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Chapitre 1

Groupes

1.1 L’ensemble Z/nZ
1.1.1 Relation d’équivalence

Définition
On appelle relation d’équivalence sur un ensemble £ toute relation binaire R vérifiant
1) R est réflexive i.e. Vo € E, xRz ;
2) R est symétrique i.e. Vz,y € E, 2Ry = yRax :
3) R est transitive i.e. Vz,y, 2z € E, xRy etyRz = zRz;

Exemple L’égalité est une relation d’équivalence sur E.

Exemple L équivalence des suites (ou de fonctions au voisinage de a € R) est une relation
d’équivalence.

Exemple L’équivalence des matrices de M,, ,,(K).

Remarque Plus généralement, pour une application f : £ — F', la relation R donnée par

tRy < f(z) = f(y)

définit une relation d’équivalence sur .

Remarque En fait, une relation d’équivalence se comprend comme « une égalité modulo certains
criteres » .



1.1. LENSEMBLEZ/NZ

1.1.2 Classe d’équivalence

Soit R une relation d’équivalence sur E.

Définition
On appelle classe d’équivalence d’un élément x de £ pour la relation R, le sous-ensemble noté
Cl(z) formé des éléments qui sont en relation avec x

Cl(z) ={y € E/tRy}

La classe d’équivalence de x est encore souvent notée &, T, Z,. . .

Exemple Considérons F = {a,b,c,d,e} et f : E — {0,1,2} définie par
fla) =0,f(b) =1,f(c) =0, f(d) = Let fe) =2

La relation R définie par
Ry < f(z) = f(y)

est une relation d’équivalence que 1’on peut visualiser ainsi

Pour celle-ci Cl(a) = Cl(c) = {a,c}, Cl(b) = Cl(d) = {b,d} et Cl(e) = {e}.

Remarque C!(z) réunit les éléments de E qui sont « égaux modulo la relation R » .

Théoreme
a)Ve € B,z € Cl(x);
b)Vz,y € E, 2Ry = Cl(z) = Cl(y);
o)Vr,y € B,z Ry = Cl(x) N Cl(y) =10
Ainsi une classe d’équivalence n’est jamais vide et deux classes d’équivalence distinctes sont
disjointes.

dém. :

x € Cl(z) car larelation R est réflexive.

Si Ry alors pour tout z € Cl(y) on a yRz et donc xRz par transitivité. Ainsi Cl(y) C Cl(x) et par
symétrie on a I’autre inclusion et donc 1’égalité.

Enfin, par contraposée, si Cl(x) N Cl(y) # () alors pour un certain z € Cl(z) N Cl(y), on a xRz et yRz
donc par symétrie et transitivité, on obtient zRy.

O

Remarque Si y est élément d’une classe d’équivalence Cl(z) alors xRy et donc Cl(x) = Cl(y). Ainsi,
tout élément d’une classe d’équivalence détermine celle-ci.
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CHAPITRE 1. GROUPES

Définition
] Tout élément y d’une classe d’équivalence est appelé représentant de celle-ci.

1.1.3 Ensemble quotient

Soit R une relation d’équivalence sur F. Les classes d’équivalence réalisent une partition de F ; cette
partition est obtenue en regroupant entre eux les éléments qui sont « égaux modulo la relation R » .

Exemple Considérons la relation d’équivalence précédente sur £ = {a,b, ¢, d, e}.
Celle-ci réalise une partition de £ en 3 classes d’équivalence.

Définition
On appelle ensemble quotient de £ par R I’ensemble des classes d’équivalence pour rela-
tion R.
On le note E/R.

Remarque FE/R se comprend comme 1’ensemble obtenu lorsqu’on « identifie entre eux les éléments
qui sont égaux modulo R » .

Exemple L’ensemble Q des nombres rationnels se construit comme 1’ensemble quotient de Z x Z*
pour la relation

(a,0)R(c,d) < ad = be

La classe d’équivalence d’un couple (a, b) est alors notée a/b.

1.1.4 L’ensemble Z/nZ

Soit n € N*.
Définition
On définit sur Z la relation de congruence modulo n par

a=b [njen|(b—a)

Proposition

La relation de congruence modulo n est une relation d’équivalence sur Z.

dém. :

La relation est réflexive car a = a  [n] puisque n | (a — a).

La relation est symétrique cara =b  [n] = b=a [n]puisquen | (b—a)=n| (a —1D).

Enfin, la relation est transitivecara = b [n] etb=¢ [n] = a=c¢ |[n]puisquen | (b—a)etn |
(c=b)=n|(c—a).

]
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1.1. LENSEMBLEZ/NZ

Définition
Pour a € Z, on note a la classe d’équivalence de a € Z pour la relation de congruence
modulo n.
Ainsi
a={a+kn/kecZ}=a+nZ
Définition

] On note Z/nZ I'ensemble quotient de Z pour la relation de congruence modulo n.

Théoreme
Z/nZ est un ensemble fini a n éléments qui sont

dém. :
0,1,...,(n — 1) sont des éléments de Z/nZ.
Poura,b € {0,...,n—1},

a=b=n|(b—a)=a=0b

Par suite, les classes 0,1, ..., (n — 1) sont deux a deux distinctes.

Pour tout @ € Z/nZ, en considérant le reste r € {0,1,...,n — 1} de la division euclidienne de a par n,
on obtient @ = 7. Ainsi toutes les classes d’équivalence figurent parmi 0, 1, ..., (n — 1).

O

Exemple 7Z/27 = {0,1}, Z/3Z = {0,1,2}, Z/4Z = {0, 1, 2, 3}, etc.

Proposition
Pour tout a, b,a’, V' € Z,

a=d [njetb=b [n]=a+b=d +b [n]etab=db |[n]

dém. :
nla —aetn|b —bentrainentn | (@' +b') — (a+b) = (a' —a)+ (' —b)etn | (a'b) — (ab) =
(" —a)t/ +a(d — )
O
Définition
On définit deux opérations + et x sur Z/nZ en posant

a+b=a+betaxb=ab
déf déf

Remarque La définition ci-dessus est consistante puisque le résultat de ces opérations ne dépend pas
des représentants a, b choisis pour chaque classe.
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CHAPITRE 1. GROUPES

Exemple_ Dans Z/6Z,

3+5=8=2o0uencore3+5=3+—-1=2.

3x5=15=30uencore3 x5 =3x —1 = —

1.2 Structure de groupe

1.2.1 Définition

Définition

axb—ab)

1

cet élément b est alors unique et appelé symétrique de a, noté a™ -~ .
Si de plus la loi * est commutative, on parle de groupe abélien.
Lorsque la loi est notée x ou., on dit que le groupe est noté multiplicativement ( e — 1,

Va,b,c € G,(axb)xc=ax(bxc);

2) x posseéde un neutre i.e.

de € G,Va € G,axe=a=¢exa

cet élément e est alors unique ;
3) tout élément de G est symétrisable * i.e.

Vae G,Fbe G,axb=e=bxa

1

a”~ — —a ). Cette dernicre notation est réservée au groupe commutatif.

On appelle groupe tout couple (G, ) formé d’un ensemble G et d’une loi de composition
interne * sur G vérifiant :
1) * est associative i.e.

Lorsque la loi est notée +, on dit que le groupe est noté additivement (e — 0, axb — a + b,

Attention : Lorsque la loi x n’est pas commutative :
- la neutralité de e se vérifie par deux compositions ;
- I'inversibilité d’un élément se vérifie par deux compositions ;

-ona(axb) ' =b"1xa

Exemple (C,+), (R

-1

,+), (Z,+) sont des groupes abéliens de neutre 0.

Exemple (C*, x), (R*, x), (R™*, x) sont des groupes abéliens de neutre 1.

Exemple (GL,(K), x) est un groupe non commutatif de neutre I,,.
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1.2. STRUCTURE DE GROUPE

1.2.2 Itéré d’un élément

Soit (G, ) un groupe de neutre e.
Définition
Pour a € G et k € Z, on note a® itéré d’ordre k de I’élément a :
- pour k > 0, ak?fa*--~*a(ktermes);
C
-pourk:(),aoze;
déf

-pour k < 0, a® d:,fa_1 x---xa" ' (|k| termes).
€

Proposition

On a
Vk,l € Z, a* x a' = aF T et (a*)* = a**

dém. :

11 suffit de discuter selon les signes des exposants d’itérations considérés, c’est un peu lourd. . .

O

Remarque Si le groupe est noté additivement, on note k.a 1’itéré d’ordre k de a. On a alors

ka+tla=(k+{).aetl(ka)=(kl).a

Attention : En général
(axb)P # a? xbP

En effet
(axb)P = (a*xb)*(axb)x...*(a*Db)

et
aP x0P = (axa*x...xa)x (bxbx...%xb)

Cependant, si a et b commutent alors (a x b)P = a? x P

1.2.3 Le groupe symétrique

Définition

] On note Sg ’ensemble des permutations de F i.e. des bijections de F vers E.

Théoréme
(SE, o) est un groupe de neutre Idg.
Ce groupe est non commutatif des que CardEJ' > 3.

Exemple S, =S ({1,...,n}) estun groupe de cardinal n!.
Parmi ses éléments signalons :

- les transpositions 7 = ( i j) vérifiant 72 = Id;
-lespcyclesc=( a1 az ... ap) vérifiantc? = Id.
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CHAPITRE 1. GROUPES

1.2.4 Le groupe (Z/nZ,+)

Théoreme
(Z/nZ,+) est un groupe abélien a n éléments de neutre 0.
De plus -
Va € Z/nZ, —a = (—a)
dém. :
a+b=(a+b)=(b+a)=>b+adonc + est commutative sur Z/nZ.
(@a+b)+c=a+b+é=(a+b)+c=a+(b+c)=a+ (b+¢)donc + est associative sur Z/nZ.
a+0=a+0=a=0+ adonc 0 est élément neutre de (Z/nZ, +).
@+ (—a) =a—a=0=(—a) + adonc a est symétrisable et —a = (—a).
]
Exemple n = 2,7/27 = {0,1}.
+ 10 1
00 1
111 0
Exemple n = 3,7Z/3Z = {0,1,2}.
+10 1 2
0(0 1 2
111 2 0
212 0 1

Remarque Dans une table d’opérations, sur chaque ligne figure chaque élément de groupe ; cela
provient de la bijectivité de I’application & — a * x sur G. On a la méme propriété sur les colonnes.

Théoreme
Pourtouta € Z/nZ etk € Z

dém. :

Par récurrence pour k£ € N.
Cask=0:0.a=0=0.a.

Supposons la propriété vraie au rang k > 0.

Ql

(k+1).a=ka+a = ka+

=ka+a=(k+1a
R

Récurrence établie.
Pour k € Z~, on peut écrire k = —p avec p € N.
On a alors

k.a=—(p.a) = —pa = —pa = ka

O

http://mp.cpgedupuydelome.fr 11 O@O®S0



1.2. STRUCTURE DE GROUPE

1.2.5 Produit fini de groupes

Définition
Soit %1, ..., *, des lois de composition interne sur des ensembles F1, ..., E,. On appelle loi
produit sur £ = F; X --- X E, laloi x définie par
(xla"'7xn)*(y17"'7yn);f(xl *1Y1y---3Tn *n yn)
Proposition
Si (G1,%1),.-.» (Gn,*yn) sont des groupes de neutres ey, ..., e, alors G = G1 X ... x G,
muni de la loi produit * est un groupe de neutre e = (eq, ..., ep).
De plus :
- I'inverse d’un élément (z1,...,x,) € Gest (z7',...,z,');
- si tous les groupes (G1,*1),. .., (Gn, *,) sont commutatifs, le groupe (G, *) I’est aussi.
dém. :
Soitx = (1,...,2Zn)s Yy = (Y1,-.-,Yn) €t 2 = (21,...,2,) éléments de G1 X ... X G,.
Ona
xx(y*z) = (oo, mihi (Yi*i 2i),y--.)
et

(xxy)*z= (oo, (Ti* Yi) *i Ziy-.-)

Puisque les lois *; sont associatives, on obtient
TH(yxz)=(xxy)*z
L’élément e est neutre car
r*xe= (...,xi*iei,...) =zetexxr = (...,6i*il‘i,...) =T

L’élément x est symétrisable de symétrique ' = (z;,... x, ") car

zxr’ = (omixa ) =eetaxr= (. ,x ki w,..) =e

Ainsi (G, %) est bien un groupe.
Si de plus les lois x; sont toutes commutatives

xxy=( ., i*xyi.-) = (., Yi*xTi,...) =y*zx

O

Exemple Si (G, «) est un groupe de neutre e alors (G", ) est un groupe de neutre (e, ..., €).

Exemple Pour (G, 1) = (Ga,%2) = (Z, +), 1a loi produit sur Z? que nous notons + est définie par :

(1, 22) + (y1,y2) = (1 + Y1, T2 + Y2)

(Z?,+) est un groupe abélien de neutre 0z> = (0, 0).
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CHAPITRE 1. GROUPES

Exemple Pour (G1,*1) = (R, x) et (Ga,%*2) = (R, +), la loi produit sur R™* x R que nous notons
* est définie par :
(r,0)x (r',0") = (rr',0 +0")
(R** x R, %) est alors un groupe abélien de neutre e = (1,0).
De plus

(Tv 0)71 = (1/7’, 79)

1.3 Sous-groupes

(G, *) désigne un groupe de neutre e.

1.3.1 Définition

Définition
On appelle sous-groupe d’un groupe (G, x) toute partie H de G vérifiant :
l)ee H;
Q) Va,y € Hixxy ' € H.

Exemple {e} et G des sont sous-groupes de (G, *).

Remarque Le point 1) peut aussi étre transposé en H # () car alors H # () et 2) entraine e € H.
Le point 2) peut aussi étre transposé en 2a) Vo, y € H x xy € Het2b)Vz € H,z™ ' € H.

Remarque Si le groupe est noté additivement 1) et 2) se relisent 0 € H etVa,y € Hx —y € H.

Théoréme
| Si H est un sous-groupe d’un groupe (G, *) alors (H, ) est un groupe de méme neutre.

Exemple L’ensemble des racines n-ieéme de 1’unité est
U, ={2€C/z" =1}

C’est un sous-groupe de (C*, x).
(U,,, x) est le groupe des racines n-ieéme de 1’unité.
Rappelons

U, = {e%’”/”/k e [0,n — 1]]} = {wF/k € [0,n — 1]}
avec w = e2/",
Exemple L’ensemble des matrices orthogonale est
O,(R) = {A € M,(R)/*AA = In}

C’est un sous-groupe de (GL,, (R), x).
(O, (R), x) est un groupe, c’est le groupe orthogonal d’ordre n.
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1.3. SOUS-GROUPES

1.3.2 Intersection d’une famille de sous-groupes

Théoréme
Si (H;);er1 est une famille de sous-groupes de (G, x) alors leur intersection H = ﬂ H; estun
iel
sous-groupe de (G, *).

dém. :

H C Gete € H car e est élément de chaque H;.

Soit x,y € H.Pourtouti € I, z,y € Hydoncx+y ' € H;puiszy ' € H.
g

Remarque La réunion de deux sous-groupes n’est pas un sous-groupe sauf cas d’inclusion de I’un dans
I’autre.

1.3.3 Sous-groupe engendré par un élément

Définition
On appelle sous-groupe engendré par un élément a € G I’ensemble

(a) gf{ak/k IS Z}

Remarque En notation additive,
(a) ={k.a/k € Z}

Théoreme
(a) est un sous-groupe de (G, %) contenant a.
De plus, pour tout sous-groupe H de G

a€H=(a) CH

Ainsi (a) apparait comme le plus petit sous-groupe contenant a.

dém. :

(a) € G, e =a’ € (a) et pour tout 2,y € (a), on peut écrire z = a*, y = a*

avec k, ¢ € Z et alors

(a) est donc un sous-groupe de (G,*) eta = a' € (a).
De plus, si H est un sous-groupe de (G, + ) contenant a alors

a=ecH,a'=acH d>=axacH,ad=a’>«acH,..

Par une récurrence facile,

VkeN,d" e H
Pourk € Z~,k=—pavecpeN,a* =a7P = (a?)™' € Hcara? € H.
Ainsi

VkeZ,a* ¢ H
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CHAPITRE 1. GROUPES

ce qui signifie (a) C H.
O
Remarque Méme si la loi x n’est pas commutative, le sous-groupe (a) est commutatif car

Clk *CLE = akM = CLZ—HC = al *ak

Exemple Dans (C,+),
(ay = {ak/k € Z} = aZ

Exemple Dans (C*, x),
(a) = {a"/k € Z}

En particulier
@2 ={2"/kez}=1{..,1/81/4,1/2,1,2,4,8,...}

et pour w = /"

(wy = {wk/k € Z} = {1,w,...,w"71} =0U,

carw”™ = 1.

Exemple Dans (Sy,0) considéronslecyclec=( 1 2 3 4 ).

(@©={1d,(1 2 3 4),(1 3)o(2 4),(4 3 2 1)}

1.3.4 Sous-groupe engendré par une partie

Définition
On appelle groupe engendré par une partie A de G ’intersection de tous les sous-groupes de
(G, %) qui contiennent A. On le note (A)

Théoreme
(A) est un sous-groupe de (G, ) qui contient A.
De plus, pour tout sous-groupe H de (G, *),

ACH=(A)CH

Ainsi (A) apparait comme le plus petit sous-groupe contenant A.

dém. :
Posons S = {H sous - groupe de (G, x)/A C H}. Par définition
(= H
HeS

http://mp.cpgedupuydelome.fr 15 @O0



1.3. SOUS-GROUPES

(A) est un sous-groupe car intersection d’une famille de sous-groupes.
Puisque A est inclus dans chaque H € S,ona A C (A).
Enfin, si H est un sous-groupe de (G, *)

ACH=HeS= (A CH

O
Exemple Poura € G,

({a}) = {a"/k € Z} = (a)

Exemple Pour a,b € G,
({a,b}) = {a"b" . aFrbt in e N ky, .o ko by, 0 € Z)

En fait
({a,b}) = {produits finis d’itérés de a et b}

Si a et b commutent, on peut simplifier

({a,b}) = {a* /e, £ € 7}

Exemple Dans (Z?, +)
({(a,0), (e, d)}) = {(ka + be, kb + (d) [k, { € Z}

On peut montrer que ce groupe se confond avec Z? si, et seulement si, ad — be = +1.

Exemple Dans S,,, considérons 7 1’ensemble des transpositions éléments de S,,. On a
<T> =Sy

car il est connu que toute permutation peut s’écrire comme un produit de transpositions.

1.3.5 Les sous-groupes de (Z, +)

Théoreme
] Les sous-groupes de (Z, +) sont les nZ avec n € N.

dém. :
nZ est un sous-groupe de (Z, +) car

nZ = {kn/k € Z} = (n)

Inversement, soit H un sous-groupe de (Z, +).
Cas H = {0} :ona H = nZ avec n = 0.
Cas H # {0} : onintroduit H™ = {z € H/x > 0}.
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CHAPITRE 1. GROUPES

Il existe xg € H tel que xg # 0. Sizg > 0alors xg € HT,sinon —z¢ € H'. Dans les deux cas H #0.
Rappelons : Toute partie non vide de N admet un plus petit élément.

Ici H™ est une partie non vide de N, on peut donc introduire n = min H ™.

Onan € H doncnZ = (n) C H.

Inversement, soit € H. Par division euclidienne, z = qgn 4+ r avec 0 < r < n.
Onaalorsr =z —qgn € Hcargn € nZ C H.

Sir > 0alors 7 € H™ ce qui est impossible car 7 < n = min H™.

Il reste r = 0 et donc x = gn € nZ.

Ainsi H C nZ puis par double inclusion H = nZ.

]

Remarque Le naturel n tel que H = nZ est unique car
Si H = {0} alorsn =0etsi H # {0} alorsn = min{z € H/xz > 0}.

1.4 Morphisme de groupes

Soit (G, %), (G', T) et (G”, L) des groupes.
1.4.1 Définition

Définition
On appelle morphisme du groupe (G, x) vers le groupe (G’, T) toute application ¢ : G — G’
vérifiant
Vz,y € G,z *y) = (x) Te(y)

Exemple L application constante ¢ : G — G définie par ¢(x) = e est un morphisme du groupe (G, %)
vers lui-méme.

Exemple L’identité Idg est un morphisme du groupe (G, ) vers lui-méme.

Remarque Un morphisme d’un groupe vers lui-méme est souvent appelé endomorphisme.

Exemple In est un morphisme de (R**, x) vers (R, +).
En effet, pour tout a, b > 0,
In(ab) = In(a) + In(b)

Exemple exp est un morphisme de (C, +) vers (C*, x).
En effet, pour tout 2, 2’ € C,
exp(z + 2') = exp(2) exp(2’)

Exemple Le déterminant définit par restriction un morphisme de (GL,,(K), x) vers (K*, x)
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1.4. MORPHISME DE GROUPES

Exemple La signature ¢ : S, — {1, —1} avec

o(j) = o(i)
o= I A
1<i<j<n J
est un morphisme du groupe (&,,, o) vers ({1, —1}, ).
En effet,

Vo,0' € Sp,e(000’) =e(0) x e(o’)

Rappelons que si T est une transposition alors £(7) = —1.
En conséquence, si ¢ est un cycle de longueur p alors £(c) = (—1)?~* car c est un produit de p — 1
transpositions

(a1 as ... ap):(al ag)o(az a3)0...0(ap_1 ap)

Exemple Soit a un élément d’un groupe (G, ).
L application ¢ : Z — G définie par (k) = a® est un morphisme de groupes.
En effet

p(n+p) = a*"*P) = " x a*? = p(n) * p(p)

1.4.2 Propriétés

Proposition

Sip:G — G et : G' — G” sont des morphismes de groupes alors 1) o ¢ : G — G en est
un aussi.

dém. :
Soitz,y € G.Ona

Yop(zxy) = (@) Te(y)) = (Yo wp(x)) L(Yoep(y))

O

Remarque La composée de deux endomorphismes d’un groupe (G, %) est un endomorphisme du
groupe (G, *).

Proposition
Si ¢ est un morphisme d’un groupe (G, *) vers un groupe (H, T) alors
ple) =€ etVr € G, p(x™1) = ¢(x)

Plus généralement
Vo € G,Vn € Z,p(z") = p(z)"

dém. :
w(e) = p(exe) = p(e)Tp(e) et en composant par (e) ! on obtient ¢’ = (e).
Aussi () To(z™!) = p(zx27) = ¢(e) = ¢’ donc en composant par ()" 4 gauche on obtient

p(a™h) = o)™
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CHAPITRE 1. GROUPES

Par récurrence, on vérifie aisément
vn € N, p(z") = ¢(z)"

puis par passage au symétrique, on étend cette propriété a n € Z.
|
Remarque On peut aussi établir

n

le,...,xneG,f(* CEZ) = "T'lf(xz)

i=1

Théoréme
L’image directe (resp. réciproque) d’un sous-groupe par un morphisme de groupes est un sous-
groupe.

dém. :

Soit ¢ : G — G’ morphisme de groupes.
Soit H un sous-groupe de (G, ). Montrons que

p(H) ={p(z)/z € H}

est un sous-groupe de (G', T).
D’une part €’ € (H) care’ = p(e) avece € H.
D’autre part, pour z’,y" € @(H), on peut écrire ' = ¢(z) ety = p(y) avec z,y € H et alors

/-1 __

o' Ty' ™t = plaxy™h) € p(H)
carzxy '€ H.

Ainsi p(H) est un sous-groupe de (G', T).

Soit H' un sous-groupe de (G, T). Montrons que

o (H') ={z € G/p(x) e H'}

est un sous-groupe de (G, ).

D’une part e € ¢ *(H') car p(e) = ¢’ € H'.

D’autre part, pour 2,y € ¢ *(H'),ona p(zxy ') = o(x)Te(y) ™t € H car p(x), o(y) € H'.
Ainsi ¢! (H') est un sous-groupe de (G, * ).

(]

1.4.3 Noyau et image

Définition
Si ¢ est un morphisme du groupe (G, *) vers le groupe (G’, T), on introduit
- son noyau ker ¢ = ¢~ ({e’}) qui est un sous-groupe de (G, *);
- son image Imy = ¢(G) qui est un sous-groupe de (G', T).

Exemple Déterminons image et noyau du morphisme de ¢ : C* — C* défini par p(z) = |z|.
Imp = R etkerp = U
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Exemple Déterminons image et noyau du morphisme exp : C — C*.
Pour z = a + ib, on a exp(z) = e%e’®.
Pour Z € C*, on peut écrire Z = ret?.

En posant z = Inr + 6, on a exp(z) = Z. Ainsi
Im(exp) = C*
Aussi, pour z = a + b .
exp(z) =1e e =1lete® =1

Par suite
ker(exp) = 2inZ

Exemple Déterminons image et noyau de det : GL,,(K) — K*.
On a Imdet = K* car avec une matrice diagonale il est facile de construire une matrice inversible de
déterminant tel que voulu. Aussi

kerdet = {M € GL,(K)/det M = 1} = SL,(K)

appelé groupe spécial linéaire d’ordre n.

Exemple Déterminons image etnoyaude ¢ : &,, — {—1,1} pourn > 2.
Onalme = {1,—1} et
kere = %A,

appelé groupe alterné (ou groupe des permutations paires).

Théoreme
Soit ¢ un morphisme du groupe (G, ) vers le groupe (G', T).
a) @ est injectif si, et seulement si, ker ¢ = {e} .
b) ¢ est surjectif si, et seulement si, Imp = G’.

dém. :
a) Si  est injectif, ¢’ posséde au plus un antécédent par . Puisque ¢(e) = €', on obtient

ker ¢ = {e}

Inversement, supposons ker ¢ = {e}. Soit z,y € G tels que p(x) = p(y).

Onap(zxy ') =) Te(y) ' =¢ etdonc zxy~' € ker . Ainsi 2y~ ! = e puis z = .
b) C’est une évidence et ne dépend du fait que ¢ soit un morphisme.

(]

1.4.4 Isomorphisme de groupes

Définition

] On appelle isomorphisme de groupes tout morphisme de groupes bijectif.

Exemple In : R™* — R est un isomorphisme de (R**, ><) vers (R, +).
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Proposition

Sigp:G— G' ety : G — G” sont des isomorphismes de groupes alors 1) o p : G — G” en
est un aussi.

Théoreme
Si ¢ : G — G’ est un isomorphisme de groupes alors ¢! : G’ — G est un isomorphisme de
groupes.

dém. :

dém. :

Pour tout ',y € G, il existe z,y € G tel que p(x) = 2’ et p(y) = y'.

On a alors

e (@ Ty ) = (@) Te) =0 (plaxy)) =zxy =9 (a') x o~ (y)

1

Ainsi ¢! est un morphisme de groupes et il est de plus bien connu que ¢ ! est bijective.

O

Définition
On appelle automorphisme du groupe (G, ) tout isomorphisme du groupe (G, *) dans lui-
méme.

Exemple Si a est un élément du groupe (G, %) alors I’application 7, : G — G définie par

To(x) = aza™?

est un automorphisme de groupe.

Proposition

] L’ensemble Aut(G) des automorphismes d’un groupe (G, x) est un sous-groupe de (Sg, o).

dém. :

Aut(QG) est bien une partie de Sg.

L’identité est automorphisme de groupe, la composée de deux automorphismes de groupe est un auto-
morphisme de groupe et, enfin, 1’application réciproque d’un automorphisme de groupe est encore un
automorphisme de groupe.

|

1.4.5 Groupes isomorphes

Définition
S’il existe un isomorphisme entre deux groupes, ceux-ci sont dits isomorphes.
Ceux-ci se comportent alors de facon identique d’un point de vue calculatoire.

Exemple Les groupes (R**, x) et (R, +) sont isomorphes (via le logarithme népérien).

La multiplication sur R™* et 1’addition sur R ont les mémes propriétés.

En revanche les groupes (R*, x) et (R, +) ne sont pas isomorphes.

En effet, I’équation 2* = 1 possede deux solutions dans (R*, x) alors que I’équation analogue 2z = 0
n’en posséde qu’une dans (R, +).
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Exemple Comparons les tables d’opérations dans (Z/4Z, +) et (Uy, X) :

+/0 1 2 3 x |1 ¢ =1 —
olo 1 2 3| 1 |1 4 -1 —i
111 2 3 Olet i |i -1 —i 1
212 30 1 —1|-1 —i 1
313 0 1 2 - |- 1 i =1

Les deux groupes (Z/4Z, +) et (Uy, x) se comportent de fagon semblables ; ils sont isomorphes via
I’application ¢ qui envoie k sur ¢".

Exemple Considérons en revanche la table d’opérations dans ((Z/2Z)?,+) :

+le a b ¢ e =(0,0)
ele a b ¢ a=(1,0)
a |a e ¢ b |ennotant _
b|b c e a b= ((_)’ })
clc b a e c=(1,1)

((Z /27)2, +) se comporte d’une facon différente ; il n’est pas isomorphe aux groupes précédents.

1.5 Groupes engendré par un élément
1.5.1 Groupes monogeénes
Définition

Un groupe (G, ) est dit monogene s’il existe a € G tel que G = (a).
Cet élément a est alors appelé générateur du groupe.

Remarque Un groupe monogene est nécessairement commutatif car

a® xa® = a*"tt = al % a*

Exemple (Z,+) est monogéne car Z = (1).
Exemple (U,,, x) est monogene car U,, = (w) avec w = e%™/™,

Exemple (C,+) et (C*, x) ne sont pas des groupes monogenes.

Exemple Pour n > 3, le groupe (S,,, 0) n’est pas monogéne car non commutatif.

http://mp.cpgedupuydelome.fr 22 ©@O®S0



CHAPITRE 1. GROUPES

1.5.2 Groupes cycliques

Définition
] Un groupe est dit cyclique s’il est monogene et fini.

Exemple (U,, x) est un groupe cyclique.

Théoreme
] (Z/nZ,+) est un groupe cyclique dont les générateurs sont les m pour m € Z avec mAn = 1.

dém. :
Z/nZ = (1) car
(1) ={k1/k ez} ={k/k € Z} =Z/nZ

Si m est générateur de Z/nZ alors il existe k € Z tel que k.im = 1 etdonc km =1  [n]. Il existe alors
{ € Ztel que
Em+nl=1

et ainsi m A n = 1 en vertu du théoréme de Bézout.
Inversement, si m A n = 1 alors il existe k, ¢ € Z tels que km + ¢n = 1 et donc

km=1 |[n]
d’ou k.m = 1. Ainsi 1 € (m) or (1) = Z/nZ donc

(m) =7Z/nZ

O

1.5.3 Description des groupes monogenes

Théoréme
Soit (G, %) un groupe monogene.
Si CardG = o0 alors (G, %) est isomorphe a (Z, +).
Si CardG = n € N* alors (G, *) est isomorphisme a (Z/nZ, +).

dém. :
Soit a un générateur de G. L’application ¢ : Z — G définie par p(k) = a” est un morphisme de groupes
car

pk+0) = a" =" xa’ = (k) x o(l)

Il est de plus surjectif car a est générateur de G et donc
G={d"/keZ}

Le noyau de ¢ est un sous-groupe de (Z, +). Il existe donc n € N tel que ker p = nZ.
Cas n = 0 : @ est injectif, c’est un isomorphisme de groupes. (G, ) est alors isomorphe a (Z,+) et G
est de cardinal infini.
Casn #0:0na
wlk)=p{l) = k—Leckery
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donc

" =ad" k=0 [n]

On peut alors considérer 1’application @ : Z/nZ — G déterminée par @(k) = aF.
© est un morphisme de groupes car

D’une part Imgp = {ak/k € Z} = G et d’autre part
kekerpead=a<k=0

donc ker ¢ = {0}. On en déduit que @ définit un isomorphisme.

Le groupe (G, *) est alors isomorphe & (Z/nZ, +) et en particulier G est de cardinal n.

O

Corollaire
(Z/nZ,+) et (U,, x) sont isomorphes via I’application k — w* = e
Les générateurs de (U,,, x) sont donc les w™ = e2™™/™ avec m An = 1
Ces éléments sont appelés racines primitives n-ieme de 1'unité.

2ikm/n

dém. :

Puisque w est générateur de (U,,, x), I"application @ : k — w” est un isomorphisme de groupes. Celui-ci
échange les générateurs de (Z/nZ, +) avec ceux de (U, X).

O

Exemple Déterminons les générateurs des groupes (Uy, x), (Us, X), (Us, x), (Uy, X).

n=1 n=2 n=3

1.54 Ordre d’un élément dans un groupe

Définition
On dit qu’un élément a d’un groupe (G, ) est d’ordre fini s’il existe n € N* vérifiant o = e
On appelle alors ordre de a le plus petit n € N* vérifiant a™ = e.

Exemple Dans (C*, x), I’élément 2 n’est pas d’ordre fini.
En revanche, I'élément w = ¢™/™ est d’ordre fini égal a n.

Exemple Le neutre e est I’'unique élément d’ordre fini égal a 1 du groupe (G, * ).
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Théoréme
Si a est d’ordre fini égal a n alors

YmeZ,am=esn|m

dém. :
(«) immédiat.
(=) Supposons a'™ = e et introduisons le reste r de la division euclidienne de m par n.

m=qn+ravecO0<r<n

On a

a"=a"" " =a"*x(a") T=¢e

Or n est le plus petit naturel non nul vérifiant o™ = e donc r = 0 puis n divise m.
U

Exemple Si a est d’ordre n alors a” est d’ordre n/pged(n, k).

Corollaire
On a alors
Vi (e Z,ak =a' k=0 [n]
dém. :
Car
d=ad"=dt=¢
O
Théoreme

Si @ est un élément d’ordre fini d’un groupe (G, %) alors son ordre n est le cardinal du sous-
groupe (a) qu’il engendre et ce dernier est isomorphe a (Z/nZ, +)

dém. :

(a) = {ak/kGZ} —{e,a,...,a" "}

avec e, a, . ..,a" ! deux a deux distincts.
(a) est un groupe cyclique a n éléments donc isomorphe a (Z/nZ,+) via @ : k — a*.
O

1.5.5 Elément d’un groupe fini

Théoréme
Si (G, ) est un groupe fini de cardinal n alors

Va € G,a" =e
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dém. :
Cas (G, *) commutatif
Soit a € G. Lapplication 7 : z +— a x = est une permutation de G. On en déduit

HT(:C):Hx

zeG zcG
Or
H T(x) = H (ax2) = a®C & H x
zeG zeG zeG
Et par conséquent
cLCardG —e

Cas général
On définit sur G une relation binaire R en posant

TRy < 3Ikely=ad *x
On vérifie aisément que R est une relation d’équivalence et que pour tout z € G
Cl(z) ={bxz/be (a)}

En particulier
Vz € G,CardCl(x) = Card {a)

En notant p le nombre de classe d’équivalence de la relation R, on obtient

CardG = np

0

Corollaire
Si (G, *) est un groupe fini alors tous ses éléments sont d’ordre fini et leur ordre divise le
cardinal du groupe.

Exemple Dans (Z/6Z,+), 0 est d’ordre 1, 3 est d’ordre 2, 2,4 sont d’ordre 3 et 1, 5 sont d’ordre 6.

Exemple Dans un groupe a 6 éléments, il peut y a avoir des éléments d’ordre 2 et 3, mais pas
d’éléments d’ordre 4.

1.5.6 Musculation : sous-groupes de (Z/nZ, +)

Exemple Montrer que les sous-groupes de (Z/nZ, +) sont cycliques. Soit H un sous-groupe de
(Z/nZ,+).

Posons A = {x € Z/% € H}. On vérifie aisément que A est un sous-groupe de (Z, +) et donc il existe
c € Ntelque A = c¢Z.Pour x € Z,on a

reHs3dkeZx=kecedkeZr=kc

On en déduit
H = (c)
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Exemple Montrons que (Z/nZ, +) posséde un unique sous-groupe de cardinal d pour chaque d

divisant n.Soit d un diviseur de n.
Posons ¢ =n/det H=(¢). Ona

H=1{0,¢,2¢,...,(d —1)c}

et H est un sous-groupe a exactement d éléments.
Inversement, soit H un sous-groupe a d éléments de (Z/nZ,+).
Tout élément de H d’ordre divisant d et donc

vz € H,dz =0
ie.
Vz € H,n | dx
puis
Vze Hcl|x
Ainsi

H c{0,¢,2¢,...,(d —1)¢}

et I’égalité est acquise par cardinalité.
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Chapitre 2

Anneaux

K désigne R ou C.
2.1 Structure d’anneau

2.1.1 Définition

Définition

On appelle anneau tout triplet (A, +, x ) formé d’un ensemble A et de deux lois de composition
internes usuellement notées + et x sur A vérifiant :

1) (A, +) est un groupe abélien de neutre 04 ;

2) X est associative et possede un neutre 14 ;

3) x est distributive sur + i.e.

Va,b,c € Aa(b+c¢) =ab+acet (b+ c)a=ba+ ca

Si de plus la loi x est commutative, on dit que I’anneau (A, +, X ) est commutatif.

Exemple (Z,+, x), (R, 4+, x), (C, +, x) sont des anneaux commutatifs de neutres 0 et 1.

Exemple Soit X un ensemble et F (X, K)J’en§emble des fonctions de X vers K.
(F(X,K),+, x) est un anneau de neutres 0 et 1 (fonctions constantes).
En particulier, si X = N, I’ensemble K" des suites d’éléments de K est un anneau.

Exemple (M,,(K),+, X) est un anneau de neutres O, et I,,.

Exemple Si E est un K-espace vectoriel, (£(E), 4, o) est un anneau de neutres 0 et Id ;.

Exemple A = {04} estun anneau (c’est le seul pour lequel 14 = 04 ).
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2.1.2 Calculs dans un anneau

Proposition

On a
Va,be A,04 xa=ax04 =04, (—a) xb=—(ab) = a x (=)

Plus généralement
Vn € Z, (n.a) X b =n.(ab) = a x (n.b)

Théoréme
Si a et b sont deux éléments commutant (i.e. ab = ba ) d’un anneau A on a pour tout n € N

“(n
ab)” =a"b", (a+0b)" = akpnk
o =av oy =3 ()

et
n—1

a — b = (CL _ b) Z akbn—l—k
k=0

2.1.3 Groupe des inversibles

Définition
Un élément a d’un anneau (A, +, x) est dit inversible s’il existe b € A tel que
ab=ba=1

Cet élément b est alors unique, on 1’appelle inverse de a et il est noté a .

Exemple 14 est inversible et 1;11 =14.

Exemple Si A n’est pas I’anneau nul, 04 n’est pas inversible.

Exemple Six € A estinversible alors ™" aussi et (z7) ™! = .

Siz ety € A sont inversibles alors xy est inversible et (zy) ™! =y 'zt

Théoreme
| L'ensemble U(A) des éléments inversibles de I’anneau (A, +, x) est un groupe multiplicatif.

Exemple U(Z) = {1,-1}, U(K) = K*,
UM, (K)) =GL,(K) et U(L(E)) = GL(E).
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2.1.4 Produit fini d’anneaux

Soit (A1, 4+, X),..., (Ap,+, X) des anneaux et A = Ay X ... X A,,.
On définit des lois + et x sur A en posant

($17~~-7$n)+(y1>~-~»yn)£{($1 +y117xn+yn)

et
((Eh"wxn) X (ylw"?yn)(if(xl X Y1y Tn X yn)
Théoreme
L’ensemble A muni des lois + et x définies ci-dessus est un anneau de neutres
04 = (0A17~-~;0An) etly = (1A17"'71An)
De plus, un élément (aq,...,a,) € A est inversible si, et seulement si, les ay, ..., a, le sont
et son inverse est alors (a; ', ..., a,").
Corollaire
| U(A) =U(A1) x ... x U(4,).
Exemple (A", +, x) est un anneau de neutre Ogn = (04,...,04) et 1an = (14,...,14).

Exemple (Z*, +, x) est un anneau commutatif olt
(a,b) + (¢,d) = (a+ ¢, b+ d) et (a,b) x (¢,d) = (ac, bd)

Ona
U (Z2) = {(17 ]‘)ﬂ (17 71)’ (717 ]‘)ﬂ (717 *1)}

2.1.5 Sous-anneau
(A, +, x) désigne un anneau
Définition
On appelle sous-anneau de (A, +, X) toute partie B de A vérifiant :
1)14 € B;
2)Vx,y € B,x —y € B,
3)Vz,y € B,zy € B.

Attention : Vérifier 14 € B etnon 04 € B ou seulement B # ().

Exemple Z est un sous-anneau de (R, +, X ) mais pas 2Z bien que stable par différence et produit

Exemple A est un sous-anneau de (A, +, X ), mais généralement pas {04 }.
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Exemple On note C I’ensemble des suites réelles convergentes.

Montrons que C est un sous-anneau de (R, +, x).

On a évidemment C C RY, la suite constante égale a 1 est convergente et la différence et le produit de
deux suites convergentes sont des suites convergentes.

En revanche, I’ensemble des suites réelles convergeant vers 0 n’est pas un sous-anneau.

Exemple Soit I un intervalle de R d’intérieur non vide et k € NU {o0}.

Vérifions que C* (I, R) est un sous-anneau de (F(I,R), +, x).

On a évidemment C* (I, R) C F(I,R), la fonction constante égale a 1 est de classe C* et la différence et
le produit de deux fonctions de classe C* sont des fonctions de classe C.

Théoréme
Si B est un sous-anneau de (A, +, x) alors B peut étre muni des lois + et x définies par
restriction des lois sur A et (B, 4, X) est alors un anneau de mémes neutres que A.

dém. :

B est un sous-groupe du groupe abélien (A, +) donc (B, +) est un groupe abélien.

B est stable par x donc on peut définir la restriction de la loi x sur B.

Celle-ci est associative sur A et possede un neutre 1 4 € B donc X est associative sur B et y posséde un
neutre.

Enfin, x est distributive sur + sur A donc a fortiori aussi sur B.

O

Exemple Considérons
Zli)={a+ib/a,be Z}

et montrons que (Z [i] , 4, X ) est un anneau commutatif.
Montrons que Z [¢] un sous-anneau de I’anneau commutatif (C, +, x).
On a évidemment Z [i] C C.
1=1+i0€ZJi.
Pour z,y € Z[i], on peut écrire © = a + ibety = ¢ + id avec a, b, ¢, d € Z.
Ona
r—y=(a—c)+i(b—d) € Z][i]

cara—c,b—d€eZ
et
2y = (ac — bd) + i(ad + bc) € Z|i]

Ainsi, Z [i] est un sous-anneau de (C, +, x) et donc (Z [¢] , +, X ) est un anneau commutatif.

2.1.6 L’anneau (Z/nZ,+, x)

Théoréeme
(Z/nZ,+, x) est un anneau commutatif de neutres 0 et 1.
De plus, dans (Z/nZ,+, x), m est inversible si, et seulement si, m An = 1.

dém. :
(Z/nZ,+) est un groupe abélien de neutre 0.
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On vérifie aisément que la loi X est commutative, associative sur Z/nZ et posséde un neutre 1. On vérifie
aussi que la loi x est distributive sur +.

Soit m € Z/nZ.

m inversible si, et seulement si, il existe k& € Z/nZ vérifiant km = 1 i.e. si, et seulement si, il existe
k € Ztelque km =1 [n]. Ainsi 7 est inversible si, et seulement si, il existe &, £ € Z tels que

km+fn=1

Par le théoreme de Bézout, cela revient a affirmer m A n = 1.
O

Remarque Sim An = 1 alors une égalité de Bézout um + vn = 1 fournit m " = .

Exemple Résolvons I’équation 4 +2=0 [11]
Dans Z/11Z I’équation dévient
4z +2=0
Par opérations
12+2=042=9

Puisque 4 A 11 = 1, 4 est inversible dans Z /117 et on observe

ol

47t =

On a alors

"N
8l
I
I
I
Il
wl
X
=]

Ainsi
424+2=0<z=5

Les solutions de 1’équation étudiées sont donc les 5 + 11k avec k € Z.

Exemple Résolvons I’équation 42 =6  [10]
Ici 4 et 10 ne sont pas premiers entre eux, mais I’équation est simplifiable par leur PGCD

dr=6 [0l Ik e€Z,42=64+10k < Ik € Z,20 =3+ 5k
ce qui nous ramene a I’équation 2z =3 [5] avec 2 A 5 = 1 qu’on peut résoudre.
2r=3 [fler=3x3=4 I[j

Les solutions sont les 4 + b5k avec k € Z.

Exemple Résolvons I’équation 4z =7  [10]
Ici 4 et 10 ne sont pas premiers entre eux et I’équation n’est pas simplifiable : il n’y a pas de solutions.
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2.1.7 Anneaux integres

Soit (A, +, X) un anneau.
2.1.7.1 Diviseurs de zéro

Attention : On sait
Va,be A,a=040ub=04 = ab=04

La réciproque n’est pas toujours vraie !
Exemple Dans ’anneau (Z2, +, x), ona (1,0) x (0,1) = (0, 0) alors que (1,0), (0,1) # (0, 0)

Exemple Dans I’anneau (F (R, R), +, x), considérons les fonctions données par

/ g

Ona fg = 0 alors que f, g # 0.

Exemple Dans (M3 (R),+, x), pour

ona AB = O alors que A, B # Os.

ol
N
=]

Exemple Dans (Z/67Z,+, x), 2 x 3 = 0 alors que 2,

Définition

] Lorsque a, b € A vérifient ab = 04 avec a, b # 04, on dit que a et b sont des diviseurs de zéro.

Attention : On ne considere pas que 04 est un diviseur de zéro.
Exemple En général, les anneaux F (X, K), L(FE) et M,,(K) possedent des diviseurs de zéros.

Exemple Les éléments inversibles d’un anneau ne sont pas diviseurs de zéros.
En effet, si ab = 04 avec a inversible alors

b=a"'x(ab)=a"'x04 =04

Exemple Dans (R?, +, x) les diviseurs de zéros sont les (z,0) et (0,z) avec  # 0.
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2.1.7.2 Intégrité

Définition
Un anneau (A, 4, x) est dit intégre si
1) Anon réduita {04} ;
2) A ne possede pas de diviseurs de zéros.

Exemple (7Z,+, x) est un anneau inteégre.

Proposition
Dans un anneau integre (A, +, X)

Va,be A,ab=04 =>a=040ub=04

dém. :
C’est I’absence de diviseurs de zéro !
a
Proposition
Dans un anneau intégre (4, +, X) :
Va,b,c € A, (ab=uaceta#04) =>b=c
et
Va,b,c€ A, (ba =caeta#04)=b=c
dém. :

Si ab = acalors ab — ac = 04 et donc a(b — ¢) = 04.
Si de plus a # 04 alors, par intégrité, b — ¢ = 04 et donc b = c.
O

Remarque Dans un anneau intégre I’équation =2 = 1 a pour seules solutions 1 et —1 car
P=1pe (x—1a)(z+14)=04
Dans (R?, +, x), I’équation 2% = 1> a pour solutions
(1,1), (-1,-1),(1,-1), (-1,1)

Dans (M(R), +, x), I"équation A% = I, a pour solutions
10 -1 0 1 0 -1 0 2 -3
0o 1)’ 0o -1 ,/°\0 -1 )" o 1 /)7\1 =2 /)77

2.1.7.3 Idempotence et nilpotence

Définition

Un élément a € A est dit idempotent si a® = a.
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Exemple Dans un anneau integre seuls 04 et 1 4 sont idempotents.

Exemple Dans (R?, +, x), (1,0) et (0, 1) sont aussi idempotents.

Exemple Dans (Z/6Z, +, x), I’élément 3 est idempotent.

Exemple Dans (L(E),+, o) les éléments idempotents sont les projecteurs.

Définition

Un élément a € A est dit nilpotent s’il existe n € N* tel que @™ = 04 .

Exemple Dans un anneau integre seul 0 4 est nilpotent.
Exemple Dans (Z/8Z,+, x), I’élément 2 est nilpotent.

Exemple Montrons que si a est nilpotent alors 14 —a € U(A).
Puisque a est nilpotent, il existe n € N vérifiant ™ = 04.
Puisque 14 et a commutent,

1A:17}1—a":(1—a)<

gl
g??‘
N——
I

<nzl ak> (1—a)

k=0

Ainsi, 14 — a est inversible et

2.2 Corps

2.2.1 Définition

Définition
On appelle corps tout anneau (K, +, x) vérifiant
1) (K, +, x) est commutatif ;
2) K est non réduit a {0k } et
3) tous les éléments de K, sauf le nul, sont inversibles.

Exemple (Q,+, x), (R, +, x), (C,+, x) et (K(X), +, x) sont des corps usuels.
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Proposition

] Tout corps est integre.

dém. :

Soit K un corps. K est commutatif et non réduit & {Ox }.

Pour a,b € K, si ab = 0 et a # Ok alors on peut introduire a letonab= a_l(ab) =0g.
Ainsi, K ne possede pas de diviseurs de zéro. Il est donc integre.

|

2.2.2  Sous-corps
Soit (K, 4, X ) un corps.
Définition
On appelle sous-corps d’un corps (K, +, x) toute partie L de K vérifiant :

1) L est un sous-anneau de (K, +, X);
DVreL,x#0x =2 €L

Exemple Q est un sous-corps de (R, +, x).

Théoreme
| Si L est un sous-corps de (K, 4, x) alors (L, +, x) est un corps.

dém. :

Puisque L est un sous-anneau de ’anneau commutatif (X, +, x), on peut affirmer que (L, +, X) est un
anneau commutatif. Puisque 1x € L, on peut affirmer que 1’anneau (L, +, x) n’est pas réduit a 0. Enfin,
puisque I’inverse d’un élément non nul de L est élément de L, on peut affirmer que tout élément non nul
de I’anneau L est inversible dans celui-ci.

O

Exemple Considérons Q [\/ﬂ = {a + b\/ﬁ/a, be @}.

Montrons que (Q [\/ﬂ ,+, X) est un corps.

Pour cela montrons que Q {\/5] est un sous-corps du corps (R, +, x).
On a évidemment Q {\/5] C R.

1:1+0><\/§€Q[\/§].

Pour x,y € Q[i], on peut écrire © = a + bv/2 et y = ¢ + dv/2 avec a, b, ¢, d € Q.
On a alors

z—y=(a—c)+(b-dv2eQ[V?

et
zy = (ab + 2dc) + V2(ad + be) € Q [\/ﬂ
Enfin, si z # 0,
-1 1 - a—bv?2 B a 7 b
T T A (a+bv2)(a—bV/2) a?—2b? aQ—QbQﬁGQ[ﬁ}
a b
car Q.

, — S
PR AR
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2.23 Lecorps (Z/pZ,+, X)

Théoreme
| (Z/pZ, +, x) est un corps si, et seulement si, p est un nombre premier.

dém. :

Supposons que (Z/pZ, +, x) soit un corps.

Pour tout a € {2,...,p — 1}, @ est inversible dans (Z/pZ, +, x) donc a A p = 1 et par conséquent a ne
divise pas p. On en déduit que p est un nombre premier.

Inversement, supposons p nombre premier.

(Z/pZ,+, x) est un anneau commutatif et Z/pZ # {0} car p = Card(Z/pZ) > 2.

Pour tout m € Z/pZ, sim # 0 alors p ne divise pas m et donc, puisque p est un nombre premier,

mAp=1

On en déduit que m est inversible.
O

Remarque On note usuellement F,, = Z/pZ.

Exemple Soit Fy = {0, 1}. (F2, +, x) est un corps pour les opérations suivantes

et

= ol 4+
=1 Ol Ol
el Y
O O
= Ol

= Ol X

Exemple Soit F3 = {0,1,2}. (F3,+, x) est un corps pour les opérations suivantes

+(0 1 2 x |0 1 2
0(0 1 2 ot 0(0 0 0
111 2 0 110 1 2
212 0 1 210 2 1
2.3 Morphismes d’anneaux
Soit (A4, +, x) et (A", +, x) des anneaux.
2.3.1 Morphisme d’anneaux
Définition
On dit qu’une application ¢ : A — A’ est un morphisme d’anneaux si
Dp(la) =1a;

) Vr,y € A, p(r +y) = p(x) +¢(y);
) Vz,y € A, p(ry) = p(z)p(y).

Exemple L application identité Id4 : A — A est un morphisme de I’anneau (A, +, x) vers lui-méme.
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Exemple Considérons C I’anneau des suites réelles convergentes.

L application ¢ : u — lirf Uy, est un morphisme d’anneaux de C vers R.
n—+00

Exemple L application ¢ : Z — A définie par ¢(k) = k.14 est un morphisme d’anneaux de (Z, +, x )
vers (A, +, x).

Eneffet, o(1) = 14, ok +€) = (k+€).1a =k1a+£14 = p(k) + p(L) et

p(kl) = (k€).1a = (k.1a) x (£.14) = @(k)p(L).

Exemple Soita € U(A) et : A — A définie par 7(x) = aza .

Vérifions que 7 est un morphisme d’anneaux bijectif.

7(1a) = als.at =14, T(x+y) =alx+ y)zf1 L

=aza ' +ayat = 7(x) +7(y) et

T(zy) = arya~l = afc(cfla)ycf1 = 7(x)7(y).
Enfin,

y=7(x) = r=a"ya
donc

Vye A, 3z e A,y =7(x)
L application 7 est donc bijective.

Attention : Ne pas oublier d’étudier p(14)!
L’application 2 € R — (z,0) € R? n’est pas un morphisme d’anneaux !

2.3.2 Propriétés

Proposition

] La composée de deux morphismes d’anneaux est un morphisme d’anneaux.

Proposition

Si¢: A — A’ estun morphisme d’anneaux alors

a) p(04) =043

bV € A, p(—z) = —p(x);

o)V € A,¥n € Z, p(n.x) = n.p(z);

d)Vo € A,Vn e N, p(a") = p(x)";

e)Vo € A,z € U(A) = ¢(x) € U(A) avec p(z) ™t = p(z™1)

dém. :
¢ est un morphisme du groupe (4, +) vers (A’, +) donc

Vo € A,Vn € Z, p(n.x) = n.p(x)
Par récurrence, on obtient aisément

Ve € A,¥n € N p(z") = p(x)"
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Enfin, si x € U(A) alors p(z2 ™) = ¢(14) donne p(z)p(x ™) = 14/. Aussi p(z~')p(x) = 14+ donc
p(z) e U(A ) etp(z)! = p(zh).

U

2.3.3 Image et noyaux

Définition
Soit ¢ : A — A’ un morphisme d’anneaux.
On appelle image et noyau du morphisme ¢ les ensembles

Imp = p(A) et kerp = o~ ({04})

Remarque Ce sont en fait les images et noyaux de ¢ en tant que morphisme de groupes additifs.

Remarque On vérifie aisément que Im¢ est un sous-anneaux de A’.
En revanche, ker  n’est généralement pas un sous-anneau de (A, +, x).

Proposition
 est injective si, et seulement si, ker ¢ = {04 }.
¢ est surjective si, et seulement si, Imp = A’.

dém. :
Car ¢ est en particulier un morphisme de groupes additifs.
O

2.3.4 Isomorphisme d’anneaux

Définition

On dit qu’une application ¢ : A — A’ est un isomorphisme d’anneaux si
a) ¢ est un morphisme d’anneaux ;

b) ¢ est bijective.

Proposition

La composée de deux isomorphismes d’anneaux est un isomorphisme d’anneaux.
L’application réciproque d’un isomorphisme d’anneaux et un isomorphisme d’anneaux.

Définition
On dit que deux anneaux A et A’ sont isomorphes s’il existe un isomorphisme d’anneaux de
I’un vers I’autre : ces deux anneaux possedent alors les mémes propriétés calculatoires.

Exemple Considérons ¢ : C — My (R) définie par

ola+ib) = ( ! ‘ab)

On vérifie que ¢ est un morphisme d’anneaux injectifs.
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En conséquence

me={ (5 2 ) aves]

est un sous-anneau de Mo (R) isomorphe a (C, +, x).

2.3.5 Théoreme des restes chinois

Soit m et n deux entiers naturels non nuls. Pour k € Z, on note on note %, k et k les classes d’équivalence
de k dans Z/mnZ, Z/mZ et Z/nZ.

Théoréme
Sim et n sont premiers entre eux alors I’application

7w Z/mnZ — L/mZ x Z/nZ

définie par .
(k) = (k, k)

est un isomorphisme d’anneaux.

dém. :
L’ application est bien définie car
k=4 [mn]=k={ [m]etk=1{ |[n]

et ainsi S )

k=l=>k=Vletk=1{
On vérifie aisément que cette application est un morphisme d’anneaux.
Etudions le noyau de 7. ) )
Siz € kern alors m(z) = (0,0) i.e. Z = 0Oet @ = 0. On alors m | z et n |  donc mn | z puisque
m An = 1. Ainsi Z = 0 ce qui permet d’affirmer ker 7 = {0}.
Le morphisme 7 est donc injectif.
Puisque

Card(Z/nmZ) = nm = Card(Z/nZ)Card(Z/mZ) < +c0

on peut affirmer par cardinalité que 7 est bijective et finalement 7 est un isomorphisme.
]

Remarque Soit a résoudre un systeme du type

xr=a [m]

x=b [n]
avec m A n = 1. Par ce qui précede, ce systeme possede une unique solution modulo mn.
Pour la déterminer, il suffit de trouver x; et zo solutions respectives des systemes

{xl ] et{xo ]

x=0 [n] =1 [n]

Par morphisme, © = axy + bxo est alors solution du systeme initial.
Pour déterminer x; et x2, on part de la relation de Bézout

mu+nv =1

etl’on prend 1 = nv et o = mu.
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Exemple Résolvons le systeme
=1 [5]
xr=7 [9]
5 A9 =1 avec larelation de Bézout 2 x 5 — 9 = 1.
—9 et 10 sont solutions des systemes

z=1 [5] N

x=0 [9] T =
doncz =1 x (=9) + 7 x 10 = 61 est solution du systeéme posé.
La solution générale est alors

0
1

16 + 45k avec k € Z

9z
5x

9r=3 [2l]e3z=1 [7]

Exemple Résolvons le systeme

3 [21]
2 8]

Puisque 3 A 7 = 1, 3 est inversible et 3~ = 5 dans Z/7Z.
Ainsi

De méme

car5 ' =5 dans Z/SZ
Ainsi
9x =3 [21] xr=5 [7]
=
Sr=2 |8 =2 [§
7 A8 = 1 avec la relation de Bézout (—1) x 7+ 8 = 1.
x =5 x84 2 x (—7) = 26 est solution de ce systeéme dont la solution générale est

x =26 + 56k avec k € Z

2.4 1Idéal d’un anneau commutatif

Soit (A4, +, X) un anneau commutatif.

2.4.1 Définition

Définition
On appelle idéal de I’anneau (A, +, X) toute partie I de A vérifiant :
)04 €1;
DVe,yel,x+yel;
3)Va € A,Vx € I,ax € I [absorption].

Remarque Un idéal est en particulier un sous-groupe additif (il suffit d’exploiter 1’absorption avec
a=-1)
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Exemple {04} et A sont des idéaux de (4, +, X).

Exemple nZ est un idéal de (Z, +, X).

Exemple Le noyau d’un morphisme d’anneaux ¢ : A — A’ est un idéal de (4, +, X).
En effet, ker o C A,04 € ker p car (04) = 04/.

Soit x,y € ker .

p(x +y) = p(x) +¢(y) = 0ar + 04 = 04 donc z + y € ker p.

Soitde plus a € A.

vlaz) = p(a)p(x) = p(a) x 04 = 04/ donc ax € ker .

Proposition
Soit I un idéal de I’anneau (A, +, x)
Sily € TalorsI = A.
SiINU(A) # 0 alors I = A.

dém. :

Par absorption 14 € I entraine A C I puis =.

De méme, par absorption, I N U(A) # Q) entraine 14 € T puis I = A.
O

Remarque Les seuls idéaux d’un corps sont {0k } et lui-méme.

2.4.2 Opérations

Proposition

Si I et J sont deux idéaux de (A, +, x) alors I N J est un idéal.
De plus, I N J est inclus dans I et J et contient tout idéal inclus dans I et J.

dém. :
INJCA0p€eletO0yeJdonc0y €N
Siz,yelIndJalorsz,yc€ Idoncz+yecl.Demémezxr+yec Jdoncx+yeclnd.
Sia€ Aetx € INJalors x € I donc ax € I. De méme ax € J doncazx € I NJ.
|
Proposition
Si I et J sont deux idéaux de (A, +, x) alors

I+J;{x+y/m€[,y€J}

est un idéal.
De plus, I + J contient [ et J et est inclus dans tout idéal contenant I et J.

dém. :
Pourrel,z=x+0q4€l+JcarOq € J. Ainsil CI +JetdemémeJ C I+ J.
Opel+Jcar0y =04 +04 avec 04 € 1, J.
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Pour z,y € I + J,onpeutécrite x = 2’ + 2" ety =y + 3" aveca’,y’ € Iet2”,y" € J.
Onaalorsz+y= (' +y)+ (2" +y')el+Jcara' +y' € Teta’ +y" € J.

Enfin, pour a € A, ax = (az’) + (ax”) € [ + J carax’ € [ etax” € J.

De plus, si K est un idéal contenant I et J alors K contient I + .J car stable pour I’addition.
U

2.4.3 I1déal engendré par un élément

Définition
On appelle idéal engendré par x € A I’ensemble

xA(Ef{xu/u € A}

Théoréme

] z A est un idéal contenant I’élément x et inclus dans tout idéal contenant x.

dém. :

x =1z x 1€ xAetsil estunidéal contenant x alors par absorption, il contient z A.

11 reste & montrer que x A est un idéal.

OnazA C Aet0g =2 x04 € zA.

Pour y, z € xA, on peut écrire y = zu et z = xv avec u,v € Aetalorsy + z = z(u +v) € zA.
Enfin, pour a € A, ay = z(au) € zA.

O

2.44 Idéauxde (Z,+, x)

Théoreme
] Les idéaux de (Z, +, x) sont de la forme nZ avec n € N.

dém. :
Les idéaux de (Z, +, x) sont des sous-groupes de (Z, +) donc de la forme nZ avec n € N.
O

2.5 Application a ’arithmétique

Soit (A, +, X) un anneau intégre commutatif
2.5.1 Divisibilité dans un anneau intégre
Définition
] On dit que a € A divise b € A s’il existe u € A tel que b = au. On note alors a | b.

Exemple 14 divise a et a divise a.

Exemple o divise 04 et04 | a = a = 04.
La notion de diviseurs de zéro dans le cadre arithmétique ne doit pas étre confondue avec celle du cadre
de l'intégrité !
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Théoréme
On a équivalence entre :
(i) alb;
(i) b€ ad;
(iii) bA C aA.

dém. :

Par définition (i) < (ii)

(ii) = (iii) Si b € aA alors bA C aA car aA est un idéal.

(iii) = (ii) Supposons bA C aA. Puisque b € bA,onab € aA.

O
Proposition

Soit a, b, c € A.

albetb|c=alc

dém. :
bA CaAetcA CbA = cACaA.
O
Proposition

Soita, b, c € A.

albetalc=a|(b+c)

dém. :
bACaAetcACaA= (b+c)A CbA+ cA C aAcaraA estunidéal
O

2.5.2 Association

Définition
] On dit que a € A est associé ab € A si a et b se divise mutuellement.

Proposition
] Ceci définit une relation d’équivalence sur A.

Théoreme
Soit a,b € A. On a équivalence entre :
(i) a et b sont associés ;
(i) aA = bA;
(iii) Ju € U(A),b = au.

dém. :

(i) ©bA C aAetaA C bA & (ii)

(i) = (iii) Supposons a et b associés.

Il existe u,v € A tels que b = au et a = bv.

On a alors a = a(uv).

Casa=0g4:b=au=04etdonchb =a x 14.

Cas a # 04 : Par intégrité, uv = 14 et donc u € U(A) puis b = au avec u € U(A).
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(iii) = (i) Supposons qu’il existe u € U(A) tel que b = au.
On adonc b € aA puis bA C aA.

Aussi a = bu~"! donc aA C bA puis =.

O

Exemple Dans Z, a et b sont associés si, et seulement si, |a| = [b|.
Ainsi, tout entier est associé a un unique entier naturel.

Exemple Dans K [X], A et B sont associés si, et seulement si,
INeK",A=\B

Ainsi, tout polyndme non nul est associé a un unique polyndme unitaire.

2.5.3 Arithmétique dans 7Z

Par ce qui précede
a|lbe bZ Cal

Dans la suite nous exploitons cette interprétation pour revoir 1’arithmétique des entiers.

2.5.3.1 PGCD et PPCM

Théoréme
Soit a, b € Z. 1l existe unique d € N tel que

al + bZ = dZ

On a alors
d|a,d|betVceZ,(c|laetc|b)=c|d

dém. :
aZ et bZ sont des idéaux de Z donc aZ + bZ aussi.
Par suite, il existe d € N unique vérifiant aZ + bZ = dZ.
Puisque aZ C aZ + bZ = dZ,on ad | a. De méme d | b.
Sic|aetc|balorsaZ C c¢ZetbZ C cZ donc dZ = aZ + bZ C cZ puis ¢ | d.
O
Définition
Ce naturel d est appelé PGCD de a et b

d=aAb
dét

Corollaire
] Sid = a A balors il existe u, v € Z vérifiant d = au + bv.
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Théoréme
Soit a, b € Z. 1l existe unique m € N tel que

aZ NbZ = mZ

On a alors
a|m,b|metVeeZ,(a|cetb|c)=m|c

dém. :
aZ et bZ sont des idéaux de Z donc aZ N bZ aussi. Par suite, il existe m € N unique vérifiant aZ N bZ =
m.
Puisque mZ C aZ,onaa | m et de méme b | m.
Sia|cetbh|calors ¢Z C aZ NbZ = mZ donc m | c.
O
Définition
Ce naturel m est appelé PPCM de a et b :

m=aVb
déf

Remarque On définit aussi le pged d et le ppcm m de plusieurs entiers ag, . . . , a, par

dZ =a\Z+ ---+apZetmZ = a1 ZN...Na,7Z

2.5.3.2 Entiers premiers entre eux

Définition

Deux entiers a et b sont dits premiers entre eux si aZ + bZ = Z (autrement dit si leur PGCD
vaut 1).

Onnotea Ab=1.

Théoreme

Soit a, b € Z. On a équivalence entre :
(1) a et b sont premiers entre eux ;

(i) Ju,v € Z,au + bv = 1.

dém. :

(i) = (ii) via I’égalité de Bézout.

(i) = (i) vial € aZ + bZ donc aZ + bZ = 7.
O

Corollaire
On a
Va,b,c€ Z,(aANb=1letaNc=1)=aA (bc)=1

Va,beZ,anb=1=Va,8 eN,a* AV’ =1
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Théoreme
VYa,b,c € Z, (a|bcetanb=1)=alc
dém. :
cZ = c(aZ + bVZ) = acZ + bcZ C aZ donc a | c.
O
Théoreme

Va,b,c € Z, (aANb=1,a|cetb|c)=ab]c

2.5.3.3 Nombre premiers

Définition
] Un naturel p > 2 est dit premier si ses seuls diviseurs positifs sont 1 et lui-méme.

Exemple Deux entiers a et b sont premiers entre eux si, et seulement si, ils ne posséde pas de facteurs
premiers en commun.

Théoréme
Pour tout ¢ € N tel que ¢ > 2 on peut écrire

— 1,2 N
a=Dpy Ps”-.--PN

avec N € N*, py, ..., pn nombres premiers deux a deux distincts et aq, ..., a, € N*.
De plus, cette décomposition est unique & I’ordre pres des facteurs.

Exemple Sia = p{'p5?...pR" eth= pf1p§2 .. .prN (écriture qu’il est possible d’obtenir en

autorisant les exposants a étre nuls) alors
N N
alNb= Hp;nm(aiaﬁi) etaVh= Hp;nax(aivﬁi)
i=1 i=1

En particulier, on constate
(and) x (aVb)=ab

2.5.4 Fonction indicatrice d’Euler

Définition
On appelle fonction indicatrice d’Euler I’application ¢ : N* — N* définie par

p(n) =Card{k € [1,n]/k An =1}

Exemple ((12) = Card {1,5,7,11} = 4.
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Remarque ¢(n) est aussi :

- le nombre de générateurs du groupe (Z/nZ,+) ;

(c’est aussi le nombre de racines primitives n-ieme de 1’unité)
- le nombre d’éléments inversibles de I’anneau (Z/nZ, +, x).
(c’est donc le cardinal de U(Z/nZ) )

Lemme
Si p est un nombre premier et o € N* alors

p*) =p* —p**
dém. :
Pour k € [1,p], le pged de k et p© est un diviseur de p®.
Puisque p est premier les naturels diviseurs de p® sont 1, p, p?, ..., p%.

Par suite pged(k,p®) = 1,p, ... oup®.
On en déduit

EAnp*£1<0p|k

Par suite, les entiers k& € [1, p®] qui ne sont pas premiers avec p™ sont ceux qui sont les multiples de p
suivants

P 2p,....p°
Ilyenap“ ! etdonc

a—1

@(p*) = Card[1,p*] —p* " =p~ —p

]
Lemme
Si n et m sont deux entiers naturels non nuls premiers entre eux alors
p(nm) = p(n)p(m)
dém. :

Par le théoréme Chinois, I’anneau Z/mnZ est isomorphe a Z/mZ x Z/nZ.1l y a donc autant d’éléments
inversibles dans Z/mnZ que dans Z/mZ x Z/nZ.

Il y a exactement ¢(mn) éléments inversibles dans Z/mnZ.

Les éléments inversibles de Z/mZ x Z/nZ sont les couples formés par un élément inversible de Z/mZ
et un élément inversible de Z/nZ. 1l y en a exactement p(m)p(n).

Au final, on peut conclure

p(mn) = p(m)e(n)

O
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Théoréeme

avec py, - - -

Sin > 2 s’écrit

(o3 (a3
n=py"...pN"

, pv nombres premiers deux a deux distincts et aq, ..., an € N* alors

i

dém. :
On a

2

car pit A (pg
De méme

donc

O

o(n) = p(pi'py? ... YY) = e )e(py® ... pRY)

...pR"") = 1 puisque les nombres premiers p; sont deux a deux distincts.

N
p(n) = i )e@s?) ... o) = [ ] i)

=1
e(p*) =p* —p* ' =p*(1 —1/p)

don=Ibr () =11 (1)

=1

Exemple Les facteurs premiers de 12 sont 2 et 3.

@(12):12x<1—;> (1-?)):4

2.5.5 Théoréme d’Euler

Théoréme

Si a est un entier premier avec n alors

a?™ =1 [n]

dém. :

a est un élément du groupe (U (Z/nZ) , x). Ce groupe posseéde ¢ (n) éléments donc

i.e.

O

a@(”) =1

a?™ =1 [n]
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Remarque Si p est un nombre premier, (p) = p — 1 et I’on retrouve le petit théoréme de Fermat

a 20 [pl=a =1 [p

2.5.6 Musculations

2.5.6.1 Une relation

Proposition
Vn e N*,n = ng(d)
d|n
dém. :
Considérons les n nombres rationnels
1 2 k n
et RELE bot RERY by

L’écriture irréductible des ces nombres est de la forme

k
f:Bavecd|netp/\d:1
n d

Iy a exactement ¢(d) fractions qui se réduisent avec le dénominateur d et donc

p(n) =Y o(d)

dln

O
2.5.6.2 Nombre de diviseurs

Exemple Pour n € N*, notons
Div(n) = {d € N*/d | n} et d(n) = CardDiv(n)

Pour n = 6, Div(6) = {1,2,3,6} et 6(6) = 4.
De fagon générale, exprimons J(n).
Pour n = p® avec p nombre premier on a

Div(p®) = {1,p,...,p"} etd(p”) =a+1

Pour m A n = 1, montrons §(mn) = 6(m)d(n).
Considérons I"application f : Div(m) x Div(n) — Div(mn) définie par f(a,b) = ab.
L’application considérée est bien définie par

(a|metb]|n)=ab|mn
Montrons que f est bijective.

Supposons f(a,b) = f(¢,d). Ona ab = cd.
a divise cd or a A d = 1 (car a et d sont diviseurs de m et n premiers entre eux) donc a divise c.
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De méme c divise a et donc a = ¢ puis b = d.

Ainsi f est injective.

Soit d € Div(mn).

Posons a = pged(d, m) et b = pged(d, n).

On a (a,b) € Div(m) x Div(n). Montrons que f(a,b) = ab = d.
Onaa|d,b|detaAb=1/(caraetbsontdiviseurs de m et n premiers entre eux) donc ab | d.
Inversement, par égalité de Bézout on peut écrire a = du + mv et b = du’ + nv’ donc

ab = dw + mnuv'. Puisque d divise mn alors d divise ab puis finalement d = ab.

Ainsi f est surjective et donc bijective.

De la bijectivité de f, on déduit

d(mn) = 6(m)d(n)
Par suite, si
n=p"...py
avec p1, ..., py nombres premiers deux a deux distincts, on obtient

on)=(a1+1)...(an+1)

2.6 Polynomes en une indéterminée

K désigne un sous-corps de (C, 4, X ) qui sera par exemple R, C, Q, . ..
Le cours de premiere année relatif aux polynomes a coefficients réels ou complexe s’étend au cadre des
polyndmes a coefficients dans K.

2.6.1 L’anneau K [X]|

Définition
On appelle polyndme a coefficients dans K en une indéterminée toute expression de la forme

n=0

ol (ap)nen est une suite d’éléments K nulle a partir d’un certain rang.
On note K [X] I’ensemble des polyndmes a coefficients dans K en I'indéterminée X .

Définition
+oo
Lorsque P = Z a, X™ n’est pas le polyndme nul, on introduit son degré
n=0
deg P = max {n € N/a,, # 0}
Par convention, on pose deg 0 = —o0.
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Définition
+oo 400
Pour P = Z an X" et Q = Z b, X" éléments de K [X], on pose
n=0 n=0
+o0 +o0 n
P+Q= Z (an +bp) X" et PQ = Z cp, X" avec ¢, = Z agpbn_g
n=0 n=0 k=0
Théoreme
(K [X],+, x) est un anneau integre de neutres 0 et 1 dont les éléments inversibles sont les
polyndmes constants non nuls.

dém. :
L’intégrité et la description des inversibles découlent de la relation

deg(PQ) = deg P + deg Q

O
Définition
N
On appelle valeur d’un polynéme P = Z a, X" en z € K le nombre

n=0

N
P(x) = Zanm" eK
n=0

Exemple On dit que x est racine de P si P(x) = 0.

2.6.2 Divisibilité dans K [X]

Puisque que K [X] est un anneau commutatif intégre, le vocabulaire de divisibilité se transpose aux
polyndmes.
Pour A, B € K [X], on obtient

A|B&3U € K[X],B=AU & BK[X] C AK[X]

et
A et B sont associés < I\ € K*, B = \A

En particulier, tout polyndme non nul est associé a un unique polynéme unitaire.
De plus, on bénéficie dans K [X] d’une division euclidienne

Y(A,B) € K [X] x (K [X]\{0}), Q. R) € K [X], A= BQ+ Ret deg R < deg B

Exemple q estracine de P € K [X] si, et seulement si, X — a divise P.
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2.6.3 Idéaux de (K [X],+, %)

Théoreme
| Les idéaux de (K [X],+, x) sont de la forme P.K [X] avec P € K [X].

dém. :

Soit I un idéal de K [X].

SiI = {0}alors I = P.K [X]avec P = 0.

Sinon, soit P un polyndme non nul de I de degré minimal.

Par absorption P.K [X] C I.

Pour A € I, par division euclidienne A = PQ) + Ravecdeg R < degP. R=A—-Peclcar Ac et
PePK[X]|CI

Or deg R < deg P donc par minimalité du degré de P parmi les polynémes non nuls de I, on peut
affirmer R = O etdonc A € P.K [X]. Ainsi [ C P.K [X] puis I = P.K [X].

O

2.6.4 PGCD et PPCM

Théoreme
Soit A, B € K [X]. Il existe un unique polyndme unitaire ou nul D € K [X] vérifiant tel que

AK|[X]+ B.K[X]=D.K|[X]

On a alors
D|A, D|BetVPeK[X],(P|AetP|B)=P|D

dém. :
Existence :
A.K [X] et B.K [X] sont des idéaux de K [X] donc A.K [X]+B.K [X] aussi. Il existe donc D € K [X]
vérifiant
A.K[X]+ B.K[X] = D.K[X]

Si le polyndme D n’est pas nul, on peut le remplacer par un polyndme associé et des lors le choisir
unitaire.

Unicité :

Si D et D sont solutions alors ils sont associés et donc égaux car tous deux unitaires ou nuls.

d

Définition

Ce polyndme D est appelé PGCD des polynémes A et B.

D=AAB
déf

Corollaire
SiD = AA Balorsil existe U,V € K [X] vérifiant

D =AU+ BV
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Définition
De méme, on définit le PPCM de deux polyndémes A, B € K [X] comme I'unique polyndme
M € K [X] unitaire ou nul vérifiant

AK [X]NBK [X] = MK [X]

On note
M=AVDB

Remarque On peut aussi parler du PGCD D et du PPCM M d’une famille de plusieurs polyndomes
Ay, K, A, définis par

DEK[X]=A .K[X]+ - + A, K[X] et M.K [X] = A,.K[X]N--- N Ap. K [X]

2.6.5 Polynomes premiers entre eux

Définition
On dit que deux polyndmes A, B € K [X] sont premiers entre eux si

AK [X]+ B.K[X] = K [X]

autrement ditsi AN B = 1.

Exemple Sia # balors X — a et X — b sont premiers entre eux.

Théoreme

Soit A, B € K [X]. On a équivalence entre :
(i) A et B sont premiers entre eux ;

(i) I(U,V) € K [X]*, AU + BV = 1.

Théoréeme
Soit A, B,C € K [X].
A|BCetANB=1=A|C

Théoréeme
Soit A, B,C € K [X].

ANB=1,A|CetB|C= AB|C

Exemple Siaq,...,a, € K sontdes racines deux a deux distinctes de P alors
(X —a1)...(X —ay,) divise P

En particulier, si P n’est pas le polyndme nul, P posséde au plus deg P racines.
Ce résultat peut étre approfondi en introduisant la notion de multiplicité d’une racine.
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Théoréeme
A, B € K [X] sont premiers entre eux si, et seulement si, A et B n’ont aucunes racines com-
plexes en commun.

dém. :

(=) Par contraposée

Si A et B ont une racine complexe z en commun alors celle-ci est racine de D = A A B en vertu de la
relation de Bézout. Le polyndme D n’est alors pas constant égal a 1.

(<) Par contraposée

Si A et B ne sont pas premiers entre eux alors D = 0 ou D n’est pas constant. Dans les deux cas D admet
une racine complexe qui est alors racine commune aux polyndmes A et B.

0

Corollaire

] Le polyndme P € C[X] est a racines simples si, et seulement si, P A P’ = 1.

2.6.6 Polynomes irréductibles

Définition
Un polynéme non constant P € K [X] est dit irréductible sur K [X] s’il n’est divisible que
par les polynomes constants et ses polyndmes associés.

Exemple Le polyndme X — a est irréductible dans K [X].

Exemple Le polynome X2 + 1 est irréductible dans R [X] mais ne ’est pas dans C [X].

Théoréme
Si P est un polynéme non constant de K [X], on peut écrire

p=x ] P

1<iKN

avec A € K*, N € N*, P|,..., Py polyndmes irréductibles unitaires deux a deux distincts et
Ofy.o., N e N*.
De plus, cette décomposition est unique a I’ordre pres des facteurs.

dém. :

11 suffit d’adapter la démonstration vue en premiére année.

O

Rappel :

Les polyndmes irréductibles de C [X] sont les polyndomes de degré 1.

Les polyndmes irréductibles unitaires de C [X] sont les X — a avec a € C.

Les polyndmes irréductibles de R [X] sont les polynomes de degré 1 et ceux de degré 2 sans racines
réelles.

Les polynomes irréductibles unitaires sont les polyndmes

X —aaveca € Ret X2 + pX + g avec p, ¢ € R vérifiant p* — 4g < 0
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Corollaire

] Tout polynome réel de degré impair posseéde au moins une racine réelle.

dém. :

Sa décomposition en facteurs irréductibles doit au moins faire apparaitre un terme de degré ce qui dé-
termine une racine du polyndme. Un argument de continuité en lien avec les limites en I’infini d’un
polyndme de degré impair est aussi possible.

]

Remarque Les polyndmes irréductibles de Q [X] sont plus variés. ..

Exemple Le polyndme X° + X + 1 est irréductible dans Q [X].

En effet, s’il était composé, il possederait au moins une racine rationnelle x = p/q avec p A ¢ = 1.

Or 23 4+ 2 + 1 = 0 donne p*® + pg* + ¢ = 0 et donc ¢ | petp|q.Celaentraine = £1 or ce nombre
n’est pas racine du polyndme.
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Chapitre 3

Espaces vectoriels

La théorie sur les espaces vectoriels présentées en MPSI dans le cas ol le corps de base est R ou C s’étend
pour I’essentiel au cas ol le corps de base est un corps quelconque.
On se limite cependant dans ce cours au cas ou K est un sous-corps de C: K = C,R,Q, . ..

3.1 Structure d’espace vectoriel

3.1.1 Définition

Définition

On appelle K-espace vectoriel tout triplet (E, +, .) formé d’un ensemble F, d’une loi de com-
position interne + sur E et d’un produit extérieur . opérant de K sur E' vérifiant :

(1) (E, +) est un groupe abélien ;

Q) Vz,y e EVAp e K Mz +y) = A+ Ay, (A + p)z = Az + px, AM(pz) = (Ap)z et
lx ==

Les éléments de K sont appelés scalaires, ceux de F sont appelés vecteurs, en particulier le
neutre additif de E' est appelé vecteur nul et note 0.

Exemple On peut visualiser géométriquement les opérations a I’intérieur d’un espace vectoriel en
commengcant par visualiser le vecteur nul Og et en convenant que tout vecteur sera représenté en partant
de celui-ci.

v

Exemple Espaces vectoriels usuels : K", K [X], M,, ,(K) et F(X, K).
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Exemple K est un K-espace vectoriel. Dans ce cas, vecteurs et scalaires se confondent et le produit
extérieur correspond a la multiplication sur K.

Proposition

Si L est un sous-corps de K alors, par restriction du produit extérieur, tout K-espace vectoriel
est encore un LL-espace vectoriel.

dém. :

La propriété (1) est conservée alors que la propriété (2) valant pour tout A, iz € K vaut a fortiori pour tout
A e L.

O

Exemple Tout C-espace vectoriel est aussi un R-espace vectoriel.
En particulier C est un R-espace vectoriel.

Exemple R est un Q-espace vectoriel.

3.1.2 Produit d’un nombre fini d’espaces vectoriels

Proposition

Si By, ..., E, sont des K-espaces vectoriels alors E = E; X - - - X F,, est un K-espace vectoriel
pour les lois + et . définies par :

(T1,...,2n) + (yl,...,yn)dZéf(xl + Y1y, T+ Yn) et /\.(xl,...,xn)gf()\xl,...,)\zn)

De plus le vecteur nul de F est alors Og = (0g,,...,05,).

Exemple On retrouve que K" est un K-espace vectoriel de nul Og» = (0,...,0)

Exemple Si E et F' sont deux K-espaces vectoriels alors E/ X F' est un K-espace vectoriel.

3.1.3 Espace de fonctions

Soit X un ensemble quelconque
Proposition

Si E un K-espace vectoriel alors F (X, F) est un K-espace vectoriel pour les lois + et . définies
par :
fHg:xze flx)+gl@x)etAf:z— Xf(x)

De plus, le vecteur nul de F(X, E) est la fonction nulle : 0 : 2 — 0.

Exemple On retrouve que F (X, K) est un K-espace vectoriel.
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3.2 Sous-espaces vectoriels

FE désigne un K-espace vectoriel.

3.2.1 Définition

Définition
On appelle sous-espace vectoriel d’un K-espace vectoriel E toute partie F' de E vérifiant :
)0 € F;
VN peK Ve, y e F, \x + py € F.

Exemple {0z} et E sont des sous-espaces vectoriels de E.

Exemple Géométriquement, les sous-espaces vectoriels non triviaux se visualisent comme des droites
et des plans contenant le vecteur nul.

L

Théoréme
Si F' est un sous-espace vectoriel d’un K-espace vectoriel E alors F' est aussi un K-espace
vectoriel pour les lois restreintes.

Exemple K, [X] est un K-espace vectoriel.
C’est en effet un sous-espace vectoriel de K [X].

3.2.2 Opérations

Proposition
Si F et G sont deux sous-espaces vectoriels de E alors

FNG={x€E/xeFetzx G}

est un sous-espace vectoriel de E.
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dém. :
FNGCE.
Ope FNGcarOg € FetOg € G.
Soit \,u € Ketx,y € FNG.
Onalx+ uy € FNG car A\x + py € F puisque x,y € F et F est un sous-espace vectoriel et de méme
Ax+py € G.
O
Proposition
Si F' et G sont deux sous-espaces vectoriels de E alors

F+G={a+b/a€ Fbe G}

est un sous-espace vectoriel de F.

dém. :

F+GCE.

0O =0 +0gc F+Gcar0g € FetOg € G.

Soit \,u € Ketz,y € F+G.

On peutécrirex =a+bety =a’ + b aveca,a’ € Fetb+ b € G donc

Az +py = (Aa+pa' )+ No+ub) e F+G

O
Exemple

F+G

Remarque Les opérations d’intersection et de somme de sous-espaces vectoriels :

? sont commutatives ;

? sont associatives ;

? possedent des neutres E et {Og} respectivement.

En particulier, pour F1, ..., F}, des sous-espaces vectoriels de F/, on peut introduire les sous-espaces

vectoriels
NF=Fn..0FeY F=F+ - +F = {in/xieﬂ}
i=1

i=1 i=1

http://mp.cpgedupuydelome.fr 62 ©@O®S0



CHAPITRE 3. ESPACES VECTORIELS

3.2.3 Espace vectoriel engendré

Définition
On appelle espace vectoriel engendré par une partie A de E 'intersection VectA de tous les
sous-espaces vectoriels de E contenant A.

Théoreme
VectA est un sous-espace vectoriel de £ contenant A.
De plus, pour tout sous-espace vectoriel F' de F :

ACF = VectACF

VectA apparait comme étant le plus petit sous-espace vectoriel de £ contenant A.

Exemple Pour A = {u}, Vect(u) = K.u = {\.u/X € K}.

Exemple Vect(u,v) = {\u+ pv/\ p e K} =Ku+Ko.

Remarque Par récurrence

Vect(uy, ... un) = {Aur + -+ Aun /X €K} =Koy + - + Koy,

Exemple Si F' et G sont des sous-espaces vectoriels

Vect(FUG) =F+G

3.2.4 Somme directe

Soit [, ..., F), des sous-espaces vectoriels de E.
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Définition

n
Soit F, ..., F}, des sous-espaces vectoriels. On dit que la somme Z ) F; est directe si
i=

VxEZFi,EI!(xl,...,xn)eFlx...an,x:x1+---+mn
i=1

Autrement dit, il y a unicité dans I’écriture de la décomposition d’un vecteur de la somme.
n

La somme E - F; est alors notée
1=

@1Fz’ ouF1 @ @ F,

1=

Remarque Si F' et G sont en somme directe et si F' 4+ G est en somme directe avec H alors F, G, H
sont en somme directe. On dispose ainsi de la relation d’associativité

(FOG)@H=F®G®H

Théoréme
Les espaces F1, ..., F), sont en somme directe si, et seulement si,

V(z1,...,2n) EF X ... X Fpyo1+ -+, =0p = V1<i<nuz =0g

Ce qui revient a signifier ’unicité de la décomposition du vecteur nul.

Remarque Si1’on se limite a deux sous-espaces vectoriels F' et (G, on a aussi

F et G sont en somme directe < FNG = {0g}

3.2.5 Sous-espaces vectoriels supplémentaires

Soit F' et G deux sous-espaces vectoriels de F.
Définition
On dit que les espaces F' et G sont supplémentaires si

Ve e E,Wa,b) e FxG,x=a+b
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Exemple E et {0z} sont supplémentaires dans F.

Exemple

Théoreme
Les espaces F' et G sont supplémentaires si, et seulement si, F NG = {0g} et F + G = E.
Autrement dit, si, et seulementsi, E = F' @ G.

Exemple On note S,,(R) et A, (R) les sous-espaces vectoriels de M, (R) formés des matrices
symétriques et antisymétriques. Montrer que S, (R) et .4,,(IR) sont des sous-espaces vectoriels
supplémentaires.

OnaS,(R)NA,(R)={0,} car

‘M=Met'M =—-M=M=0,

Aussi S, (R) + A, (R) = M, (R) car

M = (M+tM)+%(M—tM)

1
2
avec

2 (M M) € S, (R) et 3 (M — M) € Ay(R)

Exemple Soit £ = C([-1,1],R),
Fi={xe[-1,1]]—arx+b/a,beR} et Fh ={f € F/f(—1) = f(1) =0}

Montrons que F et F5 sont des sous-espaces vectoriels supplémentaires.

F1 et I sont évidemment des sous-espaces vectoriels de E.

Etudions F} N F5.

Soit f € Fy N Fy. 1l existe a,b € R tels que f(z) = ax + b pour tout x € [—1,1].
Or f(1) = f(~1) =0donca+b=a—b=0puisa = b= 0etenfin f = 0.
Ainsi AN B C {0} puis =.

Etudions F + F5.

Analyse :

On suppose f =g+ havecg € Fyeth € Fy.

Il existe a,b € Rtel que g(z) = ax +betonah(l) =h(—1) =0.
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Onendéduita+b= f(1)eta— b= f(—1) puis

a= %(f(l) + f(-1))etb= %(f(l) - f(=1)

Ceci détermine g puis h = f — g.
Synthese :
Soit f € E. Posons

a =

() + F(-1) eth = 2 (£(1) ~ F(~1))

Considérons ensuite g : € [—1,1] — az +beth=f —g.

Onaf =g+ havecg € Fi.

De plus f(1) = a + b+ h(1) donne h(1) = 0 et, de méme, on obtient h(—1) = 0. Ainsi h € F.
Finalement £ C F; 4 F5 puis =. On peut conclure

DN | =

E=F&kHh
3.2.6 Sous-espace affine
Définition
On appelle sous-espace affine passant a € E et dirigé par un sous-espace vectoriel F' de
I’ensemble

V=a+F={a+z/zeF}

Exemple Géométriquement les sous-espaces affines se visualisent comme étant des points, des droites
ou des plans ne passant pas nécessairement par 0.

Proposition
Si V' est un sous-espace affine de direction F etsi b € V alors

V=b+F

dém. :
Ecrivons V =a + F.
Puisque b € V,onab — a € F etdonc

b+F={b+z/zeF}={a+2'/r’ eF}=a+F

O

Proposition
L’intersection de deux sous-espaces affines V' et W de directions F' et G est soit vide, soit égal
a un sous-espace affine de direction F' N G.

dém. :

Supposons V N W # (). Considéronsa € VNW.OnaV =a+ FetW =a+G.
Parsuite,pourz €c B,z e VNW & x—a€ FNGetainsiVNW =a+ FNG.
O

http://mp.cpgedupuydelome.fr 66 @O0



CHAPITRE 3. ESPACES VECTORIELS

3.3 Dimension

I désigne un ensemble, éventuellement infini.
FE désigne un K-espace vectoriel.

3.3.1 Combinaisons linéaires

Définition
Une famille de scalaires (\;);er est dite presque nulle si

{i € I/\; =0} estfini

On note K) I’ensemble de ces familles.

Exemple Si I est un ensemble fini alors K/ = KD,

Exemple Une suite nulle a partir d’un certain rang est une famille presque nulle de K.
Ainsi
K™ = {u = (up)nen/3N € N,¥n > N, u, = 0}

Définition
On appelle combinaison linéaire d’une famille (z;);c; de vecteurs de E tout vecteur de F
pouvant s’écrire
Z i

icl

avec (\;);cs une famille de scalaire presque nulle.

Remarque Bien que la somme porte sur I’ensemble [/ pouvant étre infini, la somme a du sens car elle
ne comporte qu’un nombre fini de termes non nuls.

Exemple Cas [ = () :
Seul le vecteur nul est combinaison linéaire de la famille vide.

Cas Card] =1:

Les combinaisons linéaires de (x) sont les Az avec A € K.
Cas Card] =n:

Quitte a réindexer, on peut supposer [ = {1,...,n}.

Les combinaisons linéaires de (x;)1<i<n sontles A\yzy + - - - + A\, avec A; € K.

Cas Card] = 400 :

Les combinaisons linéaires de la famille (z;);c; correspondent aux combinaisons linéaires de ses
sous-familles finies.

Exemple Dans K [X], les combinaisons linéaires des mondmes X" avec k € N sont exactement les
polyndmes.
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Remarque Si A est une partie de E alors Vect(A) est I’ensemble des combinaisons linéaires (finies)
d’éléments de A.

Proposition

Si F est un sous-espace vectoriel de E alors toute combinaison linéaire d’une famille de vec-
teurs de F' est élément de F'.

3.3.2 Famille génératrice

Définition
| On note Vect(z;);cr Iespace vectoriel engendré par la partie {; /i € I}.

Théoréme

] Vect(x;)ier est ’ensemble des combinaisons linéaires de la famille (z;);e;.

Définition
Une famille (z;);c; de vecteurs de E est dite génératrice si Vect(x;);c; = E ce qui signifie
que tout vecteur de E est combinaison linéaire de cette famille

Ve e E, El()\i)ie[ S K(l),.’ﬂ = Z)\zwz
el

Exemple La famille vide est génératrice de {0 }.

Exemple Dans K", considérons e; = (0,...,0,1,0,...,0).
La famille (e;)1<i<n est génératrice.

Exemple Dans K [X], la famille (X*);cy est génératrice.

3.3.3 Famille libre
Définition
Une famille (z;);c; de vecteurs de E est dite libre si
v(/\i)iel € K(I), Z)\iiﬂi =0g=>Vie I, A =0

iel

Sinon, la famille est dite liée et toute égalité Z Aix; = Op avec (\;);er # 0 est appelée
il

relation linéaire sur la famille (z;);e;.

Exemple La famille vide est libre.
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Exemple (x) est libre si, et seulement si, z # Op.

Exemple (x,y) est liée si, et seulement si, il existe («, 8) # (0, 0) tel que ax + Sy = Og.
Cela équivaut encore a dire
NeKz= youdpeK z=pny

Attention : (x,y) liée n’implique pas qu’il existe A € K tel que y = Az (prendre z = Og ety # O
quelconque)
Cependant

(z,y)lideetz #0p = INeK,y= Az

Exemple Dans K", la famille (e;)1<;i<n est libre.

Exemple Une famille infinie est libre si, et seulement si, toutes ses sous-familles finies le sont.

Exemple La famille (X" ),cn est libre car

Vn € N, (X*)o<r<n est libre

at

Exemple £ = F(R,R). Pour a € R, on note ¢, I’application de R vers R définie par e, (t) = e
Montrons que (e,)qcr est une famille libre d’éléments de F (R, R).
Soit ay, ..., a, des réels deux a deux distincts.
Supposons
Aeg, + -+ Apeg, =0
Pour tout ¢ € R,
Ale‘“t + )\26a2t +---+ )\nea"t =0

Quitte a réindexer, on peut supposer a1 < as < ... < ap
En multipliant la relation par e~“'?, on obtient

)\1 —+ )\2€(a27a1)t NS /\ne(anfal)t -0

Quand ¢ — —oo, la relation précédente donne A\; = 0.
On obtient alors
Age®2t o N et =0

pour tout £ € R et on peut reprendre la démarche pour obtenir successivement Ao = ... = A, = 0.
Ainsi, la famille (e, , .. ., e,, ) est libre et puisque toutes ses sous-familles finies sont libres, la famille
(ea)acr est libre.
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3.3.4 Base

Définition

] On appelle base de E toute famille (e;);c; de vecteurs de F a la fois libre et génératrice.

Exemple La famille vide est base de E = {0g}.

Exemple (e;)1<i<n est une base de K™ (dite canonique).

Exemple (X*),cy est une base de K [X] (dite canonique).

Exemple (1) est base de K (dite canonique).

Exemple (1,7) est base du R-espace vectoriel C (dite canonique).
Théoreme
Si (e;)ier est une base de E alors

Ve e F, 3'()\1%61 € K(I), xr = Z )\iei
iel

Définition
La famille ()\;);c;s est alors appelée famille des coordonnées (ou composantes) de x dans la
base (e;)icr-

Exemple Les coordonnées de z = (z1,...,x,) € K" dans la base canonique sont ses éléments x;.
Exemple Les coordonnées de P € K [X] dans la base canonique de K [X] sont ses coefficients.

Exemple Soit j € I. On peut écrire
1 sii=yj
e; = Z5i7je¢ avec §; ; = 0 sinon
il

La famille (J; ;);cr est donc la famille des coordonnées de e; dans la base (e;)icr.
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3.3.5 Dimension

Définition
On dit qu’'un K-espace vectoriel est de dimension finie s’il possede une famille génératrice
finie. On sait qu’un tel espace possede alors une base finie et que toute base de cet espace est
formée du méme nombre de vecteurs qu’on appelle la dimension de celui-ci.

Exemple dim {0z} =0, dimK" = n, dim M,, ,(K) = np, dimK,, [X] =n+1,dimK =1,
dim¢c C = 1 et dimr C = 2.

Définition

] Si un K-espace vectoriel F n’est pas de dimension finie, on pose dim £ = +oc¢.

Exemple dimK[X] = +oo.

3.3.6 Construction de bases

Soit E un K-espace vectoriel de dimension finie.
Théoreme
] De toute famille génératrice de I on peut extraire une base

Théoréme

] Toute famille libre de vecteurs de E peut €tre complétée en une base.

Théoréme
Soit E est un K-espace vectoriel de dimension finie et (e;)1<;<, une famille de vecteurs de E.
On suppose

n=dimFE

On a équivalence entre :

(i) (ei)1<ign €St une base de E';

(ii) (e4)1<i<n est une famille libre ;

(ii1) (e;)1<i<n est une famille génératrice de E.

Exemple Soit (P,,)nen € K[X }N une famille de polyndmes de degrés étagés (i.e. Vn € N,deg P, = n
)
Montrons que (P,,),en est une base de K [X].
Commengons par étudier la sous-famille (P )o<k<n-
Supposons
MPy+ -+ P, =0

Ona
)\npn = *()\OPO + -+ )\n—lpn—l)

donc deg(A, P,) < n puis A, = 0.

En reprenant le procédé, on obtient successivement A,,_1 = 0,..., Ay = 0.

Ainsi, la famille (Py)o<k<r est libre, or cette famille est formée de n 4+ 1 = dim K, [X] vecteurs de
K,, [X] ¢’est donc une base de K,, [X].
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La famille (P, ),¢n est alors libre car chacune de ses sous-familles finies est libre. Elle est de plus
génératrice car pour tout P € K [X], il existe n € Ntel que P € K,, [X] ce qui permet d’écrire

n —+oo
P = Z Ao P = Z A, Py, en posant A\, = 0 pour k > n
k=0 k=0

Finalement, la famille (P, ), ¢y est une base de K [X].

3.3.7 Dimension d’un sous-espace vectoriel

3.3.7.1 Sous-espace vectoriel en dimension finie

Théoréme
Si F est un sous-espace vectoriel d’un K-espace vectoriel E' de dimension finie alors F' est de
dimension finie et

dim FF < dim F

De plus
dmF =dmFEF< F=F

3.3.7.2 Formule de Grassmann

Théoréme
Si F et G sont des sous-espaces vectoriels de dimensions finies d’un K-espace vectoriel F
alors F' 4+ G et F' N G sont de dimensions finies et

dim(F + G) =dim F + dim G — dim(F N G)

dém. :
On compléte une base de F' N G, d’une part, en une base de F’ et, d’autre part, en une base de GG puis on
forme une base de F' + (G en considérant la famille de tous ses vecteurs.

O

Corollaire
Si I et GG sont en somme directe alors

dim(F & G) = dim F + dim G

3.3.7.3 Supplémentarité en dimension finie

Théoreme
Tout sous-espace vectoriel d’un K-espace vectoriel de dimension finie admet au moins un
supplémentaire et tous ses supplémentaires sont d’égales dimensions.
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Théoréme
Si F' et G deux sous-espaces vectoriels d’un K-espace vectoriel E de dimension finie vérifiant

dimF = dim F +dim G

alors on a équivalence entre :

(i) F' et G sont supplémentaires ;
) FNG ={0g};

(iii) F+ G = E.

Exemple Soit H un sous-espace vectoriel de dimension n — 1 d’un K-espace vectoriel E de dimension
n € N* (autrement dit H est hyperplan). Pour tout vecteur a € E\H, on a

H @ Vect(a) = E

Exemple On peut obtenir rapidement la supplémentarité se S,, (R) et A, (R) en exploitant un argument
de dimension.

3.3.7.4 Somme de plusieurs sous-espaces vectoriels

Théoréme
m
Si Fi, ..., F,, sont des sous-espaces vectoriels de dimensions finies alors Z F}; est de dimen-
k=1
sion finie et
m m
dlmz Fj, < Z dim F},
k=1 k=1
De plus, il y a égalité si, et seulement si, les sous-espaces vectoriels F, . .., F}, sont en somme
directe.
Ainsi
m m
dim & F, = Zdim Fy
k=1
k=1
Théoreme
On suppose
m
E= & F;
k=1
En accolant des bases des sous-espaces vectoriels F1, ..., F},, on forme une base de F.
Définition
m
Une telle base est dite adaptée a la décomposition £ = @ F.
k=1

Exemple Supposons F' et G supplémentaires dans E.
Si (e1,...,ep) estune base de F et (epy1,...,e,) une base de G alors (e, . . ., e,) détermine une base
de E adaptée a la supplémentarité £ = F & G.
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3.4 Applications linéaires
Soit E et E’ des K-espaces vectoriels.
3.4.1 Définition
Définition
On appelle application linéaire de E vers E’ toute application v : E — E' vérifiant :
VA, p € K\Va,y € E,u(Ax + py) = Au(z) + pu(y)
Théoréme
L’ensemble L£(E, E') des applications linéaires de F vers E’ est un espace vectoriel pour les
lois usuelles de neutre 1’application linéaire nulle o.
Définition
Lorsque E’ = K, on parle de forme linéaire et on note E* au lieu de L(E, K).
L’espace E* est appelé espace dual de E.
Définition
Lorsque E’ = E, on parle d’endomorphisme et on note £(E) au lieu de L(E, E).
L(E) est un anneau pour les lois + et o de neutres 0 et Id .
Définition
Lorsque u est bijective, on parle d’isomorphisme et on dit que les espaces E et E’ sont iso-
morphes.
On note GL(E, E') I’ensemble des isomorphismes de E vers E’.
Définition
Lorsque u est bijective et E = E, on parle d’automorphisme et on note GL(E) = GL(E, E)
I’ensemble des automorphismes de E. (GL(FE), o) est le groupe des inversibles de 1’anneau
(L(E),+,0), on I’appelle groupe linéaire de E.
3.4.2 Propriétés
Proposition
Siu € L(E,E") alors
U(OE) = OE/
Théoreme
L’image directe (resp. réciproque) d’un sous-espace vectoriel par une application linéaire est
un sous-espace vectoriel.

Exemple Siu € L(E,E') et A C E alors u(Vect(A)) = Vect(u(A)).
En effet, A C VectA donc u(A4) C u(VectA).

Or u(VectA) est un sous-espace vectoriel donc Vectu(A) C u(VectA).
Inversement, u(A) C Vectu(A) donc u™*(u(A)) C u™*(Vectu(A)).
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Or A C ' (u(A)) donc A C u™'(Vectu(A)).

Mais 1! (Vectu(A)) est un sous-espace vectoriel donc VectA C u™*(Vectu(A)) puis
u(VectA) C u(u~*(Vectd)).

Enfin u(u~"(Vectu(A))) C Vectu(A) donc u(VectA) C Vectu(A).

3.4.3 Noyau et image

Définition
On appelle noyau et image d’une application linéaire u de E vers E’ les ensembles

keru =u "' ({0g}) et Imu = u(F)

Ce sont respectivement des sous-espaces vectoriels de E et E’.

Théoréme

Soitu € L(E,E’).

a) u est injective si, et seulement si, ker u = {0},
b) u est surjective si, et seulement si, Imu = E’.

Exemple Soit u,v € L(E). Montrons
vou=0«< Imu C kerv

(<) Supposons Imu C ker v.

Pour tout z € E, u(x) € Imu donc u(x) € ker v puis v(u(x)) = 0. Ainsivou =0

(=) Supposons v o u = 0.

Pour tout y € Imu, on peut écrire y = u(x) avec z € E. Mezalor v(y) = v(u(x)) = 0 donc y € kerv.

Exemple Soit v € £(E). Comparons ker u et ker u?.

Soit € keru. On a u(z) = 0 donc u?(z) = u(u(z)) = w(0) = 0. Ainsi ker u C ker u?.
Comparons Imu et Imu?.

Soit y € Imu?. On peut écrire y = u?(z) donc y = u(u(z)) € Imu. Ainsi Imu? C Imu.
Plus généralement, on montre ker u™ C ker "' et Imu" ! C Imu™.

3.4.4 Equations linéaires

On considere I’équation u(z) = y avecu € L(E, E'),y € E' et d’inconnue z € E :

- si y ¢ Imu : I’équation n’est pas compatible ;

- si y € Imu, I’ensemble des solutions est un sous-espace affine de direction ker u.

Protocole de résolution d’une équation linéaire compatible :

- on résout I’équation homogene (ce qui détermine ker u );

- on détermine une solution particuliére ;

- on exprime la solution générale comme somme de la solution particuliere et de la solution générale de
I’équation homogene.
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3.4.5 Image linéaire d’une famille de vecteurs

Proposition
Siu € L(E, E") alors

V(zi)ier € BN V() e KD u <Z /\m) = Au(x;)

iel icl

Proposition

Si (2;)ier une famille génératrice de vecteurs de E et si u € L(E, E’) est surjective alors
(u(24)),¢; est une famille de vecteurs de £’ génératrice.

dém. :
Pour tout y € F, il existe x € E tel que y = u(x).
Or, il existe aussi (\;) € KU telle que r = Z Aix; etalors y = Z Aiu(x;).

i€l i€l
Ainsi, (u(x;));er est génératrice.
O
Proposition
Si (;)ier une famille libre de vecteurs de E et si u € L(E, E') est injective alors (u(x;)),c;

est une famille libre de E’.
dém. :
Supposons Z Aiw(z;) = 0p.

iel

On a U(Z )\1.131) = 0 donc Z Nix; € keru = {OE} puis Z Nix; =0p.

iel iel iel
Or la famille ()¢ est libre donc

Viel,\;=0

Ainsi (u(z;))ier est libre.
g
Théoréme

Soitu € L(E, E’) et (e;);cr une base de E.

1) w est injective si, et seulement si, (u(e;));cr est libre.

2) u est surjective si, et seulement si, (u(e;));cr est génératrice de E'.

3) u est un isomorphisme si, et seulement si, (u(e;));er est une base de E'.
dém. :

1) (=) ci-dessus.
(<) Supposons (u(e;));ecr libre.
Soit z = Z Aie; tel que u(z) = 0pr. Ona Z Aiu(e;) = 0gr donc \; = 0 pour tout ¢ puis x = 0.
il il
2) (=) cfdessus. ©
(<) Supposons (u(e;));cr génératrice.
Pour tout y € F, on peut écrire iy = Z Aiu(e;) et donc y = u(e) avec e = Z Aie;.
il i€l
3)vial)et?2)
O
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Corollaire

] Si deux espaces vectoriels sont isomorphes, ils sont d’égales dimension.

3.4.6 Construction d’une application linéaire

3.4.6.1 Par I’image d’une base

Théoreme
Si (e;)ies est une base de E et (€});c une famille de vecteurs de E’ alors il existe une unique
application linéaire u : £ — E’ vérifiant

Vi€ I,u(e;) = €]

dém. :

Analyse / Unicité : Supposons u solution.

Pour e € E, on peut écrire e = Z Aie; avee (A;)ier € K et alors
iel

ule) = Z)\iu(ei) = Z i€l
i€l el

ce qui détermine entierement u.
Synthese / Existence : Considérons 1’application u qui a e = E Aje; associe
icl

u(e) = Z i€}

icl

On vérifie aisément que u est linéaire et transforme e; en e/,

O

Corollaire
Si deux applications linéaires u,v € L(E, E’) sont égales sur chacun des vecteurs d’une base
de F alors elles sont égales sur F.

Corollaire

] Deux espaces de dimensions finies égales sont isomorphes.

3.4.6.2 Par ses restrictions linéaires

On suppose
m
E= & F
k=1
Théoréme
Si, pour tout k € {1,...,m}, uy désigne une application linéaire de F}, vers E’ alors il existe

une unique application linéaire u de E vers E’ prolongeant les uy, i.e. vérifiant

V1< k<m, Ve € F,u(z) = ug(x)
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dém. :

Analyse / Unicité :

Supposons u solution.
m

Pour x € F, on peut écrire x = Z x), avec x € Fy, et alors par linéarité,
k=1

m m

u(a) =Y ulwk) = ur(wr)
k=1

k=1

ce qui détermine entierement u.

Synthese / Existence :
m

Considérons I’ application qui a x = E xy (avec xp € F} ) associe
k=1

u(w) =Y uk(ar)
k=1

On vérifie aisément que u est linéaire et que sa restriction a Ey, vaut uy.
O

Corollaire

Si deux applications linéaires sont égales sur chacun des espaces F; alors elles sont égales

sur .

Exemple On suppose la supplémentarité

E=Faod

On appelle projection vectorielle sur F' parallelement & G I’endomorphisme p € L£(FE) déterminé par

Ve e F,p(z) =xetVa € G,p(x) =0g

L’endomorphisme p vérifie
p’=p,Imp=Fetkerp=G

Remarque Inversement, si p est un endomorphisme p vérifiant p® = p alors
a) F' = Imp et G = ker p sont des sous-espaces vectoriels supplémentaires de F ;
b) p est la projection sur F' parallelement a G.

3.4.7 Rang d’une application linéaire

Définition
On appelle rang d’une application linéaire u la dimension de son image

rgu = dim Imu
def
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Proposition

Soitu € L(E, E') avec dim F < +o00
On argu < dim E avec égalité si, et seulement si, u injective.

dém. :
Introduisons (eq, ..., e,) une base de E avec n = dim F
rgu = dim Imu = dim u(FE), or

u(E) = u(Vect(eq,...,e,)) = Vect(u(er),...,ulen))

Par suite rgu < n avec égalité si, et seulement si, (u(e1), ..., u(e,)) est libre i.e. u injective.
(]

Proposition
Soitu € L(E, E") avec dim E’ < +00
On argu < dim E’ avec égalité si, et seulement si, u surjective.

dém. :
rgu = dim Imu avec Imu C F.
Par suite rgu < dim F avec égalité si, et seulement si, Imu = F'i.e. u surjective.
O
Théoréme
Soitu € L(E,E')etv € L(E',E").Ona

rg(v o u) < min(rgu, rgv)

dém. :

rg(vou) = dimIm(vou) = dimv(u(E)).

D’une part, v(u(E)) = Imvjy(p) donc 1g(v o u) = rg v|, ) < dimu(E) = rgu.
D’autre part, v(u(E)) C v(F) = Imv donc rg(v o u) < rgv.

]

Corollaire
On ne modifie pas le rang d’une application linéaire en composant celle-ci avec un isomor-
phisme.

dém. :

Si ¢ est un isomorphisme alors

rg(pou) <rguetrgu =1g(p " o pou) <rg(pou)
Ainsi rgu = rg(p o u) et de méme rgu = rg(u o ©)
O
3.4.8 Théoréme du rang

Théoréme
Siu € L(E,E’) etsi S est un sous-espace vectoriel supplémentaire de ker u dans E alors F
induit un isomorphisme de S' sur Imu.

dém. :
Considérons la restriction v : S — Imu définie par v(x) = u(x).
L application v est bien définie et linéaire.
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Pour € kerv,onax € kerunN S = {0g} donc z = O0p. L’application linéaire v est injective.
Pour y € Imu, on peut écrire y = u(x) avec © € E. On peut aussi écrire = a + b avec a € keru et
b€ S.Onaalors
y = u(z) = u(a) + u(b) = 0p +v(b) = v(b)
Ainsi v est surjective et ¢’est donc un isomorphisme.
O

Corollaire
Sidim F < +oo alors
dim E = rgu + dimker u

Exemple Les hyperplans sont par définition les noyaux des formes linéaires non nulles : ils
correspondent aussi aux sous-espaces vectoriels de dimension n — 1.

Supposons dim E' = n € N* et considérons ¢ € L(E, K) une forme linéaire non nulle.
Onalmy = Ketdonc dimkerp =n —1

Un hyperplan de E est donc un espace dimension n — 1.

La réciproque est aussi vraie.

Exemple On peut retrouver la formule de Grassman en appliquant la formule du rang a 1’application
F x G — F + G définie par (z,y) — = + y.

3.4.9 Théoreme d’isomorphisme

Théoreme
On suppose
n=dmF =dimF < 40

Pour f € L(E, E'), on a équivalence entre :
(1) f est un isomorphisme ;

(ii) f est injective;

(iii) f est surjective ;

(iv)rgf =n;

(v)3ge L(E',E),go f =1dg;

(viy3h € L(E',E), foh =1dg.

De plus, si tel est le cas

dém. :

(i) < (ii) et (iii)

(i) = (iv) carrgf = dim F — dimker f = n.

(iv) = (iii) car rgf = n = dim F donc f surjective.
(iii)) = (ii) car dimker f =dim F —rgf =n—n =20
(i) = (v) et (vi) ok

(v) = (ii) car g o f injective entraine f injective.

(vi) = (iii) car f o h surjective entraine f surjective.

O

http://mp.cpgedupuydelome.fr 80 @O0



CHAPITRE 3. ESPACES VECTORIELS

Corollaire
] Sidim E' < +o00, ce qui précede permet de caractériser les automorphismes de F.

Exemple Soit ag, ..., a, des éléments de K deux a deux distincts.
L application ¢ : K, [X] — K" définie par

p(P) = (P(ao), -, Plan))

est un isomorphisme de K-espaces vectoriels.
En effet, ¢ est évidemment linéaire et

dimK, [X] =n+1=dimK""™ < 40

Soit P € ker . Ona P(ag) = ... = P(a,) =0.

Ainsi, le polyndme P admet au moins n + 1 racines, or deg P < n donc P = 0. Ainsi ker ¢ = {0} puis,
par le théoreme d’isomorphisme, ¢ est un isomorphisme.

En conséquence

Y(bo,...,by) € K" 3P € K, [X],Vi € [0,n], P(a;) = b;

Pour décrire, un polynéme P solutions, on introduit

Ona (L) = ey, avec (e, - . ., e,) la base canonique de K"+,
Par linéarité, le polyndme P € K,, [X] vérifiant

est

3.5 Structure d’algebre

3.5.1 Définition

Définition
On appelle K-algébre tout quadruplet (A, +, X, .) formé d’un ensemble A, de deux lois de
composition internes +, x sur A et d’un produit extérieur opérant de K sur A vérifiant :
(1) (A, +,.) est un K-espace vectoriel ;
(2) (A, +, x) est un anneau ;
B)VAe K, Vz,y € A, (Ax)y = A(zy) = z(\y).

Exemple K, K [X], F(X,K) sont des K-algebres commutatives.

Exemple M, (K) et L(E) sont des K-algebres.
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Remarque Si L est un sous-corps de K alors toute K-algebre est aussi par restriction une L-algebre.

Exemple C est une C-algebre, mais aussi une R-algebre.

3.5.2 Sous-algebre

Définition
On appelle sous-algebre d’une K-algebre A toute partie B de A vérifiant :
1)14 € B;
VN peK Ve, y € B, \x + puy € B;
3)Ve,y € B,xy € B.

Remarque sous-algebre = sous-espace vectoriel + sous-anneau.

Exemple Soit I un intervalle de R et & € N U {co}.
L’ensemble C*(I,K) est une sous-algebre de F (I, K).

Exemple R = F(N,R) est une R-algbre.
C = {(un) € RY/(uy,) converge} est une sous-algebre de R".
Co = {(un) € R"/u, — 0} n’est pas une sous-algebre de R" car ne contient par la suite (1),,en.

Exemple Soitu € L(E).
L'ensemble C = {v € L(E)/uov = v ou} est une sous-algébre de L(E).

Théoréme

Une sous-algebre est une K-algebre pour les lois restreintes possédant les mémes neutres.

dém. :
C’est un sous-espace vectoriel et un sous-anneau et la propriété calculatoire 3) est évidemment conservée.
O

3.5.3 Morphisme d’algebres

Définition
Soit A et A’ deux K-algebres. On appelle morphisme d’algebres de A vers A’ toute application
o : A — A vérifiant :
Dp(la) =1ar;
2)VA pe KV, y € A, oAz + py) = ¢(z) + ¢(y) ;
3) Va,y € A p(zy) = p(x)o(y).

Remarque morphisme d’algebre = application linéaire + morphisme d’anneaux.
Le noyau d’un morphisme d’algebre est en particulier un sous-espace vectoriel et un idéal.
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Exemple L’application z € C — Z est un morphisme de la R-algebre C dans elle-méme.

Exemple Pour P € GL,,(K), I'application M ~ PM P~ est un morphisme bijectif de la K-alggbre
M,,(K) dans elle-méme.
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Chapitre 4

Calculs matriciels

La théorie sur les matrices présentées en MPSI dans le cas ou le corps de base est R ou C s’étend pour
I’essentiel au cas ou le corps de base est un corps quelconque.
On se limite cependant dans ce cours au cas ou K est un sous-corps de C: K = C,R,Q, ...

4.1 Calcul matriciel
4.1.1 Matrices rectangles

Définition

On note M,, ,,(K) I’ensemble des matrices de type (n, p) a coefficients dans K i.e. I’ensemble
des familles A = (a; j)1<i<n,1<j<p 4°éléments de K. Une telle matrice est généralement
figurée par un tableau

al,l . e al,p
A=| o] € Map(K)
an71 . e an,p
Exemple On note
0 0
E;,;= 1 € M, »(K)
0 0

appelée matrice élémentaire d’indice (i, j) de M,, ,,(K).

Théoreme
M., »(K) est un K-espace vectoriel de dimension np et d’élément nul O,, ,,.
La famille des matrices élémentaires (E; ;)1<i<n,1<j<p €St une base de M, ,(K)

Définition
Pour A = (a;;) € My p(K) et B = (b ) € M, 4(K), on pose AB = (¢; 1) € My 4(K)
avec
P
Cik ;fz; a;i bk
Jj=

85
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Exemple Pour
ail - Qip T
An,1 0 Gnp Tp

on a
a1 + -+ apTp

AX =

Ap1%1 + 0+ AnpTp

Exemple Pour E; ; € M,, ,(K) et E, o € M,, (K),ona E; ; X E ¢ = 6;1F; ¢.

En effet,

-sij # kalors E; j X Ey ¢ = Oy, 4 car les 1 ne se croisent pas.

-sij=kalors E; jE o = E; o € My, ¢(K) car les 1 se croisent lors du calcul du coefficient d’indice
(i, 0).

On retient Ei’j X Ek’z = 6j,lcEi,£-

Remarque Les opérations matricielles peuvent aussi étre conduites en raisonnant « par blocs » .

Exemple Calcul de A2 pour A = ( (I)" _OI” ) € Ma,(R).
n n

Le produit par blocs se pose comme un produit de matrice a coefficients (en prenant garde a 1’ordre des

facteurs).
2 - I n On _

Exemple Calcul de M X avec

M = < A B > avec A,B,C,D € M,(K)et X = <

X
o L ) avec X1, X2 € M,, 1(K)

Xo

On obtient
MX — ( AX, + BX, )

CX1+ DX,

Exemple Calcul des puissances de

A B
M= < 0, A ) avec A, B € M,,(K) commutant
On a )
s ( A® AB+ BA
M= ( On A2
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Puisque AB = BA, on simplifie

Par récurrence, on montre

4.1.2 Matrices carrées

Définition
] On note M, (K) I’ensemble des matrices carrées d’ordre n a coefficients dans K.

Théoréme
M.,,(K) est une K-algébre de dimension n? de neutres O,, et I,,.
Celle-ci est non commutative des que n > 2.

Exemple L’ensemble D,,(K) formé des matrices diagonales est une sous-algébre commutative de
M, (K).
On observe

A1 (0) 1 (0) A1pi1 (0)

U AN O

Exemple L'ensemble 7} (K) formé des matrices triangulaires supérieures est une sous-algébre de
M, (K).

On observe
/

A1 * p1 * A1pi1 *

"

AN ©  Awm

4.1.3 Problemes de commutation

Proposition

Les matrices commutant avec toutes les matrices de M, (K) sont les matrices scalaires i.e. les
matrices A, avec A € K.

dém. :
Les matrices scalaires commutent avec toute matrice de M, (K).
Inversement, soit A = (a; ;) une matrice commutant avec tout élément de M., (K)

VM € M, (K), AM = MA

Pour M = E; j aveci # j,ona E; ;A = AE; ;.
Or [ELJA] = a; et [AEL]} = ay,j donc Qi = Qj j-

0,J (2%
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Aussi [EWALz = ajq et [AE7J]11 = 0 donc Qj4 = 0.
Ainsi, la matrice A est diagonale de diagonale constante.
O

Proposition
Soit D une matrice diagonale a coefficients diagonaux deux a deux distincts.
Les matrices commutant avec D sont les matrices diagonales.

dém. :
On peut écrire D = diag(Aq, ..., A,) avec Ay, ..., A\, deux a deux distincts.
Pour M = (ml"jhgi’jgn S Mn(K), on a

DM = (X\imi j)1<ij<n €6 MD = (Ajmi j)1<ij<n

et donc

MD =DM < V1 < 1, < ’I’L,()\i —/\j)mi,j =0
Cette derniere condition est vérifiée si, et seulement si, M est diagonale.
O

Remarque Ce résultat peut €tre étendu en raisonnant par blocs : les matrices commutant avec

A0 O
D= 0 X 0 avec \ #
0 0 u
sont les matrices de la forme
a b 0
c d 0
0 0 e

4.1.4 Noyau, image et rang d’une matrice

On identifie les tuples éléments de K™ avec les colonnes éléments de M,, ; (K) via I’isomorphisme

K* — ./\/lnyl(K)
x
x=(x1,...,2) — X=
Tp
Définition
Pour A € M,, ,(K), on appelle application linaire canoniquement associée a la matrice A

I’application u : K? — K" qui a ¢ € KP? associe y € K" définie par

y= Az

Exemple Précisons I’application linéaire canoniquement associée a la matrice

1 2 -1
A:(O L1 )eMg,z(R).
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Par produit matriciel avec la colonne X de coefficients z1, x2, x3, on obtient I’application linéaire
R?® - R?

(£1,$2,$3) — (.231 + 229 — 3,29 + $3)

Définition

On définit le noyau, I’image et le rang de la matrice A par
-ker A =keru = {zr € KP/Az = 0};

-ImA =Imu = {y € K"/3z € KP,y = Az},

-1gA = dim ImA.
Proposition
Si (1, ..., C, désignent les colonnes de A alors

ImA = Vect(Ch,...,C,) etrgA =rg(Cy,...,Cp)

dém. :
ImA = {Az/x € KP} = {2,C1 + - - + 2,Cp /1, ... ,xp € K}
donc
ImA = Vect(Ch,...,C,) puisrgA = rg(C4,...,C))

]
Proposition

VA e M, ,(K),rg(A) < min(n, p),

VA e M,, ,(K),VB € M, ,(K),rg(AB) < min(rgA, 1gB).
dém. :

rgA = rgu < min(dim M, ; (K), dim M,, 1 (K)) = min(p, n)

Notons aussi v et w les applications linéaires canoniquement associées aux matrices B et AB. On vérifie
aisément w = u o v.

rg(AB) = rg(u o v) < min(rgu, rgv) = min(rgA, rgB)

O

Théoreme
On a la formule du rang
rgA + dimker A =p

Exemple Déterminons image, noyau et rang de
1 0
A= 0 1

1
1 GMg(R)
1 -1 0
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On a N 0
T T3 =
A :2 = 8 = m;rxz:O@{xz o
T3 0 x1,x2:0 T3 = —T1
Donc

ker A = {(1‘1, xq, —1‘1)/.%‘1 S R} = Vect(l, 1, —1)

Par la formule du rang rgA = 2.
Puisque les vecteurs
yl = (1,07 1) = Ael, y2 = (1, 1, —1) = A62

appartiennent a I’image de A et puisqu’ils sont aussi indépendantes

ImA = Vect(y1, y2)

4.1.5 Matrices inversibles

Définition
On dit que A € M,,(K) est inversible s’il existe B € M,,(K) vérifiant

AB =BA=1,

Cette matrice B est unique, on I’appelle inverse de A et on la note A~

Exemple Une matrice triangulaire supérieure est inversible si, et seulement si, ses coefficients
diagonaux sont non nuls et alors

-1

ay * 1/aq *
(0) an (0) 1/an
Théoréme
L’ensemble GL,(K) des matrices inversibles de M, (K) est un groupe multiplicatif de
neutre 1,,.
dém. :
C’est le groupe des inversibles de M, (K).
U

Attention: (AB)"'=B"1tA"!

Proposition

] On ne modifie pas le rang d’une matrice en la multipliant par une matrice inversible.

dém. :

Soit P € GL,(K) et A € M,, ,(K).

Onarg(PA) < AetrgA =rg(P~'PA) < rg(PA) puis =.
O
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Théoréme

Pour A € M,,(K), on a équivalence entre :
(i) A est inversible ;

(ii) ker A = {0} ;

(i) ImA = K" ;

(iv)rgA =n;

v)3IB e M,(K),AB=1,;

(vi) 3C € M, (K),CA = 1I,,.

De plus, si tel est le cas

B=C=A"
dém. :
(i) < (iv) est connue et le reste est alors immédiat.
a

Exemple Soit A, B € M,,(K) vérifiant A + B = AB. Montrons AB = BA.
Ona (I, — A)(I,—B)=1,— (A+ B)+ AB = I,, donc I,, — A est inversible d’inverse I,, — B.
Par suite (I,, — B)(I, — A) = I,, donc BA= A+ B = AB.

Exemple Inversons

A

I
o
\
—
—

-1 1 -1
Par la méthode du pivot, on opere sur les lignes d’une matrice de blocs A et I,, pour transformer A en
I,,. On sait qu’alors le bloc I, sera transformé en AL

1 0 1|1 0 O
2 -1 1 (0 1 0
-1 1 -1]0 0 1
1 0 1 1 0 0
0O -1 -1]-2 1 0
0 1 0 1 01
1 0 1 1 0 O
0o -1 -1]-2 1 0
0O 0 —-1|-1 1 1
1 0 1/1 O 0
01 1|12 -1 0
00 1|11 -1 -1
1 0 0j]0 1 1
01 0|1 O 1
0 0 1|1 -1 -1
On conclut
0 1 1
Atl=[1 0 1
1 -1 -1
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4.1.6 Transposition
Définition
Pour A = (a; ;) € My ,(K), onpose ‘A = (af ;) € M, (K) avec

/ f— ..
aj; d—éfaz,J

Remarque Si A = (a; ;); ; alors PA = (@ij)ji-

Proposition
VA, € K,VA, B e M, ,(K)," ANA+ uB) = XA+ u'B
VA € M, ,(K),VB € M, ,(K),"(AB) ='B'A.
VA€ M, ,(K)," (*A) = A
VA € GL,(K),"A € GL,(K) et (*A)”' ="' (47"

Définition
Une matrice M € M,,(R) est dite symétrique (resp. antisymétrique) si ‘M = M (resp.
‘M=-M)

Théoréme

Les ensembles S, (R) et A, (R) formés des matrices symétriques et antisymétriques de
M., (R) sont des sous-espaces vectoriels supplémentaires et
n(n+1)

dim S, (R) = — et dim A, (R) =

n(n—1)
2

4.2 Représentations matricielles

4.2.1 Matrices des coordonnées d’un vecteur

Soit E un K-espace vectoriel de dimension n.
On considere une base ¢ = (e1,...,e,)de E.Ona

Ve e E,I(N,..., ) K"z =Aeg + -+ Apeey

Définition
On note
A1

Mat.(z) = [ : | € My, 1(K)

déf

An

la matrice des coordonnées de = dans la base e.
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Exemple Mat,(e;) = 1 = F;.

Théoreme
L application x — Mat, () est un isomorphisme du K-espace vectoriel E vers M,, 1 (K).

Définition
Soit z1,...,x, € E. On note

Mat, (21, ...,2p) € My ,(K)
la matrice dont les colonnes sont

Mat.(z1), ..., Mat.(x,)

Exemple Mat.e = (Ey | ... | E,) = I,.

Proposition
| Si A=Mat(21,...,2,) alors igA = rg(z1,...,2p).

dém. :
Notons ¢ I’isomorphisme z € E — Mat,(x).
Les colonnes C1, . . ., C,, de A sont données pas C; = ¢p(x;).
rgA =rg(Ch,...,Cp) = dim Vect(Ch, ..., C)p)
donc

rgA = dim Vect(¢(z1), . .., p(zp)) = dim p(Vect(z1, ..., xp))

Mais I’application ¢ est un isomorphisme donc

rgA = dim p(Vect(x1, ..., zp)) = dim Vect(z1, ..., xp) = 1g(21,...,Tp)

O

4.2.2 Matrice d’une application linéaire

Soit E' et F' des K-espaces vectoriels de dimensions p et n.
On consideres deux bases e = (eq,...,ep) et f = (f1,..., fn) des espaces E et F.

Définition
Pour v € L(E, F), on note

Mat, f(u) ngatf (u(er),...,ulep)) € My »(K)

la matrice de I’application linéaire u relative aux base e et f.
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Exemple Soit ag, ..., a, € K deux a deux distincts.
Etudions quelques représentations matricielles de I’application linéaire ¢ : K,, [X] — K" "' définie par

¢(P) = (P(ao), .., P(an))

Soit (1, X,...,X") etc = (cg,...,c,) les bases canoniques de K,, [X] et K™,
Formons
A =Mat x,.. xn).c(®)

Ona p(X*) = (af,...,al) donc

k
Qg
k
Mat.((X")) =
ay
et alors

1 ay a? ag
1 a a% ay
A= ) :
1 a, a2 an

Soit (Lo, . . ., L, ) la base de K,, [X] formée des polyndmes d’interpolation de Lagrange en ay, . . . , .
Puisque ¢(Ly) = ¢k, la matrice de ¢ dans (Lo, ..., L,) et Cest I, ;1.

Exemple Soit A € M,, ,(K). La matrice de I’application linéaire canoniquement associée a A dans les
bases canoniques de K? et K™ est A.
En effet, 0 4(e;) = Ae; correspond a la j-éme colonne de A.

Théoréme
Soitu € L(E, F).
La matrice Mat,_s(u) est I'unique matrice A € M,, ,(K) vérifiant

Vee EVye Fly=u(z) &Y = AX

avec A = Mat, (u) X = Mat.(z) et Y = Mat;(y).

Théoréme
L’application u € L(E,F) +— Mat. ¢(u) € M, ,(K) est un isomorphisme de K-espaces
vectoriels.

4.2.3 Matrice d’'un endomorphisme

Soit F un K-espace vectoriel de dimension n.
On considere e = (eq, ..., e,) une base de E.
Définition
Pour u € L(E), on note
Mat, (u) d:,fMatqe(u) € M, (K)
€

la matrice de I’endomorphisme « dans la base e.
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Exemple Mat.(Idg) = I,,.

Théoreme
| Lapplication u € L(E) — Matc(u) € M, (K) est un isomorphisme de K-algebres.

4.2.4 Transport du vectoriel au matriciel

Soit E et F' deux K-espaces vectoriels de dimension p et n munis de bases e et f.

Vecteur Matrice colonne
ASD X € M,1(K)
0 Opa

A+ pa’ AX + pX’
Application linéaire Matrice rectangle
u€ L(E,F) Ae M, ,(K)
0 Onp

y = u(x) Y =AX
Au+ pv A+ uB
U0V AB

u isomorphisme, u~* | A inversible, A~
Imu, ker u et rgu ImA, ker A et rgA
Endomorphisme Matrice carrée
u € L(E) A e M,(K)
Idg I,

u'fl/ An

u € GL(E), u? A€GL,(K), A"
detu det A
Formes linéaires Matrice ligne
v € E* L e My ,(K)
y=¢) ek (y) = LX

Exemple Déterminons les endomorphismes d’un K-espace vectoriel £/ de dimension n commutant
avec tout autre endomorphisme.

Soitu € L(E).

Considérons e une base de F et A = Mat,(u) € M, (K).

u commute avec tout endomorphisme de F si, et seulement si,

VB € M,(K), AB = BA

i.e. A scalaire. Ainsi, les endomorphismes recherchés sont les homothéties.

Exemple Calcul des puissances de

0 0 1
| (0)
(0) 10
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On introduit £ = K" et u ’endomorphisme canoniquement associé a .J.
Onau(er) = eq, u(ea) = es,..., ulen—1) = e, etule,) = e;.

On en déduit uk(ei) =erpavece, =ejsii=j [n].

On peut alors exprimer J*.

4.2.5 Formules de changement de bases
4.2.5.1 Matrice de passage

Soit F un K-espace vectoriel de dimension n.

On considere e et ¢’ deux bases de E.

Définition

On appelle matrice de passage de e a ¢’ la matrice

P = Mat.e’ € M,,(K)

€

Proposition

’ ’ -1
P¢ = Mato . (Idg) € GL,, (K) et (P; ) = Pr

€

4.2.5.2 Nouvelles coordonnées d’un vecteur

Théoreme
Si P est la matrice de passage d’une base e i une base €’ d’un K-espace vectoriel E alors

Vo € E,X = PX’

avec X = Mat.(z) et X' = Mat/ ().

dém. :

Mat,(z) = Mat, (Idg(z)) = Mates .(Idg) x Mate/(z) = PX’
O
4.2.5.3 Nouvelle matrice d’une application linéaire

Théoreme
Si P est la matrice de passage d’une base e a une base ¢’ d’un K-espace vectoriel E et si ) est
la matrice de passage d’une base f 4 une base f’ d’un K-espace vectoriel F alors

Vu e L(E,F),A' =Q 'AP

avec A = Mat, ¢(u) et A’ = Matos f/(u).

dém. :
Soitx € Eety € F. On note

X = Mat.(z), X' = Mat (z), Y = Mats(y) et Y' = Maty (y)
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OnaX =PX'etY = QY. Siy = u(z) alors
Y=AXetY' = A'X'

donc AX = QA’ X’ puis
AX =QA'P'X
Or ceci doit étre valable pour toute colonne X donc

A=QA Pt

O
Corollaire
Ona
Vu e L(E),A' =P 'AP

avec A = Mat,(u), A’ = Mat. (u).

4.2.6 Matrices équivalentes
Définition
On dit qu’une matrice A € M,, ,(K) est équivalente & une matrice B € M,, ,(K) s’il existe

P € GL,(K) et Q € GL,(K) telles que

B=Q AP

Exemple Les matrices d’'une méme application linéaire sont équivalentes.

Proposition
] L’équivalence de matrice est une relation d’équivalence sur M,, ,,(K).

Théoreme
Soit A € M,, ,(K) et € Navec 0 < 7 < min(n, p).

rgA = r & Aestéquivalente a J,.

avec

I, Or, —r
J'r = ( O ‘ L ) € Mn,P(K)

n—r,r ‘ Onfr,pfr

dém. :

(<) Carrg(J,-) = r et I’on ne modifie pas le rang en multipliant par des matrices inversibles.
(=) Soit F et F' deux K-espaces vectoriels de dimensions p et n munis de bases e et f.

On considere u € L(E, F') déterminée par

Mat&f (U) =A

Sir =rgA alors r = rgu et donc dimkeru = p — r.
Soit G un supplémentaire de ker u dans E :

E=G®keru
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avecdim G = r.

Soit une base ¢’ = (e3,..., €y, €.,1,...,¢,) adaptée a la décomposition E = G @ ker u.
L application u|g : G — Imu est un isomorphisme de K-espaces vectoriels.
Posons

f{ :u(ell)""vf; :u(e/r)

La famille (fy, ..., f,) est base de Imu, on peut la compléter en une base f' = (fy,..., f,) de F.

On obtient Mat, /(u) = J, donc A et J, sont équivalentes car représentent la méme application linéaire.
O

Corollaire

] Deux matrices sont équivalentes si, et seulement si, elles ont le méme rang.

Exemple Soit A € M, (K) de rang 1.
Montrons qu’il existe X, Y € M,, ;(K) tels que A = Y'X.
(1) Analyse : Si A = Y X alors

T1Yy1 0 Tala
A= : =(x1Y...2,Y)

T1Yn T TnYn

et donc les colonnes de A sont colinéaires a une méme colonne Y, les coefficients de colinéarité formant
la matrice X.

Synthese :

rgA = 1 donc ImA est une droite vectorielle.

Soit Y # 0 élément de ImA :

ImA = VectY
Notons (', . .., C), les colonnes de A.
Puisque C1,...,Cy € ImA, il existe z1, ..., 2, € Ktels que C; = z;Y.
Pour ' X = ( Ty -+ Tp ),ona
YiIX=(C -+ Cp)=A

(2) A est équivalente a J; donc on peut écrire
A= QJ,P avec P,Q € GL,(K).
On observe que J; = F1'Eydonc A=Y'X avecY = QFE et'X ='E,Pie. X ='PE,.

4.2.7 Matrices semblables

Définition
On dit qu’une matrice A € M,,(K) est semblable a une matrice B € M,,(K) s’il existe
P € GL,(K) telle que
B =P 'AP

Exemple Les matrices d’'un méme endomorphisme sont semblables.
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Exemple Si A est semblable a une matrice scalaire AI,, alors il existe P € GL,,(K) telle que
A= P Y(\I,)Petdonc A= \P~'P = \I,.

Proposition
] La similitude définit une relation d’équivalence sur M., (K).

Proposition

Deux matrices semblables sont équivalentes et ont donc méme rang.
La réciproque est fausse.

Protocole :

Pour montrer qu’une matrice A de M, (K) est semblable a une matrice B simple, il est fréquent de
transposer le probleme en termes vectoriels.

- on introduit u I’endomorphisme canoniquement associé a la matrice A ;

- on détermine (souvent par analyse-syntheése) une nouvelle base de K™ dans laquelle u est représenté
par B.

Exemple Soit A € M,,(K) telle que A" ™' # O et A™ = O.
Montrons que A est semblable a

0 (0)
s_| 1
(0) 1 0

Soit u I’application linéaire canoniquement associée a la matrice A.
Onau" =0etu" ! #0.

Déterminons une base e = (eq, ..., e,) de K" dans laquelle u est représenté par B.
Analyse :

Supposons e = (ey, ..., e,) convenable.

Onau(e;) =eg,...,ulen—1) = ey etu(e,) = 0g.

On en déduit e; = u(er), e3 = u?(e1),..., en = u™ (ey).

Notons que la propriété u(e,,) = 0 sera obtenue et que nécessairement e, ¢ ker u" ™' pour que e,, # 0.
Synthese :

Soite; & keru" " tete = (e1,...,e,) avec ey = u(ey), es = u>(e1)s..., en = u
Onau(er) =es, ..., ule,—1) = e, etu(e,) = 0g.

Il reste a montrer que e est une base de F.

Supposons A\je; + Ases + -+ + Ape, = 0p.

Ona\e; + dou(er) + -+ A\u""er) = 0p.

En appliquant f plusieurs fois, on obtient successivement

Auler) + -+ + )\n,lu"_l(el) =0g,..., Alu"_Q(el) + )\gu"_l(el) =0get Alu"_l(el) =0g.
Or u”_l(el) # 0p donc on résout le systeme triangulaire formé pour obtenir A\; = ... = A, = 0.

Finalement, e est une famille libre formée de n = dim F vecteurs de F, ¢’est donc une base de E.

nfl(el).
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4.2.8 Traces

4.2.8.1 Trace d’une matrice carrée

Définition
On appelle trace d’une matrice A = (a; ;) € M, (K) le scalaire

trA=a11+ -+ ann

Proposition
La trace définit une forme linéaire non nulle sur M,, (K).

dém. :
On vérifier aisément que I’application trace est linéaire et non nulle.
O

Exemple L’ensemble des matrices de trace nulle de M, (K) est un hyperplan car noyau d’une forme
linéaire non nulle.

Théoréme

VA e M, ,(K),VB € M,, ,(K), tr(AB) = tr(BA)

dém. :
Introduisons les coefficients des matrices A et B: A = (a; ;) € M, ,(K) et B = (b;,;) € M, »(K).
Les matrices AB et BA sont carrées donc on peut calculer leur trace et on a

n n p
tr(AB) = Z [AB]Z’l = ZZ al-’jbj,i
i=1 i=1j=1
et
p n
tI'(BA) = Z [BA]j,j = Z bmai,j
j=1 j=1i=1
En permutant les deux sommes, on obtient tr(BA) = tr(AB).
d
Corollaire
Deux matrices semblables ont méme trace.
dém. :
Si B=P 'APalorstrtB =tr (P~ (AP)) =tr (AP)P™') =trA
O

4.2.8.2 Trace d’un endomorphisme

Définition
On appelle trace d’un endomorphisme d’un K-espace vectoriel de dimension finie la trace
commune aux matrices représentant cet endomorphisme.
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Exemple tr(Idg) =n =dim E

Théore

me
La trace définit une forme linéaire sur £L(E) vérifiant

Yu e L(E,F),Yv € L(F,E),tr(uov) =tr(vou)

Théore

me
Si p est une projection vectorielle d’un K-espace vectoriel £ de dimension finie alors

trp = 1gp

dém. :
On sait

E =Imp @ kerp

Dans une base adaptée a cette décomposition, la matrice de p est de la forme

(59)

avec r = dim Imp = rgp. Par suite trp = rgp.

O

4.3

4.3.1
4.3.1.1

Déterminants

Définitions

Déterminant d’une matrice carrée

Définition

On appelle déterminant d’une matrice A = (a; ;) € My, (K) le scalaire

detA;c Z (o) gag(i),i

ceS,

encore noté
aii e Q1n

an,1 -« Qpn [n]

Exemple Un déterminant d’ordre O vaut 1.

Exemple Un déterminant d’ordre 1 est égal a son coefficient.
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Exemple Un déterminant d’ordre 2 se calcule par un produit en croix

a b

¢ d =ad — bc

Exemple Un déterminant d’ordre 3 peut se calculer par la régle de Sarrus.

Exemple Si A = (a; ;) € T, (K) alors det A = H @i

i=1
n

En effet, pour ¢ > j, a; ; = 0 donc H ay(i),; = 0 deés qu’il existe ¢ vérifiant o'(i) > 1.

i=1
En simplifiant les termes correspondants de la somme définissant le déterminant, il ne reste que les
permutations o vérifiant

Vie{l,...,n},o(i) <i

Or pour une telle permutation (1) < 1 donc o(1) = 1 puis 0(2) < 2 donc 0(2) = 2 car o est injective,
etc. Au final 0 = Id et il ne reste qu’un terme dans la somme donnant le déterminant de A d’ou la
formule.

Proposition
VA € My (K), det ("A) =det A
et donc .
det A = Z 5(0’) H ai)g(i)
oe6, i=1
Théoréme
Pour tout 4, B € M,,(K)
det(AB) = det(A). det(B)
De plus A est inversible si, et seulement si, det A # 0 et alors det A"t =1 /det A.

Attention : det(A+ B) =77 et det(AA) = A" det A.

Corollaire
SL,(K) = {4 € M,(K)/det A =1} est un sous-groupe de (GL,,(K), x) appelé groupe
spécial linéaire d’ordre n.

dém. :
SL,,(K) est le noyau du morphisme de groupes GL,, (K) — K* qui envoie A sur det A.
O

Corollaire
] Deux matrices semblables ont méme déterminant.

dém. :
Si B =P 'AP avec P € GL,(K) alors det B = det P~! det Adet P = det A.
O
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4.3.1.2 Déterminant d’un endomorphisme

Soit F un K-espace vectoriel de dimension finie n € N*.

Définition
On appelle déterminant de u € L(E) la valeur commune des déterminants des matrices repré-
sentant I’endomorphisme u .

Exemple det(Idg) = det(1,,) = 1.

Théoreme
Pour tout u,v € L(E),
det(uov) = detudetv

De plus, u est inversible si, et seulement si, det u # 0 et alors det u =1 /det u.

Corollaire
SL(E) = {u € L(F)/detu =1} est un sous groupe de (GL(E), o) appelé groupe spécial
linéaire de E.

4.3.1.3 Déterminant d’une famille de vecteurs

Soit £ un K-espace vectoriel de dimension n € N* muni d’une base e = (eq, ..., ep).
Définition
On appelle déterminant dans la base e de la famille (x4, . .., x,) de vecteurs de F le scalaire

dete(z1,...,Tn) Efdet Mat.(z1,...,2,)

Exemple det. e = det Mat.e = det [, = 1.

Proposition
Sie’ = (e],...,e,) est une autre base de E alors
dete(x1,...,2,) = dete e’ dete (21, ..., 2,)
dém. :
Soit P la matrice de passage de e a ¢’ et A = Mat.(x1,...,2,), A = Mate (z1,...,2,).

Notons X7, ..., X, les colonnes de A et X1,...,X] cellesde A'.
Par formule de changement de bases : X; = PX donc A = PA’.
En effet

PA=P(X{ - X, )=(PX{ - PX,)=(Xi - X,)=4

Par suite det A = det P det A’ puis la relation proposée.
O
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Théoreme
L application
E" =K
(x1,...,2pn) — dete(x1, ..., 20)
est une forme n-linéaire alternée (donc antisymétrique)
De plus, la famille (z1, ..., z,) est une base de FE si, et seulement si, det.(z1,...,z,) # 0.

Rappel :
Pour ¢ : E™ — F multilinéaire :
alternée signifie :

H#jx=x; = o(x1,...,2,) =0p

antisymétrique signifie :
%0(550(1)7 oo awg(n)) = E(U)Qp(xla cee 7117”)

pour tout 0 € S,.

Remarque Soit A € M,,(K) de colonnes C1,...,C, € M, 1(K).
On introduit B = (E1, ..., E,) la base canonique de M, 1 (K).
La matrice des coordonnées dans B d’une colonne C; est exactement C;.
Il en découle
A= MatB(Cl, cey Cn)

puis
det A = detg(Cy,...,Ch)
Ainsi, le déterminant d’une matrice est une forme n-linéaire alternée de ses colonnes.

Par transposition, on peut aussi dire que le déterminant d’une matrice est une forme n-linéaire alternée
de ses lignes.

Exemple Pour n > 3, calcul de

1 0 1
D,, = 0
(1) 1 [n]

1 0 1 1 (0) 1 0 1
(1) Ul 1 . (1) 0

car le dernier déterminant présente deux lignes identiques.
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4.3.2 Opérations élémentaires sur les déterminants

Théoreme
Les transvections C; + C; + ACj et L; < L; + AL; ne modifient pas le déterminant.
Les dilatations C; «— aC; et L; < «L; multiplient par « le déterminant.
La permutation des lignes ou des colonnes d’une matrice selon une permutation ¢ multiplie
son déterminant par €(o).

dém. :
Lapplication det (g, ... g, ) €tant une forme lin€aire alternée et antisymétrique

det(El _____ En)(Ch...,Ci—i—)\Cj,...,Cn):det(El _____ En)(Cl,...,Ci,...,Cn)+)\det(El ''''' En)(Cl,...,Cj,...

puis

det(El _____ En)(Cl,...,Ci—i—)\Cj,...,Cn):det(El 7777 En)(Clw--;Ci;“an)

car le déterminant multipliant A possede la colonne C; positionnée aux indices ¢ et j.
det(El,,..,E")(Cla conaCy, . On) = adet(El,...,En)(Clv e Ciyll Cn)

et
det(Eh...,En)(Co(l)a ey Cg(n)) =¢e(o) det(El,...,En)(Clv o Ch)

On obtient les relations analogues sur les lignes.
O

Attention : L’opération C; < C; + AC; modifie le déterminant : ¢’est la combinaison de deux
opérations élémentaires.

Attention : Les opérations élémentaires sont a réaliser successivement et non simultanément. Les

opérations C7 < C7 + Cs et Cy < C7 + C5 transforment ( (1) (1) > en < i ; ) et non
en 1 1
1 1)

Exemple Calcul de

1 11 1
1 2

1 2 3 3
1 2 3 .. n

En retranchant a chaque ligne la précédente (en commencant par la derniere)

11 1 1
1 2 2 2 1 1
1 2 3 3| _ —1

: 0 1
1 2 3 n
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Exemple Soit a,b € K, n > 2. Calculons

a b
D, =
b @ |
En ajoutant toutes les colonnes a la premiere
a+(n—-1)0>b b b
a+(n—1)b ()
D, = .
a+(n—=1)b (b) a
En retranchant la premiere ligne a chaque autre
a+Mm-1b b - b
0 a—b (0)
D, =
0 (0) a—1b

Finalement

Remarque On peut aussi raisonner par blocs comme dans 1’exemple ci-dessous.

Exemple Pour A, B € M,,(K), expression du déterminant de ( g i > € My, (K).
Via les opérations C; <~ C1 + Cr41,...,Cp < Cp + Cop,

A B\ A+B B
det(B A)_det(B+A A)

Via les opérations L,y < L4171 — L1,..., Loy < Loy — Ly,
A B A+ B B
det(B A>det< 0 A_B)det(A+B)det(AB)

Si A et B commutent, on obtient

det(g

= W

) = det (A2 — B?)
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4.3.3 Développement d’un déterminant selon une rangée
Soit A = (ai’j) € Mn(K)

Pour i,j € {1,...,n}, on appelle mineur d’indice (¢, j) de A le scalaire
a1 - Gl
Aij = Qi
Qn,1 e An,n [n—1]

et cofacteur d’indice (i, j) de A le scalaire

a1,1 o a1,n
Aij = (=1)" x

)

@i,

Qn,1 o Qn,n [n—1]

Théoreme
Développement de det A selon sa i-¢me ligne :

Développement de det A selon sa j-éme colonne :

n

det A = Zai_jAm = Z (*1)i+jai,in,j
=1

i=1

Remarque Le signe de (—1)"™7 est donné par le tableau

+ - + (-1 +t
— + —
+ - +
(_1)n+1 +
Exemple Pour n > 2, calcul de
1 - 1
Pr=lt ()
1 () 1 (n]
En développant selon la derniere ligne
1 1
(0) 0
D, = (-1)"*! + D,
(0) 1 0 (n—1]
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En permutant les colonnes selon le cycle o = ( 1 2 -+ n-1 )
T |
D, = (_1)n+1 % (_1)n—2 « (O) +D,.1=—-1+D,_4
(0) 1 [n—1]

Puisque Dy = 2, on obtient D,, = 2 — n.

4.3.4 Déterminant tridiagonal

Exemple Soit a, b, c € K. Calcul de

a b (0)
D o—| ¢
b
(0) ¢ a |,
En développant selon la premicre colonne,
0 0
a b (0)

D,=aD,_1—¢c| 0 ¢ a

[n—1]

puis en développant le second déterminant selon la premiere ligne,

D, =aD,_1 —bcD, _5

Ainsi, (D,,) est une suite récurrente linéaire d’ordre 2.

Rappel :
On appelle suite récurrente linéaire d’ordre 2 toute suite (uy, )nen € KN vérifiant

¥n € N, s + piinit + qup = 0

avec (p,q) € K x K*.
Pour exprimer son terme général, on introduit I’équation caractéristique associée

24+ pr4+q=0

de discriminant A.

Cas K =C.

Si A # 0:2racines 71,72 et u, = Ar]’ 4+ ury avec A\, u € C.

Si A =0: 1 racine double r et u, = (An + pu)r™ avec A\, u € C.

Cas K =R.

Si A > 0ouA = 0:semblable avec A\, 4 € R.

Si A < 0: 2 racines conjuguées re* et u,, = (Acos(nf) + psin(nd)) r™ avec \, u € R.
Dans chaque cas, A, p se déterminent 2 partir des deux rangs initiaux de la suite (u, ).
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4.3.5 Déterminant de Vandermonde

Pouray,...,a, € K, on pose
2 -1
1 a1 a7 ay
Valai,..,an) =] ¢ :
2 -1
1 ap, aj ay
Théoreme
Vn(ala 7an) = H (aj az)
1<i<j<n
dém. :
Par récurrence sur n > 1.
Casn=1:0k
Supposons la propriété vraie au rang n > 1.
Soitay,...,an,any1 € K
Cas:lesaq,...,a, ne sont pas deux a deux distincts
Vagi(ai, ... an,0p11) =0 = H (aj —a;)
1<i<j<n+1
Cas:lesay,...,a, sont deux a deux distincts.
Considérons la fonction
frx—=Vor(ar,... an, )
En développant selon la derniere ligne
n
fl@)=ar+ a1z + -+ "™ avec ay, = Vy(aq, ..., an)
Or f(z) = 0pour x € {ay,...,a,} car le déterminant comporte deux lignes égales.

On peut donc factoriser le polynéme

et ainsi on affirme

Récurrence établie.
O

4.3.6 Comatrice

Définition
On appelle comatrice de A € M,,(K) la matrice des cofacteurs de A, on la note

comA ;;(Ai,j)lgi,jgn € M, (K)
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Théoréeme

VA € M, (K)," (comA) A = A" (comA) = det(A)I,

dém. :

[t(comA)A] i = ZA;,kak,j = Zak,jAk,i = det A.5i7j
k=1 k=1

car se comprend comme le développement selon la ¢-eéme colonne de la matrice obtenue en remplagant
dans A sa i-eme colonne par sa j-¢me colonne.
O
Corollaire
Si A € GL,,(K) alors

_ 1
ATt = detAt(comA)

4.3.7 Musculation

Soit A € M,,(K). Etudions rg(comA).
SirgA = n alors A est inversible donc ‘com A aussi puis

rg(comA) =n
Rappel : Le rang d’une matrice est 1’ordre maximal des matrices carrées inversibles extraites de celle-ci

SirgA < n — 2 alors aucune matrice carrée d’ordre n — 1 extraite de A n’est inversible. On en déduit que
tous les mineurs de A sont nuls et donc comA = O,, puis

rg(comA) =0

SirgA = n — 1 alors A‘comA = O,, donne
Im‘comA C ker A

Or dim ker A = 1 donc rgcomA < 1.
Or comA # O,, car A posséde un mineur non nul puisque la matrice A posseéde une matrice extraite
carrée d’ordre n — 1 inversible. On conclut

rg(comA) =1
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Chapitre 5
Réduction géométrique

K désigne un sous-corps de C et E un K-espace vectoriel.

5.1 Sous-espaces stables

5.1.1 Définition

Définition
Un sous-espace vectoriel F' de E est dit stable par u € L(F) siu(F) C F i.e.

Vo € F,u(x) € F

Exemple {0z} et [ sont stables par u.
F est stable par 0, par Idg et, plus généralement, par Aldg pour tout A € K.

Exemple £ = K[X],D: P+ P, D e L(K[X])
K,, [X] est stable par D.
En effet,
VP € K[X],deg P’ < deg P

Exemple E =R", T : (u,) = (un41), T € L(RY).
Le sous-espace vectoriel B(N, R) des suites réelles bornées est stable par 7.

Proposition
] Si F' et G sont stables par u alors F' + G et F'N G aussi.

dém. :

uw(F+G)=u(F)+u(G) C F+G.
w(FNG) Cu(F)Nu(G) C FNG.
O

Théoréme

] Si u et v commutent alors Imu et ker u sont stables par v.
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dém. :

Pour tout z € ker u, u(v(z)) = v(u(x)) = v(0g) = 0g donc v(z) € ker u.

Pour tout y € Imu, on peut écrire y = u(x) et alors v(y) = v(u(z)) = u(v(x)) € Imu.
U

Exemple Imu et ker u sont stables par u.
Pour A € K, Im(u — Aldg) et ker(u — Aldg) sont stables par w.

5.1.2 Endomorphisme induit

Définition
Si F est un sous-espace vectoriel stable par u € L(F), on peut considérer 1’application res-
treinte up : F' — F' qui définit un endomorphisme de F'. On I’appelle endomorphisme induit
par u sur F'.

Exemple ker u est stable par u, on peut introduire e, ,, €t ’'on a Uker o, = 0.

Exemple Imu est stable par u et on peut introduire ., .
Cependant uy,, peut ne pas étre surjectif.
En fait, wyy,, est surjectif si, et seulement si, Imu? = Imu car Imuyy, = Imu?

Exemple Soit £ =C>®(R,R)et D : f > f'.
F = Vect(cos, sin) est stable par D car D(cos), D(sin) € F et

0 1
Mat(cos,sin)(DF) = ( -1 0 ) = Rfﬂ'/Z

Théoreme
Si F est stable par u et v € L(E) alors pour tout A € K, F est stable par Au, u + v et u o v.
De plus
(M)p =Aup, (u+v)p =up +vpet(uov)p =upovp
dém. :

(Au)(F) = Mu(F) CAF C F.

(u+v)(F) Cu(F)+v(F)CF+FCF.
(wov)(F) =u(v(F)) Cu(F)CF.

Pour tout z € F

(M) p(2) = (Au)(z) = A?)i

(ut+v)p(z) = (u+v)(x) =ulx) +v(z) =up(z (z) = (up +vp)(x).
(DUO v)p(z) = (uov)(z) = u(v(z)) = u(vr(z)) = ur(vr(z)) = (up o vF)(2).
Corollaire

L’ensemble des endomorphismes stabilisant F' est une sous-algébre de L(E) et I’application
u +— up y définit un morphisme d’algebres.
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Proposition

Si F' est stable par u alors

kerup =kerunN FetImup C ImunN F

dém. :
Soit x € kerup.Onax € Fetu(zr) =up(z) =0donc z € kerun F.
Soitz € keruN F.Onaup(z) = u(x) =0donc x € kerup.

Imup C Imu car up est restriction de u et Imup C F car F est stable par u.
O

Remarque Si v est injectif alors up est injectif.

Remarque Si u est surjectif, on ne peut rien dire a priori sur ug.
Par exemple, la dérivation sur K [X] est surjective, mais 1’endomorphisme induit sur K, [X] ne I’est pas.

5.1.3 Visualisation en dimension finie

Ici E désigne un K-espace vectoriel de dimension finie.

Théoréme
Soit F' un sous-espace vectoriel de dimension p muni d’une base f = (eq, ..., e,) complétée
en une base e = (eq,...,e,) de E. Pour u € L(F), on a équivalence entre :

(i) F est stable par u;
(i1) la matrice de u dans e est de la forme

( gl g ) avec A € M, (K)

De plus, si tel est le cas, A est alors de la matrice de ux dans la base f.

dém. :
(i) = (i) Supposons F stable par u. On peut introduire A = Mat;(up) = (a; ;) etona

P
VI<j<poule) =Y aije;
=1

et alors la matrice de u dans e est de la forme

a],l .. al,p

T "

(ii) = (i) Supposons la matrice de u dans e de la forme

(6¢)
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5.2. ELEMENTS PROPRES

avec A € M, (K). Pour tout 1 < j < p, u(e;) € Vect(e,...,ep) donc u(e;) € F puis, par linéarité,
pour tout z € F, u(x) € F.
O

Théoreme

On suppose F = F; & - - - ¢ F,,, et on note e une base de E adaptée a cette décomposition.
Pour v € L(FE), on a équivalence entre :

(i) chaque F}; est stable par u ;

(i1) 1la matrice de u dans la base e est de 1la forme

Ay O

avec A € M,, (K) ot o, = dim Fy.

Remarque La réduction d’un endomorphisme u de E consiste a écrire

m
E= Fy
k=1
avec I, stable par u et up, «simple » .
En dimension finie, la réduction d’un endomorphisme correspond a 1’obtention d’une représentation
matricielle simple (la plus diagonale possible).

5.2 Eléments propres

E désigne un K-espace vectoriel non réduit & {Og} de dimension quelconque et u un endomorphisme
de L.

5.2.1 Valeur propre et vecteur propre

Proposition
Soit x € E\ {0g} et D = Vect(z) la droite vectorielle engendrée par x.
On a équivalence entre :
(i) D est stable pour v € L(FE);
(i) il existe A € K tel que u(x) = Ax.

dém. :
(i) = (ii) Si D est stable par w alors u(x) € D et donc il existe A € K tel que u(x) = Az.
(i) = (1) Si u(x) = Az alors u(D) = u(Vectz) = Vectu(z) C Vectz.
O
Définition
On dit que x € FE est vecteur propre de u si

x#0getINe K u(z) =z

Attention : Par définition un vecteur propre est un vecteur non nul.
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Remarque 11 y a alors unicité de la valeur A car
A =pxravecx Z0p = A=p
On dit alors A est la valeur propre associée au vecteur propre x.

Définition
On appelle valeur propre de u tout A € K vérifiant

Jx # O0p, u(z) = A

On appelle spectre de u I’ensemble des valeurs propres de u, on le note Spu.

Exemple On a
0 €Spu< Iz #0g,u(z) =0g

Ainsi
0 € Spu < u non injectif

5.2.2 Sous-espace propre

Définition
Pour A € Ketu € L(E), on note

E)\(u) = ker(u — Aldg)
le sous-espace vectoriel formé des vecteurs x € E solutions de 1’équation

u(z) = A

Exemple Ey(u) = ker u.
Ey(u) = {z € E/u(x) = x}. C’est I'espace des vecteurs invariants par u.

Théoréme

On a équivalence entre :

(1) A est valeur propre de u ;
(i) Ex(u) # {05}

(iii) I’endomorphisme u — AId n’est pas injectif.

Définition
Si X est valeur propre de u alors F)(u) est appelé sous-espace propre associé a la valeur
propre A.

Remarque Si A\ ¢ Sp(u) alors Ey(u) = {Og}.
Si A € Sp(u) alors Ey(u) = {0g} U {vecteur propre associé a la valeur propre A}.
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5.2.3 Stabilité des sous-espaces propres

Théoréme
Les sous-espaces propres de u € L£(E) sont stables par u et

VA € Spu, UE, (u) = Ald

dém. :
u et u — AIdg commutent donc E)y (u) = ker(u — Aldg) est stable par .
De plus, pour tout x € E)(u), u(z) = Az donc

uEx(u) = Ad
O
Corollaire
] Si u et v commutent alors les sous-espaces propres de u sont stables pas v.
dém. :
En effet, E)(u) = ker(u — Ald) et u — AId commute avec v.
O

5.2.4 Les sous-espaces propres sont en somme directe

Théoréme
Des sous-espaces propres de u € L(F) associés a des valeurs propres deux a deux distinctes
sont en somme directe.

dém. :

Par récurrence sur m € N*, montrons que la somme de m sous-espace propres de u est directe.
Casm = 1:iln’y arien a démontrer.

Supposons la propriété établie au rang m > 1.

Soit E, (u), ..., Ex,, (u), Ex,, ., (u) des sous-espaces propres de u associés a des valeurs propres deux
a deux distinctes.

Supposons z1 + - - - + Ty, + Tm41 = Op avec x;, € Ey, (u).

En appliquant u, on obtient A\yx1 + - - - + AT, + A+1Zm+41 = Og.

Par combinaison de ces deux équations, on obtient (A\; — App1)z1 + - + (A — Amt1)Tm = Op.
Cette équation est de la forme y; + - -+ + ymm = Op avec yr, = (A — Amt1)Tk € En, (u).

Par hypothese de récurrence, les espaces E, (u), ..., E\,, (u) sont en somme directe donc

VI<k<myr=0g
ce qui fournit
Vi<k<<m,zp =0g

car
A= A1 #0

Enfin, en reprenant 1’équation initiale, on a aussi ,,+1 = Og.
Récurrence établie.
O
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Corollaire

] Une famille de vecteurs propres associés a des valeurs propres deux a deux distinctes est libre.

dém. :

Cas d’une famille finie :

Soit x1, . .., x,, des vecteurs propres associés a des valeurs propres Aq, ..., A, deux a deux distinctes.
Supposons a1 x1 + - - + @y = 0g.

Puisque oz € E), (u) et puisque les sous-espaces vectoriels Ey, (u), ..., Ey, (u) sont en somme

directe, on a
Vk € {1,...,m},akwk =0g

Or zj, # O (car ¢’est un vecteur propre) donc ay, = 0.
Cas d’une famille infinie :
Celle-ci est libre car ses sous-familles finies le sont par I’argumentaire précédent.

O
Corollaire
] En dimension finie égale a n, un endomorphisme ne peut admettre plus de n valeurs propres.
dém. :
Si A1, ..., Ap sont des valeurs propres de u € L(E) avec dim E = n alors

& E), (u) C Eavec dimEy, (u) > 1
k=1

donne m < dim F.
O

Remarque En dimension infinie, il peut y avoir une infinité de valeurs propres.

5.2.5 Détermination pratique

Protocole :
Pour déterminer les valeurs propres de u, on étudie pour quels scalaires A € K, I’équation

u(z) = Az

possede d’autres solutions que la solution nulle.
Cette équation est appelée 1’équation aux éléments propres associée a u.
Exemple Soit £ = K[X] et p € L(FE) défini par ¢(P) = X P'(X). Déterminons Spe.
Soit A € Ket P € K[X].
o(P)=\P & XP'(X)=\P(X)

Analyse :
Si cette équation possede une solution P = 0 alors en posant n = deg P, on peut écrire
P=a, X"+ -+ a1 X + ap avec a,, # 0. L’équation X P'(X) = AP(X) donne

V0 < k < n, Aag = nay
Sachant a,, # 0, on obtient A\ =neta,_1 =...=a; =ag=0.

Ainsi
AeNetP =a) X"

Synthese :
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Pour \ € Net P = ay X" avec ay # 0, on vérifie X P'(X) = AP(X) avec P # 0 donc \ € Spy.
Finalement Spp = N et
VA €N, Ex(p) = Vect(X?)

Exemple Soit E = K [X] et € L(FE) défini par ¢(P) = X P(X). Déterminons Spi.
Soit A € Ket P € K[X].

$(P) = AP(X) & XP(X) = A\P(X) & (X — N)P(X) =0 & P(X) =0
donc Spy = 0.

Exemple Soit E = C®(R,C) et D : f — f’. Déterminons SpD.
Soit A€ Cet f € L.
D(f) =M & f'=\f & f € Vect(ey)

avec ey : t — e fonction non nulle.
On en déduit SpD = Cet
VA € C, Ex(D) = Vect(ey)

Exemple Soit £ = B(N,R) et T : (ty)nen — (Un+1)nen. Déterminons Sp7.
Soit A € Retu = (uy,) € E.

T(u) = < Vn € N, uy1 = Auy, & Vn € Nyu, = Ny

Si |A| > 1 alors la suite (A" ug) est bornée si, et seulement si, ug = 0 et ¢’est alors la suite nulle.
Si |A] < 1 alors la suite (A™ug) est bornée et non nulle pour tout ug # 0.
Finalement SpT" = [—1, 1] et

VA€ [-1,1], Ex(T) = Vect ((A")nen)

5.3 Eléments propres en dimension finie

E désigne un K-espace vectoriel de dimension finie n € N* et u un endomorphisme de E.
5.3.1 Eléments propres d’une matrice carrée

Définition
On dit que A € K est valeur propre de A € M,,(K) s’il existe X € M,, 1(K) vérifiant

AX =X et X £0

On dit alors que la colonne X est vecteur propre associ€ a la valeur propre .
On appelle spectre de la matrice A 1’ensemble SpA formé des valeurs propres de A.

Définition

Pour A € K, on note E)(A) = ker(A — AI,,) I'espace des solutions de I’équation AX = \X.
Lorsque A est valeur propre de A, E (A) est appelé sous-espace propre de A associé a la valeur
propre A.
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Remarque En identifiant tuple et colonne, les éléments propres de A correspondent aux éléments
propres de I’endomorphisme canoniquement associé a A défini par

xEKTL’_)y:AxeKTI

Remarque Pour déterminer, les valeurs propres de A, on étudie 1’équation aux éléments propres
AX = \X.

Théoreme
Soit E un K-espace vectoriel de dimension finie non nulle et e une base de E.
Pouru € L(E) etx € E, en notant A = Mat.(u) et X = Mat.(z), on a

SpA = SpuetVA € Spu,z € Ex(u) & X € E)\(A4)

dém. :
Ona
uz)= o AX =X Xetx#0p < X #0

O
Corollaire

] Deux matrices semblables ont le méme spectre.

dém. :
Car elles représentent le méme endomorphisme.
O

5.3.2 Polynome caractéristique d’une matrice carrée

Soit A € M,,(K). Pour tout A € K, I’expression

A—ai1 —ai2 e —aip
—a
det(\, — A) = 21
: —An—1,n
—0Qn,1 e —Qp.n—1 A— An . n

est un polynéme en .
Définition
On appelle polyndme caractéristique de A, le polyndme x 4 € K [X] déterminé par la propriété

YA € K, ya(\) = det(AL, — A)

o
S~
~_

Exemple Polyndme caractéristique de A = (

det(/\IQ—A):’ Ama —b ‘

—c A—=d
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et donc
xa(X) = X2~ (a+d)X + (ad — be)

Exemple Polynome caractéristique de

)\1 *
A =
0 An
Comme déterminant diagonal, on obtient
xa=[[&X-x)
i=1

Théoréme
Le polyn6éme caractéristique de A € M,,(K) est unitaire, de degré n et posséde les coefficients
remarquables suivants

xa(X) = X" —tr(A) X"+ + (=1)" det(A)

dém. :
Par la formule des déterminants

Xa(A) =det(A,, — A) = Z (o) H (Adg(i)’i — aa(i”)

oES,, i=

=

Pour tout o € S,,, posons

Py (A\) = H ()‘60(1'),1' - aa(i),i)
i=1
P, est une fonction polyndme de degré < n.
Si o # Idy,, il existe au moins deux indices 4, j tels que o (i) # ¢ et o(j) # j, la fonction polyndéme P,
est alors de degré < n — 2.
Sio = Idy,
Pu(\) = H A=) = A" — (a11 + -+ app) A" L4
i=1
Ainsi
det(M,, — A) = \" —tr(A)A\"" L ...
Enfin, le coefficient constant de y 4 est x4(0) = (—1)" det(A).

O
Exemple Soit P = X" —a, 1 X" ' — - —a1 X —aqg et
0 (O) Qo
g 1 0
An—2
(0) 1 Ap—1
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Calculons le polyndme caractéristique de A.

A (0) —a
det(\,, — A) = -1oA
T . —Ap—2
(0) -1 A= Ap—1
En développant selon la derniere colonne
xa(A) = P(})

5.3.3 Polynome caractéristique et valeurs propres

Théoreme
] Les valeurs propres de A sont exactement les racines de x 4.

dém. :
A € SpA & ker(A — Al,) # {0} & A — AI, non inversible < det(A — AI,,) =0
Or
det(A — AI,) = (=1)"det(A[, — A) = (—=1)"xa(N)
donc
A€ SpA & xa(N) =0
]
Exemple Si
)\1 *
A =
0 An
alors
SpA = {)\1, N 7)\71}
Corollaire
] A € M, (K) possede au plus n valeurs propres.
dém. :
Car un polyndme de degré n admet au plus n racines.
O
Corollaire
] A € M,,(C) possede au moins une valeur propre complexe.
dém. :

X4 € C[X] est un polyndéme non constant, il posséde donc au moins une racine dans C.
|
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Remarque Aussi A € My, 41(R) posséde au moins une valeur propre réelle.

Exemple Etude des éléments propres de

-2 1 -1
A= 1 -2 1
1 -1 0
On a
—2-\ 1 —1 —2-\ 1 —1
xA(A) = (=1)3det(A — \3) = — 1 —2-X 1 |=—] -1-X —1-2X 0
1 -1 =\ —1-A 0 —1-A
2+ 1 -1
det(M3 — A) = —(\ + 1)? 1 1 0 |=XA+1)*0N\+2)
1 0 1
Ainsi

xa(X) = (X +1)*(X +2)

Ainsi Sp(4) = {-1,-2}
Etudions E_5(A)

z y—2=0
X=|y |eEoA)cAX=-2X & (A+25)X =0 z+2=0
< z—y+2z2=0
donc E_5(A) = Vect(1, -1, —1)
Etudions E_;(A)
z —r+y—2=0
X=|y |eELi(A) e (A+)X=0cz—y+2=0
Z r—y+z2=0
donc E_; = Vect{(1,1,0),(0,1,1)}
Exemple Etude des éléments propres de
0 (1)
A =
(1) 0
ViaChy -~ Ci+---+C,
A—(n—1) -1 -1
A (=1)
A (=1
xa(A) =det(A, — A) = =(
(=1 A
A—(n—=1) (-1 A
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puisvia Lg < Lo — Lq,..., L, < L, — L

A—(n—1 -1 - -1
0 A+1 (0)
xa(A) = . .
0 (0) A+1

Ainsi x4(A) = (A= (n —1))(A 4+ 1)""! et donc
Xa(X) = (X = (n—1)) (X +1)"!
x
X=| 1 |€eb4(A) e (A+1,)X=0
In
z1+--+x, =0
& : Sri+-+2,=0
z1+--+x,=0
Ainsi E_;(A) est 'hyperplan d’équation 1 + - - - + x,, = 0.
T
X=|:1]€b,1(4) & (A+1,)X =nX
Tn
T+ -+ Ty = NIy
& : S =...=1x,
ry+ -+ xy =Ny,

Ainsi E,,_1(A) = Vect{(1,...,1)}.

5.3.4 Polynome caractéristique d’un endomorphisme

Proposition
] Si A, B € M,,(K) sont semblables alors x4 = X 5.

dém. :
Si B = P~'AP avec P € GL,(K) alors xp(\) = det(\l,, — P"'AP) = det (P~ (A, — A)P) =
det(Al, — A) = xa(A).
O
Définition
On appelle polyndme caractéristique de u € L(E), le polyndme caractéristique commun aux
matrices représentant I’endomorphisme « ; on le note x,,.

Exemple X\, = xar, = (X — A\)" avec n = dim E.
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Exemple Supposons E = F' @& G. Déterminons le polyndme caractéristique de la projection sur F'
parallelement a G.
Dans une base adaptée a la décomposition £/ = F' @ G, la matrice de p est de la forme

I, O
O Opy

Xp(X) = (X —1)r X"

avec r = dim F'. On a alors

Théoréme
Pour u € L(E), x,, est un polyndme unitaire de degré exactement n = dim F de la forme

Xu(A) = X" —tr(u) X" 4 - 4 (—1)" det(u)

De plus, les valeurs propres de u sont exactement les racines de .

dém. :

Si A € M,,(K) est la matrice de u dans une base de F, x,, = x4 avec trA = tru et det A = detu.
De plus, Sp(u) = Sp(A) et donc les racines de Y, correspondent aux valeurs propres de w.

O

Corollaire

] Un endomorphisme v € L(E) posséde au plus dim E valeurs propres.

Corollaire
Si E est un C-espace vectoriel de dimension finie alors tout v € L(E) posséde au moins une
valeur propre.

Remarque Si F est un R-espace vectoriel de dimension impaire alors tout u € £(E) posséde au moins
une valeur propre.

5.3.5 Multiplicité d’une valeur propre

Rappel :
Si P € K[X] est un polyndme non nul, on appelle ordre de multiplicité de A en tant que racine de P le
plus grand o € N tel que

(X - N | P

Ceci équivaut encore a

POA) =P\ =...=Pe D) =0et PY(N) #£0

Rappel :
Un polyndme P non constant est dit scindé dans K [X] si, et seulement si, on peut le factoriser sous la

forme
n

P:NH(X—M)

=1
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Les scalaires A1, ..., A, € K correspondent alors a ses racines comptées avec multiplicité.
En regroupant les racines égales, on obtient I’écriture

P=p]] (X=X
k=1

avec Aq,..., A, € Kdeux a deux distincts et o, . . ., &y, leurs multiplicités respectives.
Définition
Soit u € L(E) et A € K. On appelle multiplicité de A en tant que valeur propre de u € L(E),

I’ordre de multiplicité de A en tant que racine de X, ; on la note m (u) (idem en A € M,,(K)
pour my(A4))

Remarque Abusivement, A valeur propre de multiplicité O signifie que A n’est pas valeur propre.

Exemple Valeurs de propres de

S
I

A avec A # 1

Onaya = (X — V(X - p)
A est valeur propre double et . est valeur propre simple de A.

Exemple Valeurs propres de

)\1 (*)
A =
(0) An
Onaya=[](X—=N\).
i=1
Les valeurs propres de A sont les Ay, ..., A\, comptées avec multiplicité.

Théoréme
Vu € L(E), Z ma(u) < dim F
AESpu

avec égalité si, et seulement si, le polynéme X, est scindé dans K [X] (idem pour A € M., (K)

).

dém. :

La somme des multiplicités des racines d’un polyndme non nul est inférieure a son degré avec égalité si,
et seulement si, ce polyndme est scindé.

|

Corollaire

Si K = C alors u € L(F) posséde exactement n valeurs propres comptées avec multiplicité
(idemen A € M,,(C)).
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dém. :
Dans C [X], tout polyndme non constant est scindé.
O

5.3.6 Multiplicité et dimension des sous-espaces propres

Théoreme
Si F' est un sous-espace vectoriel stable par u alors le polyndme caractéristique de 1’endomor-
phisme induit par u sur F' divise le polyndme caractéristique de u.

dém. :
Dans une base adaptée a F', la matrice de u est de la forme

(6¢)

avec A matrice de up. On a alors X, = XAXcC AVeC XA = Xup-
O

Théoréme

VA € Sp(u),1 < dim Ey (u) < my(u)
(idem avec A € M,,(K)).

dém. :

Soit A € Spu.

D’une part, F' = E)(u) = ker(u — MId) # {Og} donc dim F' > 1.

D’autre part, F est stable par w donc X, | Xu-

Or xu, = (X — )\)dim F car up = Idg donc X est racine de multiplicité au moins dim F' de .
]

Corollaire

] Si A est une valeur propre simple alors le sous-espace propre associé est de dimension 1.

5.3.7 Changement de corps

Supposons L un sous-corps de K.
Pour A € M,,(LL), on peut aussi comprendre A € M,, (K).
On peut donc parler de valeurs propres de A dans L, mais aussi dans K. Bien évidemment

Spy.(A) C Spx(A)

En particulier, on peut parler des valeurs propres complexes d’une matrice réelle.
Exemple Considérons

0 -1
A= ( 1 0 ) GMQ(R)
Onays = X2+ 1donc SppA = () et Spe = {i, —i}.

Théoreme
Les valeurs propres complexes d’une matrice réelle sont deux a deux conjuguées.
De plus, deux racines complexes conjuguées ont méme multiplicité et les sous-espaces propres
associés se correspondent par conjugaison.
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dém. :
Soit A € M,,(R). Le polynéme caractéristique de A est réel. Ses racines complexes sont donc deux a
deux conjuguées et deux racines conjuguées ont méme multiplicité. Aussi

AX =2X & AX = )X

L’application X + X définit alors une bijection de E (A) vers E5(A).
U

Remarque Par conjugaison, une base de E(A) est transformée en une base de E5(A) : ces deux
sous-espaces propres sont d’égales dimensions.

5.4 Diagonalisabilité

FE désigne un K-espace vectoriel de dimension n € N*
5.4.1 Endomorphisme diagonalisable

Définition
Un endomorphisme u € L(E) est dit diagonalisable s’il existe une base de E dans laquelle sa
matrice est diagonale. Une telle base est appelée base de diagonalisation de w.

Exemple Idg est diagonalisable et n’importe quelle base de I est base de diagonalisation.

Exemple Les projections vectorielles sont diagonalisables.
En effet, si £ = F' & (G alors la projection p sur F' parallelement a G a pour matrice

I, O s
( o o, ) avecr = dim F’

dans une base adaptée a la décomposition £ = F & G.
Aussi, les symétries vectorielles sont diagonalisables.

Théoreme
Pour u € L(E), on a équivalence entre :
(i) u est diagonalisable ;
(ii) il existe une base de E formée de vecteurs propres de u.
Une base de diagonalisation est aussi appelée une base propre.

dém. :
(i) = (ii) Supposons u diagonalisable et considérons e = (eq, ..., e,) une base de diagonalisation de w.
La matrice de u dans e est de la forme

A 0
0 An
Pourtouti € {1,...,n}, onau(e;) = A\;e; avec e; # O donc e; vecteur propre de u.

La famille e est donc une base de vecteurs propres de .
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(ii) = (i) Supposons I’existence d’une base e = (eq, . . ., e, ) de vecteurs propres de u.
Pour tout i € {1,...,n}, onawu(e;) = A\;e; avec \; la valeur propre associée au vecteur propre e;.
La matrice de u dans la base e est alors de la forme

A1 0

O

Exemple Un endomorphisme diagonalisable posseéde au moins une valeur propre.

Exemple Si u est diagonalisable et si u ne posséde qu’une valeur propre A alors u = Aldg.
En effet, la matrice de « dans une base propre est AI,, et donc u = Aldg.

5.4.2 Une condition suffisante de diagonalisabilité

Théoreme
Siu € L(FE) possede n = dim E valeurs propres distinctes alors u est diagonalisable et ses
sous-espaces propres sont tous des droites vectorielles.

dém. :

Soit Aq,..., A, les valeurs propres deux a deux distinctes de u.

Soiteq, ..., e, des vecteurs propres associés.

La famille e = (e, ..., e,) est libre car formée de vecteurs propres associés a des valeurs propres deux

a deux distinctes. Etant formée de n = dim E vecteurs de F, c’est une base de E diagonalisant u.
On a alors
Mat.u = diag(A1,...,An) =D

et donc
n
o =xp = (1" (X =A)
i=1
Puisque les \q1,..., A, sont deux a deux distincts, les valeurs propres de u sont toutes simples et les
sous-espaces propres sont donc de dimension 1.
O

Exemple Considérons I’application ¢ : K,, [X] — K,, [X] définie par o(P) = nXP — (X? —1)P".
Etudions la diagonalisabilité de .

L application ¢ est bien définie carsi P = aX™ +---,nXP = aX" ™' ...,

n(X? —1)P' =naX" 4 ... etdonc p(P) = 0.X" ™! +... € K, [X].

Puisque o(X*) = (n — k) X* + EX*~1, 1a matrice de ¢ dans (1, X, ..., X™) est

0 1

n
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Le calcul du polyndme caractéristique n’est alors pas simple.
Considérons alors la base de Taylor B = (1, (X —1),...,(X —1)").
Puisque ¢ (X — 1)) = (n — k)(X — 1)*™ + (n — 2k)(X — 1), la matrice de ¢ dans B est

n (0)
n n-—2
(0) 1 —n
On en déduit x, = ﬁ (n—2k—-X)=(-1)" ﬁ (X — (n—2k))etSpp = {n —2k/k € [0,n]}.
k=0 k=0

Puisque CardSpy = n + 1 = dim K,, [X], ’endomorphisme ¢ est diagonalisable et sous-espaces
propres sont des droites vectorielles.

5.4.3 Diagonalisabilité et sous-espaces propres

Théoreme

Soit u € L(E). On a équivalence entre :

(1) w est diagonalisable ;

(ii) E est la somme directe des sous-espaces propres de u i.e. :

E= @ E\(u)
AESp(u)

(i) Y dimEx(u) =dim E.
AESp(u)

dém. :

Rappelons que I’on sait déja que les sous-espaces propres d’un endomorphisme sont en somme directe.
(i) = (i1) Supposons u diagonalisable.

Soit e = (eq, ..., ey ) une base propre de u. Pour tout i € {1,...,n}, e; est vecteur propre de v donc

e, € @ Ex(uw)
AeSp(u)

pus EC @ Ej(u)etenfin E= & E\(u).
AESp(w) AESp(u)

.o e . . m - .
(ii) = (iii) Car I’on sait dim @ F; = Z dim F;.
i=1
i=1
(iii) = (i) Une famille formée par concaténation de bases des espaces propres F) (u) est une famille libre
formée de dim F vecteurs, c’est donc une base de vecteurs propres.

]
Corollaire

Soit u € L(E). On a équivalence entre :

(1) w est diagonalisable ;

(i) xo, est scindé dans K [X] et, pour tout A € Sp(u), dim E)(u) = my(u).
dém. :

(i) = (i1) Supposons u diagonalisable.
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Notons Aq, ..., A, les valeurs propres de w.
Dans une base adaptée a I’écriture £ = % Ey, (u) la matrice de u est
j=1
Ml 0
0 Amla,,
avec o, = dim E), (u). On a alors
m
Xu = H (X - )\k)ak
k=1
Xu est scindé et pour tout k € {1,...,m}, \j est racine de x,, de multiplicité ny, = dim FEj, (u).

(i) = (i) Supposons (ii)
Puisque y,, est scindé, la somme des multiplicités de ses racines égale son degré.
Ainsi deg y,, = Z m(u) et donc Z dim E) (u) = dim E ce qui entraine la diagonalisabilité

AESp(u) AeSp(u)
de u.
[l

5.4.4 Matrice diagonalisable

Définition

Une matrice A € M,,(K) est dite diagonalisable si elle est semblable a une matrice diagonale
i.e.ilexiste P € GL,(K) et D € D,,(K) vérifiant

P~ YAP = D ou, et c’est équivalent, A = PDp~!

Théoreme

Soit A la matrice d’un endomorphisme « dans une base e de E. On a équivalence entre :
(i) A est diagonalisable ;

(i1) v est diagonalisable.

dém. :
Les matrices semblables & A correspondent a celles pouvant représenter 1’endomorphisme u.
O

Exemple En particulier, A est diagonalisable si I’endomorphisme canoniquement associé a la matrice A
I’est.

Théoreme
Soit A € M,,(K). On a équivalence entre :
(i) A est diagonalisable ;

(i) & Fx(A) = My (K) u K" ):
diyn= Y dimE\(A):

AESP(A)
(iv) x 4 est scindé dans K [X] et pour tout A € Sp(A), dim Ey(A) = m(A).
De plus, les matrices diagonales semblables a2 A sont celles dont les coefficients diagonaux
sont les valeurs propres de A comptées avec multiplicité.
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dém. :

On transite par I’endomorphisme canoniquement associé.

O

Théoréme

Si A € M,,(K) admet n valeurs propres distinctes alors A est diagonalisable et, de plus, ses
sous-espaces propres sont des droites vectorielles.

Exemple Une matrice triangulaire a coefficients diagonaux distincts est assurément diagonalisable.

Exemple Soit A = i _11 ) € My (K).
a) Diagonalisabilité si K = R.
b) Diagonalisabilité si K = C.
xa=X?—2X+2.
Dans M3 (R), A n’est pas diagonalisable car x 4 n’est pas scindé.
Dans M,,(C), A est diagonalisable car admet deux valeurs propres 1 + i et 1 — 3.
La matrice A est alors semblable a
1474 0
( 0 1—14 >

Exemple Diagonalisabilité de A = ( (1) Cll > € My(R).

xa(X) = (1-X)? SpA = {1}.
Si A est diagonalisable alors A est semblable a 15 donc égale a I5.
Ainsi A est diagonalisable si, et seulement si, a = 0.

1 1 0
Exemple Diagonalisabilittde A= 0 1 1 | € M3(R).
0 0 2

xa = (X —1)%(X —2),SpA = {1,2}.

011
dimE(A) =3 —rg(A—I3),orrg(A—I3) =rg| 0 0 1 | =2donc
0 0 1
La matrice A n’est donc pas diagonalisable.
Exemple Diagonalisabilité de
1 - 1
A= | ¢ D | € Mu(R) (avecn > 2)
1 .. 1

Xa = (X —=n)X" 7", Sp(4) = {0,n}.
dim Eg(A) =n —rgA =n — 1 etdim E(A) = 1 (valeur propre simple).
Puisque dim Ey(A) + dim E,,(A) = n, A est diagonalisable semblable & D = diag(n, 0, ...,0).
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Bilan :

- n valeurs propres distinctes = A diagonalisable ;

- Z dim E(A) = n = A diagonalisable ;

- x A non scindé = A non diagonalisable ;

-3X € SpA,dim Ey(A) < mx(A) = A non diagonalisable.

5.4.5 Diagonalisation
5.4.5.1 D’un endomorphisme

Soit u € L(E) diagonalisable.
Pour diagonaliser I’endomorphisme w, il suffit d’exhiber une base propre en considérant, par exemple,
une base adaptée a la décomposition

FE = ® E\ (u)
AeSp(u)

Exemple Soit £ un R-espace vectoriel de dimension 3 muni d’une base e = (eq, e, €3).
Diagonalisation de v € L(E) dont la matrice dans e est

1 1 -1
A= 1 1 1
1 1 1

Xu = X (X — 1)(X —2), Spu = {0,1,2}.
CardSpu = 3 = dim E donc u est diagonalisable.

x1
Soit x = x1e1 + xoeg + x3e3 € Fet X = | a9
T3

To = —X1
U(I)ZO<Z>AX:0<:> T1+ax9s+23=0%&

r1+x9—23=0 {
$1+SE2+ZE3:0

Ainsi Ey(u) = Vect(e; — e2) et de méme on obtient E; (u) = Vect(—e; + es + e3),

Es(u) = Vect(eg + e3).

Soite; = e; —eg,60 = —e1 + €3+ e3eteg = es + e3.

La famille € = (1, €2, £3) est une base de E' (famille de vecteurs propres associés a des valeurs propres
distinctes ou base adaptée a la décomposition de E en somme directe de sous-espaces propres).

La matrice de u dans € est

0 00
D= 01 0
0 0 2
En notant P la matrice de passage de ede,ona A = PDP™!,
Ici
1 -1 0 0o -1 1
P=| -1 1 1 |eP'=| -1 -1 1
0 1 1 1 1 0
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5.4.5.2 D’une matrice

Soit A € M,,(K) une matrice diagonalisable.
Notons (eq, ..., e,) la base canonique de K”. L’endomorphisme u canoniquement associé a la matrice
A est diagonalisable. On peut introduire ¢ = (£1, ..., €, ) base de vecteurs propres de .

u(ej) = Aje;

La matrice de u dans la base ¢ est
D =diag(A1,...,\n)

Par formule de changement de base

A =PDP~!avec P = Mat.¢

Bilan : On forme une matrice de passage P diagonalisant A en prenant pour colonnes les vecteurs propres
de A. La matrice diagonale D obtenue a pour coefficients diagonaux les valeurs propres respectives des
colonnes formant P.

Exemple Diagonalisation de

0 0 01
0 01 0
A= 01 0 O
10 0 0
XA = (X—l)Q(X-‘rl)Q viaCi <~ C1 +CyretCy <+ Coy + Cs.
Sp(A) = {1, ~1}.
1 0 0
E;(A) = Vect 0 ! E_;(A) = Vect 0 !
1(A) = vec 0,1,—1 = vec o || -1
1 0 -1 0
dim F;(A) + dim E_;(A) = 4 donc A est diagonalisable.
Pour
10 1 0 10 0 O
01 0 1 01 0 0
P=lo1 0 -1 |®P={00 -1 o0
1 0 -1 0 0O 0 0 -1
ona A= PDPL.
Exemple Soitf #0 [r].
. A cosf —sinf
Diagonalisation de R(0) = ( sinf  cosf > € My(K).
XR(6) = X? —2cosfX + 1.
A =—4sin?60 <0
CasK=R
La matrice R(f)) n’est pas diagonalisable car X g(s) non scindé.
CasK=C

http://mp.cpgedupuydelome.fr 133 OO0



5.4. DIAGONALISABILITE

On a ‘ A
Spe(Re) = {e,e7}

x cos 0z — sin Oy = ez
X = € E.0(R(0)) & oy Sirt+y=0
sin fx + cos Oy = e’y

et

On en déduit
Eoo(R(0)) = Vect ( i)
Par conjugaison

Eqoi0(R(0)) = Vect < f)

Pour P = ( i ! ),on aR(9) = PD(§)P~" avec

1

5.4.6 Applications
5.4.6.1 Calcul des puissances d’une matrice

Si A est diagonalisable, on peut écrire A = PDP~! avec P € GL,,(K) et D diagonale. On a alors
vk € N, AF = pp*Fp~!

Exemple Calcul des puissances de
1 2
A:<1 4)€M2(R)

xa=X?—-5X+6.SpA = {2,3}.

Apres résolution
2 1
E5(A) = Vect <1> et E3(A) = Vect ( 1)

B . (21 (20 L4 (1 -1
A= PDP avecP-(1 1>’D_<O 3>etP —(_1 9 )

2" 0 3" 0 2 -2 -1 2

n __ np—1 __ —1 —1 _ on n

A" =PD"P P(O O>P +P<O O)P 2(1 _1>+3<_1 2>
Remarque Si I’on étudie un couple (u,,v,,) de suites réelles vérifiant

U = u, + 2v
VneN{ "t
Unt1l = —Up + 4v,

I’étude qui précede permet d’exprimer (u,, v,) en fonction de (ug, vo).
En effet, en introduisant X,, = ! ( Uy Up ), ona X, = AX, etdonc X,, = A" X,
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5.4.6.2 Commutant d’un endomorphisme diagonalisable

Théoréme
Soit u € L(E) un endomorphisme diagonalisable et v € L(E).
On a équivalence entre :
(1) v commute avec u ;
(ii) les sous-espaces propres de u sont stables par v.

dém. :

(1) = (ii) déja vue.

(i1) <= (i) Supposons (ii).
Puisque u est diagonalisable

EF= & E>\(u)
AESpu

Pour A € Spuetz € Ej(u) :
(vou)(z) = v(u(z)) = v(Ar) = Av(z)

et
(uwow)(z) =u(v(z)) = Mv(z)
carv(z) € Ex(u).
Ainsi, les endomorphismes u o v et v o u coincident sur tous les sous-espaces propres de u.

Puisque E = @ E\(u), ces endomorphismes sont égaux sur E.
AESpu
]

5.4.6.3 Résolution d’équation matricielle

Exemple Résolvons I’équation matricielle

1
2 _
= ()

»

1 0
Posons D = < 0 4 )

Si M est solution alors M D = M?® = DM.
Les solutions sont a rechercher parmi les matrices commutant avec D.

a b . a 4b a b
PourM:(C d),larelatlonMD—DMdonne(C 4d)_<4c 4d>etdoncb—c—0.

Ainsi, la matrice M est diagonale.

a 0
0 d

Ainsi, les solutions de 1’équation sont
1 0 1 0 -1 0 -1 0
(o) me(o B)m-(d 2)am- (0 %)

Remarque L’équation de degré 2 ici résolue posséde plus de deux solutions car I’anneau M, (K) n’est
pas integre.

a®>=1

PourM—( ) .
d“ =4

), I’équation M? = D équivaut 2 {
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Exemple Résolvons I’équation matricielle

(21
M‘<23

. ).XA:X2—5X+4=(X—1)(X—4).
SpA = {1,4} et A est diagonalisable.

Eq(A) = Vect (_11> et £4(A) = Vect (;)

(11 3 . (10
PourP—(_1 2),A—PDP avecD-(O 4>.

M?=As M?=PDP '« P 'M*P=D<« (P"'MP)*=D.
Ainsi, les solutions de 1’équation étudiée sont PD, P~ PD,P~Y, PDsP~t et PD,P~ .

Posons A =

5.5 Trigonalisabilité

E désigne un K-espace vectoriel de dimension finie n € N*.
5.5.1 Endomorphisme trigonalisable

Définition
Un endomorphisme u de E est dit trigonalisable s’il existe une base de E dans laquelle la
matrice de u est triangulaire supérieure. Une telle base est dite base de trigonalisation de 1’en-
domorphisme u.

Exemple Un endomorphisme diagonalisable est a fortiori trigonalisable.

Théoreme
Soit e = (ey, ..., e,) une base de I’espace E.
On a équivalence entre :
(i) la base e trigonalise un endomorphisme u ;
(i) V1 < k < n, Vect(ey, . .., ex) est stable par

dém. :
(i) = (ii) Sila matrice A = (a; ;) de u dans la base e est triangulaire supérieure alors
V1 < k < n,u(ey) € Vect(e,...,ex)
On en déduit
V1<k<n,u(er),...,u(ex) € Vect(eq, ..., ex) stable par u
puis (ii) par combinaison linéaire.
(i1) = (i) Supposons (ii). On a en particulier
V1< k < n,u(ey) € Vect(e,...,ex)

et donc la matrice de u dans e est triangulaire supérieure.
0

Corollaire
Le premier vecteur d’une base de trigonalisation est un vecteur propre de 1I’endomorphisme.
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5.5.2 Matrice trigonalisable

Définition
Une matrice A € M,,(K) est dite trigonalisable si elle est semblable & une matrice triangulaire
supérieure.

Théoreme

Soit A la matrice d’un endomorphisme « dans une base e de F. On a équivalence entre :
(i) A est trigonalisable ;

(1) u est trigonalisable.

dém. :
Les matrices semblables & A correspondent a celles pouvant représenter 1’endomorphisme u.
]

Exemple En particulier, A est trigonalisable si I’endomorphisme canoniquement associé a la matrice A
Iest.

5.5.3 Caractérisation

Théoréme
Pour u € L(E), on a équivalence entre :
(1) w est trigonalisable ;
(ii) xo est scindé dans K [X];
On a un critere analogue pour A € M, (K).

dém. :
(i) = (ii) Supposons u trigonalisable. Il existe une base de F' dans laquelle la matrice de u est de la forme

)\1 *

0 An
On a alors

n
Xu(X) = xr(X) = [ (X =)
i=1

Ainsi ), est scindé dans K [X] (et les coefficients diagonaux de 7" sont les valeurs propres de u comptées
avec multiplicité).
(ii) = (i) Raisonnons matriciellement. Par récurrence sur n € N*, montrons que si le polyndme caracté-
ristique de A € M,,(K) est scindé alors A est semblable & une matrice triangulaire supérieure.
Casn = 1: C’est immédiat, une matrice A € M (K) étant déja triangulaire supérieure.
Supposons la propriété établie au rang n — 1 > 1.
Soit A € M,,(K) de polynéme caractéristique y 4 scindé.
Le polyndme y 4 posséde au moins une racine A; est celle-ci est valeur propre de A. Soit e; € K" un
vecteur propre associé. On complete ce vecteur en une base de K™ de la forme e = (e, es,...,€,). La
matrice de I’endomorphisme u canoniquement associé a la matrice A dans la base e est de la forme

_ )\1 *
p=(% )
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On a alors
xa(X) = (X = A)xar(X)

et donc le polyndme caractéristique de A’ est scindé. Par hypothése de récurrence, il existe P’ € GL,,_1(K)
telle que la matrice P'~* A’ P’ soit triangulaire supérieure. Considérons alors la matrice

P:(é Ig,)eMn(K)

_ 1 0
P1:<O P/1>

_ A «
P 1BP_< 0 P’lA'P’>

La matrice P est inversible avec

Par produit par blocs

est triangulaire supérieure.
Finalement, A est semblable a une matrice triangulaire supérieure.
Récurrence établie.

O

Corollaire
Tout endomorphisme d’un C-espace vectoriel £ de dimension finie est trigonalisable.
Toute matrice de M, (C) est trigonalisable.

dém. :

Car de polyndme caractéristique scindé.

O

Corollaire
Si x, est scindé dans K [X] alors tr(u) et det(w) sont la somme et le produit des valeurs propres
comptées avec multiplicité.
Idem pour A € M,,(K)

dém. :

u est trigonalisable et peut donc étre représenté par une matrice de la forme

Le polyndme caractéristique de u est alors

[T -
k=1

Les A1, ..., A, sont alors les valeurs propres comptées avec multiplicité.
Parallelement tr(u) = Ay + -+ - + Ay etdet(u) = Ay ... Ay
O

Remarque Ce résultat peut aussi se voir comme une conséquence de 1’écriture

Xu(A) = A" —tr(u) A" 4 (—1)" det(u)
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Remarque Pour A € M,,(C) le résultat qui précede s’applique automatiquement.
Pour A € M,,(R), on peut interpréter A € M,,(C) et affirmer que trA et det A sont la somme et le
produit des valeurs propres complexes de A comptées avec multiplicité.

Exemple Déterminons les valeurs propres de

al DRI al
Qp -+ Qn

La matrice A est de rang 1 donc dim Ey(A) = dimker A =n — 1.
0 est alors valeur propre de A de multiplicité au moins n — 1. Le polynéme y 4 s’écrit alors

Xa=()"X"THX =)
11 est donc scindé dans K [X] et la trace de A est alors la somme des valeurs propres de A. On en déduit

SpA ={0,a1 + -+ a,}

5.5.4 Trigonalisation

Soit A € M,,(K) telle que x 4 soit scindé dans K [X].

Protocole :

Pour trigonaliser A, on détermine A, valeur propre de A et e; vecteur propre associé.

Le vecteur e; définit la premiere colonne d’une matrice de passage ) que 1’on construit inversible. On a

alors
1 . )\1 *
oaa= (% 1)

avec A’ trigonalisable. En déterminant P’ inversible telle que

)\2 *
P/—IA/P/ —
(0) An
on forme alors
1 0
(o »)
et alors
)\1 *
PrQTAQP =
(0) An
de sorte que R = Q)P trigonalise la matrice A.
Exemple Trigonalisation de
-1 0 -1
A= 2 -3 -5 | e M3(R)
-1 1 1
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xa=—(X+1)3SpA={-1}
La matrice A est trigonalisable sans étre diagonalisable car A # —I3.
E_1(A) = Vectey avec e; = (1, 1,0).

Considérons
1 0 0 1 0 0
Q=111 0 JaecQ =] -1 1 0
0 0 1 0 0 1
On a
-1 0 -1
Q'AQ=[ 0o -3 —4
0 1 1

et I’on considere

E_1(A") = Vect(2, -1)

Considérons /
/ 2 0 /—1 1 2 O
Pe(20) (1Y)
puis
1 0 1 0 0
R=[0 2 0 |,R'=]0 1/2 0
0 -1 1 0 1/2 1
On obtient
-1 1 -1 1 0 0
plap=| 0 -1 2 avecP=QR=| 1 2 0
0o 0 -1 0 -1 1
Exemple Trigonalisation de
-1 -3 -1
A= -1 1 1 € M3(R)
-2 =3 0

Xa=—(X+2)(X -1)%

1 est valeur propre double et —2 est valeur propre simple

E_5(A) = Vect(1,0,1), By (A) = Vect(1,—1,1)

La matrice A n’est pas diagonalisable, cependant elle est trigonalisable.

Considérons
1 1 0 1 1 0
P=[0 -1 0 | avecP != 0 -1 0
1 1 1 -1 0 1
On obtient
-2 0 0
PlAP = 0 1 -1
0 0 1
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5.5.5 Nilpotence

Définition
Un endomorphisme u € £(E) est dit nilpotent s’il existe p € N vérifiant u? = 0.
Le plus petit p vérifiant cette identité est appelé indice de nilpotence de .
Ce vocabulaire se transpose aux matrices

Exemple Si A = Mat.u alors la matrice A est nilpotente si, et seulement si, I’endomorphisme u 1’est.

1

Exemple La matrice A = ( 1 _11 ) est nilpotente car A% = O,.

Exemple Soit A une matrice triangulaire supérieure stricte de M, (K).

0 * 0 0 *
A= - JA% = R , etc
(0) 0 (0) 0

Montrons (proprement) que A" = O,
Soit u I’endomorphisme de K™ canoniquement associé a A.

Notons e = (eq, ..., e,) la base canonique de K.
Onawu(e;) =0etpourtout2 < i< n,onau(e;) € Vect(er,...,e;_1).
Par suite
Imu = Vect(u(ey),...,u(e,)) C Vect(eq,...,en—1)
puis
Imu? C u(Vect(ey, ..., e 1)) = Vect(u(er),...,u(e,_1)) C Vect(er, ... e, 2)

Par récurrence, on obtient
Vi<k<n—1Imu* = Vect(eq, ..., €n—k—1)

En particulier Imu" " C Vect(e;) puis Imu™ C {0x} ce qui donne u™ = 0.
On peut alors conclure A™ = O,,.

Théoreme

Soit u € L(E). On a équivalence entre :

(i) u est nilpotent ;

(ii) w est trigonalisable avec 0 pour seule valeur propre.

Ce résultat se transpose aux matrices de la fagon suivante :

A € M, (K) est nilpotente si, et seulement si, A est semblable & une matrice triangulaire
supérieure stricte

dém. :
(i1) = (i) Car une matrice triangulaire supérieure figurant v a pour coefficients diagonaux les valeurs
propres de u, elle est donc triangulaire supérieure stricte et par conséquent nilpotente.
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(1) = (i)

Raisonnons matriciellement. Par récurrence sur n € N*, montrons que si A € M,,(K) est nilpotente,
alors A est semblable a une matrice triangulaire supérieure stricte.

Cas n = 1 : Une matrice nilpotente de taille 1 est nécessairement nulle.

Supposons la propriété établie au rang n — 1 > 1.

Soit A € M,,(K) nilpotente.

La matrice A ne peut étre inversible et donc ker A # {0}. Soit e; un vecteur non nul de ker A. On
complete ce vecteur e; en une base de K™ de la forme e = (e, ..., e,).

La matrice de I’endomorphisme canoniquement associé¢ a A dans la base e est de la forme

B= ( 8 M ) avec A’ € My,_1(K)

La matrice B est semblable 2 A et donc elle aussi nilpotente. On en déduit que le bloc A’ est nilpotent.
Par hypothése de récurrence, il existe P’ € GL,,_1(K) telle que P'~* A’ P’ soit triangulaire supérieure
stricte. Formons alors

1 0
Par produit par blocs
ppp=(° 7
- 0 P/—IA/P/
est triangulaire supérieure stricte.
Finalement, A est semblable a une matrice triangulaire supérieure stricte.

Récurrence établie.
O

Remarque Le polyndme caractéristique de u (ou de A ) est alors X™.
Corollaire
Si u est un endomorphisme nilpotent d’un K-espace vectoriel £ de dimension n alors
u" =0

Si A € M,,(K) est nilpotente alors A" = O,
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Chapitre 6

Réduction algébrique

K désigne un sous-corps de C et £ un K-espace vectoriel.

6.1 Polynomes en un endomorphisme
6.1.1 Valeur d’un polynome en un endomorphisme

Définition
N

On appelle valeur d’un polyndme P = Z a,X* € K[X] en un endomorphisme u € £(E)
k=0

I’application

N
P(u) (Efz apuf € L(E)
k=0

Exemple La valeur de P = X en u est P(u) = u®

Lavaleur de P = X% + 2X — lenuest P(u) = u® + 2u — Id.

Attention : La valeur de P(u) en z € F est notée P(u)(z) a comprendre [P(u)] ().
Ecrire P(u(z)) n’a pas de sens.

Théoreme
L’ application ¢,, : K[X] — L(FE) définie par ¢,(P) = P(u) est un morphisme de K-
algebres.
dém. :
L application ¢,, est bien définie entre deux K-algebres.
g&u(l) == IdE.
Soit A\, u € Ket P,Q € K[X].
N M
On peut écrire P = Z ap X" et Q= Z b X*.
k=0 k=0
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Quitte a adjoindre des coefficients nuls, on peut supposer M/ = N. On a

N N N
u( AP+ MQ) = Z (Aay + Mby)u® = )\Zakuk + MZbkuk = Apu(P) + M, (Q)

k=0 k=0 k=0
Aussi
N N
pu(PQ) = (PQ)(u) = (Z ar X ’“Q) () =Y arn(X*Q)(u)
k=0 k=0
la derniére égalité étant justifiée par linéarité de ¢,,. Or, pour k € {0,1,..., N}, ona
N
(X Q)(w) = Y b = u 0 Q(u)
£=0
donc
N N
(PQ)(u) = (Z akaQ> () = apu® o Q(u)
k=0 k=0
puis
pu(PQ) = (PQ)(u) = P(u) 0 Q(u) = u(P) 0 pu(Q)
O

Remarque Par ce morphisme, toute identité polynomiale se transpose aux endomorphismes.

Exemple Puisque
X3 22X +1=(X-1)(X?*+X 1)

ona
u? —2u+1dg = (u—1dg)(u?® +u —Idg)

Exemple Soit P = X" +a, 1 X" ' +---4ap € C[X]. Ennotant Ay, ..., \, € C les racines de P
comptées avec multiplicité

n

P=X"+a, 1 X" '+ +ag=[] (X =)
k=1

alors

P(u) = ﬁ (u— MeIdg)

k=1
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6.1.2 Polynome d’endomorphisme

Définition
On dit que v € L(E) est un polyndme en u € L(E) s’il existe P € K[X] tel que v = P(u).
On note K [u] I’ensemble des polyndmes en u :

K [u] = {P(u)/P € K[X])

Exemple u® 4 3u + Idg et (u — Aldg)® sont des polyndmes en u.

Théoreme
K [u] est une sous-algébre commutative de L(E).
De plus, si A est une sous-algeébre de L(E),

ueA=KuCA

Ainsi, K [u] est la plus petite sous-algebre de £(E) contenant u, on I’appelle algébre engendrée
par u.

dém. :

Ku] € L(F),1dg € K[u] car pour P(X) =1ona P(u) = Idg.

Soit A, u € Ketv,w € Ku]. Il existe P,Q € K [X] tels que v = P(u) et w = Q(u).

On a alors Av + pw = (AP + puQ)(u) € Ku] etvow = (PQ)(u) € K[u] donc K [u] est une sous-
algebre de L(F).

De plus, wov = (QP)(u) = (PQ)(u) = v o w donc K [u] est une sous-algeébre commutative de L(E).
Si A est une sous-algebre de £(F) contenant v alors par récurrence

VneNu" € A
puis

K[u] = Vect{u*/k e N} Cc A

O

Exemple Si P € K[X] alors ImP(u) et ker P(u) sont stables par u.
En effet, les P(u) et u commutent. On retrouve en particulier que les sous-espaces propres de u sont
stables par u.

6.1.3 Polynome annulateur

Définition
’ On appelle polyndme annulateur de u € £(E) tout polynéme P € K [X] vérifiant P(u) = 0.

Exemple Le polyndme nul annule tout endomorphisme.
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Exemple Le polynéme X — X annule I’endomorphisme Aldg

Exemple Le polyndme X2 — X est annulateur des projections vectorielles.

Théoreme
L’ensemble des polyndmes annulateurs de u € L(FE) est un sous-espace vectoriel et un idéal
de K[X].

dém. :

Notons [ = {P € K[X] /P(u) = 0} I'ensemble des polyndmes annulateurs de u.

I est le noyau du morphisme d’algebres (,,, ¢’est donc un sous-espace vectoriel et un idéal de K [X].
Cor :Si P annule u et si P | @ alors @ annule w.

O

6.1.4 Polynome annulateur et valeur propre

Lemme
Si A est valeur propre de u € L(FE) alors, pour tout P € K[X], P(\) est valeur propre
de P(u).

dém. :

Soit A une valeur propre de u. Il existe « # Og tel que u(z) = Ax.

Onau?(z) = u(Az) = Nz,..., u"(z) = \"z.

Soit P =a, X"+ -+ a1 X +ap € K[X].

Ona P(u)(z) = (apu™ + -+ a1u+ aold)(x) = (ap A"z + - - + a1 Az + agx) = P(A\)z avec x # O
donc P(\) est valeur propre de P(u).

O
Théoreme

] Les valeurs propres de u € L(F) figurent parmi les racines des polyndmes annulateurs de u.
dém. :

Soit P(X) un polynéme annulateur de w et A une valeur propre de u.
On a P()\) valeur propre de P(u) = 0 donc P(\) = 0.
O

Attention : Des racines d’un polyndme annulateur peuvent ne pas étre valeur propre.

Exemple Si p est une projection vectorielle alors X? — X = X (X — 1) est annulateur de p et donc
Spp € {0,1}.

Exemple 0 est la seule valeur propre d’un endomorphisme nilpotent.

En effet,Soit u € L(E) nilpotent.

I existe p € N* tel que u? = 0.

Le polyndme X7? est annulateur de u et donc Spu C {0}.

L’endomorphisme u ne peut étre injectif (car u” ne 1’est pas) et donc 0 € Spu.
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6.2 Polynome d’une matrice

6.2.1 Valeur d’un polynéme en une matrice carrée
Définition

N

On appelle valeur de P = Z ar X" € K[X] en M € M,,(K) la matrice
k=0

N
P(M) d:éfzakM’f € M, (K)
k=0

Exemple La valeurde P = X* —3X +1en M € M,,(K) est P(M) = M?® —3M + I,,.

Exemple Soitu € L(E)ete = (eq,...,e,) une base de E.
Si M = Mat.u alors VP € K [X], P(M) = Mat.P(u)

Exemple Calcul de P(M) pour

M (0)
M =
(0) An
On vérifie par récurrence
M (0)
Vk e N, M* =
(0) A
puis par linéarité
P(A1) (0)
VP e K[X],P(M) =
(0) P(An)
Exemple Expression de P(M) pour
)\1 *
M =
(0) An
On vérifie par récurrence
Ak «
VkeN,MF =
(0) An
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puis par linéarité

Exemple Expression de P(M) pour

M_<A

* . )
O B > (avec A, B matrices carrées)

Comme au dessus, on obtient

VP e K[X],P(M) = ( P(4) - )

Exemple On a
En effet

puis on conclut par linéarité

Théoreme
Lapplication ¢y : K[X] — M,,(K) définie par pp(P) = P(M) est un morphisme de
K-algebres.

6.2.2 Polynome en une matrice carrée

Définition
On dit que A € M,,(K) est un polyndéme en M € M, (K) s’il existe P € K[X] tel que
A = P(M). On note

K [M] = {P(M)/P € K[X]}

I’ensemble des polyndmes en M

Théoreme
K [M] est une sous-algébre commutative de M, (K) incluse dans toute sous-algebre de
M, (K) contenant M ; on ’appelle algebre engendrée par M.

6.2.3 Polynome annulateur

Définition
On appelle polyndme annulateur de M € M, (K) tout polyndme P € K[X] vérifiant
P(M) = O,,.

Exemple Si M = Mat.u alors les polyndmes annulateurs de M et de u se correspondent.
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Exemple Soit M = ( ? Z ) € My (K).

On vérifie par le calcul que P = X2 — (a + d)X + (ad — be) est annulateur de M.

Exemple P = (X — \;)...(X — \,) est annulateur de

A (0)
D= e M, (K)
(0) An
En effet
P(\) (0)
P(D) = =0,
(0) P(\,)

Remarque Si A est diagonalisable semblable a D alors P est aussi annulateur de A. Plus généralement :

Proposition
] Si A, B € M,,(K) sont semblables alors A et B ont les mémes polyndmes annulateurs.

dém. :

Par le calcul a partir de la relation de similitude B = Q' AQ ou simplement parce que les matrices A et
B représentent le méme endomorphisme.

]

Théoréme

L’ensemble des polyndmes annulateurs de M € M, (K) est un sous-espace vectoriel et un
idéal de K [X].

Corollaire
] Si P annule M etsi P | @ alors Q annule M.

6.2.4 Valeurs propres et polynomes annulateurs

Théoréme
Les valeurs propres de M € M, (K) figurent parmi les racines des polyndmes annulateurs
de M.

Exemple Soit A € M3 (R) vérifiant A*> = I,,.

a) Valeurs propres réelles.

b) Valeurs propres complexes.

Le polyndme X — 1 est annulateur de A.

Dans R, X® — 1 = (X — 1)(X? + X + 1) donc Spp A C {1}.
Or A est une matrice réelle de taille impaire donc Spg A # ) puis

SprA = {1}
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Dans C, X* — 1 = (X — 1)(X — 5)(X — j°) donc SpcA C {1,5,5°}.
Puisque 1 est valeur propre et puisque les valeurs propres de A sont deux a deux conjuguées

SpcA = {1} ouSpcA = {1,4,5%}
On en déduit tr(A) = 3outr(A) = 0etdet A = 1 (car x4 est scindé et donc A trigonalisable)

6.3 Polynomes annulateurs en dimension finie

E désigne un K-espace vectoriel de dimension finie n € N*,

6.3.1 Théoréme de Cayley Hamilton

Théoreme
Le polyndme caractéristique x,, de u € L(E) est annulateur de .
Cet énoncé se transpose aux matrices A € M., (K).

Exemple Pour A € My(K), le polyndme x4 = X% — tr(A)X + det(A) est annulateur de A.

6.3.2 Polynome minimal

Théoréeme

Pour tout u € L(E), il existe un unique polyndme I, vérifiant :

1) IT,, est annulateur de u ;

2) I1,, est unitaire ;

3)VP € K[X],P(u)=0=1I, | P.

Ce polyndme II,, est appelé polyndme minimal de I’endomorphisme u.

Cet énoncé se transpose aux matrices A € M,,(K) ce qui définit le polyndme minimal IT 4

dém. :

Existence :

Considérons I = {P € K[X] /P(u) = 0}.

Puisque 7 est un idéal de K [X], il existe un polynéme @ € K [X] tel que I = Q. K [X].
Puisque x,, € I, ’idéal I est non nul et donc Q) # 0.

Notons A le coefficient dominant de u et considérons IT,, = Q /. Le polyndme II,, est unitaire et vérifie

I=1,KI[X].

Unicité :

Supposons IT,, et 1:[“ solutions.

Puisque f[u(u) =0, 11, | 1I,. De fagcon symétrique, 11, | IL,, et donc IT,, et II,, sont associés.
Or ils sont tous deux unitaires donc égaux.

O

Remarque Le polynéme II,, est non constant.

Exemple Polyndme minimal de u = Adg.
X — X annule uw et donc IT,, | X — .
Puisque II,, est unitaire non constant, on obtient

I, =X -X
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Exemple Polynome minimal de p projection autre que 0 et Id ;.
Onap? =pdonne T, | X(X — 1).
Puisque II,, est unitaire non constant

I, =X, X —1oull, = X(X — 1)

Puisque p # 0 et p # Idg, les cas IT, = X etIl, = X — 1 sont a exclure.
Il reste
I, =X(X-1)

Exemple Polyndme minimal de A = ( _12 le ) € Msy(R).

xa=X?-5X+6= (X —2)(X — 3) est annulateur de A donc IT4 | x4.
Par conséquent
ayg=X-1,X—-20u (X —-2)(X—-3)

LescasIl4 = X — 1 ou X — 2 sont a exclure et il reste

My = (X —2)(X —3)

O = O

1 0
Exemple Polyndme minimalde D = | 0 0 | € M3(R).
0 2

Cette fois-ci
xp=(X-1)*X-2)etllp = (X —1)(X —2)

6.3.3 Polynéme minimal et valeurs propres

Théoreme
Les valeurs propres de u € L(E) sont exactement les racines de son polynéme minimal.
Ce résultat se transpose aux matrices carrées.

dém. :

On sait déja que les valeurs propres de u sont racines de II,, car IT, est annulateur.
Inversement, si A est racine de II,, alors \ est aussi racine de ., donc A est valeur propre de u.
|

Exemple Le polyndéme H (X — ) divise IT,.
AESpu

6.3.4 Application : calcul des puissances d’un endomorphisme

Soit u € L(E). On introduit son polyndéme minimal IT,, de degré d (avec d < dim E car I, divise X, ).
On écrit
Hu = Xd — (ad_lefl + -4 alX —+ ao)
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et alors
d _ d—1
u® = aoldg + aqu+ -+ ag_1u
Puisque u?*! = 4 o u?

udtl = agu + a1u2 + -+ ad_lud

et en exploitant la relation au dessus, on obtient une expression
u™ = afldg + dju+ - +al_jut?

On peut répéter ce processus. .. Plus généralement :

Théoréme
Si d = degTI,, alors la famille (u”)o<x<q_1 est une base K [u].
Ce résultat se transpose aux matrices carrées.

dém. :
Commencons par montrer K [u] = Vect(Id, u, . .., u?" 1)
On a déja I'inclusion Vect(Idg, u, . .., u?™') € K[u].

Inversement, soit P € K [X].
Par division euclidienne, on peut écrire P = QII,, + R avec deg R < d.
On a alors

P(u) = Q(u) oII,(u) + R(u) = R(u) € Vect(ldg, u, ...

Ainsi K [u] C Vect(Idg, u, . .., ud" 1) puis I’égalité.
Montrons maintenant que la famille (Idg, u, . . ., ud_l)
Supposons

est libre.

aoldg + a1u+ --- + ad_lud_l =0

Pour P = ao+a1X+~~+ad71Xd71,0naP(U) = 0.

Ordeg P < degll, donc P=0puisag =a; = ... =aq—1 = 0.

Ainsi, la famille (Id, u, . .., u?"") est libre et c’est donc une base de K [u].
U

Corollaire

| dimK [u] < dim E et dimK [4] < n.

dém. :

Car le polyndme minimal est diviseur du polyndme caractéristique donc de degré inférieur a n.

O

Exemple Calculons les puissances de A = ( _12 i > € My(R).

Onsait T4 = (X — 2)(X — 3).
Par division euclidienne
X" =T4(X)Q(X) +aX + 8 (1)

En évaluant la relation (1) en 2 et en 3, on obtient

20[4—5:2” oa=3"-92"
donc
3a+ 8 =3" 8 =3.2"—-23"

En évaluant la relation (1) en A, on obtient

A" = (3" —2")A+ (3.2" —2.3") ],

http://mp.cpgedupuydelome.fr 152

ClOE[E)



CHAPITRE 6. REDUCTION ALGEBRIQUE

6.4 Réduction et polynomes annulateurs

FE désigne un K-espace vectoriel non nul
6.4.1 Lemme de décomposition des noyaux

Théoreme
Soit P,Q € K[X] etu € L(E).
Si P et () sont premiers entre eux alors

ker(PQ)(u) = ker P(u) & ker Q(u)

dém. :

Puisque P A @Q = 1, il existe des polyndmes V et W tel que VP + WQ = 1.
On aalors Id = V(u) o P(u) + W (u) o Q(u).

Soit x € ker P(u) Nker Q(u)

On a

2 = (V(u) o P(w)) (2) + (W () 0 Q(u)) (&) = 0

donc ker P(u) et ker Q(u) sont en somme directe.

Montrons ker P(u) ® ker Q(u) C ker(PQ)(u)

Puisque (PQ)(u) = Q(u) o P(u) on a ker P(u) C ker PQ(u).

De méme ker Q(u) C ker(PQ)(u) et donc ker P(u) @ ker Q(u) C ker(PQ)(w).
Inversement

Soit z € ker(PQ)(u). On a

z=W(u)oQu) () + (V(u) o P(u)) (x) = a+b

svec.a = ({1 0 Q(u) (a) 1 = (V (1) © P(u) (e,

Pu)(a) = (P (u) o W(u) 0 Q(u)) (x) = (W(u) o (PQ)(u)) () =0
et de méme Q(u)(b) = 0. Ainsi a € ker P(u) et b € ker Q(u) puis
ker(PQ)(u) C ker P(u) @ ker Q(u)

et enfin 1’égalité.
|

Corollaire
Si Py,..., Py € K[X] sont deux & deux premiers entre eux alors :

k P — & ker P
er <kl:[1 k) (u) kejl er Py (u)

Ce résultat se transpose aux matrices carrées

=1

ker (H Pk> (A) = kana ker P, (A)
k=1
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dém. :
On raisonne par récurrence en exploitant

m+1 m
(Py...Pp)APpyi =1= ker (H Pk> (u) = ker (H Pk> (u) ® ker Py, 1(u)
k=1 k=1
g
Rappel :

Sia#balors (X —a) A (X —b)=1.

Plus généralement, (X — a)* A (X —b)? = 1 pour tout o, 3 € N.

Encore plus généralement, deux polyndmes de K [X] sont premiers entre eux si, et seulement si, ils n’ont
pas de racines complexes en commun.

Exemple On appelle projecteur de E tout p € £(E) vérifiant p? = p.

Les espaces ' = ker(p — 1d) et G = ker p sont supplémentaires et

Ve € Fyp(z) =zetVe € G,p(z) =0g

En effet p?> — p = 0 donc F = ker (p2 — p).

OrX? - X=(X-1)Xavec(X —1)AX =1

donc E = ker(p? — p) = ker(p — Id) @ ker p.

on reconnait que p est la projection sur F’ parallelement a G.

Exemple On appelle symétrie de E tout s € £(E) vérifiant s> = Idp.
Les espaces F' = ker(s — Id) et G = ker(s + Id) sont supplémentaires et

Vo € F,s(z) =zetVz € G,s(z) = —x

En effet, s> — Idg = 0 donc E = ker (s* — Idg).

Or X? —1=(X—1)(X+1)avec (X —1) A (X +1) = 1donc E = ker(s — Id) @ ker(s + 1d).
Posons

on reconnait que s est la symétrie par rapport a F' et parallelement a G.

Exemple Soit A, ..., \,, les valeurs propres deux a deux distinctes de u € L(E).
Les polynomes X — \j étant deux a deux premiers entre eux, on retrouve que les sous-espaces propres
d’un endomorphisme sont en somme directe.

6.4.2 Diagonalisabilité

Théoréme

On a équivalence entre :

(i) u est diagonalisable ;

(i1) © annule un polyndme scindé a racines simples ;

(iii) le polyndme minimal de u est scindé a racines simples.
De plus, le polyndme minimal de u est alors

m,= ] &x-»

AESpu

Ce résultat se transpose aux matrices carrées.
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dém. :
Notons Ay, ..., A, les valeurs propres de u.
(i) = (ii) Supposons v diagonalisable. On a

E= & By ()
k=1

Dans une base adaptée a cette décomposition la matrice de u est de la forme

Allal (0)
avec o, = dim E), (u)
(0) )\mIa'm
Considérons le polynd6me
P= H (X — i)
k=1

Dans la base précédente, la matrice de P(u) est

P(A1) o, (0)

O PO,

u annule le polyndme P qui est scindé a racines simples.

(i1) = (iii) Si v annule un polyndme scindé a racines simples alors II,, le divise et est donc lui-méme
scindé a racines simples.

(iii) = (i) Supposons 1I,, scind€ a racines simples. Puisque les racines de II,, sont exactement les valeurs

propres de u, on peut écrire
m
SICEES

Or les facteurs (X — Ay étant premiers entre eux, le lemme de décomposition des noyaux donne

E =kerll,(u) = kgl ker(u — Agldg) = 1§1 Ey, (u)

(|

Définition
On dit qu’un polyndme de K [X] est scindé simple lorsqu’il est scindé dans K [X] a racines
simples

Exemple Diagonalisation de 7" : M,,(R) — M,,(R) définie par T'(M) = *M.
Ona7? = Id donc X2 — 1 annule T'.

Puisque le polynéme X2 — 1 est scindé simple, I’endomorphisme 7 est diagonalisable.
De plus

SpT C {1,—-1}, B4 (T) = ker(T —Id) = S, (R) et E_1(T") = ker(I +1d) = A, (R)

On en déduit tr7” = dim S, (R) — dim A, (R) = netdet T = (—1)3m AR — (_1)n(n=1)/2,
En fait, ’endomorphisme 7T est la symétrie vectorielle par rapport a S,, (R) et parallelement a A, (R).
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Exemple Soit A € M,,(R) telle que A> + I = 0.

Montrons que n est pair et calculons det A et trA.

Aannule X% 4+ 1 = (X —i)(X + i) scindé simple donc A est diagonalisable dans M,, (C).
De plus,

SpA C {i, —i}
Or SpA # () et les valeurs propres de A sont conjuguées car A € M,,(R) donc
SpA = {i, —i}
Enfin, les multiplicités des valeurs propres conjuguées sont égales car x4 € R [X] donc

En posant p cette valeur commune, on peut affirmer que A est semblable dans M,,(C) a

il, O
o —il,

On en déduitn = 2p, det A = 1 ettrA = 0.

6.4.3 Réduction d’un endomorphisme induit par un endomorphisme diagonali-

sable
Lemme
Si F' est un sous-espace vectoriel stable par u € L(E) alors F' est stable par tout polyndme en
u et
VP € K[X], P(u)p = P(ur)
dém. :
Puisque F est stable par u, il ’est aussi par u?, ..., u", ... et

Vn € N, ('LLF)n = (u”)p
Par combinaison linéaire, I’ est encore stable par les polynémes en u et
VP e K[X],P(u)r = P(ur)

Si u est diagonalisable alors u annule un polyndme scindé simple P et alors P(ur) = (P(u))p = 0
donc up annule un polyndme scindé simple et est donc diagonalisable.

O

Proposition
Si F est stable par u € L(FE) alors le polyndme minimal de up divise le polyndme minimal
de u.

dém. :

Le polyndme minimal de u est annulateur de u .

0

Théoreme
Siu € L(FE) est diagonalisable et si F' est un sous-espace vectoriel stable par u alors up est
diagonalisable.
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dém. :
IT,, est scindé a racines simples dont II,,,, I’est aussi.
O
Corollaire
Soit u € L(E) diagonalisable.
Les sous-espaces vectoriels stables par u sont ceux admettant une base de vecteurs propres.

dém. :

Si I est stable par u alors up est diagonalisable donc F' admet une base de vecteurs propres de up.
Ceux-ci sont aussi vecteurs propres de u.

Inversement, si (€1, . .., €p) est une base de F formée de vecteurs propres alors pour tout j € {1,...,p},
u(e;) € Vect(e;) C F et donc F est stable par u.

O

Exemple Soit u et v € L(FE) diagonalisables.
Montrons que si u et v commutent alors il existe une base de E formée de vecteurs propres communs a
u et .

Puisque u est diagonalisable, £ = @& E)\(u).
AESpu

Pour A € Spu, E)(u) est stable par v, or v est diagonalisable donc VE, (u) I’est aussi. Ainsi, il existe une
base BB de F(u) formée de vecteurs propres de v. Cette base est a fortiori formée de vecteurs propres
de u. En accolant les bases B, on forme une base de E formée de vecteurs propres communs 2 u et v.
Matriciellement, on a obtenu que si A, B € M,,(K) sont diagonalisables et commutent alors il existe

P € GL,,(K) vérifiant P~' AP et P~ BP diagonales.

6.4.4 Trigonalisabilité

Théoréme

On a équivalence entre :

(1) w est trigonalisable ;

(ii) u annule un polyndme scindé dans K [X];

(iii) le polyndme minimal de w est scindé dans K [X].

De plus, I’espace E est alors la somme directe de sous-espaces stables par u sur chacun des-
quels v induit la somme d’une homothétie et d’un endomorphisme nilpotent.

dém. :

(i) = (ii) Car si u est trigonalisable alors « annule son polyndme caractéristique qui est scindé dans K [X].
(ii) = (iii) Car le polyndme minimal divise un polyndme scindé.

(iil) = (i) Supposons le polyndéme minimal IT,, de u scindé dans K [X]. On peut écrire

1L, = H (X — Ap)*
k=1

avec Ay, ..., Ay, les valeurs propres distinctes de u. Par le lemme de décomposition des noyaux

E = ker (’U,* /\kIdE)ak

1

s

Etudions I = ker(u— A, Idg)®*. L'espace F est stable par u car u et (u—Arldg)** commutent. On peut
introduire n, = up —Aldp € L(F)etonan,* = 0car F = ker(u—ApIdg)®*. Ainsi up = A\ Idp+ny,

http://mp.cpgedupuydelome.fr 157 @O0



6.4. REDUCTION ET POLYNOMES ANNULATEURS

avec ny nilpotent. Enfin, puisque n, est nilpotent, il existe une base F}, dans laquelle la matrice de ny, est
triangulaire supérieure. En accolant ces bases, on obtient une base de E dans laquelle la matrice de u est

triangulaire supérieure.
O

Remarque Les espaces ker (u — A\, Idg)™* s’appellent espaces caractéristiques de 1’endomorphisme .

Corollaire
Si A € M, (K) est trigonalisable alors A est semblable & une matrice diagonale par blocs ou
chaque bloc diagonal est de la forme
My, + N

avec N une matrice nilpotente.

Remarque Ce résultat s’applique automatiquement lorsque K = C et I’on retrouve que toute matrice de
M,,(C) est trigonalisable.

Corollaire
Siu € L(E) est trigonalisable et si F est un sous-espace vectoriel stable par u alors up est
trigonalisable.

dém. :
II,, est scindé donc II,,,. I’est aussi.
O

6.4.5 Musculation : décomposition de Dunford

Théoreme
Soit u € L(E) avec II,, scindé dans K [X].
On peut écrire u = d + n avec d diagonalisable, n nilpotent et d on = n o d.

dém. :
On introduit Aq, . .., A, les valeurs propres deux a deux distincts de u.

H (X = X)) et B = 69 ker(u — Agldg)™*
=1
Posons d I’endomorphisme déterminé par
V1 <k <m,Vx € ker(u — \gIdg)™, d(z) = A\gx

L’endomorphisme d est évidemment diagonalisable, ses sous-espaces propres sont les espaces caractéris-
tiques.
Posons n I’endomorphisme donné par n = u — d.

V1< k<m,Vo € ker(u — A\ Idg)™ ,n"* (z) = 0
Pour N = max(nq,...,n,,), on obtient

V1 <k <m,Va € ker(u — )\kIdE)”’“,nN(x) =0g
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L’endomorphisme 7 est donc nilpotent.
Enfin
V1 <k <m, Ve € ker(u — MIdg)™, (nod)(z) = Mgn(z) = (don)(z)

et donc les endomorphismes d et n commutent.

On peut aussi montrer qu’il y a unicité des endomorphismes d et n de cette décomposition.
Supposons d et n solutions.

d commute avec n donc aussi avec u = d + n.

L’espace caractéristique F' = ker(u — Aldg)" est alors stable par d.

L’endomorphisme induit par d sur F' est diagonalisable.

Soit x4 une valeur propre de celui-ci et G C F' I’espace propre associé.

G est stable par u et donc aussi parn = u — det!’on a

ug = pldg + ng

Puisque n¢ est nilpotent, on peut calculer X, dans une base trigonalisant ng et affirmer que 1 est alors
valeur propre de ug donc de up. Or A est la seule valeur propre de ur et donc . = A. On en déduit que
A est la seule valeur propre de 1’endomorphisme diagonalisable d et ainsi

Vo € F,d(z) = Az

L’endomorphisme d est alors déterminé de fagon unique sur les espaces caractéristiques de u.

L’endomorphisme n = u — d est alors aussi unique.
O

Remarque La décomposition de Dunford est utile pour calculer les puissances de u car la formule du
binéme peut lui étre appliquée.
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Chapitre 7

Espaces préhilbertiens réels

E désigne un R-espace vectoriel.

7.1 Produit scalaire

7.1.1 Définition

Définition

On appelle produit scalaire sur un R-espace vectoriel F toute application ¢ : ' x E — R
vérifiant :

1) ¢ est bilinéaire ;

2) p est symétrique i.e. Vo, y € E, p(y,z) = p(z,y);

3) @ est positive i.e. Vo € E, p(z,z) > 0;

4) p est définie i.e. Vo € E, p(z,2) = 0=z = 0p.

On dit qu’un produit scalaire est une forme bilinéaire symétrique définie positive.

Remarque Les points 3) et 4) peuvent étre avantageusement remplacés par

Vo € E\{0g},p(z,z) >0

Définition
On appelle espace préhilbertien réel tout couple (E, ¢) formé d’un R-espace vectoriel F et
d’un produit scalaire ¢ sur E. Il est alors usuel de noter (z | y), (x,y) ou z.y au lieu de
(z,y) le produit scalaire de deux vecteurs de E.

Exemple Sur F = R", (z,y) = Z TrYr = T1Y1 + -+ - + Tpyy, définit un produit scalaire.
k=1

() : R™ x R™ — R est bien définie.

Soit \, u € R, z,y,z € R".

n

(@, My + p2) =Y wek + pzx) = Az, y) + p (2, 2)
k=1

(., .) est linéaire en sa deuxiéme variable.

<y,x> = Zykxk = <I7y>
k=1
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(., .) est symétrique et donc bilinéaire.
Enfin

n
DNE
k=1

et
(r,z) =0= 2 =0Opn

Finalement (., .) est un produit scalaire.

Exemple Sur E = M,, ,(R), (4 | B) = tr(* AB) définit un produit scalaire.
(.|.): E x E — R est bien définie car * AB est une matrice carrée.
Soit \,p e Ret A, B,C € M, ,(R).

(A|AB + puC) = tr ("AAB + puC)) = (A | B) + u(A | )
(B|A) =t (*BA) = ' (‘BA) =t (*AB) = (A| B)

Ainsi (. | .) est une forme bilinéaire symétrique.

P
(A A) =t ( => 1 [fA4],
j=1
Or ., .,
[tAA]j,j = Z [tAL',i [A]i7j = Za?,j
=1 =1

en notant a; ; les coefficients de A.
P n
2
(A1) => > al,

Ainsi (A|A) 2 0et(A]|A)=0=A=0,,.
 est donc définie positive et par suite c’est un produit scalaire.
En fait

n

(A|B) = => ['4 ;= S aigbig
j=1

j=1 =1i=1

Le produit scalaire introduit est analogue a celui défini ci-dessus sur R™.

Remarque Sur E = M,, 1(R),
(X |Y)=t(XY)="'XY

car ! XY est une matrice uni-coefficient.
Ainsi, le produit scalaire canonique sur M, ; (R) est donné par

(P(va) ='XY =x1y1+ -+ TuYn

avee X ="( @1 -+ xn )etY="(y1 - yn ).
Par I’identification des colonnes et des tuples, les produits scalaires canoniques se correspondent.
L’action de ce produit scalaire est la méme que celle du produit scalaire sur R”.
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Exemple Soit a < bdeux réelset £ = C ([a,b],R). (f | g) / f(t)g(t) dt définit un produit

scalaire sur E.
En effet, I’application (. | .) : E X FE — R est bien définie et clairement bilinéaire symétrique et pour

fE€E,ona
b
<f|f>=/ 2 dt =0

(f1f)=0=f=0

car seule la fonction nulle est une fonction continue positive d’intégrale nulle.

et

Remarque Si1’on considére w : [a, b] — R™* continue, on définit aussi un produit scalaire sur £ en

posant
b
- / FOg(t)w(t) di

Le résultat est encore vrai pour w s’annulant un nombre fini de fois.

Remarque On peut aussi définir des produits scalaires sur R [X | parmi lesquels les fameux suivants
+oo

1
(P.Q) = / P(HQ(t) dt, (P,Q) =

0 0

P#)Q(t)e tdtou (P,Q) = / m dt

7.1.2 Norme euclidienne

E désigne un espace préhilbertien réel et (. | .) désigne son produit scalaire.
Définition
On appelle norme euclidienne sur E ’application || . || : E — R définie par

2] = V(x| )

Exemple Sur £ = R™ muni du produit scalaire canonique
]l = y/ai + -+ 23 = ||zl

Dans le casn = 1, ||z|| = Va2 = |z|.

Exemple Sur £ = M,, ,(R) muni du produit scalaire canonique

1/2

||A|| = tAA ZZG’ZJ = HAHQ

=1 j=1
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Exemple Sur F = C ([a, ] ,R),

b 1/2
HE ( / f<t>2dt> = £l

Proposition
Ve € E, ||z =0= 2 =0g.
VA eR,Vz € E, || \x| = A ||z

dém. :
lz]| =0= (2| z) =0donc ||z|| =0 = z = 0.
all? = (x| A) = X2 (| ) = A o] donc [Ixa]| = A ]

O

Proposition
Va,b e E, ||a+0b|* = [la]|* + 2(a | b) + ||b]|,
Va,b € E, [la—b||* = [|la]|* — 2(a | b) + [|b]%,
Va,be E,(a—b|a+b)=]al* - ||b].

dém. :

la+b|]>=(a+b|a+b)=(a]a+b)+ (b|a+b) par linéarité en la premiere variable.
la+b|> = (a] a)+ (a|b)+ (b] a)+ (b] b) par linéarité en la deuxieme variable.
lla+b||> = ||a]|* + 2(a | b) + ||b]|* par symétrie.

Les autres identités s’obtiennent de facon analogue.

g
Proposition
2 2 2
va,y € B,2(x | y) = (o +yl” - o) = lly)*)
dém. :

11 suffit d’exploiter I’identité remarquable

2 2 2
lz+yll” = ll=lI” + 2(z [ y) + |1y

0
Théoréme
Vo,y € E, (x| y)] < [lz]l - [yl
avec égalité si, et seulement si, la famille (z, y) est liée.
dém. :

Cas x = O : immédiat.
Cas x # O : Pour tout \ € R,

Az +y))* = A |lzl* + 2X(z [ y) + lylI* = aX? +bA+c >0

done A = 4(z | )2 — 4 2]]* lylI* < 0. On en déduit (x| y)* < [|z [ly]]>

De plus, il y a égalité si, et seulement si, A = 0 c’est-a-dire si, et seulement si, il existe A € R vérifiant
Az +y = 0. Sachant z # 0, ceci équivaut a dire que la famille (z, y) est liée.

O
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n /2 , . 1/2
k=1

Exemple Sur R",

n

Z TkYk

k=1

Exemple Sur C([a,b],R),

b
/ F(t)g(t) dt

< ( / bf(t)th> " ( / bg<t>2dt) "

Théoreme

Vo,y € B, [lz+yll < =]l + [yl

avec égalité si, et seulement si, x et y colinéaires et (z | y) > 0.
(on dit que z et y sont positivement liés)

dém. :
On a ) ) )
lz+yl” = llzI" +2(= [ y) + [yl
2 2
< lzll* +2((z [ 9] + lyll
2 2
< lzl|” + 2|z [yl + [yl

2
= (llzll + llylD
avec égalité si, et seulement si, (x | y) = [(x | y)| = ||z|| ||y] i-e. z, y colinéaires et (x | y) > 0.
O
Corollaire
La norme euclidienne est une norme : tout espace préhilbertien réel est automatiquement un
espace normé.

Théoreme
] Le produit scalaire est une application bilinéaire continue pour la norme euclidienne.

dém. :
(.| .) est une application bilinéaire vérifiant |(z | y)| < 1 x ||z|| ||y]| elle est donc continue.
O

7.1.3 Vecteurs orthogonaux
E désigne un espace préhilbertien réel et (. | .) désigne son produit scalaire.
Définition

| Deux vecteurs z et y de E sont dits orthogonaux si (z | y) = 0.

Exemple Le vecteur nul est le seul vecteur orthogonal a lui-méme :

(x]2)=0=2=0g
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Exemple Le vecteur nul est le seul vecteur orthogonal a tout autre.

Définition
On dit qu’une famille (e;);< de vecteurs de F est orthogonale si elle est constituée de vecteurs
deux & deux orthogonaux i.e.

Vi,jEI,i#j$(€i|€j):O

On dit que la famille est orthonormale si ses vecteurs sont de plus unitaires

Vi,j eI, (ei|ej) =0

Proposition

Toute famille orthogonale ne comportant pas le vecteur nul est libre.
En particulier, les familles orthonormales sont libres.

dém. :

Soit (ey, . .., ey,) une famille orthogonale finie ne comportant pas le vecteur nul.

Supposons Aje; + -+ Ape, = 0p.

Pourtout 1 < j < n, (e | AMe1 + -+ Apen) = (e; | Og) donne A; ||ejH2 = 0etdonc A\; =0.

On peut conclure que la famille est libre.

On étend le résultat aux familles infinies aisément car la liberté d’une famille infinie correspond a la
liberté de ses sous-familles finies.

O

7.1.4 Algorithme d’orthonormalisation de Schmidt

Théoréme
Si (z1,...,x,) est une famille libre de vecteurs de F alors il existe une unique famille ortho-
normale (ey, ..., e,) vérifiant

V1 < k <n, Vect(zq,...,zr) = Vect(er,...,er);
)V1 <k <n, (x| eg)>0.

On dit que la famille (eq, . .., e, ) est la famille orthonormalisée de (1, . . ., x,,) par le procédé
de Schmidt.
Dans la pratique pour orthonormaliser (21, ..., Z,) :

- Etape 1 : on pose e1 = x1/||z1|| ;

- Etape 2 : on pose u = x2 + ey et on détermine A pour que (e | «) = 0 puis on pose ez = u/||ul|;

- Etape 3 : on pose u = x3 + ey + piea et on détermine A et p pour que (eq | u) = (e2 | u) = 0 puis on
pose e = u/|u] ;

- etc.

En fait
k

eirr = uffull avee w =z — Y (e | a)e;
=1

Exemple Dans R* muni du produit scalaire canonique considérons la famille (21,29, x3) avec

x1 =(0,1,1), 29 = (1,0,1),23 = (1,1,0)
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La famille (z1, z2, 23) est libre car

=240

= O
— O =
O = =

Jaall* = 2, e1 = (0,1/v2,1/2)

U= Ty + Aep

(e]e1) = 0donne A = —1/v2 puis u = (1,—1/2,1/2), es = (2/\/6, ~1/V6, 1/\/6).
u = x3+ ey + pes

(e3 ] e1) = 0donne A = —1/V2,

(e | e2) = 0 donne pr = —1/v/6 puis u = (2/3,2/3,—2/3) et e3 = (1/\/5, 1/V/3, —1/\/§).

Exemple Dans My(RR) muni du produit scalaire canonique (A | B) = tr(* AB) considérons la famille

(A, As, A3) avec
1 0 1 1 1 0
(o v) (i) en=(o0)

On vérifie aisément que cette famille est libre et le processus d’orthonormalisation de Schmidt donne

1 1 0 1 0 1 1 1 0
=0 1) B (Vo)em=75(0 0)

7.2 Espace euclidien

7.2.1 Définition

Définition
] On appelle espace euclidien tout espace préhilbertien réel de dimension finie.

Exemple Pour leur produit scalaire canonique, R™ et M,, ,,(R) sont des espaces euclidiens.

Définition
On appelle base orthonormale d’un espace euclidien E' toute famille de vecteurs de F qui est
a la fois une base et une famille orthonormale.

Exemple La base canonique de R™ est orthonormale pour le produit scalaire canonique.

Exemple La base canonique de M,, ,(R) est orthonormale pour le produit scalaire canonique.
En effet

(Eij | Exe) = ("B jEr ) = (EjiEg ) = t(8; 1 Ej o) = 61050
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Théoréme
] Tout espace euclidien E possede une base orthonormale.

dém. :

Soit (eq, ..., ey) une base de E.

Par I’algorithme de Schmidt, on peut former une famille orthonormale €’ = (i, ..., e.).
Celle-ci est libre et constituée du bon nombre de vecteurs pour étre une base.

O

Remarque Sie’ = (¢f,...,el) est une base orthonormale construite a partir d’une base

e = (e1,...,en) par Palgorithme de Schmidt alors la matrice de passage de e a ¢ est triangulaire

supérieure a coefficients diagonaux strictement positifs. En effet, on a

k—1

e, = u/||ul| avec u = ey, — Z (€; | ex)e;
i=1

et donc
ex, € Vect(el, ..., €})

Ainsi, la matrice de passage de ¢’ 2 e est triangulaire supérieure, aussi I’est sa matrice inverse.

Théoreme
Toute famille orthonormale d’un espace euclidien E peut étre complétée en une base orthonor-
mée.
dém. :
Soit (x1, ..., x,) une famille orthonormale de E.
Par le théoreme de la base incomplete, on forme une base (x1, ..., Zp, Tpt1,-- -, Tn)-
En appliquant le procédé de Schmidt, on obtient une famille orthonormale (e1, ..., €p, €pt1,. .., €pn).
Or, par ce procédé, on a nécessairement e; = 1,...,e, = «, car la famille (x1,...,,) est déja
orthonormale.
On a ainsi obtenue une famille orthonormale de la forme (z1,...,%p, €pt1,- .., €,). Celle-ci est aussi
une base de F car libre et constituée de n = dim F vecteurs de F.
d

7.2.2 Calcul des coordonnées dans une base orthonormale

Théoreme
Les coordonnées x4, . . ., x, d’un vecteur  de E dans la base orthonormée e sont données par

Vke{l,....,n},zr = (ex | )

de sorte que

dém. :
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n

Onaz = g xrex donc

k=1
(ek | ZE <€k ‘ Zl’g@g) = Z ek | 6[ Z$g5k ¢ = Tk
=1

O
Corollaire

La matrice A € M, (K) d’un endomorphisme u de E dans une base orthonormale e =

(e1,...,en) apour coefficient général

aij = (ei | u(e;))

dém. :

Le coefficient d’indice (i, j) de A est la i-eme composante dans e du vecteur u(e; ).
(|

Exemple Sie = (eq,...,e,) est une base orthonormale, alors

n

Yu € L(E), tru = Z (ex | uler))

k=1

7.2.3 Expression du produit scalaire et de la norme

Théoreme
Si z,y € E ont pour coordonnées z1,...,ZT, et yi,..., Yy, dans une base orthonormale e =
(e1,...,en) alors
— _t 2 _ .2 2 _t
(LL' | y) =T1Y1+ -+ TpYn = XY et ||{)3|| =zt +T, = XX
dém. :

n n
T = Zxkek ety = Zykek donc
k=1 k=1

3
3

(z|y) <Z ey | wa) = xrye(er | er) Z!Ckyk

k=1/¢=1

car (ek | eg) = (5k7g.

O

Remarque Considérons ¢ : £ — K" définie par p(z) = (z1,...,z,) avec zx = (ex | x).
L application ¢ est un isomorphisme de K-espace vectoriel qui conserve le produit scalaire.
Ainsi, quand I’espace F est rapporté a une base orthonormée, il se comporte comme K",
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Exemple Soit (z1, ..., ;) une famille de p vecteurs d’un espace euclidien E2 muni d’une base
orthonormale e = (e1, ..., e,). Notons A = Mat.(z1,...,2,). Ona

PAA = ((xi,25))

1<4,5<p

En effet,

p
[tAA]m. = Z a,i0k,j = (Ti, ;)
k=1

car les (ax,i)1<k<n sont les coordonnées de x; dans la base orthonormale e.

7.2.4 Représentation d’une forme linéaire

Pour a € E, I’application ¢, : E — R définie par

pa(z) = (a | z)

est une forme linéaire.

Théoreme
Si F est un espace euclidien alors

Vo e E*,3lac E,Vx € E, p(x) = (a | )

dém. :
Considérons I’application ® : F — E* qui 2 a € F associe la forme linéaire ¢, : © — (a | x).
L application ® est linéaire et injective car

(Vx e E,(a|xz)=0)=a=0g

Puisque dim E* = dim F < 400, I’application ® est un isomorphisme.
O

Remarque Sie = (ey,...,e,) est une base orthonormale de F et ¢ € E™ alors le vecteur a pour
lequel ¢ = ¢, est

n
a= Z wlex)er
k=1
En effet, les coordonnées de a dans la base orthonormale £ sont

ar, = (ex | a) = p(ex)

Exemple Sur E = M,,(R), on considere le produit scalaire donné par (4 | B) = tr (*AB).
Si ¢ est une forme linéaire sur E alors il existe une matrice A € M,,(R) vérifiant

VM € M, (R), (M) = tr(AM)
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7.3 Sous-espaces vectoriels orthogonaux
7.3.1 Orthogonal d’une partie
Définition

On appelle orthogonal d’une partie A de E I’ensemble noté A constitué des vecteurs de F
orthogonaux a tous les vecteurs de A

At ={z € E/Nac A, (a]|z)=0}

Exemple {0z} = Eet E- = {0g}.

Théoreme
] A1 est un sous-espace vectoriel fermé de E.

dém. :

At Cc Eet0 E € At car 0 E est orthogonal & tous les vecteurs de F/, notamment ceux de A.

Soit A, u € Ketzx,y € At

Pourtout a € A, (a | Az + py) = Ma | ) + p(a | y) = 0donc Az + py € A+,

Soit (x,,) € (A1)N convergeant vers un élément .

Soit a € A. Pourtoutn € N, (a | x,) = 0 donc a la limite (a | o) = 0 car le produit scalaire est
continue.

On en déduit 2., € A*.

|
Proposition
Pour A, BCFE
a) A C (AM)"
b)AC B= B+ c A+
¢) At = Vect(A)*
dém. :

a) Soit z € A. Pourtouty € A+, (x| y) = 0donc z € A+,

b) Supposons A C B.

Soit 2z € BL. Pourtouty € Aona (z|y) =0carz € B-ety € B. Parsuite z € AL,
Ainsi A C B= B+ C A%

¢) A C Vect(A) donc Vect(A)+ c A+,

Aussi A C At donc Vect(A) € A+ puis AT ¢ AT C Vect(A)*

O
Proposition
Si F' = Vect(e)1<r<m alors
Fr={zc E/N1<k<m,(e|z)=0}
dém. :

L’inclusion directe est immédiate, 1’inclusion réciproque s’obtient par la propriété : si x est orthogonal a
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une famille de vecteurs, il I’est aussi aux combinaisons linéaires de cette famille.
O

7.3.2 Sous-espaces vectoriels orthogonaux

Définition
Deux sous-espaces vectoriels F' et G de E sont dits orthogonaux s’ils sont formés de vecteurs
deux & deux orthogonaux i.e.

V(z,y) e F X G, (x]y) =0

Exemple

f\\\E:L\\\

Exemple F et F'* sont des sous-espaces vectoriels orthogonaux.

Proposition
On a équivalence entre :
(i) F' et G sont orthogonaux ;
(i) F c G*;
(i) G ¢ F+.

dém. :

(i) = (ii) Supposons F' et GG sont orthogonaux.

Soitz € F. Pourtouty € G, (x | y) = 0 donc z € G*. Ainsi F € G*.

(i1) = (i) Supposons F' C G*.

Pourtoutz € Fety € G, (x| y) = 0carz € G ety € G. Ainsi, les espaces F et G sont orthogonaux.
Par un argument de symétrie, on a aussi (i) < (ii).

O

Remarque Une orthogonalité est une inclusion dans un orthogonal.
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7.3.3 Somme directe orthogonale

Remarque Si F et G sont orthogonaux alors F NG = {0g} car
xeFNG=(x|z)=0

Ainsi deux sous-espaces vectoriels orthogonaux sont en somme directe. Plus généralement :

Théoreme

Si F1i,..., F,, sont des sous-espaces vectoriels de I/ deux a deux orthogonaux alors ceux-ci
sont en somme directe.

dém. :
Supposons x1 + - - - + x,,, = O avec chaque zj, dans Fj.
Pourtoutl <k < m,
(:ck ‘l‘1+"'+$m):($k|OE):0

donne ||z||* = 0 car (. | xj) = 0 pour j # k. Ainsi 2, = Og pour tout 1 < k < m.
Définition
Lorsque les sous-espaces vectoriels F1, ..., F}, sont deux a deux orthogonaux, on dit qu’ils

n
sont en somme directe orthogonale et leur somme est notée &~ Fy,.
k=1

Exemple Les espaces F' et F'- sont en somme directe orthogonale.

7.3.4 Supplémentaire orthogonal d’un sous-espace vectoriel de dimension finie

Théoréme

Si F est un sous-espace vectoriel de dimension finie alors I’espace F'* est un supplémentaire
de F' dans E.
On dit que F'* est le supplémentaire orthogonal de F'.

dém. :

On sait déja que F et F- sont orthogonaux donc en somme directe.

Montrons F 4+ F+ = E.

Soit e = (eq, ..., €,,) une base orthonormale de F'.

Analyse : Soitz € E. Supposons x =a +baveca € Fetb e G.
m

Onaazz:(ek|a)ek0r(ek|a):(ek|J;)—(ek|b):(ek|x)carek€FetbeFl.
k=1

m
On en déduit a = Z (ex | z)ex etb =z — a.
k=1

Synthese : Soitz € E,a = Z (e | x)er etb =z —a.
k=1
On a évidemment a € F etz = a + b. Il reste a vérifier b € F*.
F = Vect(ey,...,em) et (ex | b) = (ex | ) — (e | ) = 0donc b € FL.
]
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Corollaire
Si F’ est un sous-espace vectoriel d’un espace euclidien £ alors

dim F+ = dim E — dim F et F = (FX)"

dém. :

E:F@Fj donne dim E = dim F + dim F*. .
F C (F*)™ etDégalité des dimensions donne F = (F+) ™.
O

Exemple Dans M, (R) muni du produit scalaire canonique, les sous-espaces vectoriels S, (R) et
A, (R) sont supplémentaires orthogonaux.
En effet, Ceux-ci sont orthogonaux car pour A € S,,(R) et B € A, (R)

(A| B) = tr(*AB) = t(AB)
et
(A| B) = (B | A) = tu('BA) = —te(BA) = tr(AB)

donc (A | B) =0.
On en déduit
An(R) C Sp(R)*

puis, par égalité des dimensions,

A, (R) = S, (R)* etaussi A, (R)* = S,(R)

7.3.5 Vecteur normal a un hyperplan en dimension finie
Soit H un hyperplan d’un espace euclidien E. Puisque dim H = dim E — 1, on obtient dim H+ = 1.
Définition

La droite H est appelée droite normale 2 I’hyperplan H.

Pour tout a € H* avec a #0g,ona
H=(H)" = Vect(a)* = {a}*

et ainsi
VeeFExeH< (a]lx)=0

H = {a}L
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Définition

Tout vecteur a non nul de H est appelée vecteur normal de I’hyperplan H.

Exemple Considérons £ = M, (R) et H = {M € M,(R)/tw(M) = 0}.
Déterminons un vecteur normal de H.

H est un hyperplan car noyau de la forme linéaire non nulle trace.

Puisque tr(M) = tr(*I, M) = (I,, | M), la matrice I,, est vecteur normal & H.

7.4 Projection orthogonale sur un sous-espace vectoriel de dimen-
sion finie

E désigne un espace préhilbertien réel de produit scalaire (. | .).

7.4.1 Projection orthogonale

Soit F' un sous-espace vectoriel de dimension finie d’un espace préhilbertien £. On a

E=FaF*

Définition
On I’appelle projection orthogonale sur F la projection pp sur F' parallélement 2 F'-.

On appelle symétrie orthogonale par rapport a F' la symétrie s g par rapport a F' et parallelement
art.

Exemple Si F' = {Og} alors pp = 0.
Si F' = F alors prp = ldg.

Proposition
p% = pr, Sp(pr) C {0,1}
ker(pp —Id) = F = Impp et ker pp = Ft
De plus, sp = 2pp —Ildg etld — pp = pp1.

dém. :
Ce sont les propriétés usuelles des projections qui sont ici particularisées.
|
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Exemple Soit p un projecteur de £ euclidien.
Montrer que p est une projection orthogonale si, et seulement si,

Vo € B, [|p(x)]| < |||
(=) Si p est la projection orthogonal sur [ alors
z = p(z) + (x — p(z)) avec p(x) € Fetax —p(x) € F+

Par Pythagore
2 2 2 2
)™ = llp@)]I” + llz = p(2) " = [Ip()]]
(«<=) Si p est une projection sur un sous-espace vectoriel F’ parallelement a un sous-espace vectoriel G,
pour montrer que p est une projection orthogonale, il suffit de constater

Y(a,b) € F x G,(a]b)=0

Supposons
Vo € B, [lp(x)]| < =]

Soit A € Retxz = a+ Ab. On ap(z) = a et I'inégalité ||p(z)|| < ||| fournit

VYA € R, 2X (a | b) + A2 |b|?

Si (a | b) # 0 alors
A(a|b)+ X2 b]* ~ 2X\(a]|b)
A—0

n’est pas de signe constant au voisinage de 0.
Nécessairement, (a | b) = 0.

7.4.2 Expression du projeté orthogonal

Théoreme
Si (e1, ..., en) est une base orthonormale du sous-espace vectoriel F' alors
m
Vo € E, pr(x Z (e | z)
k=1
dém. :

Le vecteur pp(x) est élément de F'. On peut donc écrire

m
= (ex | pr(x))ex
k=1

Pour tout k € {1,...,m}, (ex | 2 — pr(z)) = 0 carz — pp(x) € F* donc

(ex | pr(z)) = (ex | )

O

http://mp.cpgedupuydelome.fr 176 OO0



CHAPITRE 7. ESPACES PREHILBERTIENS REELS

Exemple Soita # Og et D = Vect(a).
(a/l]la]|) forme une base orthonormale de D donc

(a| )

= 3 a
la]

Vz € E, pp(x)

Exemple Soit H hyperplan de vecteur normal a.
Ona H = {a}" = D" avec D = Vect(a) et donc py = Id — pp. Ainsi

(al2),

- 2
[[all

Ve € E,pg(x) ==

Remarque Lors de la mise en place du procédé d’orthonormalisation de Schmidt d’une famille libre

(1,...,2p), le calcul
k

ep+1 = u/||ul| avec u = xy, — Z (ei | zk)es
i=1

s’interpréte comme 1’obtention du vecteur complémentaire au projeté orthogonal.

7.4.3 Distance a un sous-espace vectoriel

Soit F un sous-espace vectoriel de E tel que F et F- sont supplémentaires.

Théoreme
Soitx € E.
Vy € F, |z —yl| = ||z — pr(2)||

avec égalité si, et seulement si, y = p(z).

dém. :
x—y=(x—pr)+ (pr(z) —y)avec z — pr(z) € Fretpp(z) —y € F.
Par Pythagore ||z — y||*> = ||z — pr(2)||* + |pr(z) — y||> > ||z — pr(z)||® avec égalité si, et seulement

si, y = pr(x).
O
Corollaire

d(z, F) = ||z = pr ()]
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dém. :
d(x,F) = inf — y|| = mi —y|l= |z — .
(z, 1) = inf Jlo —y|| = min |lo — y[| = Jlo — pr()]
0
Corollaire
Soit a # O et D = Vect(a).
Vo € E,d(x, D) = Haj _ (a] g)aH
llal
H = Vect(a)™.
Vz € B, d(z, H) = |(“| | |T)|
a

Exemple Soit £ = M;(R).
Calculons la distance de A = ( ;) i ) a I’hyperplan H constitué des matrices de trace nulle.

Puisque I est vecteur normal de H,

_ e(A)]
A(A ) = S =

Sl e

Exemple Calcul de

1
— inf 2 — (at + b)) dt
m= it [ e

Considérons £ = R [X] muni du produit scalaire

1

(P.Q) = [ PQU)
0

Onam = d(X? R, [X])%

Soit p = pg,[x]. Onam = || X* — p(X?)||

Déterminons p(X?).

Pour cela formons une base orthonormée de Ry [X].

L’algorithme d’orthonormalisation de Schmidt donne la base orthonormée

2

1
Pl_letPg_Q\/§<X—2>

On en déduit
p(X?) = (PL|X?) P+ (P | X)) Py=X —1/6

Apres calculs
m=||X% - X +1/6]" = 1/180
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7.4.4 Inégalité de Bessel

Théoréme
Si (e1,...,ey) est une famille orthonormale de vecteurs de F alors
n
Vo e B, (e | 2)? < [z
k=1
dém. :
Soit (e, . . . , €, ) une famille orthonormale. Celle-ci est base orthonormale de I’espace F' = Vect(ey, . .., e,)
et
n
pr() =Y (ex | )ex
k=1
On a alors

et la relation ||pr(z)||> < ||#||* donne celle proposée.
(]

Remarque Sidim F < +ooetsi (e, ..., e,) est une base orthonormale alors il y a égalité.
Sidim F = 400 et si (e, )nen est une famille orthonormée de vecteurs de E alors pour tout z € E, la

. e 2
série numérique E (en | )° converge et

+oo

> (enl2)” <zl

n=0

En effet, les sommes partielles de la série & termes positifs Z |(en | )|? sont majorées par ||z]|”.

7.4.5 Suite orthonormale de vecteurs d’un espace préhilbertien réel

Ici, E' désigne un espace préhilbertien de dimension infinie.
Définition
On dit qu’une suite (e, ),en de vecteurs de F est totale si I’espace vectoriel qu’elle engendre

est une partie dense de F i.e.
Vect{e,/n e N} = F

Exemple Soit E = C ([-1,1],R) muni du produit scalaire

(f.9) = / gt ar

La suite (X™),en est totale (ou abusivement X" désigne la fonction polynomiale ¢ — ¢" définie
sur [—1, 1)).
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En effet, par le théoreme de Weierstrass
Vect {X"/n € N} = R[X]

est une partie dense de £ normé par || . ||, donc, a fortiori, une partie dense de £ normée par || . ||,
puisque

171l < V21 £l
Théoreme
Soit (e, )nen une suite orthonormale totale d’éléments de F.
En notant p,, la projection orthogonale sur I’espace F,, = Vect(eg,...,e,) ona
Vo € E,pp(z) —— x
n—-4o0o
dém. :

Commencons par remarquer

Vect {e,/n € N} = U F,
neN

L’inclusion (D) est immédiate. L’inclusion (C) provient de ce que la réunion des F, est un sous-espace
vectoriel de E' contenant tous les vecteurs e,,.

Soitz € E.

Soit e > 0. Puisque Vect {e,,/n € N} est une partie dense de F, il existe y € Vect{e,,/n € N} vérifiant
lx — y|| < e. Par la remarque précédente, il existe N € N tel que y € Fy. Pour tout n > N, on a aussi
y € F,, etdonc

[z = pn(2)]| = d(z, F) < [z —yl < e

U
Corollaire
Si (en)nen est une suite orthonormale totale d’éléments de E alors
“+oo
VzGE,x:Z(en | ) en
n=0
dém. :

11 suffit d’exprimer p,, (z) et d’observer

pn(x) = ];)(ek | ) eg mx

O
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7.4.6 Musculations
7.4.6.1 Polynome de Legendre
Soit E = C ([-1,1] ,R) muni du produit scalaire

(f.9) = / Fate)at

En orthonormalisant par I’algorithme de Schmidt, la famille (X™),,c on obtient une famille orthonor-
male totale, mais celle-ci est difficile a calculer...

Considérons
B = (1)

= UM avec U, = (X —1)" (X +1)"
Exemple P =1, P, =2X, P, =4 (3X* — 1)

Proposition
deg P, =netVQ e R,,_1 [X], (P, | Q) =0

dém. :
deg P, = n car deg (X* — 1)" = 2n et I'on dérive n fois
Par intégration par parties successives, on obtient

VQ € Ryt [X).(Pa | Q) = (<) (US V[ Q) = ... = (<) (Ua | Q) =0
|
Théoreme
La famille (P, /|| P,||),,cy est une famille orthonormale totale de £ et donc
+oo
(P | £)
= P,
nz::o 1P|
dém. :

La famille (P,),, .y est orthogonale car Vm < n, (P, | Py) = 0 en vertu de ce qui précede.

De plus, étant de degrés étagés, elle constitue une base de R [X] et ¢’est donc une famille totale comme
cela a été vu au dessus.

O

Remarque La fonction polyndme
N

ENTAY;
fv=2 g

constitue alors la meilleure approximation euclidienne de f parmi les polyndmes de degré inférieur a V.
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7.4.6.2 Polynomes de Tchebychev

On a
cos(2t) = 2cos®t — 1, cos(3t) = 4cos®t — 3cost,...

De fagon générale, pour n € N, en développant
cos(nt) = Re (e") = Re ((cost + isint)")
on obtient

[n/2] n
cos(nt) = ,;) (—1)* <2k> cos™ 2R (t) sin?* (t)

et puisque sin®* (t) = (1 — cos? t)*, cette expression est un polyndme en cos(t).
Définition
On appelle polyndme de Tchebychev, I’unique polyndme de R [X] vérifiant

vt € R, cos(nt) = Ty, (cost)

Exemple 7, =1, T, = X, T, =2X? —letTy = 4X° — 3X
En vertu des calculs qui précedent

n/2]

T, (X) = ") xme2k(x2 )k

W= 30 () ek )
k=0

Proposition
VneN,T,11 =2XT, — T,

dém. :
Ona
cos ((n + 1)t) + cos ((n — 1)t) = 2cos(t) cos(nt)

donc
Tt1(cost) = 2cos(t) Ty, (cost) — T,—1(cost)
L’identité
Tot1(x) = 22T, (x) — Th1(2)

étant vraie pour une infinité de valeurs (celles de [—1, 1] ) on peut affirmer I’identité polynomiale propo-
sée.

]
Théoreme
La famille (7,)nen est une famille orthogonale totale sur I'espace £ = C ([—1, 1], R) muni
du produit scalaire
= [,
-1V 1-— LC2
dém. :

On vérifie aisément que (., .) définit un produit scalaire sur F.
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La famille (7}, ),cn est une famille de polyndmes de degrés étagés, c’est donc une base de R [X].
Par le théoréme de Weierstrass et la comparaison

Imb—/ o /

on peut affirmer que cette famille est totale.
Enfin cette famille est orthogonale car pour n # m

Mg ey,

= 1 z&i}gz}ﬁggz - ﬂCOS nt) cosim =
T\ 1) = [ 22— costat) cos(mt) dt =0

On peut donc écrire dans I’espace préhilbertien

I= E:HTH

O

7.4.6.3 Séries de Fourier

Soit E I’espace des fonctions réelles continues T'-périodiques.
On définit un produit scalaire sur E en posant

(f1g) = / f@

On définit les familles de fonctions (¢, )nen et (Sn)nen+ par
co(z) =1, en(x) = cos(2mna/T) et s, (x) = sin(2mnz/T) pour n € N*
Ces fonctions sont deux a deux orthogonales car
1 T
Y #m, (cn | cm) = 5T / cos (2w (n +m)x/T) + cos (2m(n —m)x/T) dz =0
0

et de facon analogue
Y #m, (Sp | sm) =0etVn,m, (¢, | $m) =0

On peut montrer (mais ce n’est pas immédiat) que la famille constituée de ces fonctions est une famille
totale. On peut alors écrire dans 1’espace préhilbertien E/

20 W
I= EZEJ| Z:nm o

On obtient ainsi 1’écriture utilisée en sciences physiques

™I 2mnx
n b'ﬂ 51
—I—Za cos( )+ 51n< T >

T
an:%/o f(x)cos< )dxetbn/ f(x)si <27m:£> dx
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Chapitre 8

Endomorphismes des espaces
euclidiens

E désigne un espace vectoriel euclidien de dimension n € N*.

8.1 Matrices orthogonales

8.1.1 Définition

Proposition
Pour A € M,,(R), on a équivalence entre :
(i) A est inversible et A~' = 1A ;
() tAA =1, ;
(i) A*A = T,,.

dém. :
11 suffit d’appliquer le théoreme d’inversibilité relatif aux matrices.
O

Définition
On dit qu’une matrice A € M., (R) est orthogonale si ‘AA = I,,.

Exemple 7, et —I,, sont des matrices orthogonales.

Théoréme
L’ensemble O, (R) des matrices orthogonales de M, (R) est un sous-groupe compact de
(GL,(R), x) appelé groupe orthogonal d’ordre n.

dém. :

0,(R) C GL,(R), I, € O,(R).

Soit A, B € O, (R). AB € O,(R) cart (AB) AB = 'B'AAB = 'BB = I,.

Soit A € O, (R). A1 € Op(R)car’ (AT ) A7 =" (PA)"A=A"'A =1,

Ainsi O,,(R) est un sous-groupe de (GL,, (R), x).

O0n(R)={Ae M,(R)/'AA=1I,} = f~' ({I,}) avec f : A € M,(R) — "AA.

Puisque f est continue et {I,,} fermé, O, (R) est un fermé relatif a M,,(R) et c’est donc une partie
fermée.

Enfin, considérons || . || la norme euclidienne associée au produit scalaire canonique sur M, (R).
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Pour A € O,(R), ||A|| = Vtr(*tAA) = \/trl,, = v/n. Par suite O,,(R) est une partie bornée.

Puisque M, ( ) est de dimension ﬁme O, (R) est une partie compacte car fermée et bornée.
O
Théoreme

Soit A € M,,(R) de colonnes C1, ..., C, etde lignes L1, ..., L.

On a équivalence entre :

(1) la matrice A est orthogonale ;

(ii) 1a famille (C4, . .., C,,) est orthonormée ;

(iii) 1a famille (L, ..., L, ) est orthonormée.

dém. :
Etudions (i) < (ii).
Sur M., 1 (R), le produit scalaire considéré est le produit scalaire canonique défini par

(X | Y) XY = T1Y1 + -+ TuYn

Pour tout 1 < 4,5 < n,
[tAAL_j:Z[ n Ak = Za;“a;w— (Ci ] Cy)
k=1
)& "AA=1, & V1 <ij <n, [[AA], =6, =V1<i,j<n,(C; | C)) =6 < (i)
Etudions (i) < (iii).
Sur M1 ,,(R), le produit scalaire considéré est le produit scalaire canonique définie par

(L|L)=L'L =005 + -+ 0,0,
En remarquant que
[AtA] = (L; | Ly)
i,

on démontre comme ci-dessus (i) < (iii).
O

Exemple La matrice

est orthogonale.
En effet, ses colonnes sont unitaires et deux a deux orthogonales.

8.1.2 Changement de bases orthonormales

Théoréme

Soite = (e, ..., e,) une base orthonormale de E et e’ = (e}, ..., e},) une famille de vecteurs
de E.
On a équivalence entre :
(i) €’ est orthonormale ;
(ii) P = Mat.e’ est orthogonale.
De plus, si tel est le cas,

Mat. e = tp
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dém. :
Rappelons que si x et y sont des vecteurs de colonnes coordonnées X,Y dans une base orthonormale
alors

(z]y) ="XY

Notons C', ..., C, les colonnes de P.
Les colonnes C1, ..., C, sont les colonnes des coordonnées des vecteurs €}, ..., e/, dans la base ortho-
normale e et donc pour tout 1 < 4,5 < n,

(€5 [ €f) ="CiCy = (Ci | Cy)

Par suite, la famille ¢’ est orthonormée si, et seulement si, la famille (C1, . .., C,,) I’est. Cela équivaut a
affirmer P € O,,(R).
De plus, si tel est le cas, Mat. e = pPl=tp
O
Corollaire
Si e et €’ sont deux bases orthonormales de 1’espace euclidien E alors la formule de change-
ment de base relative aux endomorphismes s’écrit

A ='PAP

avec A = Matou, A’ = Matuetu € L(E).

Définition

] On dit alors que les matrices A et A’ sont orthogonalement semblables.

Remarque Deux matrices orthogonalement semblables sont a fortiori semblables.

8.1.3 Matrices orthogonales positives

Proposition
] Si A est une matrice orthogonale alors det A = +1.

dém. :
tAA = I,, donne det(*AA) = 1 or det(*AA) = det(*A) det A = (det A)® donc (det A)* = 1.
|
Définition
] Les matrices orthogonales de déterminant 1 sont dite positives, les autres sont dites négatives.

Exemple [,, est une matrice orthogonale positive.
—1I,, est une matrice orthogonale positive si, et seulement si, n est pair.

Proposition

L’ensemble SO,,(R) des matrices orthogonales positives de M, (R) est un sous-groupe com-
pact de (GL,(R), x).
On I’appelle groupe spécial orthogonal d’ordre n.

dém. :
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avec O, (R) sous-groupe compact de GL,, (R) et
SL,(R) = {A € M, (R)/det A = 1} sous-groupe fermé de (GL,,(R), x).

O
Proposition

] Si e et ¢’ sont deux bases orthonormées directes d’un espace euclidien orienté alors det, ¢’ = 1.
dém. :

Puisque les bases e et ¢’ ont méme orientation det, ¢’ > 0. Or det, ¢’ = +1 car Mat.e’ € O, (R). On en
déduit det. e’ =1
O

Remarque C’est cette relation qui permet de définir le produit mixte de n = dim F vecteurs d’un
espace euclidien orienté comme égal au déterminant de cette famille dans n’importe quelle base
orthonormale directe.

8.2 Isométries vectorielles

8.2.1 Définition

Définition
On appelle isométrie vectorielle de E tout endomorphisme v € £(E) conservant la norme.

Ve € B, [lu(x)] = [l

Exemple Idp, —Idg sont des isométries vectorielles.

Exemple Les symétries orthogonales sont des isométries vectorielles.
En effet, si s est une symétrie orthogonale par rapport a un sous-espace vectoriel F', pour x = a + b avec
a € Fetbe Ftalors s(x) = a — bet par le théoréme de Pythagore

2 2 2 2
Is(@)II" = llall” + (o[ = |z

Proposition

| Si u est une isoméirie vectorielle alors Spu C {1, —1}.

dém. :

Soit A € Spu et x # Og vecteur propre associé.

D’une part |u(x)|| = ||Az| = |A| ||z, d’autre part ||u(z)|| = ||z||. On en déduit |A\| = 1
O

Remarque En particulier 0 ¢ Spu et donc u est un automorphisme.
On parle indifféremment d’automorphisme orthogonal ou d’isométrie vectorielle.
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Théoreme

Soit u un endomorphisme de E. On a équivalence entre :
(i) u est orthogonal ;

(ii) u conserve le produit scalaire i.e.

Yo,y € B, (u(z) [u(y)) = (| y)

dém. :
(i) = (ii) Supposons que pour tout x € E, ||u(z)|| = ||z||.
D’une part

lu(z +9)I* = llu(@) +u@)® = l[u(@)]* +2(u(@) | u(y)) + [uly)]?
et d’autre part
lua + )" = o+ yl* = llz)* + 2(= | y) + Iyl
Or [[u(@)| = [l et [lu(y)]| = [lyl| donc

(u(@) | u(y)) = (= | y)

(i1) = (1) Supposons que 1’endomorphisme u conserve le produit scalaire.
Pourtoutz € F,

lu(@)* = (u(@) | u(@)) = (@] ) = ||

donc [[u(z)|| = [|l=[-
]

8.2.2 Matrice d’une isométrie en base orthonormale

Théoreme
Soitu € L(E) ete = (e, ..., ey,) une base orthonormale de E.
On a équivalence entre :
(1) u est orthogonal ;
(ii) 1a famille (u(eq), ..., u(e,)) est une base orthonormale ;
(iil) Mat.u € O, (R).

dém. :
(i) = (i1) Supposons I’endomorphisme w orthogonal.

Pourtout1 < 4,7 < n,
(ulei) | ule;)) = (ei | €;) = di;

donc la famille (u(ey), . .., u(e,)) est orthonormale et ¢’est donc une base orthonormée.

(ii) = (iii) Supposons (u(eq), ..., u(e,)) orthonormale

Puisque Mat.u = Mat, (u(e1),...,u(en)), Mat.(u) € O, (R) car matrice de passage entre deux bases
orthonormales.

(iil) = (i) Supposons A = Mat.u € O, (R).

Soit z un vecteur de £ de colonne coordonnées X dans la base e.
Puisque la base e est orthonormale ||z||* = ‘X X.

Puisque u(x) a pour colonne coordonnées AX,

Ju(@)|]> = H(AX)AX =X AAX ='XX = ||z|°
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Ainsi u conserve la norme et donc est une isométrie vectorielle.
O

Remarque 11 est essentiel de vérifier que la base e est orthonormale pour exploiter ce résultat.

Corollaire
L’ensemble O(E) des isométries vectorielles de E est un sous-groupe compact de (GL(E), o)
appelé groupe orthogonal de E.

dém. :
Considérons e une base orthonormée de E et @ : M, (R) — L(F) I'application qui a M € M, (R)
associe u € L(E) déterminé par Matu = M. On a

® est continue (car linéaire au départ d’un espace de dimension finie) donc O(E) est compact.
® est un morphisme de groupe multiplicatif donc O(FE) est un sous-groupe de (GL(E), o).
O

8.2.3 Isométries positives
Remarque Siu € O(F) alors det u = +1.
Définition

On appelle isométrie positive (ou isométrie directe) toute isométrie vectorielle de déterminant
1. On parle d’isométrie négative (ou indirecte) sinon.

Exemple Idg est une isométrie positive
—Idg est une isométrie positive si, et seulement si, dim E est pair.

Exemple On appelle réflexion toute symétrie orthogonale par rapport a un hyperplan.
Les réflexions sont des isométries négatives.

Proposition
L’ensemble SO(FE) des isométries positives de E' est un sous-groupe compact de (GL(E), o)
appelé groupe spécial orthogonal de F.

dém. :
SO(F) = O(E)NSL(E) avec SL(E) = {u € L(E)/ detu = 1} sous-groupe fermé.
0

8.2.4 Isométries du plan

Soit F un plan euclidien orienté.

http://mp.cpgedupuydelome.fr 190 @O0



CHAPITRE 8. ENDOMORPHISMES DES ESPACES EUCLIDIENS

8.2.4.1 Isométries positives

Théoreme
Les matrices orthogonales positives de M (R) sont les matrices de la forme

cosf) —sinf
sinf)  cos®

R(0) = ( > avec 6 € R.

De plus, ces dernieres commutent entre elles car

RO)R(O)) = R(0 + 0

dém. :

. a b
Soit M = ( ¢ d
Puisque (a — d)? 4 (b4 ¢)?> =2 — 2(ad — bc) = 0, on a aussi ¢ = —sin 6 et d = cos 6.
Enfin, on vérifie par le calcul la relation R(6)R(6') = R(0 +6').

€ SO5(R). On a a® + ¢* = 1 donc il existe § € R vérifiant a = cosf et b = sin .

O
Corollaire

Une isométrie positive du plan a la méme matrice dans toute base orthonormale directe.

Celle-ci est de la forme R(6) avec 6 € R unique a 27 pres de sorte et on parle alors de rotation

d’angle 6.

Rot,(z)
\ +
xﬁ
OI;' > ‘
[z

dém. :

Soit e et €’ deux bases orthonormales du plan et v € SO(E). On pose A = Mat.u et A’ = Mat,/u. Par
formule de changement de base A’ = P~ AP = AP™'P = A car les matrices de SO,(R) commutent
entre elles.

0

8.2.4.2 Isométrie négatives

Théoreme
Les matrices orthogonales négatives de M3 (RR) sont les matrices de la forme

cosf)  sinf
sinf —cosf

5(0) = ( > avec 0 € R.

Elles vérifient (5(6))* = L.

dém. :
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Soit M = ( i Z ) € SO2(R). Ona a? + ¢* = 1 donc il existe § € R vérifiant a = cos 6 et b = sin 6.
Puisque (a + d)? + (b — ¢)*> = 2+ 2(ad — bc) = 0, on a aussi ¢ = sinf et d = — cos 6.

Enfin, on vérifie par le calcul la relation (S(6))” = I.

O
Corollaire

Les isométries négatives du plan sont les symétries orthogonales par rapport a des droites.

Il existe une base orthonormale dans laquelle la symétrie est représentée par la matrice

1 0
5(0) = ( Lo )

dém. :
Ona

S5(0) = S(0)R(6) = S(0)R(6/2)R(6/2) = R(-0/2)S(0)R(6/2)

donc S(0) est semblable a S(0) par le biais d’une matrice de passage orthogonale. Ainsi, une isométrie
négative représentée initialement dans une base orthonormale par S(#) peut aussi étre représentée dans
une base orthonormale par S(0). On reconnait alors une symétrie orthogonale.

O

8.2.5 Réduction d’une isométrie vectorielle

Lemme

’ Soit u € O(FE). Si F est un sous-espace vectoriel stable par u alors F' I’est aussi.

dém. :
On suppose F stable par u et donc u(F) C F. Or u est bijective donc conserve la dimension et par
conséquent u(F) = F. Soit x € F. Pour tout y € F, on peut écrire y = u(a) avec a € F et alors

(u(z) [ y) = (u(z) | u(a)) = (z[a) =0

Ainsi u(z) € F*.

O

Lemme
Si u est un endomorphisme d’un R-espace vectoriel réel de dimension finie non nulle alors il
existe au moins une droite vectorielle ou un plan stable par u.

dém. :

Soit P € R[X] un polyndme unitaire annulateur de u (par exemple, son polynéme caractéristique ou
minimal). On peut écrire P = P, P, ... P, avec P} polyndmes unitaires irréductibles de R [X].
Puisque P(u) = 0, on a P(u) o Py(u) o ... o Py,(u) = 0 et par conséquent, au moins I’un des en-
domorphismes composés n’est pas injectif. Supposons que ce soit celui d’indice k. Le polyndme Pj, est
irréductible dans R [X], il est donc de I’une des deux formes suivantes :

Cas P(X)=X— A

A est alors valeur propre de u et tout vecteur propre associé engendre une droite vectorielle stable.

Cas P(X) = X? +pX +qgavec A =p> —4g <0

Soit z € ker P(u). On a u?(z) + pu(z) 4+ g = O et donc F = Vect(z, u(z)) est stable par wu.

Dans les deux cas, v admet une droite ou un plan stable.

O
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Théoreme
Si w € O(F) alors il existe une base orthonormale de E dans laquelle la matrice de u est
diagonale par blocs de blocs diagonaux de la forme

cos) —sinf
sinf cos6

(1), (1) ou ( > avec € R

Autrement dit, I’espace E est la somme directe orthogonale de F1(u), E_1(u) et de plans sur
lesquels u opere comme une rotation.

dém. :
Par récurrence sur la dimension de E.
Casn=1:

u est une isométrie d’une droite et peut donc étre représentée en base orthonormale par
(1) ou (-1)

Casn=2:
u est une isométrie du plan et peut donc €tre représentée en base orthonormale par

cosf —sinf 1 0

R(0) = < sinf®  cosf ) ou ( 0 -1 )
Supposons la propriété établie jusqu’au rang n avec n > 2.
Soit F un espace euclidien de dimension n + 1 et u € O(E).
11 existe une droite ou un plan F stable par u et - est alors aussi stable par w.
Par hypothése de récurrence, il existe une base orthonormale de F'* telle que la matrice de u dans celle-ci
soit de la forme voulue.
Par I’étude initiale, il existe une base orthonormale de F' telle que la matrice de u dans celle-ci soit de la
forme voulue.
En accolant ces deux, on forme une base orthonormale de £ comme voulue.

Récurrence établie.
O

Corollaire
Toute matrice de O, (R) est orthogonalement semblable & une matrice diagonale par blocs avec
des blocs diagonaux de la forme

cosf) —sinf
sinf cos6

(1), (1) ou ( > avec § € R

8.2.6 Réduction des isométries positives en dimension 3

Soit & un espace euclidien orienté de dimension 3.
8.2.6.1 Orientation induite

Soit P un plan de I'espace F et D = P~ sa droite normale.

Il n’existe pas a priori d’orientation préférentielle ni sur P, ni sur D.

Choisissons une orientation sur D et soit ¢ vecteur unitaire direct de D : on dit alors que D est un axe.
Complétons « en une base orthonormale directe (i, U, W) de E.

La famille (¥, 1) est une base orthonormale de P. En choisissant celle-ci pour base orientée de référence,
on dit qu’on a muni le plan P de I’orientation induite de celle de D. En effet, on peut montrer que cette
orientation est indépendante de la maniere dont on a complété u en une base orthonormée directe.
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4“@ )
|0 e
/ s A

P P

Remarque Sil’on inverse I’ orientation sur D, I’ orientation induite sur P est, elle aussi, inversée.

8.2.6.2 Rotation de I’espace
Une isométrie positive f de E autre que I’identité peut étre représentée par la matrice

1 0 0
0 cosf —sin0
0 sinf cosf

dans une base orthonormale (@, ¥, w). Quitte & changer en son opposé le premier vecteur de base, on peut
supposer la base orthonormale (@, ¥, w) directe.
On introduit alors la droite D = Vect(%) et le plan P = Vect(#, W) orienté par le vecteur normal 4. Pour
Z € E, on peut écrire

Z = p(Z) + q(¥) avec p(Z) € Detq(Z) € P

et alors
f(Z) = p(Z) + Roty(q(Z))

Définition
On dit alors que f est la rotation d’axe dirigé et orienté par @ et d’angle 6. On la note Roty g.

Rot, (q(x))

+& q(x)
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Proposition
Vo, 0 e R, ROtuﬂ = ROtu,g/ sS0=0 [271’}
Vo, 0 € R, ROtu,g o Rotuﬁ/ = ROtu79+9/ = ROtuﬁ/ o ROtu}g.
v0,0' € R, Rot, ;, = Rot,, .

dém. :
Immédiat par calcul matriciel.
O

Remarque Si1’on change le vecteur en son opposé, 1’orientation induite sur P 1’est aussi et les mesures
angulaires dans P sont alors changées en leur opposée. Par suite

ROtuﬂ = ROt_%_g

8.2.6.3 Réduction d’une rotation

Exemple Soit £ un espace vectoriel euclidien muni d’une base orthonormée directe B = (Z, f, E)
Déterminons I’endomorphisme f de E de matrice dans B

0 0 1
A=11 0 0
010

La matrice A est orthogonale et det A = 1 donc f est une rotation autre que 1’identité.
Axe D :
L’axe D est formé des vecteurs invariants par f.
Pour @ = i + yj + zk,ona
fld)=tier=y==

Par suite D = Vect(i + j + k).

Orientons D par le vecteur @ = i+ f—i— k.

Angle 6 de la rotation :

Onatrf =2cosf+ lortrf =trA = 0donc cosf = —1/2.
Pour conclure, il reste a déterminer le signe de sin 6.
Soit & = atl + fU+yw ¢ D.Ona

1 « «
[@,Z, f(£)] =] 0 B Bcosh—ysinf | = (B> +~*)sinb
0 ~ [Bsinf+ ycosb
Ainsi, le signe de sin 4 est celui de
[, Z, f(Z)]

En pratique, on détermine le signe de sin 6 en étudiant celui de

—

[a‘, 7 f(z)}

Ici
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donc
0=2m/3 [27]

Finalement, f est la rotation d’axe D dirigé et orienté par © = i+ f—i— k et d’angle 27 /3.

8.3 Endomorphismes symétriques

8.3.1 Définition

Définition
Un endomorphisme v € L(E) est dit symétrique si

Yo,y € B, (u(z) [ y) = (z [ u(y))

Exemple 0 et Id sont symétriques.

Exemple Les projecteurs orthogonaux sont exactement les projecteurs symétriques.
En effet, soit p un projecteur orthogonal sur un sous-espace vectoriel F'.
Pour tout z,y € E,

(p(z) [ y) = (p(=) | p(y)) + (p(z) [ y — py)) = (p() | P(y))
car p(x) € Fety —p(y) € F*-. De méme

(z | p(y)) = (p(x) | p(y)) + (z — p(x) | p(y)) = (p(z) | p(¥))

Ainsi

(p(z) [ y) = (= | p(y))

0, p(z) ()

Inversement, si p est un projecteur sur un sous-espace vectoriel F' parallelement a un sous-espace
vectoriel G et si celui-ci est symétrique alors pour tout x € F ety € G alors

(@ |y) = (p(x) [y) = (x| p(y)) = (z | 0p) =0

Les espaces [ et G sont donc orthogonaux et la projection p est orthogonale.
De méme, les symétries orthogonales correspondent aux « symétries symétriques » .
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Proposition
Siu € L(FE) est un endomorphisme symétrique alors

Imu = (ker u)™

dém. :
Soit = € ker u et y € Imu. On peut écrire y = u(a) avec a € E et alors

([ y) = (z [ ula)) = (u(z) | a) = (0p [ ) =0

Ainsi, les espaces Imu et ker u sont orthogonaux et donc Imu C (ker u)L puis I’égalité par les dimen-
sions.

O

8.3.2 Matrice d’un endomorphisme symétrique

Théoreme
Soitu € L(E) ete = (ey,...,e,) une base orthonormale de E.
On a équivalence entre :
(1) u est symétrique ;
(i) la matrice Mat.u est symétrique.

dém. :
(i) = (ii) Supposons u symétrique et étudions A = (a; ;) = Mat.u.
Onaa;; = (e | u(e;)) et donc par symétrie,

aij = (u(e;) | ej) = (&5 | ule;)) = aj;

La matrice A est donc symétrique.
(ii) = (i) Supposons A = (a; ;) = Mat.u symétrique.
Soit z,y € F de colonnes coordonnées X et Y dans la base e. Puisque la base e est orthonormale

(u(z) |y) ="(AX)Y ='X'AY et (z | u(y)) =" XAY

Or‘A = Adonc (u(z) | y) = (z | u(y)).
(]

Remarque 11 est essentiel de vérifier que la base e est orthonormale pour exploiter ce résultat.

Corollaire

L’ensemble S(E) des endomorphismes symétriques de F est un sous-espace vectoriel de L(E)

1
de dimension n(nT—i-)

dém. :
S, (R) et S(F) sont isomorphes via représentation matricielle dans la base orthonormée e.

O
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8.3.3 Théoréme spectral

Lemme
Si F est un sous-espace vectoriel stable par v € £(E) symétrique alors F'* est aussi stable
par u.
De plus, les endomorphismes induits par u sur F et F- sont encore symétriques.

dém. :

Soitz € Ftety e F.Ona

(u(@) |y) = (z | u(y)) =0
carx € Fretu(y) € F.
De plus, pour tout z,y € F,

(ur(z) [ y) = (u(z) [ y) = (= | w(y)) = (= [ ur(y))

Ainsi, up est symétrique et il en est de méme de up .
O
Lemme

] Les sous-espaces propres d’un endomorphisme symétrique sont deux a deux orthogonaux.

dém. :

Soit A, 11 € R distincts. Pour z € Ey(u) ety € E,(u) :
D’une part, (u(z) | y) = (A\z | y) = A(z | y)

D’autre part, (u(z) | y) = (z | u(y)) = (v | py) = p(z [ y)
On en déduit A(z | y) = u(x | y), or A # pdonc (x | y) = 0.

O

Lemme
Tout endomorphisme symétrique d’un espace euclidien non nul admet au moins une valeur
propre réelle.

dém. :

Soit u € L(E) un endomorphisme symétrique de E euclidien avec dim E > 0.
Sidim E = 1 : les éléments non nuls de E sont vecteurs propres de u.
Sidim E' = 2 : la matrice de u dans une base orthonormale de E est de la forme

a b
b ¢
Son polyndme caractéristique est ., = X2 — (a + ¢)X + (ac — b*) de discriminant

A=(a+c)?—4(ac—b*)=(a—c)>+4> >0

L’endomorphisme u admet donc au moins une valeur propre réelle.

Si dim £ > 2 : ’endomorphisme u admet au moins une droite ou un plan stable. L’ endomorphisme
induit sur ce sous-espace vectoriel est encore symétrique et posséde donc une valeur propre.

O

Théoreme

] Tout endomorphisme symétrique est diagonalisable dans une base orthonormale.

dém. :
Soitu € S(E) et

F = @l E,\(u)
AESpu
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Le sous-espace vectoriel F est stable par « donc F- aussi.

Par I’absurde, supposons F'*- # {0g}. L’endomorphisme induit par u sur F est symétrique, il posséde
donc au moins un vecteur propre. Or celui-ci est aussi vecteur propre de u et donc élément de F'. C’est
absurde car F N F+ = {0g}.

Ainsi, E est la somme directe des sous-espaces propres de u et puisque ceux-ci sont deux a deux ortho-
gonaux, on peut former une base orthonormale adaptée a cette décomposition, base qui diagonalise u.

O

Exemple Soit u € S(E). Posons Ay, = min Spu et Ayax = max Spu.

Ona

Vo € E, Amin ||33H2 < (u(@) [ 7) < Amax Hxl|2
En effet, soit e = (e, ..., e,) une base orthonormale diagonalisant w.
Mat, (u) = diag(A1, ..., A,) avec Aq, ..., A, les valeurs propres de u.

n
Pour x € E, on peut écrire = = E x;e; eton a alors u(x) = E ANiZi€;.

. i=1 i=1
Puisque la base e est orthonormale,

2] =D a7 et (u(w) | 2) = Y N}
i=1 i=1

Or, pour tout 1 < ¢ < n, Apin < A\j < Apax donc
A

min HCC||2 < (w(@) | ) < Amax ”mHz

8.3.4 Diagonalisation des matrices symétriques réelles

Théoreme
Toute matrice symétrique réelle est orthogonalement diagonalisable

VA € S,(R),3P € O,(R),3D € D,(R),A= PDP~' = PD'P

dém. :

Soit A € S,,(R). Munissons £ = R™ du produit scalaire canonique et considérons u 1’endomorphisme
de R" représenté par A dans la base canonique e.

Puisque A est symétrique et e orthonormale, 1’endomorphisme u est autoadjoint. Il existe donc une base
orthonormée ¢’ diagonalisant u. Par changement de base, on a alors A = PDP~! avec D diagonale et
P orthogonale car matrice de passage entre deux bases orthonormées.

|

Exemple Pour A € M,,(R), *AA est diagonalisable car symétrique réelle.
Ses valeurs propres sont appelées valeurs singulieres de A.

Attention : Une matrice symétrique complexe n’est pas nécessairement diagonalisable :
1 1

1 >,XA = X2 donc SpA = {0}.

Puisque A # O5, la matrice A n’est pas diagonalisable.

Exemple Pour A = <
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8.3.5 Musculation : positivité
8.3.5.1 Endomorphisme symétrique positif
Définition
Un endomorphisme symétrique v de F est dit positif si
Ve e E,(u(z) | z) >0;
On le dit défini positif si de plus
Ve € E,(u(z) |z) =0=2=0g

On note S*(E) (resp. ST (E) ) ’ensemble des endomorphismes symétriques positifs (resp.
définis et positifs).

Proposition
Soit u un endomorphisme symétrique de E.
On a équivalence entre ;
(1) u est positif (resp. défini positif) ;
(i) Spu C RT (resp. Spu € R™).

dém. :

(i) = (ii) Supposons u positif.

Soit A une valeur propre de u et x un vecteur propre associé.

(w(z) | ) = O | ) = Aljz]|* et (u(z) | ) = 0donc A||z|* > 0 puis A > 0 car ||z]|* > 0.
(ii) = (i) Supposons Sp(u) C R*.

Par le théoréme spectral, il existe une base orthonormale e = (ey, .. ., e, ) diagonalisant v :
At (0)
Mat.u = .
(0) An
avec A1, ..., A, les valeurs propres de u.

n
Pour tout x € E, on peut écrire x = E x,e; et alors
i=1

n

(u(@) | x) =Y Nai =0

i=1

La démonstration s’adapté a I’étude des endomorphismes définis positifs.
O

Remarque On en déduit ST1(E) = ST(E) N GL(E) car

0 ¢ Spu < u € GL(E)
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8.3.5.2 Matrice symétrique positive

Définition
Une matrice A € M,,(R) symétrique est dite positive si

VX € M, 1(K),'XAX >0
On la dit définie positive si de plus
VX € M, 1(K),'XAX =0=X =0

On note S, (R) (resp. S, T (R) ) ’ensemble des matrices symétriques positives (resp. définies
positives).

Remarque Si I’on introduit le produit scalaire canonique sur M,, 1 (R) alors
EXAX = (AX | X)

De plus, il y a évidemment correspondance avec les endomorphismes symétriques positifs moyennant
représentation en base orthonormale.

Exemple Si M € M,,(R) alors A =M M est symétrique positive.

PA="("MM) ="MM = A donc A est symétrique et pour tout X € M, ;(R),

EXAX =Y MX)MX = |[MX|*>0

Si de plus M € GL,,(R) alors A = *M M est définie positive.

Eneffet, ' XAX = ||[MX|*>=0= MX = 0donc 'XAX = 0 = X = 0 car M est inversible.

Proposition
Soit A € §,,(R). On a équivalence entre :
(1) A est positive (resp. définie positive) ;
(ii) SpA C R (resp. SpA C RT™).

dém. :

(i) = (ii) Supposons A positive.

Soit A € SpA et X vecteur propre associé.

EXAX = MXX = A X|° > 0avec | X|* > 0donc A > 0.

(ii) = (i) Supposons SpA C R™.

La matrice A est orthogonalement semblable a une matrice diagonale, donc il existe P € O, (R) telle
que ‘PAP = D avec D = diag(\1, ..., \n).

Pour tout X € M,, 1(R), ' XAX =*(PX)DPX ="'Y DY avecY = PX.

En notant 4, . . ., y,, les coefficients de la colonne Y alors ! X AX = Z Aiy? > 0.
i=1
|

8.3.6 Musculation : matrice de Gram

Soit F un espace préhilbertien de produit scalaire (., .).
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Définition
On appelle matrice de Gram d’une famille (a1, . .., a,) de vecteurs de E' la matrice carrée
Glai,...,an) = ((ai, 45)) 1 ¢; j<n
Exemple La famille (a1, ...,a,) est orthogonale si, et seulement si, G (a1, . .., a,) est diagonale.
La famille (a4, ..., a,) est orthonormale si, et seulement si, G (a1, . .., a,) est ’identité.
Théoreme
La matrice de Gram G (a1, . . ., a,) est symétrique positive et inversible si, et seulement si, la
famille (ay,...,a,) est libre.
dém. :
A =G (a1,...,a,) est symétrique car (a;, a;) = (a;, a;).
Pour X ="( A1 -+~ A, ),onobserve

EXAX = [[Arar 4 + Anan]* =0
La matrice symétrique A est donc positive. Elle est définie positive si, et seulement si,
EXAX =0=X=0

c’est-a-dire
A1a1+"'+Anan:OE:>\1 ::AHZO

ce qui correspond a la liberté de la famille (aq, . .. a,).
On en déduit que A est inversible si, et seulement si, (a1, . .. a,) est libre.

O
Théoreme

Soitz € Eet (ay,...,ay) une base d’un sous-espace vectoriel F' de E.

Ona

det G ey g,
d(z, F) = et G(ay,...,an,x)
det G(ay, ..., an)

dém. :

Onécritz =y 4 zavec y € F et z € F-. On sait d(z, F) = ||z||. Puisque

(ai,z) = (ai,y) + (ai, 2) = (ai,y) et (z,z) = (y,y) + (2, 2)

on peut écrire

(a1,a1) -+ (a1,an) (a1,y)
G(ay,...,0n,x) = . : :
( ) <a”,a1> <a,n, a,"> <an,y>
(yya1) - (Wan) (y,9) +(z,2)

En décomposant la derniere colonne en somme de deux colonnes

det (G(ay,...,an,x)) = det (G(as,...,an,y)) + det (G(ay,...,an)) ||zH2
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La famille (a1, ..., a,,y) étant liée, on obtient
det (G(ay, ... an,x)) = det (G(as, ..., an)) | z|I°

qui permet de conclure.
O
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Chapitre 9

Suites et séries numériques

K désigne le corps R ou C.
9.1 Suites numériques

9.1.1 Limites

Définition
On dit qu’une suite (uy,)nen d’éléments de K converge vers £ € K si

Ve>0,INeNVneNn>2N=|u, — ¢ <¢

On note alors u,, — £ ou u,, —— £.
n—-+oo

Il y a alors unicité du nombre £ qui est appelée limite de la suite (uy,).

Définition
On dit qu’une suite réelle (u, )nen diverge vers +oo si

VAeR, AN eNVneNn>N=u, > A

On note alors u,, — +0o0 ou u,, —— +00.
n—-+00

On définit de facon analogue la divergence vers —oo.

1 n
Exemple Etudions lim (1 + )
n

n—-+oo
(1+1> = exp (nln (1+1)>
n n

1
nln(1+1/n)~nx——=1
n

On peut écrire

donc
1 n
(1+) —— e

n n—-+oo
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Exemple Soit (u,,) € (RT)N. On suppose que /u,, — £ € [0, 1.

Montrons qu’alors u,, — 0.

Introduisons € > 0 (dont on précisera la valeur par la suite).

Puisque {/u,, — ¢, pour n assez grand ¢ — ¢ < {/u, < {+edonc0 < u, < (£ +¢)".
Si I’on choisit initialement € > 0 pour que ¢ 4+ £ < 1, on obtient w,, — 0 par encadrement.
On montre de fagon similaire, on montre

Wy = 4> 1= uy — 400

9.1.2 Limites monotones

Théoreme
a) Toute suite réelle croissante et majorée converge.
b) Toute suite réelle croissante, mais non majorée, diverge vers +oo.

dém. :
Cas u croissante et majorée.

Posons ¢ = sup u,, € R et montrons u,, — £.
neN
On a déja
Vn e N u, </

car ¢ = sup u,, majore la suite u.
neN
Soite > 0. Comme ¢ — ¢ < ¢ = sup uy,, £ — € n’est pas majorant de la suite v et donc il existe N € N
neN
vérifiant uy > ¢ — ¢. Par croissance de la suite u, on a alors

Yn>Nu, 2uy >f—¢

Alors, pour toutn > N, £ — e < u,, < £ donc |u, — ¢| < . Finalement u,, — .

Cas u croissante non majorée.

Soit A € R. La suite u n’est pas majorée par A donc il existe NV € N vérifiant uy > A.
Par croissance de la suite u on a alors

Yn>Nu, >2uy > A

Ainsi u,, — 400
Les deux autres cas du théoréme s’obtiennent par passage a 1’opposé.

O

2n 1
Exemple Etudions la convergence de u,, = Z -

k=n-+1
Ona i )
n+ n
1 1 1 1 1
n — Un = 7 7 = - = 0
Unl Z k k 2n—|—1+2n—|—2 n+1
k=n+2 k=n+1

De plus

< in 1 "<

u =

s n+1 n+1 "
k=n-+1

La suite (u,,) est croissante et majorée, donc elle converge.
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En fait, on peut montrer (par les sommes de Riemann, par exemple)

Uy — In2

9.1.3 Comparaisons asymptotiques

Définition
On dit que la suite (u,,) est dominée par la suite (v,,) et 'on écrit u, = O(v,) s’il existe
M € R" et N € N vérifiant
Yn = N, |u,| < M |vy,]

Remarque Il revient au méme de dire que 1’on peut écrire a partir d’un certain rang

Up, = Upby, avec (by,) bornée

Exemple On peut écrire

Définition
On dit que la suite (u,,) est négligeable devant (v, ) et I’on écrit u,, = o(v,,) si, pour toute > 0,
il existe V € N vérifiant
Vn = N, |u,| < €vg]

Remarque Il revient au méme de dire que 1’on peut écrire a partir d’un certain rang

Up, = Up&p avec (&,) de limite nulle.

Exemple En écrivant ., [v,, pour signifier u,, = o(v,,), on peut proposer la hiérarchie suivante ;

L1 pnnlyanpp2e

|
¢ [[nz[[n Inn

Définition
On dit que la suite (u,,) est équivalente a la suite (v,,) et I’on écrit u,, ~ v,, si I’on peut écrire

Uy, = Vp, + 0(Vp)
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Remarque Il revient au méme de dire que 1’on peut écrire a partir d’un certain rang

Uy, = Vpop avec (¢y,) de limite 1

1
Exemple On peut écrire sin <> ~ —
n n

9.1.4 Développements asymptotiques
Définition

Un développement asymptotique d’une suite est la décomposition de son terme général en
somme de termes simples ordonnés en négligeabilité croissante.

1 n
Exemple Formons un DA a trois termes de <1 + >
n

Quand n — +o0.

" 1 1 1 1
Par composition
14l " e  1e (1
n) T 20 T oanz T\ 02

Exemple Soit n > 2. On considere I’équation 2™ = 1 + = d’inconnue x € [1, +0o0].

a) Montrons que celle-ci admet une unique solution z,,.

b) Déterminons la limite de (z,,)n>2.

¢) Formons un développement asymptotique a deux termes de la suite (z,,)n>2.

Considérons f,, : © +— z" — x — 1 définie sur [1, +-o0].

fn est de classe C* et f/ (x) = na™ ' — 1 > 0 sur [1, +-00[. La fonction f est donc strictement
croissante.

Puisque f,(1) = —1et wgrfoo fn(z) = 400, la fonction f s’annule une unique fois sur [1, +oc0].

Ceci définit z,, € [1, +00[
Ona
Jn(Tngr) = IZ+1 —Tpt1 — 1= zZ-&-l - IZI% <0
etdonc 41 < .
La suite (x,,) est décroissante et minorée (par 1), elle est donc convergente.
Posons £ sa limite. Puisque x,, € [1,4+00[, ala limite £ € [1, 4+o00].
Par I’absurde, si ¢ > 1 alors x], — 400 car z, > (" — 400.
Orz;, =1+ x, — 14 £. C’est absurde et on en déduit £ = 1.
On peut alors écrire z,, = 1 + €, avec €,, — 0.
Déterminons un équivalent de €,,.
Ona(l+e¢,)" =2+¢e,doncnin(l +¢e,) =In(2+¢,) — In2 puis ne,, ~ In(2)

On en déduit
In2 <1>
Tp=1+—+o0| —
n n
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9.1.5 Suites récurrentes

Exemple Etudions la suite (u,,) déterminée par ug > 0 etVn € N u, 11 = In(1 + uy,)
La fonction itératrice f : x + In(1 + z) est définie sur |—1, 400, il est facile d’en obtenir le tableau de
variation.
Pour D =10, +00[, on a
ug € DetVa € D, f(x) € D

On en déduit que la suite (u,,) est bien définie et
Vn € N, u,, €]0,400[

Si (uy,) converge, sa limite £ appartient a [0, +00].
De plus, en passant la relation de récurrence u,,+1 = In(1 + u,,) 2 la limite, on obtient £ = In(1 + ¢).
La seule solution de cette équation est £ = 0.
En visualisant le comportement de (u,,) & partir d’une représentation de f, on est inspiré a étudier sa
monotonie. . .
Ona

Upt1 — Up = In(1 4+ uy) —up <0

car on sait In(1 4+ ) < x pour tout z > —1.
La suite (u,,) est donc décroissante et convergente car minorée par 0.
Puisque la seule limite finie possible est 0, on peut conclure que w,, — 0.

Exemple Etudions la convergence de la suite (u,,) définie par ug = 1 et w11 = V3 — up
Considérons f : z — +/3 — x définie sur |—o0, 3]

T —00 0 3
400
f@ | T

Pour D = [0,3], ona ug € D et pour tout z € D, f(z) € D.

La suite (u,,) est donc bien définie et pour tout n € N, u,, € [0, 3].
Supposons u,, — £ € R.

Puisque pour toutn € N, 0 < u,, < 3, ala limite ¢ € [0, 3].

En passant la relation de récurrence u,,+1 = v/3 — u,, a la limite on obtient

{=+v3—-1¢

ce qui donne

,_ ~L+VI3
B 2

car/ > 0.
Notons

oy “L+VI3
N 2
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one un — [un —
Uy — QL Uy — Q
’U/n+1_04|:|\/3—un—\/3—04’:\/37,“ +\/3*OL\ \/3704
avec 1 1
= =—clo1
q 4 [0,1]
Ainsi

un — af < ¢" |uo — o

et donc u,, — a.

9.1.6 Théoréme de Cesaro

Théoréme
Si (uy,) est une suite numérique converge vers £ alors

I S S ML Ny
n

dém. :
On a

vn—€:%((u1—€)+-~-+(un—£))

Pour € > 0, il existe N € N vérifiant

Yn = N, |u, — ¥4 < ¢
Pourn > N,
— b+ I 4 —N+1
|vn—€\<|u1 |+ 4 Jun—1 |_|_7l -i-5
n n
donc ' '
|, — 4] < a Z €+ funo ‘+€
n
Or

lug — €| 4+ -+ + luy—1 — ¢ _Cie
n T on

—0

donc il existe N’ € N tel que pour n > N’,

|U1—€|++|UN,1—€‘ <€
n

Ainsi, pour n > max(N, N'), |v, — £| < 2¢ ce qui permet de conclure.
U

Exemple Déterminons un équivalent de (u,,) donnée par ug > 0etVn € N, u,y1 = In(1 + uyp,)

On a déja montré u,, — 0. Déterminons maintenant un équivalent de (1, ).

Ona L
1 1 Up — Up41 - SUn 1

Up+l  Up UpUp 1 u? 2
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Par le théoreme de Cesaro

On en déduit

S

Up ~

9.2 Séries numériques

9.2.1 Définition

Définition
Soit (Un)n>n, une suite numérique. On appelle série de terme général w,, la suite (Sy,)n>n,

avec
n
Snz E Uk
k=ng

Cette série est notée Z Uy, OU Z Uy -
n=ngo
Le terme S,, est appelé somme partielle de rang n de cette série.

Remarque Une série est un cas particulier de suite, c’est une suite de sommes partielles.

Exemple La série Z n est la suite des sommes partielles
n=0

Sn:Zkzn(n+l)

2
k=0

n

Exemple La série Z q" est la suite des sommes partielles
n=0

n+1

n 1_
Sn=Zq’“:173q(siqsé1>

. 1 . .
Exemple La série E — est la suite des sommes partielles
n
n>1

n

1
Sn:’;E(avecn>1)
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Exemple Soit (v,,) une suite d’éléments de K.

Posons ug = vg et u,, = vy, — Vp—1.-

La série Z uy, est la suite des sommes partielles
n=0

n
E Uk = Up,
k=0

Ainsi, la suite (v,,) se confond avec la série E Up,.

On suppose désormais les séries étudiées définies a partir du rang ng = 0.
On peut s’y ramener quitte a poser les premiers termes de la série comme étant nuls si non définis.

9.2.2 Convergence d’une série numérique
9.2.2.1 Nature d’une série numérique
Définition

On dit que qu’une série g u,, converge si la suite de ses sommes partielles converge.
On peut alors introduire la somme de la série

—+oo n

E up = lim E Ug,
déf n—+o0

k=0 k=0

Attention : Par essence, une somme de série numérique est une limite, pour la manipuler, il est
indispensable de justifier a priori son existence, i.e. que la série soit convergente.

Exemple Etudi _
ple Etudions Z -

n>=2
Pourn > 2,

k=2 k=2
1
Ainsi la série ——— converge et
Z n(n—1) vere
n=2
+oo 1 .,
nZ:2 n(n —1)

1
Exemple Etudions —.
P > -
n>1
Pour n > 1, 1a fonction ¢ — 1/t étant décroissante, on a

k+1 n+1
/ g:/ %zln(n—&—l)%—&—oo
k 1

n 1 n
2z

k=1 =1
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- . 1.
Ainsi la série E — diverge.
n
n=1

Remarque E Uy, converge si, et seulement si, la somme des aires hachurées converge.

A
Uy
Uy
Uy
uZ
Uy
1
0 1 2 3 4 5
Exemple Etudions Z %
- .
n>1
Pourn > 1,
i D (- /1tk_1dt = /1 1- (="
k=1 k=1 0 0 1+1
Or
Uy 1 4n 1 1
/ —:1n2et0</ dtg/t”dt:
donc

A’E (=)~ t

insi -~ converge €
" g
n>1

9.2.2.2 Reste d’une série convergente

Théoréme
Soit ng € N. On a équivalence entre :
@) Z U, CONVerge ;
n=0

(i) Z U, converge.

n>=ngo
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dém. :

Les sommes partielles de deux séries différent d’une constante et donc I’une converge si, et seulement si,
I’autre aussi.

O

Corollaire
On ne modifie pas la nature d’une série en en modifiant la valeur d’un nombre fini de termes.
En revanche, cela modifie évidemment la valeur de la somme. ..

Définition

Si la série E u,, converge, on peut introduire la somme

+oo
]%n:: j{: UL

k=n+1

Ce terme est appelé reste de rang n de cette série.

Attention : On ne peut introduire le reste d’une série qu’apres avoir justifié sa convergence.

Théoréme
Si Z u, converge alors pour tout n € N,

—+oo n —+oo
D ou = ut >
k=0 k=0

k=n-+1
De plus
+oo
Rn - Z Uk n—+o0o 0
k=n-+1

dém. :
Soit n € N fixé.
Pour N > n,

N n N
Duk = unt Y uk
k=0 k=0

k=n-+1
Quand N — +o0, on obtient
—+00 n —+00
Dok =) ukt ) uk
k=0 k=0 k=n+1

égalité qu’on écrit souvent S = .S, + R,,.
De plus, on a alors

R,=5-5,——0

n—-+o0o

O
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9.2.3 Limite du terme d’une série convergente

Théoréme
’ Si la série E u, converge alors u,, — 0.

dém. :
n

Posons S,, = Z ug. Si (Sy,) converge en posant S sa limite

k=0
Up =Sy —Sp1 = 85 —=5=0
O
Définition
Si (u,,) ne tend pas vers 0 alors on dit que la série de terme général u,, diverge grossiérement
(DVG).

Exemple La série Z cos(n) diverge grossiérement.

En effet, si cos(n) — 0 alors la relation cos(2n) = 2 cos?(n) — 1 donne 2 la limite I’absurdité 0 = —1.

. 1. . .
Exemple La série E — diverge, mais pas grossierement.
n
n=1

Remarque Si E uy,, converge, alors

2n
D ug = Spn — Sy ———0

n—-+oo
k=n-+1
On peut alors retrouver la divergence de Z 1/n en exploitant

o 11
E —>2nX — ==

k 2n 2
k=n-+1

9.2.4 Opérations sur les séries convergentes

9.2.4.1 Linéarité

Théoréme
Si Z Uy, €t Z vy, sont convergentes alors pour tout A € K, les séries Z Au, et Z Uy, + Up

convergent et
“+o00 “+o00 “+o0 +oo +oo
DL SRS SRS SISy
k=0 k=0 k=0 k=0 k=0
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dém. :
Par opérations sur les limites.
O

Corollaire
L’ensemble constitué des suites u = (up )nen € KN telles que la série Z U, converge est un

. . +00 - S
sous-espace vectoriel de K. L’ application u ~— E L UnY définit une forme linéaire.
n=

Exemple Si Z Uy, €t Z (uy, + vy,) convergent alors Z vy, converge.
En effet, on peut écrire
U = (U + ) + (—1).up

Attention : Pour écrire

+o0 +o0o +o0o
D (ko) =3 i+ v
k=0 k=0 k=0

il faut vérifier la convergence d’au moins deux des séries engagées.
Ceci interdit d’écrire des aberrations du type

“+o0 +oo +oo
do=>"1+> (-1
n=0

n=0 n=0

Exemple Si Z U, converge et Z vy, diverge alors Z (uy + vy,) diverge.
Attention : Si Z Uy, et Z vy, divergent, on ne peut rien conclure sur la nature de Z (Up, + vp).

9.2.4.2 Positivité

Théoréme
Soit (uy,) une suite réelle.

Si Z u,, converge et si tous les termes de la suite sont positifs alors

—+o00
> >0
n=0

dém. :
Pour tout N € N,on a
N
Z Uy =0
n=0
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donc a la limite

+oo
>0
n=0

O
Corollaire
Soit (uy) et (vy,) deux suites réelles vérifiant u,, < v,, pour tout n € N.
+oo —+o0
Si Z Uy, et Z v, convergent alors Z Up < Z Upy.
n=0 n=0
dém. :
On a, avec convergences,
+oo +oo +oo
St Y =3 ) 20
n=0 n=0 n=0
O
Théoréme
Soit (u,,) une suite réelle.
—+o0
Si u, = 0 pour tout n € N, si Z uy, converge et si Z u, = 0 alors
n=0
VYn e N,u, =0
dém. :

La suite (.5,,) des sommes partielles est croissante car
Sn+1— Sn =Upt41 20
Or celle-ci est aussi positive et tend vers 0 donc
vneN, S, =0
puis
Vn e Nyu, =0
g

9.24.3 Conjugaison

Théoreme
Soit (z,,) une suite complexe.

Si E zp, converge alors E Zn, aussi et

—+oo —+ 00
E 2k = E Zk
k=0 k=0
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dém. :
Par conjugaison de limites.

0
Corollaire
On a équivalence entre :
@) Z Zp, converge ;
(i) Z Re(z,) et Z Im(z,) convergent.
De plus, on a alors
“+o00 +oo 400
Z zp = Z Re(zx) + i Z Im(zy)
k=0 k=0 k=0
dém. :

1
(zn + Z,) etIm(z,) = ?(zn —Zn).
2

N

(i) = (ii) car Re(z,) =
(i) = (i) car z, = Re(zy,) + iIm(2,).

O

9.3 Convergence par comparaison a une série positive
9.3.1 Cas des séries a termes réels positifs

Définition
] Une série A termes positifs est une série dont le terme général est élément de R™.

Théoreme
Soit E u, une série a termes positifs. On a équivalence entre :

@) Z Uy, converge ;

(i) IM € R,Vn € N, Y up < M.
k=0

dém. :
La suite (.5,,) des sommes partielles est croissante car S,, — S,,—1 = u,, > 0. Ainsi, cette suite converge
si, et seulement si, elle est majorée.

O

n

Remarque Si g U, est une série a termes positifs divergente alors E U, —+> 400
n—-+oo
k=0
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9.3.2 Comparaison de séries a termes positifs

Théoréme
Soit E Uy, et E v, deux séries a termes positifs vérifiant

vn € N,u, < v,

a) Si Z v, converge alors Z Uy, AUSSI.
b) Si Z uy, diverge alors Z Vp, aussi.

dém. :
a) E u, converge car c’est une série a termes positifs aux sommes partielles majorées car

n

n +oo
Zuk <ka §Z’Uk:M
k=0

k=0 k=0

b) C’est la contraposée de a).
O

Remarque Le résultat demeure méme si la comparaison ne vaut qu’a partir d’un certain rang.

. 1
Exemple Déterminons la nature de E —
n
n>1
Pourn > 2,
1 1

S 70—
n? " n(n—1)
1 . s - e 1
or E nn—1) converge donc, par comparaison de série a termes positifs, la série E — converge,
n(n — n
n=2

. . 1
puis la série E - converge.
n>1

. Inn
Exemple Déterminons la nature de Z
n+1
n>1
Onan 1~ Inn — +o0 donc pour n assez grand,
n
Inn 1
2 —
n+l" n

1. . s » - Inn .
Or E — diverge donc, par comparaison de série a termes positifs, la série E ) diverge.
n n

Plus précisément, on peut méme affirmer

" Ink

— k+1 no4oo

+00

car la suite des sommes partielles est croissante puisque ses termes sont positifs.
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Théoréme
Soit E Uy, et E v, deux séries a termes positifs.

Si u,, ~ v, alors les séries E Uy, et E v, ont méme nature.

dém. :
A partir d’un certain rang ng, on peut écrire

1/2vn < Unp < 2vn

Quitte a modifier les premiers termes des séries, on peut supposer I’encadrement vrai pour tout rang n.
Par cet encadrement, la convergence d’une série entraine la convergence de I’ autre.
g

1
n2+n
1 1
n2 + n n—+oo n?

Or Z 1/n? converge et 1/n* > 0 donc Z 1/(n? + n) converge.

Exemple Déterminons la nature de Z
Ona

Exemple Déterminons la nature de Z

On a

1
n+/n
1 1
n+/n notoon

Or Z 1/n diverge et 1/n > 0 donc Z 1/(n + v/n) diverge.

Remarque Pour employer le résultat qui précede, il suffit seulement de vérifier la positivité de v,,,
’autre sera vraie (au moins a partir d’un certain rang) en vertu de I’équivalent.

Remarque Via passage a I’opposé, le résultat est aussi vrai pour les séries a termes négatifs.

Attention : La conversation de la nature d’une série par équivalence des termes n’est vraie que pour les
séries a termes de signe constant.

9.3.3 Convergence absolue.

Définition
Soit (u,,) une suite réelle ou complexe. On dit que la série Z U, converge absolument si la

série a termes positifs E |w, | converge.

—1 n—1
Exemple La série Z % converge absolument (CVA)
n
n>1
1
En effet, Z 3 converge.

n>=1
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Théoreme

Si E u, converge absolument alors celle-ci converge et

+oo +oo
D un| <) lua
n=0 n=0

dém. :
Cas (uy,) est une suite réelle a termes positifs : il n’y a rien & démontrer.
Cas (u,,) est une suite réelle. On introduit u;" et u;, définis par

u = max(uy,,0) et u;, = max(—uy,0)

Ona
— ot - — ot -
Vn e N, u, =u, —u, et |u,| =u; +u,
Puisque 0 < w7, u,, < |uy,|, on peut affirmer, par comparaison de séries a termes positifs, la convergence
des séries E u et E u,, puis celle de g u,, par différence de deux séries convergentes.

Cas (uy,) est une suite complexe. On introduit Re(u,,) et Im(uy,).
On a [Re(uy)|, |[Im(uy, )| < |uy,| donc les séries réelles Z Re(u,) et Z Im(u,,) convergent puis la série

complexe E U, converge aussi.
|
Bilan :Pour une série réelle ou complexe :

CVA = CV

Pour une série a termes positifs :
CVA & CV

Remarque Plus généralement, pour une série a termes de signe constant a partir d’un certain rang, il y a
aussi équivalence.

Attention : Il se peut que la série Z u,, converge alors que Z |u, | diverge.

Définition

Une série convergente, mais non absolument convergente, est dite semi-convergente.

-1 n—1
Exemple La série E L
n

n>=1

est semi-convergente.
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9.3.4 Convergence par comparaison a une série positive

Théoréme
Soit g U, une série numérique et g v, une série a termes positifs.

Siu, = O(v,) etsi Z v, converge alors Z uy, converge absolument (et donc converge).

dém. :
Il existe M € Ret N € N vérifiant
Vn = N, |uy| < Mo,

Quitte a modifier les premiers termes des séries (ce qui ne change pas la nature de celle-ci), on peut
supposer la majoration vraie pour tout n € N. Or Z Mw,, converge et Mv,, > 0 donc, par comparaison
de séries a termes positifs, Z |uy, | converge.

O

Corollaire

Si u, = o(v,) et si E vy, converge avec v, > 0 alors E u, converge absolument et donc
converge

Attention : Ces énoncés sont faux sans I’hypothese v,, > 0.
Il est essentiel de comparer a une série a termes positifs !

, . . sinn
Exemple Déterminons la nature de la série E 5
n
Ona
sinn 1
n2 n2
donc
sinn 1
5 =0| 3
n n

1 1 L. sinn
Or Z 2 converge et 2 > 0 donc, par domination, Z 5— converge absolument et donc converge.

n

9.3.5 Séries et regles de référence
9.3.5.1 Séries de Riemann

Soit o € R.
Théoréeme

. . 1 . .
La série a termes positifs E — converge si, et seulement si, o > 1.

n>1
dém. :
Casa <1
Puisque pour tout n > 1,
1.1
n® ~ n
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. . 1. . . (s . ‘- 1

Puisque la série Z — diverge, on obtient par comparaison de séries a termes positifs que la série Z —

. n n
diverge.
Cas a1> 1
Z — estune série a terme positifs. Nous allons montrer qu’elle converge en observant que ses sommes
n>1 n
partielles sont majorées. Puisque la fonction  +— 1/z“ est décroissante sur |0, 00|, on a pour tout k > 2

1 </k dt
ka\ k—lta

et alors
anl /”dt_{—l 1}”_ 1 ( 1)
k:Qka\ , te a—1t*], a-1 no—1
puis
NURTE S

Par conséquent la série Z nia converge car c’est une série a termes positifs aux sommes partielles
n=1

majorées.

O

1 1 1 1
Exemple Z o) et Z 1000 convergent alors que Z - et Z ﬁ divergent.

Remarque Puisqu’il s’agit d’une série a termes positifs, il est possible de comparer a E 1/n® pour
étudier la nature d’une série numérique.

9.3.5.2 Regles de Riemann

(-1)"

E le Nature d —

xemple Nature ezrﬂ—n—i-l
(="

nz

Ona 0 mais ce n’est pas décisif.
nZ—n+1 no+too
Cependant
(<1 1
n? —n+1|n—=too n?

1 1 -
Or Z 3 converge et 3 > 0 donc Z 712(_7734_1 converge.

n=0

1 1
Exemple Nature de Z (tan - — )

n n
n>=1
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On sait

1 . .
tanu = u+ —u® + o(u?)
u—0 3

et donc )
tan — — — ~  —x
n  nn—+oo In3

1 1 1 1
or Z 3,3 converge et 3.3 > 0 donc Z tan — — . converge.

n+1
n?2+1

Exemple Nature de Z
n=0

On a
n-+1 1

B
n2 4+ 1n-+toon

1 1 1
Or Z - diverge et - > 0 donc Z :27_:_1 diverge.

Exemple Nature de Z e "
n>0
Ona

ne " ——0
n—-+o0o

1
ein = ol —
n—-+oo n2

1 1
il i —Vn
or E > converge et 2 > 0 donc E e converge absolument et donc converge.

donc

In(n)
n2+1

Exemple Nature de Z
n>1
Ona
13/2 In(n) ~  In(n) 0
n2+1n-+oo /0

In(n) 1
72 + 1 nostoo \ 32

In(n)

1 1
Or Z Y] converge et Y > 0 donc Z 21 converge absolument puis converge.

donc

1
Exemple Nature de
nz;l In(n)

On a

_—
Inn n—+oo
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donc pour n assez grand,

WV
—_

puis
1
Inn =~ n

1 1 1
Puisque Z — diverge et — > 0 la série Z nn diverge.
n n nn

n>=1

Exemple Nature de Z diz
n>1 "
avec d,, le nombre de diviseurs positifs de n.
Pour p nombre premier d,, = 2.
Puisqu’il y a une infinité de nombre premiers, (1/d?) ne tend pas vers 0 et donc la série diverge
grossierement.

Bilan :Les idées récurrentes :
- Si (uy,) ne tend pas vers 0 alors E u,, diverge grossierement ;

- Siu, ~ C/n® (avec C # 0) alors
Z uy, converge si, et seulement si, o« > 1;

- Si on détermine o > 1 tel que n%u,, — 0 alors u,, = o (1/n%) et donc Z u,, converge absolument ;

- Si nu, — £ # 0 alors Z uy, diverge.

9.3.5.3 Séries géométriques

Théoreme
Soit g € C.
Si|q| > 1 alors Z q" diverge grossieérement.

Si|¢| < 1 alors Z q" converge absolument et

+oo 1
" =—

1—gq

dém. :
Caslg|>1:
Ona |¢"| = |g|"™ > 1 donc la suite (¢") ne tend par vers 0. Il y a divergence grossiére.
Caslg| < 1:

n f B 1_ |q‘n+1 1

> lgl" = -

1—lql 1= lq]

k=0
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donc Z q" converge absolument.

De plus
n A 1 qn+1 1
> 4= 7
=0 —4q —4q
donc
400 . 1
S
k=0
O
+oo
1 1 1 1
E 1 4444 =9
Xempenz::ozn +2+4+ +2n+
A
1
2 >
0 1 2 3 4
Exemple Pour |z| < 1,
+o0 1
Z(il)kx% T 12
o +x
Exemple Pour |z| < 1,
+o0 1
Z (=1)"2" = 1+2
n=0

9.3.5.4 Regle de d’Alembert

Théoréme
Soit Z U, une série a termes non nuls.
On suppose

Un+1

— £ e RY U {+o0}

Un,

Si ¢ > 1 alors Z Uy, diverge grossierement.

Si ¢ < 1 alors Z Uy, est absolument convergente.
Si ¢ = 1 alors on ne peut rien conclure.
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dém. :
Cas ¢ >1:
A partir d’un certain rang ng

|un+1/un|> 1

et donc la suite (|uy|)n>n, est croissante. Elle ne peut alors converger vers 0 que si elle est constante
égale a 0 ce qui est exclu.

Casl < 1:

Soit € > 0 (qu’on fixera par la suite). A partir d’un certain rang ng,

[tuns1/un| — €] < e

et donc
[tnp1/tn| < L+e

Par récurrence
[un| < (€+€)"7" Jup, | = M(£ +¢)"

avec M = (€ + &)™ ™ |uy,|. En choisissant initialement € > 0 pour que ¢ = ¢ +¢ € [0,1[,on a
u, = O(q") avec ¢" > O et Z q" converge

On en déduit que Z u,, converge absolument et donc converge.

Casl=1:
Considérons u,, = 1/n“ avec o € R.
On a
U
n+1 1
Up,

alors que E u,, converge si, et seulement si, o > 1.
O

Remarque C’est un critere grossier réservé aux suites dont le terme général comporte un produit (terme
géométrique, factoriel,. . .) induisant la nature de la série.

2n
Exemple Nature de E Uy, avec u, = 1/ ( )
n
n=0
(n})?

(2n)!

Onau, = > 0Oet

1)2 1
_tn__ (nt]) - <1
Up 2n+1)(2n+2) 4

Un+1
Un,

donc E uy, converge absolument puis converge.
n=0
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9.4 Autres méthodes d’obtention de convergence

9.4.1 Séries alternées

Définition
Une suite réelle (uy,) est dite alternée si

Vn € Nyu, = (—1)" |u,| ouVn € Nyu, = (—1)" T |uy,|

Une série réelle Z u, est dite alternée si la suite (uy,) U'est.

-1 n—1 1 n—1
Exemple Les séries E L et E In (1 + ()) sont alternées.
n n
n=1 n=1

Théoréme
Soit g u,, une série alternée.

Si la suite (Juyn|)n>0 décroit vers 0 alors la série E u,, est convergente.

+oo
De plus, son reste R,, = Z uy, vérifie :
k=n+1
- R, estdu signe de w11 ;
- |Bn| < [ungal.

dém. :
Quitte & considérer (—u,, ), on peut supposer

Vn € Nyuy, = (—1)" |uy|

n
Posons S,, = E Ug.
k=0

0 S, s, S 8, S,
4 @ 9—0—©@ @ >
‘ |“0|
|U1 |
|“2|

>
<

\ 4

Nous allons établir I’adjacence des suites (S2,) et (Sa,41).
Sont2 — Son = Uspta + Usnt1 = |[Uzni2| — [ugnti] <O
Ainsi (Sa,,) est décroissante.
Sont3 = Sant1 = Uznta + Uzni2 = — [Uzny3| + [uznia] =0

Ainsi (S2,,41) est croissante.
Enfin
Son+1 — Son = Ugnp1 — 0
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donc les deux suites sont adjacentes.
Par conséquent, elles convergent vers une méme limite S.

Ainsi Z u,, converge et sa somme S est encadrée par les sommes partielles consécutives.
Considérons maintenant le reste
R,=5-5,
Ry, =5 —55,.0r 52n+1 <5 < Sy, donc Ro, € [u2n+1, 0].
Ropi1 =8 — Song1. Or Spppp1 < S < Sopyo done Rypq1 € [0, 2]

]
Corollaire

] Le signe de la somme est celui de son premier terme.
dém. :

La somme S de la série est encadrée par Sy = ug et S1 = ug + u1. Or |ug| < |ug| donc ug + u; est du
signe de uq et donc .S aussi.
|

Exemple Déterminons la nature de

—1)n1
> ( 11

n>=1
C’est une série alternée.
'(_1)n1 ! décroit 0d Z (- converge
~———| = — décroit vers 0 donc - .
vn vn e vn

(="
n3+1

Exemple Déterminons la nature de Z
n>=2
lere méthode :

="

(="
nd+1 3

C’est une série alternée et
ns +1

converge.

1
= — décroit vers 0 donc
n3 +1 ;

2&me méthode : ) ) )
-1 1 1)y
7(13 +) 1= 0] <n3> et Z g converge avec g > 0 donc Z 7(13 _'_) 7 converge absolument.

n>=2

9.4.2 Exploitation d’un DA a deux termes

. (—1)"
Exemple Dét lanature de Y ——
xemple cterminons l1a nature de n>1 nt (71)7171

La série est alternée, mais son terme ne décroit pas en valeur absolue :

n_|

1 2 3 4 5
1 1

/2 1/4 1/3 1/6

Pour déterminer sa nature, on forme un développement asymptotique a deux termes

oo k(1)
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converge en vertu du critere spécial.

(=D"

D’une part, la série alternée Z

1
D’autre part, les séries Z — et Z ( ) convergent absolument.

Par somme, on peut conclure la convergence de la série étudiée

-1 n—1
Exemple Déterminons la nature de Z In (1 + H)
n>1 \/ﬁ

()R ()

. —1)"! . .
La série alternée E T converge en vertu du critere spécial.
n

Mais
1 1 1 1
o 4o (n> 3 o 2 >0et Z — diverge

. N .. 1 1y .
donc par comparaison a une série a termes positifs, E o +o0 <) diverge.
n n

1 n
Finalement, par somme, la série Z (=1

sVt (=)r

On écrit

diverge.

Remarque Ici

alors que
1

1 n—
Zln (1 + \)f > diverge et Z converge

Cet exemple illustre que la conservation de la nature d’une série par equ1valence des termes est
incorrecte si la série n’est pas de signe constant.

9.4.3 Transformation d’Abel

sin(n)

Exemple Déterminons la nature de Z
n>1

n

On introduit S,, = Z sin(k) de sorte que sin(n) = S, — Sp—1
k=0

Y sin(n)  on S — Snci o= Sn o Suoy
P D D i) Dl

n=1 n=1 n=1 n=1

Par translation d’indice,

sin(n) o= S, S
Z n _Z?_ n+1

n=1 n=1 n=0
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puis

XN: sin(n) _ XN: Sn S+ SN+1
n nn+1) TN +1

n n_ i(n+1) _
= Zsin(k) =Im (Z e"k> =Im (elll)
k=0 k=0 c-

donc
1— ei(7L+1) 2

Sp| < — | < .

|nl ’ 1—¢t |1 — e
Puisque (5,,) est bornée, =~ — 0 et Sn O L) done Z Sn converge absolument

d " ’ 1 nin+1) n? n(n+1) &
Y S,
et sa somme partielle converge quand n — +-o00.
p Z Y geq

Ao P . . sinn
Par opération, on en déduit que la suite de terme général E

. sinn
série E
n
n>1
On peut aussi montrer que

converge quand n — +oo et donc la

n=1

converge.

+oo .
Zsmn T—1
—n 2

mais c’est une autre histoire. . .

9.5 Applications

9.5.1 Lien suite-série

Théoréeme

’ La suite (u,,) et la série Z (Un41 — uy) sont de méme nature.

dém. :
n

Onas, g (k41 — ug) = up+1 — ug donc la suite (S,,) converge si, et seulement si, (u.,) converge.

k=0
|

n

Exemple Montrons que la suite de terme général u,, = Z —— — 24/n converge.

f
Etudions la série Z (Unt1 — Up)-
On a

1
Uptl — Uy = —— — 2vVn+ 14+ 2y/n
+1 = 2V Vvn
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puis

1
V14 = +2yn
n

1 1 9
Uptl — Up = —=———= —
\/,ﬁ 1+l
Y% n

un+1—un=\/15(1+O(1/”))—2\/ﬁ<1+21n+0(nlz)>+2f=0(ng1/2)

Ainsi

La série E (tn+1 — uy) est absolument convergente donc converge puis (u,,) converge.

2n

Exemple Soit (u,,) défini —letu, = ———
xemple Soit (u,,) définie par ug etu 1

Up—1 pourn = 1

Montrons qu’il existe A > 0, tel que u,, ~ T
n

On veut montrer que v, = v/nu, converge vers un réel > 0.
Etudions la série E (Inv, —Inv,_1).

1 n 2n 1 1 1 1
v, —Inog_; = =In [ —— ) +1 = -hl(1--) -m(1+r—)=0(=
B 7 -1 =5 n(n—1>+n<2n+l> 2 n( n> n( +2n) O<n2>

Ainsi Z (Inv, — Inwv,_1) est absolument convergente donc la suite (In v,,) converge.

.. A
En posant ¢ sa limite, v,, — ef=A>0et Up ~ —=.

NG

9.5.2 La constante d’Euler

Proposition
n
. - 1
La suite de terme général u,, = E T In n est convergente.
k=1

dém. :
Nous allons étudier la nature de la série de terme général w,, 1 — wy,.

Ona
1 1 1 1 1 1
Unil U n+1 n< +n> n+1 n+ (n2> <n2)
donc la série de terme général u,,+1 — u,, est absolument convergente donc convergente.

O
Définition

n

1

On pose v = ngr—ir-loo ( T In n) appelée constante d’Euler.
k=1

Ona~v=0,57721073 pres.

Théoréme
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dém. :

Puisque u,, — =y on peut écrire u,, = v + o(1) donc Z ——lnn=vy+0(1)
"1

Cor :Z 7 Inn

k=1

|
+oo 1)1171
Exemple Calculons Z

n=1
On peut affirmer que cette série alternée converge en vertu du critere spécial.

2n

(—1)k-1 1 1 1 1 1
SnZE:iz 14+ -4 — (= —
"k M R TR ™

n

donc
S YT L S I S Y (I
n = 2314 2n—1 " 2n 2 4 2n
puis
Son = 3 1 1 =In(2n)+~v—Inn—~v+0(1) =In2+ o(1)
k k
k=1 k=1
Par suite

9.5.3 Produit infini

n
Pour étudier I’existence de lim H ug, on passe au logarithme si le contexte le permet

n—-+oo
k=0

n -1 k—1
Exemple Etudions I’existence de lim <1 + (13:)

n—-+oo .
( 1)n71
Pourtoutn > 1,14+ ——— > 0 donc
n
n (_1)k—1 n (_1)k—1

or

In (1 + (_1£H> = (_1:_1 -~ %% +o (;)

P
2 est convergente et
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. . . . 1 1
Par équivalence de série a termes positifs, la série E — +o| — ) converge et donc
n n

kﬁ:_lln(l—k(_lz;k_l)

converge quand n — +oo. En posant £ sa limite, on a

n —_1)k-1
11 (1 ) ) et >0
i k n—-4o0o

Exemple Soit o,z € R avec |a| < 1.
n

Etudions I’existence de la limite de P, (x) = H (1 — a*z) quand n — +oo.

k=1
Les premiers facteurs du produit ne sont pas nécessairement strictement positifs, mais puisque

1—aofz k—> 1, il existe N € N tel que
—+oo
Vk‘}N,l—akac>O

Pour n > N, on peut écrire

P, (z) = Pn_1(x) H (1-a*z)

k=N
Or

In lH (1 — akx)] = In (1 — akx)
k=N k=N
et

kg car oz — 0

In (1 — akx) ~ —Q
Puisque |a| < 1, la série géométrique E a' converge et, par équivalence de série a termes de signe

constant, la série Z In (1 — akx) converge. Ainsi

n—-+4oo

Zln(l—akx) —_—
k=N

puis
P, (x) —— Py(z)e’

n—-+oo

9.5.4 Musculation : séries de Bertrand

Théoreme
Soit (o, 8) € R%. On a

1 . .
Z W converge si, et seulement si, « > 1 ou (a =letfp > 1)
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dém. :
Casa<1:
On a
1 nl—a
n X = 3 — +00

n*(lnn)?  (lnn)

donc, a partir d’un certain rang,
1 1
>

no(Inn)? = n
Or la série Z 1/n diverge et 1/n > 0 donc la série étudiée diverge.
Casa>1:
On peut introduire p € |1, a[ eton a
1 1

Py —
" n*(lnn)?  ne=r(lnn)f n—otoo

donc la série étudiée est de terme général négligeable devant 1/n” avec p > 1. Cette série est donc
convergente.

Casa=letf#1:

Par le théoréme des accroissement finis

1 1 Bt
(In(n+1))5~1  (Inn)P~1 nostoo n(lnn)?

et donc la série étudiée converge si, et seulement si, la suite (1 /(Inn)? *1) convergei.e. B > 1.
Casa=1letf=1:
On exploite

hmMn+U%4MmW»W;wn;m)

pour conclure que la série étudiée diverge.
O
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Chapitre 10

Fonctions réelles

10.1 Limite et continuité

I désigne un intervalle de R.
10.1.1 Définitions quantifiées
10.1.1.1 Limiteena € R

Soit a un élément de I ou une extrémité finie de 1.
Définition
Onditque f: I — R tend vers £ € Ren a si

Ve>0,3a>0,Veel,(Jz —a| <a=|f(x) — ¢ <¢)

On note alors f — £ou f(z) —— £.

r—a

Remarque Cette définition peut étre transformée en une définition équivalente en remplacant :
-l —a| <apar|z—a| < a;

-[f(@) = <epar[f(z) — (] <e.
Définition
On dit que f : I — R tend vers 400 en a si
VM eR,3a >0V el,(Jz—a| <a= f(x) > M)

On note alors f — 400 ou f(x) — +o0.
a T—ra

Remarque Sous réserve d’existence, on définit aussi la limite a droite de f en a comme étant la limite

en a de la restriction f{;, 4 o[-

10.1.1.2 Limite en +oo

On suppose I’intervalle I non majoré.
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Définition
Onditque f : I — R tend vers £ € R en 400 si

Ve>0,dJAeR, Ve el, (x> A= |f(x)—{ <e)

Définition
On dit que f : I — R tend vers 400 en 400 si

VM eR ARV el, (x> A= f(z) > M)

Remarque Dans les cas « simples » une limite s’obtient :
- par opérations, quitte a lever des indéterminations par transformation d’écriture ;
- par comparaison, mais cela nécessite d’avoir parfois 1’intuition de la limite a obtenir.

Exemple Etudions la limite quand x — oo de x — ln x.

Quand z — +o0,
Inz

x—lnx:x(l—)%—koo
T

.. . Inx
car par limite de référence — — 0.
X
Attention : Ne pas rédiger lim ... =1lim...=....

10.1.1.3 Théoreme de la limite monotone

Théoréme
Soita < b € R. Si f : ]a, b[ — R est monotone alors f admet des limites en a™ et b~ qui sont

inf fet sup f
la,b Ja,b[

sup f

a,b

v

inf f=—o00

a,b
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Remarque Cet outil permet, entre autres, de calculer le sup et I’inf d’une fonction réelle a partir de son
tableau de variation.

10.1.2 Continuité
Remarque Si f : [ — R admet une limite en a € I celle-ci est nécessairement égale a f(a).
Définition

Une fonction f : I — R est dite continue en a € I si f(x) — f(a).
T—a

Une fonction f : I — R est dite continue si elle I’est en tout a € 1.

Remarque Usuellement, la continuité d’une fonction s’obtient par argument d’opérations sur les
fonctions continues.

Exemple Si f,g: I — R sont continues alors la fonction sup(f, g) : ¢ — max(f(x), g(x)) I'est aussi.
En effet, on remarque

1
max(a,b) = 3 (a+b+]a—10|)

donc

sup(f,9) = 3 (f + 9+ 1 ~ )

est continue par opérations sur les fonctions continues.
En particulier, si f : I — R est continue alors les fonctions f* = sup(f,0) et f~ = sup(—f,0) le sont
aussi.

Exemple Etudions la continuité de f : R — R définie par

Ve iz >0

(§
f(‘”){o siz <0

Soita € R.

Casa <0:

Au voisinage de a, f(x) = 0 et donc f est continue en a.

Casa >0:

Au voisinage de a, f(z) = e/ et donc f est continue en a.

Casa = 0.

Quand z — 0F, f(z) = e Y/* - 0= f(0)etquand z — 0~, f(x) =0 — 0 = £(0).
Ainsi f est aussi continue en 0 et finalement f est continue sur R.
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10.1.3 Théoreme des valeurs intermédiaires

Théoreme
L’image d’un intervalle par une fonction continue est un intervalle.
En particulier, une fonction continue prend toutes les valeurs comprises entre deux valeurs déja
prises.

Exemple Soit f : [a,b] — R continue. On suppose
Vz € [a,b], f(z) € [a,]]

Montrons qu’il existe = € [a, b] tel que f(x) = .

On introduit (z) = f(z) — .

La fonction ¢ est continue par opérations sur les fonctions continues.

o(a) = f(a) —a > Ocar f(a) € [a,5] et o(b) = £(B) — b < 0 car f(b) € [a,b].
Par le théoreme des valeurs intermédiaires,  s’annule ce qui établit

Jz € [a,b], f(z) =2

10.1.4 Théoreme de la borne atteinte

Théoréme
Toute fonction continue sur un segment [a, b] admet un minimum et un maximum.
On dit qu’elle est bornée et atteint ses bornes.

Exemple Soit f : [0, +00[ — R continue. On suppose que ¢ = Em f existe dans R.

Montrons que f est bornée.
Pour € = 1, il existe A € R tel que pour tout = > A, |f(z) — ¢| < 1 et donc

[f(@)] < 1+

Ainsi f est bornée sur [A, 4+o00.
Sur [0, A], f est continue sur un segment donc bornée.
Au final, la fonction f est bornée sur R™.

10.1.5 Théoreme de la bijection continue strictement monotone

Théoreme
Si f : I — R est continue et strictement monotone alors f réalise une bijection de I vers un
intervalle J dont les extrémités sont les limites de f aux extrémités de I.
De plus f~! : J — I est continue, de méme stricte monotonie que f.

Remarque Inversement, si f : I — .J est une bijection continue, celle-ci est nécessairement strictement
monotone et sa bijection réciproque est continue.
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Exemple Etudions les bijections induites par f : € R+ 2 — 2/ .
f est continue sur R™, dérivable sur |0, +-oo[ et f'(z) =1 —1/y/z.

T 0 1
ff) ] — 0 +
flx) ]0 N\, -1 / 400

+00

Considérons ¢ = fi1, 4 oo[-
¢'(z) > 0 sauf pour x = 1 donc réalise une bijection de [1, +oo[ vers [—1, +o00].

1 +00 -1 400
p|1 /4o 11 7 400

Considérons v = f(0,1]-
Y’ (x) < 0 sauf pour z = 0 ou 1 donc ¢ réalise une bijection de [0, 1] vers [—1, 0].
1 0 -1 0
D10 N 1] o' ]1 N 0

10.2 Dérivation

I et J désignent des intervalles contenant chacun au moins deux points.

10.2.1 Nombre dérivé

Définition
On dit que f : I — R est dérivable en a € I si le taux d’accroissement

1
= (Fla+ 1) = (@)

admet une limite finie quand » — 0 (avec h # 0 ). Cette limite est notée f’(a).

Définition
On dit que f : I — R est dérivable si elle est dérivable en tout a € I ; on peut alors introduire
sa fonction dérivée

fl:IT =K

Définition
] Ondit que f : I — Restde classe C' si f est dérivable et si de surcroit sa dérivée est continue.

10.2.2 Théoréme de Rolle

Théoreme
Soita < b eR, f: [a,b] — R continue sur [a, b] et dérivable sur ]a, b].
Si f(a) = f(b) alors il existe ¢ € ]a, b| tel que f'(c) = 0.

dém. :
f est continue sur le segment [a, b] donc f admet des extremums en ¢, d € [a, b

Vo € [a,b], f(c) < f(z) < f(d)
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Si f(e¢) = f(d) alors f est constante.
Sinon, I’'un au moins des extremums de f n’est ni en a, ni en b et la fonction f’ s’y annule
O

Exemple Soit f : I — R une fonction n fois dérivable.
On suppose que f s’annule au moins 1 + 1 fois. Montrons qu’il existe ¢ € I tel que f(™ (¢c)=0.

dém. :

Introduisons ag < a1 < ... < a, les valeurs d’annulation de f ordonnées.

Pour i € [1,n], f est continue sur [a;_1, a;], dérivable sur Ja;_1,a;] et f(a;—1) = f(a;) donc par le
théoreme de Rolle, il existe b; € Ja;_1, a;[ tel que f'(b;) = 0.

Puisque
ap<bi<ar<by<...<b,<ap
les by, ..., b, sont deux a deux distincts. Ainsi f’ s’annule n fois au moins.
En itérant ce processus, f” s’annule n — 1 fois au moins,. .., f (") s>annule 1 fois au moins.
O

Exemple Soit U, (X) = ((X* —1)") ™) Montrons que U, posséde exactement n racines distinctes,
toutes dans |—1, 1.
Posons

Pp(X) = (X*=1)" = (X - )"(X +1)"

1 et —1 sont racines de multiplicité n de P,.

1 et —1 sont donc racines de Py, P.,, ..., P("~1,
En appliquant successivement le théoreme de Rolle avec appui sur 1 et —1, on montre que pour tout

k € [1,n], P*) admet au moins k racines dans |—1, 1.

En particulier U,, = P,(L") admet au moins n = deg U, racines dans |—1, 1[. On en déduit que celles-ci

sont simples et qu’il n’y en a pas d’autres.

10.2.3 Théoreme des accroissements finis

Théoreme
Soita < b e€R, f: [a,b] — R continue sur [a, b] et dérivable sur |a, b|.
Il existe ¢ € Ja, b[ tel que

dém. :
Posons K € R tel que

i.e. K déterminé par

et introduisons ¢ : x — f(z) — K(x — a).
 est continue sur [a, b], dérivable sur |a, b] et p(a) = f(a) = p(b).
Par application théoreme de Rolle, il existe ¢ € ]a, b[ vérifiant ¢’ (c) = 0 i.e. f'(c) = K.
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v

O

Exemple Soit f : [a,b] — R de classe C 2 et ¢ la fonction affine prenant les mémes valeurs que f en a

et b.

Montrons .
o —a)lxrg —

( 0 )2( 0 ) f//(c)

Cette identité est intéressant car elle permet de mesurer 1’erreur commise lorsqu’on remplace f(x) par

g(z) (comme dans la méthode d’intégration des trapezes).

o) =TT o) 4 s

Yo € Ja,b[,3c € la,b], f(xg) — g(xo) =

Posons K € R tel que
(xo — a)(zop —b)
2

f(@o) = g(xo) + K

ie.
. f(@o) — g(z0)
K =~ @ - b)

Considérons la fonction
(x —a)(x —b)

2

pix— flr) —g(z) - K

La fonction ¢ est de classe C2 et s’annule en g, a, b.
Par application du théoréme de Rolle, il existe ¢ € |a, b] vérifiant ¢”(c) = 0 i.e. f(c) = K.

10.2.4 Inégalité des accroissements finis

Théoreme

Soit f : I — R dérivable et M € R™. On a équivalence entre :
OVzel,|f () < M;

(ii) f est M lipschitzienne i.e.

Va,y € I |f(y) — f(x)] < M|y — x|
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Exemple Si f : [a,b] — R est de classe C* alors f est lipschitzienne.
En effet, la fonction | f’| est continue sur un segment donc bornée.

10.2.5 Théoréme de la limite de la dérivée

Théoreme
Soit f: I - Reta € I.
On suppose f continue sur [ et dérivable sur I\ {a}.
Si f'(z) ———— ¢ € Ralors f est dérivable en a et f'(a) = /.

T—a,r#a
Si f/(x) —#> —+o00 alors f n’est pas dérivable en a, mais présente une tangente verticale
r—a,x#a
en a.
dém. :
Supposons f'(r) ——— £ € R.
r—a,r#a

Pour h # 0, on étudie le taux d’accroissement

1
= (fla+ 1) = f(@)

Par le théoreme des accroissements finis, il existe c¢;, compris entre a et a + h tel que

(flat b~ f(a)) = F'(en)

Quand h — 0 (avec h # 0 ), par encadrement ¢;, — a et par composition de limites

1
(a4 ) = f(@) = ¢
O
Corollaire
Soit f : I — R une fonction de classe C* sur I\ {a}.
Si f@ (x) posséde une limite finie quand  — @ pour chaque 7 € {0, ..., k} alors f admet un

prolongement de classe C* sur I.

sinx

Exemple Soit f : R* — R définie par f(z) =

Montrer que f se prolonge en une fonction de classe C'.

sinx x

, \_ wcosx —sinz _ o(x?)
fi(z) = x2 z—0 2 =0

On peut donc prolonger f une fonction de classe C' sur R en posant f(0) = 1.
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10.2.6 Dérivation de bijection réciproque

Théoreme
Soit ¢ : I — J une bijection continue et x € I.
Si ¢ est dérivable en z et si ¢’ (x) # 0 alors ¢! est dérivable en iy = () et

—1y/ _ 1
(™) (y) = 70
A
T
A L

Corollaire
Si ¢ est dérivable et si ¢’ ne s’annule pas alors ¢~ " est dérivable et
1

—1\/ __
(L)O )_SOIOS071

Remarque Cette formule de dérivation peut étre retrouvée en dérivant la relation

pop t=1d

Corollaire
] Si ¢ est de classe C™ et si ' ne s’annule pas alors ¢ ! est de classe C".

Exemple C’est ce résultat qui a fourni les dérivées suivantes

1 d, o1
ﬁeta(arc anfL')— 1+1‘2

P (arcsinz) =

Exemple Etudions la bijection réciproque de f : RT — R définie par f(z) = vz + = + 1.
f réalise une bijection de R sur [1, +00[ car c’est une fonction continue, strictement croissante (par
opérations sur de telles fonctions) vérifiant f(0) = 1 et 1+im f=+o0.

o0
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La fonction f est dérivable sur R et

1
Ve >0,f(zr)==—=+1#0
v >0, f/(@) = 5o + 14
Par le théoréme précédent, on peut affirmer que son application réciproque f ! est dérivable sur
FRT) =11, o0

Etude de la dérivabilité en 1.
Quand h — 0 (avec h # 0),

1

SR = £ ) =

Lo _ T __r T
/ (Hh)x:fﬂ(uh)f(x)—l Vi+z  Jz

. =z =0

Ainsi f~! est dérivable en 1 et (f~1)'(1) = 0.
Cela pouvait étre attendu car la fonction f admet une tangente verticale en 0.

10.3 Intégration

I désigne un intervalle de R contenant au moins deux points.

10.3.1 Intégrale

Définition
Une fonction f : [a, b] — R est dite continue par morceaux s’il existe un découpage

aw=a<a <--<ap=>

vérifiant, pour tout ¢ € {1,...,n}:

- f est continue sur |a;_1, a;[;

- f admet des limites finies en a; , et a; .

Une fonction f : I — R est dite continue par morceaux si elle I’est sur tout segment [a, b]

inclus dans /.

Définition
Pour f : I — R continue par morceaux et a,b € I, il a été donné en premiere année un sens a

I’intégrale
b
/ F(t) dt

1
t+1
Exemple Calculons / %dt.
o T +1
Ona

d
a(zt2+t+1)=2zt+1

donc on décompose

1 1 1
t+1 1 2% + 1 1 1
T = T s ——
/0 2rtrl 2/0 2t +2/0 2t
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o boot41 ) !
/O ey dt =[] +¢+1]] =3
et L . L )
—dt= [ s dt
/0 2+t+1 /0 (t+1/2)2+3/4
Sachant

/ du 1 u
——— = — arctan —
uz2+a?2 a a

avec iciu =t + 1/2 et a = v/3/2, on obtient directement

1

/1 1 & [2 areta 2t+1} o
a4t = |2 arctan _ T
o t2Ht+1 V3 V3 Jo 3V3

1
t+1 1 T
T qt= -3t
/0 21 T 2T 63

Finalement

1
Exemple Calculons / vV1—2x2dx.

0
On réalise le changement de variable x = sin t.
dz = costdt,pourt =0,z =0etpourt =7m/2, 2 = 1.

1 /2 /2
/ \/1—x2dx:/ \/1—sin2tcostdt:/ cos? tdt
0 0 0

Or cos 2a = 2 cos® a — 1 donc

1
cos’t =

5(1 + cos 2t)

puis

1 s w/2
t 2t
/ \/l—xzdx:{—i-sm ] _r
O 2

4], 4

10.3.2 Calcul des intégrales de Wallis

/2
Exemple Calculons I, = / sin™(t) dt
0

/2
(ou encore cos"(u)duviau =m/2 —1).

0
Pourn > 2,

/2
I, = / sint.sin" "1 (¢) dt
0

Par intégration par parties,

I, = [— cost.sin™ ! t]

/2
/2 2 son—2
o t(n—1) /0 cos”(t) sin" == (¢) dt
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Or )
[— cost.sin™ ! t] g/ =0
et
/2 w/2
/ cos?(t) sin"2(t) dt = / (1 —sin?(t)) sin" 2(t) dt = I, — I,,_o
0 0
donc
I,=n—-1)(I, — I,_2)
puis enfin
—1
In = & In—?
n

Par cette relation de récurrence, il est possible d’exprimer I,, en fonction de /; ou de Ij selon la parité
de n.
Cas n impair: n = 2p + 1.

2p 2p 2p—2

Dopi1 = —L2 o =L P~
LT oy 1T T g Lp— 1P

A terme
2p 2p—2 2
Iopy1 = R 1
2p+12p—-1 3
Or ) o
2p(2p—2)...2=2Pplet (2p+1)(2p—1)...3 = %
p:
De plus
w/2
L= / sin(¢)dt =1
0
donc
Lo @)
P (2p 4 1)
Cas n pair : n = 2p. De facon analogue
oo @t
P (2pl)? 2

10.3.3 Intégrale fonction de sa borne supérieure

Théoréme
Si f : I — R est continue, pour ¢ € I, I’application

zH/aIf(t)dt

est I’'unique primitive de f s’annulant en a.

Remarque On a donc la formule de dérivation

& ([ rwa) = s
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Remarque On ne peut pas exprimer les primitives des fonctions suivantes a I’aide des fonctions usuelles

sint cost et 1

b et b o b T b b ——
t t t Int

Cependant celles-ci existent car toute fonction continue sur un intervalle y admet des primitives en vertu
du résultat précédent.

Corollaire
Si f : I — R est continue et si F' est une primitive de f alors

b
Va,b e I, / f=1[F"

Proposition
Soita < bet f:[a,b] = R

b
Si f est continue et si / f(t)dt = 0 alors f s’annule.

dém. : ,
En introduisant F' une primitive de f, la relation / f(t)dt = 0 donne F(a) = F(b) et le théoréme de

Rolle permet de conclure que ' = f s’annule.

([l
Proposition
Soita < bet f : [a,b] = R.
b
Si f est continue, f > 0 et si/ f(t)dt = 0alors f = 0.
dém. :

b
On introduit F' une primitive de f. Puisque F' = f > 0, on a F croissante et / f(t)dt = 0 donne

F(a) = F(b) et donc F est constante. On en déduit que f = F' = 0.
]

2
Tode
Exemple Etudions sur |1, +o0[ la fonction ¢ : x +— / i
n
Définition : ’

. 1 . .
La fonction ¢ — i est définie et continue par morceaux sur |1, +oo] et
n

Vo > 1, 2,22 € |1, +00]

Par suite () est bien définie pour tout x > 1.
Variation :

Puisque ¢ — It est continue sur |1, +00[, elle y admet une primitive de F et alors
n
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Puisque F est de classe C', o I’est aussi et

-1
(z) = 20F(z) — F'(z) = —— >0
¢(2) = 20F' (@) — F'() = T
Ainsi ¢ est croissante.
Limite en 400 :
Quand z — +o0. Pour t € [z, 27,
1 1 1

En intégrant,

122 —x (2) 2 —x
- T
2 Inz g Inx
Or
22—z 2
~ — — 400
Inz Inz
donc p(z) — +o0.
Limiteen 17 :
Quand 2 — 1. Pour t € [z,27],
x It < x2
tlnt ~Int tlnt  tlnt
En intégrant
2 2

Or

/ e = 2
» tint z

donc p(z) — In2.
Finalement, on obtient le tableau de variation suivant

T 1 400
o) | In2 AN 400

10.3.4 Formules de Taylor

10.3.4.1 Avec reste intégrale

Remarque On peut exprimer f : I — R de classe C! par sa dérivée avec la formule

fm:MH/Wm&

On peut généraliser :
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Théoreme
Soit f : I — Reta € [.
Si f est de classe C"™! alors pour tout z € T

" ) (g Tz —t)"
=50 g [0 oy
k=0 ’ a

n!

Remarque Par le changement de variable @ = a + A(z — a), le reste intégrale se réécrit

1 _\\n
@=apt [ O 000k - a))d

Cette écriture révele 1’ordre de grandeur du reste intégrale. . .

10.3.4.2 Inégalité de Taylor-Lagrange
Remarque L’inégalité des accroissements finis donne
Ve e I |f (z)| < M = Va,z € I,|f(z) — f(a)] < M |z — al

On généralise :

Théoreme
Soit f: I - KetM € RT.
Si f est de classe C" "1 et si

vrel, ‘f(”“)(x)‘ <M
alors pour chaque a,z € [

‘m _a‘n-‘rl

(n+1)! M

~X

") (g
‘f(w)—kz_of @ | <

Exemple Soit f : R — R de classe C? telle que f et £ soient bornées. On pose My = sup |f| et
My = sup | f"].
Montrons que f’ est bornée et

My = sup |f'| <2/ MyM,

Par I'inégalité de Taylor-Lagrange

2
Flath) — fla) ~ hf'(@)] < "

On en déduit
h2 M,

[hf'(a)] < 2Mo +
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Pour i > 0, cela conduit a

2M, h2M.
F@)] < 52+ =
La fonction f’ est donc bornée et
WMy hZM,
M, < —
ST T

Cette derniére relation vaut pour tout h > 0, il s’agit ensuite de trouver I’optimal. C’est h = 2+/ My /M-
et I’on obtient

10.3.4.3 Formule de Taylor Young

Remarque Lorsqu’une fonction f est dérivable en a, on peut exprimer un développement limité a
I’ordre 1

f) = fla)+ f(a)(x —a)+o(z—a)

T—r

Théoreme
Si f: I — Restde classe C" alors f admet un développement limité & ’ordre n en tout a € I

de la forme "
=3 D6 o (@ ay)
k=0

10.3.4.4 Développements limités usuels

1
7:1+u+u2+-~'+u"—|—o(u”):Zuk—i—o(u”)

1—-u Pt
1 n
T~ lL—u+u?+ -+ (=1)"u" +o(u") = kZ_O (=1)*u* + o(u™)
1 -1 n—1 n oo 1\k—-1
1(1+U)ZU—§u2+-~-+Lu"+o(u"): (=1 u® + o(u™)
K k=1
1 1 1 "1 N
—1+u+2u +6u+ +n—u +o(u zkzoy + o(u™)
a—1 -1...(a— 1
(1+u)“=1+au+%u2+-~+a(a ) Sa ntl) "+ o(u")
! n!
1 1 (_1)n 2n ont1y _ N~ (1) w2k 2n+1
cosu-l—gu +ﬂu +- (2n)!u + o(u )—kZ:O (2k)! + o(u )
: _ 1 3 1 5 (_1)n 2n+1 2n+2 = (_1)k 2k+1 2n+2
sinu =u—gut 4 gt £ oy P = ;0(21@“)“ +o(u™™)
n
1
_ . 2n 2n+1\ 2k 2n+1
chu = 1—|—2u +24u +- (2n)!u + o(u )—kZ:O@k)!u + o(u )
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1 1 .
shu = u + 7’[1,3 4t u2n+1 + O(u2n+2) _ u2k+1 + O(u2n+2)
61 2n+1)! poars (2k +1)!
tanu = u + gu?’ + o(u®)
L3 (=1)" oni1 2n+1 —~ (=DF g 2n+1
arctanu = u — —u° + - + ——u""" 4 o(u" ):Z u? T 4 oo(u )
3 2n+1 P 2k+1

10.4 Fonctions convexes

FE désigne un R-espace vectoriel.

10.4.1 Barycentre

Soit (u;);er une famille finie de vecteurs de F et (\;);c; une famille de coefficients réels avec
S A0
el

Définition

On appelle barycentre de la famille (u;);c; affectés des coefficients (A;);er le vecteur v de E
déterminé par

1
v = Z)\iz/\iw

icr €l

On dit encore que v est le barycentre de la famille de vecteurs massiques ((ui, A\i));c;-

Remarque Dans le plan ou I’espace géométrique muni d’un repere d’origine O, on peut identifier point
M et vecteur OM.

On définit alors le centre de gravité (ou centre de masse) des points Ay, ..., A, affectés de masses

my, ..., my, comme étant le point G tel que le vecteur 023 est le barycentre de la famille de vecteurs
— — )

(OAl, e OAn> affectés des coefficients (myq, ..., my,).

On peut montrer que ce centre de gravité ne dépend pas du choix du repere initial.

Exemple Le barycentre des u; et usy affectés des coefficients 1 et 1 correspond au vecteur milieu de w4
et us.

Exemple

> >
[l
| N
> >
[l
—_
>
[l

\

—_

[N
—_—
<
-
[N
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Remarque Les barycentres de deux vecteurs uy, us figurent sur la droite u; + Vect(ug — u1).

Définition
On appelle isobarycentre d’une famille de vecteurs (uq, ..., u,) le barycentre v affecté de
coefficients égaux a 1

1
v—;(ul—i—---—I—un)

Proposition
Le barycentre est inchangé si :
a) on retire de la famille les vecteurs affectés d’un coefficient nul ;
b) on permute les vecteurs et les coefficients de la famille ;
¢) on multiplie chaque coefficient par un scalaire non nul.

Remarque En exploitant un facteur de dilatation, tout barycentre peut étre ramené a celui d’une famille
dont la somme des coefficients vaut 1.

Théoréme
On suppose I = I; U I, avec

IlﬁIQ:Q,m:Z)\HéOetug:Z)\HéO

i€l i€l

Si vy et vz sont les barycentres des familles ((u;, Ai));c;, €t ((ui, Ai));c;, alors le barycentre
v de la famille ((ui, \i)),;; est aussi le barycentre de la famille ((vy, p1), (v2, p2))-

dém. : ) 1
Onavy = — Z AU et vg = — Z A;u; donc
M1 ieT M2 e,
(H1v1 + pov2) ! Z)\u ! Z)\u
101 2V2) = iU = = iU
p1 + 2 it pe ;)\i Pyt
O

Remarque On peut calculer le barycentre d’une famille de plusieurs vecteurs en regroupant ceux-ci par
paquets et se ramener a des situations ou 1I’on ne considere que des familles de deux vecteurs.
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10.4.2 Parties convexes
Définition
Soit a,b € E. On appelle segment d’extrémités a et b ’ensemble [a, b] constitué des bary-
centres des vecteurs a et b affectés de coefficients positifs :
[a, b] = {)\1(1 + )\Qb//\l, )\2 Z 0, ()\1, )\2) 7& (0, 0)}

En se ramenant a une somme de coefficients égale a 1

[a,6] = {(1 = A)a+ Ab/A € [0,1]}

Remarque On peut aussi comprendre le segment [a, b] comme obtenu par le paramétrage

[a,b] = {a + A(b— a) /A € [0, 1]}

a [a,b] b

Définition
Une partie X de E est dite convexe si

VYa,b € X,[a,b] C X

Exemple

convexe non convexe

Exemple () et F sont des parties convexes.

Exemple Les segments, les sous-espaces vectoriels et les sous-espaces affines sont des parties convexes.
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Théoreme
Soit X une partie de E. On a équivalence entre :
(1) X est une partie convexe ;
(i1) X contient tous les barycentres de ses vecteurs affectés de coefficients positifs.

dém. :

(ii) = (i) Supposons (ii). Pour tout a, b € X, la partie X contient le segment [a, b] car celui-ci est constitué
des barycentres de a et b affectés de coefficients positifs.

(i) = (ii) Supposons X convexe et montrons par récurrence sur n > 1 que X contient les barycentres des
familles de n éléments de X affectés de coefficients positifs.

Casn = 1:iln’y arien a démontrer.

Cas n = 2 : on retrouve la définition de la convexité.

Supposons la propriété vraie au rang n > 2.

Soit v le barycentre de ((ui; Ai));¢;cpp1 @Vec u; € X et A; > 0.

On peut supposer les \; strictement positifs, sinon le probleme est immédiatement résolu par 1’hypothese
de récurrence. Considérons ensuite a le barycentre de la sous famille ((u;, A;)); <;<,,- Par hypothese de
récurrence a € X. Par associativité, v est barycentre de a et u,; affectés de coefficients positifs et donc

v E [a,Unt1] C X

Récurrence établie.
O

Remarque De manicre semblable, on peut définir la notion de partie convexe du plan et de I’espace
géométrique.

10.4.3 Fonction convexe, fonction concave

Définition
On dit qu’une fonction f : I — R est convexe si elle vérifie

Va,be I,YA € [0,1], F (1 — Na+Ab) < (1= A)f(a) + Af(D)

Proposition
Une fonction est convexe si ses arcs sont en dessous des cordes associées

A

o
v
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dém. :
Pour a,b € I, notons A = (a, f(a)) et B = (b, f(b)) les points du graphe de f d’abscisses a et b.
La corde d’extrémités A et B le segment [A, B].

[4, B] = {(1 = N)(a, f(a)) + A(b, £(b))/ € [0, 1]}

soit encore
[A, B] = {((1 = Na+ b, (1 = A)f(a) + Af(b)) /A €[0,1]}

~

L’arc associé est AB formé des points de I'y d’abscisses comprises entre a et b.

AB = {(t, f(1))/t € [a,b]}

soit encore en écrivant t = (1 — A)a + Ab avec A € [0, 1]

AB={((1 =XNa+ X, f (1 = Na+ \b)) /)€ [0,1]}
L’inégalité de convexité signifie alors que, pour une méme abscisse, I’ordonnée du point de la corde est
supérieure a celle du point de 1’arc.

Ainsi, pour une fonction convexe, I’arc AB est en dessous de la corde [A, B].
O

Exemple Les fonctions affines x — ax + [ sont convexes.
Pour ces fonctions, ’inégalité de convexité est en fait une égalité.

Exemple La fonction | .| est convexe.
En effet,
Va,b € R, |Aa+ (1 = A)b] < |A|lal+ 1 = A b] = Aa| + (1 — A) b

Définition
On dit qu’une fonction f : I — R est concave si elle vérifie

Va,be IYA€[0,1], f((1 = Na-+Ab) = (1= A)f(a) + Af(b)

Remarque Pour une fonction concave, 1’arc est au dessus de la corde.

Exemple Les fonctions affines sont concaves.

Proposition
Pour f : I — R, on a équivalence entre :
(i) f est concave ;
(ii) — f est convexe.

dém. :
Par passage a I’opposé I’inégalité de convexité est renversée.
O
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Remarque Par passage a I’opposé et renversement d’inégalité, les résultats qui suivent présentés pour
les fonctions convexes se transposent aux fonctions concaves.

10.4.4 Caractérisation géométrique de la convexité

10.4.4.1 Epigraphe

Définition
On appelle graphe d’une fonction f : I — R I’ensemble

T;={(z,y) €R*/z € Tet f(z) =y}
On appelle épigraphe d’une fonction f : I — R I’ensemble

Epi(f) = {(z,y) e R?*/z € T et f(x) <y}

»

Ly

v

Théoreme

Pour f : I — R, on a équivalence entre :
(1) 1a fonction f est convexe ;

(ii) I’épigraphe de f est convexe.

dém. :
(i) = (ii) Supposons f convexe.
Soit A et B des points de I’épigraphe de f et A’, B’ les points du graphe de f de mémes abscisses. Le

segment [A, B] est au dessus du segment [A’, B’] lui méme au dessus de I’arc A’B’. On en déduit que le
segment [A, B] est inclus dans 1’épigraphe de f.

(ii) = (i) Supposons I’épigraphe de f convexe.

Les cordes du graphe de f sont incluses dans 1’épigraphe de f et sont donc au dessus des arcs. On en
déduit que la fonction f est convexe.

Ex:
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convexe convexe convexe

v

v
v

non convexe non convexe ° °
\Cori/exe/

v
v
v

O

10.4.4.2 Inégalité des pentes

Définition
Pour f : I — Reta # b éléments de I, on note
f(0) = f(a)
b =
r(a,b) = 25—

la pente (ou coefficient directeur) de la droite joignant les points d’abscisses a et b du graphe
de f.

Théoreme

Soit f : I — R. On a équivalence entre :

(i) f est convexe;

(i) Va,b,ce I,a < c < b= 7(a,c) < 7(a,b) < 7(c,b);
(i) Va,b,c € I,a < ¢ < b= 7(a,c) < 7(c,b)

v

dém. :

(i) = (ii) Supposons f convexe

Soit a, b, c € I tels que a < ¢ < b. On peut écrire ¢ = (1 — A)a + b avec
c—a

= 1
A b—ae]o’ [
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Par convexité

fle) = F((1=Na+Ab) < (1=A)f(a) +Af(D)

donc
£le) = Fla) SAUFB) — (@) = s (F(b) ~ F(a)
d’ou 7(a,c) < 7(a,b).
Aussi
FB) = £ > (1= N(F6) - Fa) = ;=< (70) ~ f(a)

ce qui fournit 7(a, b) < 7(b, ¢).

(i) = (iii) C’est entendu

(iii) = (i) Supposons (iii)

Soit a,b € I et A € [0, 1]. Montrons

F((A=Na+b) < (1 =A)f(a) + Af(b)

Sia="5b:o0k

Si a # b, quitte a échanger a et b d’une part, et A et 1 — A d’autre part, on peut supposer a < b.
SidA=0ouA=1:0k

Si A €]0,1[, posons ¢ = (1 — X)a + Ab. Puisque a < ¢ < b, ona 7(a,c) < 7(c,b) ce qui donne

c—a c—a c—ab—a A

(f(b) — f(c)) avec ; = _

o) = fla) < —¢c b—ab—c 1-2)

S b—c

puis

fe) < (X =A)f(a) + Af(b)
Ainsi f est convexe.
O

Corollaire
Si f : I — R est convexe alors, pour chaque z € I, la fonction « — 7(zg, ) est croissante

v

10.4.5 Fonctions convexes dérivables

Théoreme
Soit f : I — R dérivable. On a équivalence entre :
(i) f est convexe;
(i) f’ est croissante.
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dém. :
(i) = (ii) Supposons f convexe. Soit a,b € I tels que a < bet x € ]a, b].
Ona
7(a,z) < 7(a,b) < 7(b, )
Quand 2 — a™, on obtient f’(a) < 7(a,b). Quand 2 — b~ , on obtient 7(a, b) < f'(b).
Ainsi f'(a) < f/(b) et f est une fonction croissante.
(ii) = (i) Supposons f’ croissante.
Soit a,b,c € Itelsque a < ¢ < b.
Par le théoréme des accroissements finis, il existe a € |a, c| tel que 7(a,c) = f'(a) et il existe 8 € |c, b]
tel que 7(c, b) = f'(B). Puisque o < 3, on obtient

7(a,c) < (e, b)

On peut alors conclure que f est convexe en vertu du théoréme d’inégalité des pentes.
|
Corollaire

Soit f : I — R deux fois dérivable. On a équivalence entre :

(i) f est convexe;

(i) f” > 0.

dém. :
La monotonie de f’ est donnée par le signe de f”.
(|

Exemple Les fonctions x — :z:2, x — e”, & — chz sont convexes.
En effet, ces fonctions sont de dérivées secondes positives.

Exemple La fonction z — In x est une concave.
En effet, sa dérivée seconde négative.

Exemple Etudions la convexité de la fonction f : 2 ~— In(1 + 2?) définie sur R.
La fonction f est deux fois dérivable,

2x 1—a?

fl(x) = 1+ a2 et f'(x) = QW

du signe de 1 — 22
On en déduit que f est convexe sur [—1, 1] et concave sur |—oo, —1] et sur [1, +-00[.
Il y a inflexion aux points d’abscisse 1 et —1.
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Notons que nous ne dirons pas que f est concave sur la réunion |—oo, —1] U [1, 400/ car la notion de
convexité d’une fonction réelle n’a de sens que pour une fonction définie sur un intervalle.

10.4.6 Inégalités de convexité

10.4.6.1 Position relative d’une courbe et de ses tangentes

Théoreme
Si f : I — R dérivable est convexe alors son graphe I'; est au dessus de chacune de ses
tangentes.

dém. :

Soit a € I. L’équation de la tangente 7" en a est

y=f'(a)(x—a)+ f(a)

Considérons la fonction g : I — R définie par

g(x) = f(x) = (f'(a)(z — a) + f(a))

Par opérations, la fonction g est dérivable et ¢’ (x) = f'(z) — f'(a).
La croissance de f’ donne le signe de ¢’ et on en déduit que g admet un minimum en a avec g(a) = 0.
Par suite, pour tout x € I, g(x) > 0 puis I'inégalité

f(@) = fl(a)(x —a) + f(a)

O

Corollaire
Si f : I — R dérivable est concave alors son graphe I'; est en dessous de chacune de ses
tangentes.

dém. :

11 suffit de considérer la fonction — f qui est convexe.

O

10.4.6.2 Inégalités de convexité classiques

Exemple Vx € R,e* > 1+ x
En effet, la fonction = — e® est convexe, en positionnant son graphe par rapport a sa tangente en 0, on
obtient la propriété.

Exemple Vz > —1,In(14+z) <z
Puisque la fonction z — In(1 + ) est concave, il suffit de positionner son graphe par rapport a sa
tangente en 0.

2
Exemple Vz € [0,7/2], —x < sinz < x
T
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ZU‘ ,
A Yy=x L’
’
d
7’
7’
L, y=sinx
’I
’ o]
’ Lol
7’ - E
by e
/, Nd H
4 e H
e H
o\ > T
e 7T/2

La fonction x +— sin x est concave sur [0, 7r/2], en positionnant son graphe par rapport  sa tangente en 0
et par rapport a sa corde joignant les points d’abscisse 0 et 7/2, on obtient I’encadrement proposé.

10.4.6.3 Inégalité de Jensen

Théoréme
Soit f : I — R une fonction convexe et n € N*. On a

Vala'~-7anEny(Alal"F""f')\nan)<)\1f(al>+"'+)\nf(a/n)

pour toute famille Ay, ..., A, de réels positifs de somme 1.

dém. :
Posons A; = (a;, f(a;)) points de I’épigraphe de f.
Puisque f est convexe, son épigraphe I’est aussi et celui-ci contient barycentre de la famille ((A4;, A;)), <ign:

Celui-ci est le couple
<Z Niai, Y Aif(%))
i=1 i=1

et donc
f <Z )\iai> < Z Aif(aq)
i=1 i=1
O
Corollaire

Pour f : I — R convexe, on a

Varsean € 1 (P < 2 (g o flan)

SRS

dém. :
N suffitde prendre \y = ... =\, = 1/n
O

Exemple Montrons
ai _|_ e _|_ a
Yai,...,an € RY, a1 ... ap, < —m8M8M =

n
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SiI’un des a; est nul, ¢c’est immédiat.
Sinon, exploitons la concavité de x — In x.
Pour tout aq, ...,a, >0,
1
n n

(nay+- +1Inay) <In (M)

donc

In v/ < In (aﬁ“n)
n

puis en composant avec la fonction exponentielle qui est croissante, on obtient I’inégalité voulue.

10.4.7 Musculation : dérivabilité et continuité des fonctions convexes

Théoréeme
Si f : I — R est convexe alors en tout point -y € I qui n’est pas extrémité de I, f est dérivable
a droite et a gauche avec

fo(zo) < filzo)

dém. :

Soita € I tel que a < xp.

L application restreinte 75, : |zo,+o0o[ N I est croissante et minorée par 7(a,zg), cette application
converge donc en z. Ainsi f est dérivable a droite en 7 et

falxo) = 7(a, o)

L application restreinte 7, : |—00, zo[ N I est croissante et majorée, en vertu de 1’étude précédente, par
fa(xo). Cette application converge donc en et f est dérivable a gauche en xq avec f () < f(zo).
O

Corollaire
] Si f: I — R est convexe alors f est continue en tout point intérieur a I’intervalle 1.

dém. :
Car continue a droite et a gauche par dérivabilité a droite et a gauche.

O
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Chapitre 11

Intégration sur un intervalle
quelconque

On sait intégrer sur les segments [a, b] et on souhaite étendre la notion & tout intervalle et ainsi donner un

sens entre autre a
“+o0o 1 dt
/ e tdtet / —
0 0 \/E

K désigne R ou C.

11.1 Intégration sur [a, +o0|

Soita € R.

11.1.1 Convergence

Définition
Soit f : [a, +00[ — K continue par morceaux.

On dit que I'intégrale de f sur [a, +o0o[ converge si I’intégrale partielle / f(t) dt converge

+oo
/a 10 dt(rmkﬁéo/ f®)

+oo
Cette intégrale s’écrit aussi / f s’il n’est pas utile de préciser une variable d’intégration
a

quand x — +o0.
On pose alors

(qui par ailleurs est muette) ou encore / f()de.
[a,+o0]

Remarque L’intégrale converge si, et seulement si, aire hachurée converge quand x — 400
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Attention : Par essence, une intégrale impropre est une limite, pour la manipuler il faut préalablement
en justifier I’existence.

+oo
Exemple Etude de / e tdt.
0

La fonction ¢ — e~ est définie et continue par morceaux sur [0, 4-o0|

/ efdt=1—-e ——1
0

T—+00

+oo
donc / eft dt converge et
0

+oo
/ e tdt=1
0

+oo
Exemple Etude de / 1dt.

0
La fonction ¢ — 1 est définie et continue par morceaux sur [0, +00[.

xT —+oo
/ 1dt = x —— +oo donc / 1 dt diverge.
0 0

r—r+00

oo dt
T
La fonction ¢ — 1/t est définie et continue par morceaux sur [1, +o0[

T dt teodr
- = Inxz —— +o00 donc - diverge.
1 1

r—+00

Exemple Etude de /

A

v
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Pour la
converg

11.1.2

Soit f :

fonction inverse, il y a trop d’espace entre la courbe et I’axe des abscisses pour que I’intégrale
e, la fonction inverse converge trop lentement vers 0 en +oo.

Reste d’une intégrale convergente

[a, +00[ — K continue par morceaux.

Théoreme

Pour tout b € [a, +00], on a équivalence entre :
+o0

(i) / f(¢t) dt converge ;

% 4o
(i) / f(t) dt converge.
b

dém. :
On a

/:f=/abf+/:f

donc une intégrale partielle converge si, et seulement si, I’autre converge aussi.

O
Corollaire

On ne change pas la nature d’une intégrale sur [a, +oo[ en modifiant les valeurs de la fonc-

“+o0

tion intégrée sur [a, c]. La nature de / f(t) dt ne dépend que du comportement de f au

voisinage de +-oco. ‘
Définition

400 +oo

Si / f(t) dt converge alors on peut introduire I’intégrale / f(t)dt pour tout z €

[a, +ool.

La fonction ainsi définie s’appelle le reste de I’intégrale convergente.
Théoreme

+oo
Si / f(t) dt converge alors pour tout x > a
—+oo x +oo
/ £t dt = / F(6) dt + / F(6)dt
De plus
—+o0
/z (UL —

dém. :

Soit x € [a, +oo[ fixé. On introduit y € [z, +oo[etona
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Quand y — +o0, on obtient

/:OO F(#)dt = /:f(t) at + /:OO (1) at

De plus

/:Oof(t)dt:/a+oof(t)dt—/:f(t)dt—>0

Tr— 400

O
11.1.3 Cas des fonctions continues
Soit f : [a, +00[ — K une fonction continue de primitive F'.

Théoreme
On a équivalence entre :

+oo
() / f(¢) dt converge ;

a
(i) F(x) converge quand x — +o0.
De plus, on a alors

+oo
/ ft)dt = lim F(z) — F(a) = [F(z)]7

T—+00 déf

oo dt
Exemple Etude de / TR
0o t?+1

L’intégrale converge car arctan ¢ est primitive de 1’intégrande et converge en +oc.

De plus
e at
/ 5 = [arctant];™ = il
o t?4+1 2
Proposition
+oo
Si f est continue et si / f converge alors
d Foo
ar ( / f ) =—f(2)
dém. :

Introduisons une primitive F' de f. Puisque I’intégrale converge, F' admet une limite en 400 et on peut
écrire
+o0
/ f=limF — F()
x +OO

—+o0
La fonction = +— / f est alors de classe C' et
x

=/ - ) =-Fw = i)
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]

11.1.4 Propriétés
11.1.4.1 Linéarité

Théoreme
Soit f, g : [a,+00[ = K continues par morceaux et A € K.

—+oo +oo +oo —+oo
Si les intégrales / fet / g convergent alors / f+get / Af convergent avec
a a a a

L%mf+g=%jwf+[ngm[iwAf:AL£xf

Corollaire
L’ensemble constitué des fonctions continues par morceaux de [a, +00[ vers K dont I’intégrale
converge définit un sous-espace vectoriel de Cgm ([a, +o0[, K).

+oo
L application f — / f y définit une forme linéaire.

+oo —+o0 —+o0
Exemple Si / f+get / f convergent alors / g converge.
a a

En effet, on pe{llt écrire
g=(f+g) +(-1g

+oo “+ o0 400
Attention : Pour exploiter la relation f4+g= f+ / g, il faut préalablement justifier
a

a a
la convergence d’au moins deux des intégrales engagées !
Ceci empéche d’écrire des aberrations telles

+oo “+o0 +oo
/ Odt:/ 1dt+/ (—1) dt
0 0 0

ou, un peu moins grossieérement
/+oo dt B /+oo g /+oo ds
L tit+1) )t 1 t+1

+oo

+oo +oo

Exemple Si / f converge et / g diverge alors / f diverge.

a a a

+o00 +o0 Foo
Attention : Si / fet / g divergent alors on ne peut rien dire sur la nature de / f+ag
a a a
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11.1.4.2 Positivité

Théoréme
Soit f : [a, +00[ — R continue par morceaux.

400 +oo
Si / f converge et si f > 0 alors / f=0
a a

dém. :

En tant qu’intégrale bien ordonnée d’une fonction positive, pour tout x > a, on a

/f>0
+oo

A la limite quand = — +o0, on obtient / f=0.

D a

Corollaire

Soit f, g : [a, +00[ — R continues par morceaux

+oo +oo
Si / fet / g convergent et si f < g alors
a a

+oo “+oo
/ f</ g

dém. :
Avec convergence, on a

/a+oog—/a+oof=/a+oog—f>0

]
Théoreme
Soit f : [a, +00[ — R continue.
+oo +oo
Sif>0etsi / f converge avec / f =0 alors f est la fonction nulle.
dém. :

Introduisons F' une primitive de f. La fonction F’ est croissante et puisque I’intégrale de f converge et

vaut 0, on a F'(a) = Em F. On en déduit que F est constante et donc f = F' = 0.

O
11.1.4.3 Conjugaison

Théoréme
Soit f : [a, +00[ — C continue par morceaux.

—+o0 —+o0 _
Si / f converge alors / f convergent et alors
a a

[T
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dém. :

Par conjugaison de limites.
O

Corollaire

On a équivalence entre :
—+o0

@) f converge;

¢ +oo +oo
(ii) / Ref et / Imf convergent.
“+o0 +oo “+oo
/ f:/ Ref—i—i./ Imf

De plus, on a alors
+oo +oo
Exemple Calcul de / cos(wt)e " dt et/ sin(wt)e ™" dt.
0 0

+oo
Introduisons / eliw=1t q¢.
0

s T .
/z eiwte,t gt — /CE e(iwfl)t df — e(zw 1t . 1 _ 1+ iw
0 0 iw—1 |gz=tool —iw 14 w?

—+o0
et/ sin(t)etdt = —~
0

On en déduit

1+w? 1+ w?

+oo
/ cos(wt)e " dt =
0
11.2 Intégrabilité sur [a, +oo|

Soit a € R.
11.2.1 Cas des fonctions positives

Théoréme
Soit f : [a, +00[ — R continue par morceaux. Si f est positive on a équivalence entre :

—+oo
@) / f converge;

(i) IM € R,V € [a, +00], / F)dt < M.

dém. :
Puisque f est positive, pour tout < y € [a, +00[, on a

/;f(t)dtg/:f(t)dt

L’intégrale partielle / f(t) dt définit donc une fonction croissante de x. Si celle-ci est majorée alors

a
elle converge quand z — +00 et la réciproque est vraie.
O
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—+o0
Remarque Au contraire, si / f diverge avec f > 0 alors
a

[
a xr——+00
11.2.2 Comparaison de fonctions positives

Théoréme
Soit f, g : [a, +00[ = R continues par morceaux telles que 0 < f < g.

+oo +oo
Si / g converge alors / f aussi.
a

—+o0 oo
Si / f diverge alors / g aussi.

dém. :
Soit z € [a, +oo[. Puisque f < g,on a

’ ft)dt < xg(t) dt < o g(t)dt
[ swaes [Cowars |

La fonction f est positive et ses intégrales partielles sont majorées, I’intégrale de f sur [a, +00] est donc

convergente.
O
+o0 et
Exemple Nature de / dt.
o t+1

La fonction f : ¢ — ¢

7 est définie et continue par morceaux sur [0, +00[.

Pourt > 0,0ona0 < f(t) <e "
—t

t+1

+oo +oo
Or / e~ ' dt converge donc, par comparaison de fonctions positives, / dt converge.
0 0

T In(1 +¢)
t

Exemple Nature de / dt.

1
In(1+1¢)

t
In2

t

La fonction f : ¢ — est définie et continue par morceaux sur [1, +00].

Pourt > 1,ona f(t) > > 0.

/+°° ln(lt—l— t)

1

+oo
Or / - diverge donc, par comparaison de fonctions positives, dt diverge.
1

Théoreme
Soit £, g : [a, +oo[ — R continues par morceaux.

Si f(t) g(t) alors les intégrales /

+oo —+oo
fet / g ont méme nature.
a a

~Y
t——+oo
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dém. :
Pour ¢ assez grand, on a la comparaison

qui est décisive !
O

11.2.3 Intégrabilité

Soit f : [a,+00[ — K continue par morceaux.
Définition
+oo
On dit que f est intégrable sur [a, +00] si I'intégrale / | f| converge.
a

“+ o0
On dit aussi que I’intégrale / f est absolument convergente.
a

Remarque Si f est positive, il est équivalent de dire que f est intégrable sur [a, +oo[ que de dire que
son intégrale de f converge.

t
Exemple Intégrabilité de t ({Oj(tg sur [0, 4+-o0].
On
0< cos(t) < 1
14 ¢2 1+ ¢2

+oo
Or il y a convergence de / T2 donc, par comparaison de fonctions positives, il y a convergence
0

cos(t)
142

cos(t)
1+12

dt.

+o00
de I’intégrale /
0

Ainsi, la fonction ¢ — est intégrable sur [0, +oo.

Théoréme
+oo
Si f est intégrable sur [a, +o00[ alors / f converge et

a

/;ooflé/:oolfl

dém. :

Cas f a valeurs positives

C’est immédiat compte tenu des résultats qui précede.

Cas f a valeurs réelles

On pose f = sup(f,0) et f~ = sup(—f,0).

Les fonctions fT, f~ : I — R™ sont continues par morceaux et vérifient f = f+ — f~.

Onaaussi |f| = fT + f doncO < f*, f~ <|f].
+oo

“+o0
Par comparaison de fonctions positives, les intégrales / ftet / f~ convergent puis, par opéra-
a a

+oo

tions, I’intégrale / f converge aussi.
a
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Cas f a valeurs complexes
On écrit f = Ref + iImf.
Ref,Imf : I — R sont continues par morceaux.

+oo
Puisque |Ref|, [Imf| < |f], on a, par comparaison de fonctions positives, les intégrales / [Ref| et
a

—+oo —+oo —+oo —+oo
/ |Im f| convergent donc / Ref et / Imf convergent puis par opérations / f converge
a a a a

aussi.
/f‘ </:|f|

Enfin, pour tout € [a, +00]
+oo +oo
/ f‘ < / |/l
a a
U

Bilan :Pour une fonction réelle ou complexe

donc a la limite quand z — 400

“+o0
f intégrable = / f converge
a
Pour une fonction positive, f = | f| donc

+oo
f intégrable < / f converge

Remarque Plus généralement, pour une fonction de signe constant, il y a aussi équivalence.

On peut encore approfondir : si f est de signe constant au voisinage de +oo alors I’intégrabilité de f sur
+o00

[a, +00] équivaut a la convergence de 1’intégrale / f.
a

+o0 +oo
Attention : Il se peut que / f converge alors que / | f| diverge.

a a
Ce phénomene se rencontre lorsque la convergence de I’intégrale provient d’une compensation entre
aires positive et négative.

Définition
—+o0
Si / f converge alors que /

a

“+o00 —+o0
|f| diverge, on dit que I'intégrale / f est semi-
a

a
convergente.

+oo ; +oo
L sint . .
Exemple Les intégrales / ——dtet / cos(t?) dt sont des intégrales semi-convergentes
0 0

fameuses.
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11.2.4 Intégrabilité par comparaison

11.2.4.1 Domination

Théoreme
Soit f : [a, +oo[ — Ket ¢ : [a, +o0o[ — R continues par morceaux.

Si
Vit € [a,+oo[, | f(t)| < p(t) avec ¢ intégrable

alors f est intégrable.

2

dém. :
+oo

+oo
L’intégrale / ©(t) dt converge et donc, par comparaison de fonctions positives, / |f(t)| dt converge.
a

Ainsi f est irftégrable.
|
11.2.4.2 Comparaisons asymptotiques

Définition
Soit f, g : [a, 400 = K.
On dit que f est dominée par g au voisinage de +oo si

M € RY,3A € [a, +oo[ ,Vt = A, |f(t)] < M [g(t)]

On écrit alors

Remarque Il revient au méme de dire qu’il est possible d’écrire au voisinage de 400

f(t) = b(t)g(t) avec b une fonction bornée

Définition
Soit f, g : [a, 400 = K.
On dit que f est négligeable devant g au voisinage de +0oo si
Ve > 07,34 € [a, +ool ,Vt = A, [f(t)] < e]g(t)]

On écrit alors

Remarque Il revient au méme de dire qu’il est possible d’écrire au voisinage de 400

f(t) =e(t)g(t) avec e(t) —— 0

t——+oo
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Définition
Soit f,g: [a, +oo] = K.
On dit que f est équivalente a g au voisinage de oo si ’on peut écrire

f@) = g@) +o(g(t)

t—+o0

On écrit alors

f@), ~ g

t—+o0

Remarque Il revient au méme de dire qu’il est possible d’écrire au voisinage de +o0

f@&) =u(t)g(t) avec u(t) —— 1

t—+oo
11.2.4.3 Intégrabilité par comparaison asymptotique
Théoreme

Soit f : [a, +oo[ — Ket g : [a, +00[ — RT continues par morceaux.
Si f(¢) e O (g(t)) etsi g est intégrable sur [a, +oo| alors f est intégrable sur [a, +00]
— 100

dém. :
Il existe A € [a, +oo[ et M € RY vérifiant

vt € [A, +ool, [f(t)] < Mg(t)

+oo
En considérant ¢(t) = Mg(t), on peut affirmer par domination qu’il y a convergence de / |f| et
A

+oo
donc de / | | qui n’en différe que d’une constante.
a

O
Corollaire

’ Si f(t) oo ? (g(t)) et si g est intégrable sur [a, +00] alors f est intégrable sur [a, +00]

— 400

dém
7(1), = _olg(t) alors f(t), = _O(g(t))
Corollaire

’ Si f(¢) ot g(t) alors I'intégrabilité de f sur [a, +-00[ équivaut a celle de g.
dém. :
si f(t) NooN g(t) alors f(t) e O (g(t)) etaussi g(t) e O (f(t)) de sorte que I’intégrabilité d’une

fonction entraine I’intégrabilité de I’autre.
O

Attention : Ces énoncés sont faux en terme de convergence d’intégrale. Il est indispensable de
s’exprimer en terme d’intégrabilité. Cependant, on peut énoncer le théoreme d’équivalence suivant :
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11.2.5 Intégrales de Riemann

Soit a € R.
Théoreme
+oo
/ 7a converge si, et seulement si, o > 1
1
dém. :
La fonction ¢ — 1/t est définie et continue par morceaux sur [1, +00].
Poura < 1,

Todt T dt
— > — =lnx — +o0
T 1t

T—+00

oo dt

et donc / — diverge.
T

Poura > 1,

/zdt_ 117" 1
Lt | a—1tel]] aste a—1

—+oo
et donc / 7o converge.
1

oo Foo oo dt oo dt
Exemple / - et / “Toooor convergent alors que / — et / —= divergent.
1 t 1 t 1 t 1 \/75

Corollaire
| La fonction ¢ — 1/t* est intégrable sur [1, +o0] si, et seulement si, o > 1.

11.2.6 En pratique

dt
th+1
La fonction f : ¢ — 1/(t* 4 1) est définie et continue par morceaux sur [0, +-00|.
Quand ¢t — +o0,
f(t) — 0, on ne peut rien en conclure

—+oo
Exemple Nature de /
0

1
t——4oo t4

ft)

Ort — 1/t* est intégrable sur [1, +-00[ (car 4 > 1) donc f est intégrable sur [1, +oo[, puis sur [0, +oa].

400
Ainsi, I’intégrale / est convergente.
0

tt+1

dt.

—+oo
t+1
Exemple Nature de / *
o t?2+1

La fonction f : ¢ ~ (t + 1)/(t* + 1) est définie et continue par morceaux sur [0, +-00].
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Ona
t+1 1
24+ 1ts+oot
. feedt : , o MRS
Or 'intégrale / 7 diverge donc, par équivalence de fonctions positives, I’intégrale / 71 dt
1 1
diverge.
- 41
On en déduit la divergence de / 5 dt.
o t*+1
+o0 5
Exemple Nature de / eV dt.
0
La fonction f : ¢t — e™"" est définie et continue par morceaux sur [0, +00[.
Quand ¢ — 400, f(t) — 0 mais ce n’est en rien décisif. Cependant ¢ f (t) P 0 donc
—+00
1
f(t) t—>:-oo o (t2>
Or t — 1/t est intégrable sur [1, 400 (car 2 > 1) donc f est intégrable sur [0, +o].
+oo
L’intégrale / e dt converge.
0
+oo
t
Exemple Nature de / cos(?) dt.
o 1412
La fonction f : t — cos(t)/(1 + t?) est définie et continue par morceaux sur [0, 4+-o0].
Ona ®
cos(t
O, x5
donc 0
3/2 . cos(t
¢ f(t) t—+o0 \/f =0
o 3/2 . 0 cost
Ainsi f(t) Wi o(1/t%/%) et on peut conclure que f est intégrable sur [0, +00| et/ T dt
—+00
converge. 0

—+o0
1
E le Nature d —d
xemple Nature e/1 (£ 1)
La fonction f : ¢ — 1/In(¢t 4 1) est définie et continue par morceaux sur [1, +ool.
Ona
W) o+

Il existe A € [1,4o0[tel que pourt > A, ¢f(t) > 1etdonc f(t) > 1/t.

+o00
Or / 5 diverge, donc par comparaison de fonctions positives (et moyennant un découpage des
1

—+oo
1
intégrales en A ) on peut conclure que 1’intégrale / n(
1 n

Tl) dt diverge.
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Bilan :Pour f : [a,+0co[ — K continue par morceaux :
-Sif(t) ~ C/t* (avec C # 0) quand t — +oo alors
o)

t—t
f est intégrable sur [a, +o0] si, et seulement si, @ > 1;
- Si on détermine @ > 1 tel que ¢t f(t) T 0 quand ¢t — 400 alors f est intégrable sur [a, +00];
—+o0

-Sitf(t) P £ # 0 alors 'intégrale de f sur [a, +oo] diverge.
—+00

11.2.7 Intégrabilité et limite en +oco

Théoreme

Soit f : [a, +00[ — K continue par morceaux.
Si f(t) — £ # 0 alors I'intégrale de f sur [a, +oo[ diverge.

dém. :
CasK=R
Quitte a considérer — f, on peut supposer £ > 0. Puisque f tend vers £ en +o0, il existe A € [a, +00[

vérifiant
Vt> A, f(t) > ¢/2

/;f(t)dt/aAf(t)dH/:f(t)dt

/ f(t)dt20t6+g(xfa)~—++oo

r—r+o0

et alors

et donc

—+oo
Ainsi I’intégrale de / f(t) dt diverge (et donc f n’est pas intégrable)

CasK=C

On raisonne par parties réelle ou imaginaire sachant que I’une des deux fonctions ne tend pas vers 0
en +oo.

]

Attention : Etonnamment, la condition f(t) pa— 0 n’est pas une condition nécessaire
— 100

d’intégrabilité.

Exemple Soit f : [0, +co[ — R la fonction continue définie par

A

1/2 1/4 1/8

v
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f est intégrable mais n’est pas de limite nulle en +occ.
En effet, la fonction f est positive et

T lz|+1
/Of(t)dtg/o ft)de

I
1
%3
/)
3|
I
"

—+oo
Les intégrales partielles de f sont majorées et donc / f(t) dt converge.
0

Aussi, f ne tend pas vers 0 en 400 car

1
f(”+2n+1):1m”

11.3 Extension a un intervalle quelconque

11.3.1 Intégration sur un intervalle semi ouvert

11.3.1.1 Intégration sur [a, b|

Soita e Rethb € RU {+o0} avec a < b.

Définition

Soit f : [a,b] — K continue par morceaux. On dit que 'intégrale de f sur [a, b] converge si
I’intégrale partielle / ’ f(t) dt converge quand x — b~ .

On pose alors

/abf(t) dt = lim /z F(8)dt

déf b

encore notée f(t)dte.
[a.b]
On peut aussi introduire le reste d’intégrale convergente

z—b—

/bf(t)dt—>0

Remarque L’intégrale converge si, et seulement si, ’aire hachurée converge quand x — b~

4 bcR /

SH
v
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dt
V112
11 s’agit d’une intégrale impropre en la borne 1 (i.e. d’une intégrale sur [0, 1])
Puisque

1
Exemple Etude de /
0

. . T
larcsin t]; = arcsinz —— —

Toodt
/0 \/1—t2_ z—1- 2

dt

1

C e o . s

Ainsi I’intégrale impropre / converge et vaut 7"
0

j
~
(&)

On peut aussi procéder a un calcul plus immédiat assurant directement la convergence

/1 @ / e _ [arcsint], = T
0o V1—1t2 [0,1] V1 —t2 0 2

11.3.1.2 Intégration sur |a, b]

Soita €e RU{—oco}etb e Raveca < b.
Définition
Soit f : ]a,b] — K continue par morceaux avec a € RU {—oo} etb € R.

r—at.
On pose alors

b b
[ war / F(#)dt = Tim /x F(t)dt

z—a™t

et on peut introduire le reste d’intégrale convergente

/azf(t)dt—>0

z—at

b
On dit que I’intégrale de f sur |a, b] converge si I’intégrale partielle / f(t) dt converge quand

Lt
Exemple Etude de / —.
Vit

0
L’intégrale est impropre en la borne 0.
La fonction t — 1/+/¢ est définie et continue par morceaux sur |0, 1].

bat 1
— = |2Vt| =2-2 2
| =P = ovE

1
donc I’intégrale impropre / — converge et
0

Vit
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Lt
Exemple Etude de / i
0
L’intégrale est impropre en la borne 0.

La fonction ¢ — 1/t est définie et continue par morceaux sur |0, 1]

Lt
—=—-—lnz —— +0

x t z—0t

1
dt
donc I'intégrale impropre / 7 diverge.
0

Pour la fonction inverse, il y a trop d’espace entre la courbe et 1’axe des ordonnées pour que 1’intégrale
converge, cette fonction tend trop rapidement vers +o0o en 0.

A A

v

v

11.3.1.3 Lien avec une éventuelle intégration sur [a, b]

b
Lanotation | f(¢)dt peut étre ambigué dans le cas o f est définie et continue par morceaux sur [a, b].

a
Cependant, il n’en est rien en vertu du résultat suivant.

Proposition
Si f : [a,b] — K continue par morceaux alors

/:f(t)dt—>/abf(t)dt

z—b~

ou I’intégrale limite est comprise au sens de I’intégration sur un segment

dém. :
La fonction f est continue par morceaux sur le segment [a,b], elle y est donc bornée par un certain

M € RT.On aalors
b x b
/ f(t)dt—/ £t dt / Ft)dt

/abf(t)dt—/;f(t)dt </:Mdt=M(b—x)—>0

r—+00
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O

Définition

Lorsqu’une fonction f est définie et continue par morceaux sur un segment [a, b] on dit encore
que son intégrale converge et I’on a

f)dt= fit)ydt = flt)yde

[a,b] [a,b] Ja,b]

Cette valeur commune est celle désignée par
b
[ s
a

Remarque Soit f : [a,b] — K continue. Si f(t) —— ¢ € K alors on peut prolonger f par continuité
t—b—

en b. La fonction ainsi obtenue étant alors continue sur [a, b, on peut affirmer que 'intégrale sur [a, b]
converge et vaut I’intégrale sur [a, b]. On dit alors que I’intégrale est faussement impropre en b.

/2 .
sint
Exemple Etude de / % dt.
0

L’intégrale converge car faussement impropre en 0 puisque
sint
— 1

t t—o0t

11.3.2 Intégrale sur un intervalle ouvert
Définition
Soit f : ]a,b] — K continue par morceaux avec a € RU {—oco} etb € RU {400}.

On dit que I'intégrale de f sur ]a, b[ converge si, pour ¢ € ]a, b, les intégrales de f sur ]a, ] et
sur [c, b[ convergent. On pose alors

I e
/]a,b[ 4t J1a,c] [e,b]

/abf(t)dt:/:f(t)dt—l—/cbf(t)dt

Remarque Ni la notion, ni la valeur de I’intégrale ne dépendent du choix de ¢ € ]a, b|.

ou encore

Remarque Si f : [a,b] — K est continue par morceaux, la convergence et la valeur des intégrales

b
f(t)dtet / f(t) dt sont les mémes et encore une fois la notation / f(t) dt ne crée pas
a,b[ la,b] a

]
d’ambiguité.
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Exemple Etude de / T _dt
u .
P oo 1422

1
La fonction ¢t — T3 est définie et continue par morceaux sur R.
R =]—00,0] U [0, +00]

*d d
% _ arctanz —— © donc —— converge et vaut T
0 1+ t2 z—+oo 2 [0,4-00[ 1+ t2 2
O de T d T
—— = —arctan(z) —— — donc ——— converge et vaut —.
T ]. =+ t2 T—r—00 2 ]—oo,O] ]. —+ t2 2
400
Par suite / m converge et
— 00

I
3

/+°° dt
oo 142

Exemple Etude de / tdt.

R
La fonction ¢ — t est définie et continue par morceaux sur R.
R =]—00,0] U [0, +00|

¥ 1
/ tdt = —2> ——— 400 donc / t dt diverge puis / t dt aussi.
0 2 ztoo [0,400] R

x
Attention : Ici / tdt = 0 ——— 0. On n’aurait pu vouloir poser / t dt = 0 mais cela n’est pas
- R

r—+00

xr
conforme a la définition. .
xr

1
En fait, on peut aussi remarquer / tdt =z + 5 —+—+ 400 et cette fois-ci / tdt n’a plus de
T—+00

R

—T

sens.
Pour cette raison, la convergence d’une ’intégrale sur |a, b s’étudie en la coupant en deux et non en
étudiant conjointement les deux bornes.

11.3.3 Propriétés

Les propriétés calculatoires de linéarité, de positivité et de conjugaison présentées pour les intégrales
sur [a, +o0[ restent vraies pour une intégration sur un intervalle I quelconque et se démontrent par des
procédés analogues.

Théoreme
L’ensemble des fonctions continues par morceaux de I vers K dont I’intégrale converge est

un sous-espace vectoriel de ’espace Cgm(I ,KK) et I’application f / f(t) dt y définit une
I

forme linéaire.

Théoreme
Pour f : I — R continue par morceaux.

Sif}Oalors/f(t)dt}O.
I
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Théoreme
Pour f : I — R continue

Sif>0etsi / f(t)dt = 0 alors f est la fonction nulle.
I

11.3.4 Relation de Chasles

Soit f : I — C est continue par morceaux telle que / f converge.
I

Pour a < b € R des éléments ou des extrémités de I, la théorie qui précéde permet de donner un sens a

/ab Ft)dt

en tant qu’intégrale convergente de f sur [a,b], |a,b], [a,b] ou ]a, b selon les possibilités. Si plusieurs
interprétations sont possibles, celles-ci se correspondent. On pose encore

/baf(t)dt:—/abf(t)dtet /aaf(t)dt:O

On peut alors énoncer le résultat suivant

Théoreme
Soit f : I — C continue par morceaux telle que / f converge.

I
Pour tous a, b, ¢ éléments ou extrémités de I, on a

/abf(t)dt:/acf(t)dt—i—/cbf(t)dt

avec convergence des intégrales engagées.

dém. :
11 suffit d’étudier tous les cas de figures possibles. ..

O
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11.4 Intégrabilité sur un intervalle quelconque
11.4.1 Cas des fonctions positives

Théoréme
Soit f : I — R continue par morceaux et positive.
On a équivalence entre :

@) / f converge;
I

8
(i) IM € R,V [a, B] c],/ f< M.

»
!

v

1= }O,Jroo[ « B

dém. :
Notons a < b € R les extrémités debI .

(i) = (ii) Supposons que / f= / f converge. Pour tout o, 8] C I,
I a

/abf/aaf+/jf+/;f>/jf

(i1) = (i) Supposons (ii)
T
Cas I = [a,b] : I'intégrale partielle / f est croissante sur [a, b[ et majorée par M donc converge en b™.
Ainsi f converge.
[a,b]

Cas I =]a,b] : c’est analogue
Cas I =]a, b[ : on découpe I'intervalle en ¢ € ]a, b].

O

Corollaire
Soit f, g : I — R continues par morceaux telles que 0 < f < g.

Si / g converge alors / f aussi.
I

Si/fdiverge alors/g aussi.
I I
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11.4.2 Intégrabilité

Définition

On dit qu’'une fonction f : I — K continue par morceaux est intégrable sur I si I’intégrale

/ |7 (#)| dt converge. On dit encore que I’intégrale / f(t) dt est absolument convergente.
I I

Exemple Si f : [a,b] — K est continue par morceaux alors f est intégrable sur [a, b] mais aussi sur

la, b], [b, a] et ]a, b].

Théoreme

/If’</llf|

Si f : I — K continue par morceaux est intégrable alors I’intégrale / f converge et
T

dém. :

Cas f a valeurs positives : C’est immédiat par définition.
Cas f a valeurs réelles :

On pose fT = sup(f,0) et f~ = sup(—f,0).

Les fonctions f, f~ : I — R™ sont continues par morceaux et vérifient f = f+ — f~.

Onaaussi |[f| = f" + f doncO < fT, f~ <|f|.

Par comparaison de fonctions positives, les intégrales [ f™ et [ f~
I I

I’intégrale / f converge aussi.

I
Cas f a valeurs complexes
On écrit f = Ref + ¢Imf.
Ref,Imf : I — R sont continues par morceaux.

convergent puis, par opérations,

Puisque |Ref|, [Imf| < |f]|, on a, par comparaison de fonctions positives, / |Ref| et / |Im f | convergent
I I

donc / Ref et / Imf convergent puis par opérations / f aussi.
I T I
Démontrons maintenant 1’inégalité
’ / f‘ < / |1
I I

Notons a < b € R les extrémités de I.
Posons ¢ € Ja, b]
Pour x € Ja,c] ety € [c, b,

[o< [
/mcf+/cyf‘</;|f|+/cy|f
‘/]a,c]”/cyf <[ e[

donne

A la limite quand z — a™
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puis quand y — b~ , on obtient

/,f‘ < [

ce qui donne

O
Bilan :Pour une fonction réelle ou complexe

f intégrable = / f converge
I
Pour une fonction positive, f = |f| donc
f intégrable < / f convergence
I

Plus généralement, pour une fonction de signe constant, il y a équivalence.

Attention : Il se peut que / f converge et / | f| diverge. Dans ce cas, on dit que I’intégrale / fest
I I I

semi-convergente.

11.4.3 Opérations
11.4.3.1 Sur les fonctions

Théoreme
Soit f, g : I — K continues par morceaux et A, u € K.
Si f et g sont intégrables alors A f + pg I’est aussi.

dém. :
Ona
A+ pgl < [A[f]+ |pllgl

Or / |£(®)] dt et / |g(t)| dt convergent donc, par opérations / [A|[f(@)] + || lg(t)| dt converge.
I I I

Par comparaison de fonctions positives, / [Af + pg| converge et donc Af + g est intégrable.
I

O
Corollaire
L’ensemble Ll(I , K) formé des fonctions de I vers K continues par morceaux et intégrable

et un sous-espace vectoriel de I’espace Cgm(l ,K) et I’application f — / f(t) dt définit une
I

forme linéaire sur L' (I, K).

Remarque En revanche, on ne peut rien dire quant au produit de deux fonctions intégrables.
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1 1 1
Par exemple 1/+/¢ est intégrable sur ]0, 1] alors que — = — x —- ne I’est pas.

t t WVt

Cependant, si f2 et g2 sont intégrables sur I alors le produit fg I’est aussi car

fol < 5 (112 + 1o

11.4.3.2 Sur Pintervalle

Proposition

Soit f : I — K continue par morceaux et .J un intervalle inclus dans 1.
Si f estintégrable sur I alors f est intégrable sur J.

dém. :
Pour tout [, 3] C J,ona

B
/ |f(t)|dt</|f(t)|dt:M
o I
et donc / |f(t)| dt converge.
J

Proposition

Soit f : ]a,b] — K continue par morceaux.
f est intégrable sur ]a, b si, et seulement si, f est intégrable sur |a, c] et sur [c, b].

dém. :
Car par définition

/ |f(¢)| dt converge si, et seulement si, /
la,b[

Ja.c]

|f(t)] dt et / |f(t)| dt convergent

feb]

|
11.4.4 Intégrabilité par comparaison

11.4.4.1 Domination

Théoréme
Soit f : I — Kety: I — R continues par morceaux.
Si
Vit e I, |f(t)| < p(t) avec ¢ intégrable

alors  est intégrable.

dém. :

Par comparaison de fonctions positives, on obtient la convergence de / |f ()] dt.
I

(]

Exemple Si I est un intervalle borné et si f : I — K est continue par morceaux et bornée alors f est
intégrable sur /.
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11.4.4.2 Comparaison asymptotique

Théoreme
Soit f, g : [a,b] = C continues par morceaux avec a € Retb € RU {+o0}.
Si f(t) o O (g(t)) etsi g est intégrable alors f est intégrable.

t—

Corollaire
Si f(t) = o(g(t))avec g intégrable alors f I’est aussi.
t—b—

Si f(t) ~ g(t)alors f estintégrable si, et seulement si, g I’est.
t—b—

Remarque On peut énoncer des résultats analogues pour une étude d’intégrabilité sur |a, b].

Exemple Soit f, g : [a,b[ — R™ continues par morceaux.

Si f(t) > g(t) alors les intégrales f(t)dtet / ¢(t) dt ont méme nature.
B [a,b] [a,b]

t—

11.4.5 Intégrales de Riemann
11.4.5.1 Au voisinage de I’infini

Rappelons le résultat suivant.

Théoréme

+oo
/ Y converge si, et seulement si, o > 1
1

Par considération de symétrie, on a aussi

Théoréeme

-1
— converge si, et seulement si, o > 1
oo [t*

11.4.5.2 Au voisinage d’une extrémité finie

Théoreme
Soit a < b deux réels et « € R

b
d . .
/ (tia converge si, et seulement si, o < 1
a

—a)

dém. :
dt

b
Etudede/ e
a (tfa)
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L’intégrale est impropre en a.
Casa=1

t—a r—at

b
/ e _ [In(t — a)]i =In(b—a)—In(z —a) —— +

: boar
et donc I'intégrale / i a diverge.
. t—a

Casa # 1
On a

t—a)®

1—

/b dt _{ 1 11" LIG) " sia<1
- —a

v 1-a(t-a)*t], avar +00 sia>1

b

: d . .
et donc I’'intégrale / W converge si, et seulement si, o < 1.
—a
a
]

Exemple / bt / b _di t
X —, ——— convergent.
P 0 \/i 0 £0:999 s

Lt tat .
— et — divergent.
ot ot

1 1
dt . .
Exemple Pour )\ € R, / thdt = / ey converge si, et seulement si, A > —1.
0 0

+oo
Exemple L’intégrale / = diverge pour toute valeur du réel a.
0
Théoreme
Soit @ < b deux réels et o« € R

b

t . .

/ ———— converge si, et seulement si, a < 1
a (b - t)a

dém. :
C’est une configuration symétrique de la précédente.
]

1 1
Exemple / dt converge alors que / i diverge
Pe )y vi—i £ Ry ge
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11.4.6 En pratique
11.4.6.1 Intégrabilité sur [a, +oo[ ou |—oo, a]

Les démarches d’intégrabilité déja vu sur [a, +00] se transposent & |—oo, a] en écrivant |¢|“ au lieu de t*
lorsque I’exposant « est non entier.
+o0 5
Exemple Nature de / e dt.
— 00
La fonction f : ¢t — e" est définie et continue par morceaux sur | —oo, +00|.

Onat?f(t) P 0 donc f est intégrable sur [0, +o00|
Onat?f(t) P 0 donc f est intégrable sur |—oo, 0].
——00

Finalement f est intégrable sur R.

11.4.6.2 Intégrabilité sur |0, a|

dt.La fonction f : ¢ + t/(e’ — 1) est définie et continue par

+oo
Exemple Nature de / .

0 et —1
morceaux sur |0, +ool.

Ona
t t —1
et —1tsot+t
La fonction est prolongeable par continuité et I’intégrale est faussement impropre en 0.

On a aussi

t _
t? x ~ et —— 0
et — 1 t—+ t—+4o00

et donc f est intégrable sur [1, +00[.
Finalement, f est intégrable sur 0, +-00[.

1
t

Exemple Nature de / ﬂdt.

0

Vit
La fonction f : ¢ — cos(t)/+/t est définie et continue par morceaux sur |0, 1].
Ona f(t) —— +oo mais ce n’est en rien décisif.
t—0

Cependant

[y ~ 1Vt

t—0+t

1
5 ¢
ort — 1/+/t est intégrable sur ]0,1] (o = 1/2 < 1) donc f est intégrable sur |0, 1] et/ % dt
0

converge.

1
Exemple Nature de / Intdt.

0
La fonction f : ¢ — Int est définie et continue par morceaux sur |0, 1].

VEf(t) —> 0donc f(t) = (1/\/£>.

o
t——+o0 t—+o0

1
Ort — 1/v/t estintégrable sur |0, 1] (o = 1/2 < 1) donc f est intégrable sur ]0, 1] et / Intdt
converge. 0
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1
Int
Exemple Nature de / HT dt.

0
La fonction f : t — In(t)/t est définie et continue par morceaux sur |0, 1].
Quand t — 0T, tf(t) — —o0.

Il existe a > 0 tel que sur |0, a], f(t) < —1/t < 0.

1
. . . _y Int .
Par comparaison de fonctions négatives, 1’intégrale / e dt diverge.
0

Bilan :Pour f :]0,a] — C continue par morceaux :
-si f(t) = ¢ € C alors f est intégrable sur |0, a] ;

-si f(t) t—%‘*’ C/t* alors f est intégrable sur |0, a] si, et seulement si, o« < 1;

- g’il existe « < 1 vérifiant t* f (¢) — 0 alors f est intégrable sur |0, a] ;
t—0

-sitf(t) — ¢ # 0 alors I'intégrale de f sur |0, a] diverge.
t—0

11.4.6.3 Intégration ]a,b] ou [a, ]

On transpose les démarches ci-dessus. Il pourra étre pertinent de se ramener en O par translation/symétrie
de la variable pour mieux percevoir les ordres de grandeur.

dt
V11—t
La fonction f : t — 1/4/1 — t3 est définie et continue par morceaux sur [0, 1].
Quandt —17,t=1—havech — 0T.

1
Exemple Nature de /
0

_ 3

-1

1
Ort+— 1/4/1 — t est intégrable sur [0, 1] donc f aussi et /1 dt converge
— ur [0, u ‘ verge.
Vv g Nviprs g

dt
2 -1
La fonction f : t + 1/(t* — 1) est définie et continue par morceaux par morceaux sur |1, +00[.
Quandt — 17, t =1+ havech — 0%,

+oo
Exemple Nature de /
1

1
Ort P n’est pas intégrable sur |1, 2] donc f non plus.

A fortiori, f n’est pas intégrable sur |1, 4+00].

—+o0
Puisque f est de signe constant, on peut affirmer que 1’intégrale / o diverge.
L _

t—1

n

dt.

1
Exemple Etude de /
0
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La fonction f : ¢ — (¢ — 1)/Int est définie et continue par morceaux sur |0, 0] =]0,1/2] U [1/2,1].
D’une part

(t) t—0+t 0
donc f est intégrable sur ]0,1/2].
D’autre part
) —1
t—1—

donc f est intégrable sur [1/2, 1].
1
t—1
Finalement f est intégrable sur |0, 1] et / TS dt converge.
0 n

Elle vaut In 2, mais c’est une longue histoire. . .

11.5 Calcul d’intégrales impropres

11.5.1 Par les intégrales partielles ou détermination de primitive
b
Pour justifier I’existence tout en calculant / f)de = f(t) dt on peut
a la,b]
- calculer I’intégrale partielle / f(t) dt puis passer a la limite quand x — b,

- introduire une primitive F' de f (supposée continue) et exploiter f(@®)dt = [F] Z_ .
[a,b]

b
Pour / f)dt = f(t) dt on peut
a la,b]

y
- calculer / f(t) dt puis passer a la limite quand z — at ety — b,

- introduire une primitive F' de f et exploiter f(t)dt = [F] Z;
la,b
oo dt
Exemple Calcul de .
L tt+1)
On peut justifier I’existence a priori de I’intégrale par I’argument d’intégrabilité

1 1
t(t + 1) t—+oo £2
Ce qui suit va aussi justifier I’existence tout en donnant la valeur

On calcule I'intégrale grace a la décomposition en éléments simples
1 1 1

tt+1) t t+1

lere méthode :

Toode T dt Todt
/ 7:/ — = —— =Inz—-ln(z+1)+In2 —— 1n2
1 t(t"‘l) 1 t 1 t+1 T——+00

2éme méthode :

400 +o0 +oo
/ dt :/ 1_ 1 dt = 1HL :—ln1:1112
L te+1) t o t+1 t+1], 2
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Le calcul direct par primitive est souvent plus rapide, mais permet moins de liberté qu’un calcul mené
par les intégrales partielles.

11.5.2 Changement de variable
Théoréme

Soit ¢ : ]a,b[ — ]a, B[ une bijection de classe C* croissante et f : ]a, 5[ — K une fonction
continue par morceaux. On a équivalence entre :

B
@) / f(w) du converge ;
(ii) / fp t) dt converge.

De plus, si tel est le cas
b B
[ remeoa= [ rwd

dém. : 5
(i) = (ii) Supposons la convergence de / f(u) du.
Soit ¢ € ]a, b[ et v = ¢(c). Pour z € [, bc[l, ona

/ Pl = / ™ wdu

Puisque ¢ est une bijection croissante

et donc

rz—b—

/ fly dtﬁﬁ/vﬁf(u)du

b B
Lintégrale / £ (o(t)) ¢ (t) dt converge et vaut / f(w) du.
c s

c Y
De méme, I’intégrale / I (o(t)) ¢ (t) dt converge et vaut / f(u)du
a «

b B
Finalement / f (o(t)) ¢ (t) dt converge et vaut / f(w) du.

(i1) = (i) Méme démarche en exploitant cp_l.
O

Remarque Si ¢ : Ja, b[ — o, B[ est une bijection de classe C' décroissante, on a un résultat analogue

b «@
'(t) dt = uw) du
/a F((t)) @' (1)t /ﬁ f(w)
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Remarque En appliquant aussi ce résultat avec | f| et en exploitant que ¢’ est de signe constant, on
obtient aussi

u— f(¢(u)) ¢ (u) intégrable sur ]a, b[ si, et seulement si, u — f(u) est intégrable sur |, 3]

400 ef\/f
o Vi

La fonction f : t — e~ V?/\/1 est définie et continue par morceaux sur 10, 4+o0].

Réalisons le changement de variable u = Vit
La fonction ¢ ~— /¢ réalise une bijection de classe C' de ]0, +o0[ vers |0, +o0]

Exemple Calcul de dt.

u:\/i,t:uz,dt:QUdu

et donc

+oc0 e_\/{ +o00
—dt = / 2e " du
0 \/E 0

Puisque I’intégrale obtenue par le changement de variable est connue convergente, il en est de méme de
I’intégrale initiale et donc
400 ef\/i

S dt=[-2e%T* =2
AN

0

11.5.3 Intégration par parties

Théoréeme
Soit I un intervalle d’extrémités a < b € Ret u,v : I — K de classe C.
Si le produit uv converge en a™ et b~ alors les intégrales

/b o' (t)v(t) dt et /b w(t)v' () dt

ont méme nature et en cas de convergence

b b
/ o (H)o(t) dt = [uv]’, — / u(t)' (t)

dém. :
La fonction uv est de classe C' avec (uv) = u'v 4 uv’.
Si uv converge en a* et b alors, il y a convergence de 1’intégrale

b
/ o (t)v(t) + u(t)v'(t) dt

et

b
/ o' (£)o(t) + u(t)' (£) dt = [uv]’
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Si ’une des intégrales
b b
/ W ()o(t) dt ou / w(t)! (1) dt

alors, par opérations, 1’autre aussi et

b b
/ W (#)o(t) dE+ / w(t) (t) dt = [uo]"

O
+oo
Exemple Soit n € N. Calcul de I,, = / t"e tdt.
0

fn i t +> t"e~" est définie et continue par morceaux sur [0, +00].

Quand t — 400, t*f,,(t) — 0 donc I'intégrale définissant I,, converge.

Posons u/(t) = e *etv(t) = t" avec u(t) = —e et v/ (t) = nt" L.

Les fonctions u et v sont de classe C! et uv possede des limites finies en 0 et +oo.
Par intégration par parties

+o0 n +oo
—t —¢]+o0 —1(_ .t
I, = / theTtdt = [—t"eT!] T — / nt"(—e ") dt
0 0
avec convergence de I’intégrale introduite en second membre.

+oo
Ainsi I,, = nl,_; puis, sachant I, = / e~ tdt = 1, on conclut
0

I, =n!

In(t)
(141)2
f:t+In(t)/(1+t)? est définie et continue par morceaux sur |0, 1].

Vif(t) ~ Vtln(t) =0

t—0t

1
Exemple Calcul de / dt.
0

1
In(¢
donc f intégrable sur 0, 1] et donc I'intégrale / (11(2)2 dt converge.
0

Posons v/ (t) = 1/(1 +t)? et v(t) = In(t) avec u(t) = —1/(1 +t) et v/(t) = 1/t.

Les fonctions u et v sont de classe C' mais le produit uv ne posséde pas une limite finie en 0.

On ne peut procéder a cette intégration par parties. ..l y a cependant deux solutions
lere méthode : on réalise I’intégration par parties sur les intégrales partielles

Pour z € ]0, 1]
/1 Int Int ] /1 dt
—dt=|———| + —_—
. (141)? 1+t), J, tit+1)
et donc .
Int Inz 1
dt = Int —In(t+1
puis

1
Int rlnx
———dt=———+1In(1 —In2 - —In2
/x (1+1¢)2 1+x+n( +e)-In aa0
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donc

1
1
/ It e
o (1112

2éme méthode : on choisit u(t) = t/(1 + t) qui est aussi convenable et qui s’annulant en 0, permet
d’avoir le produit uv convergeant en 0

1 1 1
/ Int dt:{tlnt} B dt _ in9
o (141)? TL+t]y, Jo t+1

11.6 Musculation

11.6.1 Intégrales de Bertrand

Théoreme
oo gt
Pour o, 5 € R, / ———— converge si, et seulement si, « > lou(a=1etg > 1).
. te(Int)p
dém. :
La fonction f : t — 1/t*(Int)? est définie, continue et positive sur [e, +-00[.
Casa <1

tl—a

tf(t) =

(Int)8 t—+oo oo

donc pour ¢ assez grand
ft)=1/t>0

+o0 +o0 dt
Or — diverge donc par comparaison de fonctions positives, ————— diverge.
»/e /e te(lnt)?
Casa>1:
Sous cas inutile : 5 > 0
Ona

IO 52 0
donc f est intégrable sur [e, +o0o[ car f(t) = o(1/t*) avec a > 1.
Sous cas général :
On introduit m € |1, af, on a
1

t"f(t) = 0
®) te=m(Int)B t—+oo

donc f est intégrable sur [e, +oo[ car f(t) = o(1/t™) avec m > 1.
Casa=1

/32 dt B /lnx %
o t(nt)? u=mt f; WP

converge quand © — 400 si, et seulement si, 5 > 1.
O

http://mp.cpgedupuydelome.fr 300 @O0



CHAPITRE 11. INTEGRATION SUR UN INTERVALLE QUELCONQUE

11.6.2 L’intégrale de Dirichlet

Proposition

+00o o
. sint
L’intégrale / - dt converge.
0

dém. : .
. sint L .
La fonction ¢ — — est définie et continue par morceaux sur |0, 00|

. S sint
Cette fonction se prolonge par continuité en 0 donc / —— dt converge.

10,1]
sint

Etudions / —dt
1400 1
Soit A > 1. Par intégration par parties

/A Smtdt [—cost}A_/A costdt
Lt t |, Lt

A A cost +o0 cost
cos L 0et / cos a / cos a
A 1 t2 A—+o0 1 t2

car cette derniere intégrale converge puisque
cost 1
= = of=
12 to+too 12
O

Remarque Par une intégration par parties judicieuse, on montre

400 1 +oo
t 1-— t
/ sin df — / cos q
0 t 0 t2

En exploitant 1 — cost = 2sin”(¢/2) et le changement de variable u = ¢/2

+0oo +oo 1.2
sint sin” u
[ty [T,
0 13 0 U

Quand A — +o0,

Proposition

. sint L
La fonction ¢ — —~ n’est pas intégrable sur |0, +-o00[

dém. :

+o0
Montrons que /
0

nn \smt| / |51nt| / sinu
dt = dt = du
| >/ >

/Tr sinu 4 >/”sinud 2
o ut(k—1m vz o km iy
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donc .
"l sint 2 1
—|dt > — - — +00
/0 t “r Z k
k=1
O
too sint T
Remarque On peut montrer que / — dt = 5 mais c’est une longue histoire. . .
0
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Chapitre 12

Comportement asymptotique de
sommes et d’intégrales

K désigne R ou C.
12.1 Comparaison série intégrale

12.1.1 Principe

Cas f décroissante :

\

v

n—1 n n+l n n+1

Onnil n n+1

[ rmar<so < [ Fdtefin1) < [ o< s

'Cralls f croissante : n; +1n
Cmar<sm< [ rndasm < [ < fo)

Théoreme
Soit f : [0, +oo[ — R continue par morceaux, décroissante et positive.

n
La série de terme général w,, = / f(t)dt — f(n) est convergente.
n—1

\ 4

dém. :
Puisque f est décroissante, on a

303
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fo< [ rade< 1)

et donc "

0<wn < f(n—1) = f(n)

La nature de Z (f(n—=1) = f(n)) est celle de la suite (f(n)).

Or la fonction f est décroissante et minorée, elle converge donc en +o0 et par conséquent, la suite (f(n))
aussi. Ainsi la série Z (f(n—1) = f(n)) converge et, par comparaison de séries a termes positifs, la

série de terme général w,, est convergente.
O

Remarque Cet énoncé signifie qu’il y a convergence des portions d’aire hachurée dans la figure
ci-dessous

N\

y=f(z)

v

Corollaire

+oo
Sous les hypotheses qui précédent, la série Z f(n) et I'intégrale impropre / f(t) dt sont
0

de méme nature.

dém. :
Puisque Z wy, converge, Z f(n)et Z f(t) dt sont de méme nature. Or

n>1 n>1/n1
n k n
S| fydi= / f(t)dt
1 Y k-1 0

+oo
Si I'intégrale / f(¢) dt converge alors la série Z f(n) converge.
0

n=1

—+o00 x
Si l’intégrale/ f(¢) dt diverge alors, puisque f est positive/ f@)de P +oo et donc Z f(n)
0 0 r——+00 o1
diverge.
O

Exemple Pour « > 0, la fonction ¢ — 1/t* est décroissante et I’on retrouve

1 . [T
E — converge si, et seulement si, — converge
ne 1 te

Remarque On peut aussi faire le lien entre la convergence des séries de Bertrand et celle des intégrales
de Bertrand.
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12.1.2 Reste d’une série de Riemann convergente

) 1
Pour o > 1, la série E — est convergente.
n
n>1
Donnons un équivalent de son reste de rang n.

1
La fonction ¢ — 7o oSt décroissante sur |0, +o00].
Pour k > 2,

/’““ dt _ 1 _ /’“ dt
dk' ta = ko = b1 ta

onc

R | N gt
e mel @
n+1 k=n+1 n
Quand N — +o0,

too g IX /+°° dt
< < -

avec convergence des intégrales engagées.
Or

/+°Odt_ 11 et/+°°dt 11
.t a—1ne-l ni1 t* a—1nol
donc par encadrement
SR
ke a—1no-l
k=n-+1
Exemple En particulier

e T
> ®mn

k=n+1

12.1.3 Sommes partielles d’une série de Riemann divergente

Pour o« < 1, 1a série Z nio‘ est divergente.
n>=1
Donnons un équivalent de sa somme partielle de rang n.
Casa = 1.
On sait déja :
n

Z%zlnn—l—’y—{—o(l)

k=1
CasO<a< 1.

La fonction ¢ +— o est décroissante sur |0, +-o0|.

/’““ dt 1 /k dt
koot kY T e e

En sommant
n

e 1 "dt
| a<Xwc<l
1 1 0
(avec convergence de I’intégrale de droite).
Or
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/" dt  nle t/”“ dt  nle
—_— c —_—
o t¢ l-«o 1 to l-«

donc par comparaison

n 1 ,nllfa
Z T 1-a
k=1
Casa < 0.
On écrit « = —f (avec B > 0 ) et on étudie

n 1 n
- B
D=2tk
k=1 k=1
La fonction - — 2 est croissante sur [0, 4+00].
k k+1

/ tﬁdtgkﬁg/ t7 dt

k k

-1
En sommant

n n n+1
/ tf’dtgzwg/ 8 dt
0 k=1 1

Or B+1 +1 B+1
n =+ n +

/ tPdt = 2 et/ 18 dt ~ =

0 s+1 p+1
donc par encadrement

n B+1 n 1 -«
S~ ey o~ T
k=1 B+ k=1 @
Exemple En particulier

— ~2n
k=1 vk
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12.2 Sommation des relations de comparaison
12.2.1 Cas de la convergence
Théoréme

Si w,, = o(vy,) alors la série E Uy, converge et

SERRTESR

k=n+1 k=n+1

Si u,, = O(vy,) alors la série Z u,, converge et

Si u,, ~ v, alors la série E u,, converge et

+oo +oo
D~ Y u

k=n-+1 k=n-+1

Soit E U, une série numérique et E v, une série a termes positifs convergente.

dém. :

Cas u,, = o(vp).

Par comparaison, la série Z uy, est absolument convergente.
Soite > 0. Il existe N € N tel que

VY = N, |u,| < elv,| = ev,

Pour k > n + 1, |ug| < vy, puis en sommant

—+oo +oo —+oo
g ug| < E luk| < e E Uk
k=n-+1 k=n+1 k=n-+1
Ainsi
—+oo —+oo
E U = 0 ( E Uk>
k=n-+1 k=n-+1

Cas u,, = O(vy,) : démarche analogue sachant

IM € RY AN € N,Vn > N, |u,| < M,

Cas u,, ~ vy,.

Par équivalence de séries a termes positifs, la série Z u, converge.
Ona

Up = Up + 0(Vy) = vy + Wy, avec wy, = o(vy,)

donc

—+oo +oo +oo +oo —+oo —+oo

E U = E Vg + g Wy = E Uk+0< E vk>~ g Vg
k=n+1 k=n+1 k=n+1 k=n+1 k=n-+1 k=n-+1
]

http://mp.cpgedupuydelome.fr 307

©@O00O



12.2. SOMMATION DES RELATIONS DE COMPARAISON

Attention : La suite (v,,) de référence doit étre positive ou, pour le moins, positive a partir d’un certain

rang.

Exemple Déterminons un équivalent simple de

Z k:2+1

k=n-+1
o) 1 1t§ 1 t érie A t itif te d
na -——n~-——5¢ — est une seric a termes positis convergente aonc
[E R K2 P g
k>1
—+o0
Z 21 Z k:2 ~ ﬁ
k=n+1 k=n+1

12.2.2 Cas de la divergence

Théoreme
Soit E U, une série numérique et E vy, une série a termes positifs divergente.
Siu, = o(vy,)alors

n n—-+o0o ( n)

Siu, = O(vy) alors

n—-+oo

Siu, ~ v, alors
n—-+oo

dém. :
n

Remarquons que E Vg —+> +o00 car E vy, est une série a termes positifs divergente.
n—r+00

k=0
Casu, = o(vp).
n—+oo

Soit € > 0. Il existe N € N vérifiant
Vn 2 N, |u,| < €lv,| = vy,
Pour n = N

N-1 n
> < 1) ST o
k=0 k=N

Or, puisque Z v — 400, il existe N’ € N tel que
k=0

n

o

k=N
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N-1 n
E Ul gEE VE

k=0 k=0
Pour n > max(NN, N'), on obtient

n n
OIS o
k=0 k=0

Yn > N,

Ainsi

n n

E Ul - o < E Uk>
n—-+oo

k=0 k=0

Casu, = O(v,):semblable.
n—-4oo

Casu, ~
n—-+oo
O

Attention : La suite (v,,) de référence doit étre positive ou, pour le moins, positive a partir d’un certain
rang.

vpronéeritu, = v, + o(vy).
n—-+oo

Exemple Etudions

On a

~J J—
n—|—\/ﬁn—>+oon

1 . cap o
Or E — est une série a termes positifs divergente donc
n

n 1 n

k

~Inn

T =

12.2.3 Théoreme de Césaro

Soit (uy,)n>1 une suite numérique convergeant vers £. On peut écrire

U, = L+o0(l)=~L+e,avece, =o0(1)

et alors 1 1
*(U1+"'+Un) :g_|_7(51_|_..._|_5n)
n n
Puisque &,, = o(1) avec Z 1 est une série a termes positifs divergente
n>0

n

> ek :o(él) = o(n)

k=1
Ainsi 1 1
ﬁ(ul+...+un):£+ ﬁo(n)zﬁJrO(l)%E
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Exemple Considérons la suite (u,,) donnée par
ug € 10, 7] etVn € N, upy1 = sin(uy,)
La suite (uy,) est bien définie et & valeurs dans |0, 7|
vV €]0,n[,sin(z) €10,1] C |0, 7|

La suite (u,,) est décroissante car
Upa1 = sin(uy,) < Uy,

La suite (u,,) est donc converge et sa limite ¢ vérifie

sin(¢) = ¢
Cette limite est £ = 0. Déterminons maintenant un équivalent de (uy,).
Ona L
1 _ i _ (Un — Unt1)(Un + Unt1) 3Un N 1
2 = 2 ~ 3
Upi1 U (Un 1) ud 3

Donc par le théoreme de Cesaro

1”2‘:1 1 1 L1 1) 1
ni\upy, o ou n\u? ud 3
et on en déduit
3
Up ~ ) —
n

12.2.4 Musculation développement asymptotique a trois termes de H,,

Etudions
n 1
H, = -
> :
k=1

On a déja vu
H, e Inn+ v+ o(1)
Approfondissons ce développement asymptotique. Posons

n

Ep = ——Inn—vy
k=1k

Nous allons exprimer ¢, comme le reste d’une série convergente.

1nn=§n:1nk—1n(k—1)=§n:—1n (“;)

k=2 k=2

ey (e (- 1))
= k k
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Puisque €,, — 0, on a

=B (-8) G (0) - Z o)

1 1 1
—4+n(l-=] ~ ——
n n ) n—+too  2n
1 PN i d
et Z oz est une série a termes positifs convergente donc

+oo +oo
1 1 1 1 1
— 1 1—— ~ N =

k=n+41

k=n-+1

puis enfin €, ~ 1/2n. Finalement
z": 1 Inn+~v+ L +o !
Pt k n—+4oco K 2n n

12.3 Intégration des relations de comparaison
12.3.1 Cas de la convergence sur [a, +00]

Théoreme

Soit f : [a,+oo[ — Ket g : [a, +0o[ — RT continues par morceaux.

On suppose que g est intégrable.
Si f(t) o (g(t)) alors f est intégrable et

[m fdt = o ([m o(t) dt)

Sif(t) = O(g(t)) alors f est intégrable et

t—+
/:OO fdt = 0 (/;OO g(t) dt)

Si f(t) ~ g(¢)alors f estintégrable et

t—+
/:mf(t)dt ~ /:wg(t)dt

r——+00

t——+o0

dém. :
Dans les trois cas, la fonction f est évidemment intégrable
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Cas f(¢) t_iooo(g(t)).
Soite > 0. Il existe A € [a, +00] tel que

vt € [A, +ool, |[f(t) < elg(t)] < eg(t)
et alors, pour z > A

/:Oof(t)dt‘ </:w|f(t)| dtg/mgg(t)dt:g/:wg(t)dt

x

/x e at = o ( L o dt)

Cas f(t) = O (g(t)). Démarche analogue avec

t——+oo

Ainsi

3A € [a,+oo[,IM € RT Vt € [A, +oo[, |f(t)] < Mg(t)

Cas f(t) oo g(t). On peut écrire

ft) g(t) +0(g(t))

t—+oo

puis, avec convergence des intégrales écrites

o F(t)dt = o g(t)dt +o = gltydt) ~ = g(t)dt
x x x ‘I;_>+OO x
O

Attention : La fonction de référence g est positive, ou pour le moins, au voisinage de +oco.
Exemple Déterminons un équivalent quand x — +oco de
/+ ot
. tB+1

1
avec -3 > 0 et intégrable sur [1,+o0]

Puisque
1

3+ 1 t—too £3
Par intégration de relation de comparaison, on obtient

oot feeqr [ o177 1
" 341 a—+00 - B3 22 22

xT

Exemple Déterminons un équivalent quand z — +oo du terme

+oo —t
/ Ca
= t

L’intégrale étudiée est convergente puisque t2e "/t ﬁ 0.
—r+00
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Procédons 2 une intégration par parties avec u(t) = —e ‘et v(t) = 1/t.
Les fonctions u et v sont de classe C! et le produit uv converge en +00. On a donc

+oo —t —x +oo —t
e e e
[T [T
= t T - t
e? et
= o =—
12 t—+oo ( t >
donc, par intégration de relation de comparaison
+oo —t +oo —t
e e
[ ([ )
e 1 @ t

“+oo —t —x
(&3 (&
= t z—+o00 I

12.3.2 Cas de la divergence sur [a, +0]

et finalement

Théoreme
Soit f : [a, +o0o[ — Ket g : [a, +0o] — R™ continues par morceaux.
On suppose que g n’est pas intégrable.

Si f(t) = o(g(t)) alors
/; fdt = o (/;g(o dt>

Sif(t) = O(g(t)) alors

ftoc
/j fdt = 0 (/ g(t) dt)

/ fde ~ /;g(t) dt

t—+o0

Si f(t) t_;jroog(t) alors

dém. :

Puisque la fonction g est positive, mais non intégrable, on a
xT

g(8) dt T Fo0

Cas £(t), =_o(a(t)).
Soit e > 0. Il existe A € [a, +oo] tel que
Vi € [A, ool [f(t)] < elg(t)] < eg(t)

et alors, pour z > A
T x A T
/ f(t)dt‘é [lswlas [Cliolae [ goa

A
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A x
Puisque le terme / | f(¢)| dt est constant et que / g(t) dt tend vers Uinfini, il existe A" € [a, +o0] tel

que
A x
Ve s A / )] df<e / 9(t)] dt

et alors, pour tout x > max(A, A)

/:f(t)dt’ <5/:g(t)dt+5/:g(t)dt<25/:g(t)dt
/azf(t) at = o <[g(t) dt)

Cas f(t) e O (g(t)). Démarche analogue.

Ainsi

Cas f(t) oo g(t). On peut écrire

f@), = _g(t)+o(g(t)

t—+4o00

/:f(t)dtz/:g(t>dt+o</amg(t)dt) x_:\jroo/;g(t)dt
O

Exemple Soit f : [0, +00[ — R continue admettant une limite ¢ en +oo.
On peut écrire f(t) s £+ o(1) et donc, par intégration de relation de comparaison
—+00

puis

/()I f@)dt = Lz + o(x)

Exemple Déterminons un équivalent quand x — +oo du terme
¥ Int
/ nt g
1 t+1

Int Int Int S 0et intéorabl [1, 400
7~ —avec — et non intégrable sur
t+1totoo t t = 8 e

On a

Par intégration de relation de comparaison, on obtient

/ LLIPTIY /m—tdt L n2)?
S 2
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12.3.3 Enoncé général
Théoréme

Soita < baveca € Retb € RU {+00}.
Soit f : [a,b] — Ketg : [a,b] — R™ continues par morceaux vérifiant

Si g est intégrable sur [a, b[ alors f aussi

[, = o [ o)

Si g n’est pas intégrale sur [a, b[ alors

/: ftyat = o ([g(t) dt>

dém. :
Analogue aux précédentes.
]

Remarque Cet énoncé se transpose aux situations f(z) = O (g(x))et f(z) ~ g(x).
z—b— r—b—

Cet énoncé se transpose aux intégrales sur ]a, b].

Exemple On retrouve la formule permettant d’intégrer les développements limités

/I o((t—a)") dt =o((z—a)"*")

Exemple Si f : [0, 1] — R est continue alors f(¢) - f£(0) + o(1) et donc
t—

/Ow f (@) dtm =, f(0)z + o(x)

—

Exemple Déterminons un équivalent quand = — 0™ de
1 .t
e

| S
sz Ut

t
e 1 1 . .
— ~ —ett+— — estpositive et non intégrable sur ]0, 1]
t t—ot+ t 4

donc, par intégration de relation de comparaison

1 1 1dt
/ e—dtN — =Inx
Lt .t
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12.3.4 Musculation

Soit f : [0, +00[ — R une fonction de classe C* ne s’annulant pas et vérifiant

of'(a)
f@) e O7 1

/O et

o+ 0 (2)

Par intégration de relation de comparaison

Etudions I’existence de

On a

In(f(z)) =In(z®) +o(lnx) ~ In(z%)

T—r+00

On ne peut cependant pas aller jusqu’a affirmer f(x) o x%...mais I’on va néanmoins déterminer la
Tr—r+00

+oo
nature de I’intégrale / f@)dte.

0
Casa < 1.0na

In(zf(z)) = In(z) + In(f(x)) e (1-—a)lnx —— 40

[e'e) r—r+00
Ainsi z f () ——— +o00 et donc
r—r+00

+oo
/ f(t) dt diverge
0
Cas > 1. On introduit p € |1, af

In(z” f(z)) = pn(z) + In(f(z)) ~ (p—a)lnz ——m —oo

T—r+00 Tr—r+00

et donc

ce qui assure que f est intégrable sur [0, +o0].
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Chapitre 13

Familles sommables

13.1 Ensembles dénombrables

13.1.1 Définition

Définition
] Un ensemble est dit dénombrable s’il est en bijection avec N (dans un sens ou dans 1’autre).

Exemple N* est dénombrable.
11 suffit de considérer la bijection s : N — N* donnée par s(n) = n + 1.

Exemple 7Z est dénombrable.
11 suffit de considérer la bijection 6 : N — Z donnée par

[ n/2 si n est pair
o(n) = { —(n+1)/2 sinon

pour laquelle

sn)y[0 -1 1 —2 2 -3

Exemple N2 est dénombrable.
11 suffit de considérer la bijection 7 : N> — N numérotant les éléments de N* comme illustré ci-dessous

d
_?0 '1 "'~~._.3 '--..'6 10
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On peut aussi construire une bijection de N vers N* en posant

o(k,0) =2%(20+1)

I7 o4 .28 .56

5 .10 20 40

.3 ‘6 .1 2 .24

Remarque Dire qu’un ensemble est dénombrable signifie qu’il est possible de numéroter de fagon
exhaustive ses éléments.

Définition
Si E est un ensemble dénombrable et si ¢ : N — E est une application bijective, on dit que la
suite (2, )nen définie par x,, = ¢(n) est une énumération des éléments de F.

13.1.2 Propriétés

Théoreme
] Toute partie infinie de N est dénombrable.

dém. :
Soit F' une partie infinie de N. Considérons la suite (u,,) définie par récurrence en posant

uo = min F et Vn € N, uy 1 = min (F\ {ug, ..., un})

La suite (uy, )nen est constituée d’éléments de F et est strictement croissante. De plus, tout élément de F'
figure dans cette suite. Considérons en effet x € F. Puisque la suite (u,,) tend vers +oo, il existe N € N
tels que © < un 41 etdonc z ¢ F\ {ug,...,un}. Orz € Fdoncz € {ug,...,un}.

La fonction ¢ : N — F' définie par ¢(n) = u,, réalise alors une bijection de N vers F.

O

Théoreme
] Un ensemble est fini ou dénombrable si, et seulement si, il est en bijection avec une partie de N.

dém. :

(=) Si un ensemble est fini de cardinal n alors il est en bijection avec [1,n] (comprendre (), quand
n = 0). Si un ensemble est dénombrable, il est par définition en bijection avec N.

(<) Soit E un ensemble en bijection avec une partie F' de N via une application ¢ : E — F.

Si I’ensemble FE est fini, le probleme est résolu.
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SiI’ensemble E est infini alors F est une partie infinie de N et il existe alors une bijectionde ¢ : N — F.
L application ¢! o ¢ est alors une bijection de N vers E. L’ensemble E est dans ce cas dénombrable.
O
Définition
Un ensemble est dit au plus dénombrable s’il est fini ou bien dénombrable i.e. s’il est en
bijection avec une partie de N.

13.1.3 Opérations
13.1.3.1 Inclusion

Théoréme
Toute partie d’un ensemble dénombrable est au plus dénombrable.

dém. :

Car par restriction en bijection avec une partie de N.
|

Corollaire

S’il existe une injection d’un ensemble E dans un ensemble dénombrable alors E est dénom-
brable.

dém. :

Soit ¢ : E — F injective avec F' dénombrable. Par 1’application ¢, F est en bijection avec ¢(E) qui est
une partie de F' donc ¢ est en bijection avec une partie au plus dénombrable.

]

13.1.3.2 Produit cartésien

Théoreme
] Si E et F' sont des ensembles dénombrables alors E x F' est dénombrable.

dém. :
Soit o : E — N, ¢ : F + Netr: N? — N bijectives. L’application (z,y) ~— m(x(2), % (y)) est une
bijection de £ x F vers N.

]
Corollaire
] Si Ey, ..., E, sont des ensembles au plus dénombrables alors £ X ... x FE,, est dénombrable.
dém. :
Par récurrence sur n € N*.
Casn =1:0k

Supposons la propriété établie au rang n > 1.

Soit Fy, ..., E,, E,+1 dénombrables.

Par hypothese de récurrence £ = E; X ... x E,, est dénombrable et donc, par le théoreme E x E,,; est
dénombrable. Or £ x I, n’estautre que [y X ... X By, X Epyg.

Récurrence établie.

O

Exemple Q est une partie dénombrable.
En effet, on peut construire une injection de QQ dans Z x N par I’application

r=p/q (p,q)

en notant p/q le représentant irréductible du nombre rationnel r
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Or I’ensemble Z x N est dénombrable et Q est alors dénombrable car ¢’est un ensemble infini en
bijection avec une partie d’un ensemble dénombrable.

Remarque En revanche, ’ensemble R n’est pas dénombrable ni p(N) ou {0,1}".

13.1.3.3 Réunion

Théoreme
Soit (E;);cr une famille d’ensembles.
Si chaque F; est au plus dénombrable et que I’ensemble d’indexation I est aussi dénombrable
alors la réunion Uiel E); est au plus dénombrable.

dém. :

Cette démonstration est hors programme.

Entrapercevons cependant le résultat dans le cas d’une réunion dénombrable d’ensembles dénombrables.
On peut introduire ¢; : N — E; bijective pour chaque ¢ € I ety : N — I bijective. Considérons alors
’application

fN2—)UEZ

icl

définie par f(k, £) = ¢ (£). Celle-ci est une surjection de N? sur U E;.
i€l
Pour chaque x € U o E;, I'ensemble des antécédents f~! ({x}) est non vide ce qui permet de définir

une injection de U o E; dans N2,
O

13.2 Familles sommables

Si (u;)ier est une famille finie de réels ou de complexes, on sait donner un sens a la somme de ses termes

S

el

La notion de famille sommable vise a étendre aux familles infinies dénombrables cette notion.
Contrairement aux séries, la sommation ne sera pas ordonnée, le résultat du calcul sera indépendant de la
maniere dont il est organisé.

I désigne un ensemble au plus dénombrable ( [ fini, I =N, I =7,1 = N2,.. .)
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13.2.1 Familles a termes positifs

Définition
On dit qu’une famille (u;);e; de réels positifs est sommable s’il existe un réel M tel que
VF fini C J,> u; < M
i€F
Si tel est le cas, on pose
Su= sw Su
; F finieCI
el i€F
Sinon, on pose
S = 4o
i€l

Exemple On suppose [ fini. La famille (u;);c s est assurément sommable et E u; désigne a nouveau la
icl
somme de ses termes.

Exemple On dit que la famille (u;);c s est a support fini si son support J = {i € I /u; # 0} est fini.
Si la famille (u;);e; est a support fini alors celle-ci est sommable.
En effet, pour toute partie F' finie C I,

i€EF i€eFUJ ieJ

De plus E u; = E u; car ici le majorant est un maximum.
i€l ieJ

Exemple La famille de réels positifs (u,, )nen est sommable si, et seulement si, la série Z U, converge.
De plus, on a alors
“+o0
D tn =D tn
neN n=0

En effet, si la famille (u,,) est sommable alors Z uy, converge car il s’agit d’une série a termes positifs
aux sommes partielles majorées. De plus

N

“+o0

Eun: lim gunggun
0 N—+oo

n= =

n=0 neN

Inversement, si la série Z u,, converge alors pour toute partie F finie C I, il existe N € N tel que

F C [0, NJ et donc
+oo

N
D un <Y un < U
n=0 n

ner
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La famille (u,,)nen est alors sommable et

+oo
Zun< E Un
n=0

neN

Exemple Soit ¢ € [0,1] et u,, = ¢'™! pour n € Z. La famille (un)nen est sommable.
En effet, pour toute partie F' finie C Z, il existe N € N tel que F' C [—N, N] et alors

N

N N
1-— 1+
. In| _ n __ q AAAQ
E u; < E q —1+2E q —1+2q1_q <1_q
i€l n=—N n=1

De plus, on a

1+g¢
S -
neZ q

car

) 1+g¢q al In| 1+g¢
VF finie C I, Zuig 1 et Z q" — ——
i€l n=—|N|

Remarque Si (u;);c; est sommable alors pour tout permutation o € S(I), la famille permutée
(uo())ier est aussi et de méme somme.
En effet, les sommes finies considérées pour étudier (u;);cr et (ug(i))ie 1 sont les mémes.

13.2.2 Comparaison

Théoréeme
Soit (u;)ser et (v;);er deux familles de réels positifs indexées par I.
Si u; < v; pour tout ¢ € [ et sila famille (v;);c; est sommable alors la famille (u;);c; 1’est

aussi et
Z U < Z v;

iel el

dém. :
Pour toute partie finie F' incluse dans [

E U; < E v; < E v
i€F iE€F il

O
Théoréme

Soit (u;);cr une famille de réels positifs et J C 1.
Si la famille (u;);cs est sommable alors la sous-famille (u; )¢y I'est aussi et

Zui < Zui

i€J i€l
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dém. :
Pour toute partie finie F' incluse dans J

Zui < Zui

ieF iel
O
13.2.3 Regroupement de la sommation
Soit (u;);er une famille de réels positifs indexée par un ensemble I dénombrable.

Théoréme

On suppose I = I; U I, avec [, I, disjoints. On a équivalence entre
(i) (u;)ser est sommable ;

(i) (u)ier, et (u;)ier, sont sommables.

De plus, on a alors

i€l i€l i€l

dém. :
(i) = (ii) Supposons (u;);c; sommable. Puisque I, I; C I, les sous-familles (u;);cr, et (u;);cr, sont
sommables. De plus, pour F} finie C I; et F5 finie C I

i€Fy i€Fy i€ UFy el
donc
E ui—i—g U; < E U;
i€l i€ls el

(i) = (i) Supposons (u;)ier, et (u;)icr, sommables.
Pour F' finie C I, on a

Zui: Z U; + Z uiéz:ui—i-Zui:M

icF i€eFNIy i€eFNiy i€l i€ls

donc (u;);es est sommable et

Zuiézuri—zui

i€l i€l i€lz

O

Remarque Ce résultat s’étend évidemmenta I = I; U, U... U Iy avec (I j)l <j<n deux a deux
disjoints.

Exemple Soit (uy,)ncz une famille de réels positifs.
La famille (u,,)nez est sommable si, et seulement si, les familles (., )nens €t (u—p)nen+ le sont.

De plus, on a alors
Zun:uo+ Z Uy + Z U_p

ne”Z neN* neN*
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13.2.4 Sommation par paquets

Théoréme

dém. :

Soit (u;);es une famille dénombrable de réels positifs et (I,,),ecn une famille de parties de 1
vérifiant
Vn#m, I, NIy =0et | J I, =1
neN

On a équivalence entre :
(i) 1a famille (u;);es est sommable ;

(ii) chaque famille (u;);es, est sommable et la série Z (Zieln ul) converge.
De plus, si tel est le cas

iel n=0 \i€l,

Cette démonstration est hors programme.
(i) = (ii) Supposons (u;);c; sommable
Pour tout n € N, I,, C I donc (u;);ez, est aussi sommable.

Pour tout N € N, considérons la partition finie de I réalisée & partir de Iy, ..., Iy et J = U SN I,.
nz
Ona
N N
)SPIED 3D SIS WIS
n=0iel, n=04i€l, = il

Puisque E ( E o uz) est une série a termes positifs aux sommes partielles majorées, celle-ci converge
1eln
et

f (Z u> <> i

n=0 \z€l, el

(ii) = (i) Supposons (ii). Soit une partie F’ finie C I. Il existe N € N tel que

et alors

N
FcC U I,
n=0
N N “+o0
YIRS DI DIRTED 3 TS 3p pIEY
i€eF n=0ieFNI, n=014iel, n=0i€el,

La famille (u;);c; est donc sommable et

Suey (Y]

el n=0 \z€l,
O
x =
Exemple Soit = € [0, 1[. Montrons == nz;o T

La famille (z?),en+ est sommable. Pour n € N, considérons I,, = {2"(2k +1)/k € N}.

http://mp.cpgedupuydelome.fr 324 @O0



CHAPITRE 13. FAMILLES SOMMABLES

Par sommation par paquets

—+00 400
RSP IS NI
n=0pel, n=0 k=0
et ainsi
22"
- Z _ g2t
Corollaire

Si ¢ : N — I est une bijection alors on a équivalence entre :
(1) (u;)4er est sommable ;

(i) Z Ug(r) CONVETZE.
De plus, si tel est le cas

+oo
D= D Ut
n=0

el

dém. :
11 suffit de considérer la partition de I constituée de I,, = {¢(n)}.
O

Remarque En conséquence, aprés indexation des éléments de I, 1a sommabilité de la famille (u;);cr se
ramene a la convergence d’une série a termes positifs.

13.2.5 Extension aux familles réelles ou complexes

Soit (u;);cr une famille de nombres réels ou complexes indexée par un ensemble I au plus dénombrable.

Définition
On dit que la famille (u;);c7 est sommable si la famille (|u;|);c; I'esti.e. s’il existe un réel M
tel que
VF fini C J,Y  |u;| < M
ieF
Théoreme

S’il existe une famille de réels positif (v;);c; sommable vérifiant
Vi € Ia |ul| <Y

alors la famille (u;);c; est sommable
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Définition
Soit (u;);cr une famille sommable de réels. Pour tout ¢ € I, on introduit

uf = max(u;,0) et u; = max(—u;,0)
Les familles de réels positifs (u; );cs et (u; );cs étant sommables, on pose

Su= Xt -7

iel iel iel

Définition
Soit (u;);cr une famille sommable de complexes. Les familles de réels (Rew;);e s et (Imu; )i s
étant sommables, on pose

Zui = ZRe(ui) + i~ZIm(Ui)

i€l icl icl

Exemple On suppose [ fini. La famille (u;);c; est assurément sommable et E u; désigne a nouveau la
i€l
somme de ses termes.

Exemple On suppose la famille (u;);c; est & support fini et I’on introduit son support
J={iel/u; #0}.
La famille (u;);cs est assurément sommable et Z u; = Z U

icl icJ

Exemple Une famille de réels ou de complexes (uy, ),cn est sommable si, et seulement si, la famille
(Jtn|)nen Pest . Ceci revient a affirmer la convergence de la série Z [t

Ainsi, la sommabilité de (u,, )nenéquivaut a la convergence absolument de Z Up,.
De plus, on a alors

+oo
D un =) un
n=0

neN
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13.2.6 Sommation par paquets

Théoreme
Soit (u;);er une famille dénombrable de réels positifs et (I,,),en une familles de parties de T
vérifiant
Vn#m,I,N 1, =0et U I,=1
neN

Si la famille (u;);e; est sommable alors chaque famille (u;);ecr, I'est aussi et la série

Z (Ziel uz) converge absolument.
De plus, on g alors
+oo
Su-3 ()

i€l n=0 \ie€l,

dém. :
Cette démonstration est hors programme.
Puisque la famille (u;);cs est sommable, la famille (|u;|);cr est aussi et donc les familles (|u;|);cr, le

sont encore et la série E ( E . |u;| ) converge. Ainsi les familles (u;);ey, sont sommables et la série
1€ly

Z (Z . ul) est absolument convergente car dans le cadre réel
1€ln

>

icl,

<Y uf D> T uy <Y Jul

i€l icl, ic€l,

et dans le cadre complexe

< +

>

i€l,

Z Re(u;)

i€l

Z Im(u;)

ieI’VL

<2 fuil

iEIn

Il reste a établir I’égalité

—+o0

Su-3 ()
iel n=0 \i€l,

Celle-ci est connue si tous les termes wu; sont réels positifs.

Celle-ci est encore vraie si tous les u; sont réels en raisonnant par uj etu; .

Celle-ci est aussi vraie si tous les u; sont complexes en raisonnant par Re(u;) et Im(u; ).

|

Corollaire

On suppose I = I; U I, avec I, I, disjoints.

Si (u;)ier est sommable alors (u;)ier, et (u;)ier, sont sommables et

Zui:ZuiJrZui

il i€l i€l

dém. :
Prendre I,, = () pour n # 1, 2.
(|
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Corollaire

Soit ¢ : N — [ une bijection. Si la famille (u;);ec; est sommable alors la série ZU<P(”)

converge et

+oo
D= D et
n=0

icl

dém. :
On utilise I,, = {¢(n)}.
O

Remarque Pour utiliser ces résultats, il faut préalablement justifier la sommabilité de (|u;]),.; ce qui

pourra se faire en employant le résultat analogue connu pour les familles de réels positifs.

Exemple Considérons u, = (—1)"/net I = N*.
La série Z u,, converge et cependant la famille (uy, ), en+ n’est pas sommable.

En effet, pour I; = {2p/p € N*} et I = {2p + 1/p € N}, les familles (uy, )ner, €t (un)ner, ne sont

pas sommables.

13.2.7 Propriétés
13.2.7.1 Linéarité

Théoreme
Soit (u;)ser et (v;);er deux familles d’éléments de K = Rou Cet A, 4 € K.
Si (u;)ier et (vi)ier sont sommables alors (Au; + pv;);er ’est aussi et

Z)\ui—&-uvi z)\Zui—i-,qui

i€l icl icl

dém. :
Pour tout i € I,
[ Aui + pos| <A us| + ] |vs]

donc toute partie F' finie C I,

S I+ el < A il 1l S ol NS sl + [l Y Jui| = M

i€l icF iceF icl icl

Ainsi (Au; 4+ pv;);er est sommable.
De plus, si ¢ : N — T est une bijection

+oo
Z Aug + pvg = Z AU (n) + HUp(n)
i€l n=0

Par linéarité des séries convergentes

400 400
Z/\ui + pv; = )‘Zutﬂ(n) +sz@(n) = )\Zui +NZU1’
n=0 n=0

i€l icl icl
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O

Corollaire
L’ensemble des familles (u;);c; sommables est un sous-espace vectoriel de 1’espace K’ des

familles indexées sur I et ’application (u;)ier — Z — y définit une forme linéaire.
K3

13.2.7.2 Positivité

Théoréme
Soit (u;);cr une famille de réels positifs.

Si (u;)ier est sommable alors Z,EI w; =0
1

dém. :
Par définition E W est la borne supérieure d’un ensemble de quantités positives.
[4S]

O

Corollaire
Si (u;)ier et (v;)ier sont deux familles de réels sommables vérifiant

Viel,u <v;

Zui < ZUZ'

i€l iel

alors

dém. :
11 suffit de considérer la famille positive (v; — u;);er-
|

Théoréeme
Soit (u;)scr une famille de réels positifs.
Si (u;)ier est sommable et si Z [ Ui = 0 alors u; = 0 pour tout ¢ € 1.
1€

dém. :
Pourtouti € I,ona

0<u; <Y ui=0

il

car la somme est la borne supérieure de 1I’ensemble des sommes sur les parties finies F'; il suffit ici de
considérer F' = {i}.
O
13.2.7.3 Conjugaison

Théoreme
Si (u;)ser est une famille de complexes sommable alors (;);cy I'est aussi et

ZUTZZW

i€l i€l
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Corollaire
On a équivalence entre :
(i) 1a famille (u;);cs est sommable ;
(i) les familles (Re(u;))ier et (Im(w;));er sont sommables.

dém. :

(i) = (ii) via Re(u;) = (u; + ;) /2 et Re(u;) = (u; — w;)/2i.
(i) = (i) via u; = Re(u;) + i.Im(u;).

O

13.2.7.4 Inégalité triangulaire

Théoréme
Si (u;)ier est une famille de réels ou de complexes sommable alors

dém. :
Soit ¢ : N — [ est une bijection

D u

el

+oo
= <D [t | =D Juil

n=0 el

“+oo
Z Up(n)

n=0

0
13.3 Application a la réorganisation des sommes

13.3.1 Permutation des termes d’une série

Soit Z uy, une série et o € S(N). Que dire de la série Z Ug(n) ?

-1 n—1
Exemple Considérons la série Z L de somme S = In 2 et permutons ses termes.
n
n>1
S=1 L + - +- ! ! +
23 4 2k+1 2k+2

Permutons les termes de S de la maniére suivante :

S=1 1+1 +1 1+1 +-+ ! !
o 2 4 3 6 8 2k +1 4k + 2

on obtient

gl ot o111 1
T2 4 6 8 Ak +2 4k +4
puis
1 1 1 1 1
52<12+34+ > iy

Ainsi, on peut changer la somme d’une série en en permutant ses termes !
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Théoreme

Si Z u,, converge absolument alors pour tout ¢ € S(N), la série permutée Z Ug(n) CONVETZE

absolument et

+oo +oo
E Ug(n) = § Unp
n=0 n=0

dém. :
Si Z u,, converge absolument alors (uy, ),en €st sommable et

+oo
D tn = un
n=0

neN

La famille permutée (uq(n))nen est alors elle aussi sommable et

Z Ug(n) = Z Un

neN neN
On en déduit que la série Z Ug(n) CONverge absolument et donc
+o00 too
D totm) = D to(my = D Un =Y Un
n=0 neN neN n=0

O

1
E le Nature d —_— € S(N").
xemple Nature de ; o) pour o (N*)
Sachant

on a

1 1
Or — converge absolument et donc ——— aussi.
> comers L

Par comparaison de séries a termes positifs, on obtient la convergence de E
n>1

1

13.3.2 Sommes doubles

Soit (Um,n) (m,n)en> une famille de réels ou de complexes. A-t-on

+oo0 400 +oo 400
DD tmn =D D tman?
m=0n=0 n=0m=0

no(n)’
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v

v

v

O
0
e
?
'

O
0
0

Théoréme
S0it (Urm,n) (m,n)en> une famille de réels ou de complexes. On a équivalence entre

(i) 1a famille (t;n,n) (m,n)en> €st sommable ;
, .

(ii) pour tout n € N, la série Z |tm,,n| converge et la série Z Z |tm,,n | converge.

m n m=0
De plus, on a alors
+oo 400
§ Um,n = § § Um,n
(m,n)EN? n=0m=0

dém. :

On caractérise la sommabilité (| n|)(m,n)enz par le théoréme de sommation par paquets avec I,, =
N x {n}.

Une fois la sommabilité acquise, on calcule la somme par la méme organisation par paquets.

O

Corollaire
On a alors
+oo +oo 400 +oo
DD tma=D ) tmn
n=0m=0 m=0n=0

avec convergence des séries écrites.

dém. :
On calcule
D,
(m,n)eN?
en procédant 2 deux sommations par paquets.

La premiere avec I,, = N x {n}, la seconde avec J,,, = {m} x N.
O

Exemple Montrons
+oo 400

|
22 w2l

m=1n=m
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Commencons par interpréter le premier membre sous la forme

+oo 400
DD tmn
m=1n=1
1. .
Posons Um,n = -3 S1n Z m et 0 sinon.
n

E || converge car wy, , = 0 pour m > n.

m>1
n +oo
1 1
E — = — donc E E |t n| converge.
n3  n? ’
1

“+o0
m= n>1lm=1

D fumal =
m=1

Ainsi, la famille (tm,n ) (m,n)en+)2 est sommable et par le théoréme de Fubini, on a I’égalité

+oo +oo +oo 400
§ E Um,n = § § Um,n
n=1m=1 m=1n=1

avec convergence des séries engagées. On obtient ainsi

-l-oo1 +<x>+<>01
PRI
n=

m=1n=m

13.3.3 Produit de Cauchy

Soit E Uy, €L E v, deux séries convergentes. On a

(£0) (E0) £ (wE0) £ S

n=0 m=0 n=0 m=0n=0

qui se comprend (ugvo+uov1 +ugve+- - - )+ (urvo+urv1+urva+- - - )+ (U2vo+ugvy +ugve+- - )+ -
Peut-on réorganiser la somme en ugvg + (ugv1 + u1vp) + (wove + urv1 + ugvg) + -+ - ?
q 4 > 4 (L
A A A A L.,
O O O O ~, O O @)
O O O O @) O O O
O O O O O O O O
Pt p
-0 O O Oo— O~=—0O0~—"0C——"0C=>
4 4 4 kY
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Définition
On appelle produit de Cauchy des séries Z Uy, et Z vy, la série de terme général

n
Wp = § UrUn—k

k=0

Théoréme
Si Z U, €t Z vy, sont deux séries absolument convergentes alors la famille (w,,vy,) (m,n)EN2

e (£4) (5

(m,n)eN?

est sommable et

dém. :
“+oo

Pour tout n € N, la série Z |umvn| converge et la série Z Z |tmvy| converge donc la famille

m n m=0
(UmVn) (s n)ene €St sommable.

O
Corollaire
Si Z Uy €L Z v, convergent absolument alors la série produit de Cauchy Z w,, converge
absolument aussi et on a
—+o00 —+oo —+o0
D wn = (Z u) (Z)
n=0 m=0 n=0
dém. :

On procede a une sommation par paquets avec

I, = {(m,n) € N*/m +n = p}

sachant
Z U Up, = Wy
(m,n)el,
O
+oo
Exemple Soit a € C tel que |a| < 1. Montrons LI Z (n+1)a”
. (1 - CL)2 n=0

Par sommation géométrique

1 400 400
Aoy - <Z> (Z )

Par produit de Cauchy de séries absolument convergentes,

1 +oo n +oo
Toap — 22 (@) =t e’
n=0 k=0 n=0
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+o00
1
Exemple Pour x € R, on pose f(z) = Z —z".
o n!
Vérifions

Vo,y € R, f(z)f(y) = f(z +y)

On vérifie aisément I’absolue convergence de la série définissant f(z) par application du critere

d’Alembert. On a
+o00 1 +oo 1
o~ (£3) (5 2
! = nl

Par produit de Cauchy de séries absolument convergentes

+oo n k

T n—~k
f(@)f(y) = ZZﬁh

n=0 k=0

donc
+oo

f@ s =3 T )

On a établira ultérieurement que f n’est autre que la fonction exponentielle.
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Chapitre 14

Espaces normés

K désigne R ou C et F désigne un K-espace vectoriel.

14.1 Norme
14.1.1 Définition

Définition
On appelle norme sur E toute application N : £ — R™ vérifiant :
)Vz € E, N(z) =0 = x = 0g [séparation].
VA e K, Vz € E, N(A.x) = |A| N(z) [homogénéité]
3)Ve,y € E, N(x +y) < N(z) + N(y) [inégalité triangulaire].
On dit alors que le couple (E, N) est un espace normé.

Remarque Les normes sont usuellement notées N (.), || . || ou | .|, elles servent a définir la longueur
d’un vecteur.

Exemple La valeur absolue sur R et le module sur C sont des normes.

Exemple Soit E un espace préhilbertien réel de produit scalaire noté (., .).
La norme euclidienne associée a ce produit scalaire est une norme. Celle-ci est définie par

Ve e B, |z| =/ (z,z)

Exemple Si F' est un sous-espace vectoriel d’un espace E normé par || . || alors la restriction
||l : F — R définit une norme sur F.

Proposition
Si || .|| est une norme sur E alors :
Ve e B, ||z]| =0z =0g;
b)Vz € E, ||—z| = ||z| ;

OVa,y € B ||zl — [yl

< ||z — y|| [inégalité triangulaire renversée].
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dém. :
a) (=) par définition et ( <= ) par homogénéité avec A = 0.
b) par homogénéité avec A = —1.
) par Iinégalité triangulaire [[2]| = [z — y + yll < |lz =yl + |yl| done 2| — ly|l < [l — y| et par
un raisonnement symétrique ||y|| — ||z|| < ||z — v
O
Définition

| Un vecteur z d’un espace £ normé par | . || est dit unitaire si ||z = 1.
Exemple Siz # 0p alors u = Wz est un vecteur unitaire colinéaire a x.

x

14.1.2 Normes usuelles sur K"

Pour z = (21,...,z,) € K", on pose
n 1/2
2 2
2]y = |z1] 4 - 4 | = Z zils Nzl = \/lx1| ] = (Z k] > et
k=1
I = max {Joal .. oal} = max Jol
Théoréme
| || ll; définit une norme sur K".
dém. :
n
I ]l : K™ — R* est bien définie. Soit = € K™. Si [|z[|, = 0 alors » _ [axx| = 0.
k=1
Par somme nulle de quantités positives |x1| = ... = |x,| = 0 et donc & = Ognr.
Soit A € Ketz € K"
n n n
el =D el = D I el = ALY Jzal [Aaa] = (A llz]),
k=1 k=1 k=1
Soit x,y € K.
n n n n
e +ylly =D low + oyl <D (el + lyel) = D lzal + Y lyel = llzll, + llylly
k=1 k=1 k=1 k=1
Finalement || . ||; est une norme sur K".
U
Théoréme

| || - [|5, définit une norme sur K".

dém. :
| .]l, : K™ — RY est bien définie.

n
Soit z € K". Si ||z||, = 0 alors Z lzi|* = 0.
k=1
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Par somme nulle de quantités positives |z1|> = ... = |z,,|* = 0 et donc z = Ogn.
Soit A € Ketz € K"

2 2 2
lly = | D Pawl® = [ IAP D fawl® = ALl
k=1 k=1

Soit z,y € K®

n
2 2
|z +yl; = Z |z + Y|
k=1

Or |z + yx| < |@k| + |y | donc

n n n

2 2 2

-+ ylly =D leel* + 2> el lyel + D lvl
k=1 k=1 k=1

Rappelons I’inégalité de Cauchy-Schwarz

n
Zakbk <

k=1

Vak, br € R,

On en déduit

S

n n
Sl il < | 3 Jel? | 3 Iol?
k=1 k=1

k=1
donc

Iz +yll3 < (2 lly + llylly)®
puis

[z +ylly <llzlly + yll,

Finalement || . ||, est une norme sur K".
a
Théoréme

| |||l définit une norme sur K".

dém. :

.1l : K* — R est bien définie

Soit z € K". Si |||, = Oalors pour tout 1 < k < n,0 < |2| < |||, donc |z4| = 0etdonc z = Ok».
Soit A\ € Ketax € K"

Izl = max [Az| = |A| max |z = [A[l|z]
Soit z,y € K",
12+ ylloo = max |ox +yel < max (o] +|ysl) < max |ze] + max Jys| = [zl + 1yl

Finalement || . || _ est une norme sur K".
0
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Remarque Plus généralement, pour p € [1, +00[, on peut montrer que
= p ... p 1/p
lall, = (1l + -+ feal”)

définit une norme sur K". De plus

el = tim_lzll,

14.1.3 Distance associée

Soit || . || une norme sur E.
Définition
On appelle distance associée 2 la norme || . || sur E I’application d : E x E — R définie par

d(x,y) = lly o]

Exemple Sur F = RouC, d(z,y) = |y — x| définit la distance associée a

Proposition
a)Va,y € E,d(z,y) = 0 & © = y [séparation] ;
b)Va,y € E,d(x,y) = d(y, ) [symétrie] ;
c)Vx,y,z € E,d(x,z) < d(x,y) + d(y, z) [inégalité triangulaire] ;
d)Vz,y,z € E,d(x + z,y + z) = d(x,y) [invariance par translation].

dém. :

ally—z|=0cy—2=0g.

b) ly —z| = [lz —yl|.
ollz—zll=1-y)+w-2) <lz—yl+ly— =l
d(y+2)—(@+2)]=y—=

O

14.1.4 Boules

Soit || . || une norme sur E.
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Définition
Soita € E etr > 0. On définit :
- la boule ouverte de centre a et de rayon 7 :
B(a,r) d=f{x eE/|x—al <r}
C
- la boule fermée de centre a et de rayon 7 :
Bj(a,r) ={r € B/ |z —all <7}
- la sphere de centre a et de rayon r :

S(am)gf{x eE/||lx—a|=r}

Exemple Dans (R, |.|), B(a,r) =a—r,a+7[, Bf(a,r) =[a—r,a+71].

Exemple Dans (C,|.|), B(a,r) = D(a,r) ff{z € C/ |z — a| < r} est le disque ouvert de centre a et

de rayon .

Définition
] Les boules de centre O et de rayon 1, sont appelées boules unités.

Exemple Boules unités fermées sur F = R>

I 1 I T
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Proposition
B(a,r) =a+rB(0g,1) et Bf(a,r) = a+rBs(0g,1).
Ainsi, les boules générales se déduisent des boules des boules unités par homothéties et trans-

lations.
dém. :
a+rB(0g,1) ={a+ru/|ul <1}.
Siz € a+rB(0g,1) alors || — a|| = ||ru|| = r||u|| < rdonc z € B(a,r).
Six € B(a,r) alors pouru = —(x — a),onax = a + ru avec ||ul| < 1.
r
g
Proposition
] Les boules sont des parties convexes.
dém. :

Etudions B(a,r).

Soitz,y € Bla,r). [z,y] = {(1 — Nz + Ay/) € [0,1]}.

Soit z € [z, y]. On peut écrire z = (1 — A\)x + Ay avec A € [0,1].

Onaalors ||z — al| < Ajlz — al|+(1—=N) |ly — a]| < Ar+(1—X)r = r I'inégalité stricte étant maintenue
car I’un au moins des deux facteurs A ou 1 — X est strictement positif.

O

14.1.5 Bornitude

Soit || . || une norme sur E.
Définition
Une partie A de F est dite bornée s’il existe M € R™ vérifiant

Ve e A, ||z|| < M

Exemple Les boules sont des parties bornées. En effet

Vo € By(a,r), ||zl < llall + [z — all < llaf +7 = M

Définition
Soit X un ensemble. On dit qu’une fonction vectorielle f : X — FE est bornée lorsque son
image l’est i.e.
IM e RY Vo € X, ||f(2)| < M

Exemple La fonction  — (2 + cos z) sin x est bornée.
En effet,

Vo € R,|(2+ cosz)sinz| = |2+ cosz|[sinz| < 3

Il est plus aisé de raisonner ainsi que par les concepts de fonctions minorées et majorées.
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Définition
Pour X = N, une fonction au départ de N est communément appelée une suite. La définition
qui précede se transpose donc aux suites de vecteurs et par conséquent une suite (uy, )nen € EN
est dite bornée si

IM € RT ) Vn € N, |ju,| < M

Théoreme
Soit f,g: X = FetA\, peK
Si f et g sont bornées alors A f + g I’est aussi.

dém. :
Tl existe M, M’ € RY tels que
Vo € X, | f(x)l < Met |g(z)]] < M’
On a alors
Vo € X, | Af(x) + pg(a)|| < [N M + |p| M

donc Af + pug est bornée.

O

Corollaire
L’ensemble B(X, E) des fonctions bornées de X vers E est un sous-espace vectoriel de 1’es-
pace F (X, E) des fonctions de X vers E .

14.2 Espaces normés usuels
14.2.1 Normes sur un espace de dimension finie

Théoréme

] Tout K-espace vectoriel de dimension finie peut é&tre muni d’une norme.

dém. :

Soit E un K-espace vectoriel de dimension finie n € N.

Casn = 0.

E = {0} est muni de la norme définie par N(0g) = 0.

Casn € N*.

Soite = (eq,...,e,) une base de E. Pour tout x € FE, il existe d’uniques z1, . . ., z,, vérifiant

r=x1.e1+ -+ Tp.y

Posons ¢; : £ — K I’application qui a & associe sa j-¢éme coordonnée dans la base e.
L’application ¢; est une forme linéaire sur E.
Considérons || . || une norme sur K™ et posons, pour tout = € F,

N(z) = l(pr(x), ..., n())ll

L’application N est bien définie de E vers RT.
Si N(z) = 0 alors (¢1(2),...,¢n(x)) = Ogn etdonc 2 = Of.
Soit A e Ketx € E.

NQA-z) = [[(pr(Az), ., on(A)) | = [A-(pr(2), - enl@))]| = [A| N(2)
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Soitz,y € F.

N(z+y) = [(pr(z + 1), on(z + ) = (@1 (2), s 0n (@) + (P1(y), -+ Pn (@) < N(2)+N(y)

U
Définition
En choisissant sur K™, ||| = [|. ||, || - [l5, ou || [, la norme V ci-dessus est notée | .|, .,

[ llpe 0l flo -

Exemple Soit E = M,, ,(K) et B = (E; ;) sa base canonique.
Pour A = (a; ;) € M, »(K)

1/2
n P n p
2
1AL =D laigh Al = | D0 lasyl et Al = max |ai,l
, X ; - <igkn
=1 j=1 i=1 j=1 1<5<p

14.2.2 Norme de la convergence uniforme

Soit X un ensemble non vide. Pour f : X — K bornée, on pose

1/l = sup | (2)
eX

6f
Cette borne supérieure existe car
{|f(x)| /x € X} estune partie de R non vide et majorée
Cette borne supérieure désigne le plus petit réel M vérifiant

Ve e X, |f(z)| <M

Théoréme

| || - ||, définitune norme sur I’espace B(X, K).

dém. :

L application ||. || est bien définie de B(X, K) vers RT.

Soit f € B(X,K). Si | f||,, = 0alors sup {|f(z)| /r € X} = 0 donc pour tout z € X, || f(z)|| =0
puis f = 0.

Soit A € Ket f € B(X,K). Pour tout z € X,

AF@)] = IN @) < ALl
done [Afl, < IM ][] Pour A £ 0,

1 1
I = |32 <[5 |t
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etdonc Al fl.. < ||Afllo puis I’égalité. Pour A = 0, I’égalité est bien entendu aussi vérifiée.
Soit f, g € B(X,K). Pour tout x € X

[(f +9) @) = |f(x) + g(x)| < |f (@) + lg(2)] < [ flloo + 19l

(]
Corollaire
|| ]|, définit une norme sur I’espace B(N, K) des suites bornées ol
[ulloe = sup [un]
neN
dém. :
11 suffit de considérer X = N.
U

14.2.3 Norme de la convergence en moyenne et en moyenne quadratique

Soit a < bdeux réels et E = C ([a, b] , K) I’espace des fonctions continues de [a, b] vers K.
Cet espace est inclus dans celui des fonctions bornée de [a, b] vers K. On peut donc le munir de la norme
induite

[flle = sup |£(2)]

t€la,b]

et, de surcroit, la borne supérieure est ici un maximum en vertu du théoréme de la borne atteinte.
Pour f : [a,b] — K continue, on pose aussi

b b 1/2
19z [ 150l deet £l = ( [lror dt)

Théoreme
| |l |I; définit une norme sur C ([a, b] , K).

dém. :
L application ||. ||, : C ([a,b] ,K) — R est bien définie.

b
Soit f € C([a,b],K). Si || f]|; = 0 alors / |f(¢)] dt = 0 or |f] est continue et positive sur [a, b]

donc f = 0.
Soit A e Ket f € C ([a,b],K).

b b b
||A.f||1=/ AF(E) dt=/ |A|\f<t>|dt=|A\/ F@) dt = A1,

Soit f,g € C([a,b],K).
b b
15+l = [ 150+ g0 e < [ 150)+ lo(0] e = 171, + gl

O
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Théoreme
| |l I, définit une norme sur C ([a, b] , K).

dém. :
L application ||. ||, : C ([a,b],K) — RY est bien définie.

b
Soit f € C([a,b],K). Si ||f]l, = 0 alors / |F(®)]* dt = 0 or |f|* est continue et positive sur [a, b]

donc f = 0.
Soit A € Ket f € C([a,b],K).

b 1/2 b 1/2 b 1/2
||A.f||2=< | nor dt) =< [ weisor dt) = ( [ lsr dt) = A1,

Soit f,g € C([a,b],K).
b b
|U+ﬂ@:/|ﬂ0+ﬁm%ﬂ</(V@FHAMV&

En développant

b b b
1+l < / O dt+2 / FO)g(®)] dt + / 9(t)? dt

Par I’inégalité de Cauchy-Schwarz

2

b 1/2 b 1/
<( / )P dt) ( / 9(0)? dt)

2 2 2
I +9gllz < I1Fllz + 21712 lglly + llgllz

b
/ F(B)(t)] dt

donc

O
14.2.4 Produit d’espaces normés

Soit (E1, N1), ..., (Ep, Np) des espaces normés. Considérons le produit cartésien
E=Eix-xE, =[] E;
j=1
E est un K-espace vectoriel dont les éléments x sont des tuples (z1, ..., x,) avec
Vi<j<puz;ckj

Le vecteur nul est le tuple nul
0g = (0g,,...,0g,)

Les opérations sur E' se déduisent de celles sur les espaces F;

Az, .op) = A, Amp) et (T1, ., 2p) + (W1, -5 Yp) = (1 Y1, -, Tp + Yp)
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Pour z = (21,...,2,) € E, on pose
ol = max N(z;)
Théoreme
| || || définit une norme sur E.
dém. :
L application || . || est bien définie de E vers RT.
Soit x = (z1,...,xp) € E. Si||z|| = 0 alors
Vj e {17...,p},Nj($j) =0
et donc

Vj € {1,...,p},$]‘=0Ej

On en déduit z = 0g.
Soit A e Ketx = (21,...,2p) € E

] = max N;(he;) = max [N Ny(ay) = M max Ny(e;) = 1A [lo]
Soitz,y € B

- (rads) < (s () < (s () =
lz +yll fgj@é{pNJ (zj+y;) < 121;.2(1) (Nj(5) + Nj(y;)) < gj&gp N; (xj)+1r£?§pNj(yj) llz[|+lyll

]
Définition
| (E,]|.|) est appelé espace normé produit des espaces normés (E1, N1), ..., (Ep, Np)
14.2.5 Normes d’algeébres
Soit (E, +, x, .) une K-algebre.

Définition
On appelle norme d’algébre sur E toute application || . || : £ — R™ vérifiant :
1) || .|| est une norme sur E ;
Q) Vz,y € E, ||lzy|| < ||z|| ||ly|| [sous-multiplicativité]
On dit alors que le couple (E, || . ||) est une algebre normée.

Exemple La valeur absolue est une norme d’algebre sur K = R ou C.

Exemple || .|| est une norme d’algebre sur K".

Exemple || .|| est une norme d’algebre sur B(X, K).
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Exemple Sur M,,(K), || .||, définie par

4]l = mas fas;]

n’est pas une norme d’algebre car on a seulement
VA, B € Mu(K), [[AB|o < n 4]l [|Bll
Cependant, I’application || . || définie par || A|| = n || A||, est encore une norme sur M, (K) et celle-ci
vérifie
IAB| < [lA[]B]

C’est une norme d’algebre sur M, (K).

14.3 Equivalence de normes
14.3.1 Comparaison de normes

Définition
On dit qu’une norme N7 sur E est dominée par une norme Ns lorsque

Ja > 0,Vx € E, N1(z) < aNa(x)

Exemple Sur K", comparons deux a deux les normes || . ||, || . |[5 et || . ||
a) [lz]l o < llzlly < nllzfl,

n n

= max |zy| < Z sl = llzlly etllzll, =D leal < Y- llzll = nllzly
k=1 k=1

b) [[2]lo0 < lllly < fII:EH

En effet ,

n n
2 2 2 2
Eneffet, [l]|, = max okl < lenl = llzll3 et all; < Y el = n el
k=1 =
o) [lzlly < flly < \fllﬂ«"”z-
n n
= laxf* < < |f0k|> = ||z} et /|, < v/n |||, par I'inégalité de
k=1 k=1
Cauchy-Schwarz.
Exemple Sur £ = C ([0, 1], K) comparons les normes || .||, et || . ||

1 1

onallfly = [ Il dr< [ flede= 15l

Ainsi || .||, est ?1ominée par || .||

Montrons qu’en revanche || . ||, n’est pas dominée par || . ||;.
Pour cela considérons f,, : ¢t — t".

Ona

1 fnlly = et || fnllo
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Par I’absurde, supposons qu’il existe « > 0 tel que

Vi€ B Ifle <allfl

Appliquée en f = f,,, on obtient

a—)()

1 <
n+1 n>

C’est absurde !

Remarque Sur E = C ([a, b],K), on a aussi
1l < Vo—alflly et [[fll; < Vo —allfll

Cependant || . ||, n’est pas dominée par || .

1»0i || .||, n’est pas dominée par || . ||,.

14.3.2 Normes équivalentes

Définition
Deux normes N; et No sur un méme espace F sont dites équivalentes lorsqu’elles se dominent
mutuellement i.e.

Ja, B > 0,V € E,aNy(z) < Ni(z) < SNa(x)

Proposition

L’équivalence de norme définit une relation d’équivalence sur I’ensemble des normes sur F.

Exemple Sur K", les normes ||. ||, ||. ||y et || .| sontéquivalentes.

Théoreme
Sur un K-espace vectoriel de dimension finie, les normes sont deux a deux équivalentes.
(admis)

Exemple Sur I’espace de dimension infinie £ = C ([a, b] , K), les normes || . ||;, || . ||y et || . || ., ne sont

pas équivalentes.

Exemple Soit E = C' ([0,1],R). On y définit les normes

N() = 1O+ 1Nl et N'(f) = [1fllo + 1/l

Celles-ci sont équivalentes.
En effet, il est évident que N(f) < N'(f) mais aussi, sachant

F(x) = F(0) + / " yde
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on a

puis

14.3.3 Encadrement des boules

Proposition

Si N7 et N3 sont deux normes équivalentes alors toute boule de centre a pour I’'une des normes
est incluse et contient des boules de méme centre a pour 1’autre norme.

dém. :

Supposons aNy < N1 < SN, et considérons B = Bi(a,r).
Ona By(a,r/B) C Bear Nay(x —a) <r/8 = Ni(z —a) <r
et B C By(a,r/a) car Ny(x —a) <7 = Na(z —a) <r/a.
O

Exemple Sur R?

A A

v
v

1
[ <00 =< V2L Sl h=lk=1) - <01 =2,

14.3.4 Notion invariante par passage a une norme équivalente

Définition
On dit qu’une notion est invariante par passage a une norme équivalente si, lorsqu’elle est
vérifiée dans une espace normé (F, N1), elle I’est encore dans 1’espace normée (E, No) quand
Ns est équivalente a N;.

Exemple La notion de partie bornée est invariante par passage a une norme équivalente.

En effet, une partie est bornée si, et seulement si, elle est incluse dans une boule de centre O et cette
notion n’est pas changée lorsqu’on passe a une norme équivalente.

De méme pour la notion de suite ou de fonction bornée.
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Exemple La notion de vecteur unitaire n’est pas invariante par passage a une norme équivalente.

Remarque Lorsque deux normes ne sont pas équivalentes, certaines propriétés peuvent étre vraies pour
une norme sans 1’étre pour 1’autre.

Exemple Dans E = C ([0, 1], KK), considérons la suite (f,,)nen des fonctions f, : t — nt™.
Cette suite est bornée pour || . ||, , mais ne I’est pas pour ||. || .

Ona || full, = % — 1 donc la suite (f,,)nen est bornée pour ||. ||;.

En revanche || f,,|| ., = n — 400 donc la suite (f,,)nen n’est pas bornée pour || . || .
Conclusion : on retrouve a nouveau que || . ||; et || . || ., ne sont pas équivalentes sur E.

14.4 Suites d’éléments d’un espace normé

On s’intéresse ici aux suites d’éléments d’un espace normé. L’étude s’ appliquera aux suites numériques,
aux suites d’éléments de K™, aux suites matricielles ou encore aux suites de fonctions. . .
(E, || -||) désigne un espace normé.

14.4.1 Convergence
Définition
On dit qu’une suite © = (uy, )nen d’éléments de F tend vers £ € E si ||u, — ¢|| — Oi.e.:
Ve>0,INeN,VneNn >N = |u, —¢|| <¢

On note alors u,, — { ou u, AU_% /.
n—+400 n—s—+oo

i 1
Exemple Etudions u,, = ( Smn, nt ) € R2.

n n
Pour || || = | |

1°
sinn n+1
un — (0, 1)) = +

1’%0

donc u, — (0,1).

Exemple Soit || . || une norme d’algebre sur M, (K).
Si||4] < 1alors A" —— O,,.

n—-+4o0o
En effet
A" = Ol = | A™] < | A" — 0

Théoréme
Siu, = Letu, — ¢ alorsf =¢'.
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dém. :

0 |[0—=2 < ||l —unl + ||un — €| — 0donc ||[£ — ¢'|| = 0 puis £ = /.
O

Définition

On dit qu’une suite u = (uy, )nen d’éléments de E converge s’il existe ¢ € E tel que u,, — .
Cet élément ¢ est alors unique, on ’appelle limite de u et on note

{=limuoul= lim wu,
n—-+oo

Remarque Si deux suites sont égales a partir d’un certain rang, elles ont méme nature et méme
éventuelle limite : on ne modifie pas la limite d’une suite en modifiant la valeur d’un nombre fini de ses
termes.

14.4.2 Opérations

Théoréme
Si w,, — £alors ||u,| — |4
Par conséquent toute suite convergente est bornée.

dém. :
Par I’inégalité triangulaire renversée

]l = 1] < flun — €] = 0

O

Théoréeme
Siu, € E— fetv, € E— ¢ alors Mu, + pv, — M+ ul'.
Si de plus E est une algebre normée alors u,v,, — ££'.

dém. :

[ Nwn, + pl — (N A+ pl)|| < N[ [Jwn — L] + [pl [Jon — €] = 0.

[unvn — €| < Nunvn — wnl|| + [Junl’ — L0 < [Jun | |on — €| + 1€'] |lun, — €]| — 0.
O

Théoreme

| Sioy, e K — aetu, € E— {alors ay.u, — ol

dém. :

llon wr, — @ l]] < ||y — @ug ]| + ||acu, — ak]| = o — af |Jun|| + || [|[un — £]| — 0.
[l

14.4.3 Effet d’'un changement de norme

Théoreme
Si N est dominée par N5 alors toute suite convergeant pour N converge vers la méme limite
pour N.
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dém. :
Car avec les notations qui précedent

Ni(up —£) < aNo(u, —£€) =0

O

Corollaire
Deux normes équivalentes définissent les mémes suites convergentes et celles-ci ont mémes
limites pour les deux normes.

Attention : Si N; et N, ne sont pas équivalentes, il se peut qu’une suite converge pour une norme et
diverge pour I’autre voire qu’elle converge deux pour ces deux normes, mais vers des limites différentes !

Exemple £ = C([0,1],R) munide ||.|[, et || .|| .. Etudions la convergence de la suite des fonctions

fn i t— t" pour ces deux normes.

1 ) -
Ona ||f,]l, = 1 0 donc f,, L)

Or || fn|l.o = 1 qui ne tend pas vers 0.
Conclusion : on retrouve a nouveau que || . [|; et || . || ., ne sont pas équivalentes sur .

14.4.4 Convergence en dimension finie

Soit £ un K-espace vectoriel de dimension finie p € N* muni d’une base e = (e1, ..., ep).
Soit u = (u(n))nen une suite d’éléments de E. Pour tout n € N, on peut écrire

u(n) =ui(n).er + - +up(n).ep
Définition

Les suites scalaires u; = (u;(n))nen sont appelées suites coordonnées (ou composantes) de
la suite vectorielle v dans la base e .

Exemple Supposons E = R etu, = (n*,1/(n +1)).

Les suites coordonnées de u dans la base canonique de R? sont (n*),en et (1/(n + 1)),y

Théoréme

On a équivalence entre :

(1) u converge ;

(ii) les suites uy, . . ., u, convergent.
De plus, si tel est le cas,

limu = (limwug).e; + -+ (limu,).ep

dém. :

Choisissons || . || = || . [| -
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(i) = (ii) Supposons que la suite u converge vers £ = l1e1 + - - - + {pep.
Pour tout j € {1,...,p},
luj(n) — 4;] < Jlu(n) — €| — 0

donc u;(n) — ¢;.
(ii) = (i) Supposons que pour tout j € {1,...,p}, u;(n) — ¢;. Considérons alors £ = l1e1 +- - -+ {pep.
Ona

P
lu(n) = £l o o = max{[u(n) = ], fup(n) = o]} <D fu(n) = £5] =0
j=1

donc u — 4.
O

Exemple Dans R?,

1 \"
nsin—, [ 14+ — — (1,e)
n n n—4o0o

Exemple Dans M, ,(K),
Ap = AeVie{l,...,pt,Vie{l,...,q},[An]; ; = [4]

2]

Exemple Dans M, (K),
A, —+AetB, - B=A,B, > AB

En effet .
[AnB);, Z . [AB],

Exemple Soit A € M, (K). On suppose A™ — B. Montrons B> = B.
Par extraction A" — B et par ce qui précede

AP = A" x A" B?

Par unicité de la limite
B?=R

14.4.5 Convergence dans un espace produit
b
Soit (E1, N1),...,(Ep, Np) des espaces normés et E = Fy x --- x E,, = H E; muni de la norme
j=1

lzll = max Nj(z;)

Soit u = (u(n)) une suite d’éléments de E. Pour toutn € N,
u(n) = (u1(n), ..., up(n))
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Définition

Les suites vectorielles u; = (u;(n)) sont appelées suites coordonnées de la suite .

Exemple Supposons £y = Ey = M, (K) et pour A € M, (K) considérons

un:<A”, L A)
n+1

Les suites coordonnées de u sont (A™), et (IA .
n+1 neN

Théoréme

On a équivalence entre :

(i) u converge ;

(ii) les suites uy, . . ., u, convergent.

De plus, si tel est le cas

limu = (limw,,...,limwu,)

Exemple Si A,, — Aet B, — B dans M, (K) alors (4,, + B,,, A,,B,,) — (A + B, AB) dans
My (K2

14.4.6 Séries d’éléments d’un espace normé

Soit (uy,) une suite d’éléments de I’espace normé (E, || . ||).
14.4.6.1 Vocabulaire

Définition
On appelle série de terme général u,, la suite (.5,,) définie par

Cette série est notée Z uy, et le terme S, est appelé somme partielle de rang n de cette série.

Exemple Les séries numériques sont un cas particulier.

1
Exemple Soit A € M, (K), Z A" et Z — A" sont des séries matricielles.
n!
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Définition
On dit que la série Z u,, converge si la suite (.S,,) converge.
Sa limite .S est alors appelée somme de la série et est notée

400

> un

n=0
On introduit aussi

+00
Rp= Y wu=5-5,
k=n+1

appelé reste de rang n de la série.

14.4.6.2 Série absolument convergente

Définition
Une série Z u, d’éléments de FE est dite absolument convergente s’il y a convergence de la

série numérique a termes positifs Z [len]|-

Théoréme
Si I’espace E est de dimension finie, 1’absolue convergence d’une série d’éléments de E en-
traine sa convergence

dém. :
Introduisons e = (eq, ..., e,) une base de E.
Soit E u(n) une série d’éléments de E et uq, ..., u, les suites coordonnées dans e de la suite u.

u(n) =ui(n).er +--- +up(n).ep
Toutes les normes étant équivalentes sur F, il existe o > 0 tel que

<all

I Nlose
et alors, pour tout j € {1,...,p}

Vn €N, |uj(n)] < llufl o < aflull

Par comparaison de séries a termes positifs, il y a convergence absolue, et donc convergence de E uj(n).
n

On en déduit la convergence de la série Z u(n) car sa suite de sommes partielles converge.
O

Exemple Soit E = M,,(K) muni d’une norme d’alggbre || . ||.
Soit A € M,,(K) vérifiant || A|| < 1. Etudions »  A™.

La série matricielle Z A™ converge absolument car
A" < A"

et la série Z | A||™ converge puisque || A]| < 1.
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On peut alors introduire la matrice
“+oo
B=) A"
n=0
Pour N € N,on a

N
k __ N+1
(Ip—A)Z%A =1, = AN ——— 1,

Or on a aussi

N
— k —
(I, — A) ;) AP ——— (I, - A)B

On en déduit

B=(I, - 14)71
14.4.7 Musculation
Théoréme
Soit E un espace de dimension finie et f : E — F une application telle qu’il existe k € [0, 1]
vérifiant

Va,y € E, [|f(2) = F)l <Kz —yl

Montrons que f admet un unique point fixe.

dém. :
Unicité : si et y sont deux points fixes de f alors

e =yl = [If (=) = FWI < ke -y

Sachant k € [0, 1], ceci entraine x = y.

Existence : soit zg € E et (2, )nen donnée par x,, 11 = f(2,). On vérifie par récurrence ||, 11 — Zp|| <
k™ ||z1 — o]|. On en déduit que la série télescopique Z ZTpa1 — Zn, converge absolument et donc la suite
(xy,) converge. On peut alors introduire x o, sa limite. Puisque || f(Zo0) — Znt1|| < kK [|Too — 2| — 0,
on obtient z,+1 — f(Zoo) puis, par unicité de la limite, f(Zs) = Zoo-

(]
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Chapitre 15

Suites et séries de fonctions numériques

Les fonctions étudiées sont a valeurs dans K = R ou C.
I et J désignent des intervalles de R contenant au moins deux points.

15.1 Suites de fonctions

15.1.1 Présentation
Définition
| On appelle suite de fonctions de I vers K toute suite (u,,) d’éléments de F (I, K).

Exemple Considérons u,, : [0,1] — R définie par u, (t) = t".
(un)nen est une suite de fonctions de [0, 1] vers R.

1
08
0.6
0.4

0.2

B 02 04 , 08 08 1

15.1.2 Convergence simple

Soit (u,,) une suite de fonctions de I vers K.
Définition
On dit que la suite de fonctions (u,,) converge simplement vers u : [ — K si

Viel, up(t) — ul(t)

n—-+o0o

cvs
On note alors u,, —— u
I
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Exemple Convergence simple de (uy,),ecn avec
un(t) =t" avec t € [0,1]

Soit t € [0, 1].
Quand n — +o00
Sit € [0, 1] alors u, (t) — 0.
Sit = 1 alors u,(t) — 1.
. cvs
Par suite u,, —— u avec

N 0 sitel0,1]
w: 1 sit=1

Exemple Convergence simple de (uy,),cn avec

n

up(t) = avect € RT

14t

08

06

0.4

02

07707 04 s 08 1 12 14,18 18 2 22 24 25 28 3

Soitt € R*.
Quand n — +o00
Sit € [0, 1] alors uy, (t) — 0.
Sit=1alorsu,(t) =1/2 — 1/2.
Sit €1, +oo] alors uy,(t) — 1.
Finalement u,, % U avec
0 site0,1]
u:t— Q< 1/2 sit=1
1 sit=]1,+o0]

Exemple Convergence simple de (u,)n>1 avec

wn(f) = (1 - ;)n sit € [0,n]

0 sit € [n,+o00]
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Soitt € R™.
Quand n — +o00
Pour n assez grand, t < n donc

un(t) = (1 _ ;)n — exp (nIn(1 — t/n)) = ™

.. cvs
Ainsi u,, —— u avec

w:tret

Théoreme
. cvs cvs
Siuy, T>uetun ijalorsu:v.
dém. :
Pour tout t € I, on a uy, (t) — u(t) et u,(t) — v(t) donc u(t) = v(t).
O
Définition

. ¢cvs . oo .
Si uy, o alors on dit que u est la limite simple de la suite (u,,) et on note

uw= lim wu,
n—-+oo

15.1.3 Propriétés de la limite simple

Proposition

. cvs . . .
Si u, — u et si chaque w,, est positive alors u est positive.
I

dém. :

Si toutes les fonctions u,, sont positives alors pour tout ¢ € I, u(t) > 0 par passage a la limite de
I'inégalitéu,, (t) > 0.

O

Proposition

. cvs . . .
Siu, —— uetsi chaque u,, est croissante alors u est croissante.
I
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dém. :

Si toutes les fonctions u,, sont croissantes alors pour tout z < y € I, u(z) < u(y) par passage a la limite

de I'inégalitéu,, (z) < un(y).

cvs . e 1 .
()u,, —— u et chaque u,, continue n’implique pas u continue !

un Y55 0 n’implique pas /un(t) dt — /u(t) de!
I I

1
Exemple Etudions / uy, (t) dt avec u, (t) = n?t™(1 — t)
0

Soit t € [0, 1].

Quand n — +o0.

Sit € [0, 1] alors w,, (t) — O par croissance comparée.
Sit = 1alors u,(t) =0 — 0.

. CVs. =
Finalement u,, —— 0.

Cependant
1 1 1
L/mezﬁ</ﬂw—/t“%0= LB |

1 n
Up (1 ——= | ~—=— 400!
n e

En fait

15.1.4 Convergence uniforme

Soit (u,,) une suite de fonctions de I vers K.
Définition
On dit que (u,,) converge uniformément vers v : I — K si

Ve>0,IN eN,VneN,n> N =Vt e I, |u,(t) —u(t)] < e

On dit alors que u est limite uniforme de la suite (u,,) et on note

cvu cvu
un—>uouunT>u

Remarque Comparativement, dire que (u,,) converge simplement vers  signifie :

Vt € I,¥e > 0,3IN >0,Yn e N,n > N = |u,(t) —u(t) <e

http://mp.cpgedupuydelome.fr 362

@O0



CHAPITRE 15. SUITES ET SERIES DE FONCTIONS NUMERIQUES

Pour la convergence simple, le rang N est susceptible de dépendre de ¢ alors que pour la convergence
uniforme N doit convenir pour tout ¢t € I (on dit qu’il est uniforme en ¢ ).

Remarque La convergence simple se comprend comme la convergence des fonctions « point par
point » .
La convergence uniforme se comprend comme la convergence des fonctions « dans leur globalité » .

Théoreme

. cvuU cvs

Siuw, —— w alors u,, —— u

Ainsi, s’il y a convergence uniforme, c’est vers la limite simple de la suite de fonctions; en
particulier il y a unicité de la limite uniforme.

dém. :

Qui peut le plus, peut le moins.

g

Théoréme

Soit (u,,) une suite de fonctions de I vers K convergeant simplement vers « : I — K.
S’il existe une suite réelle (o, ) vérifiant

vVt e I, |u,(t) —u(t)] < apeta, — 0
n—-4o0o

alors la convergence de la suite (u,,) est uniforme.

dém. :
Pour tout ¢ > 0, il existe NV € N vérifiant

YneN,n> N = |a,| <e

et alors
VneN,n>2N=Vtel,|u,(t) —ut) <e

O

Exemple Convergence uniforme de (u,)n>1 avec

t+n
n(t) = ——~ teR
Unp (t) n ) pour
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Soit t € R.
Quand n — 400,
() > —
” -
" 14 t2
. cvs
Ainsi u,, —— u avec
1
it ——
“ 142
Etudions
(1) —u(t) = ~—
u —u(t) = ——=
" nl+t2

En vertu de I’inégalité
2|ab| < a® + b?

on a
1
n(t) —ull)| < — =a,
fun(t) —u(t)| < 5 =a

. . cvu
Puisque «,, — 0, on obtient finalement u,, ——

15.1.5 Convergence en norme uniforme

L algebre B(I,K) des fonctions bornées de I vers K est normée par

[flloe = sup [£(2)]
tel

Définition

La norme infinie ||. || est encore appelée norme uniforme et est parfois notée || . || ;.

Remarque On peut calculer exactement || f||  a partir du tableau de variation de f.

Théoreme
Soit (u,,) une suite de fonctions de I vers K.
On a équivalence entre :
(i) (u,) converge uniformément vers une fonction u : [ — K;
(ii) A partir d’un certain rang, les fonctions u,, — u sont bornées et ||u,, — u||Oo ;— 0.

dém. :
Ecrire
Vi eI, |un(t) —u(t) <e
équivaut a signifier
u, — ubornée et ||u, —ul| ;<€

0
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Exemple Convergence uniforme de (u, )nen avec
un () = t" pour t € [0,1]

cvs
Uy, —— U AVEC
[0,1]

[0 site0,1]
Mw—{]ﬁt_l

Etudions u,, — u. On a
t" site[0,1]

“““_Mw:{l sit=1

donc |u, — ul|, = 1 qui ne tend pas vers 0 donc la suite de fonctions (u,,) ne converge pas
uniformément.
Cependant, pour a € [0, 1],

un = ullog 9,0 = @™ — 0

donc

Exemple Convergence uniforme de (u,)nen avec

un () = nt(1 —t)" pour t € [0,1]

\\\‘\‘{\\\““‘7‘\““\"\\
AN
\\\\\\\\\

Soitt € [0, 1]
Quand n — +o00
Sit = 0alors u,(t) =0 — 0.

Sit €]0,1] alors u, (t) — 0 par croissances comparées.

. cvs ~
Finalement u,, —— u = 0.

En étudiant les variations de d,,(¢) = w,(t) — u(t) on obtient

t 0 1/(n+1) 1
un(t) —u() [0 2 up(1/(n+1)) Ny O

bt~y = () =" (1= 2 ) L
Un = Uleo = Un n+1) n+1 n-+1 e

Par conséquent la suite de fonctions (u,,) ne converge pas uniformément.
Cependant pour a € 0, 1].

donc
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1
Pour n assez grand ] < a, et puisque

t 0 1/(n+1) a 1
up(t) —u(®) [0 7 un(1/(n+1)) N un(a) N 0

On obtient donc

[un = ull o = un(a) ———0

o0

Ainsi u,, <Y 0 pour tout a € 10, 1].
a,l

15.2 Séries de fonctions

15.2.1 Présentation

Soit (tp )n>n, une suite de fonctions de I vers K.
Définition
On appelle série de fonctions de terme général u,, la suite de fonctions (.Sy,)n>n, avec

Sn:i:uk

k:no

Cette série de fonctions est notée Z up, et S, est appelée somme partielle de rang n de
n>=ngo
celle-ci.

Remarque Dans la suite on supposera ng = 0 quitte a poser nulles les premiéres fonctions de la suite
(tn)nen- La série de fonctions est alors simplement notée E Up,.

Exemple Considérons u,, : R — R définie par u, (t) = t".
La série de fonctions Z u, est la suite de fonctions (S,,) avec

1— tn+1

Sat) = up(t) =Y t" =0 17 sit#1
k=0 k=0 n+1 sit=1

15.2.2 Convergence simple

Soit Z u,, une série de fonctions de I vers K.
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Définition
On dit que la série de fonctions Z u, converge simplement si la suite (.S,,) de ses sommes

partielles converge simplement vers une certaine fonction S.
Cette fonction S est appelée somme de la série de fonctions et on note

“+oo
s=3u
n=0

Théoreme

On a équivalence entre :

(i) la série de fonctions Z u,, converge simplement sur [ ;
(ii) la série numérique Z uy, (t) converge pour chaque ¢ € I.
De plus, si tel est le cas

+o0 +oo
(Z un> (t) = Z Un(t)
n=0 n=0

dém. :
(i) < Vt € I, (S,(t)) converge.

Or S,(t) = <Z ug | (t) = Zuk(t) donc
k=0 k=0
) Vtel, Z un, (t) converge.
De plus, on a alors
+oo

n—+o0o
n=0

O
Définition
Si la série de fonctions Z uy, converge simplement, on peut introduire son reste de rang n
+oo +oo
R, = Z up 1t Z ug ()
k=n-+1 k=n-+1
Proposition
Si la série de fonctions Z uy, converge simplement alors sa somme .S vérifie
VS, =
S=8,+R,etR, —0
dém. :
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Pour tout t € 1,

+o0 +oo n +o00
S(t) = (Z uk) () =D up(t) =D ux(t)+ Y ur(t) = Sn(t) + Rn(t)
k=0 k=0 k=0 k=n+1

De plus, pour tout ¢t € I, R,,(t) — 0 car R, (t) est le reste d’une série numérique convergente.
O

Exemple Convergence simple de Z Uy, avec
Up : R — R définie par u, () = "

Pour ¢ € R, la série numérique Z Up(t) = Z t" converge si, et seulement si, t € |—1,1].

Par conséquent, la série de fonctions Z u,, converge simplement sur |—1, 1[.
Sa somme S est définie sur |—1, 1] et

+00 1
S(t)y=> "= T pourt €]-11]
n=0

Exemple Convergence simple de g Uy, avec
n>1

u, : R — R définie par u,(t) = 1/n’

Pourt € R, Z un(t) = Z 1/n' converge si, et seulement si, t > 1.

Par conséquent, la série de fonctions Z u,, converge simplement sur |1, +oo].
Sa somme est définie sur |1, +00[, on la note et cela définit la fonction z&ta de Riemann

+oo

¢(t) = Z % pourt € |1, +00]

n=1

Remarque L’étude de la convergence simple de Z Uy, fournit le domaine de définition de la

15.2.3 Convergence uniforme

Soit Z u,, une série de fonctions de I vers K.

Définition
On dit que la série de fonctions Z u,, converge uniformément lorsque la suite (S,,) de ses
sommes partielles converge uniformément.
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Théoreme
On a équivalence entre :

(i) la série de fonctions E u,, converge uniformément sur I ;

.. .. . . CcVU.
(i) la série de fonctions Z u, converge simplement et 1, T> 0.

dém. : .
()e35:1-K,8, Y% s

=351 5K,S, Y% sets, -5 V%0
& (i)

0

Remarque Pour étudier la convergence uniforme de (R,,) vers la fonction nulle, on pourra :

- raisonner par majoration uniforme, c’est-a-dire déterminer (v, ) telle que
Vit e I,|R,(t)] < ay avec o, — 0

- évaluer ||R,, ||, et étudier si | R, ||, — O.

Exemple Convergence uniforme de E Up, AVEC
n>1

pourt € RT

un(t) =

(="

+1

="

Pour t € Rt la série
Z n-+t

converge simplement sur R

“+oo
_1 n
La fonction S : t — Z (=1) est donc définie sur R™
n=1

n+t
On a
+o0 k
(=1)
R,(t) =
=2 %55
k=n-+1
Par le CSSA,
1 1

[ Rn(8)] <

<
n+1+t n+1 n—stoo

Par majoration uniforme, on peut affirmer que E u,, converge uniformément sur R

15.2.4 Convergence normale
Soit Z u,, une série de fonctions de I vers K.
Définition
On dit que la série de fonctions Z u,, converge normalement lorsque :

- les fonctions u,, sont toutes bornées ;
- la série numérique E [|tn |, est convergente.

est convergente en vertu du CSSA donc la série de fonctions Z U,
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Théoréme
Si la série de fonctions E u,, converge normalement alors celle-ci converge uniformément et
la convergence est absolue en tout point.

dém. :
Supposons la série de fonctions E u,, normalement convergente sur I.
Pour tout ¢ € I, |u,(t)| < ||un||,, donc par comparaison de séries a termes positifs, la série numérique

Z uy, (t) est absolument convergente.

En particulier, cette série converge et donc la série de fonctions Z Uy, converge simplement.
Aussi, pour tout t € I,

+oo “+o0
(Ra@) < D @< D sl
k=n+1 k=n+1
donc
“+ o0
IR < Y lunllg =0
k=n+1

Par majoration uniforme de limite nulle, on peut affirmer que la série de fonctions E U, converge uni-

formément.
O

Remarque CVN = CVU = CVS.
Les réciproques sont fausses.

Remarque Pour montrer qu’une série de fonctions Z Uy, converge normalement sur 7, il suffit de
déterminer («,,) telle que
Vit € I, |un(t)] < ay, et Z ay, converge

Exemple Convergence uniforme de g Uy, avec

in(nt
un(t) = 2121(_?1) pourt € R

On a
1

lun (t)] < 2l

1 S . . .
Or E R converge et donc, par majoration uniforme, la série de fonctions E Uy, converge
n

normalement.
Par conséquent, g u,, converge simplement et uniformément sur R.

Exemple Convergence uniforme de E Uy, avec
n>1
1

1
Un(t) = E — m pourt € [O, +OO[
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1 1
Pourt € RY, Zun(t) = Z < - +t> avec
n o n

1 1 t t

n nth:n(nth)n—:-ooﬁ

Par équivalence de série a termes positifs, il y a convergence de E uy, (t) et donc la série de fonctions

converge simplement sur R
Etudions sa convergence normale. Puisque

t 0 +00
up(t) |0 2 1/n

uy, est bornée et [|un ||, g+ = 1/n. 110’y a pas convergence normale sur Rt
Cependant pour a > 0, on a
vt € [0,qa], |un(t)] < un(a)

et puisque un (a) converge, il y a convergence normale (et donc uniforme) de la série de fonctions
puisq g y g

étudiée sur [0, a] pour tout a € RT.

Remarque En pratique la convergence uniforme d’une série de fonctions s’obtient le plus souvent :
- par convergence normale ;
- par || R, ||, — 0 via exploitation du critére spécial des séries alternées si cela est contextuel.

15.3 Continuité et limite

15.3.1 Continuité

Soit (uy,) une suite de fonctions de I vers K.

Théoréme
. cvu . . .
Si u,, — u et si chaque u,, est continue en a € I alors u est continue en a.
dém. :
Exploitons

lu(t) — w(a)] < [u(t) = un(t)] + [un(t) — un(a)| + un(a) — u(a)|
Soit e > 0. Il existe N € N tel que pour tout n € N,

n>=N=Vtel, |u,(t)—u(t) <e
Fixons un tel n > N. La relation précédente donne

|u(t) — u(a)] < 2+ |un(t) — un(a)|
La fonction u,, étant continue en a, il existe o > 0 tel que

Vtel, |t—a| <a= |un(t)_un(a)| S¢€
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En vertu de la relation initiale, on a alors
viel, |t —al <a=|ul®t) —ula)] < 3¢

Ainsi, la fonction u est continue en a.
A

u(t)
u(a) T~

/ B

v

O
Corollaire

] La limite uniforme d’une suite de fonctions continues est continue.

Exemple Soit u,, : [0,1] — R définie par u, () = t".
La limite simple de (u,,) n’est pas continue alors que chaque u,, I’est : il n’y a pas convergence uniforme
sur [0,1]!

Corollaire
Si E Uy, est une série de fonctions continues uniformément convergente alors sa somme S est
continue.

dém. :

n
cvuU . .
S, = Z ur, — S et chaque 5, est continue donc S est continue.

k=0
O

Exemple Définition et continuité sur [0, 1] de la fonction

+oo
. C*l)ntn
S't}_}gin—i—l

Introduisons

nit€el0,1
un 2t €[0,1] = o=

Pour tout ¢ € [0, 1], la série numérique Z un (t) converge via CSSA.

Par suite la série de fonctions Z uy, converge simplement sur [0, 1] et donc S est définie sur [0, 1].
De plus, par le CSSA,
$n+1 1

R,(t)] < < 0
‘ ()| 2n+ 3 2n + 3 n—+4oo
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Par majoration uniforme de limite nulle, on peut affirmer que la série de fonctions Z Uy, converge
uniformément sur [0, 1]. Or chaque u,, est continue donc la somme S est continue sur [0, 1].

15.3.2 Continuité par convergence uniforme sur tout segment

Soit (u,,) une suite de fonctions de I vers K.
Définition
On dit que la suite de fonctions (u,,) converge uniformément sur tout segment de I vers u :

I — Klorsque

Va,b] C I,uy, Y

[a,?]

Proposition

Si tel est le cas, la suite (u,, ) converge simplement vers u sur I.

dém. :

Pour t € I, il existe [a,b] C I tel que ¢ € [a,b] et u, % u entraine ., (t) e u(t).
a,b n——+oo

O

Exemple Si (u,,) converge uniformément sur [ alors (u,,) converge a fortiori uniformément sur tout
segment de [.

Attention : La réciproque est fausse : la convergence uniforme sur tout segment de I n’implique pas la
convergence uniforme sur /.

1 1
Exemple Précédemment, pour u,(t) = — — ——

n n+t
[0, a] pour tout @ > 0 donc E u,, converge uniformément sur tout segment de [0, +00|.

,onavuque E U, convergeait normalement sur

Théoreme
Si (uy,) converge uniformément vers u sur tout segment de [ et si chaque w,, est continue alors
u est continue.

dém. :

Soit tg € I.

Si ¢y n’est pas extrémité de I, il existe o > 0 tels que [tg — a, tg + o] C I.

Par convergence uniforme de (u,,) sur le segment [tg — «, tg + «], on peut affirmer que la fonction u est

continue sur ce segment et en particulier la fonction u est continue en #g.

Si ¢ est une extrémité de I : idem avec des segments [to, to + & ou [tg — «, to].

O

Corollaire
Si Z u, est une série de fonctions continues convergeant uniformément sur tout segment de
I alors sa somme est continue.
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+oo
t’n
Exemple Définition et continuité sur R de la fonction S : t — ; @n+l)
t’VL
Introduisons u,, : R — R définie par u,(t) = Gnr)

Pourt € R.

) 1 1 t" 1
un = — = 0 —_—
(2n+1)2n (2n —1)! n?
car par croissances comparées
tn

@n—1y "

La série numérique g uy, (t) est absolument convergente et donc convergente.

Ainsi, la série Z uy,, converge simplement sur R et donc S est définie sur R.
Etudions la convergence uniforme via convergence normale.

La fonction u,, n’est pas bornée sur R, il n’y a pas convergence normale sur R.
Soita > 0.

Sur [—a, a],

[un ()] < G5y = (@)

(2n+1

Puisque la série numérique g uy, (a) converge, on peut par majoration uniforme, affirmer que la série
de fonctions E u,, converge normalement, et donc uniformément, sur [—a, a.

Puisque ceci vaut pour tout a > 0, on peut affirmer que Z Uy, converge uniformément sur tout segment
de R, or chaque u,, est continue donc S est continue sur R.

15.3.3 Limite et comportement asymptotique

Soit (u,,) une suite de fonctions de I vers K et a un point ou une extrémité éventuellement infinie de I.

Théoréme
Si (u,,) converge uniformément sur I vers u : I — K et si chaque u,, tend vers une limite finie
£, en q alors la suite (¢,,) converge et
u(t) — lm £,
t—a n—+oco

Autrement dit

B n @) = L fig (0

dém. :
Commengons par établir que la suite (£,,) est bornée.
Poure =1 > 0, il existe N € N tel que

Vn = NVt € I, |u,(t) —u(t)] <1

et donc
Vn = NVt € I, luy(t) —un(t)] <2
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En passant a la limite quand ¢ — a, on obtient
|€n - €N| < 2

Ainsi, la suite (¢,,) est bornée.

Par le théoréme de Bolzano Weierstrass, elle posséde une suite extraite convergente (£,(,,)) de limite /.
Montrons que u tend vers £ en a.

Soite > 0. Il existe N € N tel que

Vn > NVt € I, |up(t) —u(t)] <e
En particulier
Vn = NVt € I, [ugm)(t) —u(t)| <e

Parallélement, il existe N' € N tel que
Vn > N/, |‘€<p(n) — éw‘ <e¢

Considerons, n = max (N, N'). Puisque ;) — £, (,), On obtient au voisinage de a
a

[ty (1) = ooy | < €
puis
[u(t) — loo] < 3¢
Ainsi u converge vers /., en a. Ceci détermine alors la valeur de /., de facon unique et puisque la suite

(£,,) est bornée et ne posseéde qu’une seule valeur d’adhérence, elle converge vers celle-ci.
]

Corollaire

Si E Uy, converge uniformément sur I et si chaque u,, tend vers une limite finie £,, en a alors

la série numérique E ¢,, converge et

+oo +oo
Z Up (t) — Ly
n=0

t—a
n=0

Autrement dit

+oo +oo
3 )= 3 0

dém. :
n +oo n
S, = E Uy, converge uniformément vers S = E U, et S, — E lim ug donc par le théoreme de la
a a
k=0 n=0 k=0

double limite, la suite (Z lim uk> converge et S — lim Zlim U
k=0

a n—+oo
k=0
O
+oo 1
Exemple a) Définition et continuité de S(z) = ————pourz € R.
ple 2) (2)=> 5P

n=1
b) Limite en +oo0.
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¢) Equivalent en +o0.
a) Posons
1

n2 + 2

U () =

Les fonctions u,, sont définies et continues sur R et

. L, . 2 L. .
Puisque la série Z 1/n* converge, la série de fonctions Z u,, converge normalement, et donc

uniformément sur R. On en déduit que S est définie et continue sur R.

b) On a
1
VYneN, lim —— =0
z—+oo n? + 12
Puisqu’il y a convergence uniforme au voisinage de 400, on peut appliquer le théoreme de la double

limite et affirmer

“+ o0
m, S(a) =2 0=0

¢) La fonction ¢ + 1/(t? + x?) est décroissante et donc
/“1 a1 </” dt
n 24 a2 T n2422 12 a2

oo dt tooadt
- < S(z) < 3
/1 71z S5 /O 2 1 22
Puisque

oo dt 1 t\1™° = oo dt /2 —arctan (1/x) «
5T 5 — | arctan | — =_—et 5 5 = ~
0 t°+zx T x) ], 2z 1 t°+x T 2z

on obtient

En sommant, on obtient

Exemple a) Définition et continuité de S(t) =

b) Limite de S en +oc.

c) Développement asymptotique a deux termes en +oo.
(=n"

nt+1°

Pour ¢ > 0, Z un (t) converge en vertu du CSSA.

a) Introduisons u,, : t € R™ —

E u,, converge simplement sur R™* donc S est définie sur R™*.
Par le critere spécial des séries alternées

1

|R(t)] < [CESES
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Pour a > 0, sur [a, +00],

1
R,(t)] < 0
| ( )| (n—l—l)a—i—l n—-+o0

E u,, converge uniformément sur [a, +oo[ pour tout a > 0 donc E u,, converge uniformément sur

tout segment de R™*. On en déduit que la fonction S est continue.
b) Z u,, converge uniformément sur [a, +oo] et

I 1 sin=0
1m u, = .
Joo 0 sinon

Par le théoreme de la double limite, la série Z Em u, converge et
o0

+oo

iﬂ%s ;igun +040+

¢) On a déja S(¢) i 1 + o(t). Déterminons un équivalent de S(¢) — 1 quand ¢t — +oo0.
—+00
Ona

+oo
(=)
St)—1=
(> ot nt+1
donc
—+oo
(=1)"t
t(S(t)—1) =
(56)-D=3
Introduisons
—1)"t
Up it >0 Q
nt+1

Le critere spécial des séries alternées s’applique a Z v, (t) donc

t 1
<

Rnt g X
[Fen ()] (n+1Dt+1 " n+1 notoo

E v, converge uniformément sur R™* et puisque

—1)n
limv,, = (=1)
+oo n
—1)"
le théoreme de la double limite s’applique et la série Z (=1) est donc convergente avec
n
+oo
. N =D
t_l}]jrnoot(S(t) -1)= S =—1In2
On en déduit o
S()—1 ~ —==
t—+oo t
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15.4 Intégration et dérivation
15.4.1 Intégration sur un segment

Théoreme
Soit (u,, ) une suite de fonctions de [a, b] vers K.
Si (uy,) converge uniformément sur [a, b] et si chaque u,, est continue alors la fonction v =

b b
lim w,, est continue et la suite < / Un (t) dt) converge vers / u(t) dt.
a a

n—-+oo

Autrement dit .

lim u,(t) dt = /b u(t) dt

n—-+oo a

dém. :
b

u est continue car limite uniforme d’une suite de fonctions continues, on peut donc introduire / Uu.
a

Puisque
b b b
/ un(t)dt—/ u(t) dt </ fun(t) — u(t)] dt < (b—a) [lun — ull . =0
ona
b b
/ (1)t — / u(t) dt
O
Corollaire
Soit Z uy, est une série de fonctions de [a, b] vers K
Si
1) chaque u,, est continue ;
2) Z u,, converge uniformément sur [a, b] ;
+00 b
alors sa somme Zun est continue et la série numérique Z / up,(t) dt converge vers
n=0 a
b +o0
/ > un(t)dt.
@ n=0
Autrement dit
+oo b b +oo
Z/ Un (1) dt = / > un(t)dt
n=0"a @ n=0
dém. :

n ove +o0 b b n b b +oo
So =Y ur S S =Y undone [ 5, [ sie Y [wo [ 3w
k=0 n=0 a a k=077 @ n=0

O

1 =
1 1
E le Calcul S(t)de S(t) = o '
xemple acuonS/O (t) dt avec S(t) Z(n n+t>

n=1

http://mp.cpgedupuydelome.fr 378 @O0



CHAPITRE 15. SUITES ET SERIES DE FONCTIONS NUMERIQUES

1 1

Introduisons u,, : [0, 1] — R définie par u,(t) = — — .

o n n+t
na

1 1
||Un|\OO = m =0 (n2>

La série de fonctions E u,, converge normalement sur [0, 1] donc uniformément et

1 +o0 1q 1
n n+t —\Jon n+t

Or )
/1—#&:3—111”“
o n  (n+1t) n n
et
" /1 k41 "1
S (r-mE2) =S S cmm 1) -4
k k k
k=1 k=1
donc

Attention : Ces résultats ne valent que pour une intégration sur un segment !

1
Exemple Considérons u,, : [0, +-00[ — R définie par u,, (t) = —e~*/".
n

1 oo
lunll o = = o 0 donc u, ——2% 0 alors que/ U (t) dt = 1 ne tend pas vers 0!
0

0,+00[

15.4.2 Dérivation

Lemme
Soit () une suite de fonctions continues de I vers Keta € I.
On pose

B, (z) = / " on(t) dt

Si (pn) converge uniformément sur tout segment de I vers une fonction ¢, alors la suite de
fonctions (®,,) converge uniformément sur tout segment de I vers la fonction ® avec

dém. :
Notons que ¢, et ¢ sont continues ce qui permet d’introduire les intégrales définissant ®,, et P.
Soit [, 8] un segment de I. Quitte & agrandir ce segment, on peut supposer que a € [a, [].
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Pour tout = € [« ]
Casx > a

@, (2) — B(a)] < / [on(t) = o(t)] dt < (2 = a) o0 — @l g < (8= @) 0n — Plloc fars

Casr <a
Idem.
Ainsi
195 — @l g oy < (B — @) lon = @llc a5 — O

O

Théoreme
Soit (u,,) une suite de fonctions de classe C* de I vers K

alors la fonction uw = lim w, estde classe C* etv/ = lim /.
n——+oo n—-+oo

Ainsi ,
< lim un> = lim u),
n—+4o0o n—+oo

De plus, la convergence de la suite (u,,) est uniforme sur tout segment de I.

Si (uy,) converge simplement sur I et si (u),) converge uniformément sur tout segment de 7 ;

dém. :
Posons ¢, = u,, et p = limu,, = lim ¢,,.
Soit a € I et ®,, définie par

b, (z) = /1 on(t)dt

Par le lemme, (®,,) converge uniformément sur tout segment de I vers & donnée par
T
O(x) = / o(t) dt

L application ® est de classe C* avec &' = ¢
Paralléemement

pour tout z € I.
Par unicité de limite,

puis
u(z) = @(z) + u(a)

Par suite u est de classe C' avec v/ = ¢ = limu/,.
De plus, soit [, 5] C I.
On a
un () — u(x) = P () — ©(z) + un(a) — u(a)

donc

[un = Ullog o8] S 1Pn = Pllog 0,8 T [un(a) = u(a)]

OO’[QVﬁ
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or &, LY et un(a) — u(a) donc

[o,8

Il — ul| =0

oo,[a, B

Ainsi la convergence de (uy,) est uniforme sur [, 3.
(]
Corollaire

Soit Z u,, une série de fonctions de classe C! de I vers K.

1
+oo

alors la somme Z u,, est de classe C! et
n=0

+oo ! +oo
down | =D un
n=0

n=0

Si E Uy, converge simplement sur I et si g u,, converge uniformément sur tout segment de

Attention : L hypothése de travail est « classe C' » et non seulement « dérivable » !

+oo
—_1)"
Exemple Monotonie sur |0, +o0o[ de la fonction S : ¢ — Z ( —i—)t
n
n=0

Introduisons les fonctions u,, : |0, +o00[ — R définies par

Soit t > 0. la série numérique Z uy, (t) converge en vertu du CSSA.

La série de fonctions Z u,, converge alors simplement sur |0, +oo[ et sa somme S est donc bien définie

sur ]0, +o0].
u,, est de classe C! et
(_1)n+1

uy, (t) = CEDH

Soit ¢t > 0. La série numérique Z ul, (t) converge en vertu du CCSA

On a
1 1

R (1) <

Ainsi la série de fonctions u! converge uniformément sur ]0, +oo/.
n b)

On peut alors affirmer que S est de classe C* et

—+oo
_1)71,-1—1
S'(t) = (it
2 iy
—1 0+1
Par le CSSA, S’(t) est du signe de son premier terme <0.
t2

< 0
m+1+1t)?2 ~ (n+1)% nodtoo
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La fonction S est donc décroissante.
Pour compléter le tableau de variation de .S, exploitons le CSSA pour encadrer S par deux sommes
partielles consécutives :

On peut alors affirmer S +—> OetS — +o00.
oo 0

15.4.3 Dérivées d’ordres supérieurs

Théoréme
Soit (uy,) une suite de fonctions de classe C? de I vers K.
Si les suites (uy,)...., (uP~Y)) convergent simplement sur I et si la suite de fonctions ("))
converge uniformément sur tout segment de I alors la fonction v = lim wu,, est de classe C?

n——+o0o
etpour tout k € {1,...,p},
u® = lim (u;k))

n—-+o0o

dém. :
Par récurrence sur p € N*,
Pourp =1:0k

Supposons la propriété vraie au rang p et étudions celle-ci au rang p + 1.
Puisque (uif’)) converge simplement et que (uﬁlpﬂ)) converge uniformément sur tout segment, on peut

affirmer que lim u(P) est de classe C' et
n—+00

’
lim «® ) = lim (u(p+1))
n—+too n——+0o n

De plus (uﬁf’)) converge uniformément sur tout segment.
Par I’hypothese de récurrence, on a alors liIJIrl Uy, de classe CP et pour tout k € {1,...,p},
n—-+0oo

(k)
( lim un> = lim (ug“))
n—-+oo n—-+o0o
En particulier

(p) )
. i (u
(n%ﬂn) = ()

est une fonction de classe C' et donc u est de classe CP1! avec

(r+1) ,
(lim un> — lim (%p)) - lim (u%p+1))

n——+oo n—-+4oo n—-+oo

Récurrence établie.
O
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Corollaire
Soit Z u,, une série de fonctions de classe C” de I vers K.
Si les séries Zun . Zu,(f*l) convergent simplement et si la série Zugp) converge
+oo
uniformément sur tout segment de I alors la fonction Z uy, est de classe C? et, pour tout
n=0
ke{l,...,p},
“+o0 (k) +o0o
(En) S
n=0 n=0

15.4.4 Application : I’exponentielle réelle

Exemple Pour x € R, posons

a) Définition.

b) Dérivation.

a) On introduit u, (z) = 2" /n! définie sur R.

Pour z = 0, 1a série Z u, (0) est évidemment convergente et

+00
= = U 0 _
e(o)_Z‘Bn! =140+---=1car0®=1
Pour x # 0,
U"_A'_l(l') — "I| 0<1
un, () n+1 no+too

Par application de la reégle de d’ Alembert, la série Z u, () converge.

Ainsi, la série de fonctions E u, converge simplement sur R.
Dérivation :
Les fonctions u,, sont de classe C' et

o () = 0 sin=1
T 2" (e =1 sin>1

Soita > 0. Pour z € [—a,a] etn > 1,
an—l

|ug (2)] < o)

Or Z a" ' /(n — 1)! converge donc Z ., converge normalement sur [—a, a.

Résumons : les u,, sont de classe C', E u,, converge simplement et E u; converge uniformément sur

tout segment. On en déduit que la fonction e est de classe C' et

+0o0 +oo znfl
e(z) = ZU;L(@ = Z m = e(z)
n=1 n=1 ’

Ainsi, la fonction e est solution de 1’équation différentielle y' = y et vérifie y(0) = 1. On reconnait
I’exponentielle réelle.
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Théoreme

Exemple En particulier

n=0

15.4.5 Application : étude de la fonction zéta

Exemple Pour s € |1, +00], posons

a) Définition et classe C*™°.

b) Monotonie et convexité.

¢) Etude en +o0.

d) Etude en 17,

a) Posons u,, : s — 1/n® définie sur |1, +o00] pour n € N*.

La série de fonctions Z u,, converge simplement sur |1, +oo] et la fonction ¢ est sa somme.
b) Les fonctions u,, sont de classe C* sur |1, +-o0] et

k
k) (o) (—Inn)
ufb) (5) = =2
Sur [a,b] C |1, 400,
(k) (Inn)*
vs € [a,0], [ulP(s)] <
na
Soit p € ]1,a,on a
k
P x (Inn) 0
ne n—-+o00o
1 k
et il y a donc convergence de la série Z (Inn) .
na

Par majoration uniforme, la série de fonctions Z uflk) converge normalement sur [a, b].
Par convergence uniformément sur tout segment de |1, +o0c[, on peut affirmer que ¢ est de classe C* sur
1,400 et

p

+oo
@ =3

n

b) Monotonie :

C est décroissante.
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Convexité :

( est convexe.
¢) Limite en +00 :
1 { 0 sin>1

lim — = .
s—+oo NS 1 sin=1

Pour appliquer le théoréeme de la double limite, observons la convergence uniforme au voisinage de +oo.

Pours > 2
1

()| < =

1 .
Or E — converge normalement, donc E u,, converge normalement et donc uniformément sur
n

2, +o0]
Par le théoreme de la double limite

+oo
1
lim ((s) = lim —=1404+0+---=1

s—+400 s—+oo NS o
n=1

Equivalent de {(s) — 1 quand s — 400 :

Ona
+oo
1 1
((s) —1= 55 T Z o
n=3
avec
+oo +o00
1 de 1 1
0< — R il
ng:a ns 9 s (s—1)2¢
donc

d) Limiteen 17 :
Par monotonie, on peut affirmer que la fonction ¢ admet une limite en 1.
Puisque

W)=Y

n
k=1
a la limite

li >
A, <o)

1
k

NE

b
Il
_

n
. . 1
Or ceci vaut pour tout 7 et on sait g T —+—% ~+00 donc
n——+00
k=1

lim ((s) = +o0

s—1t

Equivalenten 17 :
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. 1 .
La fonction ¢t — 7 est décroissante donc

/”+1dt< 1 </” dt
" s S ops oy t°

oo ¢ oo d¢
— < <1 _
RO -

On en déduit

i.e. 1 1
< <1+ —
s—1 C<S) + s—1
Par suite 1
¢(s) ~ o
A
Fc
1 ...........
0 1 T
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Chapitre 16

Topologie des espaces normés

K désigne R ou C

(E,| .]|) désigne un K-espace vectoriel normé.

Les notions qui suivront ne seront pas modifiées lorsqu’on passe d’une norme a une norme équivalente.
En particulier, si ’espace E est de dimension finie, elles ne dépendent pas de la norme choisie.

16.1 Intérieur et adhérence

X désigne une partie de F.
16.1.1 Intérieur d’une partie

Définition
Un élément a € E est dit intérieur a une partie X si X est voisinage de a i.e.

Ja > 0,B(a,a) C X

On note X ° I’ensemble des éléments intérieurs a X appelé intérieur de X.

Exemple

Exemple Les éléments intérieurs 2 X sont éléments de X i.e. X° C X.

Exemple Si X C R alors a est intérieur a X si, et seulement si,

Ja>0,Ja—a,a+a[CR
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Exemple L’intérieur d’un intervalle non vide est I’intervalle ouvert de mémes extrémités.

Exemple L’intérieur du demi-plan complexe
P ={z€C/Im(z) > 0}

est
P° ={z € C/Im(z) > 0}

Exemple L’intérieur d’une boule ouverte B(a, ) est elle-méme.
En effet, pour tout z € B(a, r), on vérifie B(x,«) C B(a,r) avec a = r — ||z — al| > 0.

16.1.2 Adhérence d’une partie

Définition

On dit qu’un élément a est adhérent a X si X intercepte tous les voisinages de a i.e. :

Va > 0,B(a,a)N X # 0

On appelle adhérence de X 1’ensemble noté X des éléments adhérents 2 X.

Exemple

Exemple Les éléments de X sont adhérents 4 X i.e. X C X.

Exemple Si X C R alors a est adhérent a X si, et seulement si,

Va>0,]a —a,a+a[NX #0

Exemple L’adhérence d’un intervalle non vide est I’intervalle fermé de mémes extrémités.
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Exemple 0 est adhérent a C*.

Proposition
On a -
CeX = (CEX)O etCpX° =CpX

dém. :

reCpX ¢ X< Ja>0,Bla,a)NX =0« Ja>0,Bla,a) CCegX ac (CsX)’

L’ autre égalité se déduit de la précédente par passage au complémentaire et substitution de Cz X a X.
O

16.1.3 Caractérisation séquentielle des points adhérents

Théoreme
Soit X une partie non vide.
On a équivalence entre :
(1) a est adhérent a X ;
(i) I(zn) € XN, 2, = a

dém. :
(i) = (ii) Supposons que pour tout o« > 0, B(a,«) N X # (.

Pourn € Neta = > 0, ’ensemble B (a,1/(n + 1)) N X est non vide.

n+
Soit z,, un élément de celui-ci. En faisant varier 7, cela définit une suite (x,,) € X" vérifiant

1
n—o]|<——=—0
= all < =
et donc x,, — a.
(i1) = (i) Supposons (ii). Pour tout o > 0, il existe N € N tel que

Vn = N, ||z, —a| < «

et donc B(a,a) N X # 0.
O

Exemple Si X est une partie non vide et majorée de R alors le réel sup X est adhérent a X.
En effet, il existe une suite d’éléments de X convergeant vers sup X

Exemple La matrice nulle O, est adhérente & GL,(K).
En effet,

1
;Ip € GL,(K) = O,
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Exemple L’adhérence d’une boule ouverte est la boule fermée de mémes centre et rayon.

En effet, si z € B(a,r) alors il existe (,,) € B(a, )" telle que x,, — x et I'inégalité ||z, — a|| < r
donne a la limite ||z — a|| < r donc = € By(a,r).

Inversement, si z € By(a,r) alors z = lim(z,,) avec

Tp =a+ (x —a) € B(a,r)

+1

16.1.4 Frontiere

Définition
’ On appelle frontiere d’une partie X de F I’ensemble Fr(X) = X\ X°.

Exemple

Fr(X)

Exemple Dans E = R, Fr([a,b]) = [a,b] \ ]a,b[ = {a, b} et Fr(Q) = Q\Q° = R.

Exemple Dans E' = C, la frontiere du demi-plan P = {z € C/Im(z) > 0} est la droite réelle R.

Exemple La frontiere d’une boule (ouverte ou fermée) est la sphére de mémes centre et rayon.

Proposition
| Fr(X) = X NCpX =Fr(CpX).

dém. : - ~ -
Fr(X)=X\X°=XnNC(X°)=XNCpX.
O

Proposition

| X = X UFr(X) et X° = X\Fr(X).
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16.2 Parties ouvertes et parties fermées
16.2.1 Voisinage

Définition
On appelle voisinage d’un élément a de E toute partie V' de E vérifiant

Ja > 0,B(a,a) CV

Exemple

V' est voisinage de ce point

V' n’est pas voisinage de ces points

Exemple Dans F' = R, une partie V' de R est un voisinage de a € R si, et seulement si,

Ja>0,Ja—a,a+a[CV

Proposition

] Si V' est un voisinage de a et I/ une partie de E contenant V' alors W est un voisinage de a.

dém. :
Il existe &« > 0 tel que B(a,a) C V orV C W donc B(a,a) C W
]
Proposition
] Si Vi, ..., V, sont des voisinages de a alors V; N ... N V,, est un voisinage de a.
dém. :
Il existe a1, . .., ay > 0 tels que pour tout 7 € {1,...,n}, B(a,a;) C V;.
Pour o = min{ay,...,a,} >0, B(a,a) CViN...NV,.
O

Remarque Ce résultat est faux pour une intersection infinie. Par exemple

N [=1/n,1/n] = {0}

neN*

est une intersection infinie de voisinage de 0 qui n’est pas un voisinage de 0.
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16.2.2 Parties ouvertes

Définition
Une partie U de F est dite ouverte si elle est voisinage de chacun de ses points i.e. :

Va € U,Ja > 0,B(a,a) C U

On dit encore que U est un ouvert de E.

Exemple

Partie ouverte Partie non ouverte

Exemple Une partie U est ouverte si, et seulement si, U° = U.
En particulier, on a alors U N Fr(U) = 0.

Exemple () et F sont des parties ouvertes de F.

Exemple Dans E = R, les intervalles ouverts ]a, b[, |a, +00[, | —00, a[ sont des parties ouvertes.

Exemple Une boule ouverte B(a, ) est une partie ouverte.

En effet, pour € B(a,r) eta =71 — ||z — a|| > 0,ona B(z,«) C B(a,r).

Théoreme
] Une réunion (finie ou infinie) de parties ouvertes est une partie ouverte.

dém. :
Soit (U;)ier une famille de parties ouvertes de Eet U = U Ui.
i€l
Soita € U, il existe i € [ tel que a € U;. Puisque U; est un ouvert, il existe « > 0 tel que B(a, ) C U;
etdonc B(a,a) C U.
U
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Exemple X° est la réunion des ouverts inclus dans X .

Par suite, X° est le plus grand ouvert inclus dans X.

En effet

Notons U la réunion des ouverts inclus dans X .

U est un ouvert inclus dans X et U contient tous les ouverts inclus dans X . Montrons U = X°

U est un ouvert inclus dans X donc X est voisinage de chacun des points de U et donc U C X°.
Inversement, si a € X° il existe > 0 tel que B(a, @) C X. B(a, «) est alors un ouvert inclus dans X
donc B(a,a) C U puis a € U. Ainsi X° C U puis =.

Exemple Soit X C EFeta > 0. X, = U B(a, «) est un ouvert de E contenant X .
aceX

Théoreme
] Une intersection finie de parties ouvertes est une partie ouverte.

dém. :
n

Soit (U;)1<ign une famille finie de parties ouvertes de E et U = ﬂ Ui;.
i=1

Soita € U. Pourtout i € {1,...,n}, il existe a; > 0 tel que @ € U;. Pour @« = min {ay,...,a,} >0,
on apour touti € {1,...,n}, B(a,a) C B(a,®;) C U; donc B(a,a) C U.
]

Remarque Une intersection infinie de parties ouvertes peut ne pas étre ouverte :

M 1-1/n. 1/n[ = {0}

neN*
n’est pas une partie ouverte.

Proposition
SiUy, ..., Uy, sontdes parties ouvertes des espaces normés 1, ..., I, alorsU = Uy x---xU,
est une partie ouverte de 1’espace normé produit £ = Ey x --- X E,,.

dém. :
Commencons par préciser les boules de E.
Notons Ny, ..., N, les normes sur E, ..., E, et .|| la norme sur E.
Pour z = (z1,...,2p) € E, ||z|| = max N;(x;).
INVAS 2
Soita = (a1,...,ap) etr > 0.

z € B(a,r) & Vje{l,...,p},z; € Bj(aj,r)
Ainsi

B<a’ar) - HBj(ajaT)

Soit Uy, ..., U, des parties ouvertesde E et U = Uy X --- x Up.
Soit a = (a1,...,ap) € U.Pourtout j € {1,...,p}, a; € Uy, or U; est ouvert donc il existe o; > 0
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tel que Bj(a;, ;) C Uj. Considérons alors & = min{ai,...,a,} > 0. Pour tout j € {1,...,p},
Bj(aj;, ) C Uj donc
P P
B(a,a):HBj(aj,a)C U;=U
j=1 j=1

O

Exemple Dans R2, 1e produit cartésien de deux intervalles ouverts de R est un ouvert de R2.

16.2.3 Parties fermées

Définition
Une partie F' de F est dite fermée si son complémentaire est une partie ouverte.
On dit encore que F' est un fermé de F.

Exemple

Partie fermée Partie non fermée

Exemple Une partie F est fermée si, et seulement si, F' = F.
En particulier, on a alors Fr(F) C F.

Exemple E et () sont des fermés.

Exemple Dans E = R, les intervalles fermés [a, b] , [a, +00[ ,]—00, a] sont des parties fermées de R.

Théoreme
Une intersection (finie ou infinie) de parties fermées est un fermé.
Une union finie de parties fermées est fermée.

dém. :
Par passage au complémentaire d’une union ou d’une intersection d’ouverts.
O
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Exemple Fr(X) est une partie fermée.
En effet, Fr(X) = X NCgX est I'intersection de deux fermés.

Exemple X est I’intersection des fermés contenant X .

Par suite, X est le plus petit fermé contenant X .

En effet, notons ' 1’intersection de tous les fermes contenant X .

F' est un fermé qui contient.

Sia ¢ X alors il existe a > 0 tel que B(a, ) C CgX ie. X C CpB(a, ).

Or CgB(a, a) estun fermé et donc a ¢ F car a ¢ CpB(a, o).

Inversement, si a ¢ F', puisque F est fermé, il existe o > 0 tel que B(a, ) C CgF et donc
X C F CCgB(a,a).Onen déduitque a ¢ X.

Remarque Une union infinie de parties fermées peut ne pas étre fermée : U [1/n,1] =10,1]
n€Nx

16.2.4 Caractérisation séquentielle des parties fermées

Théoreme
Soit F' une partie de E. On a équivalence entre :
(i) F est fermée ;
() V(z,) € FN, 2, 2a=>acF
On dit qu’une partie fermée contient les limites de ses suites convergentes.

dém. :

(i) = (i1) Par contraposée.

Supposons qu’il existe (z,,) € F" telle que z,, — aeta ¢ F.

Soit & > 0. Pour n assez grand, ||z, — a|| < « donc z,, € B(a, a) etdonc B(a,a) N F # 0.
Ainsi a € CgF et

Va > 0,B(a,a) ¢ CgF

La partie Cg F' n’est pas ouverte et donc F' n’est pas fermée.
(i1) = (i) Par contraposée.
Supposons F' non fermée i.e. Cg F' non ouvert.
Il existe a € CgF' tel que
Va > 0,B(a,0) NF # 0

Soitn € N.Pour « = 1/(n + 1) > 0, il existe z,, € B(a,1/(n+ 1)) N F.
En faisant varier n, ceci détermine une suite (z,,) € F" telle que ,, — a avec a ¢ F.
(]

Exemple Les singletons sont des parties fermées.

Exemple Les boules fermées sont des parties fermées.

En effet, si (2,,) € By(a,r)" converge vers ¢ alors pour tout n € N, ||z, — a|| < r donne 2 la limite
|¢ — a|| < retdonc ¢ € Bf(a,r). La caractérisation séquentielle des parties fermées permet alors de
conclure.
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Exemple Les spheres sont des parties fermées.

Proposition
Si Fy, ..., F), sont des parties fermées des espaces vectoriels normés F, ..., E, alors ' =
Fy x ... x F), est une partie fermée de I’espace vectoriel normé produit £ = E; X --- X E),.
dém. :
Soit (x(n)) € F" une suite convergente de limite a.
On peut écrire z(n) = (z1(n),...,zp(n)) avec z;(n) — aj ol a = (a1, ..., ap).

Pourtout j € {1,...,p}, (zj(n)) € F]N, or F}j est fermée, donc a; € F} puisa € F.
O

Exemple Dans R2, 1e produit cartésien de deux intervalles fermés de R est un fermé de R2.

16.3 Topologie et continuité

16.3.1 Topologie relative

Soit X une partie de E.

16.3.1.1 Voisinage relatif a X
Soit a un élément de E.
Définition

] On appelle voisinage de a relatif a X, tout ensemble de la forme V' N X avec V' voisinage de a.

Exemple

Voisinage de a
relatifa X

Exemple [0, 1] est un voisinage de 0 relatif a R,
En effet, [0,1] = [-1,1] NR™.

Proposition
Soit A une partie de X. On a équivalence entre :
(i) A est un voisinage de a relatif a X ;
(ii) il existe o > 0 tel que B(a,a) N X C A.
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dém. :

(1) = (ii) Si A est un voisinage de a relatif a X alors il existe V' voisinage de a tel que A = V N X. 1l
existe « > 0 tel que B(a, ) C V etalors B(a,a) N X C A.

(il) = (i) Supposons qu’il existe & > 0 tel que B(a,a) N X C A. Pour V = B(a,a) U A, V est un
voisinagede AetVNX = (B(a,a)NX)U(ANX) = A.

]

16.3.1.2 Ouvert relatif a X
Définition

] On appelle ouvert relatif & X tout ensemble de la forme U N X avec U ouvert de E.

Exemple

ouvert relatif a X

Exemple [0, 1] est un ouvert relatif de R™.
En effet, [0, 1] = ]-1, 1[N R™*.

Exemple 0 et X sont des ouverts relatifs & X.

Proposition
Soit A une partie de X. On a équivalence entre :
(i) A est un ouvert relatif a X ;
(ii) A est voisinage relatif a X de chacun de ses points.

dém. :

(1) = (ii) Si A est un ouvert relatif a X alors A = U N X avec U ouvert.

Pour tout @ € A, a € U or U est ouvert donc U est voisinage de a et A = U N X est voisinage de a
relatif a X.

(i1) = (i) Supposons (ii)

Soit a € A. A est un voisinage relatif 2 X de a donc il existe o, > 0 tel que B(a, ) N X C A.

Posons alors
U= U Bla,ay)
acA

U est ouvert comme réunion d’ouverts et on vérifie A = U N X.
O
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16.3.1.3 Fermé relatif a X

Définition

] On appelle fermé relatif a X tout ensemble de la forme /' N X avec F' fermé de E.

Exemple

fermé relatif a X

Exemple |0, 1] est un fermé relatif de ]0, +o0.
En effet, |0, 1] = 10, +o0[ N [0, 1].

Exemple () et X sont des fermés relatifs a X.

Théoreme
Soit A une partie de X. On a équivalence entre :
(i) A est un fermé relatif a X ;
(ii) A contient les limites de ses suites convergeant dans X.
(iii) le complémentaire de A dans X est un ouvert relatif a X ;

dém. :

(i) = (ii) Supposons A = F'N X avec F fermé. Si (z,,) € A" converge vers z € X alors puisque

(mn)GFN,onaxeFdoncxeFﬂX:A.

(i1) = (iii) Par contraposée. Supposons que le complémentaire de A dans X n’est pas un ouvert relatif a
X. I existe alors a € X\ A tel que X\ A n’est pas voisinage relatif & X de a. Pour tout « > 0, on a alors
B(a,a) N X ¢ X\ A etdonc B(a,a) N A # (. Cette propriété utilisée avec « = 1/(n + 1) permet de

construire une suite (z,,) € A" telle que z,, — a € X\ A.
(iii) = (i) Si X\A = U N X avec U ouvert alors A = X N F avec F = CrU fermée.
O

16.3.2 Continuité et topologie

Théoréme
Soit f : X C E — F'. On a équivalence entre :
(1) f est continue;
(ii) I'image réciproque de chaque ouvert de F' est un ouvert relatif a X ;
(iii) I’'image réciproque de chaque fermé de F' est un fermé relatif a X.
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dém. :
(i) = (ii) Supposons f continue et considérons V" un ouvert de F'. Pour tout a € f~1(V), f(a) € V or
V est ouvert et donc il existe € > 0 tel que B(f(a),e) C V. Par continuité de f en a, il existe & > 0
vérifiant

Vo€ X,z —ally < a = /@) - (@)l <<

et donc
Va € B(a,a) N X, f(z) € B(f(a),e) CV
et ainsi

Bla,a)NX C f~4V)

Par suite (V) est ouvert relatif 2 X car voisinage de chacun de ses points.

(ii) = (i) Supposons (ii). Pour tout a € X et tout € > 0 considérons I'ouvert V' = B(f(a),e). Par
hypothese, f~! (V') est un ouvert relatif 2 X. Ora € f~'(V') donc f~!(V') est un voisinage de a relatif
a X et donc il existe o > 0 tel que

B(a,a)NX C f~1(B((,¢))
On a alors
Vee X, [lz—alp <a=|f(z) - fla)lp<e

(i) < (iii) via fH(CFY) = Cx fH(Y) pour Y C F.
O

Remarque Le résultat est faux en terme d’image directe
sin(]0, 7[) =]0,1] et exp(R™) =0, 1]
Corollaire

Pour f : E — F continue, I’image réciproque d’une partie ouverte (resp. fermée) de F’ est une
partie ouverte de E (resp. fermée).

dém. :
Car un ouvert (resp. un fermé) relatif a F est un ouvert (resp. un fermé) de F.
O

Exemple U = {(z,y) € R?/z < y} est un ouvert de R”.

En effet, considérons f : R? — R définie par f(z,y) =y — x.

U = f~1(R™) or f est continue et R* est ouvert donc U est un ouvert relatif a2 R? i.e. un ouvert
de R?.

Exemple Soit X continue et X = E.
Les ensembles X, E et Va € E,Va > 0, B(a,a) N X # ) sont fermés.
Les ensembles Va € E,3(z,) € XN 2, — a, E C X et Q sont ouverts.

Exemple R est une partie ouverte de R\Q.
En effet, D et det est continue et R est un ouvert.
De méme, on obtient que GL,,(K) est un fermé.
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Exemple M,,(K) est une partie fermée de A € M,,(K).
1

En effet, A, = A+ —1,, — A avec A continue et p fermé.
b

16.4 Densité
16.4.1 Définition

Définition
| Une partie X de E est dite dense si X = E.

Théoreme
On a équivalence entre :
(1) X est une partie dense de F ;
(i) Va € E,Ya > 0,B(a,a) N X #0;
(iil) Va € E,3(z,) € XV, 2, — a.

dém. : B
(ii) et (iii) signifient £ C X.
O

Exemple Q est une partie dense de R.
En effet, tout réel est limite d’une suite de rationnels.

Exemple Aussi, R\Q et D sont des parties denses de R.

Exemple GL, (K) est une partie dense de M, (K).
1

En effet, pour tout A € M,,(K),ona A, = A+ -1, — A.
p

Or la matrice A n’a qu’un nombre fini de valeurs propres, donc pour p assez grand f,g: F — F.

16.4.2 Continuité et densité

Théoreme
Soit f, g : E — F continues.
Si f et g sont égales sur une partie X de F dense alors f = g.

dém. :

Soit z € X. Il existe (z,,) € X" telle que x,, — . Or pour tout n € N f(z,,) = g(x,) donc a la limite
f(@) = g(x)

0

Exemple Déterminons les fonctions f : R — R continues vérifiant

Vr,y €R, f(x +y) = f(x) + f(y)
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Soit f solution.
Ona f(0+0) = f(0) + f(0) donc f(0) = 0.
Ona f(2a) = f(a+a) = f(a) + f(a) = 2f(a),...

Par récurrence, on montre

Va € R,Vn €N, f(na) = nf(a)

Puisque f(z) + f(—x) = f(0) = Oona f(-z) = — f().

Par suite

Va € R,Vn € Z, f(na) =nf(a)

Soitx = p/q € Qavecp € Zetqg € N*.
f(x) = pf(1/q) et f(1) = qf(1/q) donc f(z) = §f<1> — az en posant & = f(1).

Les fonctions « — f(z) et z — ax sont continues sur R et coincident sur la partie Q dense dans R,
elles sont donc égales sur R.

Exemple Montrons que

VA,B € M,(K),xaB = xBA

Soit A € Ket B € M,,(K).
Pour A € GL,(K),

xap(A) = det(A\,, — AB) = det(A) det(AA~! — B)
puis
xaB(A) = det(AA™! — B)det(A) = det(\,, — BA) = xpa(\)
Les applications A — xap(A) et A — xpa(\) sont continues sur M, (K) et coincident sur GL,, (K)

partie dense de M, (KK), elles sont donc égales sur M,, (K).
Ainsi, pour tout A € K, xa5(A\) = xpa()A) etdonc xap = XBA.

16.4.3 Approximations uniformes

Soita < b € R.
16.4.3.1 Par des fonctions en escalier

Rappel :
On appelle subdivision d’un segment [a, b] toute suite réelle finie o = (ag, ay, ..., ay) avec

w=a<a1<...<ap_1<a,=>o
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Définition
Une fonction ¢ : [a,b] — Kest dite en escalier s’il existe une subdivision o = (ag, a1, ..., a,)
de [a, b]
vérifiant
Vi€ {l,...,n}, ©a,_,,a,[ €St constante

Une telle subdivision est alors dite adaptée a .

Théoreme
Soit f : [a,b] — K continue par morceaux.
Pour tout € > 0, il existe une fonction en escalier ¢ : [a,b] — K vérifiant

vt € [aab] ) |f(t) 790(75)‘ <eé

dém. :
Cas f continue sur [a, b].
Soit e > 0. Puisque f est continue sur le segment [a, ], elle y est uniformément continue et donc il existe
a > 0tel que
Vs, t € [a,b],|s —t| <a=|f(s)— ft)| <e

Soitn € N* tel que (b —a)/n < aeto = (ag, . . ., a,) la subdivision de [a, b] définie par

b—a
a; =a-+1

Considérons ¢ : [a,b] — C définie par ¢(t) = f(a;) sur Ja;—1, a;] et o(a) = f(a).

Gy @ G, G G4 G5 Qg g
La fonction ¢ est une fonction en escalier et pour tout ¢ € {1,...,n} ettoutt € |a,_1,a;], ona
b—a
[t —a;| < <a
n
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et donc
1f(t) =) <e
Cas f continue par morceaux sur [a, b].
Soit o = (ay, . . ., ay,) une subdivision de [a, b] adaptée a f.
Pour tout i € {1,...,n}, on peut prolonger f}j,, , 4, €n une fonction continue f; définie sur [a;_1, a;].
La fonction f; étant continue, il existe (¢;) fonction en escalier telle que

Vt € [ai—1,ai], [ fi(t) — () <€
Posons alors ¢ : [a,b] — E définie par
plai) = flai) etp(t) = @i(t) sit € Jai_1, ai]
On a clairement par construction

vt € [a,b],[f(t) —p(t)| < e

O

Corollaire
L’ensemble & ([a, b] , K) des fonctions en escalier de [a, b] vers K est une partie dense de I’es-
pace Cgm ([a,b] , K) normé par || . || .
Toute fonction continue par morceaux est limite uniforme d’une suite de fonctions en escalier.

Exemple Montrons

n——+oo

b
Vfecy, (la,b],K), lim / ft)e™dt =0

Cas f constante : C’est immédiat par calcul.

Cas f en escalier : C’est immédiat en découpant I’intégrale.
Cas f continue par morceaux :

Soit e > 0. Il existe ¢ : [a, ] — K en escalier vérifiant

vt € [a,b],[f(t) —p(t)| < e

et alors pour tout n € N

avec

b 4 b
[ @ =enemar < (150 - ool dt < - o

b
/ ot)e™dt —— 0
a

n——+00

donc pour n assez grand

b
/ f®)e™dt| < (b—a+1)e
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16.4.3.2 Par des fonctions polyndomes

On note P([a, b] , K) I’espace des fonctions polynomiales de [a, b] vers K.

Théoreme
Soit f : [a,b] — K une fonction continue.
Pour tout € > 0, il existe une fonction ¢ : [a, b] — K polynomiale vérifiant

vt € [a,b],[f(t) —p(t)| < e

Corollaire
P ([a, b] ,K) est une partie dense de C ([a, b] , K) normé par || . ||
Toute fonction continue sur [a, b] est limite uniforme d’une suite de fonctions polynomiales.

Remarque Puisque ||. ||, et|| . ||, sont dominées par ||. ||, P ([a,b] , K) est encore une partie dense de
C ([a, 0], K) normé par || ||, ou [ . [|,.

Remarque Pour k € N* U {cc}, ona P ([a, b] ,K) C C* ([a, ], K).
Par conséquent, C* ([a, b] , K) est aussi une partie dense de C ([a, b] , K) normé par || . || _, || - [|, ou || - |-

Exemple Soit f € C([0,1],R) vérifiant

1
vneN,/ " f(t)dt =0
0

Montrons que f est la fonction nulle.
Pour tout P € R [X], on a par linéarité

/1 P)f(t)dt = 0
0

Par le théoréme de Weierstrass, il existe une suite de fonctions polyndmes (i, ) convergeant
uniformément vers f sur [a, b]. On a alors

1 1 1
—_ 2 Ja—
/0 o () (1) dt / f (t)dt‘< / lou(t) — F(OI£(D)] dt

et donc

1 B 1 ) B 1
[ entisya | f(t)dt‘<|<ﬁn e [ 1@l a0

Ainsi

/0 on(t)F(t)dt - /0 (1) dt

1
et puisque / wn(t)f(t)dt = 0, on en déduit
0

/1f2(t)dt: 0
0

Par nullité de I’intégrale d’une fonction continue et positive, on peut conclure f = 0.
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16.4.4 Musculation : Sous-groupe de (R, +)

Théoreme
Les sous-groupes de (R, +) sont de la forme aZ avec a € R ou bien sont des parties denses
de R.

dém. :

Soit H un sous-groupe de (R, +).

Si H = {0} alors H = aZ avec a = 0.

Sinon, il existe h € H tel que h # 0 et, quitte a considérer son opposé, on peut supposer h > 0.
Posons alors a = inf H* avec H" = {h € H/h > 0}.

Cette borne inférieure existe car H " est une partie de R non vide et minorée.

Casa >0:

Montrons H = aZ.

Commencons par justifier a € H.

Puisque a = inf H™, 2a n’est pas minorant de H et donc il existe b € H tel que a < b < 2a.
Sib > aalors b — a > 0 or, par opération dans le sous-groupe H,onab —a € H. Ainsib —a € H™.
Cependant b — a < a = inf H™, c’est absurde.

On en déduit b = a et, puisque b € H +, onobtient a € H.

Sachant a € H, on peut affirmer aZ = (a) C H.

Inversement, soit z € H.

Par division euclidienne, on peut écrire © = aq + r avec a € Zetr € [0, al.
Notonsquer =z —aq € Hcarx € Hetaqg € aZ C H.

Sir>0alorsr € H". Orr < a = inf H'. C’est absurde.

On en déduit r = 0 puis * = aq € aZ.

Par double inclusion, on obtient H = aZ.

Casa=0:

Montrons que H est dense dans R.

Soitz € Rete > 0.

Puisque inf H* = 0, il existe h € H' telque 0 < h < ¢.

Posons alors n = |z/h| € Z.

Onaxz/h—1<n<z/hdoncx —h <nh<zpuisnh €|z — ¢,z

Or nh € H donc on peut affirmer H N ]z — e,x + g[ # 0.

O

Exemple Montrons que {cos(n)/n € N} est dense dans [—1, 1].
Considérons H = Z + 27Z.

H est un sous-groupe de (R, +).

S’il est de la forme aZ avec a € R alors, puisque Z C H = aZ,onaa € Q.
De plus, puisque 27Z C H = aZ, on a aussi w € aQ.

On en déduit que 7 est rationnel.

C’est absurde.

On peut donc affirmer que H = Z + 27Z est un sous-groupe dense dans R.
Considérons alors € [—1,1] et = arccosz € [0, 7] C R.

1l existe une suite d’éléments de H convergeant vers 6 et donc il existe deux suites d’entiers (a,,) et (by,)
telles que a,, + 27b,, — 6.

On a alors cos(|an|) = cos(ay, + by,) — cosf = z.
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Chapitre 17

Continuité d’une fonction vectorielle

E et F' désignent des K-espaces vectoriels normés par || . || et || . || . Les notions qui vont suivre sont
inchangées lorsqu’on passe d’une norme a une norme équivalente. En particulier, elles ne dépendent pas
du choix de la norme lorsque les espaces sont de dimensions finies.

X désigne une partie de F.

On s’intéresse ici aux applications f : X C F — F. En pratique, 1’étude s’appliquera :

- aux fonctions numériques d’une ou plusieurs variables réelles ;

- aux fonctions d’une variable complexe ( z — Z/1 + z, z — €%,...);

- aux applications d’une variable matricielle ( det : M, (K) — K, A € GL,(K) — A™'), aux
applications linéaires ou multilinéaires. . .

17.1 Limites

17.1.1 Convergence

Soit f : X C E — F et a un point adhérent a X.
Définition
On dit que f tend vers £ € F en a si

Ve >0,3a>0,Vz e X, ||z —a|lp <a=|f(r) 4 <e

On note alors f — £ou f(z) —— ¢
a r—a

Exemple Pour f constante égale a C', on obtient C' — C.
a
Exemple Pour f = Id, on obtient x —— a.
r—ra

Exemple Pour f = || .||, on obtient ||z| —— ||a]|.
T—ra

Théoreme
’ Sif—letf— ¢ alorsl=1/{.
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dém. :
Soit e > 0. Il existe a, &’ > 0 tels que

Ve e X, |z —allp <a=|[f(z) - flp<e
et
VeeX [z —alp <o =|f(x)-llp<e
Pour o = min(a,a’) > 0 etz € B(a,a”) N X (qui est non vide car a est adhérent & X ), on a
| f(z) —£|| <eet| f(x) — | <e. Onen déduit
le=L< e = f@)+If(2) =]l <2

Or ceci vaut pour tout € > 0 donc |[{ — ¢'|| = 0ie. £ = (.
O
Définition
On dit que f converge en a s’il existe £ € F tel que f — /.
Cet élément ¢ est alors unique, on I’appelle limite de f i:n a et on note
= li;nf oul = lim f(x)

Tr—a

17.1.2 Théorémes de convergences

a désigne un élément adhérent a X.
17.1.2.1 Caractérisation séquentielle

Théoreme
Soitf: X CE — FetleF.
On a équivalence entre :

O f—&
(i) V(z,) € XN, 2, = a = f(n) = L

dém. :
(i) = (ii) Supposons f — £.

Soit (2,,) € X" telle que x,, — a.
Soit € > 0. Il existe a > 0 tel que

Ve e X, |lz—al| <a=|f(z) - <e
Puisque z,, — a et o > 0, il existe N € N tel que
YneN,n> N = |z, —a|| <«

et donc
nzN=|f(z,) -l <e

(i) = (i) Par contraposée.
Supposons f /L. 1l existe € > 0 tel que

Va>0,3z € X, ||z —al < aet ||f(z) = ¢ > ¢
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1
Soitn € N, pour « = —— > 0, il existe z,, € X tel que ||z, — af| < et| f(zn) — 1| > e.
n

+1 n+1
En faisant varier n, ceci détermine une suite (z,,) € X" telle que z,, — a et f(z,) /L.
O
Corollaire

Si f tend vers £ en a alors £ est adhérent & f(X).
Ce dernier résultat est une extension du théoréme de passage a la limite des inégalités larges.

17.1.2.2 Opérations

Théoreme
Soit f,g: X CE— Feth\puck
Sif —/letg— ¢ alors \f +ug — M+ pb’.
a a a

Si de plus F est une algebre normée, fg — £¢'

dém. :

Soit (,,) € X" de limite a.

Ona f(x,) = Letg(x,) — (.

Par opérations sur les suites vectorielles convergentes, (Af + pg)(z,) — M + pl'.

Or ceci vaut pour toute suite (x,,) € X' convergeant vers a donc, par la caractérisation séquentielle des
limites, A\ f + ug — M+l

O
Théoréeme
Soita: X CE—-K, f: XCFE—F.
Sia — Aet f — Lalorsa.f — AL
a a a
dém. :

Par la caractérisation séquentielle des limites et opérations sur les suites vectorielles convergentes.
|

Théoreme
Soitf: XCE—>Fetg:Y CF — Gtellesque f(X)CY.
Sif—)betsig?ﬁalorsgofﬁﬂ.

dém. :

Par la caractérisation séquentielle des limites.

Notons que b est adhérent 2 Y car b = lim f est adhérent a f(X) et f(X) C Y.
O

Corollaire
’ Si f — Lalors || f]| — [|4]|.

17.1.2.3 Comparaison

Théoreme
Soit f: XCFE—F,g: X CFE — Retaadhérenta X.
Si||f(x) — 2| < g(x)etg — Oalors f — £.

dém. :
Par la caractérisation séquentielle des limites et comparaison de suites réelles.
]
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17.1.3 Convergence a valeurs dans espace de dimension finie

Soit F' un K-espace vectoriel de dimension finie et e = (eq, . . ., €,) une base de F.
Considérons f : X C E — F.

P
Pour tout = € X, on peut écrire f(z) = fi(x).e1 + -+ fp(x).ep = Z fi(z).e; avec f;(z) € K.
j=1
Définition

Les applications scalaires f1, ..., f, sont appelées fonctions coordonnées (ou composantes) de
f relatives a la base (e1, ..., ep).

Théoreme

Soit a adhérent 2 X. On a équivalence entre :

(1) la fonction vectorielle f converge en a ;

(ii) les fonctions numériques fi,. .., f, convergent en a.
De plus, si tel est le cas

lim f = (tim /1) cex + o+ (Tim ) e, = 3 (Tim ;) ¢

j=1

dém. :
Par la caractérisation séquentielle des limites.
O
17.1.4 Convergence a valeurs dans un espace normé produit
Soit F1,..., F}, des espaces vectoriels normés respectivement par Ny, ..., Ny et F' = F; x ... x F},
I’espace vectoriel normé produit. Pour z = (x1,...,xp) € F,
z|| = max N,(zx;
] = max N;(z;)

Considérons f : X C E — F.
Pourtout z € X f(x) = (f1(x),..., fp(x)) avec f;(z) € F}.

Définition

] Les applications f1,. .., f, sont appelées applications coordonnées de f.

Théoreme

Soit a € E adhérent X. On a équivalence entre :
(1) f convergeen a;

(i) f1,..., fp convergent en a.

De plus, si tel est le cas,

lim f = (limfl7 e ,1imfp)

dém. :
Par la caractérisation séquentielle des limites.
O

17.1.5 Convergence et restriction

Soit f: X C E — F eta adhérenta X.
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Définition
Soit X’ C X tel que a soit adhérent & X’.
On appelle limite de f en a selon X' I’éventuelle limite de la restriction f|,, en a. On la note

lim  f(z)

z—a,xeX’

Exemple Si a est adhérent 3 X* = X\ {a}, on note

lim f(z)= lim f(x)

T—a,x#a déf z—a,xe X*

Exemple Si X C Retaadhérenta X+ = X N]a, +00], on note

lim f(z)ou lim f(z)= lim f(2)

z—a+ r—a,x>a déf x—a,xe X+

Proposition

Si a est adhérent 2 X' C X etsi f converge en a alors la restriction f|, converge en a vers
la méme limite.

dém. :
Qui peut le plus, peut le moins.
O
Proposition

Soitr > 0et X' = B(a,r) N X.

Si la restriction f|, converge en a alors f converge en a vers la méme limite

XNB(a,r)
B(a,r)

dém. :

Supposons f}x converge vers £ en a.
Soite > 0. Il existe a > 0 tel que

Ve e X' |z —a|lp<a=|flz) -l <e
Pour o’ = min(«,r) > 0,0na

Ve e X, ||z —allgp<a =|z—a|p<aetze X’
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donc
VeeX, |z —allp <o =|fx) - llp<e

O
Proposition

On suppose X = X' U X" avec a adhérent 2 X' et X"

Si les restrictions f|, et f|, convergenten a vers la méme limite alors f converge en a vers

cette limite.

Xl Xl/
X=X'Ux"

dém. :

Notons ¢ la limite commune.
Soit e > 0. Il existe o, @’ > 0 tels que

Vo€ X' |z —allp <o = |f(x) - Lp <eetVe € X' [lz —alp <o’ = ||f(x) — Lllp <e
Pour @ = min(a/, ") > 0, 0ona

Vee X=X UX",

t—allp<a=|f(z)—Llp<e

O

Remarque Cet outil permet 1’étude de limite de fonction définie par une alternative.

17.1.6 Extension « a ’infini »
Définition
Soit f : X C R — F avec X partie non majorée.
On dit que f tend vers £ € F en +oo si
Ve>0,3AeR Ve X,z > A= |f(x)—{| <e

On note alors f(z) — £.
T—r+00

De fagon analogue, pour X C R non minorée, on définit f —— ¢
— 00
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Définition
Soit f : X C E — F avec X non bornée.
On dit que f(z) tend vers £ € F quand ||z|| — +oo si
Ve>0,3JAeR Ve e X, |jz|| > A= | f(z) — (|| <e

On note alors f(z) ——— £.
llzl|—+o0

Définition
Soit f: X C E — Reta € FE adhérenta X.
On dit que f tend vers +o0 en a si
VM eR,Ja>0Vee X,z —al| <a= f(x) > M

On note alors f(z) — +o0.
r—ra

De fagon analogue, on définit aussi f(z) —— —oo, f(x) ———— 400, etc.
a—a ]| —>-+o0

17.1.7 Exemples

Exemple Dans R?, étudede  lim /a2 + zy + 32.
(z,y)—(0,0)

Soit f : (x,y) — /22 + xy + y? définie sur X = R? car
2’4oy +y” > (@ +1/2)° +3y%/4

(0,0) est adhérent 2 R

Quand (z,y) — (0,0).

Onaxz —0ety — 0(car |z| < ||(z,9)], = 0)
Par opérations algébriques z° + zy + y> — 0.

Par composition v/ x2 + zy + y2 — 0.

. . Ty
Exemple Dans R?, étude de  lim ——t—.
(2,)=(0,0) /22 4 32
— Y définie sur X = R\ {(0,0)}.

/xQ + y2
(0,0) est adhérent a X
Quand (z,y) — (0,0) (avec (z,y) € X)
On pose x = rcosf, y = rsinf avec r = \/z2 + y2 — 0 et 6 incontrdlable.
Par composition, on a alors

Soit f : (z,y) —

flz,y) =rcosfsinf — 0

Attention : Etudier lim  ne correspond pas a étudier lim lim ou lim lim
(z,y)—(0,0) z—0y—0 y—0 z—0

2 .2
Exemple Dans R2, étude de lim u.
(2,y)—(0,0) 22 + 2
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2

0
Soit f : (z,y) % définie sur X = R2\ {(0,0)}.
2%ty

(0,0) est adhérent a X et

lim limy f(2,y) = —1et lim lim f(z,y) =1...

Pour z = rcosf,y = rsinf avecr = /22 +y2 — 0,0na
f(z,y) = cos? § — sin @

qui ne semble pas converger. . .
Puisque f(1/n,0) — 1et f(0,1/n) — —1, la fonction f diverge en (0, 0).

Exemple Dans R3, étude de lim L.
(2,9,2)(0,0,0) 2 + % + 22

2 . _ ™3
m définie sur X = R \ {(07 0, 0)}
Quand (z,y,2) — (0,0,0) (avec (z,y,2) € X))

On pose z = rcospsinf, y = rsingsing, z = rcosf avecr = /22 +y> + 22 > Oetp, 0
incontrolables.

Soit f : (z,y,2) —

TYZ

PR R 7 cos psin g cos? fsinf — 0
X Yy z

2

.z
Exemple Dans C, étude de lim —.
z—0 |Z|

22

Soit f : z 7 définie sur X = C*.
z
0 est adhérent a C*.
Quand z — 0 (avec z € C*)
On peut écrire z = re'? avec 7 = |2| — 0.
On a alors

1
Exemple Dans C, étude de lim .
|z|—=+o00 2 + 1

f:zm—1/(z+ 1) est définie sur X = C\ {—1}.
X n’est pas bornée.
Quand |z| — 400 (avec z € X ).

1 1
Onalz+ 1| > |z| — 1 donc Z-l—l‘ < =1 — 0 (pour |z| > 1).
Ainsi  lim =
|z]—=+00 2 + 1
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17.2 Continuité

17.2.1 Continuité en un point

Remarque Si f : X C £ — F admet une limite en a € X, celle-ci ne peut qu’étre égale a f(a).

Définition

’ Onditque f: X C E — Festcontinueena € X si f(z) — f(a).

Théoreme
On a équivalence entre :
(i) f: X CFE — Festcontinueena € X ;
(i) V(zn) € X", (zn = a = f(zn) — f(a))

dém. :
En vertu de la caractérisation séquentielle des limites.
|

Exemple Soit f : R? — R définie par

Ty

f(%y)zm

i (2, y) # (0,0) et £(0,0) =0

La fonction f n’est pas continue en (0, 0).
En effet

f(/n,1/n) =1/2 /= £(0,0)

17.2.2 Continuité sur le domaine de définition

Définition

Onditque f : X C E — F est continue si f est continue en chaque point a € X.

On note C(X, F) I’ensemble des fonctions continues de X vers F.

Exemple Les fonctions constantes sont continues.
Exemple La fonction Idg est continue.

Exemple La fonction x — ||| est continue.

. 1 .
Exemple La fonction z — — est continue sur C*.

En effet, pour a € C*,
1 1

z a

|z —al

 zllal =—a
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Exemple Etudions la continuité de f : R? — R définie par

siny —sinz .

— siz#y
f(z) = y—x

cos T siz =1y

Soit (g, o) € R%.
Cas o) 7£ Yo-
Sur une boule centrée en (g, yo),

siny —sinz sinyp — sinzg

Yy—x (z,y)—(z0,50) Yo — Xo

flz,y) = = f(zo0,v0)

Cas xg = 1o.
Quand (z,y) — (xg,x0) avec x # y
siny —sinz 2sin 452 cos 1Y

y—x y—z

f(z,y) =

— coszg = f(zg, x0)

En effet .
2sin 5
t

—lety—a2—0
t—0
Quand (z,y) — (zo,x0) avec x =y

flz,y) = cosz — cos(xg) = f(z0, z0)

17.2.3 Applications lipschitziennes

Définition
Une application f : X C E — F est dite lipschitzienne s’il existe k € R™ tel que

Vr,y € X, |[f(y) = f@)llp <Elly —zlg

Exemple L application z — ||z|| est lipschitzienne de F vers R.
En effet

ezl =Nyl < llz =yl

Exemple On appelle distance de « € E a une partie A non vide de E le réel

d(z, A) d:,finf {d(z,A)/a € A}
€]
L’ application 2 € E — d(z, A) est lipschitzienne.
Soitz,y € E.
Pour touta € F,
d(z, A) <[z — al| < [l = yll + lly — all
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donc
d(z, A) = |lz —yll < [ly —all

puis par passage a la borne inférieure
d(z, A) = |lz — yll < d(y, A)

Ainsi
d(z, A) — d(y, A) < ||z — ]|

Par un raisonnement symétrique on a aussi d(y, A) — d(z, A) < ||y — z|| et donc
|d(y, A) — d(z, A)| < |ly — ||
Ainsi ’application x — d(x, A) est lipschitzienne.

Théoreme
] Les applications lipschitziennes sont continues.

dém. :
Soit f : X C E — F une fonction lipschitzienne.
Il existe & € R tel que
Vo,y € X, [f(y) = f@)llp <Elly —2lg
Soita € X.
Quand z — a, || f(z) — f(a)||p < k||lz —al|z — 0donc f(x) — f(a).
Ainsi f est continue en chaque a € X.
d

Exemple Soit E un K-espace vectoriel de dimension finie et e = (e, ..., e,) une base de E.
Les formes linéaires coordonnées dans la base e sont lipschitziennes.

En effet, notons ¢4, . . ., ¢, les formes linéaires coordonnées dans la base e.

Pourz =z1.e1+ -+ xp.e, € E,0nap;(z) = z;.

Etudions I’application ¢; : £ — K.

En choisissant || .|| = || . || onapourtoutj € {1,...,p}ettoutz,y € E,

oo,e’
loi(y) — @) = ly; — x5 < |ly — ||

Ainsi les formes linéaires coordonnées dans une base sont lipschitziennes et donc continues.

Remarque En particulier, les applications suivantes sont continues

(1,...,xp) = ;, 2= Re(z), z— Im(2) et A — a, ;

Exemple Soit (E1, N1)...., (Ep, Np) des espaces normés et (E, || . ||) I’espace normé produit.
Les applications coordonnées p; : © = (z1,...,%p) € E — z; sont lipschitziennes.
En effet, pour tout z,y € E,

N;(pj(z) —pi(y)) = Nj(z; —y;) < [lz —y|

Les projections coordonnées p; sont lipschitziennes donc continues.
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Remarque En particulier, les applications suivantes sont continues

ExF — E  ExF — F
(r,y) = = (r,y) = vy

17.2.4 Opérations sur les fonctions continues

Théoreme
Soit f,g: X CE — FetAuek.
Si f et g sont continues alors Af + g est continue.
Si de plus F' est une algebre normée, fg est aussi continue.

dém. :
Par opérations sur les limites en tout point a € X.
O

Corollaire
| C(X, F) est un sous-espace vectoriel (voire une sous-algébre) de F (X, F).

Définition
On appelle fonction mondme sur K? toute application de la forme

— aq o
r=(T1,...,2p) = 27 XX TP

On appelle fonction polynéme sur K? toute combinaison linéaire de fonctions mondmes.

Exemple Les fonctions polynémes sur KP sont continues.

Exemple L’application det : M, (K) — K est continue.

En effet n
det A = Z (o) H Qo ()i
oceS, i=1

et donc I’application det se comprend comme une somme de produits de fonctions continues.
On dit que le déterminant est une fonction polyndme en les coefficients de la matrice.

Théoreme
Soita: X CE—-Ketf: XCFE—F.
Si «c et f sont continues alors «. f est continue.

dém. :

Par opérations sur les limites en tout point a € X.

O

Théoreme
Soitf: X CE— Fetg:Y CF — Gtelleque f(X) CY.
Si f et g sont continues alors g o f est continue.

dém. :

Par opérations sur les limites en tout point a € X.

O
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Définition
On appelle fonctions rationnelles sur K” toute fonction qui est le rapport de deux fonctions
polyndmes sur KP.

Exemple Les fonction rationnelles sur K” sont continues sur leur domaine de définition.

Exemple La fonction
sin(z + y?)
2+ In(1 4+ 22 + y?)

fo(z,y)—

est continue sur R?
Par opérations sur les fonctions continues !

Attention : Ne pas argumenter f est continue car « continue en x et continue en y » .
Cette derniere notion correspond a de la continuité partielle, elle est nécessaire mais pas suffisante.

LY

EXemple Soit f(x, y) = ﬁ
T Y

si (2,y) # (0,0) et £(0,0) = 0.
Pour tout y € R.

Siy # Oalors ¢ — f(z,y) &2 est continue.
Y

=2
x

Siy = 0alors x — f(z,y) = 0 est continue.

Par symétrie, on a aussi y — f(x,y) est continue pour tout z € R.

Ainsi la fonction f est « continue en x eten y » .

Cependant, la fonction f n’est pas continue puisque f(1/n,1/n) =1/2 /f(0,0).

Théoreme
Si F est de dimension finie alors f : X C E — F est continue si, et seulement si, ses fonctions
coordonnées dans une base de F' le sont.

Exemple Lapplication M — com(M) est continue de M,,(K) vers lui-méme.
En effet, ses applications coordonnées dans la base canonique sont des polyndmes en les coefficients
de M.

Exemple L application M ~ M ! est continue sur GL,, (K).
En effet, on sait

1
M= ] tMtcomM
e

et donc les coefficients de M ! sont des fonctions rationnelles en les coefficients de M.

Théoréme
Si F est un espace normé produit alors f : X C E — F est continue si, et seulement si, ses
fonctions coordonnées le sont.

Exemple L application A € M,,(K) — (det A,comA) € K x M,,(K) est continue.
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17.3 Continuité et linéarité
17.3.1 Continuité des applications linéaires

Définition

] On note L.(E, F') ’ensemble formé des applications linéaires continues de E vers F.

Théoréme
] L.(E, F) est un K-espace vectoriel

dém. :
L.(E,F)=L(E,F)NC(E,F) estun sous-espace vectoriel de F(FE, F).
O
Théoreme
Soit une application linéaire u : E' — F'. On a équivalence entre :
(i) u est continue ;
(i1) w est continue en O ;
(iii) 3k > 0, Vo € E, ||u(z)| p < k||z|| 5 [ipschitzianité en 0] ;
(iv) u est lipschitzienne.

dém. :

(i) = (ii) : ok

(il) = (iii) : Supposons u continue en 0.
Pour € = 1, il existe o > 0 tel que

Vo € B lzllp < a = Jlu@)|F <1
Posons k = 1/a € R et montrons que
Ve € B, |lu(@)llp < kg

Pour x = 0: ok

Pour z # 0, posons o’ = ﬁx. Ona ||2'|| ; < adonce [lu(z')| » < 1.
Tle

i (@) done puis [[u(z)| p <

Or ”u(xl)“F = ”'73“
E

— || .
el

(iii) = (iv) : Supposons qu’il existe k > 0 tel que ||u(z)|| < k||| pour tout z € E.

Pour z,y € E,

u(@) —u@)llp = lu(@ = y)lp <Elle—-ylg
donc w est lipschitzienne.
(iv) = (i) : ok
O
Exemple Soit £ = C([0,1],K) etu : F — K définie par u(f) = f(1) — f(0).
u est une forme linéaire sur E.

Etudions sa continuité pour || . ||z = || . | et |- lz = I - ]I
Cas || [[g = Il ll-
Pour tout f € E, [u(f)| = [f(1)| + [f(0)| < 2| f]|,, donc u est continue.
Cas ||l g = Il Il,-
Pour f, : t — t",
1
[ulfo)l = Let | fuly = =7 =0
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Par suite, u n’est pas continue (car discontinue en O )

Exemple Soit £ = C*([a, b],K) normé par ||. | .
Considérons I’application [ : £ — E déterminée par

I(f) estla primitive de f s’annulant en a

Etudions la continuité de I’endomorphisme I de E.
Pour tout f € E,on a

1@ = [ 1w
donc N ’
o(f)a)| < / F@)] dt < (b—a) | £
Ainsi ’
() < 0= a) £l

et ’application I est continue.

Considérons inversement 1’application D de dérivation.
D est un endomorphisme de F .

Pour f,, : t — t",ona

[falloe = Let 1D(fa)llo = n -

L’endomorphisme de dérivation n’est pas continue.

17.3.2 Linéarité en dimension finie

Théoréeme

] Si E est de dimension finie, toute application linéaire de E vers F' est continue.

dém. :
Cas dim £ = 0 : ok.
Cas dim F'=n € N* : on introduit e = (e1, . .., e,) base de E et on considere ||. ||z = || . || .-

Soitu € L(E,F).Pourz = x1.e1 + -+ + Tp.€p,

u(z) = zy.uley) + - - + xp.ulen)

et donc
lu(@)llp < lzaf lu(e)llp + -+ [zal [ulen) | p < K l]|
avec
k=llu(e))|lp+ -+ [lulen) | p € RT
O
Corollaire

| Si E est de dimension finie L.(E, F) = L(E, F).

Exemple L application Tr : M, (K) — K est continue, I’application de transposition de M,, ,,(K) vers
My o (K),...
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Exemple Soit F un K-espace vectoriel de dimension n € N*.
Montrons que I’application det (g : L(£) — K est continue.
Notons que celle-ci n’est pas linéaire !
Cependant, on sait que det v, (k) : My (K) — K est continue. Soit e une base de £, I’application de
représentation matricielle
M. : L(E) = M, (K)

est linéaire au départ de L(E) qui est K-espace vectoriel de dimension finie, c¢’est donc une application
continue. On en déduit que
detL(E) = detMn(K) oM,

est continue par composition d’applications continues.

17.3.3 Continuité des applications multilinéaires

Théoreme
Soit B : E x F' — G une application bilinéaire. On a équivalence entre :
(i) B est continue ;
(ii) B est continue en (0g,0F) ;
(ii) Ik € R, V(2,y) € E x F, || B(x,y)llg <k zllg [yl -

dém. :

(i) = (ii) : ok

(ii) = (iii) : Supposons B continue en (0g, 0F).
Pour ¢ = 1, il existe o > 0 vérifiant

V(:c,y) € Ex F’ ||(-757y)||E><F Sa= ||B(ac,y)||G <1
Soit k = 1/a* € RT. Montrons
V(z,y) € ExF, [|B(z,y)| <kl |yl

Six=0gouy=0p:ok
o
[yl

« 1
Or || B(«", ¢ )| = - [|1B(,y)| donc || Bz, y)|l < = = [|ly]l-
[yl a?

(iii) = (i) Supposons qu’il existe k € R™ tel que || B(z,y)|| < k||z|| ||y|| pour toutx € Eety € F.
Soit (zo,y0) € E X F.

|1B(z,y) — B(zo,yo)|l = | B(x,y) — B(wo,y)|| + || B(z0,y) — B(zo,yo)|l

Sinon, on pose 2’ = Hj—”x ety y.Ona | (z',y')| = adonc || B(2,y")|| < 1.
2

donc

1B(z,y) — B(zo, yo)ll = [|1B(z — o, y)ll + [|1B(z0,y — yo)ll <k [z = 2ol lyll + & [[zoll ly — ol

Quand (z,y) — (z0, o), B(x,y) = B(xo,yo) et donc B est continue en (2, yo).

O

Corollaire
Si E et F sont de dimensions finies alors toute application bilinéaire au départ de F x F est
continue.
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dém. :
Cas E={0g}ouF ={0p}:o0k
Cas E # {Og} et F # {Op} : onintroduit e = (ey,...,e,) une base de E, f = (f1,..., fp) une base

de F et on considere || . ||, = || . HOO’G et].||-=1. ||Oo7f.
n p

Pourx:inei EEety:Zyjfj € Fona
i=1 j=1

b(w,y) =D wy;blei, f;)

i=1j=1
donc
16(z, )|l < k| llyll
avec
n o p
k=" lbles fy)l
i=1j=1

|
Théoreme

Soitm : B = Ey x --- X E, — F une application multilinéaire. On a équivalence entre :

(i) m est continue ;

(i) Ik € RT, Vo = (z1,...,3p) € B, [m(@)llp < klla1llg, - l7pllg, -
dém. :
Méme principe qu’au dessus.
|
Corollaire

Les applications multilinéaires au départ d’un produit d’espaces dimensions finies sont conti-

nues.
dém. :
Semblable a I’étude relative a la bilinéarité.
|

Exemple Soit F un K-espace vectoriel de dimension n € N* muni d’une base e.
L’application det, : E™ — K est continue car multilinéaire au départ d’un espace de dimension finie.

17.4 Connexité par arcs

X désigne une partie de E.
17.4.1 Chemin

Définition
On appelle chemin inscrit dans X C F toute application v : [0, 1] — E continue vérifiant

vt e [0,1],v(t) € X

Les éléments a = v(0) et b = (1) sont appelés extrémités du chemin.
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Définition
On dit qu’'un élément a € X peut étre relié dans X a un élément b € X s’il existe un chemin
v :[0,1] — E inscrit dans X vérifiant

7(0) =aety(1) = b

Exemple
Xl
XZ
X=X UX,
Proposition
Soit a,b,c € X.

a) a peut étre relié a lui-méme dans X ;

b) si a peut étre relié a b dans X, b peut étre relié a a dans X ;

¢) si a peut étre relié a b dans X et si b peut étre relié a ¢ dans X alors a peut &tre relié a ¢
dans X.

dém. :

a) Il suffit de considérer un chemin constant égal a a.

b) Si v est un chemin inscrit dans X joignant a a b alors 4 défini par 4(¢) = (1 —t) détermine un chemin
inscrit dans X joignant b a a.

¢) Si y; est chemin inscrit dans X joignant a a b et 5 joignant b a c alors v donné par

L(2t) site0,1/2]
(1) = { 32(%_ 1) site[1/2,1]

détermine un chemin inscrit X joignant a a c.
O
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Remarque La relation binaire R définie sur X par
aRb < il existe un chemin inscrit dans X joignanta a b

définit une relation d’équivalence sur X.
Celle-ci met en relation les éléments qui peuvent étre joints et ses classes d’équivalence regroupent
ensemble les éléments qui peuvent étre joints.

Définition
Les classes d’équivalences de la relation R sont appelées les composantes connexes par arcs
de la partie X .

Exemple

X]
XZ
X=X UX,
X est la seule composante X, et X, sont les deux
connexe par arcs composantes connexes par arcs

17.4.2 Parties connexes par arcs

Définition
Une partie X de E est dite connexe par arcs si elle ne possede qu'une seule composante
connexe par arcs. Cela signifie encore que pour tout a,b € X, il existe un chemin inscrit
dans X d’extrémités a et b.

Exemple

X connexe par arcs X, UX, non connexe par arcs
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Exemple Dans F = R, les intervalles sont connexes par arcs.
En revanche, R* n’est pas une partie connexe par arcs.

Proposition

] Les parties convexes sont connexes par arcs.

dém. :

Soit X une partie convexe.

Pour tout a,b € X, [a,b] = {(1 — N)a+ Ab/X € [0,1]} C X.
~v(t) = (1 —t)a + tb.

ety ([0,1]) C A.

O

Exemple Les boules, les sous-espaces vectoriels et les sous-espaces affines sont des parties connexes
par arcs car convexes.

Définition
Une partie X de E est dite étoilée s’il existe a € X vérifiant

Ve e X, [a,x] C X

Exemple

Proposition

] Les parties étoilée sont connexes par arcs.

dém. :
Car tout élément de X appartient a la composante connexes par arcs possédant a.
O
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Remarque - la réunion de deux connexes par arcs non disjoints est évidemment connexe par arcs ;
- I'intersection de deux connexes par arcs ne 1’est pas nécessairement. ;
- le produit cartésien de deux connexes pas arcs est connexe par arcs.

17.4.3 Image continue d’un connexe par arcs

Théoréme
] L’image directe d’un connexe par arcs par une application continue est connexe par arcs.

dém. :

Soit f : X C E — F continue avec X connexe par arcs.
Pour a’,b" € f(X),ilexiste a,b € X tels que a’ = f(a) etd’ = f(b).

Puisque X est connexe par arcs, il existe v : [0,1] — E continue telle que v(0) = a, (1) = b et
7([0,1]) C X.

Considérons alors v/ = f o~ : [0,1] — F.~' est continue, 7'(0) = ', ¥'(1) = b’ et v/ ([0,1]) =
f (v ([0,1])) € f(X).

]

Exemple Le cercle U = {z € C/ |z| = 1} est connexe par arcs. _

En effet, c’est ’'image du connexe R par I’application continue ¢ — e*’.

Exemple GL,,(IR) n’est pas connexe par arcs.
En effet det GL,,(R) = R* et R* n’est pas connexe par arcs.

17.4.4 Généralisation du théoréme des valeurs intermédiaires

Théoréme
] Les parties connexes par arcs de R sont ses intervalles.

dém. :

Autrement dit, les parties convexes de R sont exactement les intervalles de R.
Soit X un intervalle de R, X est convexe donc connexe par arcs.
Inversement, soit X une partie connexe par arcs de R.

Si X = ( alors X est intervalle.
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Sinon, pour tout ¢ < b € X, il existe v : [0,1] — R continue telle que v(0) = a, v(1) = b et
v ([0,1]) C X. Or, par application du théoréme des valeurs intermédiaires, la fonction y prend toutes les
comprises entre a et b. Ainsi [a, b] C 7 ([0, 1]) C X et donc

Va<be X,[a,b] C X

Posons alors o = inf X € RU {—oo} et f =supX € RU {+o0}.

Pour tout z € |a, B[, « n’est ni minorant, ni majorant de X et donc il existe a,b € X tel que a < x < b
etdonc x € [a,b] C X. Ainsi |a, 8] C X etdonc X = |, B, |av, 5], [, B] ou [a, 3].

Finalement, X est un intervalle de R.

O

Théoreme
Si X est une partie connexe par arcs de F et f : X — R une application continue alors f(X)
est un intervalle de R.
En conséquence, f prend toute valeur intermédiaire entre deux valeurs déja prises.

dém. :

f(X) est I'image d’un connexe par arcs par une application continue, ¢’est donc une partie connexe par
arcs de R. Or ces dernieres sont des intervalles.
O

Exemple Soit f : R — R continue injective.

Montrons que f est strictement monotone.

Considérons X = {(x, y) €ER?/x < y} X est une partie convexe de R? donc connexe par arcs.

La fonction v : X — R définie par v(z,y) = f(y) — f(z) est continue et ne s’annule pas en vertu de
I’injectivité de f. ’image par v de X est donc un intervalle de R qui ne contient pas 0. Par suite
v(X) C R™ ouw(X) C R™* et dans les deux cas f est strictement monotone.
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Chapitre 18

Compacité

18.1 Valeur d’adhérence

18.1.1 Suite extraite
Définition
On appelle suite extraite (ou sous-suite) d’une suite u = (up)nen d’éléments E' toute suite

v = (vk)ken pour laquelle il existe une fonction ¢ : N — N strictement croissante vérifiant

Vk € N,u, = U (k)

Remarque En posant n;, = ¢(k), une suite extraire peut se comprendre comme une sélection de termes
qui se succedent

(Un,, ) ken avec Ny < Mpi1

Exemple (usg)ren et (uzr41)ken sont deux suites extraites de (uy, )nen-

Proposition
Si w est une suite extraire d’une suite v elle-méme extraite d’une suite u alors w est extraite
de u.

dém. :
On suppose (v) = (ug(k)) et (we) = (vy(e)) avec @, : N — N strictement croissantes.
On a alors (wy) = (ug(y)) avec @ = @ o 1p : N — N strictement croissante.

]
Théoreme

| Si (un) converge vers ¢ alors toute suite extraite de (u,) converge aussi vers /.
dém. :

Soit (vg) = (uy(k)) une suite extraite de (u,, ) avec u, — £.
Soit e > 0. Il existe N € N tel que pour tout n > N, |ju,, — £|| < e.
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On montre par une récurrence facile que
Vk e N,p(k) > k

Pour k > N, ¢(k) > k > N donc

lor = £l = [Jugm — £ < e
Ainsi vy — /.
d
18.1.2 Valeur d’adhérence d’une suite
Définition

On appelle valeur d’adhérence d’une suite u = (u,,) d’éléments de E toute limite d’une suite
convergente extraite de u. On note Adh(u) I’ensemble des valeurs d’adhérence de la suite u.

Exemple Si u,, — ¢ alors Adh(u) = {¢}.

Remarque Une suite possédant au moins deux valeurs d’adhérence (ou n’en possédant aucune) diverge.

Exemple Déterminons les valeurs d’adhérence de u,, = (—1)" +

On a ug, — 1 et ug,+1 — —1 donc Adh(u) = {1, —1}.

n+1

Exemple Déterminons les valeurs d’adhérence de u = (uy, )nen € E telle que ||uy, || — +oo.
Aucune suite extraite de v ne converge car aucune suite extraite de u n’est bornée.
On en déduit Adh(u) = ().

Remarque Les valeurs d’adhérence d’une suite sont les valeurs au voisinage desquelles s’accumule une
infinité de termes de la suite.

Théoréme

] Toute suite bornée d’éléments de K admet au moins une valeur d’adhérence.

18.2 Partie compacte

18.2.1 Définition

Définition
Une partie K de FE est dite compacte si toute suite d’éléments de K possede au moins une
valeur d’adhérence dans K i.e.

Y(u,) € KN, Jp : N — N strictement croissante, Up(n) = le K

On dit encore que K est un compact de E.
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Remarque Dans une partie compacte K, on ne peut répartir les éléments d’une suite sans qu’il y ait
accumulation au voisinage d’un point de K.

Exemple Sur F = R, les segments [a, b] sont des parties compactes.
En effet, une suite d’éléments de [a, b] est bornée donc admet une suite extraite convergente dont la
limite sera élément de [a, b].

Exemple Sur £ = C, D(0, R) = {z € C/|z| < R} est une partie compacte.
En effet, une suite d’éléments de D(0, R) est bornée donc admet une suite extraite convergente dont la
limite sera élément de D(0, R).

Exemple Sur E = R, [a, +-00[ n’est pas compact.
En effet la suite définie par u,, = a + n n’a pas de valeur d’adhérence.

Exemple Sur F =R, ]a, b] n’est pas compact.
En effet, la suite définie u,, = a + (b — a)/(n + 1) n’a qu’une valeur d’adhérence et celle-ci n’est pas
élément de ]a, b].

18.2.2 Topologie des parties compactes

Théoréme
] Toute partie compacte est fermée et bornée.

dém. :

Soit K une partie compacte.

Montrons que K est fermée.

Soit (2, )nen une suite convergente d’éléments de K et posons ¢ sa limite.

Puisque K est compact, (x,,)nen admet une valeur d’adhérence dans K, or puisque ¢ est la seule valeur
d’adhérence de la suite convergente (2, ),en, on peut conclure que £ € K. En vertu de la caractérisation
séquentielle des parties fermées, on obtient la partie K fermée.

Montrons que K est bornée.

Par I’absurde, supposons K non bornée. Pour tout n € N, il existe x,, € K tel que ||z,|| > n. En faisant
varier n, cela détermine une suite (z,,) € K" telle que ||z,,|| — +oc. Or cette suite n’a pas de valeur
d’adhérence. C’est absurde.

O
Théoréme

] Toute partie fermée d’une partie compacte est elle-méme compacte.
dém. :

Soit F' une partie fermée d’un compact K.

Soit (x,,) une suite d’éléments de F'. La suite (x,,) apparait aussi comme une suite d’éléments du compact
K, elle admet donc une valeur d’adhérence ¢ € K c’est-a-dire qu’il existe ¢ : N — N strictement
croissante telle que x,(,) — £. La suite (z,(,))nen est une suite convergente d’éléments du fermé F'
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donc / € F.
Finalement, (2, ),cn admet une valeur d’adhérence dans F'.
]

18.2.3 Opérations sur les parties compactes

Proposition

] Une intersection de deux parties compactes est un compact.

dém. :
Car détermine une partie fermée a I’intérieur d’un compact.
O

Proposition
Une réunion de deux parties compactes est un compact

dém. :

Soit K7 et Ky deux parties compactes de E et u = (uy, )nen une suite d’éléments de K7 U K.

Cette suite contient une infinité d’éléments de K7 (ou de K5 ) et possede donc une valeur d’adhérence
dans K7 (ou dans K5 ).

O

Théoreme
Si K; et Ko sont deux parties compactes d’espaces normés F; et Ey alors K1 X Ky est une
partie compacte de 1’espace normé produit E; X Fs.

dém. :

Soit (u, )nen une suite d’éléments de K7 x K.

Pour tout n € N, on peut écrire u,, = (£, yn) avec x,, € Kj ety, € Ko.

La suite (x,,) est une suite d’éléments du compact K; donc elle admet une valeur d’adhérence x dans

K. Ainsi, il existe une extractrice ¢ telle que Tp(n) —> T aVEC T € K.

La suite extraite (y,(,,)) est une suite d’éléments du compact K, donc elle admet une valeur d’adhérence

y dans K. Ainsi, il existe une extractrice 1) telle que y,(y(n)) — y avec y € Ko.

Or, par extraction d’une suite convergente, On a enCOre Ty, (y(r)) —> T ELAONC U (y(n)) = (m<,9(1¢,(71))7 y@w(n))) —
(x,y) avec (z,y) € K1, Ko. Finalement, toute suite d’éléments de K; x K5 admet une valeur d’adhé-

rence dans K x K.

O
Corollaire
Si Ky, ..., K, sont des parties compactes d’espaces vectoriels normés F1, ..., [, alors K =
Ky x---x K, est une partie compacte de I’espace vectoriel normé produit /' = Fy X --- X Ep,.
dém. :

Par récurrence via
Kix...xKpx Ky = (K1 x...x Kp) x K11

O
18.2.4 Compacité en dimension finie

Théoréme

] En dimension finie, les parties compactes sont exactement les parties fermées et bornées.

dém. :
Les parties compactes sont assurément de cette forme. Etudions la réciproque.
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Soit K une partie fermée bornée d’un espace vectoriel normé E' de dimension finie p € N.
Sip=_0alors E ={0g} et K =0 ou K = {0g}. Dans les deux cas K est une partie compacte.

Sinon, on peut introduire une base e = (e1, ..., ;) de £ et considérer la norme || || , ..
Soit u = (u(n))nen une suite d’éléments de K.

Notons u1, . .., up les suites coordonnées de u.

Considérons v € (KP)" définie par v(n) = (uy(n),. .., uy(n))

Puisque la partie K est bornée, il existe M € R vérifiant
Ve e K,|z|| < M

En particulier
vn e N, fu(n)l| < M
et donc
VI<j<p,VneN,|u;(n)| < M
La suite v est donc une suite d’éléments du compact [—M, M]” (si K = R ) ou du compact D(0, M)p
(si K = C). La suite v admet donc une valeur d’adhérence et il existe ¢ : N — N strictement crois-
sante telle que (v(x(n))), o converge. Les suites coordonnées (u;(¢(n))),, o convergent et finalement

(u(¢(n))), ey converge.
De plus, (u(¢(n))),en € K et K est fermé donc (u(¢(n))), o converge dans K.
]

Exemple En dimension finie, les boules fermées sont compactes.

Exemple O, (R) est une partie compacte de M, (R).
En effet O,,(R) est une partie fermée car

O,(R) = f~1({I,}) avec f : A € M,,(R) — *AA continue
et O, (R) est une partie bornée car

VA € 0,(R),V1 < i,j <n,la; | <1

Corollaire

] En dimension finie, toute suite bornée admet une valeur d’adhérence.

dém. :
Car une telle suite évolue dans une boule fermée qui est compacte.
O

18.2.5 Applications

18.2.5.1 Convergence d’une suite d’éléments d’un compact

Théoreme
Une suite d’éléments d’une partie compacte converge si, et seulement si, elle admet une unique
valeur d’adhérence.

dém. :
(=) On a déja vu que ’ensemble des valeurs d’adhérence d’une suite convergente est un singleton.

http://mp.cpgedupuydelome.fr 433 @O0



18.2. PARTIE COMPACTE

(<) Soit u = (uy,)nen une suite d’éléments d’un compact K possédant une unique valeur d’adhérence .
Par I’absurde, supposons que la suite u ne converge pas vers £. Il existe ¢ > 0 vérifiant

YN eN,IneNn>Net |u, — ¥ >¢

Il existe donc une infinité de termes de la suite « en dehors de By (¢, ¢). On peut ainsi définir une suite
extraite (U, (n))nen Vérifiant
Vn € N, ||u¢(") - f” >e

Or celle-ci est une suite d’éléments du compact K et admet donc une valeur d’adhérence m € K. Cette
valeur d’adhérence vérifie
lm —¢|| > ¢

C’est absurde, car la suite u ne posseéde qu’une seule valeur d’adhérence.

0

Corollaire
En dimension finie, toute suite bornée admettant une unique valeur d’adhérence converge vers
celle-ci.

dém. :
Soit u = (uy )nen une telle suite. Il existe M € RT vérifiant

VneN, |lu,|| < M

La suite u apparait alors comme étant une suite du compact By (0g, M) et comme elle n’admet qu’une

valeur d’adhérence, elle converge vers celle-ci.
O
18.2.5.2 Fermeture des sous-espaces vectoriels de dimension finie

Théoréme

] Tout sous-espace vectoriel de dimension finie d’un espace normé est une partie fermée.

dém. :

Soit F' sous-espace vectoriel de dimension finie d’un espace normé E.

Soit (u,)nen une suite convergente d’éléments de F' de limite .

La suite (u,, )nen converge, elle est donc bornée et il existe M € R vérifiant

Vn €N, [lun|| < M

La suite (¢, )nen est alors une suite du compact K = B¢ (05, M)NF, elle admet une valeur d’adhérence
dans K qui ne peut qu’étre u... En particulier, u., € F'.

Le sous-espace vectoriel F' est donc fermé puisqu’il contient les limites de ses suites convergentes.

O

18.2.5.3 Distance a un fermé en dimension finie

Exemple Soit F' une partie fermée non vide d’un K-espace vectoriel de dimension finie et x un vecteur
de E.
Montrons qu’il existe y € F' tel que d(z, F') = ||y — ||
Par définition
d(z, F) = inf |ly — ]
Pour tout n € N, il existe y,, € F tel que
1

d(z, F) < |lyn — d(z, F) + ——
(2. F) < llyn — oll < d(w, F) + ——
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En faisant varier n, cela définit une suite (y,,) € F" telle que ||y, — z| — d(z, F).

Puisque ||y, || < ||lz|| + |lyn — ]|, la suite (y,,) est bornée. Il existe donc une suite extraite (yp())
convergente de limite y.

Puisque (Y, ()) est une suite d’éléments du fermé F', onay € F.

Puisque g, () — y et Hy@(n) - xH — d(z, F)onaaussi |y — z|| = d(x, F).

18.3 Continuité et compacité
18.3.1 Image continue d’un compact

Théoreme
] L’image d’une partie compacte par une application continue est une partie compacte

dém. :

Soit f : K C E — F continue avec K partie compacte.

Soit (y,,) € f(K)Y, il existe (z,,) € K" telle que y, = f(x,,).

La suite (z,,) admet une valeur d’adhérence dans K et par continuité son image par f est valeur d’adhé-
rence de (y,,) dans f(K).

O

Exemple Si A et B sont des parties compactes de E alors A + B est un compact de F.
En effet, A + B est I'image du compact A x B par I’application continue (x,y) — = + y.

Corollaire
Soitf: K C E— F.
Si K est une partie compacte et si f est continue alors f est bornée.

dém. :
Une fonction continue sur un compact a une image compacte donc bornée.
O

18.3.2 Théoréme des bornes atteintes

Théoréme
Toute fonction réelle définie et continue sur un compact non vide admet un minimum et un
maximum : on dit qu’elle est bornée et qu’elle atteint ses bornes.

dém. :

Soit f : K C E — R continue avec K partie compacte non vide de E.

f(K) est un compact non vide de R donc m = inf f(K) et M = sup f(K) existent.
Pour toutn € N, M —1/(n + 1) < M donc il existe z,, € K tel que

1
Mﬁi n gM
a1 < fan)

En faisant varier n, cela détermine une suite (z,,) € K" telle que f(x,,) — M.

Puisque la partie K" est compacte, il existe ¢ extractrice telle que z,(,) — a € K.

Par continuité de f en a,ona f(z,(,)) — f(a) et par extraction f(x,(,)) — M donc M = f(a).
O
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Exemple Soit K un compact non vide etz € E.
On pose

d(z,K) = inf ||y —
(2, K) = inf [ly — =]
Montrons qu’il existe yo € K tel que d(x, K) = ||yo — ||

La fonction y — ||y — || est continue sur le compact K, elle y admet donc un minimum et par
conséquent, il existe yo € K tel que

1l — ol = il — il =l —
Jnf lly — 2ll = min ly — 2/l = flyo — I

18.3.3 Uniforme continuité

Définition
Une application f : X C E — F est dite uniformément continue si

V5>O,3a>0,Vm,y€X, ||y7x||E Sa= ||f(y)7f(x)||F <5

Remarque f: X C E — F continue signifie
Pour I'uniforme continuité, on exige que le parametre « soit indépendant de x.

Proposition
] Toute fonction uniformément continue est continue.

dém. :
Qui peut le plus, peut le moins.
O

Proposition
] Toute fonction lipschitzienne est uniformément continue.

dém. :
Supposons f : X C E — F lipschitzienne. Il existe k € R tel que

Va,y € X, |[f(y) = f(@)]| < kly — =]

Sans perte de généralité, on peut suppose k > 0.
Soite > 0. Pour &« = ¢/k > 0,0n a

Vr,y € X, |ly—zf| <a=[If(y) - f@) <e

O
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18.3.4 Théoréme de Heine

Théoreme
Soitf: KCE — F.

Si K est une partie compacte et si f est continue alors f est uniformément continue.

dém. :
Par I’absurde, supposons que f non uniformément continue.
Il existe € > 0 tel que

Va>0,3r,y € X, [ly —zf| Scet [|[f(y) - f(2)] > ¢

1
Soitn € N. Pour o = ] > 0, il existe =, y, € K vérifiant
n

1
yn — 2n| < nrl et ||[f(yn) — fzn)|l > €

En faisant varier n, cela détermine deux suites (z,,) et (y,) d’éléments de K telles que ||y, — || — 0
et||f(yn) — f(zn)|| > . Puisque la suite (x,,) évolue dans le compact K, il existe une extractrice ¢ telle
que T ) — T avec z € K. Puisque ||y¢(n) — zsa(n)H — 0, on a aussi y,(,) — 2. Or f est continue
donc f(x,) — f(z)et f(yn) — f(x). Enpassant ala limite la relation || f(y,,) — f(zn)|| > €, on obtient

alors une absurdité.
O

Corollaire

] Toute fonction continue de [a, b] vers F’ est uniformément continue.

dém. :
Car [a, b] est une partie compacte.
O

18.3.5 Musculation

Exemple Soit f : [0, +00[ — R continue. On suppose que f +—> £, montrons que f est uniformément
o0

continue.Soit ¢ > 0. Il existe A € R™ tel que
Ve > A, |f(x) — ¢ <e/2

et alors
Y,y € [A, ool [f(y) — f(2)| < e (*)
De plus, f est continue sur [0, A] donc uniformément continue et il existe « > 0 tel que

Vm,ye [07A]’|y_m| Sa= If(y)—f($)| <5(**)

Soit #,y € RT avec |y — x| < a. On peut supposer = < y.

Siz,y €[0,A],ona|f(y) — f(x)| < e en vertu de (**)

Siz,y € [A, +o0o[, onaanouveau | f(y) — f(z)| < € cette fois-ci en vertu de (*).

Siz e [0,A] ety € [A,+o0[, on a nécessairement | — A| < «. (*) et (**) donnent alors

[f(@) = f)l < [f (@) = F(A+[f(A) = fFly)l <2

Quitte a adapter le € de départ, on obtient ce que 1’on veut.
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Chapitre 19

Dérivation et intégration d’une
fonction vectorielle

K désigne RouCet E, F\,G, ... désignent des K-espaces vectoriels de dimensions finies.
I désigne un intervalle de R d’intérieur non vide.
On étudie ici des fonctions d’une variable réelle a valeurs dans un espace de dimension finie

t s 2(t) € C,t s ((t), y(t),...) € R, ( a(t) b(t) ) € Ma(R).. ..

19.1 Dérivation

19.1.1 Vecteur dérivé

Définition
Ondit que f : I — E est dérivable en a € [ si le taux d’accroissement

(fla+h) = f(a))

S

converge quand h — 0 (avec h # 0)
Sa limite est alors appelée vecteur dérivé de f en a, on la note f’(a).

Théoreme

Soit f : I — F et a élément de I. On a équivalence entre :
() f : I — FE estdérivableen a;

(ii) il existe £ € F tel que

f(t) = fla)+ (t —a).L+ (t — a)e(t) avec () - Op

De plus, on a alors £ = f(a).
L’égalité asymptotique écrite dans (ii) s’appelle un développement limité a I’ordre 1 de f en a.

dém. :

439



19.1. DERIVATION

(i) = (ii) Si f est dérivable en a on peut écrire, pour t # a

Avec £(t) 2 0. On alors
—a

f(t) = fla) = (t = a).f'(a) + (t — a)e(t)

et cette relation vaut aussi pour ¢ = a en posant £(a) = 0g. On obtient donc

f(t) = f(a) = (t—a).f(a) + ot — a)

t—a

(i) = () Si f(¢) vt fla)+ (t—a).L + (t — a)e(t) avec e(t) — 0 alors
= (flath) = f(@)) = 3 (hL+ he(at b)) — ¢
U

Remarque On écrit alors

f@) = fla) +(t—a)L+o((t —a))

t—a

en introduisant le concept de fonction négligeable comme cela a été fait pour les fonctions réelles ou
complexes.

Corollaire
] Si f est dérivable en a alors f est aussi continue en a.

Remarque Sit — f(t) est le paramétrage d’un mobile alors f’(a) est le vecteur vitesse du mobile 2
I’instant ¢ = a.

19.1.2 Dérivabilité a droite et a gauche

Définition
Soit f: I — FEeta € I qui n’est pas extrémité droite de /. On dit que f est dérivable a droite
en q si le taux d’accroissement

1
= (fa+h) = f(a))

converge quand i — 0. Sa limite est appelée vecteur dérivé a droite de f en a. On le

note f5(a).
De facon analogue, on définit f;(a) vecteur dérivé a gauche de f en a.

Proposition
Soit f : I — E et a élément intérieur a I. On a équivalence entre :
(i) f est dérivableen a ;

(ii) f est dérivable a droite et a gauche en a avec f,(a) = f, (a).
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19.1.3 Fonction dérivable

Définition
Une fonction f : I — F est dite dérivable si elle ’est en tout point de I.
On peut alors introduire 1’application

. I—>F
U telw— f'(t)

appelée fonction dérivée de f.

Proposition

] Les fonctions dérivables de I vers E sont continues.

dém. :
Si f : I — E est dérivable alors f est continue en tout a € 1.
|
Théoreme
Soit f : I — E de fonctions coordonnées f1, ..., f, dans une base e = (e1,...,ep,) de E.
On a équivalence entre :
(i) f est dérivable ;
(ii) f1,..., fp sont dérivables.
De plus, si tel est le cas
P
Ve Lf(t) = fi(t)e
j=1
dém. :
Ona

(a4 ) = f@) = Y 3 (filath) = fy(a))

La convergence de la fonction vectorielle en premier membre équivaut a la convergence des fonctions

coordonnées mises en exergue dans le second membre.
O

Exemple z: I — C est dérivable si, et seulement si, Re(z) et Im(z) le sont. On a alors

2 (t) = (Rez)’(t) + i(Imz)'(t)

Exemple z : I — RP définie par z(t) = (z1(¢), ..., z,(t)) est dérivable si, et seulement si, x1, . ..,z
le sont. On a alors

Exemple A : I — M, ,(K) est dérivable si, et seulement si, les fonctions coefficients ¢ — a; ;(t) le

sont. On a alors . ,
a1,1(t) T a1,p(t)

Al(t) =
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19.1.4 Opérations sur les fonctions dérivables

Théoreme
Soit f,g: I - FetA ek
Si f et g sont dérivables alors A f et f + g le sont aussi avec

M) =M (f+9) =1 +d

dém. :

Par opérations sur les limites ou par les fonctions coordonnées dans une base de E.

O

Corollaire

L’ensemble D(I, E) des fonctions de I vers F dérivables est un sous-espace vectoriel de
F(I, E) et 'application f +— f’ y est linéaire.

Théoreme
Soitp:J —Tetf:I— E.
Si f et ¢ sont dérivables alors f o ¢ I’est aussi

(fop) =¢' .flop

dém. :
Immédiat par les fonctions coordonnées dans une base de E.

O

Théoreme
Soit f:I — EetL e L(E,F).
Si f est dérivable alors L(f) : t — L(f(t)) est dérivable et

(L] = L(f)

dém. :
Soita € I.Pour h # 0

(L(f(a+h)) = L(f(a))) = L (1 (fla+h) - f(a))> — L(f'(a))

h h—0

S =

car L est continue puisque linéaire au départ d’un espace vectoriel de dimension finie.
O

Attention : Ici écrire la formule (L(f))" = f’ x L'(f) n’a pas de sens car L’ n’en a pas.
Exemple Si A : I — M, (K) est dérivable alors ¢ — tr(A(t)) est dérivable et

d /!
7 (w(A())) = (A1)
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Théoreme
Soit f:I —- FE,g:1 — FetB:FE x F — G bilinéaire.
Si f et g sont dérivables alors B(f, g) : t — B(f(t), g(t)) est dérivable et

B(fvg)/ = B(flvg) +B(fvg/)

dém. :
Soit a € I. Pour i # 0, on peut écrire

LB (7(a+ 1).g(a + ) - B(f(a).g(@)
=5 (3 (flat 1)~ f@).gta 1) + 5 (@)

S

(oo + 1) = g(a)) )
Par continuité de I’application bilinéaire B,

% (B(f(a+h)gla+h)) = B(f(a),9(a))) ~—= B(f(a), g(a)) + B (f(a),g'(a))

O

Corollaire
Sia: I — Ketf:I— E sontdérivables alors . f aussi et

(a.f) =d.f+a.f

dém. :
L application produit extérieur . : K x F — E est bilinéaire.
|
Corollaire
On suppose que E est une algebre.
Si f,g : I — E sont dérivables alors fg 1’est aussi

(f9) =rtg+1d
En particulier, D(I, E) est une sous-algebre de F (I, E).

dém. :
L application produit £ X E — E est bilinéaire.
]
Corollaire
On suppose F euclidien de produit scalaire (. | .).
Si f, g sont dérivables alors (f | g) : t — (f(t) | g(t)) est dérivable et

Sl =19+ (f1d)

dém. :
(. ] .) est une application bilinéaire.
O
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Théoréme
Soit f1: I = Eq, ..., fp: 1 —= Epetm: By X By x --- x E, — F multilinéaire.
Si f1,..., fp sont dérivables alors m(f1, ..., fp) : t = m(fi(¢),..., fp(t)) est dérivable et

p
m(fla"'af[) me17"'7f]/'7"'7.fp)
Jj=1

Exemple Siwu,v,w : I — R sont dérivables alors uvw aussi et

/ / / /
(uwvw)" = v'vw 4+ w'w + vvw

Plus généralement, on a pour fi,..., f, : I — R dérivables, la relation
P
li
(fro ) =D fio(fi) o fy
i=1

Exemple Soit A : t — A(t) une fonction dérivable de I vers M,,(K).
La fonction ¢ — det A(t) est dérivable car

det A(t) = Z E(U)Haa(i),i(t)
e, =1

Exprimons la dérivée de ¢ — det A(t).
Notons Cy(t),...,Cy(t) les colonnes de A(t) et E = (E, ..., E,) la base canonique de M., ; (K).
Les fonctions C1, . .., C, sont dérivables et puisque

det(A(t)) = detg (CL(2), ..., Cn(t))

avec det g application multilinéaire, on a

j det A(t ZdetE Ci(t),...,CUt),...,Cn(t))
L dla®) b || d0) b || e ¥
Exemple | () d(t)’ J)d() ‘* c(t) d’(t)’

Remarque On pourrait aussi raisonner par ligne plutdt que par colonne.
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19.1.5 Dérivées d’ordres supérieurs

Définition

Soit f: I — E.

On pose f ) = f appelée dérivée d’ordre 0 de f.

Pour n € N, si f(™) existe et est dérivable, on pose f("1) = < f ("))/ appelée dérivée d’ordre
n+1de f.

On dit que f : I — E estn fois dérivable si f (") existe.

Théoreéme

Soit f : I — E de fonctions coordonnées f1, ..., f, dans une base e = (e1,...,e,) de E.
On a équivalence entre :

(i) f estn fois dérivable ;

(ii) fi1,..., fp sont n fois dérivables.

De plus, si tel est le cas :

Vee I fOt) = [ (1).er + -+ £ (1)

dém. :
Par récurrence sur n € N.
|
Théoreéme
Soit f,g: I - FetA €K
Si f et g sont n fois dérivables alors A f et f + g le sont aussi et
AN =Af" et (f +9)™) = F + g™
dém. :
Par récurrence sur n € N.
|
Corollaire
L’ensemble D" (I, E) des fonctions n fois dérivables de I vers E est un sous-espace vectoriel
de F(I,E).
Théoreme
Soit f: I — FetL € L(E,F).
Si f est n fois dérivable alors L(f) aussi et
(L™ = L(F™)
dém. :
Par récurrence sur n € N.
]
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Théoreme
Soit B : E x F' — (G une application bilinéaire.
Sif:I— Eetg:I— F sontn fois dérivables alors B(f, g) I'est aussi et

B(f,9)™ = zn: (:) B (f(”"“),g(’“))

k=0

dém. :

Par récurrence sur n € N.

Pourn = 0: ok.

Supposons la propriété vraie au rang n > 0.

Soit f : I — Fetg:I — F des fonctions n + 1 fois dérivables.
Par hypothese de récurrence B(f, g) est n fois dérivable et

B(f,9)™ = Zn: (Z) B (f(”*’“),g(’“)>

k=0

Or pour tout k € {0,...,n}, ™% et ¢ sont dérivables donc B (f(”_k),g(k)) aussi.
Par suite, B(f, g) est n + 1 fois dérivable et

st 35 (1) 5 (500.00) 3 50,000
k=0
En séparant les deux sommes et par décalage d’indice

" B(f(nﬂfk) @) S " (n+1=k) (k)
. g+ D) B ")

k=1

B(f,9)") =
k—

0

En adjoignant des termes nuls a chaque somme

n+1 n+1
n n
B(f, g)" D) = B ( (nt+1-k) (k)) B ( (nt+1-k) (k))
(f.9) >0, )BU 2 ED D N LAV 9
k=0 k=0
En réunissant les deux sommes et par la formule du triangle de Pascal
n+1
B(f,9)") =S ntl) g (f(n+1—k) g(k))
b k b
k=0
Récurrence établie.
O
Corollaire
] Sia:I —Ketf:I— E sontn fois dérivables alors «. f aussi.
Corollaire

On suppose que E est une algebre.
Si f,g: I — E sont n fois dérivables alors fg aussi.
En particulier, D" (I, E) est une sous-algébre de C(I, E)
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Corollaire
Soit E un espace euclidien
Si f,g: I — E sont n fois dérivables alors (f | g) aussi.

Exemple Soit f : I — F une fonction n + 1 fois dérivable.

(£ F(0) D = £ D (8) + (n+ 1) F (2)

19.1.6 Classe d’une fonction

Définition
Une fonction f : I — F est dite de classe C" si f est n fois dérivable et si f(") est continue.
Une fonction f : I — E est dite de classe C* si elle est de classe C™ pour tout n € N.

Les théorémes présentés ci-dessus se transposent aux fonctions de classe C" avec n € N U {co}. On en
déduit :

Proposition

Pourn € NU {oo}, f : I — E estde classe C" si, et seulement si, ses fonctions coordonnées
dans une base de F le sont.

Théoreme
Pour n € NU {oo}, I’ensemble C" (I, E) des fonctions de classe C™ de I vers E est un sous-
espace vectoriel (voire une sous-algebre) de F (I, E).

19.2 Intégration sur un segment

19.2.1 Fonctions continues par morceaux

Soite = (eq, ..., ep) une base de I’espace E.

Définition
Une fonction f : I — F est dite continue par morceaux si ses fonctions coordonnées dans la
base e le sont.

Proposition
] La notion ne dépend pas du choix de la base e de E.

dém. :
Sié = (é,...,6,) désigne une autre base de F et si P est la matrice de passage de e a ¢, la formule de
changement de base

X=PXetX =P 'X

montre que les fonctions coordonnées f1, ..., f, de f dans € sont combinaisons linéaires des fonctions
coordonnées de f dans e. Si ces derniéres sont continues par morceaux, ces premieres aussi.
|

Théoréme
L’ensemble Cgm(l , E) des fonctions continues par morceaux de I dans E est un sous-espace
vectoriel de I’espace F (I, E).
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dém. :
Par opérations sur les fonctions coordonnées.
O

19.2.2 Intégration entre deux bornes

Soit e = (eq, ..., e,) une base de I’espace E.

Définition
Soit f : I — E une fonction continue par morceaux de fonctions coordonnées f, ..., f, dans
la base e.

Pour tout a, b € I, on appelle intégrale de f de a a b le vecteur

/abf(t detZ/ fi(t)dt.e;

Cette intégrale peut aussi étre notée / fou f lorsque a < b.
a [a,b]

Proposition
La valeur de I’intégrale ici définie ne dépend pas du choix de la base e de E.

dém. :
Considérons € = (€1, ..., €p) une autre base de F et introduisons P = (p; ;) la matrice de passage de e
ae.Ona
P P
Zpuezetf =2 fi0e =2 504
j=1 j=1
et donc
P
> [0 =3 Y m [ Foaee =3 'S miioae =3 [ e
j=1 Jj=11i=1
O

19.2.3 Opérations

Théoreme
Soit f, g : I — E continues par morceaux, A\, u € Keta,b e [

/lekf+ug=/\/(lbf+u/abg

dém. :
Via les fonctions coordonnées dans une base de E.
O
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Théoreme
Soit f : I — E continue par morceaux.

Va,b,cel,/abfz/:f-ﬁ-/cbf

dém. :
Via les fonctions coordonnées dans une base de F.
O

19.2.4 Sommes de Riemann

Théoreme
Si f : [a,b] — E est continue par morceaux alors

)

n—1

_azf<

dém. :
Via les fonctions coordonnées dans une base de F.

|
b—a n
/"
n
k=1

Remarque On a aussi

2) = 1

Corollaire
En particulier, pour f : [0, 1] — E continue par morceaux

Tllnzf <> ;Zf< )tendentvers /Olf(t)dt

k=0 k=1

19.2.5 Inégalité triangulaire

Théoreme
Soit f : [a,b] — F continue par morceaux et || . || une norme sur F.
| [osl< [
[ab] [a,b]
dém. :
D’une part
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f
Or par inégalité triangulaire

b n—1 b
a4 g f(cH—k a>
n n
k=0

et d’autre part

o

k=0

>H n—-+oo0 /abllf(m dt
3

Z

)l

k=

On conclut par passage a la limite.

O

19.3 Intégrales et primitives

19.3.1 Primitive

Définition
On appelle primitive de f : I — F, s’il en existe, toute fonction F' : I — F dérivable vérifiant
F' = f.

Remarque Les primitives de f peuvent se calculer a partir des fonctions coordonnées de f.

Théoréeme
Si f : I — FE admet des primitives, celles-ci se déduisent les unes des autres par addition d’une
constante vectorielle.

dém. :
Si F est primitive de f alors F' + C aussicar (F +C) = F' = f.
Si F et G sont deux primitives de f alors (F' — G)" = 0 et donc F' — G est constante (car ses fonctions

coordonnées le sont).
O

19.3.2 Intégrale fonction de sa borne supérieure

Théoreme
Soit f: I — Eeta € I.Si f est continue alors f possede une unique primitive s’annulant en

a, ¢’est la fonction
F:z— / f@t)de
xr

La fonction F' : z — f(t) dt est définie de I vers E et s’annule en a.

dém. :

a
Soit € I. Montrons

(Pla+h) = Fx) — f(z)

S

Soit h > 0.

x+h
<[ -l
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Puisque f est continue en z, pour € > 0, il existe & > 0 tel que

Vel lt—al <a=|lf(t) - f@)] <

et alors
O<h<a=telr,z+h],|f1t) - f@)<e
et donc
O<h<a= H;l(F(m—i—h)—F(x))—f(ac) <e

Ainsi )

= (F(a+h) = F@) —— [(2)
De méme on montre )

E(F(x"'h)—F(iU)) mf(x)

O

Remarque On retient la formule

& ([ ra) = s

Corollaire
Si f : I — F est continue de primitive F alors

Va,be I, /b Ft)dt = [Ft)”

dém. :
Pourtoutz € I,on a

[ stat=r@ - F@

x
car x — / f(t) dt et F' sont primitives de f. En particularisant en z = b, on obtient la relation voulue.
a

]

19.3.3 Changement de variable et intégration par parties

Théoreme
Soit ¢ : I — J declasse C' et f : J — F continue.

b »(b)
Ya,b e I, / o). f(o(t)) dt:/ f(s)ds

La manipulation consistant a transformer une intégrale en I’autre est appelée changement de
variable définie par la relation s = ¢ (t).
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dém. :
Soit F une primitive de la fonction continue f.

@(b) ®)
/ f(s)ds = [F(S)]i(a)
v(a)

On vérifie par les fonctions coordonnées que F o ¢ est primitive de la fonction continue ¢'. f o ¢ et donc

b
/ ) (1) dt = [F(p(t)]!

O
Théoréme
Soit B : E x F — G bilinéaire, u : I — Eetv: I — F de classe C'.
b b
Va,b e I, / B(u',v) = [B(u,v)]" f/ B(u,v')
dém. :

Puisque la dérivée de B(u,v) est B(u',v) + B(u,v’)
b b b
/ B(u,v) + / B(u,v') = / (B(u,v))' = [B(u,v)]}
O

19.3.4 Inégalité des accroissements finis

Théoreme
Soit f : I — E de classe C'. S’il existe M € R vérifiant

Ve L|f' (Il < M

alors
Va,b € I, || f(b) — f(a)|| < M |b—al

En d’autres termes, la fonction f est lipschitzienne.

dém. :
Puisque f est de classe C!, on peut écrire

Vo L i) = )+ [ " yde

<.
la

1£(b) = fa)ll < : b]Mdt: M(b—a)

Casa <b

f(t)dt

[a,b]

1£(b) = f(a)l =|

1/ @®)] dt
b]

s

et donc
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Cas a > b : analogue.
O

19.3.5 Formules de Taylor

19.3.5.1 Formule de Taylor avec reste intégral

Théoreéme
Soit f : I — Eeta e I.Si f estde classe C" !

" (z—a)k o —t)"
Vo el flz)=)_ %f”‘f) (a) +/ %f("ﬂ)(t) dt

k=0

dém. :
Par récurrence en exploitant I’intégration par parties

T ()M T — n+1 T T n+1
/ e = [_(<n+t)1>! I WU(”]ﬁL (<n+t)1>! frrRm

O

Remarque Cette formule constitue une généralisation de 1’identité
x
+ / () dt
a

Remarque Par le changement de variable affine ¢ = a + (z — a)u, on peut réécrire le reste intégrale

/a: Mf(nJrl ( )ydt = (z — a)nJrl/O Mf(nJrl)(aJr (z — a)u)du

n! n!

Cette nouvelle écriture permet de mieux appréhender 1’ordre de grandeur du reste.

19.3.5.2 Inégalité de Taylor-Lagrange

Théoreme
Soit f: I — Eeta € I.Si festde classe C" ' etsi (™) bornée alors

i f(k) (a)|| <

k=0

n+1

r—a
| | sup Hf(n-‘rl) )H

Vr e 1, —_
(TL+1. tel

dém. :
Ona
1 n 1 (n+1)
(1 — u) (n+1) 1 n (n+1) _ ||f Hoo
O

Remarque Ce résultat constitue une généralisation de I’'inégalité des accroissements finis.
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19.3.5.3 Formule de Taylor-Young
Théoreme
Soit f: I — Eeta € I.Si f estde classe C"

n

)= 30 C D f09(0) 4 (o — )" e(a) avee (o) —> O
k=0

Cette relation est appelée développement limité de f a I’ordre n en a.

dém. :
Puisque que f est classe C"

n—1 x—ak T n—1
Vo el flx) =) %f@c)(a) +/ iﬂm (t)dt

— 1)
k=0 a (=1
Puisque f(™) est continue en a, on peut écrire
FU#) = £ (a) + o(t) avec o — 0

et alors

Soit e > 0. Il existe a > 0 tel que

(o=t )
/a W@(t) dt = (z — a)"e(x) avec e(z) E) 0p

t—al<a= e <e

et alors pour |z — a| < «

C -t |z —al”
- <
/a (n—1)! p(t) dt)) < e n!

On peut alors écrire

O

Remarque En introduisant le concept de fonction négligeable, on peut aussi écrire

;azx“‘ JP @) + o (@ —a)")
k=0

Remarque La formule de Taylor-Young est locale : elle ne donne qu’une information sur le
comportement asymptotique de f au voisinage de a. La formule de Taylor avec reste intégrale est quant
a elle globale, elle fournit une information sur le comportement de la fonction sur I’intervalle I en entier.
Il en est de méme pour I'inégalité de Taylor-Lagrange.

http://mp.cpgedupuydelome.fr 454 @O0



CHAPITRE 19. DERIVATION ET INTEGRATION D’UNE FONCTION VECTORIELLE

19.4 Arcs paramétrés

19.4.1 Définition

Définition

On appelle arc paramétré de classe C* (avec k € N* U {oco} ) de E tout couple (I, f) constitué
d’un intervalle I de R et d’une fonction vectorielle f : I — F de classe C*.

On s’intéresse alors a I’ensemble de point

I={f®)/tel}

appelé support de I’arc (I, f) (et I’on parle aussi de courbe paramétrée).
On dit aussi que la fonction f définit un paramétrage de la courbe T'.

.
.
““
.
.
*
o+
o
o
o
-

"ee
.........
"~
L0
»

.
.
.

Remarque La valeur f(¢) permet de désigner un point de la courbe I, on dit que c’est le point de
parametre t.

Exemple Soita € Eetu # O
L’application ¢ — a + t.u définit un paramétrage de la droite affine a + Vect(u).

Exemple Considérons £ = C.
La fonction f : t € [0, 27] + '* définit un paramétrage de U = {z € C/ |z| = 1}.

Remarque 11 est fréquent de confondre I’arc paramétré et le support qu’il définit. C’est cependant
maladroit car un arc paramétré détermine aussi une dynamique de parcours sur ce support.

19.4.2 Paramétrage dans le plan géométrique.

En munissant le plan géométrique d’un repére orthonormé R = (O; Z,;), on peut identifier le plan et R?.
Un arc paramétré donné par f : I — R? détermine alors 2 une courbe du plan.
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Définition
Soit z,y : I — R au moins de classe C'.
On appelle arc du plan défini par le systeme

{ziz((;) avect € [

I’arc paramétré déterminé par I’application

[t (2(t),y(t))

Exemple Soit A(xg,yo) un point et @(a, b) un vecteur non nul

r=ux9+t.a
{ 0 avect € R

y=1%y+tb

définit un paramétrage de la droite passant par A et dirigée par .

Exemple Soit 2(a,b) un pointet R > 0

{ @ = @0+ Reos(l) avec t € [0, 27]

y = yo + Rsin(t)

définit un paramétrage du cercle de centre 2 et de rayon R.

19.4.3 Tangente en un point

Soit (I, f) un arc paramétré de classe au moins C' et ¢y € I.
On suppose qu’au voisinage de o,

f(t)=f(to) =t =1o

ce qui signifie que la courbe ne se recoupe pas infiniment sur elle-méme en ¢. ..
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Définition
On dit que Iarc (I, f) admet une demi-tangente a droite en ¢, si le vecteur unitaire
f(t) — f(to)
1) = f(to)ll

admet une limite en ty. On dit alors que la droite issue du point f (o) dirigée par ce vecteur est
la demi-tangente a droite en %.

Mutatis mutandis, on définit la demi-tangente a gauche en ;.

Enfin, si les deux droites demi-tangentes sont confondues, on dit que 'arc (I, f) admet une
tangente en tg qui est cette droite commune.

J()

f@®

Remarque Pour qu’il y ait tangente en %y, il faut et il suffit que les vecteurs unitaires

lim f(t) = f(to) et lim f(t) = f(to)
toed 1F () = f(to)ll — emeg 1F(E) — f(to)l

existent et soient égaux ou opposés.

19.4.4 Tangente en un point régulier

Soit (1, f) un arc paramétré de classe au moins C* et to € I.

Définition

On dit que le paramétre t, est régulier lorsque f'(ty) # Og.
On dit que I’arc est régulier lorsque tous ses parametres le sont.

Théoréme
Si o est un parametre régulier alors I’arc admet une tangente en f (o) et celle-ci est dirigée
par f’(to).

dém. :

On peut écrire
F(8) = fto) = (¢ = to)-f'(to) + (¢ — to) (t) avec £(t) 5 0z

et donc pour t # tg
f(t) — f(to) t—to f'(to) +e(t)

1£() = fto)ll It = tol [Lf(t0) + ()]
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donc
lim f(t) — f(to) ['(to) et lim f)—flto) _  f'(t)

iy 1FO = FE ™~ [P iy 17O = &I~ 1 o)

O

Remarque Si f'(ty) = Og etsi f”(tg) # Og, on peut encore montrer 1’existence d’une tangente en
f(to), cette fois-ci dirigée par f”'(tq) car

F(0) — flt0) = 5 (6~ 10" " (t0) + (¢ — t0)°e(t) avee <(t) > 0

Exemple Considérons un arc du plan donné par

x = x(t)
{y:y(t) avect € [

Si t est un parametre régulier de cet arc, la tangente en le point de parametre to passe par le point de
coordonnées (z(to),y(to)) et est dirigée par le vecteur de coordonnées (' (to), y' (to)). Cette tangente a
pour équation

c’est-a-dire
y'(to) (z — x(to)) — 2'(to) (v — y(to)) = 0

La droite perpendiculaire 2 la tangente au point de coordonnées (x(to), y(to)) est appelée droite normale
al’arc. Elle a pour équation
2’ (to) ) _0

( X — {I?(t())
y —y(to)

c’est a dire
a'(to) (x — x(to)) + ¢/ (to) (y — y(to)) =0

19.4.5 Vocabulaire cinématique

Soit f : I — E au moins de classe C* définissant un arc paramétré.

Définition
En cinématique, les vecteurs #(t) = f'(t) et @(t) = f”(t) sont appelés vecteurs vitesse et
accélération a I’instant ¢.

Remarque Le vecteur vitesse dirige la tangente (lorsqu’il n’est pas nul) et le vecteur accélération
oriente la concavité de la courbe. Selon que 1’angle géométrique entre ¥/(t) et @(t) est aigu ou obtus, il y
a accélération ou décélération lors du parcours de la courbe. En effet

d
dt

d

(") = 4 (@] 9) =2(@|9)
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7(t) v(t)

f®

@)

accélération décélération

i)

19.4.6 Exemples d’arcs plans

Exemple Considérons I’arc déterminé par

r = acost
. aveca >b>0
y = bsint

Posons z(t) = acost et y(t) = bsint. Les fonctions ¢t — x(t) et t — y(t) sont de classe C* définies
sur R. La fonction de paramétrage f : R — R? définie par f(t) = (x(t),y(t)) est de classe C*°.

x(t +2m) = z(t)
y(t+2m) = y(t)

donc f(t + 2m) et f(¢) sont confondus. Etude sur [—, 7].
x(—t) = z(t)
y(=t) = —y(t)

donc f(—t) se déduit de f(t) par une symétrie d’axe (Ox). Etude sur [0, 7]
x(m—t) = —z(t)
y(m =) =y(t)

donc f(m — t) se déduit de f(t) par une symétrie d’axe (Oy). Etude sur [0, 7 /2]

{;v’(t) = —asint

y'(t) = beost

t |0 /2
2|0 —
z(t) |a N\ 0
y() |0~ b
y'(t) + 0

Ent¢ = 0, il y a une tangente verticale.
Ent = 7, il y a une tangente horizontale.
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v

Exemple Considérons I’arc déterminé par

x =3t
y =2t
Posons z(t) = 3t2 et y(t) = 2t>. Les fonctions ¢ — x(t) et

— y(t) sont de classe C>° définies sur R.
La fonction de paramétrage f : R — R? définie par f(t)

t
(x(t),y(t)) est de classe C*.

z(—t) = x(t)
y(=t) = —y(t)

donc f(—t) se déduit de f(t) par une symétrie d’axe (Ox).
On peut limiter I’étude a [0, +00|.
z'(t) = 6t
Y (t) = 6t

t 0 400
()]0 +
z(t) |0  +oo
yit) |0 S 4oo
y®) [0 +

Etude en ¢t = 0 : Le parametre n’est pas régulier, cependant

f(t) — £(0)

7o —ron &Y

Il y a donc une tangente horizontale en ce point.
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Déterminons une équation de la tangente en tout point de parametre ¢ # 0.

Le point a pour coordonnées (3t2, 2t3) et la tangente est dirigée par (6t, 6¢2). Elle a donc pour équation

—6t (x — 3t%) + 6t (y — 2t°) = 0

soit encore
tr —y = t3

Il est remarquable que cette équation est aussi valable en ¢t = 0.

Exemple Etudions I’arc paramétré déterminé par
r=1t—sint
y=1-—-cost

Posons x(t) =t —sint et y(t) = 1 — cost.

Les fonctions ¢ — x(t) et t — y(t) sont de classe C°>° définies sur R.
La fonction de paramétrage f : R — R? définie par f(t) = (x(t),y(t)) est de classe C*°.

z(t+2m) = z(t) + 27
y(t +2m) = y(1)

donc f(t + 2m) se déduit de f(t) par une translation de vecteur 27i.
On peut limiter I’étude a [—, 7).
y(=t) = y(t)

donc f(—t) se déduit de f(t) par une symétrie d’axe (Oy).
On peut limiter I’étude a [0, 7].

{a:(—t) = —a(t)

{a:'(t) =1—cost

y'(t) = sint
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t 0 T
)0 + 2
z(t) |0 N«
y() [0 7 2
y#) [0 + 0

Etude en ¢t = 7 : Le parametre est régulier, la tangente y est dirigée par i
Etude en ¢t = 0 : Le parametre n’est pas régulier, cependant

f(t) — £(0)

70— foy Y

La tangente y est verticale

Déterminons une équation de la tangente en tout point de parametre t # 0 [27].
Le point a pour coordonnées (¢ — sint, 1 — cost) et la tangente est dirigée par (1 — cost, sint). Elle a
donc pour équation

—sin(t) (x — (¢ — sin(t)) + (1 — cos(t)) (y — (1 — cos(t))) =0

soit encore
—sin(t)x 4+ (1 — cos(t))y = 2 — 2 cos(t) — tsin(t)

19.4.7 Application : vecteurs tangents a une partie d’un espace normé de dimen-
sion finie

Soit a un élément d’une partie X d’un espace vectoriel réel de ’espace E.

Définition

On dit qu’un vecteur v de E est tangent a X en a, s’il existe € > 0 et une fonction f définie
sur |—¢, [ a valeurs dans X vérifiant

f(0) =aet f'(0) =v
Lorsque le vecteur v est non nul, on dit que la droite

a + Vectv

est tangente a X en a.

Exemple Si X correspond a un cercle, les vecteurs tangents correspondent aux vecteurs orthogonaux au
vecteur rayon.

Exemple Si X correspond a une courbe se recoupant en a, il peut y avoir deux tangentes distinctes en
ce point.
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Exemple Si X correspond a une surface de I’espace, la définition qui précede permet aussi de parler de
droite tangente a une surface.
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Chapitre 20

Suites et séries de fonctions vectorielles

Soit I et F' des espaces de dimensions finies. Ces espaces I et I’ peuvent étre normés et le choix des
normes n’a pas d’incidence sur la suite.

20.1 Modes de convergence

20.1.1 Suite de fonctions

Soit (u, ) suite de fonctions de X C E vers F.
Définition
On dit que (u,,) converge simplement vers u : X — F si

Vo € X, up(z) = u(x)

Définition
On dit que (u,,) converge uniformément vers v : X — F si

Ve > 0,3IN € N,Vn > N,Vz € X, ||un(z) — u(z)|| < e

Théoréeme

] S’il y a convergence uniforme, il y aussi convergence simple et ce vers la méme limite.

Remarque Sur B(X, F') espace des fonctions bornées de X vers F, on peut introduire la norme || . ||
définie par
[fllse = sup [[f (@)l 5
zeX

On peut alors énoncer de nouveau la convergence uniforme

Uy ——— Uy, &

cvVU N € N,;Vn > N, u,, — ubornée
lun —ull, =0
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20.1.2 Séries de fonctions

Soit Z u,, une série de fonctions de X C F vers F i.e. une suite de fonctions (S,,) avec
n
Sn = Z Uk
k=0

On définit la convergence simple et uniforme de la série de fonction Z Uy, & partir de la suite (S,,) de
ses sommes partielles.

Théoréme

E u,, converge simplement si, et seulement si,

Vo € X, Zun(x) converge

La somme de la série de fonctions est alors donnée par

+oo
S(x) = Z Up,
n=0

et son reste de rang n par

Théoréme
E uy, converge uniformément si, et seulement si,

. cvVU,_
Z U, converge simplement et R,, —— 0

Définition
On dit que Z Uy, converge normalement si
1) chaque u,, est bornée ;

2) la série numérique Z l|unl|, converge

Théoréme

] La convergence normale entraine la convergence uniforme.

dém. :
Si Z U, converge normalement alors pour tout x € X, la série vectorielle Z uyn (x) converge absolu-
ment car

[[un (@) < flunl|o
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et donc Z u,, converge simplement. De plus

et il y a donc convergence uniforme.
O

—+o0 —+oo —+oo
Yo w@| < Y lu@ll < Y [kl =0
k=n-+1 k=n+1 k=n-+1

Remarque Les théoremes qui suivront prolongeant ceux pour les fonctions numériques se démontrent

all.

de la méme maniére en substituant ||

20.2 Limite et continuité

20.2.1 Continuité par convergence uniforme

Soit (uy,) une suite de fonctions de X C E vers F.

Théoréme

Si

1) chaque u,, est continue ;

2) la suite (u,,) converge uniformément vers u : X — F';
alors la fonction u est continue.

Corollaire

Si

1) chaque u,, est continue ;

2) la série Z U, converge uniformément sur X ;
—+oo

alors la fonction somme Z u,, €st continue.

n=0

—+oo
1
2 A
Exemple Etude sur R“de S : (z,y) — E CEr et

n=1

Définition :
Pour n > 1, on introduit
1

n+a?)(n+y?)

Un : (2,y) — (

Pour tout (z,y) € R?,
1

Or Z 1/n? converge et 1/n* > 0 donc la série Z un(z,y) converge.
—+o0
On en déduit que la fonction S = Z uy, est définie sur R2.

. . n=0
Continuité :

Les fonctions u,, sont continues.
Pour tout (z,7y) € R?,

1
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Or E 1/n? converge donc E u,, converge normalement sur R,

On en déduit que S est continue sur R,

20.2.2 Continuité par convergence uniforme locale

Sil’on parvient a justifier la convergence uniforme sur des parties suffisamment générales pour déterminer
des voisinages de tout @ € X, on peut affirmer a nouveau la continuité de 1’objet limite.

+oo

Exemple Etude de S(z,y) = Z ;()j(ing) sur D = {(z,y) € R*/z > 0}.
n2x
n=1
Pour n > 1, on introduit
_ cos(ny)

un(wvy) - 1 +’I’L2.I‘
Définition :
Pour tout (z,y) € D,ona

1 1
un (2, y)| <

-
1+n2z n22

La série Z un(x,y) converge absolument et donc Z uy, converge simplement sur D.
Continuité :

Chaque fonction u,, est continue sur D.

Pour a > 0, considérons D, = {(z,y) € R*/z > a}.

Pour (z,y) € Dy, on a
1
lun (2, y)| € —=

n2a
Or Z 1/ n2a converge donc Z U, converge normalement sur D,,.
La fonction S est donc continue sur D, et puisque ceci vaut pour tout ¢ > 0, elle est continue sur D.

+oo
1
Exemple Etudede L : 2 — Z —z"sur D ={z € C/|z| < 1}.
n
n=1
Définition :
Pour n > 1, on introduit
1

Uy 2 —2"
n

Pour tout z € D, on a |u,(z)] = 0(z"). Or Z 2™ converge absolument donc Z un(z) converge

absolument. Ainsi Z u,, converge simplement sur D.
Continuité :
Soitr € [0, 1[. Pour |2| < r,ona

n

< r”

1
g —
un(2)] <

Or E r" converge donc E u,, converge normalement sur D(0, ).

La fonction L est définie et continue sur tous les domaines D(0, 7) pour r € [0, 1] donc elle est continue
sur D.
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20.2.3 Théoreme de la double limite

Soit (u, ) une suite de fonctions de X C E vers Feta € X.

Théoréme

Si

1) (uy,) converge uniformément sur X vers une fonction w ;
2) pour tout n € N, u,, 7 s

Alors la suite (¢,,) converge et en notant ¢ sa limite

u(x) —— ¢
r—a
Ainsi
lim( lim un(gj)) = lim (lim un(x))
r—a \ n—-+oo n—4oco \r—a
Corollaire
Si

1) Z u,, converge uniformément sur X ;
2) pourtoutn € N, u,, — 5,3
a

Alors la série Z £, converge et

+oo “+o0
D un(@) == ln
n=0 n=0
+oo 1
Exemple Non convergence uniforme de la série définissant L : z — Z —2" sur D(0,1).
n
n=1
Onale D(0,1)et
1, 1
Up(z) = =2" — —

Or la série E — diverge donc la série de fonction E u,, ne converge par uniformément sur D(0, 1).
n

20.3 Intégration et dérivation

Désormais la variable est supposée réelle
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20.3.1 Intégration sur [a, b|

Théoréme

Soit (u,,) une suite de fonctions de [a, b] vers F.

Si

1) chaque u,, est continue ;

2) (uy,) converge uniformément vers u : [a,b] — F
alors la fonction u est continue et

b b
/a wn )t —— [ utar

Autrement dit . .
/ lim wu, = lim Up,
a

n—-+oo n—-+oo a

Corollaire

Si

1) chaque u,, est continue ;

2) Z u,, converge uniformément sur [a, b]
—+oo

alors la fonction Z u,, est continue et

n=0

+oo b b oo
§ / Up = / § Unp
n=0"?a @ n=0

20.3.2 Dérivation

I désigne un intervalle de R d’intérieur non vide

Théoréme

Soit (u,, ) une suite de fonctions de I vers F.

Si

1) chaque u,, est de classe ct ;

2) (uy,) converge simplement vers u : I — F';

3) (ul,) converge uniformément sur tout segment ;
alors u est de classe C* et

I
< lim un> = lim u),
n—-+oo n—-+oo

http://mp.cpgedupuydelome.fr 470

@O0



CHAPITRE 20. SUITES ET SERIES DE FONCTIONS VECTORIELLES

Corollaire

Si

1) chaque u,, est de classe C L.

2) Z U, converge simplement sur [ ;

3) Z u,, converge uniformément sur tout segment de I ;
+oo

alors la fonction Z uy, est de classe C! sur [ et

n=0

+oo ! +oo
dwn | =D un
n=0 n=0

Remarque On peut aussi énoncer un résultat pour les fonctions de classe C™.

20.4 Exponentielles
20.4.1 Exponentielle complexe

Théoreme

. 1
Pour tout z € C, la série Z —'z" est absolument convergente.

n=0
dém. :
Pour z = 0 : ok.
Pour z # 0, on introduit u,, = z"/n! # 0.
Ona
Untr| I —-0<1
U, n+1

1
donc, par la regle de d’ Alembert, Z —'z” est absolument convergente.
n>=0 w
O
Définition
On pose

+oo

z
exp(z) ;Z pr)

Remarque Cette définition prolonge 1’exponentielle réelle car on a déja vue

1
x n
Ve € R, e" = g —!x

n=0

Exemple exp(0) = 1 car 0° = 1.
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Proposition

Vz € C,exp(z) = expZ.

dém. :
Par conjugaison de séries convergentes.
O
Théoréme
Vz,2' € C, exp(z) exp(z') = exp(z + 2')
dém. :

P too

o)) =35 55

n=0 n=0
Par produit de Cauchy de séries absolument convergentes

exp(z) exp(z an
avec
Sin— k 1 o
Z k' (n—k E(z—i—z)

en vertu de la formule du bindme de Newton.

Ainsi

exp(z) exp(z’) = exp(z + 2')
O
Corollaire

VO € R,exp(if) € U

dém. :
Pour § € R, on a |exp(if)|” = exp(if) exp(—if) = 1 donc exp(if) € U.
O

Remarque A partir de cette définition de I’exponentielle complexe, on définit les fonctions cos et sin
par :
it | o—if } . oif —if }
cosf = — = Re(e?) et sinf = ———— = Im(e'?)

On peut alors retrouver les propriétés usuelles de ses fonctions.

Par exemple :

? lexp(i6)|*> = 1 donne cos? # + sin® 6 = 1;

- exp(—i6) = exp(i6) donne cos(—0) = cos(h) et sin(—0) = —sin(0) ;
-exp(i(a + b)) = exp(ia) exp(ib) donne

cos(a + b) = cosacosb — sinasinb et sin(a + b) = sin(a) cos(b) + sin(b) cos(a). ..
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On peut aussi définir précisément le nombre 7 comme étant le double de la premiere annulation
strictement positive de la fonction cosinus et achever la construction de la trigonométrie. . .

20.4.2 Exponentielle d’une matrice

Théoreme

. (. 1
Pour toute matrice A € M,,(K), la série E — A" est absolument convergente.
n

dém. :
Introduisons || . ||, sur M,,(K) définie par

n
2
1Ally = > lai ]
ij=1
Vérifions que celle-ci est sous multiplicative i.e.

VA, B € My (K), [AB||, < [[All [ Bll

(AB>i,j = Z i, kb5
k=1

et par I’inégalité de Cauchy-Schwarz,

n
E a; ;b

n

IAB|; ="

n

2 n n
2 2 2 2
s (z aal”S" by ) AR B
k=1

ij=1 k=1 =1 \k=1
On a alors
1 1 1
a2, =t < g

Or E 2" /n! converge pour tout x € R, donc par comparaison de série a termes positifs, la série

Z %A” converge absolument.
]
Définition
On appelle exponentielle de la matrice A € M,,(K) la somme

exp(A) = Z — A"

Exemple exp(O,) = I,

Théoréme
Soit A, B € M,(K).
Si AB = BA alors
exp(A + B) = exp(A) exp(B)
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dém. :

C’est la méme que pour exp(z + 2) = exp(z) exp(z’) en admettant que le théoreéme relatif aux produits
de Cauchy de séries absolument convergentes et encore vrai sur M, (K). L’hypothése de commutation
est nécessaire a I’usage de la formule du bindme.

O
Corollaire
| VA € M, (K), exp(A) est inversible et exp(A4) ' = exp(—A).

Théoreme
| L'application A — exp(A) est continue.

dém. :
On introduit les fonctions données par u,, (A) = A" /n! définies pour A € M,,(K).
Les fonctions u,, sont toutes continues.
Soit R € RT. Pour ||A|| < R,ona
Tyom o 1
lun(A)ly < 1 Al15 <

Or Z R"™/n! converge et donc Z uy, converge normalement sur B (O,, R).

On en déduit que la fonction A — exp(A) est continue sur B;(O,, R) et puisque ceci vaut pour tout
R € R™, 1a fonction A — exp(A) est continue sur M, (K).
O

20.4.3 Calcul d’exponentielle de matrices

Pour A € M,,(K), calculons

“+o0
Lk
exp(A) = Z EA
k=0
20.4.3.1 Cas A est diagonale
Al
Ak 0
A1 0 Y 0 N kz=o i
A= AR = ety A" =
0 A, 0 2\ k=0 N 1
n k
0 kz R
=0
Ainsi
eM 0
exp(4) =
0 et

20.4.3.2 Cas A diagonalisable
Al 1
_ -1 : k_ kp—1 k_ k| p—1 A:o
A = PDP™" avec D diagonale. A = PD"P™" et Z HA =P (Z ED ) P~ . Ainsi
k=0 k=0

exp(A) = Pexp(D)P~!
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Exemple Calcul de exp(A) pour A = ( 0 -2 )

1 3
Sp(4) = {1,2}.
La matrice A est diagonalisable.

Il existe P tel que A = PDP~! avec D = diag(1,2) et alors exp(A) = PD'P avec D' = diag(e, €?).

Soit T' polyndme tel que T'(1) = e et T'(2) = e

T(X)=-e(e—1)(X — 1) + e convient
OnaT (D) = D' et par similitude T(A) = exp(A). Ainsi

exp(4) =e(e—1)A+e(2—e)ly

20.4.3.3 Cas A nilpotente

Supposons A? = O,,.

Pour N > p,
Al P
k_ ok
DAt =>4
k=0 k=0
Ainsi
p—1 1
_ ok
exp(4) = Y -
k=0

20.4.3.4 Cas général

On improvise, par exemple en exploitant un polynéme annulateur. . .
3 1 2
Exemple Calcul de exp(A) avec A = 1 1 1 € M3(R)
-2 -1 -1
Ona x4 = (X —1)3 et donc la matrice A est trigonalisable.
Par Cayley-Hamilton, on a (A — I3)3 = O3. Posons N = A — I3.
Ona A = I3+ N avec I3 et N commutant donc

exp(A) = exp(I3)exp(N) =e (13 + N+ 1N2)

2
Ainsi
7/2 1 5/2
exp(A) =e 1 1 1
-5/2 -1 -=3/2

20.4.4 Exponentielle d’un endomorphisme

1
Soit a € L(F). Etudions la série Z —a".
n

On introduit e une base de E et on peut définir une norme sur L(FE) en posant

lall = [Mate(a),
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Celle-ci vérifie ||a o b|| < ||al| ||b]] et I’on peut des lors adapter 1’étude matricielle aux endomorphismes.
Définition
On appelle exponentielle de a I’endomorphisme

+o0 1
exp(a) = Z Ea"
n=0

Exemple exp(0) = Idg.

Exemple Si A = Mat.(a) alors
Mat, (exp(a)) = exp(A)

Théoreme
Sia,b e L(F) vérifieaob=bo aalors

exp(a) o exp(b) = exp(a + b)

Corollaire

1

| Va € L(E), exp(a) est inversible et exp(a) ' = exp(—a).

Théoréme
| L'application a — exp(a) est continue.

20.4.5 Dérivation de ’application ¢ — exp(t.a)

Fixons a € L(E) et considérons la fonction
€q 1t eq(t) = exp(t.a) € L(E)

avec

+oo Ly
_ _ n
exp(t.a) = Z @
n=0
Théoreme
L application e, : t — exp(t.a) est de classe C* sur R et
e (t)=aoe,(t) =eu(t)oa
dém. :

Introduisons les fonctions w,, : R — E définies par
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La série E uy, converge simplement et sa somme est la fonction e, .

Chaque u,, est de classe C' et

t’nfl
un(t) = W.a” sin > letu,(t)=0sin=0

n—1)!

Soit M > 0et |t| < M.
Mt Mt (M [la)" "
()| < " < "=
lun(®ll < gy "1l < gy lell” = * 55— N

n M n—1
Or on sait que pour tout z € R, Z x—' converge donc Z ((Haq)' converge.

n! n—1)!

n>=1
Par comparaison de séries a terme positifs, on obtient la convergence normale de E Uy, sur [—M, M].

Finalement, par convergence uniforme sur tout segment de R, on peut affirmer que e, est une fonction de
classe C' et

too gn—1 too tn L
e (t) = m.a" = Z m.a’” =aoexp(t.a) =exp(t.a)oa
n=1 n=0

Enfin, par récurrence, on obtient que ¢ — exp(ta) est de classe C™.

O
Corollaire
On a aussi d
T (exp(tA)) = Aexp(tA) = exp(tA)A
dém. :

En adaptant la démonstration précédente ou en raisonnant via endomorphisme canoniquement associé.
]
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Chapitre 21

Intégrales dépendant d’un parametre

21.1 Passage a la limite sous I’intégrale

21.1.1 Théoreme de convergence dominée

On étudie
Rappel :
Cas I = [a, ]
. . . . cvu
Si les fonctions f;, sont continues et si f, W) f alors
a,
b b
[ [
a n—+oo a
Cet outil ne suffit pas a résoudre tous les cas possibles.
Théoreme
Soit (f,,) une suite de fonctions de I vers K
Si

1) les fonctions ( f,,) sont continues par morceaux sur [ ;
2) la suite de fonctions (f;,) converge simplement vers une fonction f continue par morceaux ;
3)il existe ¢ : I — R continue par morceaux et intégrable vérifiant

Vn € N, |fn| < ¢ [hypothése de domination]

alors les fonctions f,, et f sont intégrables sur I et

i ]

Exemple Etudions
i 2 1 4 2sin(t/n)

n—+too J_ 1+ t2 dt
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Posons f,, : R — R définie par
14 2sin(t/n)

n(t
Jalt) 1+t2
1
Ona f, cvs, f avec f(t) = 5 e
Les fonctions f,, et la fonction f sont continues par morceaux.
De plus
3
L ()] < = ot
1aO] < 17 = 010

avec  intégrable sur R.
Par convergence dominée, les fonctions f,, et la fonction f sont intégrables et

+o0 : +o00
lim L+2sin(t/n) @\ _ / dt

"
n—+oo [ 14+¢2 oo L4122

Exemple Etudions
/2
lim sin™(t) dt

n—-+oo 0

Posons f, : [0, 7/2] — R définie par f,,(t) = sin"(¢) sur [0, 7/2].

In ovs, f avec
1 sit=m/2
(1) = { 0 sinon

Les fonctions f,, et la fonction f sont continues par morceaux.
Pour tout n € N,

|fn‘<1:@

 est intégrable sur [0, 7/2] car définie et continue sur un segment.

Par convergence dominée
/2 /2
/ fn = / f
0 0

/2
lim sin"(t)dt =0

n—-+oo 0

et donc

Remarque Ici la suite de fonctions ( f,,) ne converge pas uniformément vers f mais on est parvenu a
permuter limite et intégrale.

Exemple Etudions
lim et dt
n—+oo Jq

Posons f,, : R — R définie par f,,(t) = e~ *"
Pourt € [0, 1], fn(t) — 1.
n—-+oo

Pourt =1, f,,(t) = 1/e.
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Pourt > 1, f,(t) —— 0.

n—-+o0o

Ainsi f, cvs, f avec

1 sitel0,1]
ft)=< 1/e sit=1
0 sit>1

Les fonctions f,, et la fonction f sont continues par morceaux.
Pour tout n € N*, | f,,| < ¢ avec
1 site|0,1
e ={ oGS

e sit>1

Par convergence dominée, les fonctions f;, et la fonction f sont intégrables et
“+o00 n “+o00 1
lim e ! dt:/ f(t)dt:/ 1dt =1
0 0 0

n—-+oo

Exemple Etudions

n
Probléme : / et non / .
I

0
n +oo
Solution:/ f(@) dt:/ f(t) dt avec
0 0

n t n
lim (1 — ) Intdt
n——+00 0 n

Ici, introduisons f;, : |0, 400 — R définie par

t\" ,
Falt) = <1_n) Int site]0,n]

0 sinon
Soit ¢ € 10, +o0].

Quand n — +oo, pour n assez grand ¢t < n et

t n
fu(t) = (1 - n) Int —— e ‘Int

n—-+o0o

- cvs _
Ainsi f, —= favec f:t+ e 'lnt
Les fonctions f,, et la fonction f sont continues par morceaux.
Sachant In(1 + u) < wonapourt € ]0,n]

[fn(t)] = exp (nIn(l —t/n)) Int] < exp(—t) [Int] = o(t)
La fonction ¢ est continue par morceaux sur |0, +00| et intégrable car

to(t) —— 0 et t?p(t) ——— 0
Vip(t) —— Oett%p(t) ——

Par convergence dominée, les fonctions f;, et la fonction f sont intégrables et

n t n —+o00
lim (1 — ) Intdt = / e tIntdt
n——+oo 0 n 0

http://mp.cpgedupuydelome.fr 481 @O0




21.1. PASSAGE A LA LIMITE SOUS L'INTEGRALE

Remarque En calculant / (1 — ) In ¢ dt, on parvient a montrer alors
0

n
+oo
/ e tlntdt = —y
0

21.1.2 Autres techniques pour étudier une limite

Convergence uniforme sur un segment [a, b] et convergence dominée ne suffisent pas toujours pour déter-

miner
lim In
n—-+oo I

On peut aussi :

- procéder par comparaison ;

- réexprimer I'intégrale (par changement de variable, intégration par parties, astuce,...);
- raisonner par les €.

Exemple Montrons que pour tout f € C* ([a, ] , K),

b
/ f(t)e™dt =0
Par intégration par parties,
’ int L it b 1 (4 nint
t)e™ dt = | —e™ f(t - — t)e'™ dt
R R I AU
Par suite
b _ 1 b
[ ena < <|f<a>|+|f<b> + [1rel dt) -0
Ainsi

b
/ f(H)e™tdt —0

21.1.3 Intégration terme a terme

On étudie si

/Iiofn(t)dt: io/lfn@)dt

n=0 n=0

Rappel : Cas I = [a, ]
Si les fonctions f,, sont continues et si la série Z fn converge uniformément sur [a, b] alors

b +oo +oo b
/a;fn=;/a fu
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Théoreme

Soit E [ une série de fonctions de I vers K.

Si

1) les fonctions f,, sont continues par morceaux et intégrables sur I ;
—+oo

2) la série de fonctions E fn converge simplement vers une fonction E fn continue par
n=0

morceaux ;

3) la série numérique Z / | fn| converge
+oo !
Alors la fonction Z fn estintégrable sur I et

n=0
/Igfnm/fn

n=0

Exemple Montrons

1
Int 1
Ld N L
t—1 n2
n=1
On a
1 =
17_2‘::7215” sur [0,1[
n=0
donc
Int = "
. —Z —1Int)t" sur J0,1[
n=0
On a alors

/01 t1it1 / an a

[n=0
avec fp, : |0, 1] — R définie par f,,(t) = (—Int)t".
Int

t—1

Par les calculs qui précédent, la série de fonctions Z fn converge simplement et sa somme ¢ —

est continue par morceaux.
Chaque fonction f,, est continue par morceaux et intégrable sur ]0, 1] car

Vifa(t) — 0et f,(t) — 0

Enfin, par intégration par parties

' ' nqpo L
/O |fn(t)| dt:/o (_hl(t))t dt = (n+1)2

1
La série numérique E / | fr| converge donc par théoréme d’intégration terme a terme
0

1 —+o0 —+oo
Int 1 1
At = - il

/0 t—1 nz:%(n+1)2 ;rﬂ
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21.1.4 Autre technique d’intégration terme a terme

Pour résoudre des situations « plus délicates » , on peut aussi intégrer terme a terme en revenant aux

sommes partielles. Notons
n +oo
Su=D JeetS=)_ fu
k=0

n=0

Par convergence dominée ou comparaison, supposons avoir montré

/ Sp(t)dt ——— [ S(t)dt
I

n——+oo I

En remarquant

ﬁﬁlinixn

k=0 k=0

n +oo
;/Ifk%/lgfn

on affirme

et donc
+oo +oo
n=0 I In:O

Exemple Montrons

/1 a *i (=1)"

o 1+12  “~—2om+1
n=0

On peut écrire

1
1+41¢2

+oo
1
=1=" D (=)™ sur [0,1]
n=0

1 +o0
dt /
— = fn
\/O 1 + t2 [0,1[ Z

n=0

Par suite

avec f,,(t) = (—1)"t*" définie sur [0, 1]
1
Ici nl = diverge et on ne peut pas appliquer le théoreme d’intégration terme a
> /[0,1[|f > 1 g peut pas appliq g

terme. Transitons alors par les sommes partielles
On pose

1
Ona S, <¥° S avec S(t) = ——.
1+12

Les fonctions S,, et .S sont continues par morceaux.

’1 _ (_1)n+1t2n+2 9
= <

S, (t < =
[ ()] 1+¢2 1+ 2

avec ¢ intégrable.
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Par convergence dominée

1 1
/Sn(t)dt—>/ S(t)dt
0 0
Or
! ' k 12k = ! k 2k . (_1)k
/OSn(t)dt:/O > (=1kt dt:Z/O (—1)k¢ dt:Z%H
k=0 k=0 k=0
donc

+2’0(—1)" _/1 dt
—om+1l o Jo 1+

avec en substance la convergence de la série introduite.

21.2 Continuité d’une intégrale a parametre

On étudie dans cette partie les fonctions de la forme

g:xEXH/f(x,t)dt
iy

Dans un premier temps X désigne un intervalle de R.
21.2.1 Continuité par domination

Théoréme

Sif:X xI— K vérifie

)Vz € X, t— f(x,t) est continue par morceaux sur [ ;
)Vt €I, x> f(x,t) est continue sur X ;

3) 3¢ : I — R continue par morceaux et intégrable vérifiant

V(z,t) € X x I, |f(x,t)] < (t) [hypothese de domination]

Alors la fonction g : © — / f(x,t) dt est définie et continue sur X.
I

dém. :

Pour tout z € X, la fonction ¢t — f(z,t) est intégrable sur I et donc g(z) est bien définie.

Etudions la continuité en a € X via la caractérisation séquentielle des limites.
Soit (z,,) une suite d’éléments de X convergeant vers a.

(@) = /f(scn,t) dt — /un(t) dt avec un (t) = f(an, b).
I I
Pour tout t € I, uy,(t) = f(xn,t) P fla,t) = ux(t),

Ainsi (u,,) converge simplement vers la fonction u«, : t — u(a, t).
Chaque u,, et uo, sont continues par morceaux.
Pour tout n € N, |u, (t)| < (t) avec ¢ intégrable.

Par convergence dominée / U, (t) dt P /uoo(t) dtie. g(x,) — g(a).
n—-—+0oQo I

I
Par caractérisation séquentielle de la continuité g est continue en a.
]
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e—mt

+o0
Exemple Définition et continuité de g(x) = / 52 dt avec z € RY.
0

—xt

Considérons f : (z,t) — Lﬁ définie sur R* x [0, +o0l.

1+
Vo € R, t — f(z,t) est continue par morceaux sur [0, +oc0|.

Vt € [0, +oco[, x + f(z,t) est continue sur RT.
V(z,t) € R x [0, +ool, [f(z,)| < T e o(t)

avec ¢ : [0, +oo[ — R continue par morceaux et intégrable sur [0, +oo| car ¢(t)

1
t—4oo 2
Par domination, la fonction g est définie et continue sur RT.

Exemple Définition et continuité de g(z) = / cos(xsin @) df avec x € R.

Considérons f : (z,0) — cos(x sin 0) définie sour R x [0, 7].
Vz € R, 0 — cos(xsin #) est continue par morceaux sur [0, 7].
V0 € [0, 7], x — cos(z sin @) est continue sur R.

V(z,0) € R x [0, 7], |f(z,0)] <1=p(8).

La fonction constante ¢ est évidemment intégrable sur [0, 7].
Par domination, g est définie et continue sur R.

Remarque Les hypotheses 1) et 2) du théoréme sont évidemment réunies lorsque f est continue
sur X x I. En pratique, elles sont faciles a obtenir, c’est surtout I’hypothese 3 qui importe.

21.2.2 Continuité par domination sur tout segment

Pour obtenir la continuité de g, il n’est pas toujours possible de vérifier I’hypotheése de domination direc-
tement sur I’intégralité de I’intervalle X .

Théoréme

Si f: X x I — K vérifie

)Vz € X,t— f(x,t) est continue par morceaux sur [ ;

)Vt e I, x — f(x,t) est continue sur X ;

3)V[a,b] C X, 3¢ : I — R* continue par morceaux et intégrable vérifiant

Y(z,t) € [a,b] X I,

f(z,t)] < p(t) [hypothese de domination locale]

Alors la fonction g : 2 — / f(z,t) dt est définie et continue sur X.
I

dém. :
g est définie et continue sur chaque [a, b] C X donc définie et continue sur X.
O
+oo —xt
Exemple Définition et continuité de g(x) = / 153 dt avec z > 0.
0

On introduit
—xt

fz,t) = ert définie sur R** x [0, +o0|
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Définition
Soit > 0. La fonction ¢ — f(x,t) est continue par morceaux sur [0, +00][ et

donc
2
It 50 0
t — f(x,t) est donc intégrable sur [0, +o0o[ et par conséquent g(z) est bien définie pour tout > 0
Continuité
La fonction f est continue sur R™* x [0, +o0.
Soit [a, b] C |0, 4+o0[. Pour z € [a, b]

e—at

o(t)

Par I’étude au dessus, la fonction ¢ : [0, +0o[ — R est continue par morceaux et intégrable.
Par domination sur tout segment, on en déduit que g est continue sur R**.

T In(1 + ot
Exemple Définition et continuité de g(x) = / In(1 + 2t) dt avec = > 0.

0 1+1¢2
On introduit

In(1+ «t
Flz,t) = % définie sur RT x [0, +00]
Définition
Soit # € RT. La fonction ¢ — f(z,t) est continue par morceaux sur [0, +oo] et

et ~ B

~J
t—+oo 12

donc
32 f(x,t) —— 0

t—+o0
t — f(x,t) est donc intégrable sur [0, +o0o[ et par conséquent g(x) est bien définie pour tout z > 0
Continuité
La fonction f est continue sur R x [0, 4+-o00].
Soit [a, b] C [0, +o0[. Pour z € [a, b]

In(1 + bt)

|f(z,t)] < 12 = p(t)

Par I’étude au dessus, la fonction ¢ : [0, +00[ — R est continue par morceaux et intégrable.
Par domination sur tout segment, on en déduit que g est continue sur R
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21.2.3 Limite
Soit a une extrémité de I’intervalle X.
On désire étudier la limite de g(x) quand = — a.

Théoreme

Sif: X xI— K vérifie :

1) Vz € X, f(x,.) est continue par morceaux sur [ ;
QVtel, f(x,t) — £(t) avec £ continue par morceaux ;

3) Jp : I — R continue par morceaux et intégrable vérifiant

V(z,t) € X x I,

f(z,t)] < p(t) [hypothese de domination]

alors

o(z) = /1 Pty dt —s [ o) at

r—a I

dém. :
Soit (x,,) une suite d’éléments de X convergeant vers a.

/If(xn,t) dt:/lun(t) dt
avee un (t) = f(xnv t)~

Pour tout ¢ € I, u,(t) = f(zp,1t) P £2t),
n—-+00

Ainsi (u,,) converge simplement vers la fonction .
Chaque u,, et £ sont continues par morceaux.
Pour tout n € N, |uy, (t)| < ¢(t) avec ¢ intégrable.

Par convergence dominée [ u,(t) dt —— / £(t)dt ie.
I n——+00 I

/f(xn,t)dt—> o) dt
I

r—a I

Par caractérisation séquentielle des limites,

/f(x,t) dt — | ot)dt
I

Tr—a I

O

Remarque L’hypothese de domination peut étre avantageusement remplacée par une hypothese de
domination exprimée sur un intervalle inclus dans X dont a est extrémité, mais pas par une hypothese de
domination sur tout segment.

“+oo
Exemple Limite quand x — 400 de g(z) = / In(t)e " dt.
0
Posons f(z,t) = In(t)e™** définie sur RT* x [0, +oc0].

fat) 52 0
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Pour z > 1,

avec  intégrable sur |0, +o00].
Par domination, on obtient

+oo
lim g(z) = / 0dt=0
0

r—r+00

Remarque 11 est souvent tout aussi efficace de raisonner par comparaison de limites lorsque cela est
possible.

+oo ,—xt
Exemple Limite quand x — +oo de g(z) = / f+ ; dt.
0
Ona
+oo efzz:t “+oo 1
()g/ dtg/ e dt == ——0
0 1 + t 0 Tr z—+o0

donc par encadrement g tend vers 0 en +oc.
Etudions lim g(z).

z—0t
Ona

Ve o1 1 1
> dt=-In{14+—-) ——
9(@) /0 141¢ e n( +x> z—0+ oo

donc par comparaison g tend vers 4+-co en 0.

21.2.4 Extension aux fonctions d’une variable vectorielle

Ici X désigne une partie d’un espace normé de dimension finie (X C R,C,R",...)

Théoreme

Sif:X xI— Kvérifie

1)Va € X, t— f(x,t) est continue par morceaux sur I ;
)Vt €I, x — f(x,t) est continue sur X ;

3) 3¢ : I — R continue par morceaux et intégrable vérifiant

V(z,t) € X x I, |f(z,t)] < ¢(t) [hypothese de domination]

Alors la fonction g : © / f(x,t) dt est définie et continue sur X.
I

dém. :

11 suffit de reprendre a I’identique la démonstration précédente du résultat analogue vu quand X est un
intervalle.

O

Remarque 11 n’est pas toujours possible d’obtenir I’hypotheése de domination sur X entier. Cependant,
il peut suffire de 1’obtenir sur des domaines suffisamment généraux si ceux-ci incluent des voisinages de
touta € X.
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1
Int
Exemple Définition et continuité de g(z) = / % dt avec z € C vérifiant Re(z) > 0.
0 Z
On introduit
Int

flz,t) = i définie sur © x ]0, 1] avec Q = {z € C/Re(z) > 0}

z
Définition
Soit z € 2. La fonction ¢t — f(z,t) est continue par morceaux sur |0, 1] et

Int
t) ~ —
f(z’ ) t—0t 2
donc
VEF(5,8) —— 0
t—0+
t — f(z,t) est donc intégrable sur ]0, 1] et par conséquent g(z) est bien définie pour tout z € C.
Continuité
La fonction f est continue sur 2 x ]0, 1]

[In ¢| [In ¢|
= <

f(= )] = |z +t| = t+Re(2)

Soita > 0etQ, = {z € C/Re(z) > a}.
Pour z € Qg ett €]0,1],

Int
t)| <
£ 0] <

= Pa (t)

Par I’étude au dessus, la fonction ¢, : [0, +0o[ — R est continue par morceaux et intégrable.
On en déduit que la fonction ¢ est continue sur {2, pour tout a > 0, elle est donc continue sur 2.

21.3 Dérivation d’une intégrale a parametre

On étudie dans cette partie les fonctions de la forme

g:xGXH/f(xﬂf)dt
I

avec X un intervalle d’intérieur non vide de R.

21.3.1 Formule de Leibniz
Définition
Soit f : (z,t) — f(x,t) définie sur X x I.
0
On dit que f admet une dérivée partielle a—i si

Vt € I, lafonction x — f(x,t) est dérivable

On pose alors
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Théoreme
Soit f : X x I — K. On suppose que f admet une dérivée partielle
of
ox
Si

)Vz € I,t— f(x,t) est continue par morceaux et intégrable sur [ ;

0 .
NDVrel, t— —f(am t) est continue par morceaux sur [ ;

Hvtel, x— 8—(910, t) est continue sur X ;
z

4)3p : I — R continue par morceaux et intégrable vérifiant

Wmﬂ<ww

V(z,t) € X x I, o

Alors la fonction g : © — / f(z,t)dt est définie et de classe C* sur X avec
T

ﬂ@=[%www

dém. :
Etudions la dérivabilité en a € X
g(x) —g(a) ?
Tr—a r—a
Pour = # a
g(x) — g(a) _ /U({E,t) dt
r—a I
avec
t) — t
oy — F@0 — fat)
T—a
Soitt € I. ) "
u(x,t) _ (ZL’) _ (a)
xr—a
en introduisant la fonction h : x — f(z,1).
Par hypothese, la fonction h est dérivable et donc
of
/ = — =
u(w, 1) — W(a) = = (a,t) = ()
La fonction ¢ est continue par morceaux sur /.
Soitt € I.
Lapplication h : z — f(x,t) est dérivable et sa dérivée vérifie
of
B (x)] = | 5= (x,t)] < o(t
@) =[5 w0| < ot

Par I’inégalité des accroissements finis, h : x — f(x,t) est o(t)-lipschitzienne.

Par suite L L
uta, ) = =2 <
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avec ( continue par morceaux et intégrable.
Par domination

/ (e, t)dt —s | o) at
I Tr—ra I

i.e.

g(x)fg(a) %/g—f(a,t)dt
T —a 1 Ox

Finalement g est dérivable en a et
of
/
a)= | =(a,t)dt
g'(a) I%()
Enfin g’ est continue par application du théoréme de continuité par domination.
O

Remarque Le résultat énoncé est encore vrai si I’on remplace 1’hypothése « ¢ — f(x,t) est intégrable

sur I » par celle de « convergence de / flx,t)dt».
T

+oo
Exemple Calcul de g(z) = / e cos(at)dt avec z € R.
0

Posons u(z,t) = e~ cos(xt).

La fonction u est définie sur R x [0, +o00[ et admet une dérivée partielle

0 2

%(x, t) = —te=t sin(at)
Vx € R, t +— u(x,t) est continue par morceaux et intégrable sur [0, +-00| car négligeable devant 1/t
en +o0.
Ve eR, t+— a—u(a:, t) est continue par morceaux sur [0, +00].

x
0
vt € [0, +oo, x 6—u(x, t) est continue sur R.
x
Enfin
8u _42?
x

avec ¢ : [0, +00[ — R continue par morceaux et intégrable sur [0, o0
Par domination, la fonction g est de classe C Let

+o0 5
g (z) = / —te”"" sin(xt)dt
0
Procédons 2 une intégration par parties avec les fonctions de classe C*
1 )
u(t) = J¢ et v(t) = sin(xt)

Puisque le produit uv converge en 0 et 400, I’intégration par parties impropre est possible et

+oo 1

2 Foo 2
g (z) = Bet sin(xt)} - 7/ we” " cos(xt) dt
0

0 2
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Ainsi, on obtient

1
o (@) =~ gag(x)
g est solution d’une équation différentielle linéaire d’ordre 1 et g(0) = v/m/2 on conclut
ﬁ 1,2
o(z) 5 €

21.3.2 Dérivation par domination sur tout segment

Théoreme
Soit f : X x I — K. On suppose que f admet une dérivée partielle
of
ox
Si

)V € I,t— f(x,t) est continue par morceaux et intégrable sur I ;

0 .
DV el, t— —f(:c, t) est continue par morceaux sur [ ;

Hvtel, x> a—(x, t) est continue sur X ;
z

4)V[a,b] C X, Jp: I — R continue par morceaux et intégrable vérifiant

V(x,t) € a,b] x I, ’f;;c(x,t)‘ < p(t)

Alors la fonction g : « — / f(x,t) dt est définie et de classe C' sur X avec
I

@m:/g@wm

I ox
dém. :
La fonction g est de classe C' sur tout segment [a,b] C X donc de classe C* sur I’intervalle X.
O
Exemple Calcul de g(z) :/ T dt avec x € |—1, +oo]. Considérons f : (z,t) — 7 définie
o In n
sur |]—1, 400 x )0, 1[.
Soit # > —1. La fonction ¢t — f(x,t) est continue par morceaux sur 0, 1[.
Quandt — 17.
t=1—havech — 07. ( )
14+h)* -1
="’ =
f@.1) In(1 + h) *
et donc f est intégrable sur [1/2, 1].
Quand t — 0.
Ona
0 siz >0
t* — 1 siz=0
=0 +oo siz €]-1,0]
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Siz > 0, on obtient f(x,t) — 0 ce qui permet un prolongement par continuité.

Siz <0,0ona f(z,t)=o0(t") =0 (1/t7") avec —x < 1.

Dans les deux cas, t — f(x,t) est intégrable sur ]0,1/2].

Finalement ¢t — f(z,t) est intégrable sur |0, 1] et donc g est définie sur |—1, +o0].
€T

. e . 0
est dérivable donc f admet une dérivée partielle —f et

La fonction x — f(x,t) = 3
X

0
Ve € ]-1,+o0, t — —f(x, t) est continue par morceaux sur |0, 1|

Ox
vt €10,1[, z — g—f(:zz, t) est continue sur |—1, +00].
x
Soit [a, b] C |—1,4o0[. Pour x € [a,b],

of

o (@) <1 = pl0)

avec ¢ : |0, 1] — R™ continue par morceaux et intégrable sur ]0, 1[.
Par domination sur tout segment, g est de classe C' et

! 1
= t*dt =
g(m) /0 r+1

On en déduit

21.3.3 Dérivées d’ordres supérieurs

Définition
. e . O
Ondit que f : (z,t) — f(x,t) admet une dérivée partielle 97 S pour chaque valeur de t, la
x
fonction z — f(x,t) est j fois dérivable et on pose alors

Of

i (.Z',t) = @ (f(x’t»
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Théoreme

Soit f : X x I — K. On suppose que f admet des dérivées partielles
of of
oz’ Dan

Si

) f . .y
Hvje{0,....n—-1} Ve € X, t — m(m,t) est continue par morceaux et intégrable
x
sur /.
etsi
o f .
2)Vz € X, t — ——(x,t) est continue par morceaux

fa

9]
Hvtel,x— a—xf:(a:, t) est continue ;

4)V[a,b] C I,3p : I — RT continue par morceaux et intégrable vérifiant

3ﬁmﬂ<¢m

V(z,t) € [a,b] x I, E.

Alors la fonction g : = — / f(z,t)dt est définie et de classe C" sur X et pour tout j €
I

{1,...,n} .
¢Mm:/41@wa

I a]}j

dém. :

Par récurrence sur n > 1.

Cas n = 1 : résolu ci-dessus

Supposons le théoreme vrai au rang n > 1.

Soit f vérifiant les hypothéses données au rang n + 1.

Pour [a,b] C X, il existe ¢, 5 : I — RT continue par morceaux intégrable vérifiant

8"+1f
V(x,t) € X x 1, e (x,t)’ < p(t)
Par calcul intégral
6nf B 8nf T an+1f
a?(xa t) - ox" (CL, t) + o+l (yv t) dy

et donc

o f o f
<

ox™ (x,t)’ = ’8%"

@ﬂ+w—@ww=ww

La fonction v étant intégrable, on peut employer 1’hypothese de récurrence et affirmer que g est de classe
C™ avec

. oI f
; (4) —
V1<J<nag (.’E)— Iaxj(xat)dt
En particulier
orf
) (z) = t)dt
9" (z) ¥ (x,1)
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et les hypotheses vérifiées par f au rang n + 1 assurent que g™ est de classe C! avec

i [P
() (@) = [ Gty

Ce qui permet de conclure.
Récurrence établie.
0

xt

+oo —
Exemple Montrons que g(x) = / 164_7 dt définit une solution sur R™* de I’équation différentielle
0

y//+y —
x
—xt

Considérons f : (x,t) — h définie sur |0, +oo[ % [0, +00]

Pour ¢t € [0, +00], la fonction = — f(z,t) est deux fois dérivable sur |0, +oo[ donc les dérivées
artielles of et Of existent et
it = et —5 ex
P Oxr  Ox?
e—wt

1+1¢2

of et 2
%(l',t)—_tl_Ftht@

(z,t) =12

0 .
Pour tout z € |0, +00[, t — f(z,t) ett — —f(x, t) sont continues par morceaux sur [0, +0o] et

ox

intégrables sur [0, +o00[ car

0
2 207
De plus
0% f .
Va €]0,+ool, t — W(x, t) est continue par morceaux.
f

82
vt € [0, 4+o0f, a—é(x, t) est continue.
x

Enfin, pour [a, b] C [0,+0c0[. Ona

2
a—é(x, t)‘ Le

V(z,t) € [a,b] x [0,400[, Ee

avec ¢ : t — e~ ' continue par morceaux et intégrable sur [0, 4+-oc].

Par domination sur tout segment, la fonction g est de classe C 2 gur RT™* et

Y +oo ) e—wt +oo e—mt +oo . 1
= = dt —_dt= Tt = —
e = [ et [ e [ eta

21.4 Applications

Les résultats qui suivent ne sont pas explicitement au programme : on ne peut les utiliser qu’en les
redémontrant.
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21.4.1 Transformée de Laplace

Soit f : [0, +00[ — C continue bornée
Définition
On appelle transformée de Laplace de f 1’application L(f) définie par

+oo
vz > 0, L(f)(x) :/0 F(t)e="t dt

Exemple Pour f(t) = 1, on obtient L(f)(z) = 1/=.

Exemple Pour f(t) = sin(wt), on obtient

L(f)(x) = Im </0+°° e($+iw)tdt> _ W

T2 4+ w?

Théoréme
| L'application L est linéaire de L*°([0, 4+-00[, C) vers C(]0, +o0[, C).

dém. :

Soit f : [0, +00[ — C continue et bornée.

Posons u(z,t) = f(t)e”*" définie sur RT™* x [0, +o0].

Pour chaque x > 0, la fonction ¢ — u(x,t) est continue par morceaux sur [0, +00].
Pour chaque ¢ € [0, 400, 1a fonction 2 +— u(x,t) est continue sur |0, 4+o0].

Pour [a, b] C ]0,4+00[, ona

V(z,t) € [a,b] x [0, +00[, [u(z, t)] < [[flloc €™ = (2)

avec ¢ : RT — R continue par morceaux et intégrable.
Par domination sur tout segment, I’application

+oo
L(f):o:r—>/0 u(z,t)dt

est définie et continue sur |0, +00|

Ainsi, ’application L est bien définie de I’espace L°°([0, +o0[, C) vers C(]0, +oo[, C).
Sa linéarité est évidente par linéarité du calcul intégral.

O

Remarque On peut aussi montrer que cette application L est injective.

Théoréme
Si f : [0, +00[ — Cest de classe C' et si les fonctions f et f’ sont bornées alors

Vo > 0,L(f)(z) = zL(f)(z) — £(0)

http://mp.cpgedupuydelome.fr 497

©@O00O



21.4. APPLICATIONS

dém. :
Soitxz > 0.0On a

+oo
L(f")(x) = / f (et

Procédons 2 une intégration par parties avec u'(t) = f'(t) etv(t) = e~
Les fonctions u et v sont de classe C* et le produit uv admet des limites en 0 et +o00 donc

xt

400
L) (@) = [f(t)e ] > - / (=) f(t)e~" dt

Ainsi
L(f")(x) = zL(f)(z) - f(0)
O
Proposition
Jim zL(f)(z) = f(0)
dém. :

Par le changement de variable © = zt, on obtient

+oo
sL(P@) = [ fsfareas

Posons u(z, s) = f(s/x)e”’.
Vz > 0,s — u(z, s) est continue par morceaux sur [0, +00]
Vs € [0, 400, u(z, s) e f(0)e™® = £(s) avec £ continue par morceaux
r——+00
Enfin
V(z,5) €10, +oo[ x [0, +oo[, [u(z, s)| < [|fllce™ = ¢(s)
avec ¢ : Rt — R continue par morceaux et intégrable.
Par domination

+oo
zL(f)(x) P~ {(s)ds = f(0)
xr oo 0
O
Proposition
Si f admet une limite en +o0 alors
Tim aL()() = Tim_f(0)

dém. :

Ce sont les mémes calculs avec cette fois-ci

l(s)=Le ?ou L= lim f(t)

t——+o0

O
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21.4.2 Transformée de Fourier

Soit f : R — C continue intégrable.
Définition
On appelle transformée de Fourier de f 1’application f : R — C définie par

“+ o0

Ve e R, f(x) = / F(t)e =t dt

— 00

Théoreme
’ L application f — f est une application linéaire de ’espace L' (R, C) vers L= (R, C).

dém. :

Soit f : R — C continue intégrable.

Posons u(z,t) = f(t)e™ ™" définie sur R x |—o0, +o0l.

Pour chaque x € R, la fonction ¢ — u(z, t) est continue par morceaux sur |—oo, +00].
Pour chaque ¢ € ]—o0, +o0], la fonction = — u(z, t) est continue sur R.

Ona

V(z,t) € R x ]—o0, +oof, [u(z, )] < [f(t)] = ¢(t)

avec ¢ : R — R continue par morceaux et intégrable.
Par domination, la fonction

f:xl—>/+oou(x,t)dt

est définie et continue sur R.
De plus, elle est bornée car

~ +oo
voeR|f@)| < [ 1] a

— 0o

Enfin I’application f +— f est évidemment linéaire par linéarité de 1’intégrale.
O

Remarque On peut aussi montrer que cette application linéaire est continue car

7] < s,

On peut encore établir, mais c’est difficile, que cette application est injective.

Théoreme
Si pour n € N, I’application ¢ — t" f(t) est intégrable alors f est de classe C™ et

Vke{1,...,n}, (f) * (x) = /+OO (—it)k f(t)e it

— 00

dém. : 4
Posons u(z,t) = f(t)e”"** définie sur R x |—o0, +00l.
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k

u admet des dérivée partielles 6‘71’: atoutordre k € {0,...,n} avec
T
oFu _ Ciw
@(ﬂ%t) = (—it)" f(t)e~""
Pour k € {0,...,n —1}
ak
Ve e R, t— 8—1;(357 t) continue par morceaux sur |—oo, 400 et intégrable car
X
Ok .
G 0] = 01+ 7" 0
puisque
VtER, [t <1+ [¢"
Pour k =n

n

u :
Ve e R,t— W@C’ t) est continue par morceaux sur | —oo, +00|,
T

Vit € ]—o0, 400, x —

n

U .
—(,t) est continue sur R et

Pour tout [a,b] C R, on a

13

3;‘(1;,75)' < IF@O)] = o(t)

Y(z,t) € [a,b] X |—00, 400, o

avec ¢ : R — R continue par morceaux et intégrable.
Par domination sur tout segment, la fonction f est de classe C™ et

+oo

Vk e {l,...,n}, (f)(k) (r) = / (—it)* f(t)e~ =t

O

Exemple Calcul de la transformée de Fourier de f(t) = e /2,
Puisque ¢ — ¢ f(t) est intégrable, on a

f-/( _ _./JrOO —t2/2 —ixt
x) = —1i te e

— 00

Par intégration par parties

J(@) = ~f(x)

f est donc solution sur R de I’équation différentielle
Yy +2y=0

C’est une équation différentielle linéaire d’ordre 1 homogene de solution générale y(z) = Ae /2,
Sachant que f(0) = /7 (intégrale de Gauss) on obtient A = /7 puis

Vz €R, f(z) = re /2
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21.4.3 La fonction I' d’Euler
21.4.3.1 Définition

Lemme
Soit z € R.

—+oo
L’intégrale / t*~ et dt converge si, et seulement si, z > 0.
0

dém. :
La fonction g : t +— t*~*e ™" est définie et continue par morceaux sur ]0, +oo].
Cette fonction est positive donc

+oo
/ t*~ e~ dt converge si, et seulement si, g est intégrable sur |0, +oo|
0

Quand ¢ — +o0, t?g(t) = t*t* " *e™" — 0 donc
g est intégrable sur [1,+oco[ pour tout z € R
Quand t — 0T, g(t) ~ t*~* = 1/t~ donc
g est intégrable sur ]0, 1] si, et seulementsi, 1 —x < lie.x >0
]

Définition
Pour tout 2 > 0, on pose

“+oo
Exemple T'(1) = / e tdt=1.
0

Proposition
| V& > 0,0(z + 1) = al'(z).

dém. :
—+o00

Onal(z+1)= / tYe "t dt
0
On procede a une intégration par parties avec

u(t) =t etv(t) = —e*
Les fonctions u et v sont de classe C* et uv converge en 07 et 4-oc.

Par intégration par parties impropre

+oo
D(x+1) = [~t%e!] ™~ +/ wt®e ! dt
0

Ainsi I'(z + 1) = aT'(x)
U
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Exemple Par récurrence
Vn e N, T'(n) = (n—1)!

21.4.3.2 Continuité

Théoréme
] La fonction T est définie et continue sur RT*.

dém. :
Considérons g(z,t) = t* 'e~! définie sur R*™* x |0, +-c0].
Vo > 0,t— g(z,t) est continue par morceaux sur |0, +oo].
vt €10, 400, z + g(z,t) est continue sur RT™*.
Soit [a, b] € R**.
Pour tout = € [a,b],sit > 1, Pl < Tetsit < 1,51 <271 Dans les deux cas
tz—l < ta—l —|—tb_1
Par suite
lg(z, )] < (71 + " )e ™ = @ap(t)
avec ¢, p intégrable sur |0, +-o0o[ car somme de deux fonctions intégrables.
La fonction I est continue sur [a, b] et puisque ceci vaut pour tout [a, b] C R**, T" est continue sur R™*.

O
21.4.3.3 Dérivabilité

Lemme
’ Yz > 0,Vn € N, t = (Int)"t*Le™" est intégrable sur |0, +oc|.

dém. :

La fonction h : ¢ — (Int)"t" e~ est continue par morceaux sur ]0, +oo].
Quand t — 400, t2h(t) = t*(Int)"t*~te™" — 0.

Quand t — 0T, pour p € ]0, 2], t'"Ph(t) ~ (Int)"t*? = Oavec 1 — p < 1

O
Théoreme
La fonction I est de classe C™ sur R™* et
+oo
Vn e N,T("(z) = / (Int)™* Le t dt
0
dém. :

g(m,t) — Tl — e(w—l)lnte—t.
13

La fonction = — g(x,t) est de classe C*° donc, la fonction g admet une dérivée partielle 8—‘2 pour tout
x

n € N* et
a"g

Som (z,t) = (Int)"t*te™?

.o :
La fonction —g est continue sur R™ x ]0, 4+-ocl.

x
Pour tout [a, b] C |0, +o0[ et tout (x,t) € [a,b] x ]0, +o0],
=

S (x,t)‘ < (Int)" @t 1" e = g an(t)
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avec @y, q,p intégrable sur |0, +oo].

Par domination T est de classe C* sur [a, b] et puisque ceci vaut pour [a,b] C RT*, T est de classe C*°
sur R+,

]

21.4.3.4 Allure

400
Le signe de I (x) = / In(t)t" e~* dt est incertain.
0

+oo
En revanche I' (x) = (Int)?t*"Le~" dt > 0 en tant qu’intégrale d’une fonction positive, continue

qui n’est pas la fonctiononulle.

On en déduit que I" est strictement croissante.

['(1) = 1 = I'(2) donc par théoreme de Rolle il existe o € |0, 1] tel que I'(a) = 0.
Sur J0, af, I'(x) < 0 et T est strictement décroissante.

Sir |, +oo[, I'(x) > 0 et I est strictement croissante.

Numériquement o = 1,46 2 1072 pres et I'(a) = 0,89 a 102 pres.

Quand z — 0*

I'(z+ 1) = 2I'(z) donc I'(z) =
Quand z — +o00

T est croissante donc la limite de " en +o00 existe dans R U {4o00}.

Puisque I'(n + 1) = n! — 400 on peut conclure I'(z) — +o0.
De plus

I(z+1)

1
~ = T 1) —I'(1) =1.
. xcar (x+1) (1)

r 1
LG el Y TR
X X

donc I présente une branche parabolique verticale.
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Chapitre 22

Séries entieres

On souhaite étudier les fonctions de la forme
+oo
T Z anpx”
n=0

Ce sont des sommes de séries de fonctions, on étudiera le probleme de convergence, on observera leur
régularité et on verra qu’un grand nombre de fonctions usuelles peuvent s’écrire ainsi.

22.1 Convergence des séries entieres
22.1.1 Série entiere

Définition
On appelle série entiere définie par la suite de coefficients (a,,) € C, la série des fonctions

Up : 2 €C— ayz"

Par abus, cette série de fonctions E U, est notée E anz".

L’ensemble D des z € C pour lesquels la série numérique Z a, 2" converge est appelé do-
maine de convergence de la série entiere et la fonction S : D — C définie par

+oo
S(z) = Z anz"

n=0
est appelée somme de cette série entiere.
+o0
Exemple La série entiere g a, 2" converge en z = 0 et E a,0" = ag.
n=0

En effet 0° = 1 et 0" = 0 pour n € N*.

Exemple La série entiere Z 2™ converge pour tout z € C tel que |z| < letona

+oo 1

Zznzl—z

n=0
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. . 1 P
Exemple La série entiere g —‘z” converge pour tout z € C et par définition
n!
+o0 1

PEEE
n!

n=0

Exemple Si a partir d’un certain rang a,, = 0 alors la série entiere E anz" converge sur C et sa
somme est une fonction polynome.

Déterminons la forme du domaine de convergence d’une série entiere g anz".

22.1.2 Rayon de convergence

Lemme
Soit zg € C tel que la suite (a,,2( )nen soit bornée.
Pour tout z € C tel que |z| < |zo], la série numérique Z anz" est absolument convergente.

dém. :
Il existe M € R™ tel que |a, 24| < M pour tout n € N.
Pour |z| < ||, on peut écrire

n
z

lan2"| = |azg x (2/20)"] < M .
0

Or |z/zp| < 1 donc Z |z/z0|" est absolument convergente et par comparaison Z anz" 1’est aussi.
O
Définition

On appelle rayon de convergence de la série entiere E an 2", le nombre

R;fsup {r > 0/(anr™) estborne} € RT U {+o00}
€]

Exemple Rayon de convergence de Z 2",

{r =2 0/(r™) est borne} = [0, 1] donc R = 1.

1
Exemple Rayon de convergence de Z —'z".
n

{r >0/(r"/n!) estborne} = R* donc R = +oo.

Exemple Rayon de convergence Z nlz™.
{r 2 0/(a,r") est borne} = {0} donc R = 0.

http://mp.cpgedupuydelome.fr 506 @O0



CHAPITRE 22. SERIES ENTIERES

22.1.3 Convergence simple

Théoreme
Soit Z a, 2" une série entiere de rayon de convergence Ret z € C.
Si |z| < R alors la série Z anz" est absolument convergente.
Si |z] > R alors la série Z anz" diverge grossierement (plus précisément la suite (a,2")
n’est méme pas bornée).

dém. :

Notons A = {r > 0/(a,r") est borne} et R = sup A.

Si |z| < R alors |z| ne majore pas A et donc il existe 7 > 0 tel que |z| < r et tel que la suite (a,7™) soit
bornée. En vertu du lemme d’Abel, la série Z a, 2" est absolument convergente.

Si|z| > Ralors |z| ¢ A et donc (a,z") n’est pas bornée.

O
Corollaire
Soit D le domaine de convergence d’une série entiere de rayon de convergence K.
Si R = 0 alors D = {0}.
Si R = +o0 alors D = C.
Si R €10, +oo[ alors D(0, R) C D C D(0, R) ennotant D(0, R) = {z € C/ |z| < R}
Sur le cercle de centre 0 et de rayon R, les natures de Z a, 2" peuvent étre diverses.
iR ,
A / > a,z" diverge grossiérement
“““ ------- . Eanzn ?r)
\ Za”z” converge absolument
i 0
;R
R
Définition
Le disque
D(0,R) ={2z € C/|z| < R}
est appelé disque ouvert de convergence de la série entiere.

Remarque Sur ce disque, la série entiere converge assurément. Elle peut aussi converger en certains
points du cercle limite.
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22.1.4 Convergence normale

Théoreme
Une série entiere de rayon de convergence [ > 0 converge normalement, et donc uniformé-
ment, sur tout disque fermé de centre O et de rayon r < R.

dém. :
Soit E a, 2" une série entiere de rayon de convergence R > 0.
Cette série entiére est par définition la série des fonctions u,, : z — a,2"

Soit D = D(0,r) ={z € C/|z| < r}avecr < R.

Pour tout z € D, |u,,(2)| < |an|r".

Or il y a convergence absolue de la série Z a,r" donc Z u,, converge normalement sur D.

O

Corollaire
La somme d’une série entiere de rayon de convergence R > 0 est continue sur son disque
ouvert de convergence.

dém. :
Par convergence uniforme sur tout compact d’une série de fonctions continues.
O

Exemple La fonction z — e est continue sur C.

Attention : II peut ne pas y avoir convergence normale de la série entiere sur le disque ouvert de
convergence.

Exemple Considérons la série entiere E z".

Son rayon de convergence est R = 1.

Cependant sup |2"| =1 et il n’y a donc pas convergence normale sur D(0,1) = {z € C/|z| < 1}.
|z|<1

22.1.5 Calcul du rayon de convergence
Idée :On sait

|z| <R = Z anz" converge

|z| > R = Z anz" diverge.

Par contraposition :

Si Z anz" converge alors |z| < R.

Si Z anz" diverge alors R < |z|.

22.1.5.1 Exploitation de la régle de d’Alembert

Rappel :
Soit Z Uy, une série numérique a termes non nuls a partir d’un certain rang.
On suppose
U
4l 5 e RT U {400}
Un
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Si ¢ < 1 alors Z Uy, est absolument convergente.
Si ¢ > 1 alors Z u,, est grossierement divergente.

En exploitant ce critere, on peut étudier la convergence de E a,z" et préciser le rayon de conver-
gence R.
Exemple Rayon de convergence de

() (- 1)2nen

Soit z € C. 1)
Posons u,(z) = (—1)" 2 (n—1)2"2".
Pour z #0etn > 2,onau, # 0.

n 2n+1 n+1
Unt1(2) _n z Lo
un(2) n—1 27 | 2z
Si|z| < 1/2 alors Z un (z) est absolument convergente.
Si |z| > 1/2 alors Z uy, () diverge grossierement.
On en déduit R = 1/2.
Exemple Rayon de convergence de
1 n
) (2n)!”
Posons u,,(2) Lo our z € C*
sons u,(z) = ——2z" pour z .
@n)” P
n 1
un1(2)) B
U (2) (2n+2)(2n+1)

Pour tout z € C*, Z uy, (z) est absolument convergente (et aussi pour z = 0 ) donc R = +o0.

Exemple Rayon de convergence de
n—1 _
Z ’I’L2 + 1 z

n+1
Un(Z) = mz avec z 7é 0.
un+1(2) ~ 1/(n+ 1) |Z| - |Z|
Un(2) 1/n ’

On en déduit R = 1.

Remarque Plus généralement, soit F' € C(X)\ {0}, le rayon de convergence de Z F(n)z" vaut 1 car
pour z # 0

|F(n+1)2"| _ ‘F(n +1) FENR

|F'(n)z"| F(n)
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en effet P e g
F(n)= ban T ban = P71
donc
F(n+1) N A(n+1)P~1 1

22.1.5.2 Cas des séries lacunaires

Remarque La série de fonctions E a,z°" peut se comprendre comme une série entiére. En effet

Zanz2” = anz"

avece
bgp =ap et b2p+1 =0

Le rayon de convergence d’une telle série peut souvent se déterminer par la démarche précédente.

Exemple Rayon de convergence de

Soit z 75 0
( 2n+1 _ (_1) 2n+1
Zn+1 Zun avecun()—n+1 #0.
’LLn+1(Z) n —+ ]. 2 2
un(2) :n+2|z| — Il

_1)n
Si|z| < 1 alors Z %z%ﬂ est absolument convergente.
n

Si|z| > 1 alors Z 22"+ est grossierement divergente.
Onendéduit R =1

Exemple Rayon de convergence de
2n
Z ( > Z3n
n

2n 2n)!
Posons u,(z) = ( ) 25" = (2n) 23" pour z € C*.

n (n!)?
unt1(2)| _ (2n+2)(2n+1) 53(n+1) _ ot 2P = 4|2
wn(z) (n—+1)2 »3n n+1

On en déduit R = {/1/4.
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Remarque La démarche exploitant le critere de d’ Alembert posseéde deux inconvénients majeurs :

- elle ne possede pas de réciproque ;

- il se peut que le rapport |, 11/, | n’ait pas de limite. ..

Pour déterminer un rayon de convergence, on procede alors généralement par double inégalité comme
on le verra par exemple pour la série entiere Z sin(n)z"

22.1.5.3 Par comparaison
Soit R, et Ry les rayons de convergence de deux séries entieres Z an,z" et Z b,z".

Théoreme
| Sia, = O(by,) alors R, > Ry,

dém. :
Soit z € C tel que |z| < Ry. La série Z b, 2" est absolument convergente et par comparaison Z 2"

I’est aussi. Puisque E anz" converge pour tout |z| < Ry, on a nécessairement R < R,.
O

Corollaire
1) Si |ay| < |b,| alors R, > Ry,
2) Si a,, = o(by,) alors R, > Ry.
3)Sia, ~ b, alors R, = Ry.

Exemple Les séries enticres E anz" E |an| 2™ ont méme rayon de convergence.

Exemple Rayon R de convergence de Z sin(n)z".
Onala,| <1,o0r Z 2" est de rayon de convergence 1, donc R > 1.

De plus (a,,) ne tend pas vers 0 donc Z a, 2" diverge pour z = 1 etdonc R < 1.
On peut conclure R = 1.

Remarque Plus généralement, si (a,,) est bornée et ne tend pas vers 0 alors Z a,z" aun rayon de
convergence égal a 1.
22.1.5.4 Rayon de Z na,z"

Théoréme

’ Les séries entieres E a,2" et E na,z" ont méme rayon de convergence.

dém. :

Notons R et R’ les deux rayons de convergence de ces séries entieres.

Puisque a,, = o(na,),onadéa R > R'.

Inversement, soit z € C tel que |z| < R. Introduisons p tel que |z| < p < R, on a

na,z" =n(z/p)" anp™ = o(anp™)
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Or il y a convergence absolue de Z anpp™, donc Z napz" converge absolument.
Ainsi R’ > R puis il y a égalité.
O

Exemple Montrons que pour tout o € R, E anz" et E n“a,z" ont méme rayon de convergence.

Par récurrence, on obtient aisément 1’égalité des rayons de convergence de E a, 2" et E nFa,z"

pour k € Z.
En considérant k& = ||, on a n* |a,| < n®|a,| < n*! |a,| ce qui permet de conclure.

22.1.6 Somme et produit de séries entieres
22.1.6.1 Somme

Définition
On appelle somme des séries entiéres E anz" et E b,z" la série entiére E (an + bp)2".

Théoréme
Si R, et Ry sont les rayons de convergence des séries enticres E anz" et E b,z" alors le

rayon de convergence R de la série entiere somme Z (an + bp)2" vérifie
R > min(R,, Ry)

De plus, pour |z| < min(R,, Ryp),

“+o0 —+o0 —+o0
Z (an +bp)2" = Z anz" + Z bp2"
n=0 n=0 n=0

dém. :

On remarque a, 2" + b, 2" = (a, + b,)z".

Soit z € C tel que |z| < min(R,, Ry).

Les séries numériques Z an2" et Z b, 2" convergent absolument donc par somme la série numérique

Z (an + by)2" converge aussi et de plus

+oo +oo +oo
ZO (an + bp)z" = Zoanz” + ZO b, 2"

Puisque Z (an + by)z" converge pour tout |z| < min(R,, Rp), on a

min(R,, Ry) < R

O

Remarque Il est possible que R > min(R,, R}), par exemple quand b,, = —ay,.
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Proposition
] Si R, # Ry alors R = min(R,, Ry).

dém. :

Quitte a échanger supposons R, < Ry.

On sait déjaque R > R,.

Pour R, < |z| < Ry, Z an 2™ diverge alors que Z b, 2" converge donc Z (an + by)z" diverge.
On en déduit R = R, = min(R,, Rp).

|

Exemple Soit g a, 2" une série entiere de rayon de convergence R.

onsidérons ao,z°P e A2yt 12 e rayons de convergence R’ e .
Consid. »22F et pr122PTd d R et R’
Montrons
R =min(R',R")

Remarquons
E agngp = E bp2™ avec byp = agp et bap1 =0

2p+1 _ _ _
E A2p 1% L E cp2" avec Cop = 0et Copt1 = A2pt1
D’une part a,, = b,, + ¢, pour tout n € N donc E anz" est la somme des séries entieres E agpz2p et
> " agp412°P*! puis R > min(R', R”).

D’autre part, |b,|, |c,| < |a,| donc R'; R” > R puis min(R', R") > R.
Finalement R = min(R’, R").

22.1.6.2 Produit

Définition
On appelle produit des séries entieres E anz" et E b, 2" la série entiere E cn 2" avec

n
Cp = E arby—p.
k=0

Théoreme

Si R, et Ry sont les rayons de convergence des séries enticres E a,z" et E b,z" alors le

rayon de convergence R de la série entiere produit Z cn 2" vérifie
R > min(R,, Ry)

De plus, pour |z| < min(R,, Rp), on a

+oo +oo “+oo
Z o (Z anz”> (Z bnz">
n=0 n=0 n=0

dém. :
On remarque
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Ainsi la série numérique Z ¢ 2™ est le produit de Cauchy des séries numériques Z a,2" et Z b 2".
Pour z € C tel que |z| < min(R,, Rp), Z an, 2" et Z b, z" sont absolument convergentes donc par

produit de Cauchy Z ¢, 2" est absolument convergente et de plus

+o00 400 +0oo
Z cpz" = (Z anz") (Z bnz”>
n=0 n=0 n=0

Puisque Z cn 2™ converge pour tout |z| < min(R,, Ry), on a min(R,, Ry) < R.
O

Exemple Soit g anz" une série entieére de rayon de convergence R > 1.

n
Etudions la série entiére E S,z" avec S,, = E ag.
k=0

n
Pour toutn € N, §,, = Z ar X 1 donc Z Spz" est le produit des séries entiéres Z anz" et Z 2",
k=0
Par suite Z Spz" est de rayon de convergence > min(R, 1) = 1 et pour tout z € C tel que |z| < 1,

400 1 400

n __ n
P I
n=0 n=0

22.2 Série entiere d’une variable réelle

+o00

Désormais, nous étudions z —» Z anz" pour z € R, on préfere alors noter la variable x (ou t ).
n=0

22.2.1 Particularisation

Soit Z a,x™ une série entiere de rayon de convergence R > 0.

Pour tout z € |—R, R|, Z anx™ converge absolument.

Pour tout |z| > R : Z anx™ diverge grossierement.

Pour x = Roux = —R : cadépend.

Définition

’ L'intervalle |— R, R est appelé intervalle ouvert de convergence de la série Z anz".

Définition
L’ensemble I des x pour lesquels la série numérique converge vérifie

|-R,R[C I C[-R,R]

on I’appelle intervalle de convergence de la série entiere étudiée.

Théoreme

La série entiere E anx™ converge normalement sur tout segment inclus dans |— R, R|.
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dém. :
Car Z anz" converge normalement sur tout disque fermé inclus dans le disque ouvert D(0, R).
O
Corollaire
+o0
La fonction S : z — Z anx™ est continue sur |— R, R.
n=0

Exemple Etudions
+oo (_l)n—l

Siem ) Tt

S est une série entiere de rayon de convergence R = 1.
S est donc assurément définie et continue sur |—1, 1].
Etudeenz = —1

Z ﬂ(fl)n — Z -1 diverge
2n+1 2n+1 '

S n’est pas définie en —1.

Etude en = = 1

n

(_1)n— (_1)n—1 ) ) )
- 1" = - est une série alternée convergente en vertu du critére spécial.
> o 1 > 5 11 & P

S est définie en 1.
Continuité en 1

-1 n—1
Considérons u,, : [0, 1] — R définie par u,, (z) = %x" avecn > 1.
n
Les fonctions u,, sont continues.
Z un () converge par le critere spécial.
|R(@)] < Junsr(@)] € —— o™ < — 1 0
P TS on 11 S+l
11 y a convergence uniforme sur [0, 1] donc S est continue sur [0, 1].
22.2.2 Intégration
Définition
a
On appelle série entiere primitive de > a, 2™ la série entiere Y ——2"1,
o primiive & >
Proposition
Z apx” et Z @241 ont méme rayon de convergence.
n+1

dém. :

an
Le rayon de convergence de g

n -+
an n n
Z(n+1) X =T +1 :Zanx +

qui est aussi celui de E anx".
O

1 "1 est le méme que celui de
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Théoreme

Si E an,x™ est une série entiere de rayon de convergence R > 0 alors

+oo

an n+1
$H2n+1x

n=0

est sur |—R, R la primitive s’annulant en 0 de

+oo
T g apz"

n=0
dém. :
+oo
Sur |- R, R], la primitive s’annulant en 0 de la fonction continue x Z anx™ est
n=0

T +oo
T / Z apt™ dt
0 n=0

Pour tout z € |—R, R], la série entiere converge uniformément sur le segment d’extrémités O et 2. On
peut donc intégrer terme a terme et affirmer

/z +oo +oo Lz +oo a
D S R S T
0 n=o n=0"0 n=0 n+1l

O
Exemple On sait que pour x € |—1, 1]

+oo
" 1
D =1
-z
n=0
Par intégration de série entiere, on obtient

1t n+41 x
x dt
v elL1L ) :/0 == r(l-2)

n=0
On peut retenir la formule
+oo
x
Vrel|-1,1[,—In(l —x) = —
vel-Ll—ln(-0) =3 7

22.2.3 Dérivation
Définition
On appelle série entiere dérivée d’une série entiere Z an,x" la série entiere

E na,z" "t = E (n+ Dagyy12™
n>1
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Proposition

‘ E anx” et E o nanz" ! ont méme rayon de convergence.
n

dém. :
E an,x" ale rayon de convergence de E napx™ qui est aussi celui de E ., an®

nz

n—1

O

Proposition

Si E an,x™ est une série entiere de rayon de convergence R > 0 alors sa somme S : © +—
—+o0

E apz"

n=0

est de classe C* sur |—R, R et

“+o0o “+ o0
Vz €|-R,R[,S (z) = Z na,z" "t = Z (n+ Dayy12”
n=1

n=0

dém. :
Introduisons u,, : T +— apz".
Les fonctions w,, sont de classe C', E u,, converge simplement sur |—R, R et E u,, converge norma-

lement sur tout segment inclus dans |— R, R car la série enti¢re dérivée a pour rayon de convergence R.

O

Théoréme
Si E anx” est une série entiere de rayon de convergence R > 0 alors sa somme S : z +—
—+oo
E anx™ est de classe C™ sur |—R, R[ et ses dérivées successives s’obtiennent en dérivant
n=0

terme a terme :

+oo
Vp € N,Vz € |-R, R[, SV (z) = Zn(n —-1)...(n—p+1)apz""?
n=p

ou encore

+oo
Vp € N,V € |-R, R[, S (z) = Z (n+p)(n+p—1)...(n+ Dappz”

n=0

Attention : En £ R, on ne peut rien dire a partir de la seule connaissance du rayon de convergence.
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22.2.4 Expression des coefficients d’une série entiere

Théoreme

Si E anpx"™ est une série entiere de rayon de convergence R > 0 et de somme S alors

(n)
vn €N a, = 5(0)
n!
dém. :
S est de classe C°° sur |—R, R| et
+oo
S0P (z) = Z (n+p)(n+p—1)...(n+ Dappz"
n=0

En particularisant en z = 0, on obtient S*)(0) = pla,,.

d

Corollaire

Soit Z a,x" et Z b,x"™ sont deux séries entieres de rayons de convergence R, R, > 0.
S’il existe un voisinage de O sur lequel

+oo +oo
g apx” = E bpx™
n=0 n=0

alors
vn €N, a, =b,

dém. :
—+oo —+oo

Notons S, : x — Z apztetSy:x— Z bpx™.

n=0

n=0
Par hypothese, il existe » > 0 tel que

Vo € ]—r,7[, Sa(z) = Sp()

On a alors
Vp € N,V € ]—7"77“[,5((1”)(37) _ S,Ep)(x)
donc
SP ) 5P (0)
ap = = S = b,
p: p!
O

Exemple Soit E anx™ une série entiere de rayon de convergence R > 0 et de somme

“+oo
S:ze]-R,R[— Zanx”
n=0
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Montrons
S est paire si, et seulement si, Vp € N, azp11 =0

(<) Supposons Vp € N, azp1 = 0.

—+oo
= Z apz" = Z aspx?P donc S est une fonction paire définie sur |— R, R[ ou [~ R, R].
= p=0
(=) Supposons S paire.
—+oo
Pour tout z € |—R, R[, S(z) = ) donc Zan = Z (=) "apx"™.
n=0

Par identification des coefficients de séries ent1eres de rayons de convergence > 0, on a pour tout n € N,
an = (—1)"a, et donc
Vp € N,a2p+1 =0
De méme, on montre :
S est impaire si, et seulement si, Vp € N, ag, =0

22.3 Développements en série entiere

I désigne un intervalle de R qui est voisinage de 0.

Soit r € RT™ U {+o0} tel que |—r,7[ C 1.

22.3.1 Fonctions développables en série entiere

Définition

On dit que f : I — C est développable en série entiére sur |—r, r[ s’il existe une série entiére
Z anx" telle que

Vo € ]—r,r| Zan:r converge et f(x Z anT

Remarque Cette série entiere est nécessairement de rayon de convergence R > r

1
Exemple Considérons f : x — T = définie sur |—o0, 1]
—x

f est développable en série entiere sur |—1, 1] car on sait
1 X
n
—_— = x
S
n=0

et donc f(x) apparait sur |—1, 1[ comme égale a la somme d’une série entiére convergente.

1
Exemple Considérons f : x — —— définie sur R.
1+ 22
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f est développable en série entiere sur |—1, 1] car

1 1 “+o0 +oo
_ _ n __ _1\n,.2n
1+x2u;121_u‘u|—<1;u =3 (-

n=0

et donc f(z) apparait sur |—1, 1] comme égale a la somme d’une série entiere convergente.

Exemple x — e” est développable en série entiere sur R avec

Définition

On dit que f : I — C est développable en série entiere en 0 s’il existe » > 0 telle que f est

développable en série entiere sur |—r, /.

Exemple Les fonctions = +—> e” sont développables en série entiere en 0.

1—a2’ 1+22’

22.3.2 Série de Taylor

Définition

f™) ,
Z n! o

On appelle série de Taylor (en 0) d’une fonction f : I — C de classe C™ la série entiere

Théoreme
Si f : I — C est développable en série entiere sur |—r, [ avec

“+oo
Vo € |-rr[, f(z) = Zanx”
n=0

alors f est de classe C™ sur |—r, 7| et

()
n!

vn € N,a, =

de Taylor.
+oo (n) 0
fy = 32 100,

n!
n=0

Autrement dit, il n’y a qu’une seule série entiére qui puisse correspondre a f, a savoir sa série
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dém. :
Il existe une série entiere E anx™ de rayon de convergence R > r tel que sur |—r, 7]

+oo
flz) = Z anx”
n=0

+oo
Considérons alors la fonction S : x — E anx™.

n=0
La fonction S est définie et de classe C* sur |— R, R[ donc sur |—7, r|

Puisque f et S coincident sur |—r, r[, f est de classe C* sur |—r, 7].
De plus, pour tout n € N,

St™©) _ (o)
T
donc la série entiere introduite n’est autre que la série de Taylor de f.
|

Remarque Une fonction qui n’est pas de classe C* sur |—r, r[ ne peut y étre développable en série
entiere.

an

Remarque Si f est de classe C*, on peut étudier si f est développable en série entiere en vérifiant si

k)

k! n—-+oo
k=0

On peut pour cela exploiter I’inégalité de Taylor-Lagrange ou I’égalité de Taylor avec reste intégral.

Exemple Soit f : [—1,1] — C de classe C* et vérifiant

H | < ME™

o

avec M € R* et K > 0. Montrons que f est développable en série entiere en 0.
Pour tout z € [—1, 1],

W0 Py PP [ 1yt
/(@) k; Ko (n+1)! [+ (n+1)! o]
Pour |z| < 7 = min(1,1/|K]) ona (K |z)""" — 0 et donc
" k) (o
k=0 ’
Ainsi la série Z wx" converge et
n! £

La fonction f s’écrit sur |—r, r[ comme égale a la somme d’une série entiére convergente, elle est donc
développable en série entiere sur |—r, r|.
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Attention : Il existe des fonctions de classe C°° qui ne sont pas développables en série entiere !

22.3.3 Opérations sur les fonctions développables en série entiere

Théoreme
Si f,g : I — C sont développables en série entiere sur |—r, r[ alors pour tout A € C, Af, f+g
et fg sont développables en série entiere sur |—r, r|.

dém. :
11 existe des séries entieres Zanx” et Z b,x™ de rayons de convergence R,, R, > r telles que
sur |—r, 7|,
+oo +oo
flz) = Z anx” et g(x) = Z bpx™
n=0 n=0

Pour tout z € |—r,r[, ona

+oo “+o0
Af)(x) =Af(z) = /\Z anx” = Z Aa,z"
n=0

n=0

La fonction A f est sur |—r, r[ somme d’une série entiere convergente, elle est donc développable en série
entiere.
Pour tout z € |—r,r[, ona

+oo +oo +oo
(f + g)(x) = f(d?) + g(a:) = Z anz" + Z bya™ = Z (an + bn)xn
n=0 n=0 n=0

La fonction f + g est sur |—r, r[ somme d’une série entiére convergente, elle est donc développable en
série entiere.
Enfin, par produit de Cauchy de séries absolument convergentes
400 +o00 +oo n
590) = 1300 = (St ) (0t ) = 35 (o)
n=0 n=0 0 \k=0

La fonction fg est sur |—r, [ somme d’une série entiere convergente, elle est donc développable en série
entiere.

O

+oo 1 +oo (_ )'IL
Exemple Pour tout x € R, e = E —z"ete ¥ = g ~——>—z" donc les fonctions ch et sh sont

n! n!
. . n=0 n=0

développables en série entiere sur R avec

400 1 +o00 1

chx = %" et shx = = gt
2 G 2 Gar i)
n=0 n=0

Théoreme
| Si f: 1 — Cest développable en série entiére sur |—r,r[ alors f, Re(f) et Im(f) I’est aussi.
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dém. :

+00 “+o0 +o00
Si f(z) = Zanx" sur |—r, 7| alors f(z) = Zﬁx”, Re(f(z)) = ZRe(an)x", Im(f(z)) =
n=0 n=0 n=0

+oo
Z Im(a,)x™.
n=0

Les fonction s f, Re(f) et Im(f) sont donc développables en série entiére sur |—r, r| car sommes de
séries entieres convergentes sur cet intervalle.

O

Exemple Pour tout x € R,

+o0o in
el — E o
n!

n=0

donc les fonctions cos et sin sont développables en série entiere sur R avec

+ +
o i:.o (_l)n 2n . _ = (_1)77, 2n+1
Ccos T = x° et blnm—zix

! !
o (2n)! — (2n + 1)!
Théoreme
Si f : I — C est développable en série entiere sur |—r, r[ alors ses dérivées successives le sont
aussi.
dém. :
+oo
Si f(z) = Z anx™ sur |—r, r[ alors par dérivation de la somme d’une série entiere
n=0
“+o0
F(@) =3 (n+ Danpia”
n=0
et donc f’ est développable en série entiere sur |—r, r[. Il en est de méme de f”, ..., f ("), e
O

Exemple On sait
1 “+o0
V. -1L,1[,— = "
xe]-1, [’1—:10 ngzox

Par dérivation d’un développement en série entiere

“+o0
vxe]1,1[,(1_1x)2£c< ! >Z(n+l)x"

n=0
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Théoréme
Si f : I — C est développable en série entiere sur |—r, [ avec

+oo
f(z) = Z anz"
n=0

alors les primitives F' de f le sont aussi avec

“+ o0

Q.
F(z)=F(0 t_gntt
(@) = FO)+ 3 e

dém. :

+oo a 400
On sait que = +— Z " _ 2"+ est la primitive s’annulant en 0 de z Z anx™ donc F ne differe de

n=0 n+1 n=0
cette fonction sur |—r, r[ que de la valeur F'(0).

O

Exemple z — In(1 + z) est définie sur |—1, +oo| et

1
1+zx

d (In(1+2)) =

T

1 R
= Z (=1)"z" sur |—1,1]
=0

1+x_n

Par intégration d’un développement en série entiere, on a

1 (1 + ) 1 (1) + io (_1)n n+1 "Fi:o (_1)n—1 " gur } 1 1[
n = 1In = -7 u _
) n=0 n+ 1 ) n=1 n ,

Par une étude de série de fonctions, on peut établir la définition et la continuité du second membre en
x = 1. Cela permet de prolonger I’identité en z = 1.

Exemple x +— arctan x est définie sur R et

d 1 =
a(arctanx) =i Z (—1)"z*" sur |1, 1]
n=0

Par intégration d’un développement en série entiere, on obtient

+oo

(_l)n 2n-+1
arctanz = —— sur |—1,1
Z 2n+1 ] [
n=0
Comme ci-dessus, on peut prolonger cette identit¢é ax = letx = —1.
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22.3.4 Développement du bindéme (1 + z)“

Théoreme
Pour tout « € R, la fonction z — (1 + z)“ est développable en série entiere sur |—1, 1] et

+oo
(1+2)° = Z ala— 1)..T.L'(a—n+ Um"
n=0 :

dém. :
Posons
ala—1)...(a=n+1)
ap =
n!
et étudions la série enticre Z anpx”
Ona
1 ala—1) a—n
ap=1,a1 =a,a0=—=,...,a = —ua
0 1 2 2 n+1 n + 1 n
Déterminons le rayon de convergence R de la série entiere Z anx™.
CasaeN
Pour n > a, a, = 0 et donc R = 400 (polyndme)
Casa ¢ N
Pour toutn € N, a,, # 0
Pour z € R*, considérons u,, = a,x"
U a—n
et || = gm — || donc R = 1.
n n+1
Dans les deux cas, la fonction
—+oo
S:x— Z apz"
n=0
est définie et de classe C* sur |—1, 1] et
—+oo —+oo
S'(z) = Z napx™ "t = Z (n+1)ay 12"
n=1 n=0
donc
—+oo —+oo
S'(z) = Z (n+1ap 12" = Z (a —n)anz"
n=0 n=0
puis

+oo +oo
S'(z) =« Z anz" — 1w Z na,z" ' = aS(x) — xS’ ()
n=0 n=1
La fonction S est donc solution sur |—1, 1[ de ’équation différentielle
1+2) +ay=0

de solution générale y(z) = A(1 + z)“.
Il existe donc A € R tel que pour tout z € |—1,1]

S(x) =M1+ x)*
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Or A = 5(0) = ap = 1 donc
S(x) = (14 x)°

O
Exemple Cas o € N
Sia=peN

Kplp—1)...(p—k+1 -
(1+x)p:§p(p ) k!(p + )xkzz<z>xk

On retrouve la formule du bindme.

Exemple Cas o € Z\N.
Onécrita = —(p+1)avecp € N

1 o0 1 2 n —+o00 n+
R e Wl (M B
Exemple Cas v = —1/2.
R PR C IO
1+ _nz:%(_ ) (an!)2

22.3.5 Calcul de développements en série entiere

22.3.5.1 Cas des fonctions rationnelles

Exemple Soit a € C*. La fonction z — est développable en série entiere sur |—r, | avec

r—a
r=|al.
En effet, pour |z| < |al,
+
111 :i -1 .
x—a al—=z/a Oa”‘*‘1

Exemple Soit « € C*. La fonction x est développable en série entiére sur |—r, r[ avec

(x —a)?
r=|al.
En effet, en dérivant le développement précédent

+oo
1 n+1
(x —a)? :Z a"‘*‘Qm

n=0

Remarque Plus généralement, et par dérivations successives, on peut former le développement de
1/(z — a)P.
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Exemple Formons le développement en série entiere en 0 de
1
(x —1)%(z 4+ 2)

La partie entiere de f est nulle, 1 est pole double et —2 est pdle simple. La décomposition en éléments
simples de f est alors de la forme

firz

@) 1 a n b n c
xTr) = =
(r—1)2%(x+2) z+2 z-1 (z-1)2
avec
1 1 1 L Y 1
aqQ = —m8M8 = -, C = = — ¢ = = ——
(x—=1)2,_, 9 (x+2)|,, 3 (x+2) ) 9
=
Sur |—1,1],
+oo
1 1 1 1 1 1 (=™  3n+4\ ,
f(x)_fsug L E Y sppp _;}(18.2” Ty )”T
Exemple Formons le développement en série entiere en 0 de
1
T
fia 2+z+1
Pour z € |-1,1],
1_ 2 +oo “+oo
— _ 3n __ n
flz) = 13- nz:;)(l —x)z°" = nz:%anas
avec asp = 1,a3,41 = —1letagp42 = 0.
22.3.5.2 Calcul par dérivation puis intégration
Exemple Formons le développement en série entiere en 0 de
frz—=In(l+2z+2?)
Ona N
1+ 2z (1+2z)(1—2) 1+z—222 =
/ = — — =(1 ) 2 3n
Mo =y 1— 2% 1— a3 (14 ‘”);x
pour |z| < 1.
Ainsi
“+oo +oo
f/(x) _ Zx?m + I3n+1 o 2x3n+2 _ Zanxn
n=0 n=0
avec azy = 1, asp41 = letagpio = —2.

Par intégration d’un développement en série entiere

“+o0 “+oo
_ an n+l _ an n+1
f($)ff(0)+7;n+1x ;nﬂ“"
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Exemple Formons le développement en série entiere en O de la fonction arcsin.

1 =

ala—1)...(a—n-+1 n

n!

(arcsinz)’ =

n=0

pourz € |—1,1[eta = 1/2.

ala=1)famntt) () DB

n! n!

(2n)!

ey = N 2n)!
donc (arcsinz)’ = Z (2nl)2

n=0

x2™ puis par intégration d’un développement en série entiere

too 2n+1
) (2n)! =z
arcsinz =
7;) (27n!)2 2n 41

On peut aussi former le développement en série entiere de la fonction arccos via
arccos x = w/2 — arcsin x.

22.3.5.3 Calcul en exploitant une équation différentielle

Exemple Formons le développement en série entiere en 0 de

arcsin x

frx— ——
V1 — 22

Les fonctions  — 1/4/1 — 22 et x +— arcsin x sont développables en série entiére sur |—1, 1[ donc f
I’est aussi par produit. On pourrait calculer ce développement en procédant a un produit, mais
I’expression finale ne serait pas tres explicite. On va plutot calculer ce développement en exploitant une
équation différentielle vérifiée par f. La fonction f est dérivable sur |—1, 1] et

1 T arcsin x
122 (1—a2)3/2

f'(=)
Ainsi, f vérifie I’équation différentielle
(1—2?)y —zy=1

La fonction f étant impaire, son développement en série entiére sur |—1, 1] peut s’écrire

+o00
f(x) — Zanx2n+1
n=0

Par dérivation de série entiere sur |—1, 1], on peut écrire

—+oo

f(z)= Z (2n + 1)a,z*"

n=0
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La relation (1 — z2) f'(x) — x f(x) = 1 donne alors

+oo
ap + Z ((2n+ 3)an+1 — (2n+ 2)ay,) 2202 —

n=1

Par unicité des coefficients d’un développement en série entiere

2 2
ap=1letVn =1, a,41 = ZZISCL”
Ainsi
2n 2n—2 2 (27n!)?
Qay, [ e =) = ————
o121 3% (@2n+1)!
Finalement
400 2
_ (2nn') 2n+1
f@) = HZ:O @n+ )"

22.4 Applications

22.4.1 Régularité d’un prolongement continu

T

Exemple Soit f : R* — R définie par f(z) = ¢
Quand z — 0, e” = 1+ x + o(x) donc

. Prolongeons f en 0.

f(z) = z +o(z) 1
x
On peut prolonger f par continuité en 1 en posant f(0) = 1.
Montrer que la fonction f ainsi prolongée est de classe C* sur R.
Pour tout z € R,

+00 1
T _ I ()
¢ 1= La
n=1
Pour tout z € R*,
+ +
ex—1: mlxn—lzzoo 1 n
x “—nl = (n+1)!
puis pour tout x € R,
+oo 1
)= —"
/(@) Z (n+1)!
n=0

Ainsi f est développable en série entiere sur R et ¢’est donc une fonction de classe C*°.
De plus

n 1
vn e N, fM(0) = T
car par série de Taylor
fMo) 1
n! (n+1)!
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Exemple De méme, on obtient que la fonction sinus cardinal est de classe C* sur R.

P . sinx )
Remarque On en déduit que la fonction z — — 1 se prolonge en une fonction de classe C* car
o _

sinx sinz x

e?—1 z er—1

. . sinx . .
est produit des deux fonctions x +—» et x — —— qui se prolongent en des fonctions de
x

ell/' —
classe C™.

22.4.2 Calcul de sommes

“+00 ] n .2n+1
(S le alcu de = 7 . %1

On a immédiatement R = +o0.
Pour x € R, par décalage d’indice

(n+1)! —
donc . .
o0 n—1 oo n
s =5 Sl 5 Che
Finalement ,
S(x) = Lo pour x # 0et S(0) =0

—+o0
1
Exemple Calcul de E ——a".
!
= (2n)!

On a immédiatement R = +00.
Sixz > 0 alors
+oo 1 +oo 1 5
> et =Y LA = ey

(2n) = (2n)!

n=0

Si z < 0 alors

m +oo ( 1)n

+oo 1 . +o0 (_1) ) . _ om
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Exemple Calcul de Jio (=" x"
n2—1" "~

n—
On a immédiatement R = 1.

Puisque la série converge en = 1 et x = —1, I'intervalle de convergence est [—1, 1]

Par décomposition en éléments simples

1

n?—1

Pour z € |-1,1],
+oo n n
n=2

Pourz € |—1,1[etx # 0,

(
ﬁ—*;

Ainsi, pour z € |—1,1[ et x # 0,

n—l

+oo

D

n=2

—+oo

D

n=2

=k
n? — lxn

1
_2 €T

1 1 1
T 2\n—-1 n+1

)

+oo n—1

-1
E (=1) 2" = zIn(l 4+ z)
— n

RM—‘

(ln(l—l-x)—m-i-;a:)

1 1 1
x)ln(1+x)+2—4m

Pour x = 0, la somme est nulle (car le coefficient constant est nul)

Etude en z = +1

Posons u,(x) =

(-1)"
1

n2 —

2" Les fonctions u,, :

[—1,1] — R sont continues et ||uy|| est

©  p2-1

sommable. La série E u,, converge normalement sur [—1, 1] et sa somme y est continue.

S(1)= lim S(z) =

r—1—

400

2n+1
Exemple Calcul de Z

2n+1
Ona 1mmed1atement R =1.
Pour z € ]—1, 1], on peut écrire

3
4

= i S(x) =
o 5

iet S(-1)

" +oo

Zif

1.271

2n

avec convergence des séries écrites. On a alors

1 1+x
—1In

S(z) = 2 M1 =2

—In(l —2)+

1
3 In(1 —2?%) =

On aurait aussi pu calculer directement S’ ().
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22.4.3 Intégration terme a terme
22.43.1 Intégration sur [ = [a,b] C |- R, R|

Une série entiere converge normalement sur tout [a, b] inclus dans |— R, R], cela permet d’intégrer terme
a terme.

T +oo ( -1 ) n p2n+l

Exemple Montrons sinc(t) dt = —

P /0 ®) 7;(271—&-1)!271—&-1

La fonction sinus cardinale est développable en série entiere

“+o0
sinc(t) = 7;) th

avec un rayon de convergence R = +o0. Cette série entiere converge donc normalement sur tout
segment inclus dans R et donc en particulier sur [0, 7].
Puisque les fonctions sommées sont continues et que la série de fonctions converge uniformément

7 +oo “+o0
tzndt t2"dt
/Z gnﬂ Z/ ml

ce qui donne la formule proposée.

22.4.3.2 Intégration sur I = [0, R|

On peut intégrer terme a terme sous réserver de vérifier la convergence de E / [t .
I

1
In(1+t
Exemple Calcul de I = / # dt.
0
Sur ]0, 1],
Im(l+1) XD D
=2 =N et N
e

(et la relation vaut aussi 1 et peut valoir en O par prolongement par continuité)
Posons u,, : |0, 1] — R définie par
u (t) _ (71)7171 tnfl
a n
+oo
La série de fonctions Z u,, converge simplement et sa somme Z u, = f est continue par morceaux.
n=1

Chaque u,, est continue par morceaux et intégrable sur ]0, 1].

Enfin, la série E / |uy, | converge car

1 ,n—-1
t 1
/ |un| = / dt = —
10,1] o N n

Par théoreme, f est intégrable sur ]0, 1] et

I:/ f:f/lun(t)dt:Hm (_le)n

n=1 n=1
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+oo 1 71_2
Sachant E e Rl on peut achever le calcul de I,
n
n=1

400 1 +o0 1 +oo 1 400 1 +oo 1
I:Z&nw4v‘§:@m2:(Zﬂ%+n2+§:mw>‘22%%V

p=1 p=0 p=1 p=1

et donc

22.4.4 Musculation : fonction C* non développable en série entiére.

Soit f : R* — R définie par
fla)=et/"
f est de classe C*° sur |—o0, 0[ et ]0, +o0].
Quand x — 0, f(x) — 0.
On prolonge f par continuité en 0 en posant f(0) = 0.

4
A

y=f(x)

v

Montrons par récurrence sur n € N

1
Vn eN,Vz #0, f"(x) = P, () e /%" avec P, € R[X]
x

Casn = 0: Py(X) = 1 convient.
Casn =1: P;(X) = 2X? convient.
Supposons la propriété vérifiée au rang n > 0

d 1 2 1 1 2 1 2
(n+1) - = - —1/z —(_—p (= “ - —1/z
f (x) dx (P" (./L') ¢ > < x2 Pn (./L') + x?) P" (x)> ¢

Le polyndme P, 1(X) = X?P/(X) +2X?P,(X) convient.
Récurrence établie.
Quand z — 0 (ou 0~ ) (avec z # 0)

1 2 2
(n) — P - —l/z — P (X -X
U (x) . (;v) e X1/ 2 (X)e —0
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On peut alors conclure que f est de classe C™ avec
vn e N, f(™(0) =0

Finalement, f est de classe C* sur R et sa série de Taylor est nulle.
On en déduit que f n’est pas développable en série entiere car, si par I’absurde, f I’est sur |—r, r[ alors

£ (0)

n! =0

“+o0o
Vo € ]-rr[, f(x) = Zanx” =0cara, =
n=0
C’est absurde, puisque f n’est pas nulle sur un voisinage de 0.

22.4.5 Musculation : fonction absolument monotone

Soit 7 € R*™* U {400} et f : ]—r,7[ — R de classe C*° telle que ™) > 0 pour tout n € N.
Montrer que f est développable en série entiere sur |—r, r|.
Soit x € ]—r, r[. On peut écrire

" ofk)
rwy =3 0 4 pw)
k=0 )

avec

Par le changement de variable ¢ = zu, on peut écrire

1 _ n
Ro(a) =t [ B 0D )

n+1) est croissante, on a

Choisissons y tel que |z| < y < 7. Puisque 1
Wu € [0,1], 0 (au) < FD (yu)
et donc
wir [P0 ) nt1
| B (z)] < |2 ; o T ) du < fa/yTT Ra(y)

De plus R,,(y) < f(y) car les termes de la somme partielle de Taylor en y sont tous positifs et donc

R (@)| < |e/y" )~ 0

Finalement, f est aussi égale & la somme de sa série de Taylor sur |—r, r|.

http://mp.cpgedupuydelome.fr 534 EO®S0



Chapitre 23

Equations différentielles linéaires
vectorielles

K désigne R ou C.
E désigne un K-espace vectoriel de dimension finie n € N*
I désigne un intervalle de R d’intérieur non vide.

23.1 Les équations vectorielles
23.1.1 Equation et systemes différentiels

Définition
On appelle équation différentielle vectorielle linéaire d’ordre 1, définie sur I et a valeurs dans
E, toute équation de la forme

(B): 2’ = a(t)(@) + b(t)

avec t — a(t) fonction continue de I vers L(FE), t — b(t) fonction continue de I vers E et
d’inconnue ¢ — x(t) fonction dérivable de I vers E.

Exemple Cas £ =K.
Les endomorphismes sur K correspondent aux applications x — ax avec a € K.
Une équation scalaire s’apparente alors a une équation vectorielle a valeurs dans £ = K et inversement.

Remarque En introduisant une base e = (e, ..., e,) de F et en posant
A(t) = Mat, (a(t)) € M, (K), B(t) = Mat, (b(t)) € M, 1(K) et X(t) = Mat, (x(t)) € M, 1(K),

I’équation vectorielle
' = a(t)(x) + b(t)

équivaut a I’équation matricielle
X' '=A@t)X + B(t)
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En notant a; ;(t) les coefficients de la matrice A(t), b;(t) ceux de la colonne B(t) et z;(t) ceux de la
colonne X (t), I’équation étudiée équivaut encore au systeme différentiel

i =a11(t)x + -+ a1 ()T + 01(t)
(2): :
z = an1(O)z1 4+ ap )Ty + by(t)

En pratique, c’est fréquemment sous la forme d’un systeme différentiel que sont présentés les équations
linéaires vectorielles.

Exemple Le systeme

vy =tz + 229 + 6
xh = (1 —t).zy + t.ao

définit un systeme différentiel de taille 2.

Exemple Résoudre I’équation différentielle scalaire
(E): 2" = a(t)z’ + b (t)x + c(t)
revient a résoudre le systeme différentiel
@w{%:y
y = a(t)y +b(t)x + c(t)
car  est solution de (E) si, et seulement si, (, z") est solution de (X).

Proposition

Les solutions de I’équation (E) : 2’ = a(t)(z) + b(t) sont des fonctions de classe C*.

dém. :
Soit « une solution de (E). La fonction x est dérivable et

Vit e I,2'(t) = a(t)(xz(t)) + b(t)

Introduisons I’application V' : L(E) x E — E définie par V (u, x) = u(z).

L application V est bilinéaire donc continue (car dim £ < +00 ).

Puisque =’ = V(a, z) + b, la fonction 2’ est continue et donc z est de classe C'.
O

23.1.2 Probléme de Cauchy

Soita: I — L(E)etb: I — E des fonctions continues. On étudie 1’équation différentielle

(E): 2’ = a(t)(z) + b(t)
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Définition

Soit (tg,x0) € I x E. Un probleme de Cauchy associé a ’équation (E) en tg consiste a
déterminer les solutions de 1’équation de 1’équation

(B) : 2’ = a(t)(z) + b(t)

vérifiant la condition initiale z(ty) = xo.

Exemple Pour les équations scalaires, on a vu qu’un probleme de Cauchy détermine une solution

unique.

Proposition

(i1) x vérifie

x(t) = xo + / a(u)(z(uw)) + b(u) du

Soit z : I — E une fonction continue. On a équivalence entre :
(i) x est solution sur I du probleme de Cauchy

' = a(t)(z) + b(t)

x(t0> = Xo

to

dém. :
(i) = (ii) Supposons (i)

Puisque la fonction z est de classe C*,

donc

(i1) = (i) Supposons (ii)

et puisque

est dérivable, x est dérivable avec

O

t /t a(u)(z(uw)) + b(u) du

http://mp.cpgedupuydelome.fr
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Théoreme
(admis)
Soit (tg, z¢) € I x E . Le probleme de Cauchy

{ 2’ = a(t)(z) + b(t)

w(to) = X9

possede une unique solution définie sur /.

23.1.3 Structure de I’ensemble solution

Soita: I — L(E)etb: I — E des fonctions continues. On étudie ’équation différentielle

(B): 2’ = a(t)(z) + b(¢)

23.1.3.1 Equation homogeéne

Définition
L’équation (Ey) : ' = a(t)(x) est appelée équation homogene associée a 1’équation (E).
Ses solutions sont appelées solutions homogenes de 1’équation (E).

Théoréme
L’ensemble Sy des solutions sur I de I’équation homogene (Ey) est un sous-espace vectoriel
de C*(I, E) de dimension n = dim E.

dém. :
Les solutions de I’équation (E;) sont de classe C* donc Sy C C*(I, E).
Considérons la fonction @ : C* (I, K) — C(I,K) définie par

®(z) = 12" —alx)

En fait, ®(z) désigne la fonction ¢ — z'(t) — a(t) (z(t))
La fonction ® est linéaire et Sy = ker ® donc Sy est un sous-espace vectoriel de C* (I, E).
Pour ty € I, considérons I’application Ey, : So — E définie par

Ey, - 2+ x(tg)
E, est une application linéaire car
Etg ()\1.1‘1 =+ )\2.1‘2) = ()\1.1‘1 + )\2%‘2)(750) = \ix1 (to) + )\2.’132@0) = )\1Et0 (.Z‘l) + )\QEtO (372)

Par le théoreme de Cauchy linéaire, on peut affirmer que 1’application E}, est bijective.
Par suite E;, est un isomorphisme et donc dim Sy = dim E.
O

Exemple L’ensemble des solutions d’un systeme différentiel

|2’ =a(t)z +b(t)y
®): { Y = c(t) + d)y

est un plan vectoriel.
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23.1.3.2 Systeme fondamental de solutions

Puisque I’espace Sy est de dimension n, il posseéde une base a n éléments.

Définition
On appelle systtme fondamental de solutions de 1’équation homogéne (Fj) toute base
(¢1,.-.,9n) de lespace Sp.

Remarque Si (¢4, ..., ¢, ) est un systeme fondamental de solution de (Ey), la solution générale
homogene est

x(t) = Mp1(t) + - + Anpn(t) avec A, ..., Ay €K

23.1.3.3 Résolution de I’équation complete

Théoréme
L’ensemble S des solutions sur I de 1’équation

(E): 2" =a(t)(z) + b(t)

est un sous-espace affine de C*(I, E) de direction I’espace Sp.
C’est donc un sous-espace affine de dimension n = dim F.

dém. :

Les solutions sont de classe C* donc S € C!(I, E).

Par le théoreme de Cauchy linéaire, en fixant une condition initiale, on peut assurer I’existence d’au moins
une solution Z a I’équation étudiée.

Soit 2 € C!(I, E). En introduisant 2 nouveau ’application ® présentée dans le théoréme ci-dessus,
I’équation (E) s’écrit ®(x) = b. On a alors

z €S d(x) = (i)

En ramenant au premier membre

reSESP(x—2)=0

et donc

reSsxr—1€8

Ainsi S = T + S est un sous-espace affine de direction Sy.
|

Protocole : Pour résoudre (F) :

- on identifie le type I’équation (E) ;

- on résout I’équation homogene (Ep) : zo(t) = .. .;
- on cherche une solution particuliere : Z(t)

- on exprime la solution générale : x(t) = Z(t) + zo(t).
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Proposition

Sib(t) = b1(t) + ba(t) avec by et by : I — E fonctions continues et si 7 et x2 sont respecti-
vement solutions des équations

(Ey) : 2’ = a(t)(z) +bi(t) et (Bo) : 2’ = a(t)(x) + ba(t)

alors 7 est solution de I’équation

dém. :
(I)(l‘l) =byet (I)(l‘g) = by donc (I)(Il + 1‘2) =by +by =0
Pour toutt € 1

o' (t) = 2y (t) + 25(t) = a(t) (z1(t) + b1(t) + a(t) (x2(t)) + ba(t)
et donc, par linéarité de I’endomorphisme a(t)

z'(t) = a(t) (x1(t) + 22(t)) + b1 (t) + b2(t) = a(t) (x(t)) + b(t)

O
23.1.4 Méthode de variation des constantes

On cherche une solution a I’équation complete

Supposons résolue 1’équation homogene associée
(Eo) : 2’ = a(t)(x)

On connait alors (o1, .. ., ¢p) systtme fondamental de solutions de I’équation homogene.
La solution générale homogene s’écrit

z(t) = A.o1(t) + -+ Apeon(t)

Théoreme
On peut trouver par quadrature une solution particuliere de I’équation complete

(E): 2" =a(t)(z) + b(t)

de la forme
z(t) = A1 (1)-p1(t) + -+ An(t).on(t)

avec \q,..., A\, fonctions dérivables.

dém. :
Soit z(t) = A1(t).p1(t) + - - + A (£).on () avec A1, ..., A, fonctions dérivables.
Ona
2(t) = X () -pr(t) + -+ A () @n(t) + A ()01 (1) + -+ + An(t)- 0, (1)
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et puisque ¢} (t) = a(t) (v;(t)), on obtient
2(8) = alt) (()) + b(t) & Ny (£).p1(8) + -+ X, (D)o (t) = b(t)
Soit e = (eq, ..., e, ) une base de ’espace E. Posons
X,(t) = Mat.(p;(t)) et B(t) = Mat.b(t)
L’équation précédente s’écrit
MAX1(@E) + -+ ()X (t) = B(t)
Considérons encore
W (t) = Mate (1), -, on(t)) = (X0 (8) | ... [ Xn(t)) € Mn(K)

et Y(t) = “(Ny(t),..., A\, (t)). L’équation devient le systéme linéaire

Or la matrice W (t) est inversible. En effet, pour chaque ¢y € I, I’application E;, : Sy — E définie par
x +— x(tp) est un isomorphisme. Celui-ci transforme en une base en une base et donc

W (to) = Mat. (v1(to), ..., en(to)) estinversible

On a alors
2 (t) = a(t)x(t) +b(t) & Y(t) = W) ' B(t)

Enfin, la fonction ¢ — W (t)~!B(t) est continue, on peut donc déterminer par quadrature des fonctions
AL, ..., Ap telles que la fonction donnée par z(t) = A1 (t)p1(t) + -+ + An(t)pn(t) est alors solution
particuliere de I’équation (E).

O

Remarque Cette méthode explique la méthode de variation de la constante vue pour les équations
scalaires d’ordre 2.

23.1.5 Un exemple de résolution

Exemple Résoudre 1’équation
=) ry =31 — 29 +
N ah=x+ef

C’est un systeme différentiel de taille 2 de systeéme homogene associé
!
] = 371 — 222
(EO) : { r

On peut observer que
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sont deux solutions indépendantes de Xy, elles forment donc un systeme fondamental de solutions et la
solution générale homogene est
X(t) =MX3 (t) + )\QXQ(t)

Déterminons une solution particuliere a I’équation complete de la forme
X(t) = M(H)Xa(t) + A2 (t) Xa(t)

avec A1, Ao fonctions dérivables.
On injectant dans (X) on obtient

N (el +2X5(t)e! = ef
N (t)e! + Ny(t)e*t = e

La résolution donne

puis la solution particuliere

23.2 Equation linéaire d’ordre 1 a coefficient constant

E désigne un K-espace vectoriel de dimension finie n € N*

23.2.1 Définition

Définition
On appelle équation différentielle linéaire d’ordre 1 a coefficient constant, définie sur [ et a
valeurs dans F, toute équation différentielle de la forme

(E): 2’ = a(x) + b(t)

avec a € L(E), t — b(t) continue de I vers F et d’inconnue ¢t — x(t) dérivable de I vers E.

Remarque Via I’introduction d’une base de F, une telle équation différentielle correspond :
- a une équation matricielle

X' = AX + B(t) avec A € M,,(K) et B(t) € M, 1(K)
- a un systeme différentiel
Ty =ai1x1 + -+ arnz, + b1 (t)
(2): aveca; ; € Ketb;(t) e K

Ty = n1%1+ -+ An Ty + by (1)

Remarque Compte tenu de la méthode de variation des constantes, il suffit de savoir résoudre
I’équation homogene (Ey) pour résoudre complétement (E).
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23.2.2 Résolution théorique de I’équation homogene

Rappel :
+oo 1 ~

Pour a € L(FE), exp(a) = Eak € L(E). En particulier exp(0) = Idg.
k=0

Pour a € L(E), I'application t — exp(t.a) est de classe C* et

% (exp(t.a)) = a o exp(t.a)

Théoréme
Soita € L(F) et ¢ € E. L unique solution au probleéme de Cauchy

est la fonction
x:texp(t.a) (zo)

dém. :

On sait déja que le probleme de Cauchy possede une solution unique. Vérifions que celle proposée

convient.
x(t) = exp (t.a) (zo)

On a déja z(0) = Idg (o) = x¢. Vérifions que la fonction x est dérivable et calculons x’(t). Introduisons
lapplication V : L(E)x E — E quia (u,z) € L(F) x E associe V (u, x) = u(z). Cette application est
bilinéaire. Par composition avec les fonctions ¢ — exp (t.a) et t — x, toutes deux dérivables, on peut

affirmer que la fonction t — z(t) = V (exp (t.a) , o) est dérivable avec

2/ (t) =V (aoexp(t.a),zo)+ V (exp (t.a),0g)

et donc

2/ (t) = a(exp (t.a) (z0)) = a(x(t))
O
Remarque La solution au probléme de Cauchy

2 = a(x)
l‘(to) =T
estalors  : t — exp ((t — tg).a) (xo)(x0).

Corollaire
L’espace Sy des solutions sur R de I’équation homogene 2’ = a(z) est

Sp = {t — exp (t.a) (xg)/zo € E}
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Exemple Soite = (eq,...,e,) une base de E.
En posant @; : t — exp (t.a) (e;) eten écrivant g = Aj.eq + - - - + Ay,.€p, la solution générale de £
s’exprime

z(t) = Arpi(t) + -+ Anon(t)

Remarque Matriciellement, la solution de ’équation X' = AX vérifiant X (0) = X est

X(t) = exp(t.A) Xy

Exemple Si X est vecteur propre de A associée a la valeur propre A alors

+o0o 1 +oo 1
exp(t.A)Xo = —H A" X = > A X = M X,
n=0 " n=0 "

23.2.3 Résolution pratique de I’équation homogeéne

La résolution de I’équation homogene 2’ = a(z) (resp. X’ = AX ) se ramene a la détermination de
exp(t.a) (resp. exp(t.A) ). Il est alors pertinent d’opérer la réduction de I’endomorphisme «a (resp. la
matrice A ).

Exemple Résoudre

=3z —4
(Z>:{SU1 X1 T2

xh = 211 — 319

C’est un systeme différentiel de taille 2 linéaire 2 coefficient constant d’équation matricielle X' = AX

avec
= ()= (3 )
Equation homogeéne : X' = AX.
xa = X% —1,8p(A) = {1,-1}, E1(A) = Vect (i) et E_1(A) = Vect (1)

Ona
B 1 (21 (1 0
A=PDP avecP—(1 1)etD—(O _1>

et donc
X'=AX & X'=PDP 'X < P 'X'=DP'X

Posons Y = P'X.OnaY’ = P71 X’ et donc

Posons Y = n .
Y2

Y’:DY@{y
Y

X' =AX &Y' =DY

= t) = A\ et
n = {ylgt; )\1 _, avec A, A €K
Y2 Y2 = A€
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X = PY < T :<2 1) Y1 N x1 Y1 + Y2
T2 L1 Y2 T2 = Y1+ Y2
N Ax X(t) 216l + Nge”? \ 2¢! A et
= =" = =
Arel + dge™t ! et ? et

2¢’ et
X1(t) = ( ) et Xo(t) = ( ) définissent un systeme fondamental de solutions.

—t

Exemple Résoudre

] = X1 — To

Th =11 + T9
Systeme différentiel de taille 2 linéaire homogene a coefficients constants.
Equation matricielle : X’ = AX avec

1 -1 T
A<1 1 )etX<x2)

xa(X)=(X-1>+1
CasK=C:

Sp(A4) = {1+ i}, F14,(A) = Vect (_12> et F1_;(A) = Vect <1>

A:PDP_lavecP:<_ll. 1>etD:<1+Z O‘>

0 1—1

et donc

X' =AX &Y' =DY avecY = P 1X
En écrivant Y = n s

Y2
= (144 t) = ApeltHo?
Y'=DY & y} ( Z)yl o n(®) ! avec A\, \p € C
Yo = (1 —i)y2 Yo (t) = gl =01

v (4 0)(2)

A e(1+i)t+>\ e(l—i)t
X’:AX(:)X(t):( ! 2

—iApeI Tt 4 i/\2e(1—i)t> avec A, Ay € €

o1+ Q1=
X1(t) = Y et Xo(t) = ey = X (t) définissent un systéme fondamental de

solutions.
Cas K=R:
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(140)t
e
X1(t) = ( - 1+i)t> est solution complexe de I’équation X’ = AX or la matrice A est réelle donc
—ie
Re (X, (1)) cos(t)e’ Im(X, (1)) sin(t)e’
€ = et Im =
! sin(t)e ' —cos(t)e’

sont des solutions réelles de I’équation X' = AX.
Celles-ci sont clairement indépendantes et donc forment un systeme fondamental de solutions.

Solution générale
cos(t)e! sin(t)e’
X)) =« .| T8 avec o, € R

sin(t)e —cos(t)e!

Remarque On peut aussi procéder efficacement par la transformation de systeme suivante

:Z?lllefxg zglefx'l zgle—xll
/ A / 1! / A 1 /
xhH =1 + T2 2] —af =x1 + (11 — 27) ] — 227 4+ 221 =0

On sait alors résoudre 1’équation définissant x; puis exprimer la fonction x5 associée.

Exemple Résoudre
(%) : {55/1 =31 + 22

:17’2 = —2x1 — T2

C’est un systeme différentielle linéaire d’ordre 1 homogene et a coefficients constants d’équation
matricielle X’ = AX avec
x
A= 32 et X = !
-2 -1 To
xa(X) = (X -1)%
1
E;(A) = Vect ( 1)
1
Posons C] = L On a

A:PTPlavecP:( 1 0>etT=<(1) ?)

-1 1
et donc
X' =AX &Y' =TY avecY = P 'X
En posant Y = n ,
Y2
/ t t
=y +2 t) = \e’ + 2\ te
Y'=TY & y,1 n b2 & () ! . 2 avec A\, Ay € K
Yy = Yo Y2(t) = Age
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puis

el + A (2t + 1)ef
X =Axexn=( ", 22+ 1) .
—-Me' + )\2(1 — 2t)e

23.2.4 Comportement asymptotique des solutions homogenes

On limite I’étude au casn = 2 et K = R.
On étudie le systeme différentiel
2t = ax, + bz
(D) { LT

13/2 =cr1 + dy2

avec a, b, ¢, d € R. L’ équation matricielle associée est X' = AX avec

A= ( a b ) et X = (‘“)
c d T2
23.2.4.1 Lignes de champ

Définition
On appelle ligne de champ du systeéme (X) tout arc de R? paramétré par

x = z1(t)
y = 2(t)

avec (1, x2) solution sur R du systeme (X).

Proposition

En tout point régulier,une ligne de champ est tangente au champ de vecteurs

(z,y) — (ax + by, cx + dy)

dém. :
Soit (x1, x2) une solution de ¥ et tg € R tel que le point

(z0,90) = (z(to), y(to)) = (z1(to), z2(t0))

soit régulier.
La tangente en (g, yo) est dirigée par le premier vecteur dérivé qui a pour coordonnées

2’ (tg) = 2 (to) = awmy(to) + bxa(to) = axo + by
y/(t()) = Jllz(to) = Cwl(to) + dxz(to) = cxo + dyo

C’est le vecteur du champ de vecteur proposé
|
23.2.4.2 Comportement en ’infini

Pour étudier le comportement en +oco des lignes de champ, on introduit le polynéme caractéristique
xa(X) € R[X] de discriminant A.

http://mp.cpgedupuydelome.fr 547 @O0



23.2. EQUATION LINEAIRE D’ORDRE 1 A COEFFICIENT CONSTANT

Cas A > 0: la matrice A est diagonalisable dans M5 (R) de valeurs propres A\; < Ao.

Notons V7, V5 des vecteurs propres associés aux valeurs propres A1, A2. Les fonctions définies par X (t) =
MtV et Xy (t) = 2!V}, déterminent un systeme fondamental de solution de 1’équation X' = AX.

La solution générale de 1’équation est alors de la forme

x1(t
1(®) = 1MV + poe™tVy avee py, po € R
z2(t)

On peut aussi écrire

X9 (t)

Si A2 < 0: les lignes de champ convergent vers 0 en 4+00 avec une tangente dirigée par V5.
Si0 < Az : les lignes de champ divergent vers 400 en prenant la direction de V5.
Si Ay = 0: les lignes de champ convergent vers les points d’une droite dirigée par V5.

(xl(ﬂ) _ eAQt(Mle(,\l—/\z)tVl + paVa)

Cas A = 0 : on a une racine réelle double et des comportements proches de ceux présentés ci-dessus.
Cas A < 0: la matrice A est diagonalisable dans M (C) avec des valeurs propres A, .
Pour V; vecteur propre associé la valeur propre A, la colonne

Z(t) = eAtV1

est solution complexe de 1’équation Z' = AZ et alors X; = Re(Z) et X5 = Im(Z) déterminent un
systeme fondamental de solutions de 1’équation X' = AX. Puisque

eM = RVt (cos(wt) + isin(wt)) avec w = Im(N)
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on obtient une écriture générale des solutions de la forme

z1(t) = (acos(wt) + Bsin(wt))eReM?
29(t) = (v cos(wt) + § sin(wt))eReM?

SiRe(A) < 0: les lignes de champ s’enroulent vers (0,0) en +00
SiRe(\) > 0: les lignes de champ s’échappent en branche spirale en +oc.
SiRe(A) = 0: les lignes de champ sont refermées sur elles-mémes.

S S

Remarque Le comportement en —oo des solutions se déduit de 1’étude précédente par renversement
temporelle. Celui-ci nous ramene aux études précédentes en ayant passé a 1’opposé la matrice et donc
aussi ses valeurs propres.
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23.3 Equations scalaires d’ordre n

23.3.1 Présentation

Définition
On appelle équation différentielle scalaire linéaire d’ordre n définie sur I toute équation de la
forme
(B): 2" = a,_1(0)2" Y 4+ ap_a ()22 4+ - 4 a1 (t)a’ + ao(t)z + b(t)
avec ag,...,a, : I — Ketb: I — K continues, et d’inconnues x : I — K fonction n fois
dérivable.
Proposition

] Les solutions d’une telle équation sont de classe C".

Lemme
Soit z : I — K dérivable. On a équivalence entre :
(i)  est solution de I’équation (E) ;
(ii) x est le premier élément d’un tuple (z1, ..., x,) solution du systeme différentiel
I’l X9
xh =13
(2):
=z,
2 = an_1()Tn + -+ + a1 (t)xe + ag(t)ry + b(t)
dém. :
(i) = (ii) Si z est solution sur I de 1’équation alors x est n fois dérivable et le tuple (z, 2, ... ,x(”_l))
est solution sur I du systeme.
(ii) = (i) Si « est le premier élément d’un tuple (x4, . .., 2, ) solution sur I du systéme alors les premiéres
équations fournissent 7o = ) = 2/, 23 = 2”,..., z,, = (=Y et 1a derniere fournit la vérification par
x de I’équation (E).
O
23.3.2 Probleme de Cauchy
Soit ag, ...,a, : I — Ketb: I — K continues. On étudie 1’équation

(B) : 2™ = a,_1(0)2™™V 4 a,_o()x™2 4o 4 ay ()a + ag(t)x + b(t)

et on considere le systeme (3) associé comme défini dans la section ci-dessus.

Définition
Soit (to, o, %1 ...,2Zn—1) € I x K". Un probleéme de Cauchy associé a I’équation (E) en ¢
consiste a déterminer les solutions de I’équation (E) vérifiant les conditions initiales

VO<k<n— 1,:(:(]“)(750) =1
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Remarque Ce probleéme est naturellement associé a un probleme de Cauchy relatif au systéme (%) ou
la condition initiale sur ce systeme transpose les multiples conditions initiales imposées pour
I’équation (E).

Théoréme

] Le probléme de Cauchy proposé possede une solution unique définie sur 1.

dém. :

Car le probleme de Cauchy associé au systeme différentiel admet une solution unique.
O

23.3.3 Structure de ’ensemble des solutions

Soit ag,...,a, : I = Ketb: I — K continues. On étudie 1’équation

(B): 2" = a1 ()2 + a,_o(0) 27D 4+ 4 ay ()2’ + ao(t)z + b(2)

23.3.3.1 Equation homogene

Définition
Léquation (Ep) : ™ = ap,_1 ()Y + ... + ay(t)z’ + ao(t)z est appelée équation
homogene associée a (F) .

Théoréme
L’ensemble S; des solutions sur  de ’équation homogene (Ey) est un sous-espace vectoriel
de dimension n de I’espace C" (I, K).

dém. :
Les solutions de I’équation homogéne sont de classe C" donc Sy C C™(1,K).
Considérons I’application ® : C"(I,K) — C(I,K) définie par

®(z) =2 — (an,lx("_l) +tar’ + aox)

L’ application ® est linéaire et Sy = ker ® donc Sy est un sous-espace vectoriel de C" (I, K).

Soit to € I. Considérons Ey, : Sy — K" définie par Ey, () = (x(to), 2’ (to), ..., ™V (ty)).
L’application E; est linéaire et comme un probleme de Cauchy posséde une solution unique, elle est
bijective. C’est donc un isomorphisme et par conséquent

dimSy = dimK" =n

O
23.3.3.2 Equation compléte

Théoreme
L’ensemble S des solutions sur I de 1’équation compléte (E) est un sous-espace affine de
C"(1,K) de direction Sp.

dém. :
Les solutions de I’équation complete sont de classe C" et donc S C C"(1,K).
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Par le théoreme de Cauchy, on peut assurer 1’existence d’une solution Z.
Considérons a nouveau 1’application ® de la démonstration du théoreme précédent.
Pour 2 € C*(I,K)

reS e d(x)=2(I)
et donc

reSsr—1Te8

Ainsi I’ensemble S des solutions sur I est le sous-espace affine 2 + Sp.
O
Remarque Pour résoudre (E) : 2" = a(t)z’ + b(t)z + c(t) :
- on reconnait le type 1’équation ;
- on résout I’équation homogene : xo(t) = .. .;
- on détermine une solution particuliere : Z (¢
- on exprime la solution générale : x(t) = &(

23.3.4 Musculation : résolution des équations a coefficients constants

On étudie ’ensemble S des solutions a valeurs complexes de 1’équation différentielle linéaire d’ordre n
a coefficients constants :
2™ 4 a, 12 4 g +agr =0
avec a; € C d’inconnue z : R — C n fois dérivable.
Proposition

] Les solutions sur R de cette équation sont des fonctions de classe C*°.

Considérons I'espace E = C*°(R, C) et ’endomorphisme de celui-ci D : x — 2.
Pour P=X"+a, 1 X" ' 4---4+apona

S = ker P(D)
Dans C [X], on peut factoriser
P=(X—-X)".. (X=X
avec \;, € C deux a deux distincts et oy, € N*.
Pour k # £, (X — A\p)* A (X — X)) = 1 donc
ker P(D) = él ker(D — AId)

Reste a déterminer : ker(D — AId)® avec A € Cet o € N*.
Casa=1:
(D= Md)(z)=0&2' —\zx =0« 3C cC,Vt € R,z(t) = Ce

Introduisons e : t — e*. On a donc
ker(D — AId) = Vect(ey)

Cas général :
Soit 2 € E et y la fonction définie de sorte z = eyyie.y:t — e *x(t).Ona

(D — Mld)(z) = exD(y), (D — Xld)?(z) = exD?(y)...., (D — Md)*(x) = exD*(y)
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donc
x € ker(D — \Id)* < y € ker D®

Or la solution générale de I’équation y("‘) = 0est
y(t) = co+ et + -+ a1t

avec ¢g, C1,...,Cq_1 € C.
Ainsi
ker(D — A\Id)* = {t = (co+et+---+ ca,lta_l)eAt/co, Cly.,Ca1 € (C}

Exemple Résoudre I’équation
y W =2y +y=0
C’est une équation différentielle linéaire d’ordre 4 homogene a coefficients constants d’équation
caractéristique 7* — 2r2 + 1 =01ie. (r — 1)?(r + 1) = 0.
1 et —1 sont racines doubles.

La solution générale est
y:t (at +b)e' + (ct +d)e”"

Remarque On a
dimker P(D) = " dimker(D — \gId)* =Y "oy =n
k=1 k=1

et ’on retrouve que 1’espace des solutions est de dimension n.
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Chapitre 24

Equations différentielles linéaires
scalaires

K désigne R ou C.
I désigne un intervalle de R d’intérieur non vide.

24.1 Equations linéaires d’ordre 1
24.1.1 Equation différentielle scalaire

Définition
On appelle équation différentielle (scalaire) linéaire d’ordre 1 définie sur I toute équation de
la forme
(E): 2" =a(t)x +b(t)

avec t — a(t) et t — b(t) fonctions continues de I vers K et d’inconnue ¢ — x(t) fonction
dérivable de I vers K.

Remarque L’usage veut qu’on n’exprime pas la variable pour la fonction inconnue. Néanmoins,
vérifier que la fonction x est solution sur I consiste a observer

vVt e I,2'(t) = a(t)z(t) + b(t)
Remarque Pour la théorie la fonction inconnue est notée x. En pratique, elle est souvent notée y.

Exemple Pour a € C, la solution générale de 1’équation
(E):y'+ay=0

est
y(t) = de " avec A € C

Proposition

Les fonctions solutions de (E) sont de classe C' et méme de classe C" ! si a et b sont de
classe C".
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CHAPITRE 24. EQUATIONS DIFFERENTIELLES LINEAIRES SCALAIRES

Définition
Soit (tg,xz0) € I x K. Un probleme de Cauchy associé a ’équation (E) en to consiste a
déterminer les solutions de (E) : 2’ = a(t)x + b(t) vérifiant la condition initiale

fL‘(to) = X0

Théoreme
Soit (tg,zg) € I x K. Le probleme de Cauchy

{ 2 = a(t)z + b(t)

’I‘(to) =X

posseéde une unique solution définie sur 1.

dém. :
Introduisons A la primitive s’annulant en ¢, de la fonction continue a : I — K.
Unicité : Si z est solution alors

d

- (:c(t)e*f“t)) = (2'(t) — a(t)z(t)) e~ 2O = p(t)e~AD

donc ¢ — z(t)e”4® est de classe C' et

t
z(t)e™A® = z(ty) +/ e AWp(u) du

to
puis
t
z(t) = AW <:c0 + / e AWp(y) du)
to

Existence : La fonction définie par

z(t) = (xo + / tb(u)e_A(“) du) QA

to

est bien solution.
O

Corollaire
Par chaque point de coordonnées (tg,z¢) € I X K passe une courbe intégrale et une seule.
En particulier, les courbes intégrales ne se recoupent pas, elles constituent une partition du
domaine I x K du plan.

24.1.3 Structure de I’ensemble solution

Soit a,b : I — K continues. On étudie 1’équation différentielle

(E): 2" =a(t)z + b(t)
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24.1.3.1 Equation homogéne

Définition
L’ équation est appelée équation homogene associée a I’équation (E).
Ses solutions sont appelées solutions homogenes de 1’équation (E).

Théoreme
L’ensemble Sy des solutions sur I de I’équation homogene (Ej) est la droite vectorielle en-
gendrée par

t s eA®)

ol A désigne une primitive de la fonction continue a.

dém. :
Soit x une fonction dérivable. On a

2(t) = a(t)z(t) = % (x(t)e*f‘(t)) —0

et donc x est solution de (Ey) sur I si, et seulement si, 2 est de la former

t— xed® avec A € K

O
24.1.3.2 Résolution de I’équation complete

Rappel :
On appelle sous-espace affine d’un espace vectoriel I tout ensemble de la forme

V=a+F={a+z/zeF}

avec F' un sous-espace vectoriel de I/
Le sous-espace vectoriel F est unique, on 1’appelle direction de V.
Il n’y a pas unicité de I’élément a décrivant le sous-espace affine V, au contraire, pour tout @ € V, on
peut écrire
V=a+F

Un sous-espace affine est donc entierement déterminé par la connaissance de sa direction et de I'un de
ses éléments.

Théoreme
L’ensemble S des solutions sur I de I’équation complete

(E): 2" =a(t)z +b(t)

est une droite affine de C* (1, K) de direction I’espace Sp.

dém. :

Les solutions sont de classe C* donc S C C*(I,K).

Par probleme de Cauchy, on peut assurer 1’existence d’au moins une solution = a I’équation étudiée.
Soit z € C*(I,K). On a alors

reSeVtel,r(t)—alt)z(t) =7 (t) — alt)z(t)
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En ramenant au premier membre
reSevtel, (x—13)(t)—at)(x(t)—x() =0

et donc
reSsrx—1e8

Ainsi § = T + &y est un sous-espace affine de direction Sy.

O

Protocole : Pour résoudre (E) : 2’ = a(t)z + b(t) :

- on identifie le type de 1’équation (E) en reconnaissant a et b fonctions continues ;

- on résout I’équation homogene (Ep) : zo(t) = .. .;

- on cherche une solution particuliere : Z(t) = .. .;

- on exprime la solution générale : x(t) = Z(t) + xo(t).

Remarque Sib(t) = by (t) + ba(t) avec by et by : I — E fonctions continues et si z; et 22 sont
respectivement solutions des équations

(By) : 2’ = a(t)x +b1(t) et (Ea) : 2’ = a(t)z + ba(t)

alors T = x1 + x5 est solution de I’équation

24.1.3.3 Méthode de la variation de la constante

Supposons la solution générale homogene de la forme

zo(t) = Ap(t) avec A € K

Théoréme
Par quadrature, on peut déterminer une solution particuliere de ’équation complete (E) de la
forme x(t) = A(t)¢(t) avec A fonction dérivable bien choisie.

dém. :
x est solution de (F) si, et seulement si,

vt e I, N (t)p(t) = b(t)

Puisque la fonction ¢ est continue ne s’annule pas (c’est une fonction composée avec une exponentielle),
on peut déterminer A convenable pour que x soit solution de (F).
O

Exemple Résolvons I’équation
(B): 1+ +2ty =1

On a
1
1+e2/ T 1y
(E) est équivalente a une équation différentielle linéaire d’ordre 1 définie sur R.
Equation homogene :

(B) <y +

2t

L+t +2y =0y = ———
(1+t7)y" + 2ty Y el
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Ona o
—_dt=—In(1+#
/ 1+ n(l+¢)
Solution h & (t) A AeR
olution homogene : = avec
g Y 112
Solution particuliére : y(t) = T3 2vee t — A(t) fonction dérivable.

1+ () +2y(t) =1 N(t) =1

. 3 . I
A(t) =t convient et y(t) = e est solution particuliere.

Solution générale

t
y(t) = T —:_tQ avec A € R

24.2 Equation linéaire d’ordre 2

24.2.1 Définition

Définition
On appelle équation différentielle linéaire (scalaire) d’ordre 2 définie sur I toute équation de
la forme
(E): 2" =a(t)r’ +b(t)x + c(t)

avec a, b, c : I — K continues et d’inconnue z : I — K deux fois dérivable.

Exemple Lorsque les fonctions a et b sont constantes, on parle d’équation a coefficients constants.
Exemple y” + 2ty + (1 — t*)y = ¢’ est une équation linéaire d’ordre 2 définie sur R.

Exemple (1 + t2)y' "+ 2ty’ +y = 0 est équivalente sur R & une équation linéaire d’ordre 2 car

VteR, (1+t%)#0

Proposition
] Les solutions de (E) sont de classe C* et plus généralement de classe C" "2 si a, b, ¢ sont C".

24.2.2 Probléeme de Cauchy.

Soit a, b, ¢ : I — K des fonctions continues.

Définition
Soit (tg, g, y) € I x K2 Un probléeme de Cauchy associé a 1’équation (E) en t, consiste &
déterminer les solutions de I’équation (E) : " = a(t)z’ + b(t)x + c(t) vérifiant les conditions
initiales

z(ty) = zo et 2’ (tg) = ;)
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Théoreme
Soit (tg, 2o, z4) € I x K?. Le probléme de Cauchy

" = a(t)z’ 4+ b(t)x + c(t)
x(to) = X0
' (to) = g

possede une unique solution définie sur /. (admis)

Attention : Il ne faut pas confondre un probléme de Cauchy avec un probléme de conditions aux bords.
Par exemple, les conditions y(0) = 0 et y(27) = 0 ne déterminent pas une solution unique pour
I’équation différentielle 4" 4y = 0.

Exemple Considérons I’équation

(E):y" +pla)y +qx)y =0

avec p,q : I — R continues.
Montrons que s’il existe zo € I vérifiant y(zo) = y'(x¢) = 0 alors y est la fonction nulle.
En effet, la fonction nulle et la fonction y sont solutions au probleme de Cauchy :

v +p(x)y +q(x)y =0
y(z0) =y (z0) =0

Or ce probleme de Cauchy détermine une solution unique.

24.2.3 Structure de I’ensemble des solutions

Soit a, b, ¢ : I — K continues. On étudie 1’équation

(E): 2" = a(t)z’ + b(t)x + c(t)

24.2.3.1 Equation homogene

Définition
L’équation (Ep) : " = a(t)z’ + b(t)z est appelée équation homogene associée a (E).
Ses solutions sont appelées solutions homogenes de 1’équation (E).

Théoréme

L’ensemble S; des solutions sur / de ’équation homogene (Ey) est un sous-espace vectoriel
de C*(I,K) de dimension 2.

dém. :
Les solutions de 1’équation homoggne sont de classe C* donc Sy C C*(I, K).
Considérons la fonction @ : C*(I,K) — C(I,K) définie par

®(z) = 2" — (ax’ + bx)
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En fait, la fonction ® () désigne ’application t — z”(t) — (a(t)x’(t) + b(t)z(t)).
La fonction & est linéaire et Sy = ker ® donc Sy est un sous-espace vectoriel de C*(I,K).
Soit tg € I. Considérons I’application F;, : Sy — K? définie par

By, (z) = (2(to), 7' (o))
L application E, est linéaire, par résolution d’un probleme de Cauchy
Y(zo,74) € K%, 3z € Sy, By, () = (20, 20)
L application E, est donc bijective et c’est par conséquent un isomorphisme. On en déduit
dim Sy = dimK? = 2

O
24.2.3.2 Systeme fondamental de solutions

Définition
On appelle systeme fondamental de solutions de I’équation homogene z” = a(t)x’ + b(t)x
toute base (¢, 1) de I’espace Sp.

Remarque Si (p, 1)) est un systtme fondamental de solutions alors on peut exprimer la solution
générale de ’équation (Ep) qui est

z(t) = Ap(t) + po(t) avec A\, u € K

Exemple Les solutions ¢, 1) de I’équation homogene vérifiant les conditions initiales

p(to) =1 ot Y(to) =0
¢'(to) =0 P'(to) =1

forment un systéme fondamental de solutions.

24.2.3.3 Wronskien

Définition
On appelle wronskien de deux solutions (¢, ) de I’équation homogene (Ey) la fonction

Mw(t):‘ ot) () ’

Théoreme
Le wronskien w de deux solutions de 1’équation (Ep) : "/ = a(t)x’ + b(t)x est solution de
I’équation différentielle d’ordre 1

w'(t) = a(t)w(t)
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dém. :
Par dérivation par ligne du déterminant

w,(t):‘ Gt () H o(t) (1) 20 v (1)
P W [T v | T ae () + et ale @) + b))

En décomposant la deuxieme ligne en combinaison linéaire de deux lignes

oy o(t)  ¥(t) o(t) ¥(t) | _
w'(t) = a(t) ‘ + b(t) ‘ o) Bt ‘ = a(t)w(t)

O

Exemple Le wronskien d’un couple de solutions de 1’équation =" + ¢(t)x = 0 est constant.

Corollaire

] Un wronskien qui s’annule est la fonction nulle.

Théoréme
Si ¢, 1 sont solutions de I’équation homogene alors on a équivalence entre :
(i) (v, 1) est un systeme fondamental de solutions ;
(i) Vt € I, w(t) #0;
>iii) dty € I,w(to) 7’5 0.

dém. :

Soit ty € I, I'application E;, : Sy — K? définie par Ey;,(z) = (x(to),2’(to)) est un isomorphisme
d’espaces vectoriels. Par conséquent la famille (¢, 1) est un systeéme fondamental de solutions de (Ey)
si, et seulement si, la famille (E;, (¢), Ey, (1)) est une base de K i.e. si, et seulement si, w(ty) # 0.

|

24.2.3.4 Equation compléte

Théoréme
L’ensemble S des solutions sur I de 1’équation complete

(E): 2" = a(t)x’ + b(t)z + c(t)

est un plan affine de C?(I,K) de direction Sp.

dém. :
Les solutions sur I de 1’équation compléte sont de classe C? donc S C C*(I,K).
Considérons a nouveau 1’application ® : C?(I,K) — C(I,K) définie par

®(z) = 2" — (az’ + bx)

L’équation (E) se comprend alors comme I’équation ®(z) = c.
Par résolution d’un probleme de Cauchy, on peut assurer 1’existence d’une solution particuliere z.
Pour x € C*(I,K)

reS & dx)=2(2)

et donc
reSsr—1€eSecrer+ S
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Ainsi I’ensemble S des solutions sur I est un sous-espace affine de direction Sp.

O

Remarque Pour résoudre (E) : 2" = a(t)z’ + b(t)z + c(t) :

- on identifie le type de 1’équation (E) en reconnaissant a, b, ¢ fonctions continues ;
- on résout I’équation homogene (Ep) : zo(t) = .. .;

- on détermine une solution particuliere : Z(t) = .. .;

- on exprime la solution générale : xz(t) = Z(t) + xo(t).

Remarque On peut aussi énoncer un principe de superposition des solutions.

24.2.4 Cas des équations a coefficients constants

On étudie I’équation
(E):y" +ay +by=0

avec a,b € Ketc: I — K continue.
24.2.4.1 Solution homogéne

Considérons 1’équation homogene associée

(Eo) -y +ay +by=0

Soit A € K. La fonction ¢ — e est solution de (Eo) si, et seulement si, A est racine de 1’équation

r’+ar+b=0

Définition
L’équation r% + ar + b = 0 est appelée équation caractéristique associée a I’équation (E) (ou
(Eo)).

Cas K =C.

Si A # 0 : deux solutions «, 3
@(t) = e* et 1(t) = e’! sont solutions de (E).

w(0) =

! é’:ﬁ—a;«éo

(¢, 1) est un systeme fondamental de solutions de (Ey).
La solution générale est alors et

z(t) = Xe®t + pePt avec A\, € C

Si A = 0 : une solution double «
©(t) = e et (apres calculs) ¢(t) = te®* sont solutions de (Ep).

10

w(0) = a 1

=170

La solution générale est alors
z(t) = e + pte® avec A\, u € C
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Cas K =R.

SiA>00uA =0:idemavec A\, u € R

Si A < 0, 2 solutions conjuguées « + iw avec w # 0.
La fonction ¢ —» el@iw)t
e cos(wt) et ¥(t) = e’ sin(wt) sont solutions réelles de (E).

1 0

a W

w(0) =

’:w;ﬁO

La solution générale est alors

z(t) = (Acos(wt) + psin(wt))e® avec \, u € R

24.2.4.2 Solution particuliere

Cas c(t) = Ae™ avec A € K
On peut trouver une solution particuliere de la forme

Ce™t si a n’est pas racine de ? 4+ ar +b =0
y(t) ={ Cte™®  si estracine simple de r* 4+ ar +b =0
Ct?e®"  si o est racine double de 72 +ar +b =0

avec C' € K bien choisi
Cas K = Ret¢(t) = Bcos(wt) ou Bsin(wt).
On peut aussi trouver une solution particuliere en étudiant 1I’équation complexe

2"+ az' + bz = Be™!

et en considérant la partie réelle ou imaginaire d’une solution particuliere.
24.2.5 Méthode de la variation des constantes

Soit a, b, ¢ : I — K continues. On cherche une solution particuli¢re de 1’équation

(E): 2" =a(t)z’ +b(t)z + c(t)

Supposons connu un systéme fondamental (¢, 1) de solutions de I’équation homogene

(Eo) : 2" = a(t)x’ + b(t)x
La solution générale de 1’équation homogene est

2(t) = Ap(t) + pup(t)

Théoréeme

(E): 2" = a(t)x’ + b(t)z + c(t)
de la forme
z(t) = At)e(t) + pt)y(t)
avec \, it : I — K fonctions dérivables vérifiant :
N()p(t) + ' (t)(t) =0
N(B)¢'(t) + 1 ()9 (t) = c(t)

Par quadrature, on peut trouver une solution particuliere sur I de 1’équation

est solution complexe de (Fy) donc ses parties réelle et imaginaire p(t) =
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24.2. EQUATION LINEAIRE D’ORDRE 2

dém. :
Le systeme proposé est de Cramer car de déterminant

o) vt | _
’¢m wﬁ>k‘““*0

On peut donc trouver des fonctions A et u dérivables vérifiant

0 o(t) ‘ () 0 ’
et "(t ") et
(o) = (L@()“”@— w2w<>

Considérons alors la fonction x = Ap + p.

x est dérivable et 2’ = (N + p'v) + (A" + p)’)

Puisque X ¢ + p/vp = 0, on simplifie ' = A\’ + p1)’.

x est alors deux fois dérivable et 2’/ = X'’ + p/'¢p" + X" + pyp”.

On vérifie alors 2" = a(t)x’ + b(t)z + c(t) puisque ¢, sont solutions de 1’équation homogene et
A/(p/ + M/w/ —c

O

Exemple Résolvons
t

1/ / €
VoW Y=
C’est une équation différentielle linéaire d’ordre 2 a coefficients constants.
Equation caractéristique 72 — 2r + 1 = 0 de racine double 1.
Solution générale homogene y(t) = (At + p)e’ avec A\, u € R.
Solution particuliere y(t) = A(t)te’ + u(t)e’ avec A, 1 fonction dérivables.
y'(t) = N(t)te' + ' (t)e’ + A(t)(t + e’ + p(t)e".
On pose X' (t)te + i/ (t)e' = 0.

y'(t) = N ()t + 1)e’ + 1 tt)et + A+ 2)e" + p(t)e". .

y'(t) =2y (t) +y(t) = 1_7_7 si, et seulement si, \'(¢)(t + 1)e’ + p/(t)e' = - j_ ot
Résolvons
N(t)te' + i/ (t)e! =0
¢
’ 3 ’ t__©
N (t+1)e" + p'(t)e' = e
On obtient 1
Nt) = ——
®) 1+ t2
t
!
= ——
W) =—1p
1
A(t) = arctant et u(t) = 3 In (1+ t2) conviennent.
Solution particuliere
1
y(t) = 3 (2t arctan(t) — In(1 + t2)) et

Solution génératrice

y(t) = = (2tarctan(t) — In(1 + %)) e’ + Ate’ + pe’ avec A, u € R

N | =
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Exemple Résolvons 3 +y = f(t) avec f : R — R continue.
C’est une équation différentielle linéaire d’ordre 2 a coefficients constants.
Equation caractéristique 72 + 1 = 0 de racines i.
Solution générale homogene y(t) = Acos(t) + psin(t) avec A, u € R.
Solution particuliere

y(t) = A(t) cos(t) + p(t) sin(t)

avec A et u fonctions dérivables solutions du systeme

N(t)cost + p'(t)sint =0
=N (t)sint + p'(t) cost = f(t)

Par les formules de Cramer, on obtient

N (t) = —sin(t) f(t)
p'(t) = cos(t) f(¢)

Pour
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on a

solution particuliere.
Solution générale

y(t) = /t sin(t — w) f(u) du + Acos(t) + psin(t) avec A, u € R
0

24.2.6 Résolution pratique de I’équation homogene

En dehors des équations a coefficients constants, il n’y a pas de méthode systématique (et surtout pas
d’équation caractéristique).
24.2.6.1 Recherche de solutions polynomiales

Exemple Résolvons
(BE): (2 +2t+2)y" —2(t+ 1)y +2y=0

Pour tout ¢ € R, t? + 2t 4 2 # 0 donc (F) est équivalente a une équation différentielle linéaire d’ordre 2
homogene définie sur R.

Recherchons les fonctions polynomiales solutions.

Soit y(t) = t" + - - - une fonction polynomiale.

(2 + 2t +2)y" — 2(t + 1)y (t) + 2y(t) = (n(n — 1) — 2n + 2)t™ 4 - --

Si y est solution de (E) alors n? — 3n + 2 = 0 donc n = 1 ou 2.
On recherche désormais y de la forme y(t) = at® + bt + c.

(2 + 2t 4+ 2)y" — 2(t + 1)y (t) + 2y(t) = 2(c — b + 2a)
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y(t) = at® + bt + cest solution de (E) < ¢ = b — 2a < y(t) = a(t® — 2) +b(t + 1)

Posons o(t) = t* —2eta)(t) =t + 1.

et ¢ sont solutions de (F), elles sont visiblement indépendantes, elles forment donc un systéme
fondamental de solutions.

Solution générale de (E) :

y(t) = AN(t*> = 2) + p(t + 1) avec A, u € R

24.2.6.2 Recherche de solutions développables en séries entiéres
Exemple Résolvons sur |—1,1]
(B): (1—t*)y" —4ty' =2y =0
Pour tout ¢ € ]—1,1[, 1 — t* # 0 donc (F) est équivalente & une équation différentielle linéaire d’ordre 2

homogene définie sur |—1, 1].
Recherchons les fonctions développables en série entiere au voisinage de 0.

Analyse :
Soit y la somme de la série entiere Z a,t™ de rayon de convergence R > 0.
Sur |—R, R],
400 + o0
y(t) = Z ant™, y'(t) = Z na,t" !
n=0 n=1
et
+o0 foo
y'(t) =Y n(n—1at" > =" (n+2)(n+ 1anat”
n=2 n=0
ce qui donne
+oo
(1—)y" — 4ty — 2y = Z (n+2)(n+1)(ant2 — an)t"
n=0

Par unicité des coefficients d’un développement en série entiere

+oo
Vit € |-R, RJ, Z (n+2)(n+ D(ant2 —a)t" =0 VneN, (n+2)(n+ 1)(ant2 —a,) =0

n=0
Ainsi y est solution de (E) sur |—R, R] si, et seulement si,
vneN,anto —a, =0

On a alors pour tout p € N, az, = ag et azpy1 = ap puis, par sommabilité

+oo +o0 400 too
Y1) =3 st + 3 a1t =3 agt? + Y a2+
p=0 p=0 p=0 p=0

ce qui donne

a ait )
5+ ;tg pour t € |—R, R[ avec nécessairement R < 1

t:
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Synthese :
Soit
1 ot

o(t) = 1— ety(t) = 12
 est développable en série entiere sur |—1, 1] et par les calculs qui précedent est solutions de 1’équation
différentielle (F) sur ]—1, 1[. Il en est de méme pour . Les fonctions ¢ et ¢ sont deux solutions
indépendantes, elles forment donc un systéme fondamental de solutions de (E).
Solution générale :
A+t
C1-¢2

y(t)

avec \,u € R

24.2.7 Autres démarches
24.2.7.1 Changement de fonction inconnue

Résoudre une équation différentielle par changement de fonction inconnue consiste a traduire 1’équation
étudiée en une nouvelle équation en la fonction inconnue proposée, généralement plus simple a résoudre.

Exemple Résolvons sur R I’équation
(B): (1+8%)y" +4ty’ + (1 - )y =0

en posant z = (1 + t%)y.
Soient y : R — R deux fois dérivable et z : R — R définie par z(t) = (1 4 t?)y(t).
z est deux fois dérivable

2(t) = (1+ )y (t)
2 (t) = (1+ )y (t) + 2ty(t)
2'(t) = (14 t2)y" () + 4ty (t) + 2y(t)
On remarque
(1+2)y" (1) + 4ty () + (1 = )y (t) = 2" (t) — 2(1)

donc
y est solution de (E) sur R < 2 est solution sur Rde (E') : 2" — 2 =10

(E’) est une équation différentielle linéaire d’ordre 2 homogene a coefficients constants.
Solution générale
2(t) = Xe! + pe™*
et
e+ pe!

e avec A, u € R

y(t)

Remarque Lorsque ¢(t) détermine une solution ne s’annulant pas de I’équation homogene associée a
une équation

Y+ alt)y' + by = clt)
alors le changement de fonction inconnue y(t) = z(¢)p(t) permet de résoudre cette équation. En effet,
on a alors

y' +al)y + bty = c(t) & o(t)2" + (2¢'(t) + a(t)p(t)) 2" = c(t)

qui apparait comme une équation d’ordre 1 en la fonction inconnue z’.
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Exemple Résolvons sur |0, +oco[ I’équation
(E): %y +ty —y =1
La fonction ¢ +— ¢ est solution de 1’équation homogene associée.
Réalisons alors le changement de fonction inconnue y(t) = tz(¢).
Pour y : |0, +00[ — R deux fois dérivable, la fonction z est aussi deux fois dérivable et
y'(t) = t2'(t) + 2(t) ety () = t2"" (t) + 22/ (t)
La fonction y est alors solution de (F) si, et seulement si,
Vit > 0,632 (1) + 3122/ (t) = *
La résolution de cette équation d’ordre 1 en la fonction 2’ donne
A1
z’(t):t—3+§avec>\€R
En intégrant
(t) X—&-t—l- avec N, u € R
z2(t) =5+ 3 v
23 M » 1
et enfin la solution générale de (E) est
2

A t
y(t)zz—kut—&-gavec)\,ueR

24.2.7.2 Changement de variable

Résoudre une équation différentielle par changement de variable consiste a traduire 1’équation étudiée
en une nouvelle équation en la fonction inconnue de la nouvelle variable. Cette nouvelle équation est
généralement plus simple a résoudre.
Exemple Résolvons sur |0, +oco[ I’équation

(E): 2%y + 32y +y =0
On procéde au changement de variable 2 = e’.
Soit y : |0, +00[ — R deux fois dérivable et z : R — R définie par z(t) = y(z) = y ().
La fonction z est deux fois dérivable et

y(x) = z(Inx), y'(z) = %z'(ln x)ety'(z) = %z”(ln x) — %Z’(ln x)
La fonction y est alors solution de (E) sur |0, +o00] si, et seulement si,
Vo > 0,2"(Inz) +22'(Inz) + 2(Inz) =0
ce qui revient a dire que z est solution sur R de 1’équation
2(t) + 22/ () + 2(t)

La solution générale de cette équation est

2(t) = (M +p)e "avec A, u € R
La solution générale de 1’équation (F) est donc

Anz +
ylo) = 228

X
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Remarque Le changement de variable z = e’ est adapté 2 la résolution sur ]0, +oco] des équations de la
forme
2. 1 / _
2y’ 4+ axy + by =0
qu’il transforme en équation a coefficients constants
2"+ (a—1)2" +bz=0
t

Pour résoudre sur |—oo, 0], il suffit de poser z = —e".
Ce sont ici les équations différentielles d’Euler.

24.3 L’épineux probléme des raccords
24.3.1 Rappel

Théoreme
Soita € I'et f : I\ {a} — R continue sur [ et dérivable sur I\ {a}.
Si f/(t) PR ¢ € R alors f est dérivable en a et f'(a) = .
—a,t#a

Si f'(t) —¢> 400 (ou —o0 ) alors f n’est pas dérivable en a, mais y présente une tangente
t—a,t#a

verticale.

dém. :
Supposons f’(t) = ¢ € R. On étudie le taux de variation
—a

(fla+h) = f(a))

S| =

Cas a est intérieur a [ :
Quand h — 0", en appliquant le théoréme des accroissements finis entre a et a + h, il existe ¢;, compris
entre a et a + h tel que

fla+h) = f(a) = f'(cu)h
et alors

(Flat h) = f(a)) = F'(en) = ¢

car ¢, — a par encadrement. On en déduit f};(a) = /.

L’étude quand . — 0~ est analogue et fournit f;(a) = { ce qui permet de conclure.
Cas a est extrémité de I : Une seule des deux études précédentes suffit pour conclure.
O

24.3.2 Résolution de I’équation a(t)y’ + b(t)y = c(t)
Soit a, b, ¢ : I — K continues. On étudie 1’équation différentielle
(E) :a(t)y’ +b(t)y = c(t)

Si @ ne s’annule pas sur I alors I’équation (E) est équivalente &

/

y = a(t)y + B(t) avec a« = —b/a et f = ¢/a qu’on sait résoudre

Si a s’annule alors
- on commence par résoudre (E) sur les plus grands intervalles J C I sur lesquels a ne s’annule pas;
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- on procede ensuite au raccord des solutions aux points ol a s’annule.
Pour raccorder les solutions en un point ¢y ol a s’annule :

- on exprime une solution a droite et a gauche de ?g ;

- on étudie s’il est possible de la prolonger par continuité en ¢ ;

- on étudie si ce prolongement est dérivable en % ;

- on vérifie que 1’équation différentielle est alors satisfaite en ¢;.

Exemple Résolvons I’équation (E) : ty' — y = t* sur R.
1

Sur/ =R"™ ouR ™ :(E) <y — Ty=t

C’est une équation linéaire d’ordre 1.

Solution générale sur I : y(t) = t* + At avec A € R.

Déterminons les solutions de (E) sur R.

Soit y : R* — R une solution de (E) sur R** et R™*.
Il existe A\, ' € R tels que

V> 0,y(t) =12+ MetVt < 0,y(t) =t* + Nt

A quelle(s) condition(s) sur A et \’ peut-on prolonger 4 en 0 pour obtenir une solution sur R ?
Continuité en 0 :

Quand t — 0T, y(t) = t* + A\t — 0.

Quand t — 07, y(t) = t> + Nt — 0.

Le prolongement en 0 est possible avec y(0) = 0 sans conditions sur A\, \.
Dérivabilité en O :

Quand t — 07, ¢/(t) = 2t + X — A donc y;(0) = \.

Quandt — 07, %/(t) = 2t + A" — X donc y,,(0) = \'.

Le prolongement en 0 est dérivable si, et seulement si, A = X’ et alors 3/ (0) = A
Equation différentielle en O :

0y'(0) — y(0) = 0: ok.

Finalement :

Solution générale sur R : y(t) = t* + At avec A € R.

)

\//
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Exemple Résolvons I’équation (E) : ty’ — 2y = 0 sur R.
2

Sur7 =R ouR™, (E) &y = 7Y

C’est une équation différentielle linéaire d’ordre 1.

Solution générale sur I, y(t) = \t* avec A € R.

Recherchons les solutions sur R.

Soit y : R* — R une fonction solution sur R™* et R™*.

Tl existe A\, ' € R tels que

V> 0,y(t) = M etV < 0,y(t) = N't?

A quelle(s) condition(s) sur A et \" peut-on prolonger 3 en 0 pour obtenir une solution sur R ?
Continuité en 0 :

Quand t — 0T, y(t) = At? — 0.

Quand t — 07, y(t) = N't? — 0.

On peut prolonger y par continuité en 0 par y(0) = 0 sans conditions sur \, \".
Quand t — 0T, ¢/ (t) = 2\t — 0 donc y/};(0) = 0.

Quand t — 07, y(t) = 2\"t — 0 donc y,(0) = 0

Le prolongement en 0 est dérivable avec ' (0) = 0 sans conditions sur A, \.
Equation différentielle en O :

0y'(0) — 2y(0) = 0 : ok.

Finalement :

Solution générale sur R

M2 sit>0
y(t) = 0 sit=0 avec\, N €R
N2 sit <0

Exemple Résolvons I’équation (F) : tIn(t)y’ +y = 0 sur |0, +-o0.

1
— /777
Sur I =]0,1[ou 1,400, (E) &y = tnt?
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C’est une équation différentielle linéaire d’ordre 1 homogene.

Solution générale sur I, y(t) = i
n
Recherchons les solutions sur ]0, +00[.

Soit y : ]0,1[U]1, +o0o[ — R une solution sur |0, 1[ et ]1, +o0].
Il existe A\, \ € R tels que

A N
VEE]0,1[,y(t) = etV > 1 y(t) =

n " Int

Continuité en 1 :

+oo siN >0
Quandt — 17, y(t) — 0 siN=0.
—o0 siN <0
—00 SiA>0
Quandt — 17, y(t) — 0 siA=0
+o0o siA<O

Le prolongement par continuité en 1 n’est possible que si A = A’ = 0 et alors y(¢) = 0 sur ]0, +o0|.

Inversement, cette fonction est évidemment solution sur |0, +o00|
Solution générale sur |0, +o00[ : y(t) = 0.

W

-2-

Exemple Résolvons I’équation (E) : ty’ —y = t sur R.
1

Sur I =R ouR™, (E) &y = Tyt 1.

C’est une équation différentielle linéaire d’ordre 1.

Solution générale sur I, y(t) = t1n |t| + At avec A € R.

Recherchons les solutions sur R.

Soit 4 : R* — IR une fonction solution sur R™* et R™*.

Il existe A\, \' € R tels que

Vt > 0,y(t) =tlnt + X etVt < 0,y(t) = tln(—t) + \'t
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A quelle(s) condition(s) sur A et \’ peut-on prolonger y en 0 pour obtenir une solution sur R ?
Continuité en 0 :

Quand t — 0T, y(t) = tlnt + A\t — 0.

Quand t — 07, y(t) = tln|t] + Nt — 0.

On peut prolonger y par continuité en 0 par y(0) = 0 sans conditions sur \, \’.

Quandt — 07,4/ (t) = A+ 1+ Int — —oc0.

Le prolongement en 0 n’est pas étre dérivable en 0.

Il n’y a pas de solutions sur R & 1’équation (F)

ER\NN

24.3.3 Résolution de I’équation a(t)y” + b(t)y' + c(t)y = d(t)

La problématique est identique, cependant les raccords aux points oll a s’annule s’obtiennent en étudiant
la dérivabilité jusqu’a I’ordre 2.

Exemple Résolvons I’équation (E) : (t — 1)y” —ty' +y = Osur R.

Sur [ =]—o0,1[ou |1, +o0[ :

1 t / 1

(B) ey =5y + =7y =0
C’est une équation linéaire homogene d’ordre 2.
t + t et t — e’ sont solutions linéairement indépendantes donc forment un systéme fondamental de
solutions sur R.
La solution générale sur I est y(t) = At + pe’.
Notons que I’argument ne vaut pas sur I = R, car on ne sait pas a priori si I’espace des solutions de (F)
est de dimension 2.
Déterminons les solutions de (F) sur R :
Soity : R\ {1} — R une solution sur |—oo, 1[ et |1, +00].
1l existe A\, X', u, 1/ € R tels que

VE > 1,y(t) = Mt + pel et VE < 1,y(t) = Nt + pe’
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Continuité en 1 :

Quand t — 17, y(t) — A + pe.

Quand t — 17, y(t) = XN + e

On peut prolonger y en 1 si, et seulement si, A + pe = X + pe et alors y(1) = A + pe.
Dérivabilité en 1 :

Quand t — 17, 9/(t) = A + pe’ — X + pe donc y;(1) = X + pe

Quand ¢t — 17, ¢/(t) = X + p'e’ = X + pe donc y; (1) = X + pe

Le prolongement par continuité en 1 est dérivable et y' (1) = A + pe.

Dérivabilité & I'ordre 2 en 1 :

Quandt — 17, y"(t) = pe* — pe.

Quand t — 17, ¢"(t) = p'e’ = ye.

Le prolongement est dérivable a I’ordre 2 en 1 si, et seulement si, u = ' etalors A = \ et y” (1) = p.
Vérification de I’équation différentielle en 1 :

0y"(1) —y'(1) +y(1) = 0: ok

Finalement :

Solution générale de (F) sur R y(t) = M\t + pe’ avec A\, € R.

Remarque Comme pour les équations d’ordre 1 différents comportements sont possibles lors des
raccords.

Par exemple, pour 1’équation différentielle t2y” 4 ty’ — y = 0, la solution générale sur R™ ou sur R™*
esty(t) = At + u/t et la solution générale sur R est y(t) = At.
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Chapitre 25

Calcul différentiel

K désigne R ou C.

E, F,G et H désignent des R-espaces vectoriels de dimensions finies non nulles indifféremment normés.
On pose n = dim F et m = dim F

Q et £’ désignent des ouverts de E et F.

I désigne un intervalle ouvert de R.

25.1 Différentielle d’une fonction

25.1.1 Développement limité a I’ordre 1

Soit f: QCE — Fetacf)
Définition
On appelle développement limité & I’ordre 1 de f en a toute écriture :

fla+h) = fla) +£(h) + [[h]|e(h)

avec { € L(E,F)ete(h) — 0p quand h — Op
On dit alors que ¢ est application linéaire tangente a f en a.

Remarque On écrit souvent o(h) pour ||| e(h).

Exemple Pour f : (z,y) € R? — R un développement limité 4 I’ordre 1 en (0, 0) est de la forme
f(x,y) = f(0,0) + ax + by + o(z,y) quand (z,y) = (0,0)
Proposition

Il y a unicité de 1’application linéaire tangente décrivant un développement limité & 1’ordre 1
de fena.

dém. :
Supposons que ¢, m € L(E, F') conviennent.

L(h) —m(h) = o(h) = ||| e(h) avec e o OF
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Pour v € E, considérons h = A.v avec A — 0.
L(Av) —m(Av) = || Av] e(Aw)
donne
L(v) —m(v) = |lv] e(Av)

Quand A — 0T, on obtient £(v) — m(v) — O et donc ¢(v) = m(v) puis £ = m.
O

25.1.2 Différentiabilité en un point

Soitf:QCE — Fetac)
Définition
On dit que f est différentiable en a si f admet un développement limité & I’ordre 1 en a.
L’application linéaire tangente a f en a est aussi appelée différentielle de f en a et on la note
df(a). Ainsi :
fla+h) = f(a)+df(a) - h+o(h) quand h — O

avec df(a) € L(E, F).

Remarque On aici adopté la notation d’opérateur. Il faut comprendre
df(a) - h =[df(a)] (h)

Cette quantité se lit différentielle de f en a le long du vecteur h.

Théoreme
] Si f est différentiable en a alors f est continue en a.

dém. :
Par développement limité a 1’ordre 1

fla+h) = f(a)+df(a)-h+ ||h]e(h) avec e(h) —— O

h—)OE

L application linéaire df(a) étant continue puisqu’au départ d’un espace de dimension finie, on obtient

f(a+h)mf(a)+OF+OF:f(a)

O

Exemple Si f : £ — F est constante alors
Ya € E,df(a) =0
En effet, soit a € E. On peut écrire
fla+h) = f(a)

Quand h — Og, f(a+h) = f(a) + {(h) + o(h) avec £ = 0 linéaire
Ainsi, f est différentiable en a et df(a) = 0.
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Exemple Si f : E — F est linéaire alors
Va € E,df(a)=f
En effet, soit a € E. On peut écrire
fla+h) = f(a)+ f(h)

Quand h — Og, f(a+ h) = f(a) + £(h) + o(h) avec £ = f linéaire.
Ainsi f est différentiable en a et df(a) = f.

Exemple Soit f : M,,(R) — M,,(R) définie par f(M) = M? et A € M, (R).
Déterminons df (A).
f(A+ H)=(A+H)>=A>4+ AH + HA + H?

Ainsi quand H — O,
fA+ H)=(A+H)* = f(A)+((H) + o(H)

avec {(H) = AH + HA, l € L(M,,(R)),
donc f est différentiable en Aetdf(A) : H — AH + HA.

Exemple Soit f : C* — C définie par f(z) =1/zeta € C*.
Déterminons d f(a).

1 1 1

flath) a+h al+h/a

Or uanduGC%Oiflf +0(u)carif(17u)* v = 0(u?) = o(u)
q R b 1+u S l4u N '

Par suite
Quand h — 0:

1

fla+h) = o (1 +0(h)> = f(a) +£(h) + o(h)

avec £ : h +— —h/a? linéaire.
Ainsi f est différentiable en a et

Proposition

Soit f : I C R — Feta € I.On aéquivalence entre :
(i) f est dérivable en a;

(ii) f est différentiable en a.

De plus, on a alors

df(a) : hw h.f'(a) et f'(a) =df(a) 1
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dém. :
(i) = (ii) Supposons f dérivable en a.
Quand A — 0,

1

5 (flath)=fa) = f'(a)
donc )

W (f(a+h)— f(a)) = f'(a) + (h) avec e(h) — 0

puis

fla+h) = f(a) + h.f'(a) + he(h) = f(a) + £(h) 4 o(h)

avec £ : h— h.f'(a), £ € L(R, F).

Par suite f est différentiable en a et df(a) : h +— h.f'(a).
(i1) = (i) Supposons f différentiable en a.

Quand h — 0, f(a + h) = f(a) +df(a) - h+ o(h) donc

F(flath) = f(@)) = 3 (@f(@) b+ o(h) = df(@) - 1+ 0(1) > df(a)(1)

Ainsi f est dérivable en a et f'(a) = df(a) - 1.
O

25.1.3 Fonctions différentiables

Définition
Une fonction f : Q C E — F est dite différentiable si elle est différentiable en tout point
a € Q. Lapplication df : Q@ — L(E, F) est alors appelée différentielle de f.

Théoreme
] Les fonctions différentiables sont continues.

Exemple Pour f : I CR — F

f est différentiable si, et seulement si, f est dérivable

Exemple Si f: E'— [ est constante alors f est différentiable en touta € E et df (a) = 0.
Par suite f est différentiable et d f = 0.

Exemple Si f € L(FE, F) alors f est différentiable en touta € E et df(a) = f.
Par suite f est différentiable et df : a — f.

En identifiant constante et fonction égale a la constante, on écritdf = f.

En particulier

-(x1,...,2p) € KP — z; est différentiable ;

- 2 € C — Re(z),Im(2) sont différentiables ;

-A e M, ,(K) — a; ; est différentiable.
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25.1.4 Opérations

Théoreme
Soit f,g: QC E — FetAueR
Si f et g sont différentiables alors A\ f + pg ’est aussi et

d(Af + pg) = Adf + pdg

dém. :
Soita € U.
(Af +ng)(a+h) =Af(a+h)+ pgla+h)
donc
(Af+ng)la+h) =A(f(a) +df(a) h+|h]e(h) + pn(g(a) + dg(a) - b+ [|h]| E(h))
Par suite

(Af + pg)(a+h) = (\f + pg)(a) + £(h) + [[Al (e(h) + £(h))

avec £ = Adf(a) + pdg(a) € L(E, F)

Par suite Af + pg est différentiable en a et d(Af + pg)(a) = Mdf(a) + pdg(a).
O

Corollaire

L’ensemble des fonctions différentiables de 2 vers F' constitue une sous-espace vectoriel de
F(Q,F).

Théoréme
Soit f:QCFE—F,g:QCFE— Fetb: FFxG — H bilinéaire.
Si f et g sont différentiables alors b( f, g) I’est aussi et

d (b(f,9)) = b(df, ) +b(f,dg)

dém. :
Sf)ita eU.
b(f,9)(a+h)="0b(f(a+h),g(a+h))

donne

b(f(a),g9(a)) = b(f(a) +df(a)-h+|[hlle(h),g(a) +dg(a) - b+ [|h] £(h))
En développant

b(f,9)(a+h) =b(f,g)(a) +b(df(a)-h,g(a)) +b(f(a), dg(a) - h) + ¢ (h)

p(h) = b(f(a),||hl[&(h)) +b(df(a) - h, dg(a) - h) + ---

(ou les termes de - - - sont semblables ou pires. .. )
Les applications linéaires d f(a) et dg(a) sont continues et donc il existe k¢, k, € RT vérifiant

Vh e E,[|df(a) - bl < kg [l et [[dg(a) - bl < kg [|A]
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De plus, la forme bilinéaire b étant au départ d’un produit d’espace de dimension finie, elle est aussi
continue et il existe donc k& € R vérifiant

V(h, ') € E x F[|b(h, K)|| < k||| [ 7]]

On a alors ,
eI < K Lf (@) IR [IER)[ + kkskg [A]” + - - = o(h)

Ainsi
b(f.g)(a+ h) =b(f,g)(a) + £(h) + o(h)

avec { : h — b(df(a)- h,g(a)) +b(f(a),dg(a) - h) linéaire.
Ainsi b(f, g) est différentiable en a et

d(b(f,9)) (a) : h—b(df(a) - h,g(a)) +b(f(a),dg(a) - h)

Abusivement, on écrit

d(b(f,9)) (a) = b(df(a),g(a)) +b(f(a), dg(a))

puis
db(f,9) = b(df,g) + b(f,dg)
O
Corollaire
Si F est une algebre (par exemple F' = R, C, M,,(R),...) alors pour f, g : Q — F différen-
tiables, fg est différentiable et
d(fg) = (df)g + f(dg)
L’ensemble des fonctions différentiables de €2 vers F' constitue alors une sous-algebre de
F(Q,F).
dém. :
Lapplication b : F' x F — F définie par b(x, y) = xy est bilinéaire.
O

Remarque On peut aussi appliquer ce résultat a un produit scalaire, un produit extérieur,. . .

Exemple Les fonctions polynomiales sur R™ sont différentiables.

Exemple La fonction det : M,,(K) — K est différentiable car det est somme et produit de fonctions
différentiables.

Théoreme
Soit f: QC E — F.
On a équivalence entre :
(i) f est différentiable ;
(ii) les fonctions coordonnées de f dans une base de I’ le sont.
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dém. :
Soite’ = (e},...,el,) une base de F.

»Em

(1) = (ii) Si f est différentiable en a alors

fla+h) = f(a)+df(a)-h+||h]e(h) avec e(h) —— O

h—)OE
En notant :
- fi,..., fm les fonctions coordonnées de f dans la base ¢’ ;
-€1,...,Em les fonctions coordonnées de ¢ dans la base e ;

-(df(a))y,-.-.,(df(a)),, les fonctions coordonnées de d f(a) dans la base ¢’ ;
on obtient en passant aux coordonnées le développement limité précédent

VI<k<m, fila+h) = frla)+(df(a)), - h+ [kl ex(h)

avec (df(a)), linéaire et e, (h) —— OF.
h—)OE

(i1) = (i) C’est un raisonnement analogue en sens inverse.
O

Exemple La fonction f : R? — R? définie par f(z,y) = (z + y, zy) est différentiable.
En effet, ses fonctions coordonnées le sont.

Exemple La fonction M +— com(M) est différentiable.
En effet, les coefficients de com(M) sont des polyndmes en les coefficients de M donc des fonctions
différentiables.

25.1.5 Composition

Théoreme
Soit f:QCE— Fetg:Q CF — Gtelles que f(Q) C .
Si f et g sont différentiables alors g o f aussi et

Va € Q. d(go f)(a) = [dg(f(a))] o df(a)

dém. :
Soit a € §2. On peut écrire

fla+h) = f(a)+df(a) - h+ ||| e(h)avec e(h) —— OF

h—0g
Ainsi
fla+h) = f(a)+ h avec h’ =df(a) - h+ ||h| e(h)
Aussi
9(f(a) + 1) = g(f(a)) +dg(f(a)) - B + |W']| €' (R) avec £(R') ——— Op
puis

(go f)la+h)=g(f(a))+dg(f(a)) - (df(a)-h)+¢(h)

http://mp.cpgedupuydelome.fr 583 @O0



25.1. DIFFERENTIELLE D’UNE FONCTION

avec
p(h) = [Inl dg(f(a)) - e(h) + [|A"[ (A

P?}rL;:ontinuité dedf(a),onal|df(a) - h| < kg ||h] puis |2/|| < (k¢ + |e(R)]) ||| ce qui donne p(h) =
Ains.i

(go fla+h)=g(f(a))+ (dg(f(a)) o df(a))-h+ o(h)
avec dg(f(a)) odf(a) € L(E, H).

Finalement g o f est différentiable en a et

d(g e f)(a) = dg(f(a)) o df(a)

O

Exemple Les fonctions rationnelles sur R sont différentiables.
En effet, I’inverse d’une fonction polynomiale est différentiable par un argument de composition.

Exemple La fonction ® : R? — R? définie par ®(r,6) = (r cos 0, r sin ) est différentiable.
En effet, ses fonctions coordonnées le sont par un argument de composition.

Corollaire
Soit f: QCE —Retyp:I CR— Rtellesque f(2) C I
Si f est différentiable et  dérivable p(f) = ¢ o f I’est aussi

de(f) = ¢'(f).df

d(p o f)(a) = dg(f(a)) o df(a) or do(F(a)) : b > ' (f(a))-h done d( o f)(a) = ¢ (f(a)).df (a).

af

Ly, d(In f) = T

Exemple d(f") =nf""'df,d (Jlr) T

Corollaire
Soity: I CR— Eetf:QCE — Ftelles que y(I) C Q.
Si y est dérivable et f différentiable alors t — f(~y(t)) est dérivable et
(fon) () =df(v(t)-~'(t)

(F o) (t) = d(f o)1) - 1 = (AF(1(t)) 0 dy()) - 1 = df (v(£)'(t) car v/(t) = dr(t) - 1.
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Remarque L’application v se comprend comme le paramétrage d’un mobile inscrit évoluant dans E.
Si I’on comprend f comme une transformation géométrique, f o 7y est un paramétrage de I’arc
transformé. La formule de dérivation montre que le vecteur vitesse en un point de I’arc -y est transformé
par la différentielle a f en ce point pour former le vecteur vitesse a I’arc transformé.

PELLLITT o8 -
. s L
- ., o*

o
e,

0’0’ *, » /
0.’ ‘.‘ ‘.‘ t ..
. ’ df(y®) (fn) ®

y(@)

0
0 .
» .

.
EETTTTTT A

25.2 Dérivées partielles
La différentielle est une application compliquée. Par la notion de dérivée partielle, nous allons accéder

simplement a ses valeurs.
25.2.1 Dérivation selon un vecteur

Soit f : 2 C E — F eta € Q. Puisque 2 est ouvert, il existe a > 0 tel que B(a, ) C .
Pour v € F fixé, la fonction ¢t € R +— f(a + t.v) est définie au voisinage de 0, elle étudie les valeurs

prises par f sur la droite affine a + Vectv.

Définition
On dit que f est dérivable en a selon le vecteur v si la fonction ¢ — f(a + t.v) est dérivable en
0.
On pose alors
1
D, f(a) = lim = (f(a + t.v) — f(a))
t—0 ¢

appelé vecteur dérivé de f en a selon le vecteur v.
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Théoreme
Si f est différentiable en a alors f est dérivable en a selon tout vecteur v € E et

D, f(a) =df(a)-v

dém. :
Quand h — Og,

Fla+h) = f(a) +df(a) - b+ | e(h) avec (h) ——> O

h—)OE

Pour v € F fixé.
Quand t — 0,

fla+tw) = fla) +df(a)- (tv) + |t.v] e(tv) = f(a) +t.df(a) - h+ o(t)

car df(a) est linéaire.
Par suite

(fla+twv) = f(a)) = df(a)-v

~+ | =

O

Exemple Soit f : R? — R définie par f(z,y) = 23 /y poury # O et f(x,0) = 0.
Soit v = (v, v,) € R?. Etudions D, £(0, 0).

% (f((0,0) + tv) — £(0,0)) = %f(t.vx,t.vy)

Si vy # 0 alors
3,3

1 t2vy

Si v, = 0 alors

1
gf(t.vz,t.vy) =0——>0

t—0

Ainsi f est dérivable en (0, 0) selon tout vecteur v et D,, f(0,0) = 0.
Cependant f n’est pas continue en (0,0) (et a fortiori n’y est pas différentiable) car
f(1/n,1/n%) =1 — o1 £(0,0) alors (1/n,1/n*) — (0,0).

n—-—+0o0

25.2.2 Dérivées partielles

Choisissons arbitrairement une base e = (eq, ..., e,) de E.

Soit f: QCE — F.

Définition

Sous réserve d’existence, on appelle i-eme dérivé partiel de f (dans la base e¢) en a € € le
vecteur dérivé de f en a selon le vecteur e;. On note alors

0.f(a) = Dorf(a) = limy 7 (Fla+t.e0) = f(a)
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Exemple Calculons les dérivées partielles de f : R* — R définie par f(z1,z2) = 123 relatives a la
base canonique.

Notons ¢ = (c1, ¢2) la base canonique de R

Les dérivées partielles de f dans c en (1, z3) sont

O f(x1,22) = }g%% (flz1 +t,22) — fz1,32)) = 23

O f (w1, w2) = lim % (f(z1,22 +1t) — f(21,22)) = 27122

Définition
Sous réserve d’existence, I’application 0, f : 0 C E — F est appelée i-eme dérivée partielle
de f (dans la base €).
Théoréme
Si f:Q C EF — F est différentiable alors les dérivées partielles de f dans la base e =
(e1,...,en) existent et pour tout @ € 2 on a
9if(a) = df(a) - e;
De plus,
Vh=> hie; € E,df(a) -h=Dyf(a Zh Dif(a
i=1
dém. :

Si f est différentiable alors pour tout a € U et tout h € E, f est dérivable a selon le vecteur h et

D f(a) = df(a) - h

En particulier, pour h = e;,
8zf(a’) = Dei f(a’) = df(a) © €4
De plus, si hy = hy.eq + -+ - + hy.e, alors

df(a)-h=df(a (Zh ez> Zh df(a Zh 0if(a

car df(a) est une application linéaire.
(]

Corollaire
Le développement limité a I’ordre 1 de f en a s’écrit alors

fla+h)= +Zh .0;f(a) + o(h) quand h — O

Remarque Sous I’hypothese « f est différentiable en a » , les dérivées partielles permettent de calculer
la différentielle de f...Il reste a savoir calculer les dérivées partielles de f !
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25.2.3 Dérivées partielles d’une fonction de n variables réelles

Soit f : Q C R™ — F donnée par

frax=(z1,...,20) — f(x1,...,2p)

On étudie les dérivées partielles de f dans la base canonique e = (eq, ..., e,) de R™.

Théoréme
Sous réserve d’existence

dém. :
Sous réserve d’existence

9 f(a) = lim (

t—0

1(f(a+tel-) - f(a))) = lim <

; 1(f(al,...7ai—|—t,...,an)—f(ah...,an))

t

Ainsi 0; f(a) apparait comme la dérivée en x; = a; de I'application x; — f(a1,...,Zi ..., an).
O

Remarque Ainsi et de fagon synthétique

d
ai = PR o X y I
£@) = Jo (Flans i)
Définition
Sil’on a convenu de noter x1, . .., x, les éléments du n-uplet z, il est usuel de noter
of of
Ox,’ 7 Oz,

plutot que 01 f, . .., O f les dérivées partielles de f. Ainsi
af d

o, (T1,...,2n) = ar,

(F(r,za)) = fim 3 (F (o + teq) — F(2))

Exemple Calcul des dérivées partielles dans la base canonique de f : R® — R définie par
f(z,y,2) = 22 + zsin(zy).
Les dérivées partielles de f sont

%(m, Yy, z) = ddx (2 + zsin(zy)) = 2z + yz cos(zy),
?(z, Y, z) = ; (z° + zsin(zy)) = zz cos(zy) et

Y Y

0 d . .

a—‘Z(x7y, z) = P (2 + zsin(zy)) = sin(zy)
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Exemple Soit f : R* — R définie par
22—y
flay) =4 21,2 5 (z,y) # (0,0)
0 si (z,y) = (0,0)

Calcul des dérivées partielles dans la base canonique de f en (0, 0).

0 0
SL0.0) = lim § ((0) = F(0,0) = Tet 31(0,0) = limy 7 (F(0,8) = £(0,0)) = -1

25.2.4 Dérivées partielles d’une fonction d’une variable vectorielle

Soit f: QC E— Fete=(ey,...,e,)unebasede F.
Pour x € (), convenons de noter x1, ..., x, € R les coordonnées de = dans la base e. On a alors

f(z) = f(zier + -+ xney)

11 est alors usuel d’identifier la fonction f avec la fonction de n variables réelles donnée par

flxy, ... xn) = f(2)

Exemple Soit f : C — C. En munissant C de la base canonique (1, 7), on identifie f : z — f(z) avec la
fonction

fi(@,y) = flz+iy)

Exemple Soit f : M3(R) — R. En munissant M2 (RR) de sa base canonique, on identifie
f: M — f(M) avec I’application

f:(a,bm,d)ﬁf(ccl Z)

Théoreme
Sous réserve d’existence, les dérivées partielles dans la base e = (e1,...,e,) de f en a sont
alors données par
d

0 f(a)

(flar, ..., x4 .. ap))

dém. :

t

t—

0:f(a) = lim (1 (f(a+ tes) — f(a))) — lim (1 (F(a1s. - ras+1t,. . an) — flar,... ,an))

Ainsi 9; f (a) apparait comme la dérivée en z; = a; de I’application x; — f(a1,..., 2, ..., ay).
0
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Remarque Ainsi

d
0uf () = - (f(ar.- o))
Définition
Si I’on a convenu de noter x1, ..., x, les coordonnées de la variable x dans la base e, il est
0 0
usuel de noter —f, e / les dérivées partielles de f. Ainsi
81’1 8$n
d 1
@) = S (Flonse ) = i 7 (o ter) = 1(2)

Exemple Soit f : C* — C définie par f(z) = 1/=.
Calculons les dérivées partielles dans la base canonique de f en z = x + iy.

of . d /1y _d/ 1\ 1 1
&c(z)_dx(z>_dx<a:+iy>__(x+iy)2__22
of, . d [ 1\ _ i
m/(z)_m/(xﬂz/)__%

Exemple Soit f : My(R) — Mo (R) définie par f(M) = M?.

et

Calculons les dérivées partielles dans la base canonique de f en M = ( CCL Z > .
of _d o d [ a®+bc ab+bd\ [ 2a b of (¢ a+d
aa(M)da(M)da<ac+cd be+d> )\ ¢ 0 %(M)i 0 ¢ T

25.2.5 Matrice jacobienne

On suppose les espaces E et F' munis de bases e = (e1,...,e,) ete = (ef,...,el.).
Soit f : Q C F — F différentiable en a € ().
Définition

On appelle matrice jacobienne de f en a la matrice de 1’application linéaire d f (a) relative aux
bases e et ¢’
Jacf(a) =Mate,e(df(a)) € Mum,n(R)

Théoreme
En notant f1, ..., f,, les fonctions coordonnées de f alors
ofilz) - Onfilz)
Jacf(z) = (0i k(%)) 1<ramicicn = : :
O fm(x) - Onfm(x)
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dém. :
Les colonnes de la matrice Jac(f)(z) = Mat, o (df(x)) sont formées par les coordonnées dans ¢’ des
images des vecteurs de la base e. Or

d /

df(@)ei = 0if (x) = T (fi(@).€y + o+ fn(2).€}) = Y 0ifi(x).€}
! k=1

et I’on remplit la matrice jacobienne comme proposé.

]
Remarque SiI’on convient de noter x1, ..., x, les coordonnées de la variable x
9f1 of
o oz, @) Dz, (x)
saef(a) = (G0 -1 s
Ox; 1<k<m, 1<i<n 8fm( ) afm( )
[ m PR :I;
o1 Oy,

Remarque Pour une fonction f : Q@ C R" — R™, I’'usage veut que 1’on travaille relativement aux bases
canoniques pour définir la matrice jacobienne.

Exemple Soit f : R® — R? définie par flz,y,2) = ($2 + % + 22, J;yz)

20 2y 2z
yz T2 TY

Jacf(z,y,z) = (

Exemple Soit ® : R? — R? définie par ®(r,0) = (r cos, rsinf).

Jac®(r, 0) = ( cosf) —rsinf >

sinf rcos6

Remarque Cette matrice jacobienne caractérise la différentielle de f en a et donne ainsi acces au
développement limité a I’ordre 1 de f en a.

Exemple Pour I’application ® ci-dessus

O(r+1r,0+0") o 00) ®(r,0) + (cos(0)r’ — rsin(0)8, sin(0)r’ + rcos(0)8') + o(r’,8")
T>/7 ’ — s

et la relation revét méme une certaine élégance en écrivant dr, df au lieu de ', ¢’. ..
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25.2.6 Opération sur les dérivées partielles

On munit F d’une base e = (ey, ..., e,).

Théoreme
Soit f,g: QC E— FetAueR
Si f et g admettent des dérivées partielles alors A\ f + pg aussi et

Oi(Nf + pg) = A0 f + pdig

dém. :
Soitxz € E.Onécritx = x1.€1 + - - - + xp.€, et I’on comprend les fonctions f et g comme des fonctions
de n variables réelles. La dérivée partielle 0; f s’obtient par dérivation d’application partielle

d
azf(x) = dz; (f(xlv R :En))
et alors d
Oi( A f + pug)(x) = P A f(z1, .. xn) + pg(xr, ..., x0))

Par dérivation d’une fonction d’une variable réelle

Qi(Af + pg)(z) = A0 f(x) + p.0ig(x)

O

Remarque Dans le cas ol f et g sont différentiables, ce résultat se retrouve aussi par

d(Af + pg)(a) = Adf(a) + pdg(a)

Théoreme
Soitf: QCE—F,g:QCFE— Getb: Fx G — H bilinéaire.
Si f et g admettent des dérivées partielles alors b( f, g) aussi et

dém. :

Comme au-dessus par dérivation des applications partielles.

O

Théoreme

Soit f: QC E — F.

On a équivalence entre :

(1) f admet des dérivées partielles ;

(ii) les fonctions coordonnées de f admettent des dérivées partielles
De plus, on a alors

(azf)k =0, (fk)

O fr
8(Ei ’

en notant fj, et ( of

les fonctions coordonnées de f et
&ri k
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dém. :
Comme au-dessus par dérivation des applications partielles.
O

25.2.7 Dérivées partielles d’une fonction composée de fonctions différentiables

On suppose E et F munis de bases ¢ = (e1,...,e,) ete = (ef,...,el.).

Théoreme
Soit f: QCE— Fetg:Q CF — Gtelles que f(2) C €.
Si f et g sont différentiables alors les dérivées partielles de g o f sont données par

i ( Zafk )-Org(f(a))

dém. :
f et g sont différentiables donc g o f I’est aussi et

d(g o f)(a) = [dg(f(a))] o df(a)

Or
di(go f)(a) =d(go f)(a) e
donc
9i (9o f)(a) = [(dg)(f(a))] - 0if(a)
avec

a)=> 0ifs(a)-e
k=1

puis par linéarité
i (go f)(a) = difi(a).[(dg)(f(a))] - €
k=1

ce qui donne

;i ( Z i fr(a).Okg(f(a))
]
Remarque Sil’on convient de noter z, ..., z, les coordonnées d’un vecteur générique x € I et
Y1, - - -, Ym les coordonnées d’un vecteur générique y € F' la formule se réécrit
(g @fk
Z (f(a))
89:1 ﬁxl 3yk

Exemple Soity: I CR— Fetf:Q C FE — Ftellesque y(I) C Q.
On note z1, ..., Z, les coordonnées d’un vecteur générique « € E et on note encore x1, ..., T, les
fonctions coordonnées de  de sorte que

f(x) = f(xlw-wmn) et'Y(t) = xl(t)el + - aa(t)en
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et donc
fOr(@®) = f(@i(t), ..., zn(t))

Si f est différentiable et y dérivable alors ¢t — f(y(t)) est dérivable et

& @0, 2a0) = 40 L GO) -+ 2,02 (2(0)

Exemple Soit f : (z,y) € R? — f(z,y) € R différentiable
Calculons la dérivée de t € R ~ f(2t,1 +1?).

of
ox

4 (f2t,14+%)) =2—=(2t,1+ %) + thg

2,1+ t2
T (2t,1+17)

0
Attention : Ici, écrire a—{ n’aurait pas de sens.
Exemple Soit f : (u,v) € R? — f(u,v) € R différentiable.
Calculons la dérivée de t — f(cos(t), sin(t))

% (f(cos(t),sin(t))) = — sintg—z(cos t,sint) 4+ cost%(cos t,sint)

Exemple Soit f : (z,y) € R? = f(z,y) € Ret ® : (u,v) € R* = (p(u,v),(u,v)) € R?

différentiables.
Calculons ses dérivées partielles de g = f o @ : (u,v) = f (¢(u, v), ¥(u, v)).
9 () = S (7, 0), (0, 0))
= 52 w0 3 (ol o), 0) + G 0) 5 (), 0(,0)
9 (u,0) = - (F(plu, ), ()
= 220,02 (o), vl 0) + 2 (u,v)% (o1, v), (u, v))

. ., . 0 .
Attention : Ici, écrire a—f n’aurait pas de sens.
U

Exemple Soit f : (a,b) € R? — f(a,b) € R différentiable.
Calculons les dérivées partielles de g : (z,y) € R? — f(x +y, zy).
dg _of of

9 & Y) = 5@ty ay) +ygs (@ +y,ay),

Jg of of
ay(%y) 9g & Ty ay) +a g @ty 2y).
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Exemple Soit f : (z,9) € R — f(z,y) € R différentiable.
Calculons les dérivées partielles de g : (r,0) € R? — f(rcosf,rsinf).

%(r, 0) = cos 0%(r cosf,rsinf) + sin08—y(r cos @, rsinb),
%(r,@) = —rsinHZ—J;(r cosf,rsinf) + rcos@%(rcos@,rsin@).

Remarque Les résultats qui précédent se retiennent sous la forme de « la regle de la chaine » :

ﬂ(f( ))_%ﬁ .y Oz Of
By W \FL )] =g Oz, ou Oz,

25.3 Classe d’une fonction

25.3.1 Fonction de classe C!

Théoréme
Soit f : 2 C E — F'. On a équivalence entre :
(i) f est différentiable et d f est continue ;
(ii) les dérivées partielles de f dans une base de E existent et sont continues.

dém. :
(i) = (ii) Supposons f différentiable et d f continue.
Les dérivées partielles de f dans une base e = (eq, . . ., e,) existent et sont données par

9if(a) = df(a) -e;

Puisque I’application a — df(a) est continue, que I’application constante a — e; est continue et que
lapplication b : L(E,F) x E — F est bilinéaire, on peut affirmer que ’application a — 9; f(a) est
continue par opérations sur les fonctions continues.

(ii) = (i) Supposons f de classe C' dans labase e = (ey, ..., e,).

Casn =2

On identifie la fonction f avec I’application

[ i(wy,22) = f(w1,22) = f(rier + xe2)

En raisonnant moyennant les fonctions coordonnées dans une base de F’, on peut supposer F' = R.
Soit a = (a1, az) € €.
Quand h = (hy, he) — (0,0), écrivons

fla+h) = f(a)+€(h) + o(h)
On a
fla+h) = f(a) = flar + h1,a2 + ha) — f(a1,a2 + h2) + f(a1, a2 + h2) — f(a1,a2)

En appliquant le théoreme des accroissements finis aux applications 1 — f(z1,a2 + h2) et 22 —
f(ay,x2), il existe, d’une part, ¢, compris entre a; et a; + hy et, d’autre part, dj, compris entre as et
as + ho vérifiant :

fla+h) = f(a) = hl%(ch,GQ + ha) +h2%(aladh)
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Quand b — (0,0), (cn,a2 + h2) — (a1,a2) et (a1,dp) — (a1,a2) donc par continuité des dérivées
partielles de f, on obtient

fla+h) - f(a) = h%() 4 m%ml,@) + o(h)

Ainsi
fla+h) = f(a)+£L(h) + o(h)

avec ’application linéaire

. af o
?: (hl,hQ) — thm(a) + h287$2(a)

On en déduit que f est différentiable en a et

_of

T on

(a)h1 + ﬁ(a)hg

Vh e E,df(a)-h s

Considérons les applications py : (h1, ha) — hy et pa : (h1, ha) — ho. On peut écrire

df(a) = g—i(a).pl + %(a)pQ

Par opérations sur les fonctions continues, la différentielle d f apparait continue.

0 0 -
En effet, les applications a +— 8—f(a), a a—f(a) sont continues, les applications a — p; et a — py
X1 i)

sont continues car constantes et enfin 1’application produit extérieur est bilinéaire.

O

Définition
On dit qu’une fonction f : Q C E — F est de classe C' si ses dérivées partielles de f dans
une base existent et sont continues.

Remarque La notion ne dépend pas du choix de la base utilisée.

Proposition
Les fonctions de classe C* sont continues.

dém. :
Car différentiables.
O

Exemple Les fonctions constantes sont de classe C'.
En effet leurs dérivées partielles sont nulles donc continues.

Exemple Les applications linéaires sont de classe C'.
En effet, pour f € L(FE, F), les dérivées partielles de f dans e = (eq, ..., e,) sont les applications
données par

9if(a) = df(a) - e; = f(ei)
Ce sont des applications constantes donc continues.
En particulier, les applications (1, ...,z,) € RP +— z;, 2z € C +— Re(z),Im(z) et
A € My, ,(R) +— a; j sont de classe C*.
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25.3.2 Formule d’intégration

Théoréme
Soit f : @ C E — F une application de classe C.
Siy :[0,1] — F estun arc de classe C* inscrit dans  d’extrémités a = v(0) et b = (1)
alors

1
F(b) — fla) = / Af(4(1) -/ () dt

0

dém. :
Soit ¢ : [0,1] — F définie par o(t) = f(y(t)).
Par composition la fonction ¢ est dérivable

gr @(1) = f(b), p(0) = fa) et ' (t) = df(v(t)) - 7' (t).

Exemple Si [a,b] C Q alors

1)~ f0) = [ afta+to—a)- b

En effet, y(t) = a + t.(b — a) définit un paramétrage de classe C' du segment [a, b].

Corollaire
Si € est un ouvert connexe par arcs et si f : @ C E — F est de classe C* alors

f est constante si, et seulement si, df = 0

dém. :
Le sens direct est déja connu. Supposons maintenant d f = 0.
Cas () convexe : Par I’exemple ci-dessus, on obtient

Va,b € Q, f(b) = f(a)

Cas général : C’est plus technique, contentons-nous de quelques idées. . . Par I’étude précédente, on peut
affirmer que f est localement constante i.e.

Va € Q,3a > 0,Vx € B(a,a), f(x) = f(a)

Pour a,b € , il existe v : [0,1] — E chemin inscrit dans © d’extrémités y(0) = a et y(1) = b. On
montre alors
sup {t € [0,1] /¥s € [0,¢], f(7(t)) = f(a)} =1
ce qui fournit f(b) = f(a).
O
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25.3.3 Dérivées partielles successives

Définition
Soit f : Q2 C E — F et eune base de F.
La fonction f est appelée dérivée partielle d’ordre O de f.
Pour k € N, sous réserve d’existence, on appelle dérivées partielles d’ordre k& + 1 de f les
dérivées partielles des dérivées partielles d’ordre k de f.

Remarque Sil’on note x4, ..., x, les coordonnées dans la base e de la variable x, on note

Ok f

O, (oo (05, ) -+ 2)

Exemple Calculons les dérivée partielles d’ordre 1 et 2 de f : R? — R définie par f(z,y) = ze*¥.
Les dérivées partielles d’ordre 1 de f sont

ﬁ — Y ﬁ — 2Ty
am(x7y)*(l+xy)e et ay(l’7y)*x €

Les dérivées partielles d’ordre 2 de f sont

0 f o ay OO 2\ ey

0z2 (@) = 2y + ay)e * Dyoz (z,y) = (2z + z7y)e
0 f 2 ey O .
3x8y($’y) = (22 +27y)e", Tyg(%y) =z"e

25.3.4 Classe d’une fonction

Définition
On dit que f : Q@ C F — F est de classe C" si ses dérivées partielles d’ordre k existent et sont
continues.
On dit que f est de classe C* si f est de classe C* pour tout k € N.

Remarque On peut montrer que cette notion de dépend pas du choix de la base utilisée pour définir les
dérivées partielles.

Exemple Les applications de classe C° correspondent aux applications continues.

Exemple Les applications constantes sont de classe C™.

Exemple Les application linéaires sont de classe C*.
Leur dérivées partielles sont constantes puisque pour une application linéaire f,

9;f(a) =df(a)-e; = f(e;)
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Remarque En particulier, les fonctions (z1, ..., x,) — x;, z — Re(z),Im(z) et A — a; ; sont de
classe C*.

Proposition
’ Sif:QCE — Festdeclasse C*"! alors f est de classe C*.

dém. :

Si f est de classe
continues.

O

CH*1 alors les dérivées partielles d’ordre k de f existent et sont de classe C' donc

25.3.5 Opérations
Soit k € NU {oo}.

Théoreme
Soit f,g: QC E — FetAueR
Si f et g sont de classe C* alors Af + g I’est aussi.

dém. :
Par récurrence pour k£ € N.
Pour £k =0: ok

Supposons la propriété établie au rang k& > 0.
Soit f et g de classe C* 1.
f et g sont de classe C! donc f et g sont différentiables. La fonction \f + jug 1’est alors aussi et

Oi(Mf + pg) = XOi f + ;g

Puisque ; f et ;g sont de classe C*, on obtient d;(Af 4 pg) de classe C* en vertu de I’hypothese de
récurrence.

Ainsi, les dérivées partielles de \f + g existent et sont de classe C*.

Or les dérivées partielles de d’ordre k£ des dérivées partielles de Af + ug sont les dérivées partielles
d’ordre k + 1 de A\f + j1g. On peut alors conclure que A\ f + g est de classe CFF1.

Récurrence établie.

Pour k& = oo.

Si f et g sont de classe C™ alors f et ¢ sont de classe C* pour tout k& € N et donc Af + g aussi.

|

Corollaire
L’ensemble C*(Q, F) des fonctions de classe C* de 2 vers F est un sous-espace vectoriel de
F(Q,F).
Théoréme
Soit f: QCFE—>F,g:QCFE—Getb: FxG— H bilinéaire.
Si f et g sont de classe C* alors b(f, g) I'est aussi.

dém. :
Le protocole démonstratif est similaire au précédent. On y exploite la formule

0; (b(f,9)) = 0(0if,9) +b(f,Dig)

O
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Corollaire

Si F est une algébre (par ex : ' = R, C ou M,,(K)) alors C*(£2, F) est une sous-algébre de
F(Q,F).

Exemple Les fonctions polynomiales sur R? sont de classe C°.

Exemple L application det : M,,(K) — K est de classe C* par somme et produit de fonctions C*°.

Théoreme
Soit f : 2 C E — F'. On a équivalence entre :
(i) f est de classe ck,
(ii) les fonctions coordonnées de f dans une base de I sont de classe ck.

Exemple L’application f : (z,y) — (2 + y*, 2y) est de classe C*

Théoreme
Soit f: QCE— Fetg:Q CF — G telles que f(2) C Q.
Si f et g sont de classe C* alors g o f Iest aussi.

dém. :
Via la formule calculant les dérivées partielles d’une fonction composée.
O

Exemple ®(r,6) = (rcosf,rsin ) définit une fonction C* de R? vers R?.

25.3.6 Théoreme de Schwarz

Théoreme
Sif:QC E — F estde classe C? alors pour tout i, j € {1,...,n},
0% f o’ f

8Iia$j - 81‘]'81‘1‘

Exemple Soit f : (z,y) — f(x,y) de classe C2.
Calculons les dérivées partielles d’ordre 2 de g : (u,v) — f(u + v, uv).
Les dérivées partielles d’ordre 1 de g sont

99 vy = 1 of 9% 0f of
%(u,v) = 8gc(u—l—v,uv) +v8y(u+v,uv), (%(u,v) aﬂj(u—{—v uv) —i—uay(u—i—v,uv)
Les dérivées partielles d’ordre 2 de g sont
a—Qg(u v) = 2f(u—|—v uv) + 2v 0°f (u + v, uv) + v* ﬁ(u—i—v uv),
ou?’ Ox2 Oxdy ’ Oy?
&g o*f o*f o*f of
(‘9u8@(u v) = o -5 (u+v,uv) + (u—!—v)axay(u—&—v , UV) —I—uvﬁ( u+ v, uv) + a—y(u—i—v,uv),
&g o*f 0% f 0% f
w(u,v) o a5 (u+v, uv)+2uaxay(u+v,uv)+u ﬁ(u—i—v uv).
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Exemple Considérons la fonction

ry(z? — y?)

f(il?»y) = (x2 + y2)2 si (l‘,y) 7& (05 O)
0

sinon

Vérifions que f n’est pas de classe C.
Pour (z,y) # (0,0)

of _ y(daPy? —at +yt)
%(I,y) - (1}2 +y2)2
et
95 (0:0) = Jim <t> =0

. . 0 :
De plus, en passant en polaires, on vérifie que or est continue en (0, 0).

Ox
On mene une étude semblable pour g avec
Y
of r(4x?y? — ot + )
7(,@7 y) =
oy CERTE

On en déduit que f est de classe C.
Cependant

O*f .. 1/[of of B O*f B
500 =tin (o0 - Fo.0) =t 0.0 -

La fonction f n’est donc pas de classe C2.

25.4 Fonctions numériques

Ici les fonctions étudiées sont supposées a valeurs réelles.

25.4.1 Surface représentant une fonction de deux variables réelles

Soit f : © € R? — R vue en les deux variables z et y.
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Définition
On appelle surface représentative de f 1’ensemble formé des (x, 7, z) € R? vérifiant I’équation
Ef 2= f($> y)
; z=f(z.y)
A
o) LY
Q
x
Définition
Si f est différentiable en (z(, yo), le plan d’équation cartésienne
0 0
z= é(an Yo)( — o) + 875(170’ Y0)(y — yo) + f(z0,y0)
est appelé plan tangent a Xy au point (g, Yo, 20).

Exemple Considérons la surface z = 22 + 2y°.
Une équation du plan tangent en (z, yo, 20) est

z = 2xo(z — 20) +4y0(y — Yo) + 20
et puisque zg = x% + 2y§, on peut simplifier

z = 2x0x + Yoy — 20

Rappel :

Soit a un élément d’une partie X d’un espace vectoriel réel .

On dit qu’un vecteur v de E est tangent & X en a, s’il existe € > 0 et un arc -y défini sur |—¢, €[ inscrit
dans a vérifiant

7(0) =aety'(0) =v
Lorsque le vecteur v est non nul, on dit que la droite

a + Vectv

est tangente a X en a.

Théoreme
Si f est différentiable en (z¢,yo) alors les tangentes & X au point (x¢, yo, 2o) sont toutes
incluses dans le plan tangent a X ¢ en (o, Yo, 20).
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dém. :
Soit 7" une tangente 2 X en (0, Yo, 20). Il existe v € R® non nul et un arc v : t — (z(t),y(t), 2(t))
défini sur |—e, €[ inscrit dans X vérifiant

7(0) = (20, %0, 20) et ¥'(0) = v = (2'(0),'(0),2'(0))

Puisque z(t) = f(x(t), y(t)), on obtient par dérivation en O

0 0
(0) = /O 2 (a0.0) +/ 05 (20,0
Les éléments de la droite 7" sont alors de coordonnées

x =z + Az’ (0)

y=1yo +y'(0)

2z =29+ A2’ (0)
vérifiant I’équation du plan proposée.

|

Remarque On peut aussi montrer que le plan tangent est exactement la réunion des droites tangentes a
Xy en (2o, Yo, 20)-

25.4.2 Gradient

On suppose que E est un espace vectoriel euclidien dont on note (. | . ) le produit scalaire.
25.4.2.1 Définition

On suppose que F est un espace vectoriel euclidien dont on note (. | .) le produit scalaire.
Rappel :
Le théoréeme de représentation des formes linéaires dans un espace euclidien fournit

Vo € EX, 3w € E.Vz € E,¢o(x) = (u | x)

Théoréme
Si f: Q0 C E — R estune application différentiable alors pour tout a € 2, il existe un unique
vecteur de F noté V f(a) vérifiant

Vv e E,D,f(a) = (Vf(a) |v)
Ce vecteur est appelé gradient de f en q, il est déterminé par

Vf(a) =01f(a)er + -+ Onf(a)e,

des que (eq, . .., e,) désigne une base orthonormée de FE.

dém. :
Soit a € €. f est différentiable en a et

Vh e E,Dpf(a) =df(a)-h
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Puisque I’application d f(a) est une forme linéaire sur F, il existe un unique vecteur V f(a) € E vérifiant

Vh e B,df(a)-h = (Vf(a) | b)

ie.
Vh e E,Dnf(a) = (Vf(a) | h)
De plus, si (e, . .., e,) est une base orthonormée
Vf(a) = Z (Vf(a)|e)e = ZDif(a)-ei
i=1 i=1
O
Corollaire

Le développement limité a I’ordre 1 de f en a s’écrit alors

fla+h)=f(a)+ (Vf(a)|h)+ o(h) quand h — O

Exemple Soit f : R? — R définie par f(z,y) = x2 + 2zy. f est différentiable.
En munissant R? de sa structure euclidienne canonique et en considérant (ey, e5) sa base canonique

= 6—(@)61 + %(a)ez = (gﬁ(a), f;‘:];(a))

Ainsi
Vf(z,y) = (2z + 2y, 2z)

25.4.2.2 Interprétation

Pour v un vecteur unitaire )

D, f(@) = lm 7 (f(a+tv) = f(a))
Cette quantité se comprend comme étant la pente de f dans la direction donnée par le vecteur v.
A
pente =D, f(a)

.

|

v

v
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Puisque
Dy f(a) = (Vf(a) | v) = [[Vf(a)|l|[v]| cos b avec 6 € [0, 7]

cette pente est maximale quand v a le sens et la direction de V f(a).
Ainsi, lorsqu’il n’est pas nul, le vecteur V f (a) indique la direction de la plus grande pente, son sens donne
le sens de progression croissante sur cette pente et ||V f(a)|| donne la valeur de cette pente extréme.

z
A
z=f(z,y)
P .
= J@ 5 5 >y
i/ Vfa)
a |
x
25.4.2.3 Ligne de niveau
Définition
Soit \ € Ret f: Q2 C E — R. Lensemble X, formé des = € 2 vérifiant
fl@) = A

est appelé ligne de niveau A € R de f.

2 4
Exemple Pour f(z,y) =e % 7Y
On obtient la surface représentative
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{7
ﬁ:f}'"o%“‘\\
\\

R,
'4:.,:: I
£

\"ﬁ\““u .
“‘ \\ N,
T
‘ %
Svirtan
o
L
<
< >

s
‘ S
(et
2% “12.*:1:;2:4
_“

O
Wi l“‘ \
)

3’ ““\\ ){:““‘ ::‘*:...

et les lignes de niveau suivantes

Exemple En électrostatique, le champ électrique est perpendiculaire aux équipotentielles. . .

Théoréme
Les vecteurs tangents au point x d’une ligne de niveau d’une fonction f : @ C EF — R
différentiable sont orthogonaux au gradient de f en x.

dém. :
On introduit (eq, . . ., e,,) une base orthonormée de F. On sait
Vf(a) = e
fa=3 gl e

Soit v un vecteur tangent au point x d’une ligne de niveau X de f. Il existe un arc y : ¢ — (t) défini sur
|—€, €] inscrit dans X vérifiant

7(0) =z ety'(0) = v

En notant 21 (t), . .., z, () les coordonnées de ~(t), on a

v=7'(0) = 27(0).e1 + -+ 2.,(0).e,
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Puisque +y inscrit dans X, la fonction ¢t — f(y(t)) = f(z1(¢),...,x,(t)) est constante. Par dérivation de
fonctions composées en 0, on obtient
of of
= ! —_— ... ! —
et donc
(Vf(a)[v) =0
O

25.4.3 Recherche d’extremum
25.4.3.1 Point critique
Définition
Soit f: X C E — R.
On dit que f admet un minimum (global) en a € A si
Ve € X, f(z) = f(a)

On dit que f admet un minimum local en en a € A si

Jda > 0,Vz € X N B(a, ), f(x) = f(a)

Remarque Les extremums globaux sont a fortiori des extremums locaux.

Définition
On dit qu’une application f : & C £ — R différentiable admet un point critique en a € 2 si
df(a) =0.

Proposition

Soite = (eq,...,e,) une basede F, f : Q C E — R différentiable et a € Q.
On a équivalence entre :
(i) a est point critique de f ;

(i) Vvie{l,...,n},0;f(a) =0.

dém. :

(i) = (i) via 9; f(a) = df(a) - e;.

(ii) = (i) via pour tout h = hyey + -+ + hnen € E, df(a)h =Y hi; f(a).
i=1

O

Remarque Les points critiques correspondent aux points otl le vecteur gradient est nul.

Théoreme
Si f: Q C E — R différentiable admet un extremum local en a € 2 alors a est point critique
de f.

http://mp.cpgedupuydelome.fr 607 @O0



25.4. FONCTIONS NUMERIQUES

dém. :
Cas ¢ minimum local :
Il existe o > 0 tel que B(a,a) C U et

Vz € B(a, ), f(x) > f(a)

Pour tout v € F,

Af(a) -v =Dy f(a) = lim < (F(a-+ t0) ~ f(a))

"y
Quandt — 07,
Pour ¢ suffisamment proche de 0, a + t.v € B(a,a) et (f(a+t.v) — f(a))/t > 0 donc a la limite
df(a)-v>=0.
Quandt — 07,

On obtient de fagon semblable df(a) - v < 0.
Ainsi df(a)-v =0 pourtoutv € E.
O

Attention : La réciproque n’est pas vraie.

Attention : Ce résultat ne s’applique qu’a une fonction différentiable définie sur un ouvert.

25.4.3.2 En pratique

Protocole :

Pour étudier les extremums locaux de f : 2 C E — R différentiable :
- on recherche les points critiques ;

- on étudie chacun en se ramenant en O par translation si besoin.

Exemple Extremums de f : R* — R définie par f(x,y) = 2% + > + zy + 1.
f est différentiable sur 1’ouvert R?.
Points critiques :

ﬁ(96731) = 2x+yet%£(r,y) =2y +u.

ox

20 +y =0 z=0

=

r+2y=0 y=0
(0,0) est seul point critique.
Etude de (0,0).
£(0,0) = 1, étudions le signe de g(z,y) = f(z,y) — f(0,0) = 2? +y* + xy.
En écrivant 2 = rcosf ety = rsinf, g(x,y) = r*(1 + cosfsin ) > 0.
(0,0) est un minimum global.

Exemple Extremums de f : R? — R définie par f(z,y) = 2 + y* + 4oy — 1.
f est différentiable sur I’ouvert R?.
Points critiques :
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Lo =2t w. Sy =2+ an

de+y=0 z=0

=

r+4y =0 y=20
(0, 0) est seul point critique.
Etude de (0, 0).
£(0,0) = —1. Etudions le signe de g(x,y) = f(z,y) — £(0,0) = 2 + y* + 4ay.
En écrivant 2 = rcosf et y = rsinf, g(x,y) = r*(1 + 4 cosfsin ) = (1 + 2sin 20) qui change de

signe.
Concretement :

1 1
gl —, 0) = — > 0 donc (0, 0) n’est pas un maximum local,
n n

11 2
g (—, ) = ——; < 0donc (0,0) n’est pas un maximum local.
n’'n n

Exemple Extremums de f : R? — R définie par f(z,y) = 2° + > — 3zy.
f est différentiable sur I’ouvert R
Points critiques :

of _ a2 _q Of a2
o (z,y) = 32~ — 3y, 9y (z,y) =3y~ — 3z.

32° — 3y =0 =y y = a? y = 2?
9 = 9 <~ 4 =
3y —3x =0 Yy ==z == r=0oul
(0,0), (1,1) seuls points critiques

Etude en (0,0) :

g(x,y) = f(a,y) — £(0,0) = 2® +y* — 3ay.
1 1 1 1

g (,O) =—>0ety (—, O) = —— < 0donc (0,0) n’est pas extremum local.
n n n n

Etudeen (1,1):
g9(x,y) = f(z,y) — f(1,1) = 2® +y* — 3wy + 1.

r=14u
y=1+v

u = 7 cos b
v =rsinf

3
g(z,y) =72 (3— isin29+rcos‘°’0+rsin39 .

g(z,y) = 3u® + 30> — 3uv + u® + v>.

Quand (z,y) — (1,1), on a (u,v) — (0,0) donc r — O puis
3 3 3
3 - isin29+rcos39+rsin39 =3- isin29—|—o(1) > 3 +o(1) > 0.

(1, 1) est un minimum local.
Cependant f(t,0) = t* ™ donc f n’est pas minorée et donc (1, 1) n’est pas un minimum
——00

global.
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25.4.3.3 Calcul d’inf et de sup

Soit I, J des intervalles non vides de R.

Remarque Pour ¢ : I — R, le calcul de %ng ©(t) est facile en dressant un tableau de variation.
€

Proposition
Si f: I x J — R est minorée alors

inf  f(z,y) = inf <inf (ac,y))

(z,y)eIxJ zel \yeJ

dém. :

Posonsm = inf  f(z,y).
(z,y)€IXJ

Pourtoutz € Tety € J,m < f(x,y) donc m < igf]f(x,y) puis
y

m < inf (inf f(:ay))

zel \yeJ

Inversement, pour zo € I etyg € J,

inf f(xo,y) < f(zo,%0)

yeJ
or
inf ( inf < inf ,
inf (;relJ (fc,y)> inf f(z0,y)
donc

2t () s

Par suite inf (inf Sz, y)) minore f et donc
zel \yeJ

inf (inf (x,y)) <m

xzel \yeJ

Finalement

inf (inf (x,y)) =m

xzel \yeJ
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\ T = Clz:

ligne des minima & z = C*

O

Exemple Calculons

1
M = 1nf (m—l—y—i—)
>0 Ty

M:infm(m)avecm():mf(p() Uo(y) =c+y+1/zy.

Apres étude des variations de ¢ m(z) = ¢ (1/ ) =z +2/Vr.
Apres étude des variations de m, M m( )=

25.4.3.4 Borne d’une fonction continue sur un compact
Exemple Calculons

M= sup zy(l—z—y)avecT = {(z,y) € R*/z,y > 0,2 +y <1}
(z,y)eT

La partie T est compacte et non vide et la fonction f : (x,y) — zy(1 — x — y) est continue sur 7" donc
f admet un maximumen a € T et M = f(a).

Puisque la fonction f est nulle sur le bord de T strictement positive sur I’intérieur de 7" on peut affirmer
que a appartient a I’ouvert U = T°. Or f est différentiable sur I’ouvert U donc a est point critique de f.

http://mp.cpgedupuydelome.fr 611 @O0



25.4. FONCTIONS NUMERIQUES

of
b ay

{y(l—2x—y)=0@{2x+y=1@{le/?)

z(1—-2y—2)=0 r+2y=1 y=1/3

(z,y) =y(1 -2z —y)

% (z,y) =2(1 -2y — ),

carz,y # Opoura € U.
Finalement

M:f(1/371/3):2i7

Remarque Cette borne supérieure peut aussi étre déterminée en exploitant

M= sup sup ay(l—2z—y)
z€[0,1] y€[0,1—x]

25.4.4 Equations aux dérivées partielles

I et J désignent des intervalles de R ouverts et non vides.
25.4.4.1 Equation aux dérivées partielles d’ordre 1

Définition

Résoudre sur {2 une équation aux dérivées partielles d’ordre 1 en la fonction inconnue f, c’est
déterminer toutes les fonctions f : © — R de classe C! vérifiant une relation donnée engageant
f et/ou ses dérivées partielles.

Proposition
Les solutions sur I x J de I’équation

g%(xay> =0

sont les fonctions
[ (z,y)— C(y) avec C € C*(R,R)

dém. :

Soit f : I x J — R de classe C' solution de 1’équation aux dérivées partielles
of
- =0
5 (& Y)

9]
Soit y € J fixé. L’application partielle x — f(x,y) a pour dérivée a—f(x, Y).
x
L application partielle z — f(x,y) est donc de dérivée nulle sur I'intervalle I, ¢’est donc une fonction
constante. Ainsi, il existe C,, € R telle que

Ve el, f(z,y) = Cy
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Considérons alors C' : J — R définie par C'(y) = C.
On définit ainsi une application C : J — R vérifiant

V(w,y) € I x J, f(x,y) = C(y)

Soit z € I fixé. La composition y — (20,%) — f(x0,y) est de classe C*, donc C' est une fonction C.
Résumons :

0
Si f est solution sur I x J de I’équation 8—f(x7 y) = 0 alors il existe C' : J — R de classe C* vérifiant
x

V(w,y) € I x J, f(x,y) = C(y)

Inversement, les fonctions proposées sont évidemment solutions.

O

Exemple Résolvons sur R? I’équation aux dérivées partielles
Y () =
ax 9 y - y

En intégrant par rapport a

1 1
flz,y) = §$2y+0(y) avec C' : RER

Exemple Résolvons sur R® I’équation aux dérivées partielles

af B
%(‘/L’a?%Z) —$y+Z

En intégrant par rapport a

1 1
flz,y) = §x2y+0(y) avec C:RZSR

0
Exemple Résolvons sur R? I’équation aux dérivées partielles a—f(x, y) =xf(x,y)
Y
Soit f : R? — R de classe C* solution.
0
Pour x € R fixé, I’application partielle y — f(x,y) a pour dérivée a—f (z,9).
)
L’application partielle y — f(x,y) est donc solution de I’équation différentielle
2 (y) = 22(y)

dont la solution générale est de la forme
+(y) = Ce™

Par suite, il existe une constante C'(x) € R telle que
V(z,y) € R, f(z,y) = Cla)e™

C:x+ (2,0) > f(x,0) estde classe C' par composition.
Inversement, de telle fonctions sont solutions.
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Exemple Résolvons sur R? I’équation

(B): 25, (@) = G (@) =0

U=x+y
v=ux+ 2y
Commencons par étudier le changement de variables de sorte d’exprimer les anciennes variables en

fonction des nouvelles variables :
u=x+y r=2u—v
<
v=2x+2y Yy=0v—-1u

L application ® : (u,v) — (2u — v, v — u) traduit le changement de variable.
® est une bijection de classe C* de R? vers R?,
Soit f : R? — R de classe C' et g : R? — R définie par « g(u,v) = f(z,y) » i.e.

via le changement de variables

g: (u,v) = f(2u —v,v —u)

g = fo®estdeclasse C'.

0 0 0 0 0
a—z(um) = 28—£(2u —v,0—u) — 6—5(2u —v,v—u)= 2%(3@@) - %(m,y) s
Yy=v—u
f est solution sur R? de 1’équation aux dérivées partielles proposée
of of
R?, 2= - = =
Vi y) eR% 250 (x,9) = 5 (@y) =0,

& Y(u,v) € R?, %(u,v) =0

(=) immédiat et (<) car ® est surjective.

<30 : RQR,V(U,U) € R? g(u,v) = C(v),
=30 ROR,V(z, y) € R, f(z,y) = C(z + 2y).

(=)car f=god let(e)carg=fod
Finalement la solution générale de (E) est f(z,y) = C(z + 2y) avec C : R — R de classe C.

Exemple Résolvons sur R?\ {(0,0)} I’équation aux dérivées partielles

0 7]
(B): a5t 0.9) ~ v (.0) =0

x =rcost
y=rsinf
Puisqu’on se limite a (z,y) € R?\ {(0,0)}, on peut se contenter de r € R™ auquel cas r = /a2 + y2.

En revanche on ne peut pas exprimer ¢ mais au final ce ne sera pas utile.
Soit & : RT™ x R — R?\ {(0,0)} définie par ®(r, ) — (rcos@,rsinh).

en passant en coordonnées polaires.
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® est une surjection de classe C* de R™ x R sur R\ {(0,0)}.
Soit f : R?\ {(0,0)} — R de classe C' et g : R™ x R — R définie de sorte que « g(r,0) = f(z,y) »
ie.

g(r,0) = f(rcos,rsinb)

g = f o ® estde classe cl.

99 o ,of . of .
%(rﬁ) = rsm@ax(rcosé,rst) —|—rcos€)8y(r(3089,rsm0)
of of
—y%(x,y)ﬂgy(ﬂ:,y) R

y=rsin 6

f est solution sur R?\ {(0,0)} de I’équation aux dérivées partielles proposée E
G, 13}
& (o) € B {(0.0)) 25 (29) 5 (w0) =0

& VY(r,0) € R™ x R, %(r, 0)=0
(=) immédiat et («<=) car ® est surjective.
1
&30 : R SRV 0) € RY xR, g(r,0) = C(r),
1
&30 R SR, V(2,y) € R2\{(0,0)}, f(z,y) = C(V/22 + 1),
(<) carg = f o ® et (=) car D est surjective et D(r,0) = (z,y) = r = /22 + 3.
=30 RMSR V(z,y) € R\ {(0,0)}, f(x y) = C(z* + ).
(=)viaC = Co,/ et(e=)vial = Co?
Finalement, la solution générale sur R?\ {(O 0)} de I’équation aux dérivées partielles (E) est

f(z,y) = C(z* + y?) avec C : RS R

25.4.4.2 Equations aux dérivées partielles d’ordre 2

Définition
Résoudre sur €2 une équation aux dérivées partielles d’ordre 2 en la fonction inconnue f, c’est
déterminer toutes les fonctions f : © — R de classe C? vérifiant une relation donnée engageant
f et/ou ses dérivées partielles d’ordre 1 et 2.

Exemple L’équation de la chaleur

o*f

S t) = Doy

(z,t)avec D >0

Lorsque des conditions aux limites sont imposées, on peut avancer dans sa résolution par une
décomposition en séries de fonctions.

Exemple L’équation de propagation des ondes

0?f

1 9%
922t~ G @

(z,t) =0

On procede a sa résolution par changement de variables (voir plus bas).
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Proposition
La solution générale sur I x J de I’équation aux dérivées partielles

*f
@(% y) =0
est )
fi(z,y) = 2C(y) + D(y) avec C, D : JSR
Proposition

La solution générale sur R? de I’équation aux dérivées partielles

0*f
0zxdy

(z,y) =0

est

fi(z,y) = C(x)+ D(y) avec C: IS RetD: JSR

Exemple Soit c > 0.
Résolvons sur R? I’équation
)

1 0%f

u=x-+ct
v=x—ct

{u:x—kct@{x:(u—i—v)/Z

v=x—ct t=(u—v)/2¢

(E)

via le changement de variables :

On a

L application @ : (u,v) — ((u 4 v)/2, (u — v)/2¢) est une bijection de classe C? de R? vers R

Soit f : R? — R de classe C? et g : R? — R définie par « g(u,v) = f(z,t) » i.e.

u+v u—v
otu) =1 (5555
g = f o ® est de classe C.
Apres calculs,
8%g 1 [02f 1 0%f
= | 2L (2, t) — == (x,t
Oudv (u,v) 4 [8m2 (z,7) 2 Ot? (=, )} r=(utv)/2
y=(u—v)/2c
f est solution sur R? de 1’équation des ondes
2
& Y(u,v) € R?, ;uagv (u,v) =0

30,0 : RS R, V(u, v) € R g(u,v) = C(u) + D(v),
30,0 :RSRV(z,t) € R?, f(z,t) = Ca + ct) + D(z — ct).
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Exemple Résolvons sur RT* x R 1’équation aux dérivées partielles

0% f 0% f o*f
20T 207 _
(E):x 92 + nyaxay +y e xy

en passant aux coordonnées polaires.

{x:rcosﬁ {r:\/xQ—i—y?

y=rsinf | = arctan(y/z)

L application @ : (r,6) + (r cos 6, r sin §) est une bijection de classe C* de R** x |—7/2, 7/2[ vers
R*™ x R.
Soit f : R™ x R — R de classe C? et g : R™ x |—7/2, 7/2[ — R définie de sorte que
« g(T, 9) = f(x, y) » i.e.
g(r,0) = f(rcosf,rsinf)

g = f o ® est de classe C°.
Apres calculs,

&g *f f f
2 2 2
Y900y = | 2221 19 gy
" o (r,6) =z Ox? +ary 0xdy Ty 0y? | a=r cos g
y=rsin
f est solution sur R** x R de I'équation F
82
= V(T‘, 9) e RT™ x ]—71'/2,71’/2[77‘28773(7“’ 9) =2 cos@sind,

2 1
< 3C,D: ]—77/2,71'/2[C—>]R,V(r7 0) e RY™* x |—7/2,7/2[,g(r,0) = 57“2 cosfsinf +rC(0) + D(6),

< 3C, D : }—77/2,77/2[C—2>]R,V(x,y) eER™ xR, f(z,y) =
%xy + V22 + y2C(arctan(y/x)) + D(arctan(y/x)),
©3C,D:ROR,V(z,y) RV xR, f(z,y) = %xy + Va2 +12C(y/z) + D(y/x).
<3C,D: RiR,V(x,y) ER™ xR, f(x,y) = %xy + xé’(y/x) + D(y/:r)

car v/ 22 + 2 ) x2p(t) avec 1 (t) = /1 + 2, ¢ de classe C* ne s’annulant pas.

25.5 Eléments d’analyse vectorielle

On suppose le plan géométrique muni d’un repere orthonormé direct R = (O; Z,j)
25.5.1 Gradient géométrique

Soit f une fonction réelle définie sur une partie du plan.

Si (z,y) sont les coordonnées cartésiennes de M, on pose f.(z,y) = f(M).
Exemple f(M)=OM?, f(M)=C/OM,...

Définition

] fe est appelée représentation cartésienne de f dans le repere R
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Sous réserve d’existence, on pose

%(M) = %(m,y) et 6—(M) ay (z,y)

Exemple Si f(M) = OM? alors f.(x,y) = 2% + y* et donc

g—i(M) =2z et %(M) =2y
Définition
On appelle vecteur gradient de f en M le vecteur
grad F(0) = L )T+ L ).
On vérifie

FOM +F) = F(M) + (grad f(M) | B) + o(R) quand ; — §

. L. — . .y . N
Cette relation caractérise le vecteur grad f (M) et assure que celui-ci est indépendant du choix du repére

orthonormé R. Elle peut étre mise en résonance avec 1’écriture physicienne

df = gradf.dM

25.5.2 Gradient en coordonnées polaires

Si (r, 0) est un systéme de coordonnées polaires de M dans R, on pose f,(r,8) = f(M).

Définition

] fp est appelée représentation polaire de f dans le repere R.

Sous réserve d’existence, on pose

Of vy Ofp Of v _ Ofp
E(M) = W(Tﬁ) et %(M) = %(7‘79)
Exemple Si f(M) = OM? alors f,(M) = r? et
af B af B
Proposition
Ona of Lof
— . N
grad f(M) = E(M)ur + ;%(M)ue
en notant @, = cos 0i + sin 6j et @y = — sin 64 + cos 6.
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dém. :

Si (r, 8) est un systéme de coordonnées polaires de M alors ses coordonnées cartésiennes sont (7 cos 6, 1 sin 6).
Par suite f,(r,0) = fc(rcosf,rsinf).

On en déduit

v i 9) — conp e . L Ofe,
o (r,0) = cos b pe (rcosf,rsinf) + sinf dy (rcosf,rsinf)
oy, .. . of. .
%(r, 0) = —rsin 07695 (rcos@,rsinf) + rcos G—ay (rcosf,rsinf)
ce qui se réécrit
OF A1) = cos92L ing2d
aT(M)—CObGax(M)+bln98y(M)(l)
9 1 — g i
%(M) = rsm@am(M) +rcos€ay(M) )
cosf x (1) — 1sin@ x (2) donne
T
OF (1) — cont® (1) - L
%(M)—COSQE(M) TsmHao(M)

1
sinf x (1) + — cos @ x (2) donne
r

0 0 1 0
a—]yc(M) = siHHa—f(M) + ;Cos@a—‘g(M)
On en déduit of of of 10f
— = =
grad f(M) = %(M)i + @(M)j = E(M)ﬁr + ;@(M)Ue

O

Remarque Le physicien retrouve les relations (1) et (2) de la démonstration ci-dessus en écrivant

o _ovof  oyor 9f _oxdl oy
or  Ordx Ordy 08 000x 000y

25.5.3 Intégration d’un champ de vecteurs

Soit F un champ de vecteurs défini sur une partie du plan. On peut écrire
F(M) = E,(M)7+ F,(M).]

Soit T' une courbe inscrite dans le domaine de définition de F joignant un point A a un point B. On
suppose que la courbe I peut étre paramétrée par

{ v I(t)) avec t € [a, D]
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Définition
On appelle circulation du champ de vecteur Fle long de I’arc T le réel

b
PRI 2 [ (R o)+ R (1))

Remarque On peut montrer que cette valeur est géométrique dans le sens ou, si ’on détermine un autre
paramétrage de I, le résultat du calcul est inchangé.

Théoreme
_, —
Si F' = —gradV alors

[ FOn.a = v - vip)

En particulier, si M (a) = M (b) alors

/F(M AM =0
T

dém. :
Par hypothese
F, = 7?9—‘; et Iy = aa—‘;

donc . o o

7 / /

| ORI = — [ )G al).0) + ' (0F (@(e). ()
Or
5 V). 5(0) = /05 w0.(0) + ¥ (O, (=(0).5(0)
donc N
[ FOILI = = V(). )i,

0

25.5.4 Laplacien

Soit f une fonction réelle définie sur une partie du plan.
Définition

On appelle laplacien d’une fonction f définie sur une partie du plan la quantité
_ o?f  0*f

M=o oy

Remarque On peut montrer que cette quantité ne dépend pas du choix du repere orthonormé (c’est la
trace de la matrice Hessienne).
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Exemple L’équation de la chaleur en dimension 2 s’exprimer

of
- =D.A
= (,t) = DAf(,)
Proposition

En coordonnées polaires
_O*f n 10f 1 0%*f

A =g e TR
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Chapitre 26

Probabilités

26.1 Espace probabilisé
26.1.1 Univers

Définition
L’ensemble des résultats possibles décrivant une expérience aléatoire est appelé univers. Il est
généralement noté (2. Les éléments w de €2 sont les issues observées de 1’expérience aléatoire,
on les appelle éventualités. La réalisation de 1’expérience aléatoire revient au choix d’une éven-
tualité dans I’univers i.e. d’un élément w a I’intérieur de ’ensemble (2.

Exemple On lance une piece pour obtenir Pile ou Face.

11 est naturel de choisir = {P, F'} pour modéliser les issues de I’expérience.
On lance la piece n fois, on choisira Q = {P, F'}".

On lance la piece indéfiniment : on choisira Q = { P, F}N*.

Exemple On lance un dé : on choisit 2 = [1, 6].
On lance deux dés : on choisit = [1, 6] x [1,6] ou Q = [2,12] selon I’ambition de 1’étude menée.
Sil’on prend 2 = [1,6] x [1, 6], c’est aussi que 1’on suppose les deux dés discernables.

Exemple On compte le nombre de jets d’un dé avant d’obtenir un premier 6, on choisira 2 = N*.

Exemple Une urne contient 1 boule blanche et 4 boules rouges.
On tire successivement deux boules avec remise :

Q={(B,B),(B,R),(R,B),(R,R)}
On tire successivement deux boules sans remise :
Q={(B,R),(R,B),(R,R)}
On tire simultanément deux boules :

Q= {{BvR} ) {Rv R}}
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Remarque Le choix de I’univers €2 dépend de la modélisation choisie pour I’expérience aléatoire

- il ne doit pas &tre trop petit pour pouvoir étudier toutes les issues souhaitées ;

- il ne doit pas étre inutilement grand en prenant en compte des phénomenes inutiles.

26.1.2 Tribu

Les sous-ensembles de ’univers 2 serviront pour décrire des événements dont on veut mesurer la proba-
bilité d’occurrence. Contrairement a ce qui a été vu en premiere année dans le cas ou I’ensemble €2 est
fini, toute partie de {2 ne définira pas nécessairement un événement : on se limitera aux parties éléments

d’une tribu.

Définition

On appelle tribu sur un ensemble €2 toute partie A de P(€2) vérifiant :
HQeA;

NVAec A Ac A;
+oo
3)V(An)nen € A, | ) An € A

n=0
La derniere propriété s’appelle la stabilité par réunion dénombrable.

Exemple A = P () est une tribu de 2.

Exemple A = {(), 2} est une tribu de 2.

Exemple Soit A une partie de 2. A = {@, A A, Q} est une tribu de €.

Théoréeme
Si A est une tribu sur un ensemble 2 alors
a)fc A;
b)VA,Be AL, AUBe A, AnNBe AetA\Be A
+oo
&) V(Ap)nen € AY, ﬂ A, €A
n=0
dém. :

a) Qe AdoncQ=0¢€ A

b) Soit A, B € A. En choisissant Ag = A, Ay = Bet A,, = pourn > 2, AUB =

AussiANB=AUB € Adonc ANB € Aet A\B=ANDB € A

+oo +oo
) ﬂAn: UfneAdonc mAneA.
- n=0 n=0 neN

Remarque Une tribu est donc stable :
- par passage au complémentaire ;
- par réunion et intersection finie ou dénombrable.

+oo
U4 eA

n=0
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Définition
On appelle espace probabilisable tout couple (£2,.4) constitué d’un ensemble €2 et d’une tribu
A sur Q.

Exemple (£2,P(2)) est un espace probabilisable.

26.1.3 Evénements

Définition
Si (€2,.A) est un espace probabilisable, les parties A de 2 éléments de la tribu A sont appelées
événement de I’univers €.

Exemple On lance un dé et I’on considere Q) = [1, 6] et A = P(Q).
L’événement élémentaire 2 = {6} traduit « on a obtenu un 6 » .
L’événement Q2 = {2,4, 6} traduit « le tirage est un nombre pair » .

Exemple Une famille a deux enfants dont on étudie le genre en fonction du rang de naissance.
Q= {(FvF)v (Fv G)a (GvF)v (GvG)} et A= P(Q)
L’événement I’ainé est un garcon est

A= {(GvG)v (GvF)}

Définition

L’événement () est appelé événement impossible.

L’événement (2 est appelé événement certain.

Les événements de la forme {w} sont appelés événements élémentaires.

Définition

Si A et B sont deux événements de 1’espace probabilisable (€2, .A) alors
- A est I’événement contraire de A ;

- AN B est I’événement conjonction de A et B;

- AU B est I’événement disjonction de A et B.

Définition

Soit A et B deux événements de I’espace probabilisable (2, .A).

On dit que I’événement A implique B si A C B.

On dit que les événements A et B sont incompatibles si AN B = ().

Exemple Soit (A,,),en une suite d’événements de 1’espace probabilisable (£2,.4).
—+oo

L’événement ﬂ A, correspond a la réalisation de tous les A,,.

n=0
—+o0

L’événement U A, correspond a la réalisation d’au moins un A,,.

n=0
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+o0o +oo
L’événement U ﬂ A, correspond a la réalisation de tous les A,, a partir d’un certain rang.

N=0n=N
4o 40

L’événement m U A, correspond a la réalisation d’une infinité de A,,.
N=0n=N

Remarque Notons que les ensembles décrits dans I’exemple au dessus sont bien éléments de la tribu A.

26.2 Probabilités

(€, .A) désigne un espace probabilisable
26.2.1 Définition

Définition
On appelle probabilité sur I’espace probabilisable (2, A) toute application P : A — RT vé-
rifiant :
-P(Q)=1;

- Pour toute suite (4,,),en € A" d’événements deux a deux incompatibles

“+o0o “+o0
P <U An> = Z P(A,,) [o-additivité]
n=0 n=0

Exemple Soit 2 un ensemble fini et A = P(Q).
On définit la probabilité uniforme sur 2 par

_ CardA
© CardQ

P(A)

Exemple Soit w un élément de €2. On définit une probabilité sur (€2, .A) par

_J 0 siw¢g A
P(A)_{ 1 siwe A

Définition
On appelle espace probabilisé tout triplet (€2, .A, P) formé d’un ensemble €2, d’une tribu A sur
Q) et d’une probabilité P sur (£2, .4).

26.2.2 Propriétés élémentaires

Soit P une probabilité sur (€2, A).
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Théoreme
a) P(0)=0

b) Si Ay, ..., A, sont des événements deux a deux incompatibles
P <U Ak> = ZP(Ak)
k=0 k=0

Q) VA€ A P(A)=1— P(A)
d)VA € A, P(A) € [0,1]

dém. :
a) En prenant A,, = () pour tout n € N, on obtient

+o00
P@)=>_P®)
n=0

et donc P () = 0.
b) On choisit A, = @) pour k > n et on exploite

—+o0 —+o0
P (U Ak> = P(Ay)
k=0 k=0
¢) 2 est la conjonction des événements incompatibles A et A donc

1=P(Q) = P(A)+ P(A)
d) P(A) > 0et P(A)
O
Théoréme
Soit A et B deux événements
a)AC B= P(A) < P(B)
b) P(AUB)=P(A)+ P(B)— P(ANB)

1- P(A) > 0.

dém. :

a) Si A C B alors B est la réunion disjointe de A et de B\ A. L’égalité P(B) = P(A) + P(B\A) donne
alors P(B) > P(A).

b) AU B est la réunion disjointe de A et de B\ A. On adonc P(AU B) = P(A) + P(B\A).

Or B est la réunion disjointe de B\ A etde AN B donc P(B) = P(B\A) + P(AN B) ce qui permet de
conclure.

O
Corollaire
Si Ay, ..., A, sont des événements alors
P <U Ak> < ZP(Ak)
k=0 k=0
dém. :
Par récurrence sur n € N.
O
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Remarque On peut énoncer une égalité connue sous le nom de formule du crible, mais celle-ci est
hors-programme.

Corollaire
Si (A )nen est une suite d’événements

+oo +00
P(U An> <3P
n=0 n=0

26.2.3 Continuité monotone

Théoreme
Si (4,,) est une suite croissante d’événements alors

+oo
P(An) 7o P (L_JO An)

dém. :

Posons By = Ay puis, pour toutn > 1, B, = A,\A,,_1.

Puisque la suite (A,,) est croissante pour I’inclusion, les événements de la suite (B,,) sont deux a deux
disjoints. De plus

n —+oo —+o0
A= Bret | J A, =] Bn
k=0 n=0 n=0

Par conséquent

+o0 +oo +00 n
P (U An> =P (U Bn> =Y P(By) :nErEOOZP(Bk)
n=0 n=0 k=0

n=0
avec
j{:})(Bk)::})04n)
k=0
]

Remarque Ce résultat est utile pour calculer la probabilité d’une union dénombrable.

Corollaire
On a
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Théoreme
Si (4,,) est une suite décroissante d’événements alors

—+oo
P(4y) —— P ( QO An>

dém. :
Posons B,, = A,,. (By,) est une suite croissante d’événements avec

+o0 too +o0
U B, = ﬂ B, = m An
n=0 n=0 n=0

Par continuité croissante

“+oo
P(Ba) o P <UOBH>

et donc
—+o0 +oo
P(An) =1 - P(By) n—+o0 ter (U Bn) -7 (ﬂ An)
n=0 n=0
O
Corollaire
On a

400 n
P(On) = (()

Exemple On lance indéfiniment un dé équilibré. Montrer que 1’événement « on n’obtient jamais de 6 »
est de probabilité nulle.
On note A I’événement : «on n’obtient jamais de 6 » On note A,, I’événement

«on n’a pas obtenu de 6 lors des n premiers lancers »

En supposant les lancers indépendants
P(An) = (5/6)"

Puisque la suite (A4,,) est décroissante, on a par continuité

P(A) =P (ﬁo An> = lim_P(4,) =0

26.2.4 Evénements presque sirs
Soit (€2, A, P) un espace probabilisé.
Définition
] On dit qu’un événement A est négligeable si P(A) = 0.

Exemple L’événement impossible est négligeable.
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Exemple Ne jamais obtenir de six en langant indéfiniment un dé équilibré est négligeable.

Proposition
Un événement inclus dans un événement négligeable est négligeable

dém. :
Cas
AC B= P(A) < P(B)
O
Proposition
Une réunion finie ou dénombrable d’événements négligeables est négligeable.

dém. :
Car

—+o0 —+o0

P (U An> <3 Pl

n=0 n=0
O
Définition

On dit qu’un événement A est presque siir si P(A) = 1.
Ceci signifie encore que 1’événement A est négligeable.

Exemple L’événement certain est presque sir.

Exemple Obtenir un six en lancant indéfiniment un dé équilibré est un événement presque sir.

Proposition

] Un événement contenant un événement presque sir est presque sir.

Proposition
] Une intersection finie ou dénombrable d’événements presque siirs est presque sire.

26.2.5 Probabilité sur un univers au plus dénombrable
Soit 2 un ensemble fini ou dénombrable, A = P({2) et P une probabilité sur (€2, A).

Définition
Pour tout w € €2, on introduit les probabilités élémentaires
pw =P ({W})
Théoréme

La famille (p,,).cq est une famille de réels positifs, sommable et de somme égale a 1.
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dém. :

pw = P({w}) € [0,1] donc p,, € RT.

Cas Qfini: Q = {wy,...,w,} avec wy, . ..,w, deux a deux distincts
Y pw=Y P{w}) =P (U {wz-}> =pPQ)=1
weR i=1 i=1

Cas Q) dénombrable : Q = {w,,/n € N} avec les w,, deux a deux distincts

+00 +oo
Y pe=Y P(lw))=P (U {wn}> —PQ) =1

we n=0
O
Théoréme
Si (pu,)wen est une famille de réels positifs, sommable et de somme égale a 1 alors il existe
une unique probabilité P sur (9, A) vérifiant
Yw e Q, P{w}) = pu
De plus, celle-ci est déterminée par
VA CQ,P(A) = p.
weA
dém. :
Analyse : Supposons P probabilité solution.
Pour tout A C €2, on a la réunion disjointe
A= {w}
weA
et donc, que A soit fini ou dénombrable
P(A) = p.
wEA

La probabilité P est donc déterminée de fagon unique.
Synthése : Supposons P : P(Q) — R™ définie par

VA CQ P(A) =) p.

w€eA
L’application P est bien définie & valeurs dans R™.
P(£2) = 1 car par hypothese la somme de p,, vaut 1.
—+o0
Soit (A, )nen une suite d’événements deux a deux incompatibles et A = U A,,. Par sommation par
n=0

paquets

SheY S n

w€eEA n=0wecA,
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et donc
—+oo
P(A) =7 P(Ay)
n=0
d
Exemple Cas  fini: Q = {wy,...,w,}
Une probabilité sur € est entierement déterminée par le choix de p1, ..., p, € RT avec

pLttpn=1

En prenant p;, = 1/n, on définit I’équiprobabilité sur [1, n].

En prenant py, = p*(1 — p)"~* avec p € ]0, 1], on définit une probabilité sur [0, n]

k

Exemple Cas ) =N
Une probabilité sur 2 est déterminée par le choix de (py)nen € RN avec

+oo
n=0

L’ équiprobabilité sur N est impossible.
Plus généralement, elle est impossible sur €2 infini dénombrable.
En revanche

)\Tl
Pn = e*)‘—' avec A € R
n

définit une probabilité sur N.
Aussi
Pn = p(l - p)n—l avecp € ]07 1[

définit une probabilité sur N*

26.3 Probabilités conditionnelles

Soit (22, A, P) un espace probabilisé.
26.3.1 Définition

Définition
Soit B un événement de  vérifiant P(B) > 0.
Pour tout événement A de €2, la probabilité conditionnelle de A sachant B est définie par

_ P(ANB)

PATB) & —pE

Si P(B) = 0, on convient de poser P(A | B) = 0.

Exemple On lance un dé équilibré. Q = {1,2,3,4,5,6}.
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On considere les événements
A = «onobtient 6 » et B = «le tirage est pair »

Déterminons P(A | B) et P(A | B)
Par retour a la définition

P(A|B)1§g§etP(A|B)O

Théoreme
Si B est événement de 2 vérifiant P(B) > 0 alors I’application P : P(£2) — R donnée par
Pp(A) = P(A| B)

définit une probabilité sur ({2, .A).

dém. :
D’une part

PQNB) _,

PI;(Q) - P(B)

et d’autre part, pour (4,,) suites d’événements deux a deux incompatibles

+oo +oo
) P(U <AmB>) S P(ANB)
_ n=0

+o0
" (U o T v IS
n=0 n=0
]
Corollaire
Les propriétés calculatoires relatives aux probabilités sont aussi vraies pour les probabilités
conditionnelles.

26.3.2 Formule des probabilités composées

Théoreme
Soit A, B deux événements de 2. On a

P(ANB) = P(A| B)P(B)

dém. :

C’est immédiat compte tenu de la définition de P(A | B) quand P(B) > 0. L’identité est aussi vraie
quand P(B) =0car AN B C B.

0
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Corollaire
Soit Ay, ..., A, des événements de 2. On a

P(A1N...NAy) = P(A)P(As | A) ... P(Ay | Ay 0.0 Ay

dém. :
Par récurrence sachant que le théoréme ci-dessus avec A = A, 11 et B= A; N...N A, fournit

PAI NN Api1) = P(A1 N N A)P(Apsr | A1 .. N Ay)

O

Exemple Une urne contient n boules blanches et n boules rouges.
On tire successivement et sans remise n boules dans cette urne.
Déterminons la probabilité qu’une boule rouge figure dans ce tirage.
Nous allons en fait mesurer 1I’événement contraire.

Notons A;, 1’événement

«la boule obtenue lors du k-ieéme tirage est blanche »

n 1 n—(k—1)
PA)=—=-cetPAs|A1N...NA}y_1) = ——=
(A1) =5, = g et P(Ac[ A 1) = o T o)
Par probabilités composées
n n—1 1 (n!)?
P(AIN...NA,) = — =
(A W o X T T N T @)l

et la probabilité cherchée est donc

Exemple Une urne contient une boule blanche et une boule rouge.

On tire successivement des boules dans cette urne. A chaque boule tirée, on note la couleur de celle-ci et
on la remet dans I’urne accompagnée d’une boule de la méme couleur.

Montrons qu’il est presque siir que la boule rouge initiale sera tirée.

Notons A,, I’événement « la boule tirée au -iéme tirage est blanche » Par probabilités composées

P(A1N...NAy) = P(A)P(As | A) ... P(Ay | Ay 0 Ay

avec
n

n+1

2
P(A) = 5. P(A2 | A1) = S P(An | ALNLL .0 Ay) =

1
2 b
On a donc 1

n+1

P(AiN...NA,) =

Par continuité décroissante

n—-+oo

—+o0
P(ﬂ An> = lim P(AN...N4,)=0
n=1

Ainsi, I’événement « toutes les boules tirées sont blanches » est négligeable et I’événement
complémentaire « la boule rouge initiale est tirée » est presque sir.
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26.3.3 Formule des probabilités totales

Définition
On appelle systéme complet d’événements toute famille (A;);c; d’événements avec ensemble
fini ou dénombrable vérifiant :
DVi,jeli#j=ANA=0;
=0
il
Autrement dit, la famille (A;);c; est une famille au plus dénombrable d’événements deux a
deux incompatibles et de réunion €.

Exemple Si A est un événement de 2 alors (A4, A) est un systéme complet d’événements.

Exemple Si Q2 est dénombrable avec Q2 = {w,,/n € N} (ou les w,, sont deux a deux distincts) et si
A =P(Q) alors les A,, = {w,, } définissent un systeéme complet d’événements.

Théoreme
Si (A;)ier est un systeme complet d’événements de 1’espace probabilisé (2, .4, P) alors pour
tout événement B de 2
P(B) :ZP(B | Ai) P(A;)

i€l

2

dém. :
On a

BzBﬂQzBﬂ(UAZ) =J®Bn4)

iel i€l
1

Les événements B N A; étant deux a deux incompatibles, que 1’ensemble soit fini ou dénombrable, on
obtient
P(B)=> P(BNA;)
iel

Enfin, par probabilités composées

P(B)=) P(BIA)P(A)

iel
]

Exemple On dispose de six urnes numérotées de 1 a 6.
L’urne numéro k£ comporte k boules blanches et une boule rouge.
Un joueur lance un dé équilibré puis choisit une boule dans 1’urne correspondant au résultat du dé.
Déterminons la probabilité que la boule tirée soit blanche.
On considere le systeme complet d’événements (Ay, ..., Ag) avec A = «le dé donne la valeur k »
et on étudie I’événement

B = «laboule tirée est blanche »
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Ona
P(Ay)=1/6et P(B| A;) =k/(k+1)

Par formule des probabilités totales

Exemple Une urne contient une boule rouge.

Un joueur lance un dé équilibré.

S’il obtient un six, il tire une boule dans I’urne.

Sinon, il rajoute une boule blanche dans I’urne et répete la manipulation.

Sachant qu’il est presque siir que le joueur fera un six, quelle est la probabilité que la boule tirée soit
rouge ?

Le systeme complet d’événements choisi est (A,,),en- avec 4,, = «le joueur fait son premier six lors
du n-ieme lancer »

L’événement étudié est B = «la boule tirée est rouge »

Ona

1 5n—1 1
P(A,) =~ -~ PB| A, =—
=g (5) ermra)—;

Par la formule des probabilités totales

+oo n—1 +o00 n
1 (5 1321 /5 1 5\ 1
PB) =Y —(2) =3 -(2) =—m(1-2)=_1
(B) 6n(6> 6 n(6> 6n< 6) gm0

n=1 n=1

26.3.4 Formule de Bayes

Théoréme
Si A et B sont deux événements de probabilités non nulles alors

P(B|A)P(A)

PA|B) = =50

dém. :
C’est immédiat puisque

P(A| B)P(B) = P(AN B) = P(B | A)P(A)

O

Corollaire
Si (A;)ier est un systtme complet d’événements alors pour tout événement B de probabilité
non nulle et tout k € 1 P(B | 44)P(A})
P(Ay | B) = Prd
> P(B | A)P(A)

i€l
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dém. :
11 suffit d’employer la formule précédente en exploitant celle des probabilités totales

P(B)=Y P(BIA)P(4)

iel
(|

Remarque La formule de Bayes est utile pour les raisonnements « rétroactifs » . Si on sait mesurer la
conséquence B d’un événement A et que I’on sait I’événement B réalisé, la formule de Bayes permet de
savoir si I’événement A I’a été. On parle parfois de la formule de probabilité des causes.

Exemple Une urne contient deux dés : I’'un est équilibré et I’autre donne systématiquement un 6.
On choisit un dé dans 1’urne et on le lance. On suppose que le dé lancé donne un 6, déterminons la
probabilité que ce dé soit équilibré.

Notons A I’événement « le dé choisi est équilibré » On a P(A) = P(A) = 1/2.
Notons B I’événement « le dé lancé donne un 6 » On veut mesurer P(A | B).
Par la formule de Bayes

P(A|B) = P(B]Légjj(/l)
e P(B|A)P(A)=1/6x1/2
t
) P(B)=P(B| A)P(A)+ P(B|A)P(A) =1/12+1x1/2
Ainsi

P(A|B)=;

26.4 Indépendance

Soit (2, A, P) un espace probabilisé.
26.4.1 Couple d’événements indépendants

Définition
On dit que deux événements A et B de I’espace probabilisé (2, P) sont indépendants si

P(AN B) = P(A)P(B)

Remarque Si P(B) > 0, on a alors
P(A| B) = P(4)

L’indépendance des événements A et B entraine que la connaissance de la réalisation de B n’apporte
rien pour savoir si A est aussi réalisé.
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Exemple On lance deux fois le méme dé (équilibré ou non). Les événements « le premier lancer donne
un six » et « le second lancer donne un six » sont généralement modélisés indépendants.

Exemple On tire successivement et sans remise deux boules dans une urne contenant 5 boules blanches
et 2 boules rouges. Les événements « la premiere boule tirée est blanche » et « la seconde boule tirée est
blanche » ne sont pas indépendants.

En revanche, si I’on procede a un tirage avec remise, ces événements deviennent indépendants.

Attention : Ne pas confondre indépendance et incompatibilité : deux événements incompatibles sont
rarement indépendants !

Proposition
Si A et B sont des événements indépendants alors A et B le sont aussi

dém. : -
Puisque @ = BU B

P(A)=P(AN(BUB)) =P ((ANB)U (AN B))
Or AN B et AN B sont incompatibles
P(A) = P(AN B) + P(AN B) = P(A)P(B) + P(AN B)

Ainsi

O

Remarque Aussi A et B sont indépendants ainsi que A et B.

26.4.2 Famille d’événements mutuellement indépendants

Définition
On dit que les événements d’une famille quelconque (A;);c; d’événements de I’espace proba-
bilisé (2, A, P) sont mutuellement indépendants si

v finie c I,P | ()4, | =[] P(4)

JjE€J jeJ

Exemple On lance indéfiniment une piece.
Soit A; I’événement
«on obtient face lors du ¢-¢éme lancer »

Les événements de la famille (A4,,),>1 sont modélisés mutuellement indépendants.
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Si la probabilité d’obtenir face lors de chaque lancer vaut p € ]0, 1], alors la probabilité que face apparait
pour la premiere fois lors du n-ieme lancer vaut

P(A,NA, 1 N...NA) =p(1—p)"~!

En effet, on peut montrer que les événements A1, ..., A,,_; et A, sont mutuellement indépendants (voir
ci-dessous).

Exemple A, B, C sont mutuellement indépendants si
P(ANB)=P(A)P(B), P(ANC)=P(A)P(C),P(BNC)=P(B)P(C)

et aussi
P(ANnBNC)=P(A)P(B)P(C)

Attention : Il ne faut pas confondre 1’indépendance mutuelle et I’indépendance deux a deux.

Exemple On lance deux dés discernables et I’on considere les événements
A = «le premier dé lancé donne un résultat pair » B = «le second dé lancé donne un résultat pair »

et
C = «la somme des deux dés est un résultat pair »

Les événements A, B et C' sont deux a deux indépendants, mais pas mutuellement indépendants.
En effet 1 1

P(ANBNC)=P(ANB) = 1 et P(A)P(B)P(C) = 3
Proposition

Si (A;);cr est une famille d’événements mutuellement indépendants alors, pour toute partie
J C I, 1a sous-famille (A;);c s est, elle aussi, constituée d’événements mutuellement indépen-

dants.
dém. :
Immédiat par retour a la définition.
O
Proposition
Soit (A;);ecr une famille d’événements et (£;);c une famille de réels avec €; = 0 ou 1.
On pose
A5 — é si E; = 0
g A,L' si &, = 1
Si la famille (A;);es est constituée d’événements mutuellement indépendant alors la famille
(A7), aussi.
dém. :

Etape 1 : On montre

P(AlﬂﬁAn):P(Al)P(An)éP(AlﬂﬂAn,lﬂTn):P(Al)P(An,l)P(/Tn)
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Etape 2 : On généralise
P(A1n...NA,)=P(A;)...P(4,) = P(AT' Nn...NAS") = P(AT") ... P(4A5M)

Etape 3 : On établit le résultat
Soit J finie C I. Par énumération de 1’ensemble J

Pl 4] =1]rA)
jeJ jeJ
puis par I’étude qui précede

P47 | =1TP@Ay)

jeJ jeJ

et I’on peut conclure que la famille (Aj*),; est constituée d’événements mutuellement indépendants.

O
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Chapitre 27

Variables aléatoires discretes

(Q, A, P) désigne un espace probabilisé.
27.1 Variables aléatoires discreétes

27.1.1 Définition

Définition
On appelle variable aléatoire discrete définie sur 1’espace probabilisé €) et a valeurs dans un
ensemble E toute application X : Q) — FE vérifiant
1) I'ensemble des valeurs prises X (€2) est fini ou dénombrable ;
) Ve € X(Q), X ({z}) = {w € Q/X(w) = =} est élément de la tribu A.
Lorsque E = R, on parle de variable aléatoire réelle.

Remarque L’appellation variable aléatoire est usuelle bien que malheureuse. En effet, X n’est pas une
variable, mais bien une fonction et celle-ci n’est pas aléatoire, mais plutot parfaitement déterminée. Ce

sont les valeurs de X qui correspondent a des quantités qui vont varier selon le résultat de 1I’expérience

aléatoire.

Exemple On tire avec remise n boules dans une urne contenant des boules blanches et rouges en
proportion p et ¢ = 1 — p. On note X le nombre de boules blanches obtenues dans un tirage, X est une
variable aléatoire discrete.

Exemple On lance indéfiniment un dé et I’on note X, la valeur obtenue lors du n-ieme lancer.
(Xn)n>1 est une suite de variables aléatoires discretes. On pose

T =min{n € N*/X,, =6} ouT = +o0 si le min porte sur I’ensemble vide

T est une variable aléatoire discrete (c’est le temps d’attente du premier 6).

Remarque Comme dans les exemples ci-dessus, il est fréquent de manipuler des variables aléatoires
sans méme avoir précisé I’espace probabilisé d’étude.
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27.1.2 Evénements valeurs

Définition

Soit X : Q — E une variable aléatoire discrete.

Pour tout z € E, on note (X = z) ou {X = z} I'événement

X7 ({2}) = {w e Y/ X(w) = 2}

Il s’agit bien d’un événement par définition d’une variable aléatoire discrete et I’on peut en
calculer la probabilité

Exemple On lance deux dés et X désigne la somme de leur valeur.
L’événement (X = 12) correspond au cas ot les deux dés valent 6.

Définition
Soit X : 2 — F une variable aléatoire discrete. Pour toute partie A de E on note (X € A) ou
{X € A} I'’événement X ~*(A). Autrement dit

(X eA)={weQ/X(w) e A}

Remarque (X € A) est bien un événement. En effet, X (£2) étant au plus dénombrable,

Xed= |J x=u2

zeX(Q)NA

est un événement car réunion au plus dénombrable d’événements.
Cela autorise le calcul de sa probabilité¢ P (X € A)

Remarque La notation (X € A) est compatible avec les opérations ensemblistes
(XeAHN(XeB)=(Xe€ANnB)
(XeA)U(XeB)=(Xe€AUB)

(X ed)=(XeA)

Définition
Si X est une variable aléatoire discrete réelle et si a € R, on introduit 1I’événement

(X <a)= X' (J—o0,a)) = {w € Q/X () < a}

On peut aussi définir (X < a), (X > a),...et calculer leur probabilité.
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27.1.3 Loi d’une variable aléatoire discrete
Soit X : Q — F une variable aléatoire discrete et X (2) son univers valeurs (au plus dénombrable).
Définition
On appelle loi de la variable X : 2 — E I’application
Py : p(X(2) = [0,1]

définie par
VA € p(X(Q)), Px(4) = P(X € A)

Théoreme
| Laloi Px définit une probabilité sur I'espace probabilisable (X (2), p (X (22)))

dém. :

Px(XQ)=P(XeX(Q)=1.

Soit (A, )nen une suite de parties deux a deux disjointes de X (2).
Les événements (X € A,,) sont deux a deux disjoints et

U(XeAn):<Xe UAn>

neN neN
On en déduit
—+oo +oo
Py (U An> = ZP(X €A, = ZPX(An)
neN n=0 n=0
O
Corollaire

Laloi Px est entierement déterminée par les valeurs
pr = Px(z) = P(X =)

pour chaque z € X (Q).

dém. :
L’espace X (€2) étant au plus dénombrable, une probabilité sur celui-ci est entierement déterminée par ses
probabilités élémentaires

P, = P(X =2x)

En effet, pour toute partie A de X (2), on a alors
Px(A)=P(X=A4)=) p
T€EA

la somme portant sur une famille finie ou dénombrable.
]

Remarque Les probabilités élémentaires p, déterminent une famille de réels positifs (p;),c x (o)

vérifiant
> pe=1
zeX(Q)
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Remarque Souvent, on résume la loi de X a la famille des probabilités p, pour z € X () puisque
celles-ci suffisent a déterminer Px (A) pour toute partie A de X ().

Remarque Laloi Py détermine la probabilité de chaque événement valeur lié a la variable X.
Cependant, la loi Px ne suffit pas a déterminer la variable aléatoire X

Px = Py n’implique pas X =Y

Exemple Considérons un lancer de deux équilibrés. Si X et Y désignent les valeurs de chaque dé,
celles-ci suivent la méme loi sans pour autant étre égales !

Définition
Soit X et Y deux variables aléatoires discretes sur {2 prenant les mémes valeurs.
Si Px = Py, ondit que X et Y suivent la méme loi et I’on note

X~Y

Si la variable Y suit une loi usuellement notée £, on écrit

X~L

27.1.4 Lois finies usuelles

X désigne une variable aléatoire discréte sur (€2, A, P).
27.1.4.1 Loi uniforme

Définition
On dit que la variable aléatoire X suit une loi uniforme sur un ensemble fini E si

X(Q)=FEetVr e E,P(X =x) =1/navecn = CardE

On note U ([a, b]) la loi uniforme sur [a, b] et en particulier U (n) celle sur [[1, n].

Exemple Si X est la valeur du lancer d’un dé équilibré alors X ~ U/(6)

27.1.4.2 Loi de Bernoulli

Définition
On dit que la variable aléatoire X suit une loi de Bernoulli de parametre p (avec p € |0, 1[) si

X()={0,1},P(X=0)=1-petP(X =1)=p

On note B(p) cette loi.
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Exemple Une urne contient des boules blanches en proportion p et des boules rouges en proportion
qg=1—p.

On tire une boule de cette urne.

Si X vaut 1 lorsque la boule est blanche et 0 sinon alors X ~ B(p)

Remarque Les variables de Bernoulli sont utiles pour modéliser les situations a deux issues : succes
(valeur 1) ou échec (valeur 0)

27.1.4.3 Loi binomiale

Définition
On dit que la variable aléatoire X suit une loi binomiale de parametres n et p (avec n € N* et
p €10,1]) si

n

X(Q) = [0,n] etVk € [0,n],P(X =k) = (k

> PP —p)n

On note B(n, p) cette loi

Exemple Une urne contient des boules blanches en proportion p et des boules rouges en proportion
qg=1—p.

On tire n boules avec remise dans cette urne.

Si X désigne le nombre de boules blanches obtenues alors X ~ B(n,p).

Remarque La loi de Bernoulli est utile pour modéliser ce qui s’apparente a un tirage avec remise, elle
permet aussi de mesurer le nombre de succes lorsqu’on répete indépendamment une expérience dont la
probabilité de réussite égale p.

27.1.5 Variables aléatoires composées
Soit X une variable aléatoire sur 1’espace probabilisé (£, .4, P) a valeurs dans un ensemble E.
Définition
Si f est une application définie au moins sur X (Q2) C E a valeurs dans un ensemble E’, on
note f(X) la variable aléatoire Y = f o X

Y:Q— EavecY(w) = f(X(w))

Remarque On vérifie qu’il s’agit bien d’une variable aléatoire car

Yy e Y(Q), Y ({y}) = U X '({zhed

zeX(Q),f(z)=y
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Remarque Si la fonction f est une fonction présentant une notation usuelle particuliére, on adapte
celle-ci a la description de la variable aléatoire f(X). C’est ainsi qu’on pourra écrire

X2, VX, |X],aX +b,...

Théoreme
SiY = f(X) alors la loi de Y est entierement déterminée par celle de X :

VB € Y(Q), Py(B) = Px (f (B))

dém. :
Par définition

Py(B)=P(Y € B) = P(f(X) € B)

(f(X) € B)= (X € f(B))

Remarque En pratique, connaitre la loi de X suffira pour déterminer les lois des variables aléatoires
composées déduites de X.

Exemple Si X ~ B(n,p)alorsY =n — X ~ B(n,q).
En effet

YQ)=[0,n] etP(Y =k)=P(X=n—k)= ( " k:) pt Rk = (:) g pnF

Définition
Plus généralement, si X1, . .., X,, sont des variables aléatoires discretes sur (2, .4, P), on peut
donner un sens a la variable aléatoire discréte Y = f(X7y, ..., X,,) pour peu que f soit définie
sur les valeurs prises par w — (X3 (w), ..., X (w)).

Remarque Pour connaitre la loi de Y, connaitre les lois des X, ne suffit pas, il faut aussi connaitre
leurs comportements conjoints. . .
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27.2 Couples de variables aléatoires discretes
27.2.1 Loi conjointe

Définition
Soit X et Y deux variables aléatoires discretes définies sur le méme espace probabilisé
(Q, A, P) et a valeurs dans des ensembles E et F respectivement. On appelle couple défini
par les variables aléatoires X et Y la variable aléatoire Z = (X,Y) : Q — E x F déterminée
par

Y € Q,Z(w) = (X (), Y (w))

Remarque 11 s’agit d’une variable aléatoire discrete car Z(2) C X () x Y (Q) est au plus
dénombrable.

Exemple On choisit une carte a I’intérieur d’un jeu de 32 cartes. On désigne par X la hauteur et Y la
couleur de cette carte. La variable aléatoire Z = (X, Y") détermine alors parfaitement la carte tirée.

Définition
On appelle loi conjointe de deux variables aléatoires X et Y la loi du couple Z = (X,Y).

Remarque Celle-ci est entierement déterminée a partir de la connaissance de
P(X =x;,,Y =y;)avecz; € X(Q) ety; € Y(Q)

On pourra exploiter un tableau pour visualiser cette loi conjointe.

Exemple Une urne comporte 2 boules blanches, 1 rouge et 1 noire. On tire simultanément deux boules
de cette urne et I’on note X le nombre de boules blanches et Y le nombre de boules noires tirées.

X=0|X=1]X=2
Y=0| 0 1/3 | 1/6
Y=1]| 1/6 | 1/3 0

Remarque Evidemment la somme des valeurs du tableau donne 1.

27.2.2 Lois marginales

Soit Z une variable aléatoire discrétes sur I’espace probabilisé (€2, .4, P) a valeurs dans un produit car-
tésien £ x F. Pour chaque w € Q, Z(w) désigne un couple élément de E x F'. Notons X (w) € E et
Y (w) € F les deux éléments de ce couple. La variable Z se comprend alors comme le couple (X, Y").
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Définition
Les lois des deux variables aléatoires X et Y sont appelées les lois marginales de la variable Z

Proposition

] La loi de Z détermine entierement ses lois marginales.

dém. :
Pour 2 € X(Q),
X=x)=Ze{z}xF

et donc
Px(x)=Pz({a} x F)= > P(Z=(x,y))
yEFNY (Q)
O

Remarque Dans un tableau visualisant la loi conjointe, les lois marginales s’obtiennent en sommant sur
les rangées

Exemple On reprend 1’urne urne comporte 2 boules blanches, 1 rouge et 1 noire. On tire simultanément
deux boules de cette urne et I’on note X le nombre de boules blanches et Y le nombre de boules noires
tirées.

X=0]X=1]X=2] Py
Y=0]| 0 1/3 1/6 |12
Y=1]| 1/6 1/3 0 |12
Px 1/6 | 2/3 1/6

Remarque En revanche, les lois marginales ne suffisent pas a déterminer la loi conjointe.
Par exemple, les deux tableaux ci-dessous correspondent a de mémes lois marginales pour des lois
conjointes différentes

X\Y [X=0[X=1]Py
Y=0]| 1/2 0 |12
Y=1| 0 12 [ 1/2
Px 1/2 1/2
et
X\Y [X=0[X=1] Py
Y=0| 0 12 [1/2
Y=1] 12 0 |1/2
Px 1/2 1/2
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27.2.3 Lois conditionnelles

Soit X et Y deux variables aléatoires discrétes sur un espace probabilisé (2, A, P).
Définition
Soit z € X (£2). On appelle loi conditionnelle de Y sachant X = z la loi de la variable aléatoire

Y pour la probabilité conditionnelle P (. | X = x).
Autrement dit, pour toute partie B C Y (2)

P(YeB,X=x)
P(Y €B|X =z)= P(X =)
0 sinon

siP(X=x)>0

Remarque Cette loi est enticrement déterminée par la connaissance de

PY =y| X ==z)pourtouty € Y(Q)

Exemple Supposons X et Y variables aléatoires de loi conjointe donnée par

X=0]|X=1|X=2
Y=0 0 1/3 1/6
Y=1 1/6 1/3 0
Laloi de Y sachant X = x est alors
X=0]|X=1|X=2
PY=0|X=ux) 0 1/2 1
PY=1|X=x 1 1/2 0
Théoreme
La connaissance :
-delaloide X ;

- de laloi de Y sachant X = x pour chaque x € X (2)
détermine entierement la loi conjointe de Z = (X, Y).

dém. :

Soit (z,y) € Z(Q).Onaxz € X(N) ety € Y(Q).
Si P(X =z)=0alors P(Z = (z,y ,
SiP(X =z)>0alors P(Z =(z,y)) =P X =2,Y =y
|

Remarque En particulier la loi de Y est alors connue

PY=y)= > PY=y|X=2)PX=u)
z€X(Q)
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Définition
Plus généralement, si A est une partie de X (£2), on peut définir la loi de Y sachant X € A
P(X €AY =y)

PY=y|XeA= P(X € A)
0 sinon

siP(Xe€A)>0

Exemple Si X est a valeurs réelles, on peut introduire la loi de Y sachant (X > z).

27.2.4 Vecteurs aléatoires

Soit X1, ..., X, des variables aléatoires discretes sur 1’espace probabilisé (€2, A, P).

Définition

On appelle vecteur aléatoire discret défini a partir des variables aléatoires X1, ..., X, la va-
riable aléatoire discrete Z donnée par

Yw € Q, Z(w) = (X1 (w),..., Xn(w))

La loi de la variable Z est appelée loi conjointe des variables X7, ..., X, tandis que les lois
de X4, ..., X, sont les lois marginales de Z.

Remarque La loi conjointe détermine les lois marginales, mais I’inverse n’est pas vrai.

27.3 Indépendance de variables aléatoires

27.3.1 Couple de variables indépendantes

Soit X et Y deux variables aléatoires discretes sur I’espace probabilisé (£, P).

Définition
On dit que les deux variables X et Y sont indépendantes si pour tout A C X (Q2) et B C Y(Q),
les événements (X € A) et (Y € B) sont indépendants.

Exemple On lance deux dés discernables. X détermine la valeur du premier et Y celle du second.
Il est usuel de modéliser X et Y en tant que variables indépendantes.

Exemple Une premicre urne contient 2 boules blanches et 3 boules noires et une seconde I’inverse.
On jette une piece et si I’on obtient « face », on pioche une boule dans la premiere urne, sinon, on
pioche cette boule dans la seconde urne.

On note X la valeur du lancer de la piece et Y la couleur de la boule tirée.

Les variables X et Y ne sont pas indépendantes !

Remarque Si X et Y sont indépendantes, la loi de Y sachant X € A se résume alaloide Y.
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Théoreme
On a équivalence entre :
(i) les variables aléatoires X et Y sont indépendantes ;
(i) V(z,y) e X(Q) xY(Q),P(X =2,Y =y)=P(X =z)P(Y =y)

dém. :
(i) = (ii) Supposons (i)
Soit (z,y) € X(2) x Y(Q2). Les événements (X = z) et (Y = y) sont indépendants donc

PX=z,Y=y)=PX=z)P(Y =y)

(i1) = (i) Supposons (ii)
Soit A C X () et B C Y (). Par probabilités totales (avec A x B au plus dénombrable)

P(XeAnYeB)= Y PX=uzY=y)
(z,y)€EAXB
donc
P(XeAnYeB)= Y P(X=xz)PY =y)
(z,y)€AXB

En sommant par paquets

P(XeANY eB)=> Y P(X=x)P(Y =y)

reAyeB
puis
P(X€ANY eB)=Y P(X=x)) P =y)=P(X € A)P(Y € B)
€A yeb
0

Exemple Supposons X et Y variables aléatoires de loi conjointe donnée par

X=0| X=1
Y=0| 1/12 2/12
Y=1]| 3/12 6/12
Laloi de Y sachant X = z est alors
X=0]|X=1

PY=0|X=a)| 1/4 | 1/4
PY=1|X=ax)| 3/4 | 3/4

Les variables X et Y sont indépendantes.

Théoreme
Si X et Y sont deux variables indépendantes alors pour toutes fonctions f, g définies sur les
domaines de valeurs de X et Y, les variables f(X) et g(Y") sont indépendantes.

dém. :
Soitz’ € f(X(Q))ety’ € g(Y(2)).Ona

P(f(X)=a'gV)=y)=P(Xef'{&HnYeg " ({y})
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Les variables X et Y étant indépendantes
P(f(X)=a",9(Y)=y)=P (X e f ({a')) P(Y €57 ({y'})

ce qui donne

O

27.3.2 Famille finie de variables mutuellement indépendantes

Soit (X;)1<i<n une famille de n variables aléatoires discrétes sur 1’espace probabilisé (€2, A, P).
Définition

On dit que celle-ci sont mutuellement indépendantes si pour toute famille (A;)1<i<n avec
A; C X;(Q) les événements (X; = A;) sont mutuellement indépendants.

Théoreme

On a équivalence entre :

(i) les variables aléatoires X1, ..., X,, sont mutuellement indépendantes ;

(i) V(xl,...,xn) S Xl(Q) X oo X Xn(Q),P(Xl = x,...,X, = $n) = P(X1 =
z1)...P(X =x,)

dém. :

11 suffit d’adapter la démonstration présentée pour les couples de variables sachant que pour (ii) = (i) on
étudiera I’indépendance en considérant les sous familles finies de la famille des événements (X; = A;).
O

Remarque On répete n fois la méme expérience aléatoire et I’on note X7, ..., X, les résultats
successifs.

En supposant que le résultat d’une expérience est sans incidence sur les autres, il est usuel de modéliser
I’expérience en supposant les variables X, ..., X,, mutuellement indépendantes.

C’est le cas lorsqu’on lance plusieurs fois une méme piece de monnaie que celle-ci soit ou non
équilibrée.

Exemple On tire des boules dans une urne contenant des boules blanches et rouges.

On note X; la couleur obtenue lors du ¢-€me tirage.

Si I’on suppose que le tirage a lieu avec remise, il est usuel de supposer les variables Xy, ..., X,
mutuellement indépendantes.

Si I’on ne suppose pas la remise, les variables X; ne sont plus indépendantes !

Attention : I’indépendance mutuelle ne doit pas étre confondues avec 1’indépendance deux a deux.
Si on lance deux dés discernables que ’on note X et Y les parités de chaque dé et Z la parité de la
somme alors les variables X, Y, Z sont deux a deux indépendantes, mais pas mutuellement
indépendantes.
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Théoreme
Si les variables X7, ..., X,, sont mutuellement indépendantes alors pour tout m compris entre
1 et n — 1 et toutes fonctions f et g définies sur des domaines convenables, les variables

X =f(X1,...,Xm)etY = g(Xpms1,-.., Xn)

sont indépendantes.

dém. :
Soitz € X(Q) ety € Y(Q).

P(X=zNY =y) = > P(Xy=21,...,Xn =)
(@1, mzn)€f ({2, (@mi1, ) €F 7 ({])
Par indépendance
P(Xi=21,...,Xp,=2,) =P (X1 =21)... P (X, = 2x,)
puis
PXi=x,....Xpn=z,)=PXi1=21,..., Xon =2m) P (Xnt1 = Tint1,- -, Xn = Tp)
En réorganisant la somme par paquets
P(X =a2nNY =y) = > P(Xy=21,..., Xm = Tm) > P(Xppg1 = Tmgts s X = T)
(@15sn)€f 1 ({2}) (@m+15-0mn)Ef L ({y})
et finalement

PX=znY=y)=PX=x)PY =y)

O

Remarque Si Z est indépendant de X et de Y, il se peut que Z ne soit pas indépendant de X + Y.
C’est le cas lors d’un lancer de dés ou X et Y teste la parité de chaque dé et Z la parité de la somme.
Dans I’énoncé qui précede, I’hypothese d’indépendance mutuelle est donc essentielle.

27.3.3 Famille infinie de variables mutuellement indépendantes

Soit (X;);cr une famille infinie de variables aléatoires discrétes sur I’espace probabilisé (€2, A, P).
Définition
On dit que les variables aléatoires de la famille (X;);c; sont mutuellement indépendantes si
toutes ses sous-familles finies sont mutuellement indépendantes.

Exemple On lance indéfiniment une piece de monnaie et I’on note X, la variable de Bernoulli égale a 1
lorsqu’on obtient face au n-ieme lancer.

11 est usuel de modéliser I’expérience en supposant la famille (X,),>1 constituée de variables aléatoires
mutuellement indépendantes.
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27.3.4 Suites infinies d’épreuves

Afin d’assurer I’existence de cadre probabiliste permettant 1’étude de la répétition indépendante et infinie
d’une méme expérience, nous admettons le résultat (difficile) suivant

Théoréme
Soit £ la loi d’une certaine variable aléatoire discrete.
Il existe un espace probabilisé (€2, A, P) sur lequel existe une suite (X, )nen de variables
aléatoires mutuellement indépendantes et qui sont toutes de loi L.

Exemple Il existe un cadre probabiliste permettant de modéliser un jeu de « pile ou face »infinie ot
- chaque X, suit une méme loi de Bernoulli de parametre p;
- la famille (X,),,>1 est constituée de variables mutuellement indépendantes.

27.4 Espérance

Les variables aléatoires introduites seront toutes supposées réelles, discretes et définies sur un méme
espace probabilisé (2, A, P).
27.4.1 Définition

Définition
On dit que la variable X admet une espérance si la famille (2 P(X = 2)),, ¢ y (q) est sommable.
Sa somme définit alors I’espérance de X

E(X)= Y aP(X =ux)

déf
zeX ()

Celle-ci ne dépend que la loi de la variable X.

Remarque Si la variable X ne prend qu’un nombre fini de valeurs x4, . .., x,, alors celle-ci est
assurément d’espérance finie et

E(X)=> xP(X = xy)
k=1

Exemple Rappelons :
Si X ~ B(p) alors
EX)=0x(1-p)+1lxp=p

Si X ~ B(n,p) alors
n n
E(X)=) k <k> PP —p)"F =np
k=0

Exemple Si A € A alors
E(14) =0x P(A)+1x P(A) = P(A)
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Remarque Si la variable X prend une infinité (nécessairement dénombrable) de valeurs alors, en
introduisant (., ),en une énumération de celles-ci, la variable X admet une espérance si, et seulement

si, il y a convergence absolue de la série Z x, P(X = x,). On a alors

+oo
B(X)=Y z,P(X =x,)
n=0

La valeur obtenue ne dépend pas de 1I’énumération choisie.

Remarque Si la variable X ne prend que des valeurs positives
Vw e Q, X(w) e RT

on peut encore définir son espérance dans Rt U {+o00} par la relation

E(X) = > aP(X =nx)
z€X(Q)

Exemple Soit X une variable aléatoire avec

1
X(Q)=NetP(X =n)= nti
La variable X est a valeurs positives et
+o0 n
E(X) = Z on+1
n=0
Pour calculer cette somme, exploitons la série enticre
+oo +oo
d 1
n—1 __ n| _
St (E) -
n=1 n=0
donnant
+00 1
Z n n—1 =4
n=1 2
puis
+o0 n
BE(X)=) 5oy =1
n=0
Exemple Soit X une variable aléatoire avec
N 1 1
X(Q)=NetP(X=n)=——
n n+1l

La variable X est a valeurs positives et

po0=3n(t- ) =X =
N " n n+1l 7n:1n+17 o
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Exemple Si la variable X est constante égale a C' alors

EX)= ) a2PX=2)=CxP(X=C)=C
zeX ()

Le résultat est encore vraie si 1’égalité X = C est presque siire (i.e. P(X =C) =1)

Définition

] Si la variable X admet une espérance et si celle-ci est nulle, on dit que la variable X est centrée.

27.4.2 Propriétés

Théoreme
Si les variables X et Y admettent des espérances alors pour tout A € R les variables A X et
X + Y admettent une espérance et

E(\X)=\E(X) et E(X +Y) = E(X) + E(Y)

dém. :
Etude de E(AX) = \E(X)
Le cas A = 0 est immédiat. Pour \ # 0,

AE(X)=X Y aP(X=z)= > MP(\X =)
zEX(Q) zEX(Q)

puis, sachant que x parcourt X (£2) si, et seulement si, A\a parcourt (AX ) (),

AE(X)= Y yPOX =y)=EQ)X)
ye(X) ()

Etudede E(X +Y)=E(X)+ E(Y)
Par la formule des probabilités totales

P(X=2)= ) PX=zY=y)

yeY (Q)
En sommant par paquets
E(X)= Y aP(X=z1)= > tP(X =z,Y =)
r€X(Q) (z,y)eX (Q)xY(2)
De méme
E(Y) = > yP(X =2,Y =y)

(z,9)EX ()XY (Q)
et donc, avec sommabilité

EX)+EY)= (z+y)P(X ==Y =y)
(z,y)EX(Q)XY(Q)
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En sommant par paquets selon la valeurde z = = + y

EX)+EY)= Y =z > PX =2Y =y)

SE(XHY)(Q)  (29)EX (XY (Q),0+y==

soit
E(X)+E(Y)= )  2P(X+Y=2)
2€(X+Y)(Q)

]
Corollaire

L’ensemble des variables aléatoires réelles discretes définies sur (2, .4, P) admettant une es-

pérance est un espace vectoriel et I’espérance y définit une forme linéaire.
dém. :
C’est un sous-espace vectoriel de I’espace des variables aléatoires.
]

Exemple Si a et b sont deux réels

E(aX +b)=aFE(X)+b

Exemple Si X admet une espérance alors la variable Y = X — E(X) est centrée.

Théoréme
Si X est a valeurs positives alors E(X) > 0.
Si de plus E(X) = 0 alors X = 0 presque siirement.

dém. :
Si X est a valeur positives
E(X)= Y aP(X=x)€cR"U{+oo}
z€X ()
car somme d’une famille de réels tous positifs.

Side plus E(X) = 0 alors
Ve e X(2),2P(X =2z)=0

et donc
Ve e X(Q\{0},P(X =2) =

On en déduit P(X = 0) = 1.

O
Corollaire
Si X et Y admettent une espérance et si X < Y alors
E(X) < E(Y)
dém. :
Z =Y — X est une variable positive.
O
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Théoreme
| Si|X] <Y etsiY admet une espérance alors X aussi.

dém. :
Par probabilités totales

E(X)= Y «P(X[=2)= ) > «P(X|=2Y=y)
relX|(0) Pl XI(2) yEv (@)

Or | X| <Y donc
xP(

=z,Y =y) <yP(|X[=2Y =y)
En effet, si le terme de probabilité est nul, I’inégalité est vraie, sinon il existe w € € tel que

| X (w)] = zetY(w) =ydonc z < y et I'inégalité est encore vraie.
En réordonnant la somme

E(XN< Y Y yP(X|=2Y=y)

yeY () z€|X|()

et par probabilité totales

E(X)< 3 yP(Y =y) = BY) < +oo
yeY (Q)

O

Exemple Si la variable aléatoire X est bornée, elle admet assurément une espérance.

27.4.3 Formule de transfert

Théoréme
On a équivalence entre :
(i) la variable f(X) admet une espérance ;

(ii) la famille (f(z)P(X = 2)),¢ v (q) est sommable.

De plus, si tel est le cas
> f@)P(X =)

Soit X une variable et f une fonction définie au moins sur X (£2) et a valeurs dans R.

z€X ()
dém. :
E(f(X)= > yP(f(X)=y)
yef(X)(Q)
Par probabilités totales
E(fX)= Y., > yP(f(X)=yX=nu)

yef(X)(Q) zeX(2)

yP(f(X) =y, X =2) = f()P(f(X) =y, X =)
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car 1’égalité est vraie quand la probabilité est nulle, mais aussi quand elle est non nulle car il existe un
événement w vérifiant (X (w)) = y et X(w) = = donc f(z) = y.
En réordonnant les sommes

E(fX)= > > [@P(fX) =y X=x

zeX(Q2) ye f(X)(Q)

Par probabilités totales

E(f(X))= Y [f@)P(X =x)

z€X(Q)

O

Exemple Sous réserve de sommabilité

E(X*) = > 2"P(X=2),E(")= ) "PX=ux)..

z€X(Q) TEX(Q)

27.4.4 Inégalité de Markov

Théoreme
Soit X une variable a valeurs positives admettant une espérance.

Pour touta > 0,0on a
aP(X > a) < E(X)

dém. :
Par définition

On sépare la somme en deux

EX)= Y aPX=2)+ »  aP(X=uz)
z€X(Q),z<a ze€X(Q),z>a
D’une part
> aP(X=x)>0
z€X(Q),z<a

car la variable aléatoire est a valeurs positives.
D’autre part

> aPX=x)> Y aP(X=z)=aP(X >a)

zeX(Q),z>a zeX(Q),x>a
O
Exemple L’inégalité de Markov possede de nombreuses déclinaisons
E(X
P(x|z ) < XD
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P(X-EX)|[>¢)

N

et

27.4.5 Variables indépendantes

Théoréeme
Si les variables X et Y sont indépendantes et admettent une espérance alors XY admet une

espérance et
E(XY)=E(X)E(Y)

dém. :
Avec sommabilité
E(X)E(Y) = > zyP(X = 2)P(Y =)
(2,9)EX(Q)XY(Q)
Par indépendance
E(X)E(Y) = > wyP(X =z,Y =)
(=) EX ()XY (Q)

En regroupant par paquets selon la valeur de z = zy
EX)EY)= Y =z > P(X =Y =y)
2€(XY)(Q) (z,y)eX(Q)xY(Q),z=zy
puis
E(X)E(Y)= > zP(XY =z)=E(XY)
2€(XY)(Q)
O

Remarque La réciproque est fausse : on peut avoir F(XY') = E(X)FE(Y") sans pour autant
indépendance de X et Y.

Corollaire
Si f(X) et g(Y') admettent des espérances avec X et Y variables indépendantes alors

E(f(X)g(Y)) = E(f(X)) E(9(Y))

27.5 Variance d’une variable aléatoire

Les variables aléatoires introduites seront toutes supposées réelles, discretes et définies sur un espace
probabilisé (2, A, P).
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27.5.1 Moments

Définition
On dit que la variable X admet un moment d’ordre k € N si la variable X* admet une espé-
rance. Celle-ci est alors appelée moment d’ordre k£ de X et on note

my =E(X") = Y 2*P(X =)
2EX(Q)

Exemple X admet assurément un moment d’ordre O et
moy = 1
X admet un moment d’ordre 1 si, et seulement si, X admet une espérance et alors

27.5.2 Espace des variables possédant un moments d’ordre 2

Théoréme
] Si la variable X admet un moment d’ordre 2 alors X admet une espérance.

dém. :
Pour toutz € R,ona
2|z <1+ 22
donc )
X <=(1+Xx?
X] < 5 (14 X7)

Puisque les variables 1 et X* admettent une espérance, la variable X aussi.
O

Remarque Ce résultat se généralise : si X admet un moment d’ordre n, X admet un moment d’ordre %
pour tout k£ < n.

Théoréme
Si les variables X et Y admettent chacune un moment d’ordre 2 alors XY est d’espérance finie
et
B(XY)? < E(X*)E(Y?)
dém. :

Pour tout x,y € R,on a
2|zy| <2® +y?

donc )
1 2 2
| XY < 5 (X +Y )
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Puisque les variables X2 et Y2 admettent une espérance, la variable XY aussi.
Soit A € R. Introduisons la variable Z = (AX +Y)? = A2X? + 2AXY + Y2, Par combinaison linéaire,
Z admet une espérance et puisque Z est positive

ME(X?)+2\E(XY)+E(Y?) >0

Cette identité vaut pour tout A € R.
Cas E(X?) # 0 : le trindme associé au premier membre ne peut posséder deux racines réelles et donc

A=4E(XY)’ - 4E (X?) E(Y?) <0
Cas F(X?) = 0 : on a nécessairement F(XY') = 0 car sinon la constance de signe est impossible.

O

Théoreme
L’ensemble des variables admettant un moment d’ordre 2 est un sous-espace vectoriel de 1’es-
pace des variables admettant un moment d’ordre 1.

dém. :
L’inclusion a déja été vue.
Si X et Y admettent des moments d’ordre 2 alors Z = AX + uY aussi car

Z% = X% f20uXY + p?Y?

admet une espérance par combinaison linéaire.
O

27.5.3 Variance et écart-type

Définition
Si X admet un moment d’ordre 2, on appelle variance de la variable X le réel

V(X) = E ((X - B(X))’)

On introduit aussi son écart type

Remarque La variance un bien définie car X et la constante £(X ) admettent des moments d’ordre 2.

Remarque Variance et écart-type permettent de mesurer la dispersion de la variable X autour de sa
moyenne.

Si la variable X se comprend avec une unité (des metres, des années, des points,. .. ) espérance et
écart-type s’exprime avec la méme unité.

Théoréme
Si X admet un moment d’ordre 2 alors

V(X)=E(X?) - E(X)

http://mp.cpgedupuydelome.fr 664 @O0



CHAPITRE 27. VARIABLES ALEATOIRES DISCRETES

dém. :
En développant

(X —E(X))?=X?-2B(X)X + E(X)?
et par linéarité de 1’espérance
V(X)=E(X?) -2E(X)’+E(X)’=E(X?) - E(X)?
|

Exemple Si X ~ B(p) alors V(X) = p(1 — p).

Exemple Si X ~ B(n,p) alors V(X) = np(1 —p).

Théoréeme
Si X est admet un moment d’ordre 2 alors pour tout a, b € R,

V(aX +b) = a*V(X)

dém. :
V(aX +b) = E (a®>X? + 2abX +b*) — (aE(X) +b)* = a® (E (X?) - BE(X)?) = a*V(X)
O

Remarque Il est naturel que la translation de b ne modifie pas la valeur de la variance car, si cette
translation modifie 1a moyenne, elle ne modifie pas la dispersion de la variable autour de celle-ci.

Définition
] Lorsqu’une variable aléatoire est de variance égale a 1, on la qualifie de réduite.

Exemple Si X est une variable admettant un moment d’ordre 2 alors en introduisant son espérance m et
son écart type o (supposé non nul), la variable

est centrée réduite.
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27.5.4 Covariance

Définition
Si les variables X et Y admettent des moments d’ordre 2, on introduit leur covariance

Cov(X,Y) = E((X — E(X)) (Y — E(Y)))

Exemple Cov(X,X) =V (X).

Proposition

La covariance définit une application bilinéaire symétrique sur 1’espace des variables admettant
un moment d’ordre 2.

dém. :
La symétrie est évidente.
De plus, on peut simplifier
Cov(X,Y)=FE((X - E(X)Y)

et la linéarité de Y — Cov(X,Y") est alors évidente.

O
Théoreme
Si X et Y sont deux variables aléatoires réelles sur I’espace probabilisé (€2, P) alors
Cov(X,Y)=E(XY)—-E(X)E(Y)
dém. :
En développant

(X-EX)(Y-EY)=XY-EX)Y-EY)X+EX)E(Y)
puis par linéarité de 1’espérance

Cov(X,Y) = E(XY) - 2E(X)E(Y) + E(X)E(Y) = E(XY) — E(X)E(Y)

O

Corollaire
Si les variables X et Y sont indépendantes

Cov(X,Y)=0

La réciproque est fausse.

Remarque Par I’inégalité de Cauchy-Schwarz, on a

ICov(XY)| < V(X)V(Y)
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SiV(X) > 0etV(Y) > 0 on peut introduire

Cov(X,Y)

cor(X,Y) = OV

e[-1,1]

appelé coefficient de corrélation de X et Y.

Si les variables X et Y sont indépendantes, ce coefficient est nul.

Si les variables X et Y ont des « comportements analogues », ce coefficient est proche de 1.
Si les variables X et Y ont des « comportements opposés », ce coefficient est proche de —1.

27.5.5 Variance d’une somme

Proposition

Si X et Y admettent un moment d’ordre 2 alors

V(X +Y) = V(X)+2Cov(X,Y) + V(Y)

dém. :
Par la formule de Huygens

VIX+Y)=E((X+Y)?) — (B(X +Y))*
En développant et par linéarité de 1’espérance
V(X +Y)=E(X?) +2E(XY)+E(Y?) - E(X)’ - 2E(X)E(Y) - E(Y)*

puis immédiatement
V(X+Y)=V(X)+2Cov(X,Y)+ V(Y)

a
Théoréme
Si les variables X1, ..., X,, admettent des moments d’ordre 2 alors
1% (Z Xi> = V(X;)+2> Cov(X;, X))
i=1 i=1 i<j
dém. :
Ona

i=1
Par bilinéarité
n n n
1% (Z Xi> => Y Cov(X;, X))
i=1 i=1 j=1

On obtient I’identité voulue en réorganisant via

COV()Q7 X,L) = V(XZ) et COV(Xj,Xi) = COV(Xi,Xj)
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O

Corollaire
Si les variables Xi,..., X,, sont deux a deux indépendantes

(50) - Sovis

i=1

Exemple On peut exploiter ce résultat pour retrouver la variance d’une variable X suivant une loi
binomiale de parametres n et p.

En effet, celle-ci peut étre simulée par la somme de X; + - - - + X,, de n variables mutuellement
indépendantes suivant une loi de Bernoulli de parametre p et alors

V(X) = V(X1) + -+ V(Xn) = np(l —p)

27.5.6 Inégalité de Bienaymé-Tchebychev

Théoréme
Si la variable X admet un moment d’ordre 2 alors pour tout € > 0,

V(X)
52

P(X -EX)[>¢) <

dém. :
On a

(X~ E(X)| > ) = (X - BX) > <)

et par I'inégalité de Markov appliquée 2 la variable positive Y = (X — F(X))?

=
>
I
&
=
Y%

e?P(Y 2e%)=e’P( X —E(X)|>¢)

O

Remarque Cette inégalité permet de mesurer dans quelle mesure 1’expérimentation peut s’écarter de sa
moyenne.
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27.5.7 Loi faible des grands nombres

Théoreme

Soit (X, ), >0 une suite de variables aléatoires deux a deux indépendantes et suivant une méme
loi.

Si celles-ci admettent un moment d’ordre 2 alors en introduisant m leur espérance commune

et "
Sp = X
k=1
ona
Sn
Pl|— — e —0
n n—-+oo

dém. :
Introduisons ¢ la variance commune aux variables X,,. On a

E(S,) =nmetV(S,) = no?

Par I’inégalité de Bienaymé-Tchebychev

P(|S, —nm| > a) <

En prenant a = ne

(

S"—m‘>s>—P(|Sn—nm|>a)g = —
n

O

Exemple On veut estimer 1’équilibre d’une piece. On note p la probabilité (inconnue) que la piece
donne « face »lors d’un lancer.

On lance n fois la piece et I’on pose S égale au nombre de lancers ayant donné « face ».

En posant X, la variable de Bernoulli testant si le k-ieme lancer donne « face », on

n
S=> X
k=1
Sachant E(Xj) = pet V(Xy) = p(1 — p) < 1/4, I'inégalité de Bienaymé-Tchebychev donne

P(IS/n=pl>2) < 7

Pour e = 0,01, on obtient que S/n est une valeur approchée de p a € prés avec une probabilité
supérieure a 5 % sous réserve de prendre n > 50 000 !
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27.6 Variables aléatoires a valeurs naturelles

27.6.1 Loi de Poisson

Définition
On dit qu’une variable aléatoire X suit une loi de Poisson de parametre \ (avec A > 0) si

Ak
X(Q)=NetP(X =k) = e*Aﬁ
On note P(\) cette loi.
Remarque On vérifie
+oo k
A

Ze*)‘ﬁ = lavece /\ﬁ >0
k=0

Il est donc possible qu’une telle loi existe. . .

Théoreme
Si X ~ P(A) alors
EX)=XetV(X)=A\

dém. :
+oo _A‘Xk +o0 . Ak _A‘+oo Ak
n=0 k=1 k=0
et
V(X)=E(X*)-E(X))=EX(X -1)+EX)-E(X)?
avec
= AAk 2 A-+“)Ak 2
E(X(X —1)) =Y k(k—1)e G =AM ZE—A
k=0 k=0
et donc
VX)=M+ A=A =)
O

Exemple Si durant un laps de temps 7" un phénomene se produit en moyenne A fois, il est fréquent de
dire que le nombre d’occurrences de ce phénomene durant ce laps de temps suit une loi de Poisson de
parametre .

Par exemple, le nombre de désintégrations radioactives par seconde, le nombre de passages journalier le
long d’une route, le nombre d’accidents annuel, etc.

Cette interprétation s’explique par un passage a la limite de la loi binomiale dans le cadre des
événements rares.
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Théoreme
Soit (X},),,cy est une suite de variables aléatoires avec X,, ~ B(n, py).
Si np, — A alors
n—-+o0o

LN

dém. :
Par définition d’une loi binomiale

k
Or
" nk k, k 1 n—k __ npn b n(1
k| n—>4oc ﬁ etn pn( o pn) - 1— Dn exp (’I’L n( - pn))
avec
P — Aet (]_ —pn)n =" In(1—pn) _ e—npn-i-o(l) e_/\
1—pp notoo n—>+oo>
donc
LA
P(Xn = k) n—+o00 ¢ k!
0

Exemple Dans une certaine quantité de matiere, il y a une grande quantité n d’atomes radioactifs.
Chacun a une probabilité p tres faible de se désintégrer mais 1’on sait qu’en moyenne il y a A
désintégration durant un laps de temps 7" : np = A. En supposant I’indépendance des désintégrations
atomiques, il serait rigoureux de modéliser le nombre X de désintégration par une loi de Bernoulli
B(n,p).

En pratique, les calculs numériques seraient difficiles alors que 1’approximation avec une loi de Poisson
de parametre A est bien plus commode.

Exemple Soit X et Y deux variables aléatoires indépendantes suivant des lois de Poisson de parametres
Aet > 0. Etudions la loi de la variable Z = X + Y .X + Y est a valeurs dans N et

k
P(X+Y =k =) PX=0Y=k-{)
£=0
Par indépendance
PX+Y =k = PX=0PY =k-1¥)
£=0
puis
k WA P
PX+Y=k)= - s
(X + k) ;e 7 =
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On réorganise

14

) Lk
P(X+Y =k =" = Z( )V,ﬁ—‘

£=0

Par la formule du bindme .
o (m) (A+n)

P(X+Y =k) = -

La variable X + Y suit une loi de Poisson de parametre \ + .

27.6.2 Loi géométrique

Définition

On dit que la variable aléatoire X suit une loi géométrique de parametre p (avec p € ]0,1[) si

X(Q)=NetP(X =Fk)=p(1—p)r!

On note G(p) cette loi.

Remarque On vérifie

+oo
> p(1—p)F !t =1lavecp(l—p)* "t >0
k=1

Il est donc possible qu’une telle loi existe.

Exemple On lance successivement un dé équilibré jusqu’a obtention d’un six.

On pose X le nombre de lancers nécessaires. On a

etdonc X ~ G(p) avec p = 1/6.

Remarque Plus généralement, la loi géométrique est utile pour évaluer le temps d’attente du premier
succes dans une suite d’épreuves de Bernoulli mutuellement indépendantes de méme parametre p.

Théoréme
Si X ~ G(p) alors
1 1—p
EX)=-etV(X)=
(X) " (X) o
dém. :

+o0 1
E(X)=> k(1-p)'p=—
k=1 p
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et
V(X)=E(X(X - 1))+ E(X) - E(X)?
avec
—+oo
E(X(X—-1))=> k(k—=1)(1—-p)*'p
k=2
Or
—+oo
d? 1 2
k(k—1)z"2= — —
Z ( @ da? <1—;v> (1—2)3
k=2
donc
2
EXX-1)=p(1-p) =
puis
1—-p 1 1 1—p
V(X)=2 + ===
&0 P p p* P
O
Théoreme
Si X est une variable aléatoire & valeurs dans N* vérifiant la condition d’absence de mémoire
Vn ke NNP(X >n+k| X >n)=P(X >k)
alors X suit une loi géométrique.
dém. :

Posons ¢ = P(X > 1). La condition imposée donne

PX>n+1|X>n)=gq

PX>n+1)=P(X>n+1|X >n)P(X >n)

et donc
P(X >n+1)=¢P(X >n)

Par une récurrence immédiate et sachant P(X > 0) = 1, on obtient
VYneN,P(X >n)=q"

puis
Vne N, P(X=n)=P(X>n—-1)—P(X >n)=(1-q)¢" "

Ainsi, la variable X suit une loi géométrique de parametre p = 1 — q.
O
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27.6.3 Fonctions génératrices

Soit X une variable aléatoire discrete a valeurs dans N.
Définition
On appelle fonction génératrice de la variable X la série enticre

> P(X =n)t"

On note Gx (t) sa somme 1a ou elle est définie

Gx(t) = JfP(X =n)t" = E (t¥)
n=0

Théoreme
Cette série enticre est de rayon de convergence 2 x au moins égale a 1 et converge normalement
sur [—1,1].

dém. :

Pour ¢ = 1, la série numérique Z P(X =n)1"= Z P(X = n) converge.

Puisque la série entiere converge en ¢ = 1, son rayon de convergence est au moins égale a 1.

Posons u, (t) = P(X = n)t" définie sur [—1,1].

Pour tout t € [—1,1], |u,(¢)] < P(X =n).

C’est une majoration uniforme et Z P(X =n) converge donc la série de fonctions Z u,, converge

normalement sur [—1, 1].
O

Corollaire
La fonction génératrice G'x est au moins définie et continue sur [—1, 1].

Remarque La fonction génératrice est enticrement déterminée par la loi de X'. Inversement, la fonction
génératrice caractérise la loi de X puisque

_ G0

n!

Exemple Si X ~ B(p) alors

Gx(t)=(1—-p)+ptet Rx =+o0

Exemple Si X ~ B(n,p) alors

Gx(t) = Z
e

(Z) () 1 —p)" " =1 —p+pt)" et Ry = +o0
0
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Exemple Si X ~ P()) alors

+oo
G t) = —A ()\t)n _ A(-1) Ry =
X()—Ze —— =e et Ry = 400

n!

n=0
Exemple Si X ~ G(p) alors
+o00 pt
Gx(t) = L—p)"Ipt" = ———  _etRx =1
x(t) ;( p)"p T S /p

27.6.4 Calcul d’espérances et de variances

Soit X une variable aléatoire discréte a valeurs dans N et G'x sa fonction génératrice. On remarque
+oo
Gx(1)=) P(X =n)=1=E(1)
n=0

Par dérivation de série entiére sur |—1, 1]

+oo
GO = nn-1)...(n—k+1)P(X = n)t"*
n=0

et donc
GPt) =E(X(X —1)...(X —k+ 1)t¥)

Sous réserve d’existence
GO =EX(X-1)...(X —k+1))

ce qui donne acces aux moments de X ... Approfondissons dans le cadre de 1’espérance et de la variance.

Théoreme
On a équivalence entre :
(1) la variable X admet une espérance ;
(ii) la fonction génératrice G x est dérivable en 1.
De plus, on a alors
B(X) = Gy (1)

dém. :
Sur [—1, 1], Gx est la somme de la série de fonctions Z Uy, Ol

un(t) = P(X = n)t"
Celles-ci sont de classe C* sur [—1, 1] et
ul (t) = nP(X =n)t"*

(i) = (ii) Si X admet une espérance alors Z nP(X = n) converge. Or on a la majoration uniforme

lul, (t)| < nP(X = n) et donc la série Z u,, converge normalement sur [—1,1].
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On en déduit que G'x est de classe C' sur [~1, 1]. En particulier, G x est dérivable en 1.
De plus

+oo +oo
G(1) =Y u,(1) =Y nP(X =n)=E(X)
n=0 n=0

(i1) = (i) Supposons Gx dérivable en 1. Le taux d’accroissement

Gx(t) —Gx(1) X -1
. t—lX *;_%P(X’")tq

admet une limite quand ¢ — 1~ . Exploitons I’écriture

M:fP(X:n)(l—i—t—i--u—i—t"_l)

t—1
n=0
Soit N € N,
N N
> nP(X =n) =lim Y P(X =)L+t 41"
—
n=0 n=0

Par positivité des termes sommés

N
> nP(X =n) < lim Gxelt) = Gx(1) G’ (1)
n=0

t—1 t—1

La série Z nP(X = n) est donc convergente car c’est une série a termes positifs aux sommes partielles
majorées.

O

Théoreme

On a équivalence entre :

(i) la variable X admet un moment d’ordre 2 ;

(ii) la fonction génératrice Gy est deux fois dérivable en 1.

De plus, on a alors

V(X) = G% (1) + Gy (1) — (G (1))

dém. :
(i) = (ii) Si la variable X admet un moment d’ordre 2, il y a convergence de Z nQP(X = n) mais aussi

de Z n(n — 1)P(X = n). On peut alors adapter la démonstration précédente et obtenir Gx de classe
C? sur [—1, 1] avec
+o00
G%(1)=> "n(n—1)P(X =n) = E(X(X - 1))
n=0
La relation
V(X)=E(X*)-E(X)?=E(X(X -1))+ E(X) - BE(X)*

fournit alors
V(X) = G% (1) + Gy (1) — (G (1))
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(i1) = (i) Supposons G x deux fois dérivable en 1. La fonction G'x est au moins dérivable en 1 et donc

X admet une espérance. On sait alors exprimer G’y (t) sur [—1, 1] par

+oo
G (t) =) nP(X =n)t"
n=1

La poursuite de la démonstration est alors la méme que celle précédente afin d’établir la convergence de

> n(n—1)P(X =n)

O

Exemple Si X ~ B(p) alors Gx(t) = (1 — p) + pt.
B(X)=Gx(1) =petV(X)=0+p—p*=p(l-p)

Exemple Si X ~ B(n,p)alors Gx (t) = (1 —p+ pt)".
B(X)=mnpetV(X) =n(n—1)p* +np — (np)* = np(1 - p)

Exemple Si X ~ P()) alors Gx (t) = M=),
E(X)=XetV(X) =M A-A\2=2

P
. pt D 1-p
E le Si X ~ 1 t)= = :
xemple Si X~ Glp)alors Gx (1) = 11— = ;-1 T 11— pye
1 2l—p) 1 1 _1-p
EX)=-etV(X)=——F5—+-—5 =
( ) P ( ) p2 P p2 p2

27.6.5 Fonctions génératrices d’une somme

Théoréme
Soit X et Y sont deux variables aléatoires discretes a valeurs dans N.
Si X et Y sont indépendantes alors

Gx+y = GX X GY

dém. :
Pourt € [-1,1],
Gxiy(t)=E () =B (" xt")

Or les variables t et ¥ sont indépendantes car X et Y le sont donc

Gxiy(t)=E () E () =Gx )Gy (t)

O
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Corollaire
Si X1,...,X, sont des variables mutuellement indépendantes

Gxittx, () = Gx, (t) x - x Gx,, (t)

Exemple Sachant qu’une loi B(n, p) peut étre simulée par la somme de n loi B(p) indépendantes, on
retrouve que si X ~ B(n,p) alors Gx (t) = (1 —p+ pt)".

27.6.6 Musculation : somme aléatoire

Théoréme
Soit N une variable aléatoire a valeurs dans N et (X,,),cn+ une suite de variables aléatoires
suivant toutes une méme loi de fonction génératrice Gx.

Si ces variables sont mutuellement indépendantes alors la fonction génératrice de la variable
N

S = Z X, est donnée par
k=1

Gs(t) = Gn (Gx(t))

dém. :
Par formule des probabilités totales

+oo
P(S=n)=Y P(N=kP(X;+-+ Xz =n)
k=0
donc
+o00 +oo
Gs(t)=>_ Y P(N=k)P(X;+-+ Xz =n)t"
n=0 k=0

En réordonnant la somme de cette famille sommable
+oo “+o0

Gs(t)=> P(N=k)Y P(X1+-+ Xz =n)t"
k=0 n=0

soit

+oo
Gs(t) = ZP(N = k)GX1+“'+Xk (t)
k=0

Or Gx, 44, (t) = [Gx(t)]" donc

“+o0

O
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Corollaire
Si N et X possedent une espérance

dém. :
Car
Gs(1) = G (1)Gy(Gx (1)) = G (1)G'N(1)

]

Exemple On lance une picce équilibrée. Tant que 1’on obtient « face », on jette un dé et on avance le
personnage d’un jeu de plateau du nombre correspondant de cases.
En moyenne, le personnage avance de E(S) = E(N) x E(X) = 3,5 cases.
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