) # le polyndme (X + 1)*

poly([1. 1. 6. 5. -8. 4.1) poly([1. 4. 6. 4. 1.1
http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy

jean-miche.ferrard@ac-paris.fr mathprepa.fr 53/ 58

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

8.3 La classe « Polynomial » CHAPITRE 8 : Calcul polynomial

Python est trés flexible quand il s’agit d’opérations élémentaires entre polyndémes. Pourvu que I'un des argument ait été
formé avec le constructeur Polynomial, l’autre peut étre une liste (ou un tuple, ou un tableau numpy) de coefficients.

>>> a = P([-1, 2, 0, 1, -4, 2]); print(a) >>> print(a // [1,1,1])
poly([-1. 2. 0. 1. -4. 2.1) poly([1. 5. -6. 2.1)

>>> print(a + [1,1,1]) >>> print(a % (1,1,1))

poly(L 0. 3. 1. 1. -4. 2.1) poly([-2. -4.1)

>>> print(a - (1,1,1,1,1,2)) >>> print(a + np.arange(4))
poly([-2. 1. -1. 0. -5.1) poly([-1. 3. 2. 4. -4. 2.1)

> Evaluations de polynoémes

Les polynomes sont considérés comme des fonctions d’une variable, et il est extrémement simple de calculer la valeur de
A en un point, et méme tout un échantillon de valeurs (on reprend l'exemple de A = —1 +2X + X3 — 4X5 4 2X9).

>>> a(1) # on voit que a(l) est nul >>> m= [[1,2,3],[4,5,6]]

0.0 >>> a(m) # un tableau de valeurs de a
>>> a([1,2,3]) # valeurs de a en 1, 2, et 3 array ([[0., 11., 194.7,
array([0., 11., 194.1) [1095., 3884., 10595.11)

Il est méme possible de composer deux polynémes entre eux.

. JAX) = -1+ 2X 4+ X3 —4X° +2X6 o A(B)=—-1+2B+ B3> —4B° + 2B
Ainsi, si) 3 , on définit :) 3
BX)=1-X+2X"+X B(A)=1—-A+2A°+B
>>> a = P([-1, 2, 0, 1, -4, 2]) # le polyndme A
>>> b = P([1, -1, 2, 11) # le polyndme B
>>> print(a(b)) # le polyndme A(B)
poly([O. 1. -3. -2. 34. -99. 119. -73. -46. 113. -16. -12. 86. 70. 20. 2.1)
>>> print(b(a)) # le polyndme B(A)
poly([3. -4. -4. 6. 4. 24. -b7. 38. -68. 137. -112. 78. -112. 108. -48. 8.1)

> Incompatibilités de domaine ou de fenétre

On peut définir un polynome ayant des attributs de domaine ou de fenétre différents de [-1,1] :

>>> P([1,3,0,1] ,domain=[0,10] ,window=[-2,2]);

Polynomial([1., 3. 0. 1.1, [oO. 10.7, 2.1)

) [_2':

B B

Mais deux polyndémes qui n’ont pas le méme attribut de domaine ou de fenétre ne peuvent pas étre les arguments d’une
opération arithmétique (somme, produit, division euclidienne, exponentiation).

>>> a = P([1,2,3],domain=[0,1]); b = P([2,5,1,4],domain=[-3,3]); a+b
TypeError: Domains differ

> Dérivées et primitives de polyndémes
—1+2X 4+ X3 —4X5 +2X6

11 peut étre dérivé (une ou plusieurs fois) par sa méthode deriv :

Reprenons notre polynome A(X)

>>> a = P([-1, 2, 0, 1, -4, 2]); a
Polynomial([-1.,2.,0.,1.,-4.,2.],[-1.,1.],[-1.,1.1)
>>> a.deriv()
Polynomial([2.,0.,3.,-16.,10.1,[-1.,1.]1,[-1.,1.1)
>>> a.deriv(0)
Polynomial([-1.,2.,0.,1.,-4.,2.],[-1.,1.],[-1.,1.])

>>> a.deriv(4)

Polynomial([-96.,240.]1,[-1.,1.],[-1.,1.1)
>>> a.deriv(5)
Polynomial([240.],[-1.,1.]1,[-1.,1.1)

>>> a.deriv(6)
Polynomial([-0.],[-1.,1.],[-1.,1.1)

Un polynoéme peut étre primitivé par sa méthode integ. Celle-ci accepte deux paramétres facultatifs : d’une part k=. ..
indiquant le nombre de primitivations a effectuer (une, par défaut), et d’autre part lwbd=. .. indiquant & partir de quelle
borne on intégre (c’est-a-dire ou s’annule la primitive, par défaut c’est en 0)

une petite référence Numpy
54/ 58

http://creativecommons.org/licenses/by-sa/3.0/fr/
jean-miche.ferrard@ac-paris.fr mathprepa.fr

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

8.3 La classe « Polynomial » CHAPITRE 8 : Calcul polynomial

>>> a = P([-1, 2, 0, 1, -4, 3]); a

Polynomial([-1., 2., ©O., 1., -4., 2.1, [-1., 1.1, [-1., 1.1)

>>> a.integ() # la primitive de a qui s’annule en O

Polynomial([O0., -1., 1., ©0., 0.25, -0.8, 0.57, [-1., 1.1, [-1., 1.D)

>>> print(a.integ(3)) # on a primitivé trois fois, toujours & partir de O
poly([O. 0. 0. -0.16666667 0.08333333 0. 0.00833333 0.01904762 0.00892857])

>>> b = a.integ(lbnd=1); b # la primitive b de a qui s’annule en 1
Polynomial([0.05, -1. , 1. , 0. , 0.25, -0.8, 0.5171, [-1., 1.1, [-1., 1.1)

>>> b(1) # on vérifie effectivement que b(1) est nul

0.0

> Racines de polyndémes

Les racines (réelles ou complexes) d’un polynoéme sont obtenues par la méthode roots.

>>> a = P([6,7,-3,-3,1]1); a >>> np.round(a(r),10)

Polynomial([6., 7., -3., -3., 1.1, [-1., 1.1, [-1., 1.1) array([0., 0., -0., -0.1)

>>> r = a.roots(); r >>> np.round_(a.deriv() (r),6)

array([-1.00000002, -0.99999998, 2., 3.]) array([-0., 0., -9., 16.1)
deux racines simples, une racine double calcule a(\) et a/(A) sur les racines

Voici un exemple oil le polynéme, a coefficients réels, a des racines non réelles :

>>> a = P([1,1,1,1,1,1]); a # le polyndme A=1+ X + X2+ X34 X2+ X5
Polynomial([1., 1., 1., 1., 1., 1.1, [-1., 1.1, [-1., 1.1)
>>> a.roots() # les racines sixiémes de 1’unité sauf 1

array([-1.0+0.j, -0.5-0.8660254j, -0.5+0.8660254j, 0.5-0.8660254j, 0.5+0.8660254]j]1)

Réciproquement, on peut former un polynoéme (unitaire) a partir de ses racines :

>>> from numpy.polynomial import Polynomial as P # comme d’habitude

>>> a = P.fromroots([1,2,3,4]); a # polyndme de degré 4 dont les racines sont 1,2,3,4
Polynomial([24., -50., 35., -10., 1.1, [-1., 1.1, [-1., 1.1)

>>> a.roots() # on vérifie

array([1., 2., 3., 4.1)

> Autres méthodes de la classe « Polynomial »

renvoie le polynéme d’indice n dans la base utilisée, donc ici X™.

>>> P.basis(6) # le polyndme X6
Polynomial([0., 0., 0., ©O0., O0., oO., 1.1, [-1., 1.1, [-1., 1.1)

degree () | donne le degré d’un polynéme, et | cutdeg(n) | ne garde que les termes de degré < n.

>>> a = P([1,5,6,8,7]); a.degree() # le polyndme A=1+5X +6X24+8X34 7X*
4
>>> b = a.cutdeg(2); b # ne garde que les termes de degré <2

Polynomial([1., 5., 6.1, [-1., 1.1, [-1., 1.1)

trim(tol=0) | supprime les termes dominants s’ils sont inférieurs a une certaine tolérance (nulle par défaut).

>>> a = P((1,6,1e-5,-1.e-7,0)); print(a)

poly(L 1.00000000e+00 6.00000000e+00 1.00000000e-05 -1.00000000e-07 0.00000000e+00])
>>> print(a.trim())

poly ([1.00000000e+00 6.00000000e+00 1.00000000e-05 -1.00000000e-07])

>>> print(a.trim(le-6))

poly (L 1.00000000e+00 6.00000000e+00 1.00000000e-05])

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 55/ 58

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

8.4 Les classes « Chebyshev », etc CHAPITRE 8 : Calcul polynomial

8.4 Les classes « Chebyshev », etc

On peut importer les constructeurs qui correspondent aux familles de polynoémes classiques, comme on 1’a fait avec le
constructeur Polynomial.

Voici quelques suggestions de raccourcis pour 'importation.

‘from numpy.polynomial import Chebyshev as T‘ : polynomes de Chebyshev

l'utilisation de la lettre T est liée & une certaine habitude de notation (et de prononciation).

‘from numpy .polynomial import Legendre as Le‘ : polynémes de Legendre

‘from numpy.polynomial import Laguerre as La‘ : polynomes de Laguerre

‘from numpy .polynomial import Hermite as H‘ : polyndémes de Hermite

‘from numpy.polynomial import HermiteE as He‘ : polyndémes de Hermite

Ce qui est trés rassurant, c’est que ces différentes classes possédent essentiellement les mémes méthodes, avec les mémes
noms (la seule différence étant le préfixe utilisé : P, C, etc.). Par exemple la méthode T.basis(n) renvoie le n-iéme
polynéme dans la base de Chebyshev.

Ce qui également trés sympathique, dans les constructeurs P, C, etc, c’est qu’ils fabriquement des polynémes qui peuvent,
entre objets d’'une méme famille, étre manipulés de fagon trés naturelle (opérateurs infixes d’addition, de produit, de
division euclidienne, d’exponentiation).

C’est la raison pour laquelle nous avons un peu détaillé I'utilisation des méthodes la classe Polynomial. La généralisation
aux autres classes de polyndémes est immédiate.

> L’exemple de la classe Chebyshev

>>> from numpy.polynomial import Chebyshev as T

>>> a = T([1,3,2]); a # le polyndme a = T+ 371 +27T,
Chebyshev([1., 3., 2.1, [-1., 1.1, [-1., 1.1)

>>> type(a)
<class ’numpy.polynomial.chebyshev.Chebyshev’>

On ne constate pas beaucoup de changement par rapport ce qu’on a vu avec la classe Polynomial : le polynoéme est
toujours identifié par la liste de ses coefficients (dans le sens des degrés croissants) et il est encore muni des attributs
domaine et fenétre (par défaut & nouveau égaux a [—1, 1]).

Dr’ailleurs, juste pour voir, on va également importer la classe Polynomial.

>>> from numpy.polynomial import Polynomial as P

>>> b = P([1,3,2]); b # le polyndme b = 143X +2X?
Polynomial([1., 3., 2.1, [-1., 1.1, [-1., 1.1)

>>> type(b)
<class ’numpy.polynomial.polynomial.Polynomial’>

A ce stade, il faut imprimer le contenu de a et b pour voir qu’il ne s’agit pas du tout du méme objet.

Et il est heureusement impossible d’additionner (par exemple) ces deux polynémes !

>>> print(a) >>> a + b

cheb([1. 3. 2.1) Traceback (most recent call last):
>>> print (b) [...]

poly([1. 3. 2.1) TypeError: Polynomial types differ

Pour comparer deux polynémes, il faut les écrire dans une méme base. Et pour cela, il faut étre capable de convertir un
polynéme écrit dans une base en un polynoéme écrit dans une autre base.

C’est ce que fait la méthode de chacune des classes Polynomial, Chebyshev, etc.
Par exemple : P.convert (p,kind=T) renvoie la conversion d’un polynéme p dans la base de Chebyshev.

Inversement, T.convert(q,kind=P) renvoie la conversion d’un polyndéme ¢ dans la base canonique (tout cela suppose
bien siir qu’on a importé ces classes avec les noms courts P et T).

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Numpy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 56/ 58

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

8.4 Les classes « Chebyshev », etc CHAPITRE 8 : Calcul polynomial

Dans I’exemple suivant, on convertit les six premiers polyndmes de la base de Chebyshev dans la base canonique (on voit
a cette occasion que ce sont les polynomes de Chebyshev dits « de premiére espéce »).

>>> for k in range(8): print(T.convert(T.basis(k),kind=P))

poly([1.1) # le polyndme Tp =1

poly(L 0. 1.1) # le polynéme T; = X

poly([-1. 0. 2.1) # le polynéme Tb = —1+2X2

poly([0. -3. 0. 4.1) # le polyndme 13 = —3X +4X3
poly([1. 0. -8. 0. 8.1) # le polyndme T, =1 —8X248X*
poly([0. 5. 0. -20. 0. 16.1) # le polyndme 75 =5X — 20X3+ 16X°

Inversement, voici les polynémes 1, X, ..., X7 exprimés en fonction des polynémes Ty, 11, ..., Tr.
>>> for k in range(8): print(P.convert(P.basis(k),kind=T))
cheb([1.1) #1 = Ty
cheb([0. 1.1) # X =Ty
cheb([0.5 0. 0.51) # X2 = (To+Ty)/2
cheb([0. 0.75 0. 0.25]) # X3 = 3T +713)/4
cheb([0.375 0. 0.5 0. 0.1251) # Xt = (3Tp+4T2+Ty)/8
cheb([0. 0.625 0. 0.3125 0. 0.0625]) # X° = (107, +5T5+ T5)/16
cheb([0.3125 0. 0.46875 O. 0.1875 0. 0.03125])
cheb([0. 0.546875 O. 0.328125 O. 0.109375 O. 0.015625])

Il reste bien stir la possibilité d’effectuer un tracé, comme on le
voit ici avec 'exemple du polynéme Ty, dont on a tracé les valeurs
sur un échantillon de 200 points du segment [—1,1] :

>>> import matplotlib.pyplot as plt

>>> plt.plot(T.basis(5) (np.linspace(-1,1,200)))
[<matplotlib.lines.Line2D object at 0x7dde890>]
>>> plt.show()

200

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Nqupy
jean-miche.ferrard@ac-paris.fr mathprepa.fr 57/ 58

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

Mises a jour

La version la plus récente de ce document est disponible sur le site mathprepa.fr

Auteur

Jean-Michel Ferrard, jean-miche.ferrard@ac-paris.fr

Licence d’utilisation de ce document

CC BY-SA 3.0 FR http://creativecommons.org/licenses/by-sa/3.0/fr/

o8

http://www.mathprepa.fr
mailto:jean-miche.ferrard@ac-paris.fr
http://creativecommons.org/licenses/by-sa/3.0/fr/

	Fonction array et « data types »
	Création de tableaux avec array
	Attributs de dimension d'un tableau
	Le « data type » d'un tableau
	Copie d'un tableau avec conversion de « data type »
	Les différents « data types » disponibles
	Tableaux de nombres complexes

	Lecture et écriture dans un tableau
	Lecture de valeurs dans un vecteur, « slicing »
	Lecture de valeurs dans une matrice
	Écriture de valeurs dans un vecteur
	Écriture de valeurs dans une matrice
	Copies de tableaux, « vues » sur des tableaux
	« Fancy indexing »

	Dimensions d'un tableau
	Redimensionnement par « reshape » ou « resize »
	Aplatissement d'un tableau
	Transposition d'une matrice
	Suppressions/insertions de lignes, de colonnes
	Permutations/rotations de lignes, de colonnes
	Opérations par blocs

	Tableaux spécifiques
	Tableaux constants
	Identité, matrices diagonales ou triangulaires
	Tableaux de valeurs échelonnées
	Tableaux répondant à une formule donnée
	Tableaux pseudo-aléatoires
	Probabilités, lois discrètes usuelles
	Probabilités, lois continues usuelles

	Fonctions universelles
	Opérations arithmétiques
	Fonctions mathématiques usuelles
	Variantes de syntaxe
	Vectorisation d'une fonction
	Opérations logiques sur tableaux booléens
	Opérations binaires sur les tableaux d'entiers

	Tests et comparaisons sur des tableaux
	Comparaisons entre tableaux
	Tris de tableau
	Minimum et maximum
	Recherches dans un tableau
	Tableaux d'un point de vue ensembliste
	Sommes, produits, différences
	Calculs statistiques, histogrammes

	Calcul matriciel
	Opérations linéaires
	Produits matriciels
	Inversion de matrices, résolution de systèmes
	Normes matricielles et vectorielles
	Valeurs et vecteurs propres
	Décompositions matricielles

	Calcul polynomial
	La classe poly1d
	Le package numpy.polynomial
	La classe « Polynomial »
	Les classes « Chebyshev », etc

