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Chapitre 1

Groupes

1.1 L’ensemble Z/nZ

1.1.1 Relation d’équivalence

Définition
On appelle relation d’équivalence sur un ensemble E toute relation binaireR vérifiant
1)R est réflexive i.e. ∀x ∈ E, xRx ;
2)R est symétrique i.e. ∀x, y ∈ E, xRy ⇒ yRx :
3)R est transitive i.e. ∀x, y, z ∈ E, xRy et yRz ⇒ xRz ;

Exemple L’égalité est une relation d’équivalence sur E.

Exemple L’équivalence des suites (ou de fonctions au voisinage de a ∈ R̄) est une relation
d’équivalence.

Exemple L’équivalence des matrices deMn,p(K).

Remarque Plus généralement, pour une application f : E → F , la relationR donnée par

xRy ⇔ f(x) = f(y)

définit une relation d’équivalence sur E.

Remarque En fait, une relation d’équivalence se comprend comme « une égalité modulo certains
critères » .
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1.1. L’ENSEMBLE Z/NZ

1.1.2 Classe d’équivalence
SoitR une relation d’équivalence sur E.

Définition
On appelle classe d’équivalence d’un élément x deE pour la relationR, le sous-ensemble noté
Cl(x) formé des éléments qui sont en relation avec x

Cl(x) =
déf
{y ∈ E/xRy}

La classe d’équivalence de x est encore souvent notée ẋ, x̄, x̂,. . .

Exemple Considérons E = {a, b, c, d, e} et f : E → {0, 1, 2} définie par

f(a) = 0, f(b) = 1, f(c) = 0, f(d) = 1 et f(e) = 2

La relationR définie par
xRy ⇔ f(x) = f(y)

est une relation d’équivalence que l’on peut visualiser ainsi

Pour celle-ci Cl(a) = Cl(c) = {a, c}, Cl(b) = Cl(d) = {b, d} et Cl(e) = {e}.

Remarque Cl(x) réunit les éléments de E qui sont « égaux modulo la relationR » .

Théorème
a) ∀x ∈ E, x ∈ Cl(x) ;
b) ∀x, y ∈ E, xRy ⇒ Cl(x) = Cl(y) ;
c) ∀x, y ∈ E, x 6 Ry ⇒ Cl(x) ∩ Cl(y) = ∅
Ainsi une classe d’équivalence n’est jamais vide et deux classes d’équivalence distinctes sont
disjointes.

dém. :
x ∈ Cl(x) car la relationR est réflexive.
Si xRy alors pour tout z ∈ Cl(y) on a yRz et donc xRz par transitivité. Ainsi Cl(y) ⊂ Cl(x) et par
symétrie on a l’autre inclusion et donc l’égalité.
Enfin, par contraposée, si Cl(x)∩Cl(y) 6= ∅ alors pour un certain z ∈ Cl(x)∩Cl(y), on a xRz et yRz
donc par symétrie et transitivité, on obtient xRy.
�

Remarque Si y est élément d’une classe d’équivalence Cl(x) alors xRy et donc Cl(x) = Cl(y). Ainsi,
tout élément d’une classe d’équivalence détermine celle-ci.
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CHAPITRE 1. GROUPES

Définition
Tout élément y d’une classe d’équivalence est appelé représentant de celle-ci.

1.1.3 Ensemble quotient

Soit R une relation d’équivalence sur E. Les classes d’équivalence réalisent une partition de E ; cette
partition est obtenue en regroupant entre eux les éléments qui sont « égaux modulo la relationR » .

Exemple Considérons la relation d’équivalence précédente sur E = {a, b, c, d, e}.
Celle-ci réalise une partition de E en 3 classes d’équivalence.

Définition
On appelle ensemble quotient de E par R l’ensemble des classes d’équivalence pour rela-
tionR.
On le note E/R.

Remarque E/R se comprend comme l’ensemble obtenu lorsqu’on « identifie entre eux les éléments
qui sont égaux moduloR » .

Exemple L’ensemble Q des nombres rationnels se construit comme l’ensemble quotient de Z× Z?
pour la relation

(a, b)R(c, d)⇔ ad = bc

La classe d’équivalence d’un couple (a, b) est alors notée a/b.

1.1.4 L’ensemble Z/nZ
Soit n ∈ N?.

Définition
On définit sur Z la relation de congruence modulo n par

a ≡ b [n]⇔ n | (b− a)

Proposition
La relation de congruence modulo n est une relation d’équivalence sur Z.

dém. :
La relation est réflexive car a ≡ a [n] puisque n | (a− a).
La relation est symétrique car a ≡ b [n]⇒ b ≡ a [n] puisque n | (b− a)⇒ n | (a− b).
Enfin, la relation est transitive car a ≡ b [n] et b ≡ c [n] ⇒ a ≡ c [n] puisque n | (b − a) et n |
(c− b)⇒ n | (c− a).
�
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1.1. L’ENSEMBLE Z/NZ

Définition
Pour a ∈ Z, on note ā la classe d’équivalence de a ∈ Z pour la relation de congruence
modulo n.
Ainsi

ā = {a+ kn/k ∈ Z} = a+ nZ

Définition
On note Z/nZ l’ensemble quotient de Z pour la relation de congruence modulo n.

Théorème
Z/nZ est un ensemble fini à n éléments qui sont

0̄, 1̄, . . . , (n− 1)

dém. :
0̄, 1̄, . . . , (n− 1) sont des éléments de Z/nZ.
Pour a, b ∈ {0, . . . , n− 1},

ā = b̄⇒ n | (b− a)⇒ a = b

Par suite, les classes 0̄, 1̄, . . . , (n− 1) sont deux à deux distinctes.
Pour tout ā ∈ Z/nZ, en considérant le reste r ∈ {0, 1, . . . , n− 1} de la division euclidienne de a par n,
on obtient ā = r̄. Ainsi toutes les classes d’équivalence figurent parmi 0̄, 1̄, . . . , (n− 1).
�

Exemple Z/2Z = {0̄, 1̄}, Z/3Z = {0̄, 1̄, 2̄}, Z/4Z = {0̄, 1̄, 2̄, 3̄}, etc.

Proposition
Pour tout a, b, a′, b′ ∈ Z,

a ≡ a′ [n] et b ≡ b′ [n]⇒ a+ b ≡ a′ + b′ [n] et ab ≡ a′b′ [n]

dém. :
n | a′ − a et n | b′ − b entraînent n | (a′ + b′) − (a + b) = (a′ − a) + (b′ − b) et n | (a′b′) − (ab) =
(a′ − a)b′ + a(b′ − b)
�

Définition
On définit deux opérations + et × sur Z/nZ en posant

ā+ b̄=
déf
a+ b et ā× b̄=

déf
ab

Remarque La définition ci-dessus est consistante puisque le résultat de ces opérations ne dépend pas
des représentants a, b choisis pour chaque classe.
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CHAPITRE 1. GROUPES

Exemple Dans Z/6Z,
3̄ + 5̄ = 8̄ = 2̄ ou encore 3̄ + 5̄ = 3̄ +−1 = 2̄.
3̄× 5̄ = 15 = 3̄ ou encore 3̄× 5̄ = 3̄×−1 = −3 = 3̄.

1.2 Structure de groupe

1.2.1 Définition

Définition
On appelle groupe tout couple (G, ? ) formé d’un ensemble G et d’une loi de composition
interne ? sur G vérifiant :
1) ? est associative i.e.

∀a, b, c ∈ G, (a ? b) ? c = a ? (b ? c) ;

2) ? possède un neutre i.e.

∃e ∈ G,∀a ∈ G, a ? e = a = e ? a

cet élément e est alors unique ;
3) tout élément de G est symétrisable ? i.e.

∀a ∈ G,∃b ∈ G, a ? b = e = b ? a

cet élément b est alors unique et appelé symétrique de a, noté a−1 .
Si de plus la loi ? est commutative, on parle de groupe abélien.
Lorsque la loi est notée × ou., on dit que le groupe est noté multiplicativement ( e → 1,
a ? b→ ab )
Lorsque la loi est notée +, on dit que le groupe est noté additivement (e → 0, a ? b → a + b,
a−1 → −a ). Cette dernière notation est réservée au groupe commutatif.

Attention : Lorsque la loi ? n’est pas commutative :
- la neutralité de e se vérifie par deux compositions ;
- l’inversibilité d’un élément se vérifie par deux compositions ;
- on a (a ? b)−1 = b−1 ? a−1.

Exemple (C,+), (R,+), (Z,+) sont des groupes abéliens de neutre 0.

Exemple (C?,×), (R?,×), (R+?,×) sont des groupes abéliens de neutre 1.

Exemple (GLn(K),×) est un groupe non commutatif de neutre In.
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1.2. STRUCTURE DE GROUPE

1.2.2 Itéré d’un élément
Soit (G, ?) un groupe de neutre e.

Définition
Pour a ∈ G et k ∈ Z, on note ak l’itéré d’ordre k de l’élément a :
- pour k > 0, ak =

déf
a ? · · · ? a ( k termes) ;

- pour k = 0, a0 =
déf
e ;

- pour k < 0, ak =
déf
a−1 ? · · · ? a−1 (|k| termes).

Proposition
On a

∀k, ` ∈ Z, ak ? a` = ak+` et (ak)` = ak`

dém. :
Il suffit de discuter selon les signes des exposants d’itérations considérés, c’est un peu lourd. . .
�

Remarque Si le groupe est noté additivement, on note k.a l’itéré d’ordre k de a. On a alors

k.a+ `.a = (k + `).a et `.(k.a) = (k`).a

Attention : En général
(a ? b)p 6= ap ? bp

En effet
(a ? b)p = (a ? b) ? (a ? b) ? . . . ? (a ? b)

et
ap ? bp = (a ? a ? . . . ? a) ? (b ? b ? . . . ? b)

Cependant, si a et b commutent alors (a ? b)p = ap ? bp

1.2.3 Le groupe symétrique

Définition
On note SE l’ensemble des permutations de E i.e. des bijections de E vers E.

Théorème
(SE , ◦) est un groupe de neutre IdE .
Ce groupe est non commutatif dès que CardE > 3.

Exemple Sn = S ({1, . . . , n}) est un groupe de cardinal n!.
Parmi ses éléments signalons :
- les transpositions τ = ( i j) vérifiant τ2 = Id ;
- les p-cycles c = ( a1 a2 . . . ap) vérifiant cp = Id.
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CHAPITRE 1. GROUPES

1.2.4 Le groupe (Z/nZ,+)

Théorème
(Z/nZ,+) est un groupe abélien à n éléments de neutre 0̄.
De plus

∀ā ∈ Z/nZ, − ā = (−a)

dém. :
ā+ b̄ = (a+ b) = (b+ a) = b̄+ ā donc + est commutative sur Z/nZ.
(ā+ b̄) + c̄ = a+ b+ c̄ = (a+ b) + c = a+ (b+ c) = ā+ (b̄+ c̄) donc + est associative sur Z/nZ.
ā+ 0̄ = a+ 0 = ā = 0̄ + ā donc 0̄ est élément neutre de (Z/nZ,+).
ā+ (−a) = a− a = 0̄ = (−a) + ā donc ā est symétrisable et −ā = (−a).
�

Exemple n = 2, Z/2Z = {0̄, 1̄}.
+ 0̄ 1̄
0̄ 0̄ 1̄
1̄ 1̄ 0̄

Exemple n = 3, Z/3Z = {0̄, 1̄, 2̄}.
+ 0̄ 1̄ 2̄
0̄ 0̄ 1̄ 2̄
1̄ 1̄ 2̄ 0̄
2̄ 2̄ 0̄ 1̄

Remarque Dans une table d’opérations, sur chaque ligne figure chaque élément de groupe ; cela
provient de la bijectivité de l’application x 7→ a ? x sur G. On a la même propriété sur les colonnes.

Théorème
Pour tout ā ∈ Z/nZ et k ∈ Z

k.ā = k × a

dém. :
Par récurrence pour k ∈ N.
Cas k = 0 : 0.ā = 0̄ = 0.a.
Supposons la propriété vraie au rang k > 0.

(k + 1).ā = k.ā+ ā =
HR

ka+ ā = ka+ a = (k + 1)a

Récurrence établie.
Pour k ∈ Z−, on peut écrire k = −p avec p ∈ N.
On a alors

k.ā = −(p.ā) = −pa = −pa = ka

�
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1.2. STRUCTURE DE GROUPE

1.2.5 Produit fini de groupes

Définition
Soit ?1, . . . , ?n des lois de composition interne sur des ensembles E1, . . . , En. On appelle loi
produit sur E = E1 × · · · × En la loi ? définie par

(x1, . . . , xn) ? (y1, . . . , yn) =
déf

(x1 ?1 y1, . . . , xn ?n yn)

Proposition
Si (G1, ?1),. . . , (Gn, ?n) sont des groupes de neutres e1, . . . , en alors G = G1 × . . . × Gn
muni de la loi produit ? est un groupe de neutre e = (e1, . . . , en).
De plus :
- l’inverse d’un élément (x1, . . . , xn) ∈ G est (x−1

1 , . . . , x−1
n ) ;

- si tous les groupes (G1, ?1),. . . , (Gn, ?n) sont commutatifs, le groupe (G, ?) l’est aussi.

dém. :
Soit x = (x1, . . . , xn), y = (y1, . . . , yn) et z = (z1, . . . , zn) éléments de G1 × . . .×Gn.
On a

x ? (y ? z) = (. . . , xi ?i (yi ?i zi), . . .)

et
(x ? y) ? z = (. . . , (xi ?i yi) ?i zi, . . .)

Puisque les lois ?i sont associatives, on obtient

x ? (y ? z) = (x ? y) ? z

L’élément e est neutre car

x ? e = (. . . , xi ?i ei, . . .) = x et e ? x = (. . . , ei ?i xi, . . .) = x

L’élément x est symétrisable de symétrique x′ = (x−1
1 , . . . , x−1

n ) car

x ? x′ = (. . . , xi ?i x
−1
i , . . .) = e et x′ ? x = (. . . , x−1

i ?i xi, . . .) = e

Ainsi (G, ?) est bien un groupe.
Si de plus les lois ?i sont toutes commutatives

x ? y = (. . . , xi ? yi, . . .) = (. . . , yi ? xi, . . .) = y ? x

�

Exemple Si (G, ?) est un groupe de neutre e alors (Gn, ?) est un groupe de neutre (e, . . . , e).

Exemple Pour (G1, ?1) = (G2, ?2) = (Z,+), la loi produit sur Z2 que nous notons + est définie par :

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2)

(Z2,+) est un groupe abélien de neutre 0Z2 = (0, 0).
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CHAPITRE 1. GROUPES

Exemple Pour (G1, ?1) = (R+?,×) et (G2, ?2) = (R,+), la loi produit sur R+? × R que nous notons
? est définie par :

(r, θ) ? (r′, θ′) = (rr′, θ + θ′)

(R+? × R, ?) est alors un groupe abélien de neutre e = (1, 0).
De plus

(r, θ)−1 = (1/r,−θ)

1.3 Sous-groupes
(G, ?) désigne un groupe de neutre e.
1.3.1 Définition

Définition
On appelle sous-groupe d’un groupe (G, ?) toute partie H de G vérifiant :
1) e ∈ H ;
2) ∀x, y ∈ H,x ? y−1 ∈ H .

Exemple {e} et G des sont sous-groupes de (G, ?).

Remarque Le point 1) peut aussi être transposé en H 6= ∅ car alors H 6= ∅ et 2) entraîne e ∈ H .
Le point 2) peut aussi être transposé en 2a) ∀x, y ∈ H,x ? y ∈ H et 2.b) ∀x ∈ H,x−1 ∈ H .

Remarque Si le groupe est noté additivement 1) et 2) se relisent 0 ∈ H et ∀x, y ∈ H,x− y ∈ H .

Théorème
Si H est un sous-groupe d’un groupe (G, ?) alors (H, ?) est un groupe de même neutre.

Exemple L’ensemble des racines n-ième de l’unité est

Un = {z ∈ C/zn = 1}

C’est un sous-groupe de (C?,×).
(Un,×) est le groupe des racines n-ième de l’unité.
Rappelons

Un =
{

e2ikπ/n/k ∈ J0, n− 1K
}

=
{
ωk/k ∈ J0, n− 1K

}
avec ω = e2iπ/n.

Exemple L’ensemble des matrices orthogonale est

On(R) =
{
A ∈Mn(R)/tAA = In

}
C’est un sous-groupe de (GLn(R),×).
(On(R),×) est un groupe, c’est le groupe orthogonal d’ordre n.
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1.3. SOUS-GROUPES

1.3.2 Intersection d’une famille de sous-groupes

Théorème
Si (Hi)i∈I est une famille de sous-groupes de (G, ?) alors leur intersection H =

⋂
i∈I

Hi est un

sous-groupe de (G, ?).

dém. :
H ⊂ G et e ∈ H car e est élément de chaque Hi.
Soit x, y ∈ H . Pour tout i ∈ I , x, y ∈ Hi donc x ? y−1 ∈ Hi puis x ? y−1 ∈ H .
�

Remarque La réunion de deux sous-groupes n’est pas un sous-groupe sauf cas d’inclusion de l’un dans
l’autre.

1.3.3 Sous-groupe engendré par un élément

Définition
On appelle sous-groupe engendré par un élément a ∈ G l’ensemble

〈a〉=
déf

{
ak/k ∈ Z

}

Remarque En notation additive,
〈a〉 = {k.a/k ∈ Z}

Théorème
〈a〉 est un sous-groupe de (G, ?) contenant a.
De plus, pour tout sous-groupe H de G

a ∈ H ⇒ 〈a〉 ⊂ H

Ainsi 〈a〉 apparaît comme le plus petit sous-groupe contenant a.

dém. :
〈a〉 ⊂ G, e = a0 ∈ 〈a〉 et pour tout x, y ∈ 〈a〉, on peut écrire x = ak, y = a` avec k, ` ∈ Z et alors

x ? y−1 = ak−` ∈ 〈a〉

〈a〉 est donc un sous-groupe de (G, ?) et a = a1 ∈ 〈a〉.
De plus, si H est un sous-groupe de (G, ? ) contenant a alors

a0 = e ∈ H , a1 = a ∈ H , a2 = a ? a ∈ H , a3 = a2 ? a ∈ H ,. . .

Par une récurrence facile,
∀k ∈ N, ak ∈ H

Pour k ∈ Z−, k = −p avec p ∈ N, ak = a−p = (ap)−1 ∈ H car ap ∈ H .
Ainsi

∀k ∈ Z, ak ∈ H
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CHAPITRE 1. GROUPES

ce qui signifie 〈a〉 ⊂ H .
�

Remarque Même si la loi ? n’est pas commutative, le sous-groupe 〈a〉 est commutatif car

ak ? a` = ak+` = a`+k = a` ? ak

Exemple Dans (C,+),
〈a〉 = {ak/k ∈ Z} = aZ

Exemple Dans (C?,×),
〈a〉 =

{
ak/k ∈ Z

}
En particulier

〈2〉 =
{

2k/k ∈ Z
}

= {. . . , 1/8, 1/4, 1/2, 1, 2, 4, 8, . . .}

et pour ω = e2iπ/n

〈ω〉 =
{
ωk/k ∈ Z

}
=
{

1, ω, . . . , ωn−1
}

= Un

car ωn = 1.

Exemple Dans (S4, ◦) considérons le cycle c =
(

1 2 3 4
)
.

〈c〉 =
{

Id,
(

1 2 3 4
)
,
(

1 3
)
◦
(

2 4
)
,
(

4 3 2 1
)}

1.3.4 Sous-groupe engendré par une partie

Définition
On appelle groupe engendré par une partie A de G l’intersection de tous les sous-groupes de
(G, ? ) qui contiennent A. On le note 〈A〉

Théorème
〈A〉 est un sous-groupe de (G, ?) qui contient A.
De plus, pour tout sous-groupe H de (G, ? ),

A ⊂ H ⇒ 〈A〉 ⊂ H

Ainsi 〈A〉 apparaît comme le plus petit sous-groupe contenant A.

dém. :
Posons S = {H sous - groupe de (G, ?)/A ⊂ H}. Par définition

〈A〉 =
⋂
H∈S

H
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〈A〉 est un sous-groupe car intersection d’une famille de sous-groupes.
Puisque A est inclus dans chaque H ∈ S, on a A ⊂ 〈A〉.
Enfin, si H est un sous-groupe de (G, ?)

A ⊂ H ⇒ H ∈ S ⇒ 〈A〉 ⊂ H

�

Exemple Pour a ∈ G,
〈{a}〉 =

{
ak/k ∈ Z

}
= 〈a〉

Exemple Pour a, b ∈ G,

〈{a, b}〉 =
{
ak1b`1 . . . aknb`n/n ∈ N?, k1, . . . , kn, `1, . . . , `n ∈ Z

}
En fait

〈{a, b}〉 = {produits finis d’itérés de a et b}

Si a et b commutent, on peut simplifier

〈{a, b}〉 =
{
akb`/k, ` ∈ Z

}

Exemple Dans (Z2,+)

〈{(a, b), (c, d)}〉 = {(ka+ `c, kb+ `d)/k, ` ∈ Z}

On peut montrer que ce groupe se confond avec Z2 si, et seulement si, ad− bc = ±1.

Exemple Dans Sn, considérons T l’ensemble des transpositions éléments de Sn. On a

〈T 〉 = Sn

car il est connu que toute permutation peut s’écrire comme un produit de transpositions.

1.3.5 Les sous-groupes de (Z,+)

Théorème
Les sous-groupes de (Z,+) sont les nZ avec n ∈ N.

dém. :
nZ est un sous-groupe de (Z,+) car

nZ = {kn/k ∈ Z} = 〈n〉

Inversement, soit H un sous-groupe de (Z,+).
Cas H = {0} : on a H = nZ avec n = 0.
Cas H 6= {0} : on introduit H+ = {x ∈ H/x > 0}.
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Il existe x0 ∈ H tel que x0 6= 0. Si x0 > 0 alors x0 ∈ H+, sinon−x0 ∈ H+. Dans les deux casH+ 6= ∅.
Rappelons : Toute partie non vide de N admet un plus petit élément.
Ici H+ est une partie non vide de N, on peut donc introduire n = minH+.
On a n ∈ H donc nZ = 〈n〉 ⊂ H .
Inversement, soit x ∈ H . Par division euclidienne, x = qn+ r avec 0 6 r < n.
On a alors r = x− qn ∈ H car qn ∈ nZ ⊂ H .
Si r > 0 alors r ∈ H+ ce qui est impossible car r < n = minH+.
Il reste r = 0 et donc x = qn ∈ nZ.
Ainsi H ⊂ nZ puis par double inclusion H = nZ.
�

Remarque Le naturel n tel que H = nZ est unique car
Si H = {0} alors n = 0 et si H 6= {0} alors n = min {x ∈ H/x > 0}.

1.4 Morphisme de groupes
Soit (G, ?), (G′,>) et (G′′,⊥) des groupes.
1.4.1 Définition

Définition
On appelle morphisme du groupe (G, ?) vers le groupe (G′,>) toute application ϕ : G→ G′

vérifiant
∀x, y ∈ G,ϕ(x ? y) = ϕ(x)>ϕ(y)

Exemple L’application constante ϕ : G→ G définie par ϕ(x) = e est un morphisme du groupe (G, ?)
vers lui-même.

Exemple L’identité IdG est un morphisme du groupe (G, ?) vers lui-même.

Remarque Un morphisme d’un groupe vers lui-même est souvent appelé endomorphisme.

Exemple ln est un morphisme de (R+?,×) vers (R,+).
En effet, pour tout a, b > 0,

ln(ab) = ln(a) + ln(b)

Exemple exp est un morphisme de (C,+) vers (C?,×).
En effet, pour tout z, z′ ∈ C,

exp(z + z′) = exp(z) exp(z′)

Exemple Le déterminant définit par restriction un morphisme de (GLn(K),×) vers (K?,×)
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Exemple La signature ε : Sn → {1,−1} avec

ε(σ) =
∏

16i<j6n

σ(j)− σ(i)

j − i

est un morphisme du groupe (Sn, ◦) vers ({1,−1} ,×).
En effet,

∀σ, σ′ ∈ Sn, ε(σ ◦ σ′) = ε(σ)× ε(σ′)
Rappelons que si τ est une transposition alors ε(τ) = −1.
En conséquence, si c est un cycle de longueur p alors ε(c) = (−1)p−1 car c est un produit de p− 1
transpositions (

a1 a2 . . . ap
)

=
(
a1 a2

)
◦
(
a2 a3

)
◦ . . . ◦

(
ap−1 ap

)
Exemple Soit a un élément d’un groupe (G, ?).
L’application ϕ : Z→ G définie par ϕ(k) = ak est un morphisme de groupes.
En effet

ϕ(n+ p) = a?(n+p) = a?n ? a?p = ϕ(n) ? ϕ(p)

1.4.2 Propriétés

Proposition
Si ϕ : G→ G′ et ψ : G′ → G′′ sont des morphismes de groupes alors ψ ◦ ϕ : G→ G′′ en est
un aussi.

dém. :
Soit x, y ∈ G. On a

ψ ◦ ϕ(x ? y) = ψ(ϕ(x)>ϕ(y)) = (ψ ◦ ϕ(x))⊥ (ψ ◦ ϕ(y))

�

Remarque La composée de deux endomorphismes d’un groupe (G, ?) est un endomorphisme du
groupe (G, ?).

Proposition
Si ϕ est un morphisme d’un groupe (G, ?) vers un groupe (H,>) alors

ϕ(e) = e′ et ∀x ∈ G, ϕ(x−1) = ϕ(x)−1

Plus généralement
∀x ∈ G,∀n ∈ Z, ϕ(xn) = ϕ(x)n

dém. :
ϕ(e) = ϕ(e ? e) = ϕ(e)>ϕ(e) et en composant par ϕ(e)−1 on obtient e′ = ϕ(e).
Aussi ϕ(x)>ϕ(x−1) = ϕ(x ? x−1) = ϕ(e) = e′ donc en composant par ϕ(x)−1 à gauche on obtient

ϕ(x−1) = ϕ(x)−1
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Par récurrence, on vérifie aisément
∀n ∈ N, ϕ(xn) = ϕ(x)n

puis par passage au symétrique, on étend cette propriété à n ∈ Z.
�

Remarque On peut aussi établir

∀x1, . . . , xn ∈ G, f
(
n
?
i=1

xi

)
=

n

>
i=1

f(xi)

Théorème
L’image directe (resp. réciproque) d’un sous-groupe par un morphisme de groupes est un sous-
groupe.

dém. :
Soit ϕ : G→ G′ morphisme de groupes.
Soit H un sous-groupe de (G, ?). Montrons que

ϕ(H) = {ϕ(x)/x ∈ H}

est un sous-groupe de (G′,>).
D’une part e′ ∈ ϕ(H) car e′ = ϕ(e) avec e ∈ H .
D’autre part, pour x′, y′ ∈ ϕ(H), on peut écrire x′ = ϕ(x) et y′ = ϕ(y) avec x, y ∈ H et alors

x′>y′−1 = ϕ(x ? y−1) ∈ ϕ(H)

car x ? y−1 ∈ H .
Ainsi ϕ(H) est un sous-groupe de (G′,>).
Soit H ′ un sous-groupe de (G,>). Montrons que

ϕ−1(H ′) = {x ∈ G/ϕ(x) ∈ H ′}

est un sous-groupe de (G, ?).
D’une part e ∈ ϕ−1(H ′) car ϕ(e) = e′ ∈ H ′.
D’autre part, pour x, y ∈ ϕ−1(H ′), on a ϕ(x ? y−1) = ϕ(x)>ϕ(y)−1 ∈ H ′ car ϕ(x), ϕ(y) ∈ H ′.
Ainsi ϕ−1(H ′) est un sous-groupe de (G, ? ).
�

1.4.3 Noyau et image

Définition
Si ϕ est un morphisme du groupe (G, ?) vers le groupe (G′,>), on introduit
- son noyau kerϕ = ϕ−1({e′}) qui est un sous-groupe de (G, ?) ;
- son image Imϕ = ϕ(G) qui est un sous-groupe de (G′,>).

Exemple Déterminons image et noyau du morphisme de ϕ : C? → C? défini par ϕ(z) = |z|.
Imϕ = R+? et kerϕ = U
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Exemple Déterminons image et noyau du morphisme exp : C→ C?.
Pour z = a+ ib, on a exp(z) = eaeib.
Pour Z ∈ C?, on peut écrire Z = reiθ.
En posant z = ln r + iθ, on a exp(z) = Z. Ainsi

Im(exp) = C?

Aussi, pour z = a+ ib
exp(z) = 1⇔ ea = 1 et eib = 1

Par suite
ker(exp) = 2iπZ

Exemple Déterminons image et noyau de det : GLn(K)→ K?.
On a Im det = K? car avec une matrice diagonale il est facile de construire une matrice inversible de
déterminant tel que voulu. Aussi

ker det = {M ∈ GLn(K)/ detM = 1} = SLn(K)

appelé groupe spécial linéaire d’ordre n.

Exemple Déterminons image et noyau de ε : Sn → {−1, 1} pour n > 2.
On a Imε = {1,−1} et

ker ε = An

appelé groupe alterné (ou groupe des permutations paires).

Théorème
Soit ϕ un morphisme du groupe (G, ?) vers le groupe (G′,>).
a) ϕ est injectif si, et seulement si, kerϕ = {e} .
b) ϕ est surjectif si, et seulement si, Imϕ = G′.

dém. :
a) Si ϕ est injectif, e′ possède au plus un antécédent par ϕ. Puisque ϕ(e) = e′, on obtient

kerϕ = {e}

Inversement, supposons kerϕ = {e}. Soit x, y ∈ G tels que ϕ(x) = ϕ(y).
On a ϕ(x ? y−1) = ϕ(x)>ϕ(y)−1 = e′ et donc x ? y−1 ∈ kerϕ. Ainsi x ? y−1 = e puis x = y.
b) C’est une évidence et ne dépend du fait que ϕ soit un morphisme.
�

1.4.4 Isomorphisme de groupes

Définition
On appelle isomorphisme de groupes tout morphisme de groupes bijectif.

Exemple ln : R+? → R est un isomorphisme de
(
R+?,×

)
vers (R,+).
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Proposition
Si ϕ : G→ G′ et ψ : G′ → G′′ sont des isomorphismes de groupes alors ψ ◦ ϕ : G→ G′′ en
est un aussi.

Théorème
Si ϕ : G → G′ est un isomorphisme de groupes alors ϕ−1 : G′ → G est un isomorphisme de
groupes.

dém. :
dém. :
Pour tout x′, y′ ∈ G′, il existe x, y ∈ G tel que ϕ(x) = x′ et ϕ(y) = y′.
On a alors

ϕ−1(x′>y′) = ϕ−1 (ϕ(x)>ϕ(y)) = ϕ−1 (ϕ(x ? y)) = x ? y = ϕ−1(x′) ? ϕ−1(y′)

Ainsi ϕ−1 est un morphisme de groupes et il est de plus bien connu que ϕ−1 est bijective.
�

Définition
On appelle automorphisme du groupe (G, ?) tout isomorphisme du groupe (G, ?) dans lui-
même.

Exemple Si a est un élément du groupe (G, ?) alors l’application τa : G→ G définie par

τa(x) = axa−1

est un automorphisme de groupe.

Proposition
L’ensemble Aut(G) des automorphismes d’un groupe (G, ?) est un sous-groupe de (SG, ◦).

dém. :
Aut(G) est bien une partie de SG.
L’identité est automorphisme de groupe, la composée de deux automorphismes de groupe est un auto-
morphisme de groupe et, enfin, l’application réciproque d’un automorphisme de groupe est encore un
automorphisme de groupe.
�

1.4.5 Groupes isomorphes

Définition
S’il existe un isomorphisme entre deux groupes, ceux-ci sont dits isomorphes.
Ceux-ci se comportent alors de façon identique d’un point de vue calculatoire.

Exemple Les groupes
(
R+?,×

)
et (R,+) sont isomorphes (via le logarithme népérien).

La multiplication sur R+? et l’addition sur R ont les mêmes propriétés.
En revanche les groupes (R?,×) et (R,+) ne sont pas isomorphes.
En effet, l’équation x2 = 1 possède deux solutions dans (R?,×) alors que l’équation analogue 2x = 0
n’en possède qu’une dans (R,+).
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Exemple Comparons les tables d’opérations dans (Z/4Z,+) et (U4,×) :

+ 0̄ 1̄ 2̄ 3̄
0̄ 0̄ 1̄ 2̄ 3̄
1̄ 1̄ 2̄ 3̄ 0̄
2̄ 2̄ 3̄ 0̄ 1̄
3̄ 3̄ 0̄ 1̄ 2̄

et

× 1 i −1 −i
1 1 i −1 −i
i i −1 −i 1
−1 −1 −i 1 i
−i −i 1 i −1

Les deux groupes (Z/4Z,+) et (U4,×) se comportent de façon semblables ; ils sont isomorphes via
l’application ϕ qui envoie k̄ sur ik.

Exemple Considérons en revanche la table d’opérations dans
(
(Z/2Z)2,+

)
:

+ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

en notant


e = (0̄, 0̄)

a = (1̄, 0̄)

b = (0̄, 1̄)

c = (1̄, 1̄)(
(Z/2Z)2,+

)
se comporte d’une façon différente ; il n’est pas isomorphe aux groupes précédents.

1.5 Groupes engendré par un élément

1.5.1 Groupes monogènes

Définition
Un groupe (G, ?) est dit monogène s’il existe a ∈ G tel que G = 〈a〉.
Cet élément a est alors appelé générateur du groupe.

Remarque Un groupe monogène est nécessairement commutatif car

ak ? a` = ak+` = a` ? ak

Exemple (Z,+) est monogène car Z = 〈1〉.

Exemple (Un,×) est monogène car Un = 〈ω〉 avec ω = e2iπ/n.

Exemple (C,+) et (C?,×) ne sont pas des groupes monogènes.

Exemple Pour n > 3, le groupe (Sn, ◦) n’est pas monogène car non commutatif.
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1.5.2 Groupes cycliques

Définition
Un groupe est dit cyclique s’il est monogène et fini.

Exemple (Un,×) est un groupe cyclique.

Théorème
(Z/nZ,+) est un groupe cyclique dont les générateurs sont les m̄ pourm ∈ Z avecm∧n = 1.

dém. :
Z/nZ = 〈1̄〉 car

〈1̄〉 = {k.1̄/k ∈ Z} =
{
k̄/k ∈ Z

}
= Z/nZ

Si m̄ est générateur de Z/nZ alors il existe k ∈ Z tel que k.m̄ = 1̄ et donc km ≡ 1 [n]. Il existe alors
` ∈ Z tel que

km+ n` = 1

et ainsi m ∧ n = 1 en vertu du théorème de Bézout.
Inversement, si m ∧ n = 1 alors il existe k, ` ∈ Z tels que km+ `n = 1 et donc

km ≡ 1 [n]

d’où k.m̄ = 1̄. Ainsi 1̄ ∈ 〈m̄〉 or 〈1̄〉 = Z/nZ donc

〈m̄〉 = Z/nZ

�

1.5.3 Description des groupes monogènes

Théorème
Soit (G, ?) un groupe monogène.
Si CardG = +∞ alors (G, ?) est isomorphe à (Z,+).
Si CardG = n ∈ N? alors (G, ?) est isomorphisme à (Z/nZ,+).

dém. :
Soit a un générateur de G. L’application ϕ : Z→ G définie par ϕ(k) = ak est un morphisme de groupes
car

ϕ(k + `) = ak+` = ak ? a` = ϕ(k) ? ϕ(`)

Il est de plus surjectif car a est générateur de G et donc

G =
{
ak/k ∈ Z

}
Le noyau de ϕ est un sous-groupe de (Z,+). Il existe donc n ∈ N tel que kerϕ = nZ.
Cas n = 0 : ϕ est injectif, c’est un isomorphisme de groupes. (G, ?) est alors isomorphe à (Z,+) et G
est de cardinal infini.
Cas n 6= 0 : On a

ϕ(k) = ϕ(`)⇔ k − ` ∈ kerϕ
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donc
ak = a` ⇔ k ≡ ` [n]

On peut alors considérer l’application ϕ̄ : Z/nZ→ G déterminée par ϕ̄(k̄) = ak.
ϕ̄ est un morphisme de groupes car

ϕ̄(k̄ + ¯̀) = ϕ̄(k + `) = ak+` = ak ? a` = ϕ̄(k̄) ? ϕ̄(¯̀)

D’une part Imϕ̄ =
{
ak/k ∈ Z

}
= G et d’autre part

k̄ ∈ ker ϕ̄⇔ ak = a0 ⇔ k̄ = 0̄

donc ker ϕ̄ = {0̄}. On en déduit que ϕ̄ définit un isomorphisme.
Le groupe (G, ?) est alors isomorphe à (Z/nZ,+) et en particulier G est de cardinal n.
�

Corollaire
(Z/nZ,+) et (Un,×) sont isomorphes via l’application k̄ 7→ ωk = e2ikπ/n.
Les générateurs de (Un,×) sont donc les ωm = e2imπ/n avec m ∧ n = 1
Ces éléments sont appelés racines primitives n-ième de l’unité.

dém. :
Puisque ω est générateur de (Un,×), l’application ϕ̄ : k̄ 7→ ωk est un isomorphisme de groupes. Celui-ci
échange les générateurs de (Z/nZ,+) avec ceux de (Un,×).
�

Exemple Déterminons les générateurs des groupes (U1,×), (U2,×), (U3,×), (U4,×).

1.5.4 Ordre d’un élément dans un groupe

Définition
On dit qu’un élément a d’un groupe (G, ?) est d’ordre fini s’il existe n ∈ N? vérifiant an = e
On appelle alors ordre de a le plus petit n ∈ N? vérifiant an = e.

Exemple Dans (C?,×), l’élément 2 n’est pas d’ordre fini.
En revanche, l’élément ω = e2iπ/n est d’ordre fini égal à n.

Exemple Le neutre e est l’unique élément d’ordre fini égal à 1 du groupe (G, ? ).
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Théorème
Si a est d’ordre fini égal à n alors

∀m ∈ Z, am = e⇔ n | m

dém. :
(⇐) immédiat.
(⇒ ) Supposons am = e et introduisons le reste r de la division euclidienne de m par n.

m = qn+ r avec 0 6 r < n

On a
ar = am−qn = am ? (an)−q = e

Or n est le plus petit naturel non nul vérifiant an = e donc r = 0 puis n divise m.
�

Exemple Si a est d’ordre n alors ak est d’ordre n/pgcd(n, k).

Corollaire
On a alors

∀k, ` ∈ Z, ak = a` ⇔ k ≡ ` [n]

dém. :
Car

ak = a` ⇔ ak−` = e

�

Théorème
Si a est un élément d’ordre fini d’un groupe (G, ?) alors son ordre n est le cardinal du sous-
groupe 〈a〉 qu’il engendre et ce dernier est isomorphe à (Z/nZ,+)

dém. :

〈a〉 =
{
ak/k ∈ Z

}
=
{
e, a, . . . , an−1

}
avec e, a, . . . , an−1 deux à deux distincts.
〈a〉 est un groupe cyclique à n éléments donc isomorphe à (Z/nZ,+) via ϕ̄ : k̄ 7→ ak.
�

1.5.5 Elément d’un groupe fini

Théorème
Si (G, ?) est un groupe fini de cardinal n alors

∀a ∈ G, an = e
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dém. :
Cas (G, ?) commutatif
Soit a ∈ G. L’application τ : x 7→ a ? x est une permutation de G. On en déduit∏

x∈G
τ(x) =

∏
x∈G

x

Or ∏
x∈G

τ(x) =
∏
x∈G

(a ? x) = aCardG ?
∏
x∈G

x

Et par conséquent
aCardG = e

Cas général
On définit sur G une relation binaireR en posant

xRy ⇔ ∃k ∈ Z, y = ak ? x

On vérifie aisément queR est une relation d’équivalence et que pour tout x ∈ G

Cl(x) = {b ? x/b ∈ 〈a〉}

En particulier
∀x ∈ G,CardCl(x) = Card 〈a〉

En notant p le nombre de classe d’équivalence de la relationR, on obtient

CardG = np

�

Corollaire
Si (G, ?) est un groupe fini alors tous ses éléments sont d’ordre fini et leur ordre divise le
cardinal du groupe.

Exemple Dans (Z/6Z,+), 0̄ est d’ordre 1, 3̄ est d’ordre 2, 2̄, 4̄ sont d’ordre 3 et 1̄, 5̄ sont d’ordre 6.

Exemple Dans un groupe à 6 éléments, il peut y a avoir des éléments d’ordre 2 et 3, mais pas
d’éléments d’ordre 4.

1.5.6 Musculation : sous-groupes de (Z/nZ,+)

Exemple Montrer que les sous-groupes de (Z/nZ,+) sont cycliques. Soit H un sous-groupe de
(Z/nZ,+).
Posons A = {x ∈ Z/x̄ ∈ H}. On vérifie aisément que A est un sous-groupe de (Z,+) et donc il existe
c ∈ N tel que A = cZ. Pour x ∈ Z, on a

x̄ ∈ H ⇔ ∃k ∈ Z, x = kc⇔ ∃k ∈ Z, x̄ = k.c̄

On en déduit
H = 〈c̄〉
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Exemple Montrons que (Z/nZ,+) possède un unique sous-groupe de cardinal d pour chaque d
divisant n.Soit d un diviseur de n.
Posons c = n/d et H = 〈c̄〉. On a

H = {0̄, c̄, 2c̄, . . . , (d− 1)c̄}

et H est un sous-groupe a exactement d éléments.
Inversement, soit H un sous-groupe à d éléments de (Z/nZ,+).
Tout élément de H d’ordre divisant d et donc

∀x̄ ∈ H, d.x̄ = 0̄

i.e.
∀x̄ ∈ H,n | dx

puis
∀x̄ ∈ H, c | x

Ainsi
H ⊂ {0̄, c̄, 2c̄, . . . , (d− 1)c̄}

et l’égalité est acquise par cardinalité.
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Chapitre 2

Anneaux

K désigne R ou C.

2.1 Structure d’anneau

2.1.1 Définition

Définition
On appelle anneau tout triplet (A,+,×) formé d’un ensembleA et de deux lois de composition
internes usuellement notées + et × sur A vérifiant :
1) (A,+) est un groupe abélien de neutre 0A ;
2) × est associative et possède un neutre 1A ;
3) × est distributive sur + i.e.

∀a, b, c ∈ A, a(b+ c) = ab+ ac et (b+ c)a = ba+ ca

Si de plus la loi × est commutative, on dit que l’anneau (A,+,×) est commutatif.

Exemple (Z,+,×), (R,+,×), (C,+,×) sont des anneaux commutatifs de neutres 0 et 1.

Exemple Soit X un ensemble et F(X,K) l’ensemble des fonctions de X vers K.
(F(X,K),+,×) est un anneau de neutres 0̃ et 1̃ (fonctions constantes).
En particulier, si X = N, l’ensemble KN des suites d’éléments de K est un anneau.

Exemple (Mn(K),+,×) est un anneau de neutres On et In.

Exemple Si E est un K-espace vectoriel, (L(E),+, ◦) est un anneau de neutres 0̃ et IdE .

Exemple A = {0A} est un anneau (c’est le seul pour lequel 1A = 0A ).
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2.1.2 Calculs dans un anneau

Proposition
On a

∀a, b ∈ A, 0A × a = a× 0A = 0A, (−a)× b = −(ab) = a× (−b)

Plus généralement
∀n ∈ Z, (n.a)× b = n.(ab) = a× (n.b)

Théorème
Si a et b sont deux éléments commutant (i.e. ab = ba ) d’un anneau A on a pour tout n ∈ N

(ab)n = anbn, (a+ b)n =

n∑
k=0

(
n

k

)
akbn−k

et

an − bn = (a− b)
n−1∑
k=0

akbn−1−k

2.1.3 Groupe des inversibles

Définition
Un élément a d’un anneau (A,+,×) est dit inversible s’il existe b ∈ A tel que

ab = ba = 1

Cet élément b est alors unique, on l’appelle inverse de a et il est noté a−1.

Exemple 1A est inversible et 1−1
A = 1A.

Exemple Si A n’est pas l’anneau nul, 0A n’est pas inversible.

Exemple Si x ∈ A est inversible alors x−1 aussi et (x−1)−1 = x.
Si x et y ∈ A sont inversibles alors xy est inversible et (xy)−1 = y−1x−1.

Théorème
L’ensemble U(A) des éléments inversibles de l’anneau (A,+,×) est un groupe multiplicatif.

Exemple U(Z) = {1,−1}, U(K) = K?,
U(Mn(K)) = GLn(K) et U(L(E)) = GL(E).
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2.1.4 Produit fini d’anneaux
Soit (A1,+,×),. . . , (An,+,×) des anneaux et A = A1 × . . .×An.
On définit des lois + et × sur A en posant

(x1, . . . , xn) + (y1, . . . , yn) =
déf

(x1 + y1, . . . , xn + yn)

et
(x1, . . . , xn)× (y1, . . . , yn) =

déf
(x1 × y1, . . . , xn × yn)

Théorème
L’ensemble A muni des lois + et × définies ci-dessus est un anneau de neutres

0A = (0A1
, . . . , 0An) et 1A = (1A1

, . . . , 1An)

De plus, un élément (a1, . . . , an) ∈ A est inversible si, et seulement si, les a1, . . . , an le sont
et son inverse est alors (a−1

1 , . . . , a−1
n ).

Corollaire
U(A) = U(A1)× . . .× U(An).

Exemple (An,+,×) est un anneau de neutre 0An = (0A, . . . , 0A) et 1An = (1A, . . . , 1A).

Exemple (Z2,+,×) est un anneau commutatif où

(a, b) + (c, d) = (a+ c, b+ d) et (a, b)× (c, d) = (ac, bd)

On a
U
(
Z2
)

= {(1, 1), (1,−1), (−1, 1), (−1,−1)}

2.1.5 Sous-anneau
(A,+,×) désigne un anneau

Définition
On appelle sous-anneau de (A,+,×) toute partie B de A vérifiant :
1) 1A ∈ B ;
2) ∀x, y ∈ B, x− y ∈ B ;
3) ∀x, y ∈ B, xy ∈ B.

Attention : Vérifier 1A ∈ B et non 0A ∈ B ou seulement B 6= ∅.

Exemple Z est un sous-anneau de (R,+,×) mais pas 2Z bien que stable par différence et produit

Exemple A est un sous-anneau de (A,+,×), mais généralement pas {0A}.
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Exemple On note C l’ensemble des suites réelles convergentes.
Montrons que C est un sous-anneau de (RN,+,×).
On a évidemment C ⊂ RN, la suite constante égale à 1 est convergente et la différence et le produit de
deux suites convergentes sont des suites convergentes.
En revanche, l’ensemble des suites réelles convergeant vers 0 n’est pas un sous-anneau.

Exemple Soit I un intervalle de R d’intérieur non vide et k ∈ N ∪ {∞}.
Vérifions que Ck(I,R) est un sous-anneau de (F(I,R),+,×).
On a évidemment Ck(I,R) ⊂ F(I,R), la fonction constante égale à 1 est de classe Ck et la différence et
le produit de deux fonctions de classe Ck sont des fonctions de classe Ck.

Théorème
Si B est un sous-anneau de (A,+,×) alors B peut être muni des lois + et × définies par
restriction des lois sur A et (B,+,×) est alors un anneau de mêmes neutres que A.

dém. :
B est un sous-groupe du groupe abélien (A,+) donc (B,+) est un groupe abélien.
B est stable par × donc on peut définir la restriction de la loi × sur B.
Celle-ci est associative sur A et possède un neutre 1A ∈ B donc × est associative sur B et y possède un
neutre.
Enfin, × est distributive sur + sur A donc a fortiori aussi sur B.
�

Exemple Considérons
Z [i] = {a+ ib/a, b ∈ Z}

et montrons que (Z [i] ,+,×) est un anneau commutatif.
Montrons que Z [i] un sous-anneau de l’anneau commutatif (C,+,×).
On a évidemment Z [i] ⊂ C.
1 = 1 + i.0 ∈ Z [i].
Pour x, y ∈ Z [i], on peut écrire x = a+ ib et y = c+ id avec a, b, c, d ∈ Z.
On a

x− y = (a− c) + i(b− d) ∈ Z [i]

car a− c, b− d ∈ Z
et

xy = (ac− bd) + i(ad+ bc) ∈ Z [i]

Ainsi, Z [i] est un sous-anneau de (C,+,×) et donc (Z [i] ,+,×) est un anneau commutatif.

2.1.6 L’anneau (Z/nZ,+,×)

Théorème
(Z/nZ,+,×) est un anneau commutatif de neutres 0̄ et 1̄.
De plus, dans (Z/nZ,+,×), m̄ est inversible si, et seulement si, m ∧ n = 1.

dém. :
(Z/nZ,+) est un groupe abélien de neutre 0̄.
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On vérifie aisément que la loi× est commutative, associative sur Z/nZ et possède un neutre 1̄. On vérifie
aussi que la loi × est distributive sur +.
Soit m̄ ∈ Z/nZ.
m̄ inversible si, et seulement si, il existe k̄ ∈ Z/nZ vérifiant k̄m̄ = 1̄ i.e. si, et seulement si, il existe
k ∈ Z tel que km ≡ 1 [n]. Ainsi m̄ est inversible si, et seulement si, il existe k, ` ∈ Z tels que

km+ `n = 1

Par le théorème de Bézout, cela revient à affirmer m ∧ n = 1.
�

Remarque Si m ∧ n = 1 alors une égalité de Bézout um+ vn = 1 fournit m̄−1 = ū.

Exemple Résolvons l’équation 4x+ 2 ≡ 0 [11]
Dans Z/11Z l’équation dévient

4̄x̄+ 2̄ = 0̄

Par opérations
4̄x̄+ 2̄ = 0̄⇔ 4̄x̄ = 9̄

Puisque 4 ∧ 11 = 1, 4̄ est inversible dans Z/11Z et on observe

4̄−1 = 3̄

On a alors
4̄x̄ = 9̄⇔ x̄ = 3̄× 9̄

Ainsi
4̄x̄+ 2̄ = 0̄⇔ x̄ = 5̄

Les solutions de l’équation étudiées sont donc les 5 + 11k avec k ∈ Z.

Exemple Résolvons l’équation 4x ≡ 6 [10]
Ici 4 et 10 ne sont pas premiers entre eux, mais l’équation est simplifiable par leur PGCD

4x ≡ 6 [10]⇔ ∃k ∈ Z, 4x = 6 + 10k ⇔ ∃k ∈ Z, 2x = 3 + 5k

ce qui nous ramène à l’équation 2x ≡ 3 [5] avec 2 ∧ 5 = 1 qu’on peut résoudre.

2x ≡ 3 [5]⇔ x ≡ 3× 3 = 4 [5]

Les solutions sont les 4 + 5k avec k ∈ Z.

Exemple Résolvons l’équation 4x ≡ 7 [10]
Ici 4 et 10 ne sont pas premiers entre eux et l’équation n’est pas simplifiable : il n’y a pas de solutions.
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2.1.7 Anneaux intègres
Soit (A,+,×) un anneau.
2.1.7.1 Diviseurs de zéro

Attention : On sait
∀a, b ∈ A, a = 0A ou b = 0A ⇒ ab = 0A

La réciproque n’est pas toujours vraie !

Exemple Dans l’anneau (Z2,+,×), on a (1, 0)× (0, 1) = (0, 0) alors que (1, 0), (0, 1) 6= (0, 0)

Exemple Dans l’anneau (F(R,R),+,×), considérons les fonctions données par

On a fg = 0̃ alors que f, g 6= 0̃.

Exemple Dans (M2(R),+,×), pour

A =

(
1 1
1 1

)
et B =

(
1 1
−1 −1

)
on a AB = O2 alors que A,B 6= O2.

Exemple Dans (Z/6Z,+,×), 2̄× 3̄ = 0̄ alors que 2̄, 3̄ 6= 0̄.

Définition
Lorsque a, b ∈ A vérifient ab = 0A avec a, b 6= 0A, on dit que a et b sont des diviseurs de zéro.

Attention : On ne considère pas que 0A est un diviseur de zéro.

Exemple En général, les anneaux F(X,K), L(E) etMn(K) possèdent des diviseurs de zéros.

Exemple Les éléments inversibles d’un anneau ne sont pas diviseurs de zéros.
En effet, si ab = 0A avec a inversible alors

b = a−1 × (ab) = a−1 × 0A = 0A

Exemple Dans (R2,+,×) les diviseurs de zéros sont les (x, 0) et (0, x) avec x 6= 0.
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2.1.7.2 Intégrité

Définition
Un anneau (A,+,×) est dit intègre si
1) A non réduit à {0A} ;
2) A ne possède pas de diviseurs de zéros.

Exemple (Z,+,×) est un anneau intègre.

Proposition
Dans un anneau intègre (A,+,×)

∀a, b ∈ A, ab = 0A ⇒ a = 0A ou b = 0A

dém. :
C’est l’absence de diviseurs de zéro !
�

Proposition
Dans un anneau intègre (A,+,×) :

∀a, b, c ∈ A, (ab = ac et a 6= 0A)⇒ b = c

et
∀a, b, c ∈ A, (ba = ca et a 6= 0A)⇒ b = c

dém. :
Si ab = ac alors ab− ac = 0A et donc a(b− c) = 0A.
Si de plus a 6= 0A alors, par intégrité, b− c = 0A et donc b = c.
�

Remarque Dans un anneau intègre l’équation x2 = 1 a pour seules solutions 1 et −1 car

x2 = 1A ⇔ (x− 1A)(x+ 1A) = 0A

Dans (R2,+,×), l’équation x2 = 1R2 a pour solutions

(1, 1), (−1,−1), (1,−1), (−1, 1)

Dans (M2(R),+,×), l’équation A2 = I2 a pour solutions(
1 0
0 1

)
,
(
−1 0
0 −1

)
,
(

1 0
0 −1

)
,
(
−1 0
0 1

)
,
(

2 −3
1 −2

)
,. . .

2.1.7.3 Idempotence et nilpotence

Définition
Un élément a ∈ A est dit idempotent si a2 = a.
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Exemple Dans un anneau intègre seuls 0A et 1A sont idempotents.

Exemple Dans (R2,+,×), (1, 0) et (0, 1) sont aussi idempotents.

Exemple Dans (Z/6Z,+,×), l’élément 3̄ est idempotent.

Exemple Dans (L(E),+, ◦) les éléments idempotents sont les projecteurs.

Définition
Un élément a ∈ A est dit nilpotent s’il existe n ∈ N? tel que an = 0A .

Exemple Dans un anneau intègre seul 0A est nilpotent.

Exemple Dans (Z/8Z,+,×), l’élément 2̄ est nilpotent.

Exemple Montrons que si a est nilpotent alors 1A − a ∈ U(A).
Puisque a est nilpotent, il existe n ∈ N vérifiant an = 0A.
Puisque 1A et a commutent,

1A = 1nA − an = (1− a)

(
n−1∑
k=0

ak

)
=

(
n−1∑
k=0

ak

)
(1− a)

Ainsi, 1A − a est inversible et

(1A − a)−1 =

n−1∑
k=0

ak

2.2 Corps

2.2.1 Définition

Définition
On appelle corps tout anneau (K,+,×) vérifiant
1) (K,+,×) est commutatif ;
2) K est non réduit à {0K} et
3) tous les éléments de K, sauf le nul, sont inversibles.

Exemple (Q,+,×), (R,+,×), (C,+,×) et (K(X),+,×) sont des corps usuels.
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Proposition
Tout corps est intègre.

dém. :
Soit K un corps. K est commutatif et non réduit à {0K}.
Pour a, b ∈ K, si ab = 0K et a 6= 0K alors on peut introduire a−1 et on a b = a−1(ab) = 0K .
Ainsi, K ne possède pas de diviseurs de zéro. Il est donc intègre.
�

2.2.2 Sous-corps
Soit (K,+,×) un corps.

Définition
On appelle sous-corps d’un corps (K,+,×) toute partie L de K vérifiant :
1) L est un sous-anneau de (K,+,×) ;
2) ∀x ∈ L, x 6= 0K ⇒ x−1 ∈ L.

Exemple Q est un sous-corps de (R,+,×).

Théorème
Si L est un sous-corps de (K,+,×) alors (L,+,×) est un corps.

dém. :
Puisque L est un sous-anneau de l’anneau commutatif (K,+,×), on peut affirmer que (L,+,×) est un
anneau commutatif. Puisque 1K ∈ L, on peut affirmer que l’anneau (L,+,×) n’est pas réduit à 0. Enfin,
puisque l’inverse d’un élément non nul de L est élément de L, on peut affirmer que tout élément non nul
de l’anneau L est inversible dans celui-ci.
�

Exemple Considérons Q
[√

2
]

=
{
a+ b

√
2/a, b ∈ Q

}
.

Montrons que (Q
[√

2
]
,+,×) est un corps.

Pour cela montrons que Q
[√

2
]

est un sous-corps du corps (R,+,×).

On a évidemment Q
[√

2
]
⊂ R.

1 = 1 + 0×
√

2 ∈ Q
[√

2
]
.

Pour x, y ∈ Q [i], on peut écrire x = a+ b
√

2 et y = c+ d
√

2 avec a, b, c, d ∈ Q.
On a alors

x− y = (a− c) + (b− d)
√

2 ∈ Q
[√

2
]

et
xy = (ab+ 2dc) +

√
2(ad+ bc) ∈ Q

[√
2
]

Enfin, si x 6= 0,

x−1 =
1

a+ b
√

2
=

a− b
√

2

(a+ b
√

2)(a− b
√

2)
=

a

a2 − 2b2
− b

a2 − 2b2

√
2 ∈ Q

[√
2
]

car
a

a2 + b2
,− b

a2 + b2
∈ Q.
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2.2.3 Le corps (Z/pZ,+,×)

Théorème
(Z/pZ,+,×) est un corps si, et seulement si, p est un nombre premier.

dém. :
Supposons que (Z/pZ,+,×) soit un corps.
Pour tout a ∈ {2, . . . , p− 1}, ā est inversible dans (Z/pZ,+,×) donc a ∧ p = 1 et par conséquent a ne
divise pas p. On en déduit que p est un nombre premier.
Inversement, supposons p nombre premier.
(Z/pZ,+,×) est un anneau commutatif et Z/pZ 6= {0̄} car p = Card(Z/pZ) > 2.
Pour tout m̄ ∈ Z/pZ, si m̄ 6= 0̄ alors p ne divise pas m et donc, puisque p est un nombre premier,

m ∧ p = 1

On en déduit que m̄ est inversible.
�

Remarque On note usuellement Fp = Z/pZ.

Exemple Soit F2 = {0̄, 1̄}. (F2,+,×) est un corps pour les opérations suivantes

+ 0̄ 1̄
0̄ 0̄ 1̄
1̄ 1̄ 0̄

et
× 0̄ 1̄
0̄ 0̄ 0̄
1̄ 0̄ 1̄

Exemple Soit F3 = {0̄, 1̄, 2̄}. (F3,+,×) est un corps pour les opérations suivantes

+ 0̄ 1̄ 2̄
0̄ 0̄ 1̄ 2̄
1̄ 1̄ 2̄ 0̄
2̄ 2̄ 0̄ 1̄

et

× 0̄ 1̄ 2̄
0̄ 0̄ 0̄ 0̄
1̄ 0̄ 1̄ 2̄
2̄ 0̄ 2̄ 1̄

2.3 Morphismes d’anneaux
Soit (A,+,×) et (A′,+,×) des anneaux.
2.3.1 Morphisme d’anneaux

Définition
On dit qu’une application ϕ : A→ A′ est un morphisme d’anneaux si
1) ϕ(1A) = 1A′ ;
2) ∀x, y ∈ A,ϕ(x+ y) = ϕ(x) + ϕ(y) ;
3) ∀x, y ∈ A,ϕ(xy) = ϕ(x)ϕ(y).

Exemple L’application identité IdA : A→ A est un morphisme de l’anneau (A,+,×) vers lui-même.
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Exemple Considérons C l’anneau des suites réelles convergentes.
L’application ϕ : u 7→ lim

n→+∞
un est un morphisme d’anneaux de C vers R.

Exemple L’application ϕ : Z→ A définie par ϕ(k) = k.1A est un morphisme d’anneaux de (Z,+,×)
vers (A,+,×).
En effet, ϕ(1) = 1A, ϕ(k + `) = (k + `).1A = k.1A + `.1A = ϕ(k) + ϕ(`) et
ϕ(k`) = (k`).1A = (k.1A)× (`.1A) = ϕ(k)ϕ(`).

Exemple Soit a ∈ U(A) et τ : A→ A définie par τ(x) = axa−1.
Vérifions que τ est un morphisme d’anneaux bijectif.
τ(1A) = a.1A.a

−1 = 1A, τ(x+ y) = a(x+ y)a−1 = axa−1 + aya−1 = τ(x) + τ(y) et
τ(xy) = axya−1 = ax(a−1a)ya−1 = τ(x)τ(y).
Enfin,

y = τ(x)⇔ x = a−1ya

donc

∀y ∈ A,∃!x ∈ A, y = τ(x)
L’application τ est donc bijective.

Attention : Ne pas oublier d’étudier ϕ(1A) !
L’application x ∈ R 7→ (x, 0) ∈ R2 n’est pas un morphisme d’anneaux !

2.3.2 Propriétés

Proposition
La composée de deux morphismes d’anneaux est un morphisme d’anneaux.

Proposition
Si ϕ : A→ A′ est un morphisme d’anneaux alors
a) ϕ(0A) = 0A′ ;
b)∀x ∈ A,ϕ(−x) = −ϕ(x) ;
c) ∀x ∈ A,∀n ∈ Z, ϕ(n.x) = n.ϕ(x) ;
d) ∀x ∈ A,∀n ∈ N, ϕ(xn) = ϕ(x)n ;
e) ∀x ∈ A, x ∈ U(A)⇒ ϕ(x) ∈ U(A′) avec ϕ(x)−1 = ϕ(x−1)

dém. :
ϕ est un morphisme du groupe (A,+) vers (A′,+) donc

∀x ∈ A,∀n ∈ Z, ϕ(n.x) = n.ϕ(x)

Par récurrence, on obtient aisément

∀x ∈ A,∀n ∈ N, ϕ(xn) = ϕ(x)n
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Enfin, si x ∈ U(A) alors ϕ(xx−1) = ϕ(1A) donne ϕ(x)ϕ(x−1) = 1A′ . Aussi ϕ(x−1)ϕ(x) = 1A′ donc
ϕ(x) ∈ U(A′) et ϕ(x)−1 = ϕ(x−1).
�

2.3.3 Image et noyaux

Définition
Soit ϕ : A→ A′ un morphisme d’anneaux.
On appelle image et noyau du morphisme ϕ les ensembles

Imϕ = ϕ(A) et kerϕ = ϕ−1({0A′})

Remarque Ce sont en fait les images et noyaux de ϕ en tant que morphisme de groupes additifs.

Remarque On vérifie aisément que Imϕ est un sous-anneaux de A′.
En revanche, kerϕ n’est généralement pas un sous-anneau de (A,+,×).

Proposition
ϕ est injective si, et seulement si, kerϕ = {0A}.
ϕ est surjective si, et seulement si, Imϕ = A′.

dém. :
Car ϕ est en particulier un morphisme de groupes additifs.
�

2.3.4 Isomorphisme d’anneaux

Définition
On dit qu’une application ϕ : A→ A′ est un isomorphisme d’anneaux si
a) ϕ est un morphisme d’anneaux ;
b) ϕ est bijective.

Proposition
La composée de deux isomorphismes d’anneaux est un isomorphisme d’anneaux.
L’application réciproque d’un isomorphisme d’anneaux et un isomorphisme d’anneaux.

Définition
On dit que deux anneaux A et A′ sont isomorphes s’il existe un isomorphisme d’anneaux de
l’un vers l’autre : ces deux anneaux possèdent alors les mêmes propriétés calculatoires.

Exemple Considérons ϕ : C→M2(R) définie par

ϕ(a+ i.b) =

(
a −b
b a

)
On vérifie que ϕ est un morphisme d’anneaux injectifs.
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En conséquence

Imϕ =

{(
a −b
b a

)
/a, b ∈ R2

}
est un sous-anneau deM2(R) isomorphe à (C,+,×).

2.3.5 Théorème des restes chinois
Soitm et n deux entiers naturels non nuls. Pour k ∈ Z, on note on note k̄, k̂ et k̇ les classes d’équivalence
de k dans Z/mnZ, Z/mZ et Z/nZ.

Théorème
Si m et n sont premiers entre eux alors l’application

π : Z/mnZ→ Z/mZ× Z/nZ

définie par
π(k̄) = (k̇, k̂)

est un isomorphisme d’anneaux.

dém. :
L’application est bien définie car

k = ` [mn]⇒ k = ` [m] et k = ` [n]

et ainsi
k̄ = ¯̀⇒ k̂ = ˆ̀et k̇ = ˙̀

On vérifie aisément que cette application est un morphisme d’anneaux.
Etudions le noyau de π.
Si x̄ ∈ kerπ alors π(x̄) = (0̇, 0̂) i.e. x̄ = 0̄ et ẋ = 0̇. On alors m | x et n | x donc mn | x puisque
m ∧ n = 1. Ainsi x̄ = 0̄ ce qui permet d’affirmer kerπ = {0̄}.
Le morphisme π est donc injectif.
Puisque

Card(Z/nmZ) = nm = Card(Z/nZ)Card(Z/mZ) < +∞
on peut affirmer par cardinalité que π est bijective et finalement π est un isomorphisme.
�

Remarque Soit à résoudre un système du type{
x ≡ a [m]
x ≡ b [n]

avec m ∧ n = 1. Par ce qui précède, ce système possède une unique solution modulo mn.
Pour la déterminer, il suffit de trouver x1 et x2 solutions respectives des systèmes{

x ≡ 1 [m]
x ≡ 0 [n]

et
{
x ≡ 0 [m]
x ≡ 1 [n]

Par morphisme, x = ax1 + bx2 est alors solution du système initial.
Pour déterminer x1 et x2, on part de la relation de Bézout

mu+ nv = 1

et l’on prend x1 = nv et x2 = mu.
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Exemple Résolvons le système {
x ≡ 1 [5]
x ≡ 7 [9]

5 ∧ 9 = 1 avec la relation de Bézout 2× 5− 9 = 1.
−9 et 10 sont solutions des systèmes{

x ≡ 1 [5]
x ≡ 0 [9]

et
{
x ≡ 0 [5]
x ≡ 1 [9]

donc x = 1× (−9) + 7× 10 = 61 est solution du système posé.
La solution générale est alors

16 + 45k avec k ∈ Z

Exemple Résolvons le système {
9x ≡ 3 [21]

5x ≡ 2 [8]

9x ≡ 3 [21]⇔ 3x ≡ 1 [7]

Puisque 3 ∧ 7 = 1, 3̄ est inversible et 3̄−1 = 5̄ dans Z/7Z.
Ainsi

3x ≡ 1 [7]⇔ x ≡ 5 [7]

De même
5x ≡ 2 [8]⇔ x ≡ 2 [8]

car 5
−1

= 5̄ dans Z/8Z
Ainsi {

9x ≡ 3 [21]
5x ≡ 2 [8]

⇔
{
x ≡ 5 [7]
x ≡ 2 [8]

7 ∧ 8 = 1 avec la relation de Bézout (−1)× 7 + 8 = 1.
x = 5× 8 + 2× (−7) = 26 est solution de ce système dont la solution générale est

x = 26 + 56k avec k ∈ Z

2.4 Idéal d’un anneau commutatif
Soit (A,+,×) un anneau commutatif.
2.4.1 Définition

Définition
On appelle idéal de l’anneau (A,+,×) toute partie I de A vérifiant :
1) 0A ∈ I ;
2) ∀x, y ∈ I, x+ y ∈ I ;
3) ∀a ∈ A,∀x ∈ I, ax ∈ I [absorption].

Remarque Un idéal est en particulier un sous-groupe additif (il suffit d’exploiter l’absorption avec
a = −1 )
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Exemple {0A} et A sont des idéaux de (A,+,×).

Exemple nZ est un idéal de (Z,+,×).

Exemple Le noyau d’un morphisme d’anneaux ϕ : A→ A′ est un idéal de (A,+,×).
En effet, kerϕ ⊂ A, 0A ∈ kerϕ car ϕ(0A) = 0A′ .
Soit x, y ∈ kerϕ.
ϕ(x+ y) = ϕ(x) + ϕ(y) = 0A′ + 0A′ = 0A′ donc x+ y ∈ kerϕ.
Soit de plus a ∈ A.
ϕ(ax) = ϕ(a)ϕ(x) = ϕ(a)× 0A′ = 0A′ donc ax ∈ kerϕ.

Proposition
Soit I un idéal de l’anneau (A,+,×)
Si 1A ∈ I alors I = A.
Si I ∩ U(A) 6= ∅ alors I = A.

dém. :
Par absorption 1A ∈ I entraîne A ⊂ I puis =.
De même, par absorption, I ∩ U(A) 6= ∅ entraîne 1A ∈ I puis I = A.
�

Remarque Les seuls idéaux d’un corps sont {0K} et lui-même.

2.4.2 Opérations

Proposition
Si I et J sont deux idéaux de (A,+,×) alors I ∩ J est un idéal.
De plus, I ∩ J est inclus dans I et J et contient tout idéal inclus dans I et J .

dém. :
I ∩ J ⊂ A, 0A ∈ I et 0A ∈ J donc 0A ∈ I ∩ J .
Si x, y ∈ I ∩ J alors x, y ∈ I donc x+ y ∈ I . De même x+ y ∈ J donc x+ y ∈ I ∩ J .
Si a ∈ A et x ∈ I ∩ J alors x ∈ I donc ax ∈ I . De même ax ∈ J donc ax ∈ I ∩ J .
�

Proposition
Si I et J sont deux idéaux de (A,+,×) alors

I + J =
déf
{x+ y/x ∈ I, y ∈ J}

est un idéal.
De plus, I + J contient I et J et est inclus dans tout idéal contenant I et J .

dém. :
Pour x ∈ I , x = x+ 0A ∈ I + J car 0A ∈ J . Ainsi I ⊂ I + J et de même J ⊂ I + J .
0A ∈ I + J car 0A = 0A + 0A avec 0A ∈ I, J .
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Pour x, y ∈ I + J , on peut écrire x = x′ + x′′ et y = y′ + y′′ avec x′, y′ ∈ I et x′′, y′′ ∈ J .
On a alors x+ y = (x′ + y′) + (x′′ + y′′) ∈ I + J car x′ + y′ ∈ I et x′′ + y′′ ∈ J .
Enfin, pour a ∈ A, ax = (ax′) + (ax′′) ∈ I + J car ax′ ∈ I et ax′′ ∈ J .
De plus, si K est un idéal contenant I et J alors K contient I + J car stable pour l’addition.
�

2.4.3 Idéal engendré par un élément

Définition
On appelle idéal engendré par x ∈ A l’ensemble

xA=
déf
{xu/u ∈ A}

Théorème
xA est un idéal contenant l’élément x et inclus dans tout idéal contenant x.

dém. :
x = x× 1 ∈ xA et si I est un idéal contenant x alors par absorption, il contient xA.
Il reste à montrer que xA est un idéal.
On a xA ⊂ A et 0A = x× 0A ∈ xA.
Pour y, z ∈ xA, on peut écrire y = xu et z = xv avec u, v ∈ A et alors y + z = x(u+ v) ∈ xA.
Enfin, pour a ∈ A, ay = x(au) ∈ xA.
�

2.4.4 Idéaux de (Z,+,×)

Théorème
Les idéaux de (Z,+,×) sont de la forme nZ avec n ∈ N.

dém. :
Les idéaux de (Z,+,×) sont des sous-groupes de (Z,+) donc de la forme nZ avec n ∈ N.
�

2.5 Application à l’arithmétique

Soit (A,+,×) un anneau intègre commutatif

2.5.1 Divisibilité dans un anneau intègre

Définition
On dit que a ∈ A divise b ∈ A s’il existe u ∈ A tel que b = au. On note alors a | b.

Exemple 1A divise a et a divise a.

Exemple a divise 0A et 0A | a⇒ a = 0A.
La notion de diviseurs de zéro dans le cadre arithmétique ne doit pas être confondue avec celle du cadre
de l’intégrité !
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Théorème
On a équivalence entre :
(i) a | b ;
(ii) b ∈ aA ;
(iii) bA ⊂ aA.

dém. :
Par définition (i)⇔ (ii)
(ii)⇒ (iii) Si b ∈ aA alors bA ⊂ aA car aA est un idéal.
(iii)⇒ (ii) Supposons bA ⊂ aA. Puisque b ∈ bA, on a b ∈ aA.
�

Proposition
Soit a, b, c ∈ A.

a | b et b | c⇒ a | c

dém. :
bA ⊂ aA et cA ⊂ bA⇒ cA ⊂ aA.
�

Proposition
Soit a, b, c ∈ A.

a | b et a | c⇒ a | (b+ c)

dém. :
bA ⊂ aA et cA ⊂ aA⇒ (b+ c)A ⊂ bA+ cA ⊂ aA car aA est un idéal.
�

2.5.2 Association

Définition
On dit que a ∈ A est associé à b ∈ A si a et b se divise mutuellement.

Proposition
Ceci définit une relation d’équivalence sur A.

Théorème
Soit a, b ∈ A. On a équivalence entre :
(i) a et b sont associés ;
(ii) aA = bA ;
(iii) ∃u ∈ U(A), b = au.

dém. :
(i)⇔bA ⊂ aA et aA ⊂ bA⇔ (ii)
(i)⇒ (iii) Supposons a et b associés.
Il existe u, v ∈ A tels que b = au et a = bv.
On a alors a = a(uv).
Cas a = 0A : b = au = 0A et donc b = a× 1A.
Cas a 6= 0A : Par intégrité, uv = 1A et donc u ∈ U(A) puis b = au avec u ∈ U(A).
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(iii)⇒ (i) Supposons qu’il existe u ∈ U(A) tel que b = au.
On a donc b ∈ aA puis bA ⊂ aA.
Aussi a = bu−1 donc aA ⊂ bA puis =.
�

Exemple Dans Z, a et b sont associés si, et seulement si, |a| = |b|.
Ainsi, tout entier est associé à un unique entier naturel.

Exemple Dans K [X], A et B sont associés si, et seulement si,

∃λ ∈ K?, A = λB

Ainsi, tout polynôme non nul est associé à un unique polynôme unitaire.

2.5.3 Arithmétique dans Z

Par ce qui précède
a | b⇔ bZ ⊂ aZ

Dans la suite nous exploitons cette interprétation pour revoir l’arithmétique des entiers.
2.5.3.1 PGCD et PPCM

Théorème
Soit a, b ∈ Z. Il existe unique d ∈ N tel que

aZ + bZ = dZ

On a alors
d | a, d | b et ∀c ∈ Z, (c | a et c | b)⇒ c | d

dém. :
aZ et bZ sont des idéaux de Z donc aZ + bZ aussi.
Par suite, il existe d ∈ N unique vérifiant aZ + bZ = dZ.
Puisque aZ ⊂ aZ + bZ = dZ, on a d | a. De même d | b.
Si c | a et c | b alors aZ ⊂ cZ et bZ ⊂ cZ donc dZ = aZ + bZ ⊂ cZ puis c | d.
�

Définition
Ce naturel d est appelé PGCD de a et b

d=
déf
a ∧ b

Corollaire
Si d = a ∧ b alors il existe u, v ∈ Z vérifiant d = au+ bv.
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Théorème
Soit a, b ∈ Z. Il existe unique m ∈ N tel que

aZ ∩ bZ = mZ

On a alors
a | m, b | m et ∀c ∈ Z, (a | c et b | c)⇒ m | c

dém. :
aZ et bZ sont des idéaux de Z donc aZ∩ bZ aussi. Par suite, il existe m ∈ N unique vérifiant aZ∩ bZ =
mZ.
Puisque mZ ⊂ aZ, on a a | m et de même b | m.
Si a | c et b | c alors cZ ⊂ aZ ∩ bZ = mZ donc m | c.
�

Définition
Ce naturel m est appelé PPCM de a et b :

m=
déf
a ∨ b

Remarque On définit aussi le pgcd d et le ppcm m de plusieurs entiers a1, . . . , an par

dZ = a1Z + · · ·+ anZ et mZ = a1Z ∩ . . . ∩ anZ

2.5.3.2 Entiers premiers entre eux

Définition
Deux entiers a et b sont dits premiers entre eux si aZ + bZ = Z (autrement dit si leur PGCD
vaut 1).
On note a ∧ b = 1.

Théorème
Soit a, b ∈ Z. On a équivalence entre :
(i) a et b sont premiers entre eux ;
(ii) ∃u, v ∈ Z, au+ bv = 1.

dém. :
(i)⇒ (ii) via l’égalité de Bézout.
(ii)⇒ (i) via 1 ∈ aZ + bZ donc aZ + bZ = Z.
�

Corollaire
On a

∀a, b, c ∈ Z, (a ∧ b = 1 et a ∧ c = 1)⇒ a ∧ (bc) = 1

∀a, b ∈ Z, a ∧ b = 1⇒ ∀α, β ∈ N, aα ∧ bβ = 1
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Théorème

∀a, b, c ∈ Z, (a | bc et a ∧ b = 1)⇒ a | c

dém. :
cZ = c(aZ + bZ) = acZ + bcZ ⊂ aZ donc a | c.
�

Théorème

∀a, b, c ∈ Z, (a ∧ b = 1, a | c et b | c)⇒ ab | c

2.5.3.3 Nombre premiers

Définition
Un naturel p > 2 est dit premier si ses seuls diviseurs positifs sont 1 et lui-même.

Exemple Deux entiers a et b sont premiers entre eux si, et seulement si, ils ne possède pas de facteurs
premiers en commun.

Théorème
Pour tout a ∈ N tel que a > 2 on peut écrire

a = pα1
1 pα2

2 . . . pαNN

avec N ∈ N?, p1, . . . , pN nombres premiers deux à deux distincts et α1, . . . , αn ∈ N? .
De plus, cette décomposition est unique à l’ordre près des facteurs.

Exemple Si a = pα1
1 pα2

2 . . . pαNN et b = pβ1

1 pβ2

2 . . . pβNN (écriture qu’il est possible d’obtenir en
autorisant les exposants à être nuls) alors

a ∧ b =

N∏
i=1

p
min(αi,βi)
i et a ∨ b =

N∏
i=1

p
max(αi,βi)
i

En particulier, on constate
(a ∧ b)× (a ∨ b) = ab

2.5.4 Fonction indicatrice d’Euler

Définition
On appelle fonction indicatrice d’Euler l’application ϕ : N? → N? définie par

ϕ(n) = Card {k ∈ J1, nK/k ∧ n = 1}

Exemple ϕ(12) = Card {1, 5, 7, 11} = 4.
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Remarque ϕ(n) est aussi :
- le nombre de générateurs du groupe (Z/nZ,+) ;
(c’est aussi le nombre de racines primitives n-ième de l’unité)
- le nombre d’éléments inversibles de l’anneau (Z/nZ,+,×).
(c’est donc le cardinal de U(Z/nZ) )

Lemme
Si p est un nombre premier et α ∈ N? alors

ϕ(pα) = pα − pα−1

dém. :
Pour k ∈ J1, pαK, le pgcd de k et pα est un diviseur de pα.
Puisque p est premier les naturels diviseurs de pα sont 1, p, p2, . . . , pα.
Par suite pgcd(k, pα) = 1, p, . . . ou pα.
On en déduit

k ∧ pα 6= 1⇔ p | k

Par suite, les entiers k ∈ J1, pαK qui ne sont pas premiers avec pα sont ceux qui sont les multiples de p
suivants

p, 2p, . . . , pα

Il y en a pα−1 et donc

ϕ(pα) = CardJ1, pαK− pα−1 = pα − pα−1

�

Lemme
Si n et m sont deux entiers naturels non nuls premiers entre eux alors

ϕ(nm) = ϕ(n)ϕ(m)

dém. :
Par le théorème Chinois, l’anneau Z/mnZ est isomorphe à Z/mZ×Z/nZ. Il y a donc autant d’éléments
inversibles dans Z/mnZ que dans Z/mZ× Z/nZ.
Il y a exactement ϕ(mn) éléments inversibles dans Z/mnZ.
Les éléments inversibles de Z/mZ× Z/nZ sont les couples formés par un élément inversible de Z/mZ
et un élément inversible de Z/nZ. Il y en a exactement ϕ(m)ϕ(n).
Au final, on peut conclure

ϕ(mn) = ϕ(m)ϕ(n)

�
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Théorème
Si n > 2 s’écrit

n = pα1
1 . . . pαNN

avec p1, . . . , pN nombres premiers deux à deux distincts et α1, . . . , αN ∈ N? alors

ϕ(n) = n

N∏
i=

(
1− 1

pi

)

dém. :
On a

ϕ(n) = ϕ(pα1
1 pα2

2 . . . pαNN ) = ϕ(pα1
1 )ϕ(pα2

2 . . . pαNN )

car pα1
1 ∧ (pα2

2 . . . pαNN ) = 1 puisque les nombres premiers pi sont deux à deux distincts.
De même

ϕ(n) = ϕ(pα1
1 )ϕ(pα2

2 ) . . . ϕ(pαNN ) =

N∏
i=1

ϕ(pαii )

Or
ϕ(pα) = pα − pα−1 = pα(1− 1/p)

donc

ϕ(n) =

N∏
i=1

pαii

N∏
i=1

(
1− 1

pi

)
= n

N∏
i=1

(
1− 1

pi

)
�

Exemple Les facteurs premiers de 12 sont 2 et 3.

ϕ(12) = 12×
(

1− 1

2

)(
1− 1

3

)
= 4

2.5.5 Théorème d’Euler

Théorème
Si a est un entier premier avec n alors

aϕ(n) ≡ 1 [n]

dém. :
ā est un élément du groupe (U (Z/nZ) ,×). Ce groupe possède ϕ(n) éléments donc

āϕ(n) = 1̄

i.e.
aϕ(n) ≡ 1 [n]

�
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Remarque Si p est un nombre premier, ϕ(p) = p− 1 et l’on retrouve le petit théorème de Fermat

a 6 ≡0 [p]⇒ ap−1 ≡ 1 [p]

2.5.6 Musculations
2.5.6.1 Une relation

Proposition

∀n ∈ N?, n =
∑
d|n

ϕ(d)

dém. :
Considérons les n nombres rationnels

1

n
,

2

n
, . . . ,

k

n
, . . . ,

n

n

L’écriture irréductible des ces nombres est de la forme

k

n
=
p

d
avec d | n et p ∧ d = 1

Il y a exactement ϕ(d) fractions qui se réduisent avec le dénominateur d et donc

ϕ(n) =
∑
d|n

ϕ(d)

�
2.5.6.2 Nombre de diviseurs

Exemple Pour n ∈ N?, notons

Div(n) = {d ∈ N?/d | n} et δ(n) = CardDiv(n)

Pour n = 6, Div(6) = {1, 2, 3, 6} et δ(6) = 4.
De façon générale, exprimons δ(n).
Pour n = pα avec p nombre premier on a

Div(pα) = {1, p, . . . , pα} et δ(pα) = α+ 1

Pour m ∧ n = 1, montrons δ(mn) = δ(m)δ(n).
Considérons l’application f : Div(m)× Div(n)→ Div(mn) définie par f(a, b) = ab.
L’application considérée est bien définie par

(a | m et b | n)⇒ ab | mn

Montrons que f est bijective.
Supposons f(a, b) = f(c, d). On a ab = cd.
a divise cd or a ∧ d = 1 (car a et d sont diviseurs de m et n premiers entre eux) donc a divise c.
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De même c divise a et donc a = c puis b = d.
Ainsi f est injective.
Soit d ∈ Div(mn).
Posons a = pgcd(d,m) et b = pgcd(d, n).
On a (a, b) ∈ Div(m)× Div(n). Montrons que f(a, b) = ab = d.
On a a | d, b | d et a ∧ b = 1 (car a et b sont diviseurs de m et n premiers entre eux) donc ab | d.
Inversement, par égalité de Bézout on peut écrire a = du+mv et b = du′ + nv′ donc
ab = dw +mnvv′. Puisque d divise mn alors d divise ab puis finalement d = ab.
Ainsi f est surjective et donc bijective.
De la bijectivité de f , on déduit

δ(mn) = δ(m)δ(n)

Par suite, si

n = pα1
1 . . . pαNN

avec p1, . . . , pN nombres premiers deux à deux distincts, on obtient

δ(n) = (α1 + 1) . . . (αN + 1)

2.6 Polynômes en une indéterminée

K désigne un sous-corps de (C,+,×) qui sera par exemple R,C,Q, . . .
Le cours de première année relatif aux polynômes à coefficients réels ou complexe s’étend au cadre des
polynômes à coefficients dans K.

2.6.1 L’anneau K [X]

Définition
On appelle polynôme à coefficients dans K en une indéterminée toute expression de la forme

P =

+∞∑
n=0

anX
n

où (an)n∈N est une suite d’éléments K nulle à partir d’un certain rang.
On note K [X] l’ensemble des polynômes à coefficients dans K en l’indéterminée X .

Définition

Lorsque P =

+∞∑
n=0

anX
n n’est pas le polynôme nul, on introduit son degré

degP = max {n ∈ N/an 6= 0}

Par convention, on pose deg 0 = −∞.
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Définition

Pour P =

+∞∑
n=0

anX
n et Q =

+∞∑
n=0

bnX
n éléments de K [X], on pose

P +Q =

+∞∑
n=0

(an + bn)Xn et PQ =

+∞∑
n=0

cnX
n avec cn =

n∑
k=0

akbn−k

Théorème
(K [X] ,+,×) est un anneau intègre de neutres 0 et 1 dont les éléments inversibles sont les
polynômes constants non nuls.

dém. :
L’intégrité et la description des inversibles découlent de la relation

deg(PQ) = degP + degQ

�

Définition

On appelle valeur d’un polynôme P =

N∑
n=0

anX
n en x ∈ K le nombre

P (x) =

N∑
n=0

anx
n ∈ K

Exemple On dit que x est racine de P si P (x) = 0.

2.6.2 Divisibilité dans K [X]

Puisque que K [X] est un anneau commutatif intègre, le vocabulaire de divisibilité se transpose aux
polynômes.
Pour A,B ∈ K [X], on obtient

A | B ⇔ ∃U ∈ K [X] , B = AU ⇔ B.K [X] ⊂ A.K [X]

et
A et B sont associés ⇔ ∃λ ∈ K?, B = λA

En particulier, tout polynôme non nul est associé à un unique polynôme unitaire.
De plus, on bénéficie dans K [X] d’une division euclidienne

∀(A,B) ∈ K [X]× (K [X] \ {0}) , ∃!(Q,R) ∈ K [X] , A = BQ+R et degR < degB

Exemple a est racine de P ∈ K [X] si, et seulement si, X − a divise P .
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2.6.3 Idéaux de (K [X] ,+,×)

Théorème
Les idéaux de (K [X] ,+,×) sont de la forme P.K [X] avec P ∈ K [X].

dém. :
Soit I un idéal de K [X].
Si I = {0} alors I = P.K [X] avec P = 0.
Sinon, soit P un polynôme non nul de I de degré minimal.
Par absorption P.K [X] ⊂ I .
Pour A ∈ I , par division euclidienne A = PQ+ R avec degR < degP . R = A− P ∈ I car A ∈ I et
P ∈ P.K [X] ⊂ I .
Or degR < degP donc par minimalité du degré de P parmi les polynômes non nuls de I , on peut
affirmer R = 0 et donc A ∈ P.K [X]. Ainsi I ⊂ P.K [X] puis I = P.K [X].
�

2.6.4 PGCD et PPCM

Théorème
Soit A,B ∈ K [X]. Il existe un unique polynôme unitaire ou nul D ∈ K [X] vérifiant tel que

A.K [X] +B.K [X] = D.K [X]

On a alors
D | A, D | B et ∀P ∈ K [X] , (P | A et P | B)⇒ P | D

dém. :
Existence :
A.K [X] etB.K [X] sont des idéaux deK [X] doncA.K [X]+B.K [X] aussi. Il existe doncD ∈ K [X]
vérifiant

A.K [X] +B.K [X] = D.K [X]

Si le polynôme D n’est pas nul, on peut le remplacer par un polynôme associé et dès lors le choisir
unitaire.
Unicité :
Si D et D̃ sont solutions alors ils sont associés et donc égaux car tous deux unitaires ou nuls.
�

Définition
Ce polynôme D est appelé PGCD des polynômes A et B.

D =
déf
A ∧B

Corollaire
Si D = A ∧B alors il existe U, V ∈ K [X] vérifiant

D = AU +BV
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Définition
De même, on définit le PPCM de deux polynômes A,B ∈ K [X] comme l’unique polynôme
M ∈ K [X] unitaire ou nul vérifiant

AK [X] ∩BK [X] = MK [X]

On note
M = A ∨B

Remarque On peut aussi parler du PGCD D et du PPCM M d’une famille de plusieurs polynômes
A1,K,An définis par

D.K [X] = A1.K [X] + · · ·+An.K [X] et M.K [X] = A1.K [X] ∩ · · · ∩An.K [X]

2.6.5 Polynômes premiers entre eux

Définition
On dit que deux polynômes A,B ∈ K [X] sont premiers entre eux si

A.K [X] +B.K [X] = K [X]

autrement dit si A ∧B = 1.

Exemple Si a 6= b alors X − a et X − b sont premiers entre eux.

Théorème
Soit A,B ∈ K [X]. On a équivalence entre :
(i) A et B sont premiers entre eux ;
(ii) ∃(U, V ) ∈ K [X]

2
, AU +BV = 1.

Théorème
Soit A,B,C ∈ K [X].

A | BC et A ∧B = 1⇒ A | C

Théorème
Soit A,B,C ∈ K [X].

A ∧B = 1, A | C et B | C ⇒ AB | C

Exemple Si a1, . . . , an ∈ K sont des racines deux à deux distinctes de P alors

(X − a1) . . . (X − an) divise P

En particulier, si P n’est pas le polynôme nul, P possède au plus degP racines.
Ce résultat peut être approfondi en introduisant la notion de multiplicité d’une racine.
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Théorème
A,B ∈ K [X] sont premiers entre eux si, et seulement si, A et B n’ont aucunes racines com-
plexes en commun.

dém. :
(⇒ ) Par contraposée
Si A et B ont une racine complexe z en commun alors celle-ci est racine de D = A ∧ B en vertu de la
relation de Bézout. Le polynôme D n’est alors pas constant égal à 1.
(⇐) Par contraposée
SiA etB ne sont pas premiers entre eux alorsD = 0 ouD n’est pas constant. Dans les deux casD admet
une racine complexe qui est alors racine commune aux polynômes A et B.
�

Corollaire
Le polynôme P ∈ C [X] est à racines simples si, et seulement si, P ∧ P ′ = 1.

2.6.6 Polynômes irréductibles

Définition
Un polynôme non constant P ∈ K [X] est dit irréductible sur K [X] s’il n’est divisible que
par les polynômes constants et ses polynômes associés.

Exemple Le polynôme X − a est irréductible dans K [X].

Exemple Le polynôme X2 + 1 est irréductible dans R [X] mais ne l’est pas dans C [X].

Théorème
Si P est un polynôme non constant de K [X], on peut écrire

P = λ
∏

16i6N

Pαii

avec λ ∈ K?, N ∈ N?, P1, . . . , PN polynômes irréductibles unitaires deux à deux distincts et
α1, . . . , αN ∈ N?.
De plus, cette décomposition est unique à l’ordre près des facteurs.

dém. :
Il suffit d’adapter la démonstration vue en première année.
�
Rappel :
Les polynômes irréductibles de C [X] sont les polynômes de degré 1.
Les polynômes irréductibles unitaires de C [X] sont les X − a avec a ∈ C.
Les polynômes irréductibles de R [X] sont les polynômes de degré 1 et ceux de degré 2 sans racines
réelles.
Les polynômes irréductibles unitaires sont les polynômes

X − a avec a ∈ R et X2 + pX + q avec p, q ∈ R vérifiant p2 − 4q < 0
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Corollaire
Tout polynôme réel de degré impair possède au moins une racine réelle.

dém. :
Sa décomposition en facteurs irréductibles doit au moins faire apparaître un terme de degré ce qui dé-
termine une racine du polynôme. Un argument de continuité en lien avec les limites en l’infini d’un
polynôme de degré impair est aussi possible.
�

Remarque Les polynômes irréductibles de Q [X] sont plus variés. . .

Exemple Le polynôme X3 +X + 1 est irréductible dans Q [X].
En effet, s’il était composé, il possèderait au moins une racine rationnelle x = p/q avec p ∧ q = 1.
Or x3 + x+ 1 = 0 donne p3 + pq2 + q3 = 0 et donc q | p et p | q. Cela entraîne x = ±1 or ce nombre
n’est pas racine du polynôme.
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Chapitre 3

Espaces vectoriels

La théorie sur les espaces vectoriels présentées en MPSI dans le cas où le corps de base est R ou C s’étend
pour l’essentiel au cas où le corps de base est un corps quelconque.
On se limite cependant dans ce cours au cas où K est un sous-corps de C : K = C,R,Q, . . .

3.1 Structure d’espace vectoriel

3.1.1 Définition

Définition
On appelle K-espace vectoriel tout triplet (E,+, .) formé d’un ensemble E, d’une loi de com-
position interne + sur E et d’un produit extérieur . opérant de K sur E vérifiant :
(1) (E,+) est un groupe abélien ;
(2) ∀x, y ∈ E,∀λ, µ ∈ K, λ(x + y) = λx + λy, (λ + µ)x = λx + µx, λ(µx) = (λµ)x et
1.x = x.
Les éléments de K sont appelés scalaires, ceux de E sont appelés vecteurs, en particulier le
neutre additif de E est appelé vecteur nul et note 0E .

Exemple On peut visualiser géométriquement les opérations à l’intérieur d’un espace vectoriel en
commençant par visualiser le vecteur nul 0E et en convenant que tout vecteur sera représenté en partant
de celui-ci.

Exemple Espaces vectoriels usuels : Kn, K [X],Mn,p(K) et F(X,K).
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Exemple K est un K-espace vectoriel. Dans ce cas, vecteurs et scalaires se confondent et le produit
extérieur correspond à la multiplication sur K.

Proposition
Si L est un sous-corps de K alors, par restriction du produit extérieur, tout K-espace vectoriel
est encore un L-espace vectoriel.

dém. :
La propriété (1) est conservée alors que la propriété (2) valant pour tout λ, µ ∈ K vaut a fortiori pour tout
λ, µ ∈ L.
�

Exemple Tout C-espace vectoriel est aussi un R-espace vectoriel.
En particulier C est un R-espace vectoriel.

Exemple R est un Q-espace vectoriel.

3.1.2 Produit d’un nombre fini d’espaces vectoriels

Proposition
SiE1, . . . , En sont des K-espaces vectoriels alorsE = E1×· · ·×En est un K-espace vectoriel
pour les lois + et . définies par :

(x1, . . . , xn) + (y1, . . . , yn) =
déf

(x1 + y1, . . . , xn + yn) et λ.(x1, . . . , xn) =
déf

(λx1, . . . , λxn)

De plus le vecteur nul de E est alors 0E = (0E1
, . . . , 0En).

Exemple On retrouve que Kn est un K-espace vectoriel de nul 0Kn = (0, . . . , 0)

Exemple Si E et F sont deux K-espaces vectoriels alors E × F est un K-espace vectoriel.

3.1.3 Espace de fonctions
Soit X un ensemble quelconque

Proposition
SiE un K-espace vectoriel alors F(X,E) est un K-espace vectoriel pour les lois + et . définies
par :

f + g : x 7→ f(x) + g(x) et λ.f : x 7→ λ.f(x)

De plus, le vecteur nul de F(X,E) est la fonction nulle : 0̃ : x 7→ 0E .

Exemple On retrouve que F(X,K) est un K-espace vectoriel.
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3.2 Sous-espaces vectoriels
E désigne un K-espace vectoriel.
3.2.1 Définition

Définition
On appelle sous-espace vectoriel d’un K-espace vectoriel E toute partie F de E vérifiant :
1) 0E ∈ F ;
2) ∀λ, µ ∈ K,∀x, y ∈ F , λx+ µy ∈ F .

Exemple {0E} et E sont des sous-espaces vectoriels de E.

Exemple Géométriquement, les sous-espaces vectoriels non triviaux se visualisent comme des droites
et des plans contenant le vecteur nul.

Théorème
Si F est un sous-espace vectoriel d’un K-espace vectoriel E alors F est aussi un K-espace
vectoriel pour les lois restreintes.

Exemple Kn [X] est un K-espace vectoriel.
C’est en effet un sous-espace vectoriel de K [X].

3.2.2 Opérations

Proposition
Si F et G sont deux sous-espaces vectoriels de E alors

F ∩G = {x ∈ E/x ∈ F et x ∈ G}

est un sous-espace vectoriel de E.
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dém. :
F ∩G ⊂ E.
0E ∈ F ∩G car 0E ∈ F et 0E ∈ G.
Soit λ, µ ∈ K et x, y ∈ F ∩G.
On a λx+ µy ∈ F ∩G car λx+ µy ∈ F puisque x, y ∈ F et F est un sous-espace vectoriel et de même
λx+ µy ∈ G.
�

Proposition
Si F et G sont deux sous-espaces vectoriels de E alors

F +G = {a+ b/a ∈ F, b ∈ G}

est un sous-espace vectoriel de E.

dém. :
F +G ⊂ E.
0E = 0E + 0E ∈ F +G car 0E ∈ F et 0E ∈ G.
Soit λ, µ ∈ K et x, y ∈ F +G.
On peut écrire x = a+ b et y = a′ + b′ avec a, a′ ∈ F et b+ b′ ∈ G donc

λx+ µy = (λa+ µa′) + (λb+ µb′) ∈ F +G

�

Exemple

Remarque Les opérations d’intersection et de somme de sous-espaces vectoriels :
? sont commutatives ;
? sont associatives ;
? possèdent des neutres E et {0E} respectivement.
En particulier, pour F1, . . . , Fn des sous-espaces vectoriels de E, on peut introduire les sous-espaces
vectoriels

n⋂
i=1

Fi = F1 ∩ . . . ∩ Fn et
n∑
i=1

Fi = F1 + · · ·+ Fn =

{
n∑
i=1

xi/xi ∈ Fi

}
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3.2.3 Espace vectoriel engendré

Définition
On appelle espace vectoriel engendré par une partie A de E l’intersection VectA de tous les
sous-espaces vectoriels de E contenant A.

Théorème
VectA est un sous-espace vectoriel de E contenant A.
De plus, pour tout sous-espace vectoriel F de E :

A ⊂ F ⇒ VectA ⊂ F

VectA apparaît comme étant le plus petit sous-espace vectoriel de E contenant A.

Exemple Pour A = {u}, Vect(u) = K.u = {λ.u/λ ∈ K}.

Exemple Vect(u, v) = {λu+ µv/λ, µ ∈ K} = K.u+ K.v.

Remarque Par récurrence

Vect(u1, . . . , un) = {λ1u1 + · · ·+ λnun/λi ∈ K} = K.u1 + · · ·+ K.un

Exemple Si F et G sont des sous-espaces vectoriels

Vect(F ∪G) = F +G

3.2.4 Somme directe
Soit F1, . . . , Fn des sous-espaces vectoriels de E.
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Définition
Soit F1, . . . , Fn des sous-espaces vectoriels. On dit que la somme

∑n

i=1
Fi est directe si

∀x ∈
n∑
i=1

Fi,∃!(x1, . . . , xn) ∈ F1 × . . .× Fn, x = x1 + · · ·+ xn

Autrement dit, il y a unicité dans l’écriture de la décomposition d’un vecteur de la somme.
La somme

∑n

i=1
Fi est alors notée

n
⊕
i=1

Fi ou F1 ⊕ · · · ⊕ Fn

Remarque Si F et G sont en somme directe et si F +G est en somme directe avec H alors F,G,H
sont en somme directe. On dispose ainsi de la relation d’associativité

(F ⊕G)⊕H = F ⊕G⊕H

Théorème
Les espaces F1, . . . , Fn sont en somme directe si, et seulement si,

∀(x1, . . . , xn) ∈ F1 × . . .× Fn, x1 + · · ·+ xn = 0E ⇒ ∀1 6 i 6 n, xi = 0E

Ce qui revient à signifier l’unicité de la décomposition du vecteur nul.

Remarque Si l’on se limite à deux sous-espaces vectoriels F et G, on a aussi

F et G sont en somme directe ⇔ F ∩G = {0E}

3.2.5 Sous-espaces vectoriels supplémentaires
Soit F et G deux sous-espaces vectoriels de E.

Définition
On dit que les espaces F et G sont supplémentaires si

∀x ∈ E,∃!(a, b) ∈ F ×G, x = a+ b
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Exemple E et {0E} sont supplémentaires dans E.

Exemple

Théorème
Les espaces F et G sont supplémentaires si, et seulement si, F ∩G = {0E} et F +G = E.
Autrement dit, si, et seulement si, E = F ⊕G.

Exemple On note Sn(R) et An(R) les sous-espaces vectoriels deMn(R) formés des matrices
symétriques et antisymétriques. Montrer que Sn(R) et An(R) sont des sous-espaces vectoriels
supplémentaires.
On a Sn(R) ∩ An(R) = {On} car

tM = M et tM = −M ⇒M = On

Aussi Sn(R) +An(R) =Mn(R) car

M =
1

2

(
M + tM

)
+

1

2

(
M − tM

)
avec

1

2

(
M + tM

)
∈ Sn(R) et

1

2

(
M − tM

)
∈ An(R)

Exemple Soit E = C([−1, 1] ,R),

F1 = {x ∈ [−1, 1] 7→ ax+ b/a, b ∈ R} et F2 = {f ∈ F/f(−1) = f(1) = 0}

Montrons que F1 et F2 sont des sous-espaces vectoriels supplémentaires.
F1 et F2 sont évidemment des sous-espaces vectoriels de E.
Etudions F1 ∩ F2.
Soit f ∈ F1 ∩ F2. Il existe a, b ∈ R tels que f(x) = ax+ b pour tout x ∈ [−1, 1].
Or f(1) = f(−1) = 0 donc a+ b = a− b = 0 puis a = b = 0 et enfin f = 0̃.
Ainsi A ∩B ⊂ {0} puis =.
Etudions F1 + F2.
Analyse :
On suppose f = g + h avec g ∈ F1 et h ∈ F2.
Il existe a, b ∈ R tel que g(x) = ax+ b et on a h(1) = h(−1) = 0.
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On en déduit a+ b = f(1) et a− b = f(−1) puis

a =
1

2
(f(1) + f(−1)) et b =

1

2
(f(1)− f(−1))

Ceci détermine g puis h = f − g.
Synthèse :
Soit f ∈ E. Posons

a =
1

2
(f(1) + f(−1)) et b =

1

2
(f(1)− f(−1))

Considérons ensuite g : x ∈ [−1, 1] 7→ ax+ b et h = f − g.
On a f = g + h avec g ∈ F1.
De plus f(1) = a+ b+ h(1) donne h(1) = 0 et, de même, on obtient h(−1) = 0. Ainsi h ∈ F2.
Finalement E ⊂ F1 + F2 puis =. On peut conclure

E = F1 ⊕ F2

3.2.6 Sous-espace affine

Définition
On appelle sous-espace affine passant a ∈ E et dirigé par un sous-espace vectoriel F de E
l’ensemble

V = a+ F = {a+ x/x ∈ F}

Exemple Géométriquement les sous-espaces affines se visualisent comme étant des points, des droites
ou des plans ne passant pas nécessairement par 0E .

Proposition
Si V est un sous-espace affine de direction F et si b ∈ V alors

V = b+ F

dém. :
Ecrivons V = a+ F .
Puisque b ∈ V , on a b− a ∈ F et donc

b+ F = {b+ x/x ∈ F} = {a+ x′/x′ ∈ F} = a+ F

�

Proposition
L’intersection de deux sous-espaces affines V et W de directions F et G est soit vide, soit égal
à un sous-espace affine de direction F ∩G.

dém. :
Supposons V ∩W 6= ∅. Considérons a ∈ V ∩W . On a V = a+ F et W = a+G.
Par suite, pour x ∈ E, x ∈ V ∩W ⇔ x− a ∈ F ∩G et ainsi V ∩W = a+ F ∩G.
�
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3.3 Dimension
I désigne un ensemble, éventuellement infini.
E désigne un K-espace vectoriel.
3.3.1 Combinaisons linéaires

Définition
Une famille de scalaires (λi)i∈I est dite presque nulle si

{i ∈ I/λi = 0} est fini

On note K(I) l’ensemble de ces familles.

Exemple Si I est un ensemble fini alors KI = K(I).

Exemple Une suite nulle à partir d’un certain rang est une famille presque nulle de KN.
Ainsi

K(N) = {u = (un)n∈N/∃N ∈ N,∀n > N, un = 0}

Définition
On appelle combinaison linéaire d’une famille (xi)i∈I de vecteurs de E tout vecteur de E
pouvant s’écrire ∑

i∈I
λixi

avec (λi)i∈I une famille de scalaire presque nulle.

Remarque Bien que la somme porte sur l’ensemble I pouvant être infini, la somme a du sens car elle
ne comporte qu’un nombre fini de termes non nuls.

Exemple Cas I = ∅ :
Seul le vecteur nul est combinaison linéaire de la famille vide.
Cas CardI = 1 :
Les combinaisons linéaires de (x) sont les λx avec λ ∈ K.
Cas CardI = n :
Quitte à réindexer, on peut supposer I = {1, . . . , n}.
Les combinaisons linéaires de (xi)16i6n sont les λ1x1 + · · ·+ λnxn avec λi ∈ K.
Cas CardI = +∞ :
Les combinaisons linéaires de la famille (xi)i∈I correspondent aux combinaisons linéaires de ses
sous-familles finies.

Exemple Dans K [X], les combinaisons linéaires des monômes Xk avec k ∈ N sont exactement les
polynômes.
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Remarque Si A est une partie de E alors Vect(A) est l’ensemble des combinaisons linéaires (finies)
d’éléments de A.

Proposition
Si F est un sous-espace vectoriel de E alors toute combinaison linéaire d’une famille de vec-
teurs de F est élément de F .

3.3.2 Famille génératrice

Définition
On note Vect(xi)i∈I l’espace vectoriel engendré par la partie {xi/i ∈ I}.

Théorème
Vect(xi)i∈I est l’ensemble des combinaisons linéaires de la famille (xi)i∈I .

Définition
Une famille (xi)i∈I de vecteurs de E est dite génératrice si Vect(xi)i∈I = E ce qui signifie
que tout vecteur de E est combinaison linéaire de cette famille

∀x ∈ E,∃(λi)i∈I ∈ K(I), x =
∑
i∈I

λixi

Exemple La famille vide est génératrice de {0E}.

Exemple Dans Kn, considérons ei = (0, . . . , 0, 1, 0, . . . , 0).
La famille (ei)16i6n est génératrice.

Exemple Dans K [X], la famille (Xk)k∈N est génératrice.

3.3.3 Famille libre

Définition
Une famille (xi)i∈I de vecteurs de E est dite libre si

∀(λi)i∈I ∈ K(I),
∑
i∈I

λixi = 0E ⇒ ∀i ∈ I, λi = 0

Sinon, la famille est dite liée et toute égalité
∑
i∈I

λixi = 0E avec (λi)i∈I 6= 0 est appelée

relation linéaire sur la famille (xi)i∈I .

Exemple La famille vide est libre.
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Exemple (x) est libre si, et seulement si, x 6= 0E .

Exemple (x, y) est liée si, et seulement si, il existe (α, β) 6= (0, 0) tel que αx+ βy = 0E .
Cela équivaut encore à dire

∃λ ∈ K, x = λy ou ∃µ ∈ K, x = µy

Attention : (x, y) liée n’implique pas qu’il existe λ ∈ K tel que y = λx (prendre x = 0E et y 6= 0E
quelconque)
Cependant

(x, y) liée et x 6= 0E ⇒ ∃λ ∈ K, y = λx

Exemple Dans Kn, la famille (ei)16i6n est libre.

Exemple Une famille infinie est libre si, et seulement si, toutes ses sous-familles finies le sont.

Exemple La famille (Xn)n∈N est libre car

∀n ∈ N, (Xk)06k6n est libre

Exemple E = F(R,R). Pour a ∈ R, on note ea l’application de R vers R définie par ea(t) = eat.
Montrons que (ea)a∈R est une famille libre d’éléments de F(R,R).
Soit a1, . . . , an des réels deux à deux distincts.
Supposons

λ1ea1 + · · ·+ λnean = 0

Pour tout t ∈ R,
λ1ea1t + λ2ea2t + · · ·+ λneant = 0

Quitte à réindexer, on peut supposer a1 < a2 < . . . < an
En multipliant la relation par e−a1t, on obtient

λ1 + λ2e(a2−a1)t + · · ·+ λne(an−a1)t = 0

Quand t→ −∞, la relation précédente donne λ1 = 0.
On obtient alors

λ2ea2t + · · ·+ λneant = 0

pour tout t ∈ R et on peut reprendre la démarche pour obtenir successivement λ2 = . . . = λn = 0.
Ainsi, la famille (ea1 , . . . , ean) est libre et puisque toutes ses sous-familles finies sont libres, la famille
(ea)a∈R est libre.
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3.3.4 Base

Définition
On appelle base de E toute famille (ei)i∈I de vecteurs de E à la fois libre et génératrice.

Exemple La famille vide est base de E = {0E}.

Exemple (ei)16i6n est une base de Kn (dite canonique).

Exemple (Xk)k∈N est une base de K [X] (dite canonique).

Exemple (1) est base de K (dite canonique).

Exemple (1, i) est base du R-espace vectoriel C (dite canonique).

Théorème
Si (ei)i∈I est une base de E alors

∀x ∈ E, ∃!(λi)i∈I ∈ K(I), x =
∑
i∈I

λiei

Définition
La famille (λi)i∈I est alors appelée famille des coordonnées (ou composantes) de x dans la
base (ei)i∈I .

Exemple Les coordonnées de x = (x1, . . . , xn) ∈ Kn dans la base canonique sont ses éléments xi.

Exemple Les coordonnées de P ∈ K [X] dans la base canonique de K [X] sont ses coefficients.

Exemple Soit j ∈ I . On peut écrire

ej =
∑
i∈I

δi,jei avec δi,j =

{
1 si i = j
0 sinon

La famille (δi,j)i∈I est donc la famille des coordonnées de ej dans la base (ei)i∈I .
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3.3.5 Dimension

Définition
On dit qu’un K-espace vectoriel est de dimension finie s’il possède une famille génératrice
finie. On sait qu’un tel espace possède alors une base finie et que toute base de cet espace est
formée du même nombre de vecteurs qu’on appelle la dimension de celui-ci.

Exemple dim {0E} = 0, dimKn = n, dimMn,p(K) = np, dimKn [X] = n+ 1, dimK = 1,
dimC C = 1 et dimR C = 2.

Définition
Si un K-espace vectoriel E n’est pas de dimension finie, on pose dimE = +∞.

Exemple dimK [X] = +∞.

3.3.6 Construction de bases
Soit E un K-espace vectoriel de dimension finie.

Théorème
De toute famille génératrice de E on peut extraire une base

Théorème
Toute famille libre de vecteurs de E peut être complétée en une base.

Théorème
Soit E est un K-espace vectoriel de dimension finie et (ei)16i6n une famille de vecteurs de E.
On suppose

n = dimE

On a équivalence entre :
(i) (ei)16i6n est une base de E ;
(ii) (ei)16i6n est une famille libre ;
(iii) (ei)16i6n est une famille génératrice de E.

Exemple Soit (Pn)n∈N ∈ K [X]
N une famille de polynômes de degrés étagés (i.e. ∀n ∈ N,degPn = n

)
Montrons que (Pn)n∈N est une base de K [X].
Commençons par étudier la sous-famille (Pk)06k6n.
Supposons

λ0P0 + · · ·+ λnPn = 0

On a
λnPn = −(λ0P0 + · · ·+ λn−1Pn−1)

donc deg(λnPn) < n puis λn = 0.
En reprenant le procédé, on obtient successivement λn−1 = 0,. . . , λ0 = 0.
Ainsi, la famille (Pk)06k6n est libre, or cette famille est formée de n+ 1 = dimKn [X] vecteurs de
Kn [X] c’est donc une base de Kn [X].
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La famille (Pn)n∈N est alors libre car chacune de ses sous-familles finies est libre. Elle est de plus
génératrice car pour tout P ∈ K [X], il existe n ∈ N tel que P ∈ Kn [X] ce qui permet d’écrire

P =

n∑
k=0

λkPk =

+∞∑
k=0

λkPk en posant λk = 0 pour k > n

Finalement, la famille (Pn)n∈N est une base de K [X].

3.3.7 Dimension d’un sous-espace vectoriel

3.3.7.1 Sous-espace vectoriel en dimension finie

Théorème
Si F est un sous-espace vectoriel d’un K-espace vectoriel E de dimension finie alors F est de
dimension finie et

dimF 6 dimE

De plus
dimF = dimE ⇔ F = E

3.3.7.2 Formule de Grassmann

Théorème
Si F et G sont des sous-espaces vectoriels de dimensions finies d’un K-espace vectoriel E
alors F +G et F ∩G sont de dimensions finies et

dim(F +G) = dimF + dimG− dim(F ∩G)

dém. :
On complète une base de F ∩G, d’une part, en une base de F et, d’autre part, en une base de G puis on
forme une base de F +G en considérant la famille de tous ses vecteurs.

�

Corollaire
Si F et G sont en somme directe alors

dim(F ⊕G) = dimF + dimG

3.3.7.3 Supplémentarité en dimension finie

Théorème
Tout sous-espace vectoriel d’un K-espace vectoriel de dimension finie admet au moins un
supplémentaire et tous ses supplémentaires sont d’égales dimensions.
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Théorème
Si F et G deux sous-espaces vectoriels d’un K-espace vectoriel E de dimension finie vérifiant

dimE = dimF + dimG

alors on a équivalence entre :
(i) F et G sont supplémentaires ;
(ii) F ∩G = {0E} ;
(iii) F +G = E.

Exemple Soit H un sous-espace vectoriel de dimension n− 1 d’un K-espace vectoriel E de dimension
n ∈ N? (autrement dit H est hyperplan). Pour tout vecteur a ∈ E\H , on a

H ⊕ Vect(a) = E

Exemple On peut obtenir rapidement la supplémentarité se Sn(R) et An(R) en exploitant un argument
de dimension.

3.3.7.4 Somme de plusieurs sous-espaces vectoriels

Théorème

Si F1, . . . , Fm sont des sous-espaces vectoriels de dimensions finies alors
m∑
k=1

Fk est de dimen-

sion finie et

dim

m∑
k=1

Fk 6
m∑
k=1

dimFk

De plus, il y a égalité si, et seulement si, les sous-espaces vectoriels F1, . . . , Fm sont en somme
directe.
Ainsi

dim
m
⊕
k=1

Fk =

m∑
k=1

dimFk

Théorème
On suppose

E =
m
⊕
k=1

Fk

En accolant des bases des sous-espaces vectoriels F1, . . . , Fm, on forme une base de E.

Définition
Une telle base est dite adaptée à la décomposition E =

m
⊕
k=1

Fk.

Exemple Supposons F et G supplémentaires dans E.
Si (e1, . . . , ep) est une base de F et (ep+1, . . . , en) une base de G alors (e1, . . . , en) détermine une base
de E adaptée à la supplémentarité E = F ⊕G.
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3.4 Applications linéaires
Soit E et E′ des K-espaces vectoriels.
3.4.1 Définition

Définition
On appelle application linéaire de E vers E′ toute application u : E → E′ vérifiant :

∀λ, µ ∈ K,∀x, y ∈ E, u(λx+ µy) = λu(x) + µu(y)

Théorème
L’ensemble L(E,E′) des applications linéaires de E vers E′ est un espace vectoriel pour les
lois usuelles de neutre l’application linéaire nulle õ.

Définition
Lorsque E′ = K, on parle de forme linéaire et on note E? au lieu de L(E,K).
L’espace E? est appelé espace dual de E.

Définition
Lorsque E′ = E, on parle d’endomorphisme et on note L(E) au lieu de L(E,E).
L(E) est un anneau pour les lois + et ◦ de neutres 0̃ et IdE .

Définition
Lorsque u est bijective, on parle d’isomorphisme et on dit que les espaces E et E′ sont iso-
morphes.
On note GL(E,E′) l’ensemble des isomorphismes de E vers E′.

Définition
Lorsque u est bijective et E′ = E, on parle d’automorphisme et on note GL(E) = GL(E,E)
l’ensemble des automorphismes de E. (GL(E), ◦) est le groupe des inversibles de l’anneau
(L(E),+, ◦), on l’appelle groupe linéaire de E.

3.4.2 Propriétés

Proposition
Si u ∈ L(E,E′) alors

u(0E) = 0E′

Théorème
L’image directe (resp. réciproque) d’un sous-espace vectoriel par une application linéaire est
un sous-espace vectoriel.

Exemple Si u ∈ L(E,E′) et A ⊂ E alors u(Vect(A)) = Vect(u(A)).
En effet, A ⊂ VectA donc u(A) ⊂ u(VectA).
Or u(VectA) est un sous-espace vectoriel donc Vectu(A) ⊂ u(VectA).
Inversement, u(A) ⊂ Vectu(A) donc u−1(u(A)) ⊂ u−1(Vectu(A)).
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Or A ⊂ u−1(u(A)) donc A ⊂ u−1(Vectu(A)).
Mais u−1(Vectu(A)) est un sous-espace vectoriel donc VectA ⊂ u−1(Vectu(A)) puis
u(VectA) ⊂ u(u−1(VectA)).
Enfin u(u−1(Vectu(A))) ⊂ Vectu(A) donc u(VectA) ⊂ Vectu(A).

3.4.3 Noyau et image

Définition
On appelle noyau et image d’une application linéaire u de E vers E′ les ensembles

keru = u−1({0E′}) et Imu = u(E)

Ce sont respectivement des sous-espaces vectoriels de E et E′.

Théorème
Soit u ∈ L(E,E′).
a) u est injective si, et seulement si, keru = {0},
b) u est surjective si, et seulement si, Imu = E′.

Exemple Soit u, v ∈ L(E). Montrons

v ◦ u = 0̃⇔ Imu ⊂ ker v

(⇐ ) Supposons Imu ⊂ ker v.
Pour tout x ∈ E, u(x) ∈ Imu donc u(x) ∈ ker v puis v(u(x)) = 0. Ainsi v ◦ u = 0̃
(⇒ ) Supposons v ◦ u = 0̃.
Pour tout y ∈ Imu, on peut écrire y = u(x) avec x ∈ E. Mezalor v(y) = v(u(x)) = 0 donc y ∈ ker v.

Exemple Soit u ∈ L(E). Comparons keru et keru2.
Soit x ∈ keru. On a u(x) = 0 donc u2(x) = u(u(x)) = u(0) = 0. Ainsi keru ⊂ keru2.
Comparons Imu et Imu2.
Soit y ∈ Imu2. On peut écrire y = u2(x) donc y = u(u(x)) ∈ Imu. Ainsi Imu2 ⊂ Imu.
Plus généralement, on montre kerun ⊂ kerun+1 et Imun+1 ⊂ Imun.

3.4.4 Equations linéaires

On considère l’équation u(x) = y avec u ∈ L(E,E′), y ∈ E′ et d’inconnue x ∈ E :
- si y /∈ Imu : l’équation n’est pas compatible ;
- si y ∈ Imu, l’ensemble des solutions est un sous-espace affine de direction keru.
Protocole de résolution d’une équation linéaire compatible :
- on résout l’équation homogène (ce qui détermine keru ) ;
- on détermine une solution particulière ;
- on exprime la solution générale comme somme de la solution particulière et de la solution générale de
l’équation homogène.
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3.4.5 Image linéaire d’une famille de vecteurs

Proposition
Si u ∈ L(E,E′) alors

∀(xi)i∈I ∈ EI , ∀(λi) ∈ K(I), u

(∑
i∈I

λixi

)
=
∑
i∈I

λiu(xi)

Proposition
Si (xi)i∈I une famille génératrice de vecteurs de E et si u ∈ L(E,E′) est surjective alors
(u(xi))i∈I est une famille de vecteurs de E′ génératrice.

dém. :
Pour tout y ∈ F , il existe x ∈ E tel que y = u(x).
Or, il existe aussi (λi) ∈ K(I) telle que x =

∑
i∈I

λixi et alors y =
∑
i∈I

λiu(xi).

Ainsi, (u(xi))i∈I est génératrice.
�

Proposition
Si (xi)i∈I une famille libre de vecteurs de E et si u ∈ L(E,E′) est injective alors (u(xi))i∈I
est une famille libre de E′.

dém. :
Supposons

∑
i∈I

λiu(xi) = 0E′ .

On a u(
∑
i∈I

λixi) = 0 donc
∑
i∈I

λixi ∈ keru = {0E} puis
∑
i∈I

λixi = 0E .

Or la famille (xi)i∈I est libre donc
∀i ∈ I, λi = 0

Ainsi (u(xi))i∈I est libre.
�

Théorème
Soit u ∈ L(E,E′) et (ei)i∈I une base de E.
1) u est injective si, et seulement si, (u(ei))i∈I est libre.
2) u est surjective si, et seulement si, (u(ei))i∈I est génératrice de E′.
3) u est un isomorphisme si, et seulement si, (u(ei))i∈I est une base de E′.

dém. :
1) (⇒ ) ci-dessus.
(⇐ ) Supposons (u(ei))i∈I libre.
Soit x =

∑
i∈I

λiei tel que u(x) = 0E′ . On a
∑
i∈I

λiu(ei) = 0E′ donc λi = 0 pour tout i puis x = 0E .

2) (⇒ ) ci-dessus.
(⇐ ) Supposons (u(ei))i∈I génératrice.
Pour tout y ∈ F , on peut écrire y =

∑
i∈I

λiu(ei) et donc y = u(e) avec e =
∑
i∈I

λiei.

3) via 1) et 2)
�
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Corollaire
Si deux espaces vectoriels sont isomorphes, ils sont d’égales dimension.

3.4.6 Construction d’une application linéaire
3.4.6.1 Par l’image d’une base

Théorème
Si (ei)i∈I est une base de E et (e′i)i∈I une famille de vecteurs de E′ alors il existe une unique
application linéaire u : E → E′ vérifiant

∀i ∈ I, u(ei) = e′i

dém. :
Analyse / Unicité : Supposons u solution.
Pour e ∈ E, on peut écrire e =

∑
i∈I

λiei avec (λi)i∈I ∈ K(I) et alors

u(e) =
∑
i∈I

λiu(ei) =
∑
i∈I

λie
′
i

ce qui détermine entièrement u.
Synthèse / Existence : Considérons l’application u qui à e =

∑
i∈I

λiei associe

u(e) =
∑
i∈I

λie
′
i

On vérifie aisément que u est linéaire et transforme ei en e′i.
�

Corollaire
Si deux applications linéaires u, v ∈ L(E,E′) sont égales sur chacun des vecteurs d’une base
de E alors elles sont égales sur E.

Corollaire
Deux espaces de dimensions finies égales sont isomorphes.

3.4.6.2 Par ses restrictions linéaires

On suppose

E =
m
⊕
k=1

Fk

Théorème
Si, pour tout k ∈ {1, . . . ,m}, uk désigne une application linéaire de Fk vers E′ alors il existe
une unique application linéaire u de E vers E′ prolongeant les uk i.e. vérifiant

∀1 6 k 6 m,∀x ∈ Fk, u(x) = uk(x)
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dém. :
Analyse / Unicité :
Supposons u solution.

Pour x ∈ E, on peut écrire x =

m∑
k=1

xk avec xk ∈ Fk et alors par linéarité,

u(x) =

m∑
k=1

u(xk) =

m∑
k=1

uk(xk)

ce qui détermine entièrement u.
Synthèse / Existence :

Considérons l’application qui à x =

m∑
k=1

xk (avec xk ∈ Fk ) associe

u(x) =

m∑
k=1

uk(xk)

On vérifie aisément que u est linéaire et que sa restriction à Ek vaut uk.
�

Corollaire
Si deux applications linéaires sont égales sur chacun des espaces Ei alors elles sont égales
sur E.

Exemple On suppose la supplémentarité

E = F ⊕G

On appelle projection vectorielle sur F parallèlement à G l’endomorphisme p ∈ L(E) déterminé par

∀x ∈ F, p(x) = x et ∀x ∈ G, p(x) = 0E

L’endomorphisme p vérifie
p2 = p , Imp = F et ker p = G

Remarque Inversement, si p est un endomorphisme p vérifiant p2 = p alors
a) F = Imp et G = ker p sont des sous-espaces vectoriels supplémentaires de E ;
b) p est la projection sur F parallèlement à G.

3.4.7 Rang d’une application linéaire

Définition
On appelle rang d’une application linéaire u la dimension de son image

rgu=
déf

dim Imu
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Proposition
Soit u ∈ L(E,E′) avec dimE < +∞
On a rgu 6 dimE avec égalité si, et seulement si, u injective.

dém. :
Introduisons (e1, . . . , en) une base de E avec n = dimE
rgu = dim Imu = dimu(E), or

u(E) = u(Vect(e1, . . . , en)) = Vect(u(e1), . . . , u(en))

Par suite rgu 6 n avec égalité si, et seulement si, (u(e1), . . . , u(en)) est libre i.e. u injective.
�

Proposition
Soit u ∈ L(E,E′) avec dimE′ < +∞
On a rgu 6 dimE′ avec égalité si, et seulement si, u surjective.

dém. :
rgu = dim Imu avec Imu ⊂ F .
Par suite rgu 6 dimF avec égalité si, et seulement si, Imu = F i.e. u surjective.
�

Théorème
Soit u ∈ L(E,E′) et v ∈ L(E′, E′′). On a

rg(v ◦ u) 6 min(rgu, rgv)

dém. :
rg(v ◦ u) = dim Im(v ◦ u) = dim v(u(E)).
D’une part, v(u(E)) = Imv�u(E) donc rg(v ◦ u) = rg v|u(E) 6 dimu(E) = rgu.
D’autre part, v(u(E)) ⊂ v(F ) = Imv donc rg(v ◦ u) 6 rgv.
�

Corollaire
On ne modifie pas le rang d’une application linéaire en composant celle-ci avec un isomor-
phisme.

dém. :
Si ϕ est un isomorphisme alors

rg(ϕ ◦ u) 6 rgu et rgu = rg(ϕ−1 ◦ ϕ ◦ u) 6 rg(ϕ ◦ u)

Ainsi rgu = rg(ϕ ◦ u) et de même rgu = rg(u ◦ ϕ)
�

3.4.8 Théorème du rang

Théorème
Si u ∈ L(E,E′) et si S est un sous-espace vectoriel supplémentaire de keru dans E alors E
induit un isomorphisme de S sur Imu.

dém. :
Considérons la restriction v : S → Imu définie par v(x) = u(x).
L’application v est bien définie et linéaire.
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Pour x ∈ ker v, on a x ∈ keru ∩ S = {0E} donc x = 0E . L’application linéaire v est injective.
Pour y ∈ Imu, on peut écrire y = u(x) avec x ∈ E. On peut aussi écrire x = a + b avec a ∈ keru et
b ∈ S. On a alors

y = u(x) = u(a) + u(b) = 0E′ + v(b) = v(b)

Ainsi v est surjective et c’est donc un isomorphisme.
�

Corollaire
Si dimE < +∞ alors

dimE = rgu+ dim keru

Exemple Les hyperplans sont par définition les noyaux des formes linéaires non nulles : ils
correspondent aussi aux sous-espaces vectoriels de dimension n− 1.
Supposons dimE = n ∈ N? et considérons ϕ ∈ L(E,K) une forme linéaire non nulle.
On a Imϕ = K et donc dim kerϕ = n− 1
Un hyperplan de E est donc un espace dimension n− 1.
La réciproque est aussi vraie.

Exemple On peut retrouver la formule de Grassman en appliquant la formule du rang à l’application
F ×G→ F +G définie par (x, y) 7→ x+ y.

3.4.9 Théorème d’isomorphisme

Théorème
On suppose

n = dimE = dimE′ < +∞

Pour f ∈ L(E,E′), on a équivalence entre :
(i) f est un isomorphisme ;
(ii) f est injective ;
(iii) f est surjective ;
(iv) rgf = n ;
(v) ∃g ∈ L(E′, E), g ◦ f = IdE ;
(vi) ∃h ∈ L(E′, E), f ◦ h = IdE′ .
De plus, si tel est le cas

f−1 = g = h

dém. :
(i)⇔ (ii) et (iii)
(ii)⇒ (iv) car rgf = dimE − dim ker f = n.
(iv)⇒ (iii) car rgf = n = dimF donc f surjective.
(iii)⇒ (ii) car dim ker f = dimE − rgf = n− n = 0
(i)⇒ (v) et (vi) ok
(v)⇒ (ii) car g ◦ f injective entraîne f injective.
(vi)⇒ (iii) car f ◦ h surjective entraîne f surjective.
�
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Corollaire
Si dimE < +∞, ce qui précède permet de caractériser les automorphismes de E.

Exemple Soit a0, . . . , an des éléments de K deux à deux distincts.
L’application ϕ : Kn [X]→ Kn+1 définie par

ϕ(P ) = (P (a0), . . . , P (an))

est un isomorphisme de K-espaces vectoriels.
En effet, ϕ est évidemment linéaire et

dimKn [X] = n+ 1 = dimKn+1 < +∞

Soit P ∈ kerϕ. On a P (a0) = . . . = P (an) = 0.
Ainsi, le polynôme P admet au moins n+ 1 racines, or degP 6 n donc P = 0. Ainsi kerϕ = {0} puis,
par le théorème d’isomorphisme, ϕ est un isomorphisme.
En conséquence

∀(b0, . . . , bn) ∈ Kn+1,∃!P ∈ Kn [X] ,∀i ∈ J0, nK, P (ai) = bi

Pour décrire, un polynôme P solutions, on introduit

Lk =
∏
i 6=k

X − ai
ak − ai

On a ϕ(Lk) = ek avec (e0, . . . , en) la base canonique de Kn+1.
Par linéarité, le polynôme P ∈ Kn [X] vérifiant

∀0 6 i 6 n, P (ai) = bi

est

P =

n∑
i=0

biLi

3.5 Structure d’algèbre

3.5.1 Définition

Définition
On appelle K-algèbre tout quadruplet (A,+,×, .) formé d’un ensemble A, de deux lois de
composition internes +,× sur A et d’un produit extérieur opérant de K sur A vérifiant :
(1) (A,+, .) est un K-espace vectoriel ;
(2) (A,+,×) est un anneau ;
(3) ∀λ ∈ K, ∀x, y ∈ A, (λ.x)y = λ.(xy) = x(λ.y).

Exemple K, K [X], F(X,K) sont des K-algèbres commutatives.

Exemple Mn(K) et L(E) sont des K-algèbres.
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Remarque Si L est un sous-corps de K alors toute K-algèbre est aussi par restriction une L-algèbre.

Exemple C est une C-algèbre, mais aussi une R-algèbre.

3.5.2 Sous-algèbre

Définition
On appelle sous-algèbre d’une K-algèbre A toute partie B de A vérifiant :
1) 1A ∈ B ;
2) ∀λ, µ ∈ K,∀x, y ∈ B, λx+ µy ∈ B ;
3) ∀x, y ∈ B, xy ∈ B.

Remarque sous-algèbre = sous-espace vectoriel + sous-anneau.

Exemple Soit I un intervalle de R et k ∈ N ∪ {∞}.
L’ensemble Ck(I,K) est une sous-algèbre de F(I,K).

Exemple RN = F(N,R) est une R-algèbre.
C =

{
(un) ∈ RN/(un) converge

}
est une sous-algèbre de RN.

C0 =
{

(un) ∈ RN/un → 0
}

n’est pas une sous-algèbre de RN car ne contient par la suite (1)n∈N.

Exemple Soit u ∈ L(E).
L’ensemble C = {v ∈ L(E)/u ◦ v = v ◦ u} est une sous-algèbre de L(E).

Théorème
Une sous-algèbre est une K-algèbre pour les lois restreintes possédant les mêmes neutres.

dém. :
C’est un sous-espace vectoriel et un sous-anneau et la propriété calculatoire 3) est évidemment conservée.
�

3.5.3 Morphisme d’algèbres

Définition
SoitA etA′ deux K-algèbres. On appelle morphisme d’algèbres deA versA′ toute application
ϕ : A→ A′ vérifiant :
1) ϕ(1A) = 1A′ ;
2) ∀λ, µ ∈ K,∀x, y ∈ A,ϕ(λx+ µy) = ϕ(x) + ϕ(y) ;
3) ∀x, y ∈ A, ϕ(xy) = ϕ(x)ϕ(y).

Remarque morphisme d’algèbre = application linéaire + morphisme d’anneaux.
Le noyau d’un morphisme d’algèbre est en particulier un sous-espace vectoriel et un idéal.
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Exemple L’application z ∈ C 7→ z̄ est un morphisme de la R-algèbre C dans elle-même.

Exemple Pour P ∈ GLn(K), l’application M 7→ PMP−1 est un morphisme bijectif de la K-algèbre
Mn(K) dans elle-même.
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Chapitre 4

Calculs matriciels

La théorie sur les matrices présentées en MPSI dans le cas où le corps de base est R ou C s’étend pour
l’essentiel au cas où le corps de base est un corps quelconque.
On se limite cependant dans ce cours au cas où K est un sous-corps de C : K = C,R,Q, . . .

4.1 Calcul matriciel

4.1.1 Matrices rectangles

Définition
On noteMn,p(K) l’ensemble des matrices de type (n, p) à coefficients dans K i.e. l’ensemble
des familles A = (ai,j)16i6n,16j6p d’éléments de K. Une telle matrice est généralement
figurée par un tableau

A =

 a1,1 · · · a1,p

...
...

an,1 · · · an,p

 ∈Mn,p(K)

Exemple On note

Ei,j =

 0 0
1

0 0

 ∈Mn,p(K)

appelée matrice élémentaire d’indice (i, j) deMn,p(K).

Théorème
Mn,p(K) est un K-espace vectoriel de dimension np et d’élément nul On,p.
La famille des matrices élémentaires (Ei,j)16i6n,16j6p est une base deMn,p(K)

Définition
Pour A = (ai,j) ∈ Mn,p(K) et B = (bj,k) ∈ Mp,q(K), on pose AB = (ci,k) ∈ Mn,q(K)
avec

ci,k =
déf

p∑
j=1

ai,jbj,k

85
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Exemple Pour

A =

 a1,1 · · · a1,p

...
...

an,1 · · · an,p

 et X =

 x1

...
xp


on a

AX =

 a1,1x1 + · · ·+ a1,pxp
...

an,1x1 + · · ·+ an,pxp



Exemple Pour Ei,j ∈Mn,p(K) et Ek,` ∈Mp,q(K), on a Ei,j × Ek,` = δj,kEi,`.
En effet,
- si j 6= k alors Ei,j × Ek,` = On,q car les 1 ne se croisent pas.
- si j = k alors Ei,jEk,` = Ei,` ∈Mn,q(K) car les 1 se croisent lors du calcul du coefficient d’indice
(i, `).
On retient Ei,j × Ek,` = δj,kEi,`.

Remarque Les opérations matricielles peuvent aussi être conduites en raisonnant « par blocs » .

Exemple Calcul de A2 pour A =

(
On −In
In On

)
∈M2n(R).

Le produit par blocs se pose comme un produit de matrice à coefficients (en prenant garde à l’ordre des
facteurs).

A2 =

(
−In On
On −In

)
= −I2n

Exemple Calcul de MX avec

M =

(
A B
C D

)
avec A,B,C,D ∈Mn(K) et X =

(
X1

X2

)
avec X1, X2 ∈Mn,1(K)

On obtient

MX =

(
AX1 +BX2

CX1 +DX2

)

Exemple Calcul des puissances de

M =

(
A B
On A

)
avec A,B ∈Mn(K) commutant

On a

M2 =

(
A2 AB +BA
On A2

)
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Puisque AB = BA, on simplifie

M2 =

(
A2 2AB
On A2

)
Par récurrence, on montre

∀k ∈ N?,Mk =

(
Ak kAk−1B

On Ak

)

4.1.2 Matrices carrées

Définition
On noteMn(K) l’ensemble des matrices carrées d’ordre n à coefficients dans K.

Théorème
Mn(K) est une K-algèbre de dimension n2 de neutres On et In.
Celle-ci est non commutative dès que n > 2.

Exemple L’ensemble Dn(K) formé des matrices diagonales est une sous-algèbre commutative de
Mn(K).
On observe  λ1 (0)

. . .
(0) λn


 µ1 (0)

. . .
(0) µn

 =

 λ1µ1 (0)
. . .

(0) λnµn



Exemple L’ensemble T+
n (K) formé des matrices triangulaires supérieures est une sous-algèbre de

Mn(K).
On observe  λ1 ?

. . .
(0) λn


 µ1 ?′

. . .
(0) µn

 =

 λ1µ1 ?′′

. . .
(0) λnµn



4.1.3 Problèmes de commutation

Proposition
Les matrices commutant avec toutes les matrices deMn(K) sont les matrices scalaires i.e. les
matrices λIn avec λ ∈ K.

dém. :
Les matrices scalaires commutent avec toute matrice deMn(K).
Inversement, soit A = (ai,j) une matrice commutant avec tout élément deMn(K)

∀M ∈Mn(K), AM = MA

Pour M = Ei,j avec i 6= j, on a Ei,jA = AEi,j .
Or [Ei,jA]i,j = ai,i et [AEi,j ]i,j = aj,j donc ai,i = aj,j .
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Aussi [Ei,jA]i,i = aj,i et [AEi,j ]i,i = 0 donc aj,i = 0.
Ainsi, la matrice A est diagonale de diagonale constante.
�

Proposition
Soit D une matrice diagonale à coefficients diagonaux deux à deux distincts.
Les matrices commutant avec D sont les matrices diagonales.

dém. :
On peut écrire D = diag(λ1, . . . , λn) avec λ1, . . . , λn deux à deux distincts.
Pour M = (mi,j)16i,j6n ∈Mn(K), on a

DM = (λimi,j)16i,j6n et MD = (λjmi,j)16i,j6n

et donc
MD = DM ⇔ ∀1 6 i, j 6 n, (λi − λj)mi,j = 0

Cette dernière condition est vérifiée si, et seulement si, M est diagonale.
�

Remarque Ce résultat peut être étendu en raisonnant par blocs : les matrices commutant avec

D =

 λ 0 0
0 λ 0
0 0 µ

 avec λ 6= µ

sont les matrices de la forme  a b 0
c d 0
0 0 e



4.1.4 Noyau, image et rang d’une matrice
On identifie les tuples éléments de Kn avec les colonnes éléments deMn,1(K) via l’isomorphisme

Kn → Mn,1(K)

x = (x1, . . . , xn) 7→ X =


x1

...
xn


Définition

Pour A ∈ Mn,p(K), on appelle application linaire canoniquement associée à la matrice A
l’application u : Kp 7→ Kn qui à x ∈ Kp associe y ∈ Kn définie par

y = Ax

Exemple Précisons l’application linéaire canoniquement associée à la matrice

A =

(
1 2 −1
0 1 1

)
∈M3,2(R).
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Par produit matriciel avec la colonne X de coefficients x1, x2, x3, on obtient l’application linéaire

R3 → R2

(x1, x2, x3) 7→ (x1 + 2x2 − x3, x2 + x3)

Définition
On définit le noyau, l’image et le rang de la matrice A par
- kerA = keru = {x ∈ Kp/Ax = 0} ;
- ImA = Imu = {y ∈ Kn/∃x ∈ Kp, y = Ax} ;
- rgA = dim ImA.

Proposition
Si C1, . . . , Cp désignent les colonnes de A alors

ImA = Vect(C1, . . . , Cp) et rgA = rg(C1, . . . , Cp)

dém. :

ImA = {Ax/x ∈ Kp} = {x1C1 + · · ·+ xpCp/x1, . . . , xp ∈ K}
donc

ImA = Vect(C1, . . . , Cp) puis rgA = rg(C1, . . . , Cp)

�

Proposition
∀A ∈Mn,p(K), rg(A) 6 min(n, p),
∀A ∈Mn,p(K),∀B ∈Mp,q(K), rg(AB) 6 min(rgA, rgB).

dém. :

rgA = rgu 6 min(dimMp,1(K),dimMn,1(K)) = min(p, n)

Notons aussi v et w les applications linéaires canoniquement associées aux matrices B et AB. On vérifie
aisément w = u ◦ v.

rg(AB) = rg(u ◦ v) 6 min(rgu, rgv) = min(rgA, rgB)

�

Théorème
On a la formule du rang

rgA+ dim kerA = p

Exemple Déterminons image, noyau et rang de

A =

 1 0 1
0 1 1
1 −1 0

 ∈M3(R)
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On a

A

 x1

x2

x3

 =

 0
0
0

⇔

x1 + x3 = 0

x2 + x3 = 0

x1 − x2 = 0

⇔

{
x2 = x1

x3 = −x1

Donc
kerA = {(x1, x1,−x1)/x1 ∈ R} = Vect(1, 1,−1)

Par la formule du rang rgA = 2.
Puisque les vecteurs

y1 = (1, 0, 1) = Ae1, y2 = (1, 1,−1) = Ae2

appartiennent à l’image de A et puisqu’ils sont aussi indépendantes

ImA = Vect(y1, y2)

4.1.5 Matrices inversibles

Définition
On dit que A ∈Mn(K) est inversible s’il existe B ∈Mn(K) vérifiant

AB = BA = In

Cette matrice B est unique, on l’appelle inverse de A et on la note A−1.

Exemple Une matrice triangulaire supérieure est inversible si, et seulement si, ses coefficients
diagonaux sont non nuls et alors a1 ?

. . .
(0) an


−1

=

 1/a1 ?
. . .

(0) 1/an



Théorème
L’ensemble GLn(K) des matrices inversibles de Mn(K) est un groupe multiplicatif de
neutre In.

dém. :
C’est le groupe des inversibles deMn(K).
�

Attention : (AB)−1 = B−1A−1.

Proposition
On ne modifie pas le rang d’une matrice en la multipliant par une matrice inversible.

dém. :
Soit P ∈ GLn(K) et A ∈Mn,p(K).
On a rg(PA) 6 A et rgA = rg(P−1PA) 6 rg(PA) puis =.
�
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Théorème
Pour A ∈Mn(K), on a équivalence entre :
(i) A est inversible ;
(ii) kerA = {0} ;
(iii) ImA = Kn ;
(iv) rgA = n ;
(v) ∃B ∈Mn(K), AB = In ;
(vi) ∃C ∈Mn(K), CA = In.
De plus, si tel est le cas

B = C = A−1

dém. :
(i)⇔ (iv) est connue et le reste est alors immédiat.
�

Exemple Soit A,B ∈Mn(K) vérifiant A+B = AB. Montrons AB = BA.
On a (In −A)(In −B) = In − (A+B) +AB = In donc In −A est inversible d’inverse In −B.
Par suite (In −B)(In −A) = In donc BA = A+B = AB.

Exemple Inversons

A =

 1 0 1
2 −1 1
−1 1 −1


Par la méthode du pivot, on opère sur les lignes d’une matrice de blocs A et In pour transformer A en
In. On sait qu’alors le bloc In sera transformé en A−1. 1 0 1 1 0 0

2 −1 1 0 1 0
−1 1 −1 0 0 1


 1 0 1 1 0 0

0 −1 −1 −2 1 0
0 1 0 1 0 1


 1 0 1 1 0 0

0 −1 −1 −2 1 0
0 0 −1 −1 1 1


 1 0 1 1 0 0

0 1 1 2 −1 0
0 0 1 1 −1 −1


 1 0 0 0 1 1

0 1 0 1 0 1
0 0 1 1 −1 −1


On conclut

A−1 =

 0 1 1
1 0 1
1 −1 −1


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4.1.6 Transposition

Définition
Pour A = (ai,j) ∈Mn,p(K), on pose tA = (a′j,i) ∈Mp,n(K) avec

a′j,i =
déf
ai,j

Remarque Si A = (ai,j)i,j alors tA = (ai,j)j,i.

Proposition
∀λ, µ ∈ K,∀A,B ∈Mn,p(K), t (λA+ µB) = λtA+ µtB
∀A ∈Mn,p(K),∀B ∈Mp,q(K), t(AB) = tBtA.
∀A ∈Mn,p(K), t

(
tA
)

= A

∀A ∈ GLn(K), tA ∈ GLn(K) et
(
tA
)−1

= t
(
A−1

)
Définition

Une matrice M ∈ Mn(R) est dite symétrique (resp. antisymétrique) si tM = M (resp.
tM = −M )

Théorème
Les ensembles Sn(R) et An(R) formés des matrices symétriques et antisymétriques de
Mn(R) sont des sous-espaces vectoriels supplémentaires et

dimSn(R) =
n(n+ 1)

2
et dimAn(R) =

n(n− 1)

2

4.2 Représentations matricielles

4.2.1 Matrices des coordonnées d’un vecteur

Soit E un K-espace vectoriel de dimension n.
On considère une base e = (e1, . . . , en) de E. On a

∀x ∈ E,∃!(λ1, . . . , λn) ∈ Kn, x = λ1.e1 + · · ·+ λn.en

Définition
On note

Mate(x) =
déf


λ1

...
λn

 ∈Mn,1(K)

la matrice des coordonnées de x dans la base e.
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Exemple Mate(ei) =

 (0)
1

(0)

 = Ei.

Théorème
L’application x 7→ Mate(x) est un isomorphisme du K-espace vectoriel E versMn,1(K).

Définition
Soit x1, . . . , xp ∈ E. On note

Mate(x1, . . . , xp) ∈Mn,p(K)

la matrice dont les colonnes sont

Mate(x1), . . . ,Mate(xp)

Exemple Matee = (E1 | . . . | En) = In.

Proposition
Si A = Mate(x1, . . . , xp) alors rgA = rg(x1, . . . , xp).

dém. :
Notons ϕ l’isomorphisme x ∈ E 7→ Mate(x).
Les colonnes C1, . . . , Cp de A sont données pas Cj = ϕ(xj).

rgA = rg(C1, . . . , Cp) = dim Vect(C1, . . . , Cp)

donc
rgA = dim Vect(ϕ(x1), . . . , ϕ(xp)) = dimϕ(Vect(x1, . . . , xp))

Mais l’application ϕ est un isomorphisme donc

rgA = dimϕ(Vect(x1, . . . , xp)) = dim Vect(x1, . . . , xp) = rg(x1, . . . , xp)

�

4.2.2 Matrice d’une application linéaire
Soit E et F des K-espaces vectoriels de dimensions p et n.
On considères deux bases e = (e1, . . . , ep) et f = (f1, . . . , fn) des espaces E et F .

Définition
Pour u ∈ L(E,F ), on note

Mate,f (u) =
déf

Matf (u(e1), . . . , u(ep)) ∈Mn,p(K)

la matrice de l’application linéaire u relative aux base e et f .
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Exemple Soit a0, . . . , an ∈ K deux à deux distincts.
Etudions quelques représentations matricielles de l’application linéaire ϕ : Kn [X]→ Kn+1 définie par

ϕ(P ) = (P (a0), . . . , P (an))

Soit (1, X, . . . ,Xn) et c = (c0, . . . , cn) les bases canoniques de Kn [X] et Kn+1.
Formons

A = Mat(1,X,...,Xn),c(ϕ)

On a ϕ(Xk) =
(
ak0 , . . . , a

k
n

)
donc

Matc(ϕ(Xk)) =


ak0
...

akn


et alors

A =


1 a0 a2

0 · · · an0
1 a1 a2

1 · · · an1
...

...
...

...
1 an a2

n · · · ann


Soit (L0, . . . , Ln) la base de Kn [X] formée des polynômes d’interpolation de Lagrange en a0, . . . , an.
Puisque ϕ(Lk) = ck, la matrice de ϕ dans (L0, . . . , Ln) et C est In+1.

Exemple Soit A ∈Mn,p(K). La matrice de l’application linéaire canoniquement associée à A dans les
bases canoniques de Kp et Kn est A.
En effet, ϕA(ej) = Aej correspond à la j-ème colonne de A.

Théorème
Soit u ∈ L(E,F ).
La matrice Mate,f (u) est l’unique matrice A ∈Mn,p(K) vérifiant

∀x ∈ E,∀y ∈ F, y = u(x)⇔ Y = AX

avec A = Mate,f (u) X = Mate(x) et Y = Matf (y).

Théorème
L’application u ∈ L(E,F ) 7→ Mate,f (u) ∈ Mn,p(K) est un isomorphisme de K-espaces
vectoriels.

4.2.3 Matrice d’un endomorphisme
Soit E un K-espace vectoriel de dimension n.
On considère e = (e1, . . . , en) une base de E.

Définition
Pour u ∈ L(E), on note

Mate(u) =
déf

Mate,e(u) ∈Mn(K)

la matrice de l’endomorphisme u dans la base e.
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Exemple Mate(IdE) = In.

Théorème
L’application u ∈ L(E) 7→ Mate(u) ∈Mp(K) est un isomorphisme de K-algèbres.

4.2.4 Transport du vectoriel au matriciel
Soit E et F deux K-espaces vectoriels de dimension p et n munis de bases e et f .

Vecteur Matrice colonne
x ∈ E X ∈Mp,1(K)
0 Op,1
λx+ µx′ λX + µX ′

Application linéaire Matrice rectangle
u ∈ L(E,F ) A ∈Mn,p(K)
õ On,p
y = u(x) Y = AX
λu+ µv λA+ µB
u ◦ v AB

u isomorphisme, u−1 A inversible, A−1

Imu, keru et rgu ImA, kerA et rgA
Endomorphisme Matrice carrée
u ∈ L(E) A ∈Mp(K)
IdE Ip
un An

u ∈ GL(E), u−1 A ∈ GLp(K), A−1

detu detA
Formes linéaires Matrice ligne
ϕ ∈ E? L ∈M1,p(K)
y = ϕ(x) ∈ K (y) = LX

Exemple Déterminons les endomorphismes d’un K-espace vectoriel E de dimension n commutant
avec tout autre endomorphisme.
Soit u ∈ L(E).
Considérons e une base de E et A = Mate(u) ∈Mn(K).
u commute avec tout endomorphisme de E si, et seulement si,

∀B ∈Mn(K), AB = BA

i.e. A scalaire. Ainsi, les endomorphismes recherchés sont les homothéties.

Exemple Calcul des puissances de

J =


0 (0) 1

1
. . . (0)
. . . . . .

(0) 1 0


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On introduit E = Kn et u l’endomorphisme canoniquement associé à J .
On a u(e1) = e2, u(e2) = e3,. . . , u(en−1) = en et u(en) = e1.
On en déduit uk(ei) = ei+k avec ei = ej si i ≡ j [n].
On peut alors exprimer Jk.

4.2.5 Formules de changement de bases
4.2.5.1 Matrice de passage

Soit E un K-espace vectoriel de dimension n.
On considère e et e′ deux bases de E.
Définition

On appelle matrice de passage de e à e′ la matrice

P e
′

e = Matee′ ∈Mn(K)

Proposition

P e
′

e = Mate′,e(IdE) ∈ GLn(K) et
(
P e
′

e

)−1

= P ee′

4.2.5.2 Nouvelles coordonnées d’un vecteur

Théorème
Si P est la matrice de passage d’une base e à une base e′ d’un K-espace vectoriel E alors

∀x ∈ E,X = PX ′

avec X = Mate(x) et X ′ = Mate′(x).

dém. :

Mate(x) = Mate (IdE(x)) = Mate′,e(IdE)×Mate′(x) = PX ′

�
4.2.5.3 Nouvelle matrice d’une application linéaire

Théorème
Si P est la matrice de passage d’une base e à une base e′ d’un K-espace vectoriel E et si Q est
la matrice de passage d’une base f à une base f ′ d’un K-espace vectoriel F alors

∀u ∈ L(E,F ), A′ = Q−1AP

avec A = Mate,f (u) et A′ = Mate′,f ′(u).

dém. :
Soit x ∈ E et y ∈ F . On note

X = Mate(x), X ′ = Mate′(x), Y = Matf (y) et Y ′ = Matf ′(y)
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On a X = PX ′ et Y = QY ′. Si y = u(x) alors

Y = AX et Y ′ = A′X ′

donc AX = QA′X ′ puis
AX = QA′P−1X

Or ceci doit être valable pour toute colonne X donc

A = QA′P−1

�

Corollaire
On a

∀u ∈ L(E), A′ = P−1AP

avec A = Mate(u), A′ = Mate′(u).

4.2.6 Matrices équivalentes

Définition
On dit qu’une matrice A ∈ Mn,p(K) est équivalente à une matrice B ∈ Mn,p(K) s’il existe
P ∈ GLp(K) et Q ∈ GLn(K) telles que

B = Q−1AP

Exemple Les matrices d’une même application linéaire sont équivalentes.

Proposition
L’équivalence de matrice est une relation d’équivalence surMn,p(K).

Théorème
Soit A ∈Mn,p(K) et r ∈ N avec 0 6 r 6 min(n, p).

rgA = r ⇔ A est équivalente à Jr

avec

Jr =

(
Ir Or,p−r

On−r,r On−r,p−r

)
∈Mn,p(K)

dém. :
(⇐) Car rg(Jr) = r et l’on ne modifie pas le rang en multipliant par des matrices inversibles.
(⇒ ) Soit E et F deux K-espaces vectoriels de dimensions p et n munis de bases e et f .
On considère u ∈ L(E,F ) déterminée par

Mate,f (u) = A

Si r = rgA alors r = rgu et donc dim keru = p− r.
Soit G un supplémentaire de keru dans E :

E = G⊕ keru
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avec dimG = r.
Soit une base e′ = (e′1, . . . , e

′
r, e
′
r+1, . . . , e

′
p) adaptée à la décomposition E = G⊕ keru.

L’application u|G : G→ Imu est un isomorphisme de K-espaces vectoriels.
Posons

f ′1 = u(e′1), . . . , f ′r = u(e′r)

La famille (f ′1, . . . , f
′
r) est base de Imu, on peut la compléter en une base f ′ = (f ′1, . . . , f

′
p) de F .

On obtient Mate′,f ′(u) = Jr doncA et Jr sont équivalentes car représentent la même application linéaire.
�

Corollaire
Deux matrices sont équivalentes si, et seulement si, elles ont le même rang.

Exemple Soit A ∈Mn(K) de rang 1.
Montrons qu’il existe X,Y ∈Mn,1(K) tels que A = Y tX .
(1) Analyse : Si A = Y tX alors

A =

 x1y1 · · · xny1

...
...

x1yn · · · xnyn

 = (x1Y . . . xnY )

et donc les colonnes de A sont colinéaires à une même colonne Y , les coefficients de colinéarité formant
la matrice X .
Synthèse :
rgA = 1 donc ImA est une droite vectorielle.
Soit Y 6= 0 élément de ImA :

ImA = VectY

Notons C1, . . . , Cn les colonnes de A.
Puisque C1, . . . , Cn ∈ ImA, il existe x1, . . . , xn ∈ K tels que Cj = xjY .
Pour tX =

(
x1 · · · xn

)
, on a

Y tX =
(
C1 · · · Cn

)
= A

(2) A est équivalente à J1 donc on peut écrire
A = QJ1P avec P,Q ∈ GLn(K).
On observe que J1 = E1

tE1 donc A = Y tX avec Y = QE1 et tX = tE1P i.e. X = tPE1.

4.2.7 Matrices semblables

Définition
On dit qu’une matrice A ∈ Mn(K) est semblable à une matrice B ∈ Mn(K) s’il existe
P ∈ GLn(K) telle que

B = P−1AP

Exemple Les matrices d’un même endomorphisme sont semblables.
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Exemple Si A est semblable à une matrice scalaire λIn alors il existe P ∈ GLn(K) telle que
A = P−1(λIn)P et donc A = λP−1P = λIn.

Proposition
La similitude définit une relation d’équivalence surMn(K).

Proposition
Deux matrices semblables sont équivalentes et ont donc même rang.
La réciproque est fausse.

Protocole :
Pour montrer qu’une matrice A de Mn(K) est semblable à une matrice B simple, il est fréquent de
transposer le problème en termes vectoriels.
- on introduit u l’endomorphisme canoniquement associé à la matrice A ;
- on détermine (souvent par analyse-synthèse) une nouvelle base de Kn dans laquelle u est représenté
par B.

Exemple Soit A ∈Mn(K) telle que An−1 6= O et An = O.
Montrons que A est semblable à

B =


0 (0)

1
. . .
. . . . . .

(0) 1 0


Soit u l’application linéaire canoniquement associée à la matrice A.
On a un = 0̃ et un−1 6= 0̃.
Déterminons une base e = (e1, . . . , en) de Kn dans laquelle u est représenté par B.
Analyse :
Supposons e = (e1, . . . , en) convenable.
On a u(e1) = e2, . . . , u(en−1) = en et u(en) = 0E .
On en déduit e2 = u(e1), e3 = u2(e1),. . . , en = un−1(e1).
Notons que la propriété u(en) = 0 sera obtenue et que nécessairement e1 /∈ kerun−1 pour que en 6= 0E .
Synthèse :
Soit e1 /∈ kerun−1 et e = (e1, . . . , en) avec e2 = u(e1), e3 = u2(e1),. . . , en = un−1(e1).
On a u(e1) = e2, . . . , u(en−1) = en et u(en) = 0E .
Il reste à montrer que e est une base de E.
Supposons λ1e1 + λ2e2 + · · ·+ λnen = 0E .
On a λ1e1 + λ2u(e1) + · · ·+ λnu

n−1(e1) = 0E .
En appliquant f plusieurs fois, on obtient successivement
λ1u(e1) + · · ·+ λn−1u

n−1(e1) = 0E ,. . . , λ1u
n−2(e1) + λ2u

n−1(e1) = 0E et λ1u
n−1(e1) = 0E .

Or un−1(e1) 6= 0E donc on résout le système triangulaire formé pour obtenir λ1 = . . . = λn = 0.
Finalement, e est une famille libre formée de n = dimE vecteurs de E, c’est donc une base de E.
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4.2.8 Traces
4.2.8.1 Trace d’une matrice carrée

Définition
On appelle trace d’une matrice A = (ai,j) ∈Mn(K) le scalaire

trA = a1,1 + · · ·+ an,n

Proposition
La trace définit une forme linéaire non nulle surMn(K).

dém. :
On vérifier aisément que l’application trace est linéaire et non nulle.
�

Exemple L’ensemble des matrices de trace nulle deMn(K) est un hyperplan car noyau d’une forme
linéaire non nulle.

Théorème

∀A ∈Mn,p(K),∀B ∈Mp,n(K), tr(AB) = tr(BA)

dém. :
Introduisons les coefficients des matrices A et B : A = (ai,j) ∈Mn,p(K) et B = (bj,i) ∈Mp,n(K).
Les matrices AB et BA sont carrées donc on peut calculer leur trace et on a

tr(AB) =

n∑
i=1

[AB]i,i =

n∑
i=1

p∑
j=1

ai,jbj,i

et

tr(BA) =

p∑
j=1

[BA]j,j =

p∑
j=1

n∑
i=1

bj,iai,j

En permutant les deux sommes, on obtient tr(BA) = tr(AB).
�

Corollaire
Deux matrices semblables ont même trace.

dém. :
Si B = P−1AP alors trB = tr

(
P−1(AP )

)
= tr

(
(AP )P−1

)
= trA

�

4.2.8.2 Trace d’un endomorphisme

Définition
On appelle trace d’un endomorphisme d’un K-espace vectoriel de dimension finie la trace
commune aux matrices représentant cet endomorphisme.
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Exemple tr(IdE) = n = dimE

Théorème
La trace définit une forme linéaire sur L(E) vérifiant

∀u ∈ L(E,F ),∀v ∈ L(F,E), tr(u ◦ v) = tr(v ◦ u)

Théorème
Si p est une projection vectorielle d’un K-espace vectoriel E de dimension finie alors

trp = rgp

dém. :
On sait

E = Imp⊕ ker p

Dans une base adaptée à cette décomposition, la matrice de p est de la forme(
Ir O
O O

)
avec r = dim Imp = rgp. Par suite trp = rgp.
�

4.3 Déterminants

4.3.1 Définitions
4.3.1.1 Déterminant d’une matrice carrée

Définition
On appelle déterminant d’une matrice A = (ai,j) ∈Mn(K) le scalaire

detA=
déf

∑
σ∈Sn

ε(σ)

n∏
i=1

aσ(i),i

encore noté ∣∣∣∣∣∣∣
a1,1 ... a1,n

...
...

an,1 ... an,n

∣∣∣∣∣∣∣
[n]

Exemple Un déterminant d’ordre 0 vaut 1.

Exemple Un déterminant d’ordre 1 est égal à son coefficient.
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Exemple Un déterminant d’ordre 2 se calcule par un produit en croix∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc

Exemple Un déterminant d’ordre 3 peut se calculer par la règle de Sarrus.

Exemple Si A = (ai,j) ∈ T+
n (K) alors detA =

n∏
i=1

ai,i.

En effet, pour i > j, ai,j = 0 donc
n∏
i=1

aσ(i),i = 0 dès qu’il existe i vérifiant σ(i) > i.

En simplifiant les termes correspondants de la somme définissant le déterminant, il ne reste que les
permutations σ vérifiant

∀i ∈ {1, . . . , n} , σ(i) 6 i

Or pour une telle permutation σ(1) 6 1 donc σ(1) = 1 puis σ(2) 6 2 donc σ(2) = 2 car σ est injective,
etc. Au final σ = Id et il ne reste qu’un terme dans la somme donnant le déterminant de A d’où la
formule.

Proposition

∀A ∈Mn(K), det
(
tA
)

= detA

et donc

detA =
∑
σ∈Sn

ε(σ)

n∏
i=1

ai,σ(i)

Théorème
Pour tout A,B ∈Mn(K)

det(AB) = det(A).det(B)

De plus A est inversible si, et seulement si, detA 6= 0 et alors detA−1 = 1/detA.

Attention : det(A+B) =?? et det(λA) = λn detA.

Corollaire
SLn(K) = {A ∈Mn(K)/detA = 1} est un sous-groupe de (GLn(K),×) appelé groupe
spécial linéaire d’ordre n.

dém. :
SLn(K) est le noyau du morphisme de groupes GLn(K)→ K? qui envoie A sur detA.
�

Corollaire
Deux matrices semblables ont même déterminant.

dém. :
Si B = P−1AP avec P ∈ GLn(K) alors detB = detP−1 detAdetP = detA.
�
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4.3.1.2 Déterminant d’un endomorphisme

Soit E un K-espace vectoriel de dimension finie n ∈ N?.

Définition
On appelle déterminant de u ∈ L(E) la valeur commune des déterminants des matrices repré-
sentant l’endomorphisme u .

Exemple det(IdE) = det(In) = 1.

Théorème
Pour tout u, v ∈ L(E),

det(u ◦ v) = detudet v

De plus, u est inversible si, et seulement si, detu 6= 0 et alors detu−1 = 1/detu.

Corollaire
SL(E) = {u ∈ L(E)/detu = 1} est un sous groupe de (GL(E), ◦) appelé groupe spécial
linéaire de E.

4.3.1.3 Déterminant d’une famille de vecteurs

Soit E un K-espace vectoriel de dimension n ∈ N? muni d’une base e = (e1, . . . , en).

Définition
On appelle déterminant dans la base e de la famille (x1, . . . , xn) de vecteurs de E le scalaire

dete(x1, . . . , xn) =
déf

det Mate(x1, . . . , xn)

Exemple dete e = det Matee = det In = 1.

Proposition
Si e′ = (e′1, . . . , e

′
n) est une autre base de E alors

dete(x1, . . . , xn) = dete e
′ dete′(x1, . . . , xn)

dém. :
Soit P la matrice de passage de e à e′ et A = Mate(x1, . . . , xn), A′ = Mate′(x1, . . . , xn).
Notons X1, . . . , Xn les colonnes de A et X ′1, . . . , X

′
n celles de A′.

Par formule de changement de bases : Xj = PX ′j donc A = PA′.
En effet

PA′ = P
(
X ′1 · · · X ′n

)
=
(
PX ′1 · · · PX ′n

)
=
(
X1 · · · Xn

)
= A

Par suite detA = detP detA′ puis la relation proposée.
�
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Théorème
L’application

En → K
(x1, . . . , xn) 7→ dete(x1, . . . , xn)

est une forme n-linéaire alternée (donc antisymétrique)
De plus, la famille (x1, . . . , xn) est une base de E si, et seulement si, dete(x1, . . . , xn) 6= 0.

Rappel :
Pour ϕ : En → F multilinéaire :
alternée signifie :

∃i 6= j, xi = xj ⇒ ϕ(x1, . . . , xn) = 0F

antisymétrique signifie :
ϕ(xσ(1), . . . , xσ(n)) = ε(σ)ϕ(x1, . . . , xn)

pour tout σ ∈ Sn.

Remarque Soit A ∈Mn(K) de colonnes C1, . . . , Cn ∈Mn,1(K).
On introduit B = (E1, . . . , En) la base canonique deMn,1(K).
La matrice des coordonnées dans B d’une colonne Cj est exactement Cj .
Il en découle

A = MatB(C1, . . . , Cn)

puis
detA = detB(C1, . . . , Cn)

Ainsi, le déterminant d’une matrice est une forme n-linéaire alternée de ses colonnes.
Par transposition, on peut aussi dire que le déterminant d’une matrice est une forme n-linéaire alternée
de ses lignes.

Exemple Pour n > 3, calcul de

Dn =

∣∣∣∣∣∣∣∣∣∣
1 0 1

. . . 0
. . .

(1) 1

∣∣∣∣∣∣∣∣∣∣
[n]

En décomposant la dernière colonne en somme de deux colonnes :

Dn =

∣∣∣∣∣∣∣∣∣∣
1 0 1

. . . 0
. . .

(1) 1

∣∣∣∣∣∣∣∣∣∣
[n]

=

∣∣∣∣∣∣∣∣∣∣
1 (0)

. . .
. . .

(1) 1

∣∣∣∣∣∣∣∣∣∣
[n]

+

∣∣∣∣∣∣∣∣∣
1 0 1

. . . 0
1

(1) 0

∣∣∣∣∣∣∣∣∣ = 1 + 0

car le dernier déterminant présente deux lignes identiques.
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4.3.2 Opérations élémentaires sur les déterminants

Théorème
Les transvections Ci ← Ci + λCj et Li ← Li + λLj ne modifient pas le déterminant.
Les dilatations Ci ← αCi et Li ← αLi multiplient par α le déterminant.
La permutation des lignes ou des colonnes d’une matrice selon une permutation σ multiplie
son déterminant par ε(σ).

dém. :
L’application det(E1,...,En) étant une forme linéaire alternée et antisymétrique

det(E1,...,En)(C1, . . . , Ci+λCj , . . . , Cn) = det(E1,...,En)(C1, . . . , Ci, . . . , Cn)+λ det(E1,...,En)(C1, . . . , Cj , . . . , Cn)

puis
det(E1,...,En)(C1, . . . , Ci + λCj , . . . , Cn) = det(E1,...,En)(C1, . . . , Ci, . . . , Cn)

car le déterminant multipliant λ possède la colonne Cj positionnée aux indices i et j.

det(E1,...,En)(C1, . . . , αCi, . . . , Cn) = α det(E1,...,En)(C1, . . . , Ci, . . . , Cn)

et
det(E1,...,En)(Cσ(1), . . . , Cσ(n)) = ε(σ) det(E1,...,En)(C1, . . . , Cn)

On obtient les relations analogues sur les lignes.
�

Attention : L’opération Ci ← Cj + λCi modifie le déterminant : c’est la combinaison de deux
opérations élémentaires.

Attention : Les opérations élémentaires sont à réaliser successivement et non simultanément. Les

opérations C1 ← C1 + C2 et C2 ← C1 + C2 transforment
(

1 0
0 1

)
en
(

1 1
1 2

)
et non

en
(

1 1
1 1

)
.

Exemple Calcul de ∣∣∣∣∣∣∣∣∣∣∣

1 1 1 ... 1
1 2 2 ... 2
1 2 3 ... 3
...

...
...

. . .
...

1 2 3 ... n

∣∣∣∣∣∣∣∣∣∣∣
En retranchant à chaque ligne la précédente (en commençant par la dernière)∣∣∣∣∣∣∣∣∣∣∣

1 1 1 ... 1
1 2 2 ... 2
1 2 3 ... 3
...

...
...

. . .
...

1 2 3 ... n

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1 1

. . .
0 1

∣∣∣∣∣∣∣ = 1
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Exemple Soit a, b ∈ K, n > 2. Calculons

Dn =

∣∣∣∣∣∣∣
a b

. . .
b a

∣∣∣∣∣∣∣
[n]

En ajoutant toutes les colonnes à la première

Dn =

∣∣∣∣∣∣∣∣∣
a+ (n− 1)b b · · · b
a+ (n− 1)b a (b)

...
. . .

a+ (n− 1)b (b) a

∣∣∣∣∣∣∣∣∣
En retranchant la première ligne à chaque autre

Dn =

∣∣∣∣∣∣∣∣∣
a+ (n− 1)b b · · · b

0 a− b (0)
...

. . .
0 (0) a− b

∣∣∣∣∣∣∣∣∣
Finalement

Dn = (a+ (n− 1)b)(a− b)n−1

Remarque On peut aussi raisonner par blocs comme dans l’exemple ci-dessous.

Exemple Pour A,B ∈Mn(K), expression du déterminant de
(
A B
B A

)
∈M2n(K).

Via les opérations C1 ← C1 + Cn+1, . . . , Cn ← Cn + C2n,

det

(
A B
B A

)
= det

(
A+B B
B +A A

)
Via les opérations Ln+1 ← Ln+1 − L1, . . . , L2n ← L2n − Ln+1,

det

(
A B
B A

)
= det

(
A+B B
O A−B

)
= det(A+B) det(A−B)

Si A et B commutent, on obtient

det

(
A B
B A

)
= det

(
A2 −B2

)
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4.3.3 Développement d’un déterminant selon une rangée
Soit A = (ai,j) ∈Mn(K).
Pour i, j ∈ {1, . . . , n}, on appelle mineur d’indice (i, j) de A le scalaire

∆i,j =

∣∣∣∣∣∣∣
a1,1 · · · a1,n

... âi,j
...

an,1 · · · an,n

∣∣∣∣∣∣∣
[n−1]

et cofacteur d’indice (i, j) de A le scalaire

Ai,j = (−1)i+j ×

∣∣∣∣∣∣∣
a1,1 · · · a1,n

... âi,j
...

an,1 · · · an,n

∣∣∣∣∣∣∣
[n−1]

Théorème
Développement de detA selon sa i-ème ligne :

detA =

n∑
j=1

ai,jAi,j =

n∑
j=1

(−1)i+jai,j∆i,j

Développement de detA selon sa j-ème colonne :

detA =

n∑
i=1

ai,jAi,j =

n∑
i=1

(−1)i+jai,j∆i,j

Remarque Le signe de (−1)i+j est donné par le tableau
+ − + (−1)n+1

− + −
+ − +

. . .
(−1)n+1 +



Exemple Pour n > 2, calcul de

Dn =

∣∣∣∣∣∣∣
1 · · · 1
...

. . . (0)
1 (0) 1

∣∣∣∣∣∣∣
[n]

En développant selon la dernière ligne

Dn = (−1)n+1

∣∣∣∣∣∣∣∣∣
1 · · · · · · 1
1 (0) 0

. . .
...

(0) 1 0

∣∣∣∣∣∣∣∣∣
[n−1]

+Dn−1
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En permutant les colonnes selon le cycle σ =
(

1 2 · · · n− 1
)

Dn = (−1)n+1 × (−1)n−2 ×

∣∣∣∣∣∣∣
1 · · · 1

. . . (0)
(0) 1

∣∣∣∣∣∣∣
[n−1]

+Dn−1 = −1 +Dn−1

Puisque D2 = 2, on obtient Dn = 2− n.

4.3.4 Déterminant tridiagonal

Exemple Soit a, b, c ∈ K. Calcul de

Dn =

∣∣∣∣∣∣∣∣∣∣
a b (0)

c
. . . . . .
. . . . . . b

(0) c a

∣∣∣∣∣∣∣∣∣∣
[n]

En développant selon la première colonne,

Dn = aDn−1 − c

∣∣∣∣∣∣∣∣∣∣∣∣

b 0 · · · · · · 0
c a b (0)

0 c a
. . .

...
. . . . . . b

0 (0) c a

∣∣∣∣∣∣∣∣∣∣∣∣
[n−1]

puis en développant le second déterminant selon la première ligne,

Dn = aDn−1 − bcDn−2

Ainsi, (Dn) est une suite récurrente linéaire d’ordre 2.

Rappel :
On appelle suite récurrente linéaire d’ordre 2 toute suite (un)n∈N ∈ KN vérifiant

∀n ∈ N, un+2 + pun+1 + qun = 0

avec (p, q) ∈ K×K?.
Pour exprimer son terme général, on introduit l’équation caractéristique associée

r2 + pr + q = 0

de discriminant ∆.
Cas K = C.
Si ∆ 6= 0 : 2 racines r1, r2 et un = λrn1 + µrn2 avec λ, µ ∈ C.
Si ∆ = 0 : 1 racine double r et un = (λn+ µ)rn avec λ, µ ∈ C.
Cas K = R.
Si ∆ > 0 ou ∆ = 0 : semblable avec λ, µ ∈ R.
Si ∆ < 0 : 2 racines conjuguées re±iθ et un = (λ cos(nθ) + µ sin(nθ)) rn avec λ, µ ∈ R.
Dans chaque cas, λ, µ se déterminent à partir des deux rangs initiaux de la suite (un).
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4.3.5 Déterminant de Vandermonde
Pour a1, . . . , an ∈ K, on pose

Vn(a1, ..., an) =

∣∣∣∣∣∣∣
1 a1 a2

1 · · · an−1
1

...
...

...
...

1 an a2
n · · · an−1

n

∣∣∣∣∣∣∣
Théorème

Vn(a1, ..., an) =
∏

16i<j6n

(aj − ai)

dém. :
Par récurrence sur n > 1.
Cas n = 1 : ok
Supposons la propriété vraie au rang n > 1.
Soit a1, . . . , an, an+1 ∈ K
Cas : les a1, . . . , an ne sont pas deux à deux distincts

Vn+1(a1, . . . , an, an+1) = 0 =
∏

16i<j6n+1

(aj − ai)

Cas : les a1, . . . , an sont deux à deux distincts.
Considérons la fonction

f : x 7→ Vn+1(a1, . . . , an, x)

En développant selon la dernière ligne

f(x) = α0 + α1x+ · · ·+ αnx
n avec αn = Vn(a1, . . . , an)

Or f(x) = 0 pour x ∈ {a1, . . . , an} car le déterminant comporte deux lignes égales.
On peut donc factoriser le polynôme

f(x) = αn

n∏
i=1

(x− ai)

et ainsi on affirme

Vn+1(a1, . . . , an, an+1) = Vn(a1, . . . , an)

n∏
i=1

(an+1 − ai)

Récurrence établie.
�

4.3.6 Comatrice

Définition
On appelle comatrice de A ∈Mn(K) la matrice des cofacteurs de A, on la note

comA=
déf

(Ai,j)16i,j6n ∈Mn(K)
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Théorème

∀A ∈Mn(K), t (comA)A = At (comA) = det(A)In

dém. :

[
t(comA)A

]
i,j

=

n∑
k=1

A′i,kak,j =

n∑
k=1

ak,jAk,i = detA.δi,j

car se comprend comme le développement selon la i-ème colonne de la matrice obtenue en remplaçant
dans A sa i-ème colonne par sa j-ème colonne.
�

Corollaire
Si A ∈ GLn(K) alors

A−1 =
1

detA
t (comA)

4.3.7 Musculation
Soit A ∈Mn(K). Etudions rg(comA).
Si rgA = n alors A est inversible donc tcomA aussi puis

rg(comA) = n

Rappel : Le rang d’une matrice est l’ordre maximal des matrices carrées inversibles extraites de celle-ci
Si rgA 6 n− 2 alors aucune matrice carrée d’ordre n− 1 extraite de A n’est inversible. On en déduit que
tous les mineurs de A sont nuls et donc comA = On puis

rg(comA) = 0

Si rgA = n− 1 alors AtcomA = On donne

ImtcomA ⊂ kerA

Or dim kerA = 1 donc rgcomA 6 1.
Or comA 6= On car A possède un mineur non nul puisque la matrice A possède une matrice extraite
carrée d’ordre n− 1 inversible. On conclut

rg(comA) = 1
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Chapitre 5

Réduction géométrique

K désigne un sous-corps de C et E un K-espace vectoriel.

5.1 Sous-espaces stables

5.1.1 Définition

Définition
Un sous-espace vectoriel F de E est dit stable par u ∈ L(E) si u(F ) ⊂ F i.e.

∀x ∈ F , u(x) ∈ F

Exemple {0E} et E sont stables par u.
F est stable par 0̃, par IdE et, plus généralement, par λIdE pour tout λ ∈ K.

Exemple E = K [X], D : P 7→ P ′, D ∈ L(K [X])
Kn [X] est stable par D.
En effet,

∀P ∈ K [X] ,degP ′ 6 degP

Exemple E = RN, T : (un) 7→ (un+1), T ∈ L(RN).
Le sous-espace vectoriel B(N,R) des suites réelles bornées est stable par T .

Proposition
Si F et G sont stables par u alors F +G et F ∩G aussi.

dém. :
u(F +G) = u(F ) + u(G) ⊂ F +G.
u(F ∩G) ⊂ u(F ) ∩ u(G) ⊂ F ∩G.
�

Théorème
Si u et v commutent alors Imu et keru sont stables par v.
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dém. :
Pour tout x ∈ keru, u(v(x)) = v(u(x)) = v(0E) = 0E donc v(x) ∈ keru.
Pour tout y ∈ Imu, on peut écrire y = u(x) et alors v(y) = v(u(x)) = u(v(x)) ∈ Imu.
�

Exemple Imu et keru sont stables par u.
Pour λ ∈ K, Im(u− λIdE) et ker(u− λIdE) sont stables par u.

5.1.2 Endomorphisme induit

Définition
Si F est un sous-espace vectoriel stable par u ∈ L(E), on peut considérer l’application res-
treinte uF : F → F qui définit un endomorphisme de F . On l’appelle endomorphisme induit
par u sur F .

Exemple keru est stable par u, on peut introduire ukeru et l’on a ukeru = 0̃.

Exemple Imu est stable par u et on peut introduire uImu.
Cependant uImu peut ne pas être surjectif.
En fait, uImu est surjectif si, et seulement si, Imu2 = Imu car ImuImu = Imu2

Exemple Soit E = C∞(R,R) et D : f 7→ f ′.
F = Vect(cos, sin) est stable par D car D(cos), D(sin) ∈ F et

Mat(cos,sin)(DF ) =

(
0 1
−1 0

)
= R−π/2

Théorème
Si F est stable par u et v ∈ L(E) alors pour tout λ ∈ K, F est stable par λu, u+ v et u ◦ v.
De plus

(λu)F = λuF , (u+ v)F = uF + vF et (u ◦ v)F = uF ◦ vF

dém. :
(λu)(F ) = λu(F ) ⊂ λF ⊂ F .
(u+ v)(F ) ⊂ u(F ) + v(F ) ⊂ F + F ⊂ F .
(u ◦ v)(F ) = u(v(F )) ⊂ u(F ) ⊂ F .
Pour tout x ∈ F
(λu)F (x) = (λu)(x) = λu(x) = λuF (x) = (λuF )(x).
(u+ v)F (x) = (u+ v)(x) = u(x) + v(x) = uF (x) + vF (x) = (uF + vF )(x).
(u ◦ v)F (x) = (u ◦ v)(x) = u(v(x)) = u(vF (x)) = uF (vF (x)) = (uF ◦ vF )(x).
�

Corollaire
L’ensemble des endomorphismes stabilisant F est une sous-algèbre de L(E) et l’application
u 7→ uF y définit un morphisme d’algèbres.
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Proposition
Si F est stable par u alors

keruF = keru ∩ F et ImuF ⊂ Imu ∩ F

dém. :
Soit x ∈ keruF . On a x ∈ F et u(x) = uF (x) = 0 donc x ∈ keru ∩ F .
Soit x ∈ keru ∩ F . On a uF (x) = u(x) = 0 donc x ∈ keruF .
ImuF ⊂ Imu car uF est restriction de u et ImuF ⊂ F car F est stable par u.
�

Remarque Si u est injectif alors uF est injectif.

Remarque Si u est surjectif, on ne peut rien dire a priori sur uF .
Par exemple, la dérivation sur K [X] est surjective, mais l’endomorphisme induit sur Kn [X] ne l’est pas.

5.1.3 Visualisation en dimension finie
Ici E désigne un K-espace vectoriel de dimension finie.

Théorème
Soit F un sous-espace vectoriel de dimension p muni d’une base f = (e1, . . . , ep) complétée
en une base e = (e1, . . . , en) de E. Pour u ∈ L(E), on a équivalence entre :
(i) F est stable par u ;
(ii) la matrice de u dans e est de la forme(

A B
O C

)
avec A ∈Mp(K)

De plus, si tel est le cas, A est alors de la matrice de uF dans la base f .

dém. :
(i)⇒ (ii) Supposons F stable par u. On peut introduire A = Matf (uF ) = (ai,j) et on a

∀1 6 j 6 p, u(ej) =

p∑
i=1

ai,jej

et alors la matrice de u dans e est de la forme
a1,1 · · · a1,p

...
... (?)

ap,1 · · · ap,p
(0) (?)

 =

(
A B
O C

)

(ii)⇒ (i) Supposons la matrice de u dans e de la forme(
A B
O C

)
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avec A ∈ Mp(K). Pour tout 1 6 j 6 p, u(ej) ∈ Vect(e1, . . . , ep) donc u(ej) ∈ F puis, par linéarité,
pour tout x ∈ F , u(x) ∈ F .
�

Théorème
On suppose E = F1 ⊕ · · · ⊕ Fm et on note e une base de E adaptée à cette décomposition.
Pour u ∈ L(E), on a équivalence entre :
(i) chaque Fk est stable par u ;
(ii) la matrice de u dans la base e est de la forme A1 O

. . .
O Am


avec Ak ∈Mαk(K) où αk = dimFk.

Remarque La réduction d’un endomorphisme u de E consiste à écrire

E =
m
⊕
k=1

Fk

avec Fk stable par u et uFk « simple » .
En dimension finie, la réduction d’un endomorphisme correspond à l’obtention d’une représentation
matricielle simple (la plus diagonale possible).

5.2 Eléments propres
E désigne un K-espace vectoriel non réduit à {0E} de dimension quelconque et u un endomorphisme
de E.
5.2.1 Valeur propre et vecteur propre

Proposition
Soit x ∈ E\ {0E} et D = Vect(x) la droite vectorielle engendrée par x.
On a équivalence entre :
(i) D est stable pour u ∈ L(E) ;
(ii) il existe λ ∈ K tel que u(x) = λx.

dém. :
(i)⇒ (ii) Si D est stable par u alors u(x) ∈ D et donc il existe λ ∈ K tel que u(x) = λx.
(ii)⇒ (i) Si u(x) = λx alors u(D) = u(Vectx) = Vectu(x) ⊂ Vectx.
�

Définition
On dit que x ∈ E est vecteur propre de u si

x 6= 0E et ∃λ ∈ K, u(x) = λx

Attention : Par définition un vecteur propre est un vecteur non nul.
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Remarque Il y a alors unicité de la valeur λ car

λx = µx avec x 6= 0E ⇒ λ = µ

On dit alors λ est la valeur propre associée au vecteur propre x.

Définition
On appelle valeur propre de u tout λ ∈ K vérifiant

∃x 6= 0E , u(x) = λx

On appelle spectre de u l’ensemble des valeurs propres de u, on le note Spu.

Exemple On a
0 ∈ Spu⇔ ∃x 6= 0E , u(x) = 0E

Ainsi
0 ∈ Spu⇔ u non injectif

5.2.2 Sous-espace propre

Définition
Pour λ ∈ K et u ∈ L(E), on note

Eλ(u) = ker(u− λIdE)

le sous-espace vectoriel formé des vecteurs x ∈ E solutions de l’équation

u(x) = λx

Exemple E0(u) = keru.
E1(u) = {x ∈ E/u(x) = x}. C’est l’espace des vecteurs invariants par u.

Théorème
On a équivalence entre :
(i) λ est valeur propre de u ;
(ii) Eλ(u) 6= {0E} ;
(iii) l’endomorphisme u− λId n’est pas injectif.

Définition
Si λ est valeur propre de u alors Eλ(u) est appelé sous-espace propre associé à la valeur
propre λ.

Remarque Si λ /∈ Sp(u) alors Eλ(u) = {0E}.
Si λ ∈ Sp(u) alors Eλ(u) = {0E} ∪ {vecteur propre associé à la valeur propre λ}.
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5.2.3 Stabilité des sous-espaces propres

Théorème
Les sous-espaces propres de u ∈ L(E) sont stables par u et

∀λ ∈ Spu, uEλ(u) = λId

dém. :
u et u− λIdE commutent donc Eλ(u) = ker(u− λIdE) est stable par u.
De plus, pour tout x ∈ Eλ(u), u(x) = λx donc

uEλ(u) = λId

�

Corollaire
Si u et v commutent alors les sous-espaces propres de u sont stables pas v.

dém. :
En effet, Eλ(u) = ker(u− λId) et u− λId commute avec v.
�

5.2.4 Les sous-espaces propres sont en somme directe

Théorème
Des sous-espaces propres de u ∈ L(E) associés à des valeurs propres deux à deux distinctes
sont en somme directe.

dém. :
Par récurrence sur m ∈ N?, montrons que la somme de m sous-espace propres de u est directe.
Cas m = 1 : il n’y a rien à démontrer.
Supposons la propriété établie au rang m > 1.
Soit Eλ1

(u), . . . , Eλm(u), Eλm+1
(u) des sous-espaces propres de u associés à des valeurs propres deux

à deux distinctes.
Supposons x1 + · · ·+ xm + xm+1 = 0E avec xk ∈ Eλk(u).
En appliquant u, on obtient λ1x1 + · · ·+ λmxm + λm+1xm+1 = 0E .
Par combinaison de ces deux équations, on obtient (λ1 − λm+1)x1 + · · ·+ (λm − λm+1)xm = 0E .
Cette équation est de la forme y1 + · · ·+ ym = 0E avec yk = (λk − λm+1)xk ∈ Eλk(u).
Par hypothèse de récurrence, les espaces Eλ1

(u), . . . , Eλm(u) sont en somme directe donc

∀1 6 k 6 m, yk = 0E

ce qui fournit
∀1 6 k 6 m,xk = 0E

car
λk − λm+1 6= 0

Enfin, en reprenant l’équation initiale, on a aussi xm+1 = 0E .
Récurrence établie.
�
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Corollaire
Une famille de vecteurs propres associés à des valeurs propres deux à deux distinctes est libre.

dém. :
Cas d’une famille finie :
Soit x1, . . . , xm des vecteurs propres associés à des valeurs propres λ1, . . . , λm deux à deux distinctes.
Supposons α1x1 + · · ·+ αmxm = 0E .
Puisque αkxk ∈ Eλk(u) et puisque les sous-espaces vectoriels Eλ1

(u), . . . , Eλm(u) sont en somme
directe, on a

∀k ∈ {1, . . . ,m} , αkxk = 0E

Or xk 6= 0E (car c’est un vecteur propre) donc αk = 0.
Cas d’une famille infinie :
Celle-ci est libre car ses sous-familles finies le sont par l’argumentaire précédent.
�

Corollaire
En dimension finie égale à n, un endomorphisme ne peut admettre plus de n valeurs propres.

dém. :
Si λ1, . . . , λm sont des valeurs propres de u ∈ L(E) avec dimE = n alors

m
⊕
k=1

Eλk(u) ⊂ E avec dimEλk(u) > 1

donne m 6 dimE.
�

Remarque En dimension infinie, il peut y avoir une infinité de valeurs propres.

5.2.5 Détermination pratique
Protocole :
Pour déterminer les valeurs propres de u, on étudie pour quels scalaires λ ∈ K, l’équation

u(x) = λx

possède d’autres solutions que la solution nulle.
Cette équation est appelée l’équation aux éléments propres associée à u.
Exemple Soit E = K [X] et ϕ ∈ L(E) défini par ϕ(P ) = XP ′(X). Déterminons Spϕ.
Soit λ ∈ K et P ∈ K [X].

ϕ(P ) = λP ⇔ XP ′(X) = λP (X)

Analyse :
Si cette équation possède une solution P 6= 0 alors en posant n = degP , on peut écrire
P = anX

n + · · ·+ a1X + a0 avec an 6= 0. L’équation XP ′(X) = λP (X) donne

∀0 6 k 6 n, λak = nak

Sachant an 6= 0, on obtient λ = n et an−1 = . . . = a1 = a0 = 0.
Ainsi

λ ∈ N et P = aλX
λ

Synthèse :
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Pour λ ∈ N et P = aλX
λ avec aλ 6= 0, on vérifie XP ′(X) = λP (X) avec P 6= 0 donc λ ∈ Spϕ.

Finalement Spϕ = N et
∀λ ∈ N, Eλ(ϕ) = Vect(Xλ)

Exemple Soit E = K [X] et ψ ∈ L(E) défini par ψ(P ) = XP (X). Déterminons Spψ.
Soit λ ∈ K et P ∈ K [X].

ψ(P ) = λP (X)⇔ XP (X) = λP (X)⇔ (X − λ)P (X) = 0⇔ P (X) = 0

donc Spψ = ∅.

Exemple Soit E = C∞(R,C) et D : f 7→ f ′. Déterminons SpD.
Soit λ ∈ C et f ∈ E.

D(f) = λf ⇔ f ′ = λf ⇔ f ∈ Vect(eλ)

avec eλ : t 7→ eλt fonction non nulle.
On en déduit SpD = C et

∀λ ∈ C, Eλ(D) = Vect(eλ)

Exemple Soit E = B(N,R) et T : (un)n∈N 7→ (un+1)n∈N. Déterminons SpT .
Soit λ ∈ R et u = (un) ∈ E.

T (u) = λu⇔ ∀n ∈ N, un+1 = λun ⇔ ∀n ∈ N, un = λnu0

Si |λ| > 1 alors la suite (λnu0) est bornée si, et seulement si, u0 = 0 et c’est alors la suite nulle.
Si |λ| 6 1 alors la suite (λnu0) est bornée et non nulle pour tout u0 6= 0.
Finalement SpT = [−1, 1] et

∀λ ∈ [−1, 1] , Eλ(T ) = Vect ((λn)n∈N)

5.3 Eléments propres en dimension finie
E désigne un K-espace vectoriel de dimension finie n ∈ N? et u un endomorphisme de E.
5.3.1 Eléments propres d’une matrice carrée

Définition
On dit que λ ∈ K est valeur propre de A ∈Mn(K) s’il existe X ∈Mn,1(K) vérifiant

AX = λX et X 6= 0

On dit alors que la colonne X est vecteur propre associé à la valeur propre λ.
On appelle spectre de la matrice A l’ensemble SpA formé des valeurs propres de A.

Définition
Pour λ ∈ K, on note Eλ(A) = ker(A− λIn) l’espace des solutions de l’équation AX = λX .
Lorsque λ est valeur propre deA,Eλ(A) est appelé sous-espace propre deA associé à la valeur
propre λ.
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Remarque En identifiant tuple et colonne, les éléments propres de A correspondent aux éléments
propres de l’endomorphisme canoniquement associé à A défini par

x ∈ Kn 7→ y = Ax ∈ Kn

Remarque Pour déterminer, les valeurs propres de A, on étudie l’équation aux éléments propres
AX = λX .

Théorème
Soit E un K-espace vectoriel de dimension finie non nulle et e une base de E.
Pour u ∈ L(E) et x ∈ E, en notant A = Mate(u) et X = Mate(x), on a

SpA = Spu et ∀λ ∈ Spu, x ∈ Eλ(u)⇔ X ∈ Eλ(A)

dém. :
On a

u(x) = λx⇔ AX = λX et x 6= 0E ⇔ X 6= 0

�

Corollaire
Deux matrices semblables ont le même spectre.

dém. :
Car elles représentent le même endomorphisme.
�

5.3.2 Polynôme caractéristique d’une matrice carrée
Soit A ∈Mn(K). Pour tout λ ∈ K, l’expression

det(λIn −A) =

∣∣∣∣∣∣∣∣∣∣
λ− a1,1 −a1,2 · · · −a1,n

−a2,1
. . .

...
...

. . . . . . −an−1,n

−an,1 · · · −an,n−1 λ− an,n

∣∣∣∣∣∣∣∣∣∣
est un polynôme en λ.

Définition
On appelle polynôme caractéristique deA, le polynôme χA ∈ K [X] déterminé par la propriété

∀λ ∈ K, χA(λ) = det(λIn −A)

Exemple Polynôme caractéristique de A =

(
a b
c d

)
.

det(λI2 −A) =

∣∣∣∣ λ− a −b
−c λ− d

∣∣∣∣ = (λ− a)(λ− d)− bc
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et donc
χA(X) = X2 − (a+ d)X + (ad− bc)

Exemple Polynôme caractéristique de

A =

 λ1 ?
. . .

0 λn


Comme déterminant diagonal, on obtient

χA =

n∏
i=1

(X − λi)

Théorème
Le polynôme caractéristique deA ∈Mn(K) est unitaire, de degré n et possède les coefficients
remarquables suivants

χA(X) = Xn − tr(A)Xn−1 + · · ·+ (−1)n det(A)

dém. :
Par la formule des déterminants

χA(λ) = det(λIn −A) =
∑
σ∈Sn

ε(σ)

n∏
i=1

(
λδσ(i),i − aσ(i),i

)
Pour tout σ ∈ Sn, posons

Pσ (λ) =

n∏
i=1

(
λδσ(i),i − aσ(i),i

)
Pσ est une fonction polynôme de degré 6 n.
Si σ 6= IdNn , il existe au moins deux indices i, j tels que σ(i) 6= i et σ(j) 6= j, la fonction polynôme Pσ
est alors de degré 6 n− 2.
Si σ = IdNn

PId(λ) =

n∏
i=1

(λ− ai,i) = λn − (a1,1 + · · ·+ an,n)λn−1 + · · ·

Ainsi
det(λIn −A) = λn − tr(A)λn−1 + · · ·

Enfin, le coefficient constant de χA est χA(0) = (−1)n det(A).
�

Exemple Soit P = Xn − an−1X
n−1 − · · · − a1X − a0 et

A =


0 (0) a0

1 0
...

. . . . . . an−2

(0) 1 an−1


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Calculons le polynôme caractéristique de A.

det(λIn −A) =

∣∣∣∣∣∣∣∣∣∣
λ (0) −a0

−1 λ
...

. . . . . . −an−2

(0) −1 λ− an−1

∣∣∣∣∣∣∣∣∣∣
En développant selon la dernière colonne

χA(λ) = P (λ)

5.3.3 Polynôme caractéristique et valeurs propres

Théorème
Les valeurs propres de A sont exactement les racines de χA.

dém. :

λ ∈ SpA⇔ ker(A− λIn) 6= {0} ⇔ A− λIn non inversible⇔ det(A− λIn) = 0

Or
det(A− λIn) = (−1)n det(λIn −A) = (−1)nχA(λ)

donc
λ ∈ SpA⇔ χA(λ) = 0

�

Exemple Si

A =

 λ1 ?
. . .

0 λn


alors

SpA = {λ1, . . . , λn}

Corollaire
A ∈Mn(K) possède au plus n valeurs propres.

dém. :
Car un polynôme de degré n admet au plus n racines.
�

Corollaire
A ∈Mn(C) possède au moins une valeur propre complexe.

dém. :
χA ∈ C [X] est un polynôme non constant, il possède donc au moins une racine dans C.
�
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Remarque Aussi A ∈M2n+1(R) possède au moins une valeur propre réelle.

Exemple Etude des éléments propres de

A =

 −2 1 −1
1 −2 1
1 −1 0


On a

χA(λ) = (−1)3 det(A− λI3) = −

∣∣∣∣∣∣
−2− λ 1 −1

1 −2− λ 1
1 −1 −λ

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
−2− λ 1 −1
−1− λ −1− λ 0
−1− λ 0 −1− λ

∣∣∣∣∣∣
det(λI3 −A) = −(λ+ 1)2

∣∣∣∣∣∣
−(2 + λ) 1 −1

1 1 0
1 0 1

∣∣∣∣∣∣ = (λ+ 1)2(λ+ 2)

Ainsi
χA(X) = (X + 1)2(X + 2)

Ainsi Sp(A) = {−1,−2}
Etudions E−2(A)

X =

 x
y
z

 ∈ E−2(A)⇔ AX = −2X ⇔ (A+ 2I3)X = 0⇔


y − z = 0

x+ z = 0

x− y + 2z = 0

donc E−2(A) = Vect(1,−1,−1)
Etudions E−1(A)

X =

 x
y
z

 ∈ E−1(A)⇔ (A+ I3)X = 0⇔


−x+ y − z = 0

x− y + z = 0

x− y + z = 0

donc E−1 = Vect {(1, 1, 0), (0, 1, 1)}

Exemple Etude des éléments propres de

A =

 0 (1)
. . .

(1) 0


Via C1 ← C1 + · · ·+ Cn

χA(λ) = det(λIn −A) =

∣∣∣∣∣∣∣
λ (−1)

. . .
(−1) λ

∣∣∣∣∣∣∣ = (

∣∣∣∣∣∣∣∣∣∣
λ− (n− 1) −1 · · · −1

... λ (−1)

...
. . .

λ− (n− 1) (−1) λ

∣∣∣∣∣∣∣∣∣∣
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puis via L2 ← L2 − L1, . . . , Ln ← Ln − L1

χA(λ) =

∣∣∣∣∣∣∣∣∣
λ− (n− 1) −1 · · · −1

0 λ+ 1 (0)
...

. . .
0 (0) λ+ 1

∣∣∣∣∣∣∣∣∣
Ainsi χA(λ) = (λ− (n− 1))(λ+ 1)n−1 et donc

χA(X) = (X − (n− 1)) (X + 1)n−1

X =


x1

...
xn

 ∈ E−1(A)⇔ (A+ In)X = 0

⇔


x1 + · · ·+ xn = 0

...
x1 + · · ·+ xn = 0

⇔ x1 + · · ·+ xn = 0

Ainsi E−1(A) est l’hyperplan d’équation x1 + · · ·+ xn = 0.

X =


x1

...
xn

 ∈ En−1(A)⇔ (A+ In)X = nX

⇔


x1 + · · ·+ xn = nx1

...
x1 + · · ·+ xn = nxn

⇔ x1 = . . . = xn

Ainsi En−1(A) = Vect {(1, . . . , 1)}.

5.3.4 Polynôme caractéristique d’un endomorphisme

Proposition
Si A,B ∈Mn(K) sont semblables alors χA = χB .

dém. :
Si B = P−1AP avec P ∈ GLn(K) alors χB(λ) = det(λIn − P−1AP ) = det

(
P−1(λIn −A)P

)
=

det(λIn −A) = χA(λ).
�

Définition
On appelle polynôme caractéristique de u ∈ L(E), le polynôme caractéristique commun aux
matrices représentant l’endomorphisme u ; on le note χu.

Exemple χλIdE = χλIn = (X − λ)n avec n = dimE.
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Exemple Supposons E = F ⊕G. Déterminons le polynôme caractéristique de la projection sur F
parallèlement à G.
Dans une base adaptée à la décomposition E = F ⊕G, la matrice de p est de la forme(

Ir O
O On−r

)
avec r = dimF . On a alors

χp(X) = (X − 1)rXn−r

Théorème
Pour u ∈ L(E), χu est un polynôme unitaire de degré exactement n = dimE de la forme

χu(λ) = Xn − tr(u)Xn−1 + · · ·+ (−1)n det(u)

De plus, les valeurs propres de u sont exactement les racines de χu.

dém. :
Si A ∈Mn(K) est la matrice de u dans une base de E, χu = χA avec trA = tru et detA = detu.
De plus, Sp(u) = Sp(A) et donc les racines de χu correspondent aux valeurs propres de u.
�

Corollaire
Un endomorphisme u ∈ L(E) possède au plus dimE valeurs propres.

Corollaire
Si E est un C-espace vectoriel de dimension finie alors tout u ∈ L(E) possède au moins une
valeur propre.

Remarque Si E est un R-espace vectoriel de dimension impaire alors tout u ∈ L(E) possède au moins
une valeur propre.

5.3.5 Multiplicité d’une valeur propre
Rappel :
Si P ∈ K [X] est un polynôme non nul, on appelle ordre de multiplicité de λ en tant que racine de P le
plus grand α ∈ N tel que

(X − λ)α | P

Ceci équivaut encore à

P (λ) = P ′(λ) = . . . = P (α−1)(λ) = 0 et P (α)(λ) 6= 0

Rappel :
Un polynôme P non constant est dit scindé dans K [X] si, et seulement si, on peut le factoriser sous la
forme

P = µ

n∏
i=1

(X − λi)
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Les scalaires λ1, . . . , λn ∈ K correspondent alors à ses racines comptées avec multiplicité.
En regroupant les racines égales, on obtient l’écriture

P = µ

m∏
k=1

(X − λk)αk

avec λ1, . . . , λm ∈ K deux à deux distincts et α1, . . . , αm leurs multiplicités respectives.

Définition
Soit u ∈ L(E) et λ ∈ K. On appelle multiplicité de λ en tant que valeur propre de u ∈ L(E),
l’ordre de multiplicité de λ en tant que racine de χu ; on la note mλ(u) (idem en A ∈Mn(K)
pour mλ(A) )

Remarque Abusivement, λ valeur propre de multiplicité 0 signifie que λ n’est pas valeur propre.

Exemple Valeurs de propres de

A =

 λ ?
λ

0 µ

 avec λ 6= µ

On a χA = (X − λ)2(X − µ)
λ est valeur propre double et µ est valeur propre simple de A.

Exemple Valeurs propres de

A =

 λ1 (?)
. . .

(0) λn


On a χA =

n∏
i=1

(X − λi).

Les valeurs propres de A sont les λ1, . . . , λn comptées avec multiplicité.

Théorème

∀u ∈ L(E),
∑
λ∈Spu

mλ(u) 6 dimE

avec égalité si, et seulement si, le polynôme χu est scindé dans K [X] (idem pourA ∈Mn(K)
).

dém. :
La somme des multiplicités des racines d’un polynôme non nul est inférieure à son degré avec égalité si,
et seulement si, ce polynôme est scindé.
�

Corollaire
Si K = C alors u ∈ L(E) possède exactement n valeurs propres comptées avec multiplicité
(idem en A ∈Mn(C) ).
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dém. :
Dans C [X], tout polynôme non constant est scindé.
�

5.3.6 Multiplicité et dimension des sous-espaces propres

Théorème
Si F est un sous-espace vectoriel stable par u alors le polynôme caractéristique de l’endomor-
phisme induit par u sur F divise le polynôme caractéristique de u.

dém. :
Dans une base adaptée à F , la matrice de u est de la forme(

A B
O C

)
avec A matrice de uF . On a alors χu = χAχC avec χA = χuF .
�

Théorème

∀λ ∈ Sp(u), 1 6 dimEλ(u) 6 mλ(u)

(idem avec A ∈Mn(K) ).

dém. :
Soit λ ∈ Spu.
D’une part, F = Eλ(u) = ker(u− λId) 6= {0E} donc dimF > 1.
D’autre part, F est stable par u donc χuF | χu.
Or χuF = (X − λ)dimF car uF = IdF donc λ est racine de multiplicité au moins dimF de χu.
�

Corollaire
Si λ est une valeur propre simple alors le sous-espace propre associé est de dimension 1.

5.3.7 Changement de corps
Supposons L un sous-corps de K.
Pour A ∈Mn(L), on peut aussi comprendre A ∈Mn(K).
On peut donc parler de valeurs propres de A dans L, mais aussi dans K. Bien évidemment

SpL(A) ⊂ SpK(A)

En particulier, on peut parler des valeurs propres complexes d’une matrice réelle.
Exemple Considérons

A =

(
0 −1
1 0

)
∈M2(R)

On a χA = X2 + 1 donc SpRA = ∅ et SpC = {i,−i}.

Théorème
Les valeurs propres complexes d’une matrice réelle sont deux à deux conjuguées.
De plus, deux racines complexes conjuguées ont même multiplicité et les sous-espaces propres
associés se correspondent par conjugaison.

http://mp.cpgedupuydelome.fr 126 cbna



CHAPITRE 5. RÉDUCTION GÉOMÉTRIQUE

dém. :
Soit A ∈ Mn(R). Le polynôme caractéristique de A est réel. Ses racines complexes sont donc deux à
deux conjuguées et deux racines conjuguées ont même multiplicité. Aussi

AX = λX ⇔ AX̄ = λ̄X̄

L’application X 7→ X̄ définit alors une bijection de Eλ(A) vers Eλ̄(A).
�

Remarque Par conjugaison, une base de Eλ(A) est transformée en une base de Eλ̄(A) : ces deux
sous-espaces propres sont d’égales dimensions.

5.4 Diagonalisabilité
E désigne un K-espace vectoriel de dimension n ∈ N?

5.4.1 Endomorphisme diagonalisable

Définition
Un endomorphisme u ∈ L(E) est dit diagonalisable s’il existe une base de E dans laquelle sa
matrice est diagonale. Une telle base est appelée base de diagonalisation de u.

Exemple IdE est diagonalisable et n’importe quelle base de E est base de diagonalisation.

Exemple Les projections vectorielles sont diagonalisables.
En effet, si E = F ⊕G alors la projection p sur F parallèlement à G a pour matrice(

Ir O
O On−r

)
avec r = dimF

dans une base adaptée à la décomposition E = F ⊕G.
Aussi, les symétries vectorielles sont diagonalisables.

Théorème
Pour u ∈ L(E), on a équivalence entre :
(i) u est diagonalisable ;
(ii) il existe une base de E formée de vecteurs propres de u.
Une base de diagonalisation est aussi appelée une base propre.

dém. :
(i)⇒ (ii) Supposons u diagonalisable et considérons e = (e1, . . . , en) une base de diagonalisation de u.
La matrice de u dans e est de la forme  λ1 0

. . .
0 λn


Pour tout i ∈ {1, . . . , n}, on a u(ei) = λiei avec ei 6= 0E donc ei vecteur propre de u.
La famille e est donc une base de vecteurs propres de u.
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(ii)⇒ (i) Supposons l’existence d’une base e = (e1, . . . , en) de vecteurs propres de u.
Pour tout i ∈ {1, . . . , n}, on a u(ei) = λiei avec λi la valeur propre associée au vecteur propre ei.
La matrice de u dans la base e est alors de la forme λ1 0

. . .
0 λn


�

Exemple Un endomorphisme diagonalisable possède au moins une valeur propre.

Exemple Si u est diagonalisable et si u ne possède qu’une valeur propre λ alors u = λIdE .
En effet, la matrice de u dans une base propre est λIn et donc u = λIdE .

5.4.2 Une condition suffisante de diagonalisabilité

Théorème
Si u ∈ L(E) possède n = dimE valeurs propres distinctes alors u est diagonalisable et ses
sous-espaces propres sont tous des droites vectorielles.

dém. :
Soit λ1, . . . , λn les valeurs propres deux à deux distinctes de u.
Soit e1, . . . , en des vecteurs propres associés.
La famille e = (e1, . . . , en) est libre car formée de vecteurs propres associés à des valeurs propres deux
à deux distinctes. Etant formée de n = dimE vecteurs de E, c’est une base de E diagonalisant u.
On a alors

Mateu = diag(λ1, . . . , λn) = D

et donc

χu = χD = (−1)n
n∏
i=1

(X − λi)

Puisque les λ1, . . . , λn sont deux à deux distincts, les valeurs propres de u sont toutes simples et les
sous-espaces propres sont donc de dimension 1.
�

Exemple Considérons l’application ϕ : Kn [X]→ Kn [X] définie par ϕ(P ) = nXP − (X2 − 1)P ′.
Etudions la diagonalisabilité de ϕ.
L’application ϕ est bien définie car si P = aXn + · · · , nXP = aXn+1 + · · · ,
n(X2 − 1)P ′ = naXn+1 + · · · et donc ϕ(P ) = 0.Xn+1 + · · · ∈ Kn [X].
Puisque ϕ(Xk) = (n− k)Xk+1 + kXk−1, la matrice de ϕ dans (1, X, . . . ,Xn) est

0 1

n
. . . . . .
. . . . . . n

1 0


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Le calcul du polynôme caractéristique n’est alors pas simple.
Considérons alors la base de Taylor B = (1, (X − 1), . . . , (X − 1)n).
Puisque ϕ

(
(X − 1)k

)
= (n− k)(X − 1)k+1 + (n− 2k)(X − 1)k, la matrice de ϕ dans B est

n (0)
n n− 2

. . . . . .
(0) 1 −n


On en déduit χϕ =

n∏
k=0

(n− 2k −X) = (−1)n
n∏
k=0

(X − (n− 2k)) et Spϕ = {n− 2k/k ∈ J0, nK}.

Puisque CardSpϕ = n+ 1 = dimKn [X], l’endomorphisme ϕ est diagonalisable et sous-espaces
propres sont des droites vectorielles.

5.4.3 Diagonalisabilité et sous-espaces propres

Théorème
Soit u ∈ L(E). On a équivalence entre :
(i) u est diagonalisable ;
(ii) E est la somme directe des sous-espaces propres de u i.e. :

E = ⊕
λ∈Sp(u)

Eλ(u)

(iii)
∑

λ∈Sp(u)

dimEλ(u) = dimE.

dém. :
Rappelons que l’on sait déjà que les sous-espaces propres d’un endomorphisme sont en somme directe.
(i)⇒ (ii) Supposons u diagonalisable.
Soit e = (e1, . . . , en) une base propre de u. Pour tout i ∈ {1, . . . , n}, ei est vecteur propre de u donc

ei ∈ ⊕
λ∈Sp(u)

Eλ(u)

puis E ⊂ ⊕
λ∈Sp(u)

Eλ(u) et enfin E = ⊕
λ∈Sp(u)

Eλ(u).

(ii)⇒ (iii) Car l’on sait dim
m
⊕
i=1

Fi =

m∑
i=1

dimFi.

(iii)⇒ (i) Une famille formée par concaténation de bases des espaces propres Eλ(u) est une famille libre
formée de dimE vecteurs, c’est donc une base de vecteurs propres.
�

Corollaire
Soit u ∈ L(E). On a équivalence entre :
(i) u est diagonalisable ;
(ii) χu est scindé dans K [X] et, pour tout λ ∈ Sp(u), dimEλ(u) = mλ(u).

dém. :
(i)⇒ (ii) Supposons u diagonalisable.
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Notons λ1, . . . , λm les valeurs propres de u.
Dans une base adaptée à l’écriture E =

m
⊕
j=1

Eλj (u) la matrice de u est

 λ1Iα1
0

. . .
0 λmIαm


avec αk = dimEλk(u). On a alors

χu =

m∏
k=1

(X − λk)αk

χu est scindé et pour tout k ∈ {1, . . . ,m}, λk est racine de χu de multiplicité nk = dimEλk(u).
(ii)⇒ (i) Supposons (ii)
Puisque χu est scindé, la somme des multiplicités de ses racines égale son degré.
Ainsi degχu =

∑
λ∈Sp(u)

mλ(u) et donc
∑

λ∈Sp(u)

dimEλ(u) = dimE ce qui entraîne la diagonalisabilité

de u.
�

5.4.4 Matrice diagonalisable

Définition
Une matrice A ∈Mn(K) est dite diagonalisable si elle est semblable à une matrice diagonale
i.e. il existe P ∈ GLn(K) et D ∈ Dn(K) vérifiant

P−1AP = D ou, et c’est équivalent, A = PDP−1

Théorème
Soit A la matrice d’un endomorphisme u dans une base e de E. On a équivalence entre :
(i) A est diagonalisable ;
(ii) u est diagonalisable.

dém. :
Les matrices semblables à A correspondent à celles pouvant représenter l’endomorphisme u.
�

Exemple En particulier, A est diagonalisable si l’endomorphisme canoniquement associé à la matrice A
l’est.

Théorème
Soit A ∈Mn(K). On a équivalence entre :
(i) A est diagonalisable ;

(ii)
m
⊕
i=1

Eλi(A) =Mn,1(K) (ou Kn ) ;

(iii) n =
∑

λ∈Sp(A)

dimEλ(A) ;

(iv) χA est scindé dans K [X] et pour tout λ ∈ Sp(A), dimEλ(A) = mλ(A).
De plus, les matrices diagonales semblables à A sont celles dont les coefficients diagonaux
sont les valeurs propres de A comptées avec multiplicité.
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dém. :
On transite par l’endomorphisme canoniquement associé.
�

Théorème
Si A ∈ Mn(K) admet n valeurs propres distinctes alors A est diagonalisable et, de plus, ses
sous-espaces propres sont des droites vectorielles.

Exemple Une matrice triangulaire à coefficients diagonaux distincts est assurément diagonalisable.

Exemple Soit A =

(
1 −1
1 1

)
∈M2(K).

a) Diagonalisabilité si K = R.
b) Diagonalisabilité si K = C.
χA = X2 − 2X + 2.
DansM2(R), A n’est pas diagonalisable car χA n’est pas scindé.
DansMn(C), A est diagonalisable car admet deux valeurs propres 1 + i et 1− i.
La matrice A est alors semblable à (

1 + i 0
0 1− i

)

Exemple Diagonalisabilité de A =

(
1 a
0 1

)
∈M2(R).

χA(X) = (1−X)2, SpA = {1}.
Si A est diagonalisable alors A est semblable à I2 donc égale à I2.
Ainsi A est diagonalisable si, et seulement si, a = 0.

Exemple Diagonalisabilité de A =

 1 1 0
0 1 1
0 0 2

 ∈M3(R).

χA = (X − 1)2(X − 2), SpA = {1, 2}.

dimE1(A) = 3− rg(A− I3), or rg(A− I3) = rg

 0 1 1
0 0 1
0 0 1

 = 2 donc

dimE1(A) = 1 < 2 = m1(A).
La matrice A n’est donc pas diagonalisable.

Exemple Diagonalisabilité de

A =

 1 · · · 1
...

...
1 · · · 1

 ∈Mn(R) (avec n > 2)

χA = (X − n)Xn−1, Sp(A) = {0, n}.
dimE0(A) = n− rgA = n− 1 et dimE1(A) = 1 (valeur propre simple).
Puisque dimE0(A) + dimEn(A) = n, A est diagonalisable semblable à D = diag(n, 0, . . . , 0).
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Bilan :
- n valeurs propres distinctes⇒ A diagonalisable ;
-
∑

dimEλ(A) = n⇒ A diagonalisable ;
- χA non scindé⇒ A non diagonalisable ;
- ∃λ ∈ SpA,dimEλ(A) < mλ(A)⇒ A non diagonalisable.

5.4.5 Diagonalisation
5.4.5.1 D’un endomorphisme

Soit u ∈ L(E) diagonalisable.
Pour diagonaliser l’endomorphisme u, il suffit d’exhiber une base propre en considérant, par exemple,
une base adaptée à la décomposition

E = ⊕
λ∈Sp(u)

Eλ(u)

Exemple Soit E un R-espace vectoriel de dimension 3 muni d’une base e = (e1, e2, e3).
Diagonalisation de u ∈ L(E) dont la matrice dans e est

A =

 1 1 −1
1 1 1
1 1 1


χu = X(X − 1)(X − 2), Spu = {0, 1, 2}.
CardSpu = 3 = dimE donc u est diagonalisable.
E0(u) =?

Soit x = x1e1 + x2e2 + x3e3 ∈ E et X =

x1

x2

x3

.

u(x) = 0⇔ AX = 0⇔


x1 + x2 − x3 = 0

x1 + x2 + x3 = 0

x1 + x2 + x3 = 0

⇔

{
x2 = −x1

x3 = 0

Ainsi E0(u) = Vect(e1 − e2) et de même on obtient E1(u) = Vect(−e1 + e2 + e3),
E2(u) = Vect(e2 + e3).
Soit ε1 = e1 − e2, ε2 = −e1 + e2 + e3 et ε3 = e2 + e3.
La famille ε = (ε1, ε2, ε3) est une base de E (famille de vecteurs propres associés à des valeurs propres
distinctes ou base adaptée à la décomposition de E en somme directe de sous-espaces propres).
La matrice de u dans ε est

D =

 0 0 0
0 1 0
0 0 2


En notant P la matrice de passage de e à ε, on a A = PDP−1.
Ici

P =

 1 −1 0
−1 1 1
0 1 1

 et P−1 =

 0 −1 1
−1 −1 1
1 1 0


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5.4.5.2 D’une matrice

Soit A ∈Mn(K) une matrice diagonalisable.
Notons (e1, . . . , en) la base canonique de Kn. L’endomorphisme u canoniquement associé à la matrice
A est diagonalisable. On peut introduire ε = (ε1, . . . , εn) base de vecteurs propres de u.

u(εj) = λjεj

La matrice de u dans la base ε est
D = diag(λ1, . . . , λn)

Par formule de changement de base

A = PDP−1 avec P = Mateε

Bilan : On forme une matrice de passage P diagonalisantA en prenant pour colonnes les vecteurs propres
de A. La matrice diagonale D obtenue a pour coefficients diagonaux les valeurs propres respectives des
colonnes formant P .
Exemple Diagonalisation de

A =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


χA = (X − 1)2(X + 1)2 via C1 ← C1 + C4 et C2 ← C2 + C3.
Sp(A) = {1,−1}.

E1(A) = Vect




1

0

0

1

 ,


0

1

1

0


 , E−1(A) = Vect




1

0

0

−1

 ,


0

1

−1

0




dimE1(A) + dimE−1(A) = 4 donc A est diagonalisable.
Pour

P =


1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

 et D =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


on a A = PDP−1.

Exemple Soit θ 6= 0 [π] .

Diagonalisation de R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
∈M2(K).

χR(θ) = X2 − 2 cos θX + 1.
∆ = −4 sin2 θ < 0
Cas K = R
La matrice R(θ) n’est pas diagonalisable car χR(θ) non scindé.
Cas K = C
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On a
SpC(Rθ) =

{
eiθ, e−iθ

}
et

X =

(
x

y

)
∈ Eeiθ (R(θ))⇔

{
cos θx− sin θy = eiθx

sin θx+ cos θy = eiθy
⇔ ix+ y = 0

On en déduit

Eeiθ (R(θ)) = Vect

(
i

1

)
Par conjugaison

Ee−iθ (R(θ)) = Vect

(
−i
1

)

Pour P =

(
i −i
1 1

)
, on a R(θ) = PD(θ)P−1 avec

D(θ) =

(
eiθ 0

0 e−iθ

)

5.4.6 Applications
5.4.6.1 Calcul des puissances d’une matrice

Si A est diagonalisable, on peut écrire A = PDP−1 avec P ∈ GLn(K) et D diagonale. On a alors

∀k ∈ N, Ak = PDkP−1

Exemple Calcul des puissances de

A =

(
1 2
−1 4

)
∈M2(R)

χA = X2 − 5X + 6. SpA = {2, 3}.
Après résolution

E2(A) = Vect

(
2

1

)
et E3(A) = Vect

(
1

1

)

A = PDP−1 avec P =

(
2 1
1 1

)
, D =

(
2 0
0 3

)
et P−1 =

(
1 −1
−1 2

)
.

An = PDnP−1 = P

(
2n 0
0 0

)
P−1 + P

(
3n 0
0 0

)
P−1 = 2n

(
2 −2
1 −1

)
+ 3n

(
−1 2
−1 2

)

Remarque Si l’on étudie un couple (un, vn) de suites réelles vérifiant

∀n ∈ N,

{
un+1 = un + 2vn

vn+1 = −un + 4vn

l’étude qui précède permet d’exprimer (un, vn) en fonction de (u0, v0).
En effet, en introduisant Xn = t

(
un vn

)
, on a Xn+1 = AXn et donc Xn = AnX0.
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5.4.6.2 Commutant d’un endomorphisme diagonalisable

Théorème
Soit u ∈ L(E) un endomorphisme diagonalisable et v ∈ L(E).
On a équivalence entre :
(i) v commute avec u ;
(ii) les sous-espaces propres de u sont stables par v.

dém. :
(i)⇒ (ii) déjà vue.
(ii)⇐ (i) Supposons (ii).
Puisque u est diagonalisable

E = ⊕
λ∈Spu

Eλ(u)

Pour λ ∈ Spu et x ∈ Eλ(u) :

(v ◦ u)(x) = v(u(x)) = v(λx) = λv(x)

et
(u ◦ v)(x) = u(v(x)) = λv(x)

car v(x) ∈ Eλ(u).
Ainsi, les endomorphismes u ◦ v et v ◦ u coïncident sur tous les sous-espaces propres de u.
Puisque E = ⊕

λ∈Spu
Eλ(u), ces endomorphismes sont égaux sur E.

�
5.4.6.3 Résolution d’équation matricielle

Exemple Résolvons l’équation matricielle

M2 =

(
1 0
0 4

)

Posons D =

(
1 0
0 4

)
.

Si M est solution alors MD = M3 = DM .
Les solutions sont à rechercher parmi les matrices commutant avec D.

Pour M =

(
a b
c d

)
, la relation MD = DM donne

(
a 4b
c 4d

)
=

(
a b
4c 4d

)
et donc b = c = 0.

Ainsi, la matrice M est diagonale.

Pour M =

(
a 0
0 d

)
, l’équation M2 = D équivaut à

{
a2 = 1

d2 = 4
.

Ainsi, les solutions de l’équation sont

D1 =

(
1 0
0 2

)
, D2 =

(
1 0
0 −2

)
, D3 =

(
−1 0
0 2

)
et D4 =

(
−1 0
0 −2

)

Remarque L’équation de degré 2 ici résolue possède plus de deux solutions car l’anneauMn(K) n’est
pas intègre.
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Exemple Résolvons l’équation matricielle

M2 =

(
2 1
2 3

)
Posons A =

(
2 1
2 3

)
. χA = X2 − 5X + 4 = (X − 1)(X − 4).

SpA = {1, 4} et A est diagonalisable.

E1(A) = Vect

(
1

−1

)
et E4(A) = Vect

(
1

2

)
.

Pour P =

(
1 1
−1 2

)
, A = PDP−1 avec D =

(
1 0
0 4

)
.

M2 = A⇔M2 = PDP−1 ⇔ P−1M2P = D ⇔ (P−1MP )2 = D.
Ainsi, les solutions de l’équation étudiée sont PD1P

−1, PD2P
−1, PD3P

−1 et PD4P
−1.

5.5 Trigonalisabilité
E désigne un K-espace vectoriel de dimension finie n ∈ N?.
5.5.1 Endomorphisme trigonalisable

Définition
Un endomorphisme u de E est dit trigonalisable s’il existe une base de E dans laquelle la
matrice de u est triangulaire supérieure. Une telle base est dite base de trigonalisation de l’en-
domorphisme u.

Exemple Un endomorphisme diagonalisable est a fortiori trigonalisable.

Théorème
Soit e = (e1, . . . , en) une base de l’espace E.
On a équivalence entre :
(i) la base e trigonalise un endomorphisme u ;
(ii) ∀1 6 k 6 n,Vect(e1, . . . , ek) est stable par u

dém. :
(i)⇒ (ii) Si la matrice A = (ai,j) de u dans la base e est triangulaire supérieure alors

∀1 6 k 6 n, u(ek) ∈ Vect(e1, . . . , ek)

On en déduit
∀1 6 k 6 n, u(e1), . . . , u(ek) ∈ Vect(e1, . . . , ek) stable par u

puis (ii) par combinaison linéaire.
(ii)⇒ (i) Supposons (ii). On a en particulier

∀1 6 k 6 n, u(ek) ∈ Vect(e1, . . . , ek)

et donc la matrice de u dans e est triangulaire supérieure.
�

Corollaire
Le premier vecteur d’une base de trigonalisation est un vecteur propre de l’endomorphisme.
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5.5.2 Matrice trigonalisable

Définition
Une matriceA ∈Mn(K) est dite trigonalisable si elle est semblable à une matrice triangulaire
supérieure.

Théorème
Soit A la matrice d’un endomorphisme u dans une base e de E. On a équivalence entre :
(i) A est trigonalisable ;
(ii) u est trigonalisable.

dém. :
Les matrices semblables à A correspondent à celles pouvant représenter l’endomorphisme u.
�

Exemple En particulier, A est trigonalisable si l’endomorphisme canoniquement associé à la matrice A
l’est.

5.5.3 Caractérisation

Théorème
Pour u ∈ L(E), on a équivalence entre :
(i) u est trigonalisable ;
(ii) χu est scindé dans K [X] ;
On a un critère analogue pour A ∈Mn(K).

dém. :
(i)⇒ (ii) Supposons u trigonalisable. Il existe une base de E dans laquelle la matrice de u est de la forme

T =

 λ1 ?
. . .

0 λn


On a alors

χu(X) = χT (X) =

n∏
i=1

(X − λi)

Ainsi χu est scindé dans K [X] (et les coefficients diagonaux de T sont les valeurs propres de u comptées
avec multiplicité).
(ii)⇒ (i) Raisonnons matriciellement. Par récurrence sur n ∈ N?, montrons que si le polynôme caracté-
ristique de A ∈Mn(K) est scindé alors A est semblable à une matrice triangulaire supérieure.
Cas n = 1 : C’est immédiat, une matrice A ∈M1(K) étant déjà triangulaire supérieure.
Supposons la propriété établie au rang n− 1 > 1.
Soit A ∈Mn(K) de polynôme caractéristique χA scindé.
Le polynôme χA possède au moins une racine λ1 est celle-ci est valeur propre de A. Soit e1 ∈ Kn un
vecteur propre associé. On complète ce vecteur en une base de Kn de la forme e = (e1, e2, . . . , en). La
matrice de l’endomorphisme u canoniquement associé à la matrice A dans la base e est de la forme

B =

(
λ1 ?
0 A′

)
http://mp.cpgedupuydelome.fr 137 cbna



5.5. TRIGONALISABILITÉ

On a alors
χA(X) = (X − λ)χA′(X)

et donc le polynôme caractéristique deA′ est scindé. Par hypothèse de récurrence, il existeP ′ ∈ GLn−1(K)
telle que la matrice P ′−1A′P ′ soit triangulaire supérieure. Considérons alors la matrice

P =

(
1 0
0 P ′

)
∈Mn(K)

La matrice P est inversible avec

P−1 =

(
1 0
0 P ′−1

)
Par produit par blocs

P−1BP =

(
λ1 ?′

0 P ′−1A′P ′

)
est triangulaire supérieure.
Finalement, A est semblable à une matrice triangulaire supérieure.
Récurrence établie.
�

Corollaire
Tout endomorphisme d’un C-espace vectoriel E de dimension finie est trigonalisable.
Toute matrice deMn(C) est trigonalisable.

dém. :
Car de polynôme caractéristique scindé.
�

Corollaire
Si χu est scindé dans K [X] alors tr(u) et det(u) sont la somme et le produit des valeurs propres
comptées avec multiplicité.
Idem pour A ∈Mn(K)

dém. :
u est trigonalisable et peut donc être représenté par une matrice de la forme λ1 ?

. . .
(0) λn


Le polynôme caractéristique de u est alors

n∏
k=1

(X − λk)

Les λ1, . . . , λm sont alors les valeurs propres comptées avec multiplicité.
Parallèlement tr(u) = λ1 + · · ·+ λn et det(u) = λ1 . . . λn.
�

Remarque Ce résultat peut aussi se voir comme une conséquence de l’écriture

χu(λ) = λn − tr(u)λn−1 + · · ·+ (−1)n det(u)
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Remarque Pour A ∈Mn(C) le résultat qui précède s’applique automatiquement.
Pour A ∈Mn(R), on peut interpréter A ∈Mn(C) et affirmer que trA et detA sont la somme et le
produit des valeurs propres complexes de A comptées avec multiplicité.

Exemple Déterminons les valeurs propres de

A =

 a1 · · · a1

...
...

an · · · an

 6= On

La matrice A est de rang 1 donc dimE0(A) = dim kerA = n− 1.
0 est alors valeur propre de A de multiplicité au moins n− 1. Le polynôme χA s’écrit alors

χA = (−1)nXn−1(X − λ)

Il est donc scindé dans K [X] et la trace de A est alors la somme des valeurs propres de A. On en déduit

SpA = {0, a1 + · · ·+ an}

5.5.4 Trigonalisation
Soit A ∈Mn(K) telle que χA soit scindé dans K [X].
Protocole :
Pour trigonaliser A, on détermine λ1 valeur propre de A et e1 vecteur propre associé.
Le vecteur e1 définit la première colonne d’une matrice de passage Q que l’on construit inversible. On a
alors

Q−1AQ =

(
λ1 ?
0 A′

)
avec A′ trigonalisable. En déterminant P ′ inversible telle que

P ′−1A′P ′ =

 λ2 ?
. . .

(0) λn


on forme alors

P =

(
1 0
0 P ′

)
et alors

P−1Q−1AQP =

 λ1 ?
. . .

(0) λn


de sorte que R = QP trigonalise la matrice A.

Exemple Trigonalisation de

A =

 −1 0 −1
2 −3 −5
−1 1 1

 ∈M3(R)
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χA = −(X + 1)3. SpA = {−1}
La matrice A est trigonalisable sans être diagonalisable car A 6= −I3.
E−1(A) = Vecte1 avec e1 = (1, 1, 0).
Considérons

Q =

 1 0 0
1 1 0
0 0 1

 avec Q−1 =

 1 0 0
−1 1 0
0 0 1


On a

Q−1AQ =

 −1 0 −1
0 −3 −4
0 1 1


et l’on considère

A′ =

(
−3 −4
1 1

)
E−1(A′) = Vect(2,−1)
Considérons

P ′ =

(
2 0
−1 1

)
, P ′−1 =

(
1/2 0
1/2 1

)
puis

R =

 1 0 0
0 2 0
0 −1 1

 , R−1 =

 1 0 0
0 1/2 0
0 1/2 1


On obtient

P−1AP =

 −1 1 −1
0 −1 2
0 0 −1

 avec P = QR =

 1 0 0
1 2 0
0 −1 1



Exemple Trigonalisation de

A =

 −1 −3 −1
−1 1 1
−2 −3 0

 ∈M3(R)

χA = −(X + 2)(X − 1)2.
1 est valeur propre double et −2 est valeur propre simple
E−2(A) = Vect(1, 0, 1), E1(A) = Vect(1,−1, 1)
La matrice A n’est pas diagonalisable, cependant elle est trigonalisable.
Considérons

P =

 1 1 0
0 −1 0
1 1 1

 avec P−1 =

 1 1 0
0 −1 0
−1 0 1


On obtient

P−1AP =

 −2 0 0
0 1 −1
0 0 1


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5.5.5 Nilpotence

Définition
Un endomorphisme u ∈ L(E) est dit nilpotent s’il existe p ∈ N vérifiant up = 0̃.
Le plus petit p vérifiant cette identité est appelé indice de nilpotence de u.
Ce vocabulaire se transpose aux matrices

Exemple Si A = Mateu alors la matrice A est nilpotente si, et seulement si, l’endomorphisme u l’est.

Exemple La matrice A =

(
1 1
−1 −1

)
est nilpotente car A2 = O2.

Exemple Soit A une matrice triangulaire supérieure stricte deMn(K).

A =


0 ?

. . .
. . .

(0) 0

 , A2 =


0 0 ?

. . . . . .
. . . 0

(0) 0

 , etc

Montrons (proprement) que An = On.
Soit u l’endomorphisme de Kn canoniquement associé à A.
Notons e = (e1, . . . , en) la base canonique de Kn.
On a u(e1) = 0 et pour tout 2 6 i 6 n, on a u(ei) ∈ Vect(e1, . . . , ei−1).
Par suite

Imu = Vect(u(e1), . . . , u(en)) ⊂ Vect(e1, . . . , en−1)

puis
Imu2 ⊂ u(Vect(e1, . . . , en−1)) = Vect(u(e1), . . . , u(en−1)) ⊂ Vect(e1, . . . , en−2)

Par récurrence, on obtient

∀1 6 k 6 n− 1, Imuk = Vect(e1, . . . , en−k−1)

En particulier Imun−1 ⊂ Vect(e1) puis Imun ⊂ {0E} ce qui donne un = 0̃.
On peut alors conclure An = On.

Théorème
Soit u ∈ L(E). On a équivalence entre :
(i) u est nilpotent ;
(ii) u est trigonalisable avec 0 pour seule valeur propre.
Ce résultat se transpose aux matrices de la façon suivante :
A ∈ Mn(K) est nilpotente si, et seulement si, A est semblable à une matrice triangulaire
supérieure stricte

dém. :
(ii) ⇒ (i) Car une matrice triangulaire supérieure figurant u a pour coefficients diagonaux les valeurs
propres de u, elle est donc triangulaire supérieure stricte et par conséquent nilpotente.
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(i)⇒ (ii)
Raisonnons matriciellement. Par récurrence sur n ∈ N?, montrons que si A ∈ Mn(K) est nilpotente,
alors A est semblable à une matrice triangulaire supérieure stricte.
Cas n = 1 : Une matrice nilpotente de taille 1 est nécessairement nulle.
Supposons la propriété établie au rang n− 1 > 1.
Soit A ∈Mn(K) nilpotente.
La matrice A ne peut être inversible et donc kerA 6= {0}. Soit e1 un vecteur non nul de kerA. On
complète ce vecteur e1 en une base de Kn de la forme e = (e1, . . . , en).
La matrice de l’endomorphisme canoniquement associé à A dans la base e est de la forme

B =

(
0 ?
0 A′

)
avec A′ ∈Mn−1(K)

La matrice B est semblable à A et donc elle aussi nilpotente. On en déduit que le bloc A′ est nilpotent.
Par hypothèse de récurrence, il existe P ′ ∈ GLn−1(K) telle que P ′−1A′P ′ soit triangulaire supérieure
stricte. Formons alors

P =

(
1 0
0 P ′

)
∈ GLn(K)

Par produit par blocs

P−1BP =

(
0 ?′

0 P ′−1A′P ′

)
est triangulaire supérieure stricte.
Finalement, A est semblable à une matrice triangulaire supérieure stricte.
Récurrence établie.
�

Remarque Le polynôme caractéristique de u (ou de A ) est alors Xn.

Corollaire
Si u est un endomorphisme nilpotent d’un K-espace vectoriel E de dimension n alors

un = 0̃

Si A ∈Mn(K) est nilpotente alors An = On.
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Chapitre 6

Réduction algébrique

K désigne un sous-corps de C et E un K-espace vectoriel.

6.1 Polynômes en un endomorphisme

6.1.1 Valeur d’un polynôme en un endomorphisme

Définition

On appelle valeur d’un polynôme P =

N∑
k=0

akX
k ∈ K [X] en un endomorphisme u ∈ L(E)

l’application

P (u) =
déf

N∑
k=0

aku
k ∈ L(E)

Exemple La valeur de P = X3 en u est P (u) = u3.
La valeur de P = X3 + 2X − 1 en u est P (u) = u3 + 2u− Id.

Attention : La valeur de P (u) en x ∈ E est notée P (u)(x) à comprendre [P (u)] (x).
Ecrire P (u(x)) n’a pas de sens.

Théorème
L’application ϕu : K [X] → L(E) définie par ϕu(P ) = P (u) est un morphisme de K-
algèbres.

dém. :
L’application ϕu est bien définie entre deux K-algèbres.
ϕu(1) = IdE .
Soit λ, µ ∈ K et P,Q ∈ K [X].

On peut écrire P =

N∑
k=0

akX
k et Q =

M∑
k=0

bkX
k.
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Quitte à adjoindre des coefficients nuls, on peut supposer M = N . On a

ϕu(λP +MQ) =

N∑
k=0

(λak +Mbk)uk = λ

N∑
k=0

aku
k +M

N∑
k=0

bku
k = λϕu(P ) +Mϕu(Q)

Aussi

ϕu(PQ) = (PQ)(u) =

(
N∑
k=0

akX
kQ

)
(u) =

N∑
k=0

ak(XkQ)(u)

la dernière égalité étant justifiée par linéarité de ϕu. Or, pour k ∈ {0, 1, . . . , N}, on a

(XkQ)(u) =

N∑
`=0

b`u
k+` = uk ◦Q(u)

donc

(PQ)(u) =

(
N∑
k=0

akX
kQ

)
(u) =

N∑
k=0

aku
k ◦Q(u)

puis
ϕu(PQ) = (PQ)(u) = P (u) ◦Q(u) = ϕu(P ) ◦ ϕu(Q)

�

Remarque Par ce morphisme, toute identité polynomiale se transpose aux endomorphismes.

Exemple Puisque
X3 − 2X + 1 = (X − 1)(X2 +X − 1)

on a
u3 − 2u+ IdE = (u− IdE)(u2 + u− IdE)

Exemple Soit P = Xn + an−1X
n−1 + · · ·+ a0 ∈ C [X]. En notant λ1, . . . , λn ∈ C les racines de P

comptées avec multiplicité

P = Xn + an−1X
n−1 + · · ·+ a0 =

n∏
k=1

(X − λk)

alors

P (u) =

n∏
k=1

(u− λkIdE)
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6.1.2 Polynôme d’endomorphisme

Définition
On dit que v ∈ L(E) est un polynôme en u ∈ L(E) s’il existe P ∈ K [X] tel que v = P (u).
On note K [u] l’ensemble des polynômes en u :

K [u] =
déf
{P (u)/P ∈ K [X]}

Exemple u3 + 3u+ IdE et (u− λIdE)α sont des polynômes en u.

Théorème
K [u] est une sous-algèbre commutative de L(E).
De plus, si A est une sous-algèbre de L(E),

u ∈ A⇒ K [u] ⊂ A

Ainsi, K [u] est la plus petite sous-algèbre deL(E) contenant u, on l’appelle algèbre engendrée
par u.

dém. :
K [u] ⊂ L(E), IdE ∈ K [u] car pour P (X) = 1 on a P (u) = IdE .
Soit λ, µ ∈ K et v, w ∈ K [u]. Il existe P,Q ∈ K [X] tels que v = P (u) et w = Q(u).
On a alors λv + µw = (λP + µQ)(u) ∈ K [u] et v ◦ w = (PQ)(u) ∈ K [u] donc K [u] est une sous-
algèbre de L(E).
De plus, w ◦ v = (QP )(u) = (PQ)(u) = v ◦ w donc K [u] est une sous-algèbre commutative de L(E).
Si A est une sous-algèbre de L(E) contenant u alors par récurrence

∀n ∈ N, un ∈ A

puis
K [u] = Vect

{
uk/k ∈ N

}
⊂ A

�

Exemple Si P ∈ K [X] alors ImP (u) et kerP (u) sont stables par u.
En effet, les P (u) et u commutent. On retrouve en particulier que les sous-espaces propres de u sont
stables par u.

6.1.3 Polynôme annulateur

Définition
On appelle polynôme annulateur de u ∈ L(E) tout polynôme P ∈ K [X] vérifiant P (u) = 0̃.

Exemple Le polynôme nul annule tout endomorphisme.
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Exemple Le polynôme X − λ annule l’endomorphisme λIdE

Exemple Le polynôme X2 −X est annulateur des projections vectorielles.

Théorème
L’ensemble des polynômes annulateurs de u ∈ L(E) est un sous-espace vectoriel et un idéal
de K [X].

dém. :
Notons I =

{
P ∈ K [X] /P (u) = 0̃

}
l’ensemble des polynômes annulateurs de u.

I est le noyau du morphisme d’algèbres ϕu, c’est donc un sous-espace vectoriel et un idéal de K [X].
Cor :Si P annule u et si P | Q alors Q annule u.
�

6.1.4 Polynôme annulateur et valeur propre

Lemme
Si λ est valeur propre de u ∈ L(E) alors, pour tout P ∈ K [X], P (λ) est valeur propre
de P (u).

dém. :
Soit λ une valeur propre de u. Il existe x 6= 0E tel que u(x) = λx.
On a u2(x) = u(λx) = λ2x,. . . , un(x) = λnx.
Soit P = anX

n + · · ·+ a1X + a0 ∈ K [X].
On a P (u)(x) = (anu

n + · · ·+ a1u+ a0Id)(x) = (anλ
nx+ · · ·+ a1λx+ a0x) = P (λ)x avec x 6= 0E

donc P (λ) est valeur propre de P (u).
�

Théorème
Les valeurs propres de u ∈ L(E) figurent parmi les racines des polynômes annulateurs de u.

dém. :
Soit P (X) un polynôme annulateur de u et λ une valeur propre de u.
On a P (λ) valeur propre de P (u) = 0̃ donc P (λ) = 0.
�

Attention : Des racines d’un polynôme annulateur peuvent ne pas être valeur propre.

Exemple Si p est une projection vectorielle alors X2 −X = X(X − 1) est annulateur de p et donc
Spp ⊂ {0, 1}.

Exemple 0 est la seule valeur propre d’un endomorphisme nilpotent.
En effet,Soit u ∈ L(E) nilpotent.
Il existe p ∈ N? tel que up = 0̃.
Le polynôme Xp est annulateur de u et donc Spu ⊂ {0}.
L’endomorphisme u ne peut être injectif (car up ne l’est pas) et donc 0 ∈ Spu.
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6.2 Polynôme d’une matrice

6.2.1 Valeur d’un polynôme en une matrice carrée

Définition

On appelle valeur de P =

N∑
k=0

akX
k ∈ K [X] en M ∈Mn(K) la matrice

P (M) =
déf

N∑
k=0

akM
k ∈Mn(K)

Exemple La valeur de P = X3 − 3X + 1 en M ∈Mn(K) est P (M) = M3 − 3M + In.

Exemple Soit u ∈ L(E) et e = (e1, . . . , en) une base de E.
Si M = Mateu alors ∀P ∈ K [X], P (M) = MateP (u)

Exemple Calcul de P (M) pour

M =

 λ1 (0)
. . .

(0) λn


On vérifie par récurrence

∀k ∈ N,Mk =

 λk1 (0)
. . .

(0) λkn


puis par linéarité

∀P ∈ K [X] , P (M) =

 P (λ1) (0)
. . .

(0) P (λn)



Exemple Expression de P (M) pour

M =

 λ1 ?
. . .

(0) λn


On vérifie par récurrence

∀k ∈ N,Mk =

 λk1 ?′

. . .
(0) λkn


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puis par linéarité

∀P ∈ K [X] , P (M) =

 P (λ1) ?′′

. . .
(0) P (λn)



Exemple Expression de P (M) pour

M =

(
A ?
O B

)
(avec A,B matrices carrées)

Comme au dessus, on obtient

∀P ∈ K [X] , P (M) =

(
P (A) ?′

O P (B)

)

Exemple On a
∀P ∈ K [X] , P (tM) = tP (M)

En effet
∀k ∈ N, (tM)k = t(Mk)

puis on conclut par linéarité

Théorème
L’application ϕM : K [X] → Mn(K) définie par ϕM (P ) = P (M) est un morphisme de
K-algèbres.

6.2.2 Polynôme en une matrice carrée

Définition
On dit que A ∈ Mn(K) est un polynôme en M ∈ Mn(K) s’il existe P ∈ K [X] tel que
A = P (M). On note

K [M ] =
déf
{P (M)/P ∈ K [X]}

l’ensemble des polynômes en M

Théorème
K [M ] est une sous-algèbre commutative de Mn(K) incluse dans toute sous-algèbre de
Mn(K) contenant M ; on l’appelle algèbre engendrée par M .

6.2.3 Polynôme annulateur

Définition
On appelle polynôme annulateur de M ∈ Mn(K) tout polynôme P ∈ K [X] vérifiant
P (M) = On.

Exemple Si M = Mateu alors les polynômes annulateurs de M et de u se correspondent.
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Exemple Soit M =

(
a b
c d

)
∈M2(K).

On vérifie par le calcul que P = X2 − (a+ d)X + (ad− bc) est annulateur de M .

Exemple P = (X − λ1) . . . (X − λn) est annulateur de

D =

 λ1 (0)
. . .

(0) λn

 ∈Mn(K)

En effet

P (D) =

 P (λ1) (0)
. . .

(0) P (λn)

 = On

Remarque Si A est diagonalisable semblable à D alors P est aussi annulateur de A. Plus généralement :

Proposition
Si A,B ∈Mn(K) sont semblables alors A et B ont les mêmes polynômes annulateurs.

dém. :
Par le calcul à partir de la relation de similitude B = Q−1AQ ou simplement parce que les matrices A et
B représentent le même endomorphisme.
�

Théorème
L’ensemble des polynômes annulateurs de M ∈ Mn(K) est un sous-espace vectoriel et un
idéal de K [X].

Corollaire
Si P annule M et si P | Q alors Q annule M .

6.2.4 Valeurs propres et polynômes annulateurs

Théorème
Les valeurs propres de M ∈ Mn(K) figurent parmi les racines des polynômes annulateurs
de M .

Exemple Soit A ∈M3(R) vérifiant A3 = In.
a) Valeurs propres réelles.
b) Valeurs propres complexes.
Le polynôme X3 − 1 est annulateur de A.
Dans R, X3 − 1 = (X − 1)(X2 +X + 1) donc SpRA ⊂ {1}.
Or A est une matrice réelle de taille impaire donc SpRA 6= ∅ puis

SpRA = {1}
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Dans C, X3 − 1 = (X − 1)(X − j)(X − j2) donc SpCA ⊂
{

1, j, j2
}

.
Puisque 1 est valeur propre et puisque les valeurs propres de A sont deux à deux conjuguées

SpCA = {1} ou SpCA =
{

1, j, j2
}

On en déduit tr(A) = 3 ou tr(A) = 0 et detA = 1 (car χA est scindé et donc A trigonalisable)

6.3 Polynômes annulateurs en dimension finie
E désigne un K-espace vectoriel de dimension finie n ∈ N?.
6.3.1 Théorème de Cayley Hamilton

Théorème
Le polynôme caractéristique χu de u ∈ L(E) est annulateur de u.
Cet énoncé se transpose aux matrices A ∈Mn(K).

Exemple Pour A ∈M2(K), le polynôme χA = X2 − tr(A)X + det(A) est annulateur de A.

6.3.2 Polynôme minimal

Théorème
Pour tout u ∈ L(E), il existe un unique polynôme Πu vérifiant :
1) Πu est annulateur de u ;
2) Πu est unitaire ;
3) ∀P ∈ K [X] , P (u) = 0̃⇒ Πu | P .
Ce polynôme Πu est appelé polynôme minimal de l’endomorphisme u.
Cet énoncé se transpose aux matrices A ∈Mn(K) ce qui définit le polynôme minimal ΠA

dém. :
Existence :
Considérons I =

{
P ∈ K [X] /P (u) = 0̃

}
.

Puisque I est un idéal de K [X], il existe un polynôme Q ∈ K [X] tel que I = Q.K [X].
Puisque χu ∈ I , l’idéal I est non nul et donc Q 6= 0.
Notons λ le coefficient dominant de u et considérons Πu = Q/λ. Le polynôme Πu est unitaire et vérifie
I = Πu.K [X].
Unicité :
Supposons Πu et Π̃u solutions.
Puisque Π̃u(u) = 0̃, Πu | Π̃u. De façon symétrique, Π̃u | Πu et donc Πu et Π̃u sont associés.
Or ils sont tous deux unitaires donc égaux.
�

Remarque Le polynôme Πu est non constant.

Exemple Polynôme minimal de u = λIdE .
X − λ annule u et donc Πu | X − λ.
Puisque Πu est unitaire non constant, on obtient

Πu = X − λ
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Exemple Polynôme minimal de p projection autre que 0̃ et IdE .
On a p2 = p donne Πp | X(X − 1).
Puisque Πp est unitaire non constant

Πp = X,X − 1 ou Πp = X(X − 1)

Puisque p 6= 0̃ et p 6= IdE , les cas Πp = X et Πp = X − 1 sont à exclure.
Il reste

Πp = X(X − 1)

Exemple Polynôme minimal de A =

(
1 1
−2 4

)
∈M2(R).

χA = X2 − 5X + 6 = (X − 2)(X − 3) est annulateur de A donc ΠA | χA.
Par conséquent

ΠA = X − 1, X − 2 ou (X − 2)(X − 3)

Les cas ΠA = X − 1 ou X − 2 sont à exclure et il reste

ΠA = (X − 2)(X − 3)

Exemple Polynôme minimal de D =

 1 0 0
0 1 0
0 0 2

 ∈M3(R).

Cette fois-ci
χD = (X − 1)2(X − 2) et ΠD = (X − 1)(X − 2)

6.3.3 Polynôme minimal et valeurs propres

Théorème
Les valeurs propres de u ∈ L(E) sont exactement les racines de son polynôme minimal.
Ce résultat se transpose aux matrices carrées.

dém. :
On sait déjà que les valeurs propres de u sont racines de Πu car Πu est annulateur.
Inversement, si λ est racine de Πu alors λ est aussi racine de χu donc λ est valeur propre de u.
�

Exemple Le polynôme
∏
λ∈Spu

(X − λ) divise Πu.

6.3.4 Application : calcul des puissances d’un endomorphisme
Soit u ∈ L(E). On introduit son polynôme minimal Πu de degré d (avec d 6 dimE car Πu divise χu ).
On écrit

Πu = Xd − (ad−1X
d−1 + · · ·+ a1X + a0)
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et alors
ud = a0IdE + a1u+ · · ·+ ad−1u

d−1

Puisque ud+1 = u ◦ ud
ud+1 = a0u+ a1u

2 + · · ·+ ad−1u
d

et en exploitant la relation au dessus, on obtient une expression

ud+1 = a′0IdE + a′1u+ · · ·+ a′d−1u
d−1

On peut répéter ce processus. . . Plus généralement :

Théorème
Si d = deg Πu alors la famille (uk)06k6d−1 est une base K [u].
Ce résultat se transpose aux matrices carrées.

dém. :
Commençons par montrer K [u] = Vect(Id, u, . . . , ud−1)
On a déjà l’inclusion Vect(IdE , u, . . . , ud−1) ⊂ K [u].
Inversement, soit P ∈ K [X].
Par division euclidienne, on peut écrire P = QΠu +R avec degR < d.
On a alors

P (u) = Q(u) ◦Πu(u) +R(u) = R(u) ∈ Vect(IdE , u, . . . , ud−1)

Ainsi K [u] ⊂ Vect(IdE , u, . . . , ud−1) puis l’égalité.
Montrons maintenant que la famille (IdE , u, . . . , ud−1) est libre.
Supposons

a0IdE + a1u+ · · ·+ ad−1u
d−1 = 0̃

Pour P = a0 + a1X + · · ·+ ad−1X
d−1, on a P (u) = 0̃.

Or degP < deg Πu donc P = 0 puis a0 = a1 = . . . = ad−1 = 0.
Ainsi, la famille (Id, u, . . . , ud−1) est libre et c’est donc une base de K [u].
�

Corollaire
dimK [u] 6 dimE et dimK [A] 6 n.

dém. :
Car le polynôme minimal est diviseur du polynôme caractéristique donc de degré inférieur à n.
�

Exemple Calculons les puissances de A =

(
1 1
−2 4

)
∈M2(R).

On sait ΠA = (X − 2)(X − 3).
Par division euclidienne

Xn = ΠA(X)Q(X) + αX + β (1)

En évaluant la relation (1) en 2 et en 3, on obtient{
2α+ β = 2n

3α+ β = 3n
donc

{
α = 3n − 2n

β = 3.2n − 2.3n

En évaluant la relation (1) en A, on obtient

An = (3n − 2n)A+ (3.2n − 2.3n)I2
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6.4 Réduction et polynômes annulateurs
E désigne un K-espace vectoriel non nul
6.4.1 Lemme de décomposition des noyaux

Théorème
Soit P,Q ∈ K [X] et u ∈ L(E).
Si P et Q sont premiers entre eux alors

ker(PQ)(u) = kerP (u)⊕ kerQ(u)

dém. :
Puisque P ∧Q = 1, il existe des polynômes V et W tel que V P +WQ = 1.
On a alors Id = V (u) ◦ P (u) +W (u) ◦Q(u).
Soit x ∈ kerP (u) ∩ kerQ(u)
On a

x = (V (u) ◦ P (u)) (x) + (W (u) ◦Q(u)) (x) = 0

donc kerP (u) et kerQ(u) sont en somme directe.
Montrons kerP (u)⊕ kerQ(u) ⊂ ker(PQ)(u)
Puisque (PQ)(u) = Q(u) ◦ P (u) on a kerP (u) ⊂ kerPQ(u).
De même kerQ(u) ⊂ ker(PQ)(u) et donc kerP (u)⊕ kerQ(u) ⊂ ker(PQ)(u).
Inversement
Soit x ∈ ker(PQ)(u). On a

x = (W (u) ◦Q(u)) (x) + (V (u) ◦ P (u)) (x) = a+ b

avec a = (W (u) ◦Q(u)) (x) et b = (V (u) ◦ P (u)) (x).
Or

P (u)(a) = (P (u) ◦W (u) ◦Q(u)) (x) = (W (u) ◦ (PQ)(u)) (x) = 0

et de même Q(u)(b) = 0. Ainsi a ∈ kerP (u) et b ∈ kerQ(u) puis

ker(PQ)(u) ⊂ kerP (u)⊕ kerQ(u)

et enfin l’égalité.
�

Corollaire
Si P1, . . . , Pm ∈ K [X] sont deux à deux premiers entre eux alors :

ker

(
m∏
k=1

Pk

)
(u) =

m
⊕
k=1

kerPk(u)

Ce résultat se transpose aux matrices carrées

ker

(
m∏
k=1

Pk

)
(A) =

m
⊕
k=1

kerPk(A)
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dém. :
On raisonne par récurrence en exploitant

(P1 . . . Pm) ∧ Pm+1 = 1⇒ ker

(
m+1∏
k=1

Pk

)
(u) = ker

(
m∏
k=1

Pk

)
(u)⊕ kerPm+1(u)

�
Rappel :
Si a 6= b alors (X − a) ∧ (X − b) = 1.
Plus généralement, (X − a)α ∧ (X − b)β = 1 pour tout α, β ∈ N.
Encore plus généralement, deux polynômes de K [X] sont premiers entre eux si, et seulement si, ils n’ont
pas de racines complexes en commun.
Exemple On appelle projecteur de E tout p ∈ L(E) vérifiant p2 = p.
Les espaces F = ker(p− Id) et G = ker p sont supplémentaires et

∀x ∈ F, p(x) = x et ∀x ∈ G, p(x) = 0E

En effet p2 − p = 0̃ donc E = ker
(
p2 − p

)
.

Or X2 −X = (X − 1)X avec (X − 1) ∧X = 1
donc E = ker(p2 − p) = ker(p− Id)⊕ ker p.
on reconnaît que p est la projection sur F parallèlement à G.

Exemple On appelle symétrie de E tout s ∈ L(E) vérifiant s2 = IdE .
Les espaces F = ker(s− Id) et G = ker(s+ Id) sont supplémentaires et

∀x ∈ F, s(x) = x et ∀x ∈ G, s(x) = −x

En effet, s2 − IdE = 0̃ donc E = ker
(
s2 − IdE

)
.

Or X2 − 1 = (X − 1)(X + 1) avec (X − 1) ∧ (X + 1) = 1 donc E = ker(s− Id)⊕ ker(s+ Id).
Posons
on reconnaît que s est la symétrie par rapport à F et parallèlement à G.

Exemple Soit λ1, . . . , λm les valeurs propres deux à deux distinctes de u ∈ L(E).
Les polynômes X − λk étant deux à deux premiers entre eux, on retrouve que les sous-espaces propres
d’un endomorphisme sont en somme directe.

6.4.2 Diagonalisabilité

Théorème
On a équivalence entre :
(i) u est diagonalisable ;
(ii) u annule un polynôme scindé à racines simples ;
(iii) le polynôme minimal de u est scindé à racines simples.
De plus, le polynôme minimal de u est alors

Πu =
∏
λ∈Spu

(X − λ)

Ce résultat se transpose aux matrices carrées.
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dém. :
Notons λ1, . . . , λm les valeurs propres de u.
(i)⇒ (ii) Supposons u diagonalisable. On a

E =
m
⊕
k=1

Eλk(u)

Dans une base adaptée à cette décomposition la matrice de u est de la forme λ1Iα1
(0)

. . .
(0) λmIαm

 avec αk = dimEλk(u)

Considérons le polynôme

P =

m∏
k=1

(X − λk)

Dans la base précédente, la matrice de P (u) est P (λ1)Iα1
(0)

. . .
(0) P (λm)Iαm

 = On

u annule le polynôme P qui est scindé à racines simples.
(ii) ⇒ (iii) Si u annule un polynôme scindé à racines simples alors Πu le divise et est donc lui-même
scindé à racines simples.
(iii)⇒ (i) Supposons Πu scindé à racines simples. Puisque les racines de Πu sont exactement les valeurs
propres de u, on peut écrire

Πu =

m∏
k=1

(X − λk)

Or les facteurs (X − λk) étant premiers entre eux, le lemme de décomposition des noyaux donne

E = ker Πu(u) =
m
⊕
k=1

ker(u− λkIdE) =
m
⊕
k=1

Eλk(u)

�

Définition
On dit qu’un polynôme de K [X] est scindé simple lorsqu’il est scindé dans K [X] à racines
simples

Exemple Diagonalisation de T :Mn(R)→Mn(R) définie par T (M) = tM .
On a T 2 = Id donc X2 − 1 annule T .
Puisque le polynôme X2 − 1 est scindé simple, l’endomorphisme T est diagonalisable.
De plus

SpT ⊂ {1,−1} , E1(T ) = ker(T − Id) = Sn(R) et E−1(T ) = ker(I + Id) = An(R)

On en déduit trT = dimSn(R)− dimAn(R) = n et detT = (−1)dimAn(R) = (−1)n(n−1)/2.
En fait, l’endomorphisme T est la symétrie vectorielle par rapport à Sn(R) et parallèlement à An(R).
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Exemple Soit A ∈Mn(R) telle que A2 + I = 0.
Montrons que n est pair et calculons detA et trA.
A annule X2 + 1 = (X − i)(X + i) scindé simple donc A est diagonalisable dansMn(C).
De plus,

SpA ⊂ {i,−i}

Or SpA 6= ∅ et les valeurs propres de A sont conjuguées car A ∈Mn(R) donc

SpA = {i,−i}

Enfin, les multiplicités des valeurs propres conjuguées sont égales car χA ∈ R [X] donc
dimEi(A) = dimE−i(A).
En posant p cette valeur commune, on peut affirmer que A est semblable dansMn(C) à(
iIp O
O −iIp

)
On en déduit n = 2p, detA = 1 et trA = 0.

6.4.3 Réduction d’un endomorphisme induit par un endomorphisme diagonali-
sable

Lemme
Si F est un sous-espace vectoriel stable par u ∈ L(E) alors F est stable par tout polynôme en
u et

∀P ∈ K [X] , P (u)F = P (uF )

dém. :
Puisque F est stable par u, il l’est aussi par u2, . . . , un, . . . et

∀n ∈ N, (uF )n = (un)F

Par combinaison linéaire, F est encore stable par les polynômes en u et

∀P ∈ K [X] , P (u)F = P (uF )

Si u est diagonalisable alors u annule un polynôme scindé simple P et alors P (uF ) = (P (u))F = 0̃
donc uF annule un polynôme scindé simple et est donc diagonalisable.
�

Proposition
Si F est stable par u ∈ L(E) alors le polynôme minimal de uF divise le polynôme minimal
de u.

dém. :
Le polynôme minimal de u est annulateur de uF .
�

Théorème
Si u ∈ L(E) est diagonalisable et si F est un sous-espace vectoriel stable par u alors uF est
diagonalisable.
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dém. :
Πu est scindé à racines simples dont ΠuF l’est aussi.
�

Corollaire
Soit u ∈ L(E) diagonalisable.
Les sous-espaces vectoriels stables par u sont ceux admettant une base de vecteurs propres.

dém. :
Si F est stable par u alors uF est diagonalisable donc F admet une base de vecteurs propres de uF .
Ceux-ci sont aussi vecteurs propres de u.
Inversement, si (e1, . . . , ep) est une base de F formée de vecteurs propres alors pour tout j ∈ {1, . . . , p},
u(ej) ∈ Vect(ej) ⊂ F et donc F est stable par u.
�

Exemple Soit u et v ∈ L(E) diagonalisables.
Montrons que si u et v commutent alors il existe une base de E formée de vecteurs propres communs à
u et v.
Puisque u est diagonalisable, E = ⊕

λ∈Spu
Eλ(u).

Pour λ ∈ Spu, Eλ(u) est stable par v, or v est diagonalisable donc vEλ(u) l’est aussi. Ainsi, il existe une
base Bλ de Eλ(u) formée de vecteurs propres de v. Cette base est a fortiori formée de vecteurs propres
de u. En accolant les bases Bλ, on forme une base de E formée de vecteurs propres communs à u et v.
Matriciellement, on a obtenu que si A,B ∈Mn(K) sont diagonalisables et commutent alors il existe
P ∈ GLn(K) vérifiant P−1AP et P−1BP diagonales.

6.4.4 Trigonalisabilité

Théorème
On a équivalence entre :
(i) u est trigonalisable ;
(ii) u annule un polynôme scindé dans K [X] ;
(iii) le polynôme minimal de u est scindé dans K [X].
De plus, l’espace E est alors la somme directe de sous-espaces stables par u sur chacun des-
quels u induit la somme d’une homothétie et d’un endomorphisme nilpotent.

dém. :
(i)⇒ (ii) Car si u est trigonalisable alors u annule son polynôme caractéristique qui est scindé dans K [X].
(ii)⇒ (iii) Car le polynôme minimal divise un polynôme scindé.
(iii)⇒ (i) Supposons le polynôme minimal Πu de u scindé dans K [X]. On peut écrire

Πu =

m∏
k=1

(X − λk)αk

avec λ1, . . . , λm les valeurs propres distinctes de u. Par le lemme de décomposition des noyaux

E =
m
⊕
k=1

ker (u− λkIdE)
αk

Etudions F = ker(u−λkIdE)αk . L’espace F est stable par u car u et (u−λkIdE)αk commutent. On peut
introduire nk = uF −λIdF ∈ L(F ) et on a nαkk = 0̃ car F = ker(u−λkIdE)αk . Ainsi uF = λkIdF +nk
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avec nk nilpotent. Enfin, puisque nk est nilpotent, il existe une base Fk dans laquelle la matrice de nk est
triangulaire supérieure. En accolant ces bases, on obtient une base de E dans laquelle la matrice de u est
triangulaire supérieure.
�

Remarque Les espaces ker (u− λkIdE)
αk s’appellent espaces caractéristiques de l’endomorphisme u.

Corollaire
Si A ∈ Mn(K) est trigonalisable alors A est semblable à une matrice diagonale par blocs où
chaque bloc diagonal est de la forme

λIα +N

avec N une matrice nilpotente.

Remarque Ce résultat s’applique automatiquement lorsque K = C et l’on retrouve que toute matrice de
Mn(C) est trigonalisable.

Corollaire
Si u ∈ L(E) est trigonalisable et si F est un sous-espace vectoriel stable par u alors uF est
trigonalisable.

dém. :
Πu est scindé donc ΠuF l’est aussi.
�

6.4.5 Musculation : décomposition de Dunford

Théorème
Soit u ∈ L(E) avec Πu scindé dans K [X].
On peut écrire u = d+ n avec d diagonalisable, n nilpotent et d ◦ n = n ◦ d.

dém. :
On introduit λ1, . . . , λm les valeurs propres deux à deux distincts de u.

Πu =

m∏
k=1

(X − λk)µk et E =
m
⊕
k=1

ker(u− λkIdE)nk

Posons d l’endomorphisme déterminé par

∀1 6 k 6 m,∀x ∈ ker(u− λkIdE)nk , d(x) = λkx

L’endomorphisme d est évidemment diagonalisable, ses sous-espaces propres sont les espaces caractéris-
tiques.
Posons n l’endomorphisme donné par n = u− d.

∀1 6 k 6 m,∀x ∈ ker(u− λkIdE)nk , nnk(x) = 0E

Pour N = max(n1, . . . , nm), on obtient

∀1 6 k 6 m,∀x ∈ ker(u− λkIdE)nk , nN (x) = 0E
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L’endomorphisme n est donc nilpotent.
Enfin

∀1 6 k 6 m, ∀x ∈ ker(u− λkIdE)nk , (n ◦ d)(x) = λkn(x) = (d ◦ n)(x)

et donc les endomorphismes d et n commutent.
On peut aussi montrer qu’il y a unicité des endomorphismes d et n de cette décomposition.
Supposons d et n solutions.
d commute avec n donc aussi avec u = d+ n.
L’espace caractéristique F = ker(u− λIdE)n est alors stable par d.
L’endomorphisme induit par d sur F est diagonalisable.
Soit µ une valeur propre de celui-ci et G ⊂ F l’espace propre associé.
G est stable par u et donc aussi par n = u− d et l’on a

uG = µIdG + nG

Puisque nG est nilpotent, on peut calculer χuG dans une base trigonalisant nG et affirmer que µ est alors
valeur propre de uG donc de uF . Or λ est la seule valeur propre de uF et donc µ = λ. On en déduit que
λ est la seule valeur propre de l’endomorphisme diagonalisable dF et ainsi

∀x ∈ F, d(x) = λx

L’endomorphisme d est alors déterminé de façon unique sur les espaces caractéristiques de u.
L’endomorphisme n = u− d est alors aussi unique.
�

Remarque La décomposition de Dunford est utile pour calculer les puissances de u car la formule du
binôme peut lui être appliquée.
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Chapitre 7

Espaces préhilbertiens réels

E désigne un R-espace vectoriel.

7.1 Produit scalaire

7.1.1 Définition

Définition
On appelle produit scalaire sur un R-espace vectoriel E toute application ϕ : E × E → R
vérifiant :
1) ϕ est bilinéaire ;
2) ϕ est symétrique i.e. ∀x, y ∈ E,ϕ(y, x) = ϕ(x, y) ;
3) ϕ est positive i.e. ∀x ∈ E,ϕ(x, x) > 0 ;
4) ϕ est définie i.e. ∀x ∈ E,ϕ(x, x) = 0⇒ x = 0E .
On dit qu’un produit scalaire est une forme bilinéaire symétrique définie positive.

Remarque Les points 3) et 4) peuvent être avantageusement remplacés par

∀x ∈ E\ {0E} , ϕ(x, x) > 0

Définition
On appelle espace préhilbertien réel tout couple (E,ϕ) formé d’un R-espace vectoriel E et
d’un produit scalaire ϕ sur E. Il est alors usuel de noter (x | y), 〈x, y〉 ou x.y au lieu de
ϕ(x, y) le produit scalaire de deux vecteurs de E.

Exemple Sur E = Rn, 〈x, y〉 =

n∑
k=1

xkyk = x1y1 + · · ·+ xnyn définit un produit scalaire.

〈., .〉 : Rn × Rn → R est bien définie.
Soit λ, µ ∈ R, x, y, z ∈ Rn.

〈x, λy + µz〉 =

n∑
k=1

xk(λyk + µzk) = λ 〈x, y〉+ µ 〈x, z〉

〈., .〉 est linéaire en sa deuxième variable.

〈y, x〉 =

n∑
k=1

ykxk = 〈x, y〉
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〈., .〉 est symétrique et donc bilinéaire.
Enfin

〈x, x〉 =

n∑
k=1

x2
k > 0

et
〈x, x〉 = 0⇒ x = 0Rn

Finalement 〈., .〉 est un produit scalaire.

Exemple Sur E =Mn,p(R), (A | B) = tr(tAB) définit un produit scalaire.
(. | .) : E × E → R est bien définie car tAB est une matrice carrée.
Soit λ, µ ∈ R et A,B,C ∈Mn,p(R).

(A | λB + µC) = tr
(
tA(λB + µC)

)
= λ(A | B) + µ(A | C)

(B | A) = tr
(
tBA

)
= trt

(
tBA

)
= tr

(
tAB

)
= (A | B)

Ainsi (. | .) est une forme bilinéaire symétrique.

(A | A) = tr
(
tAA

)
=

p∑
j=1

[
tAA

]
j,j

Or [
tAA

]
j,j

=

n∑
i=1

[
tA
]
j,i

[A]i,j =

n∑
i=1

a2
i,j

en notant ai,j les coefficients de A.

(A | A) =

p∑
j=1

n∑
i=1

a2
i,j

Ainsi (A | A) > 0 et (A | A) = 0⇒ A = On,p.
ϕ est donc définie positive et par suite c’est un produit scalaire.
En fait

(A | B) = tr(tAB) =

p∑
j=1

[
tAB

]
j,j

=

p∑
j=1

n∑
i=1

ai,jbi,j

Le produit scalaire introduit est analogue à celui défini ci-dessus sur Rn.

Remarque Sur E =Mn,1(R),
(X | Y ) = tr(tXY ) = tXY

car tXY est une matrice uni-coefficient.
Ainsi, le produit scalaire canonique surMn,1(R) est donné par

ϕ(X,Y ) = tXY = x1y1 + · · ·+ xnyn

avec X = t
(
x1 · · · xn

)
et Y = t

(
y1 · · · yn

)
.

Par l’identification des colonnes et des tuples, les produits scalaires canoniques se correspondent.
L’action de ce produit scalaire est la même que celle du produit scalaire sur Rn.
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Exemple Soit a < b deux réels et E = C ([a, b] ,R). (f | g) =

∫ b

a

f(t)g(t) dt définit un produit

scalaire sur E.
En effet, l’application (. | .) : E × E → R est bien définie et clairement bilinéaire symétrique et pour
f ∈ E, on a

(f | f) =

∫ b

a

f(t)2 dt > 0

et
(f | f) = 0⇒ f = 0̃

car seule la fonction nulle est une fonction continue positive d’intégrale nulle.

Remarque Si l’on considère ω : [a, b]→ R+? continue, on définit aussi un produit scalaire sur E en
posant

〈f, g〉 =

∫ b

a

f(t)g(t)ω(t) dt

Le résultat est encore vrai pour ω s’annulant un nombre fini de fois.

Remarque On peut aussi définir des produits scalaires sur R [X] parmi lesquels les fameux suivants

〈P,Q〉 =

∫ 1

0

P (t)Q(t) dt, 〈P,Q〉 =

∫ +∞

0

P (t)Q(t)e−t dt ou 〈P,Q〉 =

∫ 1

−1

P (t)Q(t)√
1− t2

dt

7.1.2 Norme euclidienne
E désigne un espace préhilbertien réel et (. | .) désigne son produit scalaire.

Définition
On appelle norme euclidienne sur E l’application ‖ . ‖ : E → R+ définie par

‖x‖ =
√

(x | x)

Exemple Sur E = Rn muni du produit scalaire canonique

‖x‖ =
√
x2

1 + · · ·+ x2
n = ‖x‖2

Dans le cas n = 1, ‖x‖ =
√
x2 = |x|.

Exemple Sur E =Mn,p(R) muni du produit scalaire canonique

‖A‖ =
√

tr(tAA) =

 n∑
i=1

p∑
j=1

a2
i,j

1/2

= ‖A‖2

http://mp.cpgedupuydelome.fr 163 cbna



7.1. PRODUIT SCALAIRE

Exemple Sur E = C ([a, b] ,R),

‖f‖ =

(∫ b

a

f(t)2 dt

)1/2

= ‖f‖2

Proposition
∀x ∈ E, ‖x‖ = 0⇒ x = 0E .
∀λ ∈ R, ∀x ∈ E, ‖λx‖ = |λ| ‖x‖.

dém. :
‖x‖ = 0⇒ (x | x) = 0 donc ‖x‖ = 0⇒ x = 0E .
‖λx‖2 = (λx | λx) = λ2 (x | x) = λ2 ‖x‖2 donc ‖λx‖ = |λ| ‖x‖.
�

Proposition
∀a, b ∈ E, ‖a+ b‖2 = ‖a‖2 + 2(a | b) + ‖b‖2,
∀a, b ∈ E, ‖a− b‖2 = ‖a‖2 − 2(a | b) + ‖b‖2,
∀a, b ∈ E, (a− b | a+ b) = ‖a‖2 − ‖b‖2.

dém. :
‖a+ b‖2 = (a+ b | a+ b) = (a | a+ b) + (b | a+ b) par linéarité en la première variable.
‖a+ b‖2 = (a | a) + (a | b) + (b | a) + (b | b) par linéarité en la deuxième variable.
‖a+ b‖2 = ‖a‖2 + 2(a | b) + ‖b‖2 par symétrie.
Les autres identités s’obtiennent de façon analogue.
�

Proposition

∀x, y ∈ E, 2(x | y) =
(
‖x+ y‖2 − ‖x‖2 − ‖y‖2

)
dém. :
Il suffit d’exploiter l’identité remarquable

‖x+ y‖2 = ‖x‖2 + 2(x | y) + ‖y‖2

�

Théorème

∀x, y ∈ E, |(x | y)| 6 ‖x‖ . ‖y‖

avec égalité si, et seulement si, la famille (x, y) est liée.

dém. :
Cas x = 0E : immédiat.
Cas x 6= 0E : Pour tout λ ∈ R,

‖λx+ y‖2 = λ2 ‖x‖2 + 2λ(x | y) + ‖y‖2 = aλ2 + bλ+ c > 0

donc ∆ = 4(x | y)2 − 4 ‖x‖2 ‖y‖2 6 0. On en déduit (x | y)2 6 ‖x‖2 ‖y‖2.
De plus, il y a égalité si, et seulement si, ∆ = 0 c’est-à-dire si, et seulement si, il existe λ ∈ R vérifiant
λx+ y = 0. Sachant x 6= 0E , ceci équivaut à dire que la famille (x, y) est liée.
�
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Exemple Sur Rn, ∣∣∣∣∣
n∑
k=1

xkyk

∣∣∣∣∣ 6
(

n∑
k=1

x2
k

)1/2( n∑
k=1

y2
k

)1/2

Exemple Sur C([a, b] ,R),∣∣∣∣∣
∫ b

a

f(t)g(t) dt

∣∣∣∣∣ 6
(∫ b

a

f(t)2 dt

)1/2(∫ b

a

g(t)2 dt

)1/2

Théorème

∀x, y ∈ E, ‖x+ y‖ 6 ‖x‖+ ‖y‖

avec égalité si, et seulement si, x et y colinéaires et (x | y) > 0.
(on dit que x et y sont positivement liés)

dém. :
On a

‖x+ y‖2 = ‖x‖2 + 2(x | y) + ‖y‖2

6 ‖x‖2 + 2 |(x | y)|+ ‖y‖2

6 ‖x‖2 + 2 ‖x‖ ‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2

avec égalité si, et seulement si, (x | y) = |(x | y)| = ‖x‖ ‖y‖ i.e. x, y colinéaires et (x | y) > 0.
�

Corollaire
La norme euclidienne est une norme : tout espace préhilbertien réel est automatiquement un
espace normé.

Théorème
Le produit scalaire est une application bilinéaire continue pour la norme euclidienne.

dém. :
(. | .) est une application bilinéaire vérifiant |(x | y)| 6 1× ‖x‖ ‖y‖ elle est donc continue.
�

7.1.3 Vecteurs orthogonaux
E désigne un espace préhilbertien réel et (. | .) désigne son produit scalaire.

Définition
Deux vecteurs x et y de E sont dits orthogonaux si (x | y) = 0.

Exemple Le vecteur nul est le seul vecteur orthogonal à lui-même :

(x | x) = 0⇒ x = 0E
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Exemple Le vecteur nul est le seul vecteur orthogonal à tout autre.

Définition
On dit qu’une famille (ei)i∈I de vecteurs deE est orthogonale si elle est constituée de vecteurs
deux à deux orthogonaux i.e.

∀i, j ∈ I , i 6= j ⇒ (ei | ej) = 0

On dit que la famille est orthonormale si ses vecteurs sont de plus unitaires

∀i, j ∈ I , (ei | ej) = δi,j

Proposition
Toute famille orthogonale ne comportant pas le vecteur nul est libre.
En particulier, les familles orthonormales sont libres.

dém. :
Soit (e1, . . . , en) une famille orthogonale finie ne comportant pas le vecteur nul.
Supposons λ1e1 + · · ·+ λnen = 0E .
Pour tout 1 6 j 6 n, (ej | λ1e1 + · · ·+ λnen) = (ej | 0E) donne λj ‖ej‖2 = 0 et donc λj = 0.
On peut conclure que la famille est libre.
On étend le résultat aux familles infinies aisément car la liberté d’une famille infinie correspond à la
liberté de ses sous-familles finies.
�

7.1.4 Algorithme d’orthonormalisation de Schmidt

Théorème
Si (x1, . . . , xn) est une famille libre de vecteurs de E alors il existe une unique famille ortho-
normale (e1, . . . , en) vérifiant
1) ∀1 6 k 6 n, Vect(x1, . . . , xk) = Vect(e1, . . . , ek) ;
2) ∀1 6 k 6 n, (xk | ek) > 0.
On dit que la famille (e1, . . . , en) est la famille orthonormalisée de (x1, . . . , xn) par le procédé
de Schmidt.

Dans la pratique pour orthonormaliser (x1, . . . , xn) :
- Etape 1 : on pose e1 = x1/‖x1‖ ;
- Etape 2 : on pose u = x2 + λe1 et on détermine λ pour que (e1 | u) = 0 puis on pose e2 = u/‖u‖ ;
- Etape 3 : on pose u = x3 + λe1 + µe2 et on détermine λ et µ pour que (e1 | u) = (e2 | u) = 0 puis on
pose e3 = u/‖u‖ ;
- etc.
En fait

ek+1 = u/‖u‖ avec u = xk −
k∑
i=1

(ei | xk)ei

Exemple Dans R3 muni du produit scalaire canonique considérons la famille (x1, x2, x3) avec

x1 = (0, 1, 1), x2 = (1, 0, 1), x3 = (1, 1, 0)
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La famille (x1, x2, x3) est libre car ∣∣∣∣∣∣
0 1 1
1 0 1
1 1 0

∣∣∣∣∣∣ = 2 6= 0

‖x1‖2 = 2, e1 =
(

0, 1/
√

2, 1/
√

2
)

u = x2 + λe1

(e | e1) = 0 donne λ = −1/
√

2 puis u = (1,−1/2, 1/2), e2 =
(

2/
√

6,−1/
√

6, 1/
√

6
)

.
u = x3 + λe1 + µe2

(e3 | e1) = 0 donne λ = −1/
√

2,
(e3 | e2) = 0 donne µ = −1/

√
6 puis u = (2/3, 2/3,−2/3) et e3 =

(
1/
√

3, 1/
√

3,−1/
√

3
)

.

Exemple DansM2(R) muni du produit scalaire canonique (A | B) = tr(tAB) considérons la famille
(A1, A2, A3) avec

A1 =

(
1 0
0 1

)
, A2 =

(
1 1
1 1

)
et A3 =

(
1 0
0 0

)
On vérifie aisément que cette famille est libre et le processus d’orthonormalisation de Schmidt donne

B1 =
1√
2

(
1 0
0 1

)
, B2 =

1√
2

(
0 1
1 0

)
et B3 =

1√
2

(
1 0
0 −1

)

7.2 Espace euclidien

7.2.1 Définition

Définition
On appelle espace euclidien tout espace préhilbertien réel de dimension finie.

Exemple Pour leur produit scalaire canonique, Rn etMn,p(R) sont des espaces euclidiens.

Définition
On appelle base orthonormale d’un espace euclidien E toute famille de vecteurs de E qui est
à la fois une base et une famille orthonormale.

Exemple La base canonique de Rn est orthonormale pour le produit scalaire canonique.

Exemple La base canonique deMn,p(R) est orthonormale pour le produit scalaire canonique.
En effet

(Ei,j | Ek,`) = tr(tEi,jEk,`) = tr(Ej,iEk,`) = tr(δi,kEj,`) = δi,kδj,`
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Théorème
Tout espace euclidien E possède une base orthonormale.

dém. :
Soit (e1, . . . , en) une base de E.
Par l’algorithme de Schmidt, on peut former une famille orthonormale e′ = (e′1, . . . , e

′
n).

Celle-ci est libre et constituée du bon nombre de vecteurs pour être une base.
�

Remarque Si e′ = (e′1, . . . , e
′
n) est une base orthonormale construite à partir d’une base

e = (e1, . . . , en) par l’algorithme de Schmidt alors la matrice de passage de e à e′ est triangulaire
supérieure à coefficients diagonaux strictement positifs. En effet, on a

e′k = u/‖u‖ avec u = ek −
k−1∑
i=1

(e′i | ek)e′i

et donc
ek ∈ Vect(e′1, . . . , e

′
k)

Ainsi, la matrice de passage de e′ à e est triangulaire supérieure, aussi l’est sa matrice inverse.

Théorème
Toute famille orthonormale d’un espace euclidien E peut être complétée en une base orthonor-
mée.

dém. :
Soit (x1, . . . , xp) une famille orthonormale de E.
Par le théorème de la base incomplète, on forme une base (x1, . . . , xp, xp+1, . . . , xn).
En appliquant le procédé de Schmidt, on obtient une famille orthonormale (e1, . . . , ep, ep+1, . . . , en).
Or, par ce procédé, on a nécessairement e1 = x1, . . . , ep = xp car la famille (x1, . . . , xp) est déjà
orthonormale.
On a ainsi obtenue une famille orthonormale de la forme (x1, . . . , xp, ep+1, . . . , en). Celle-ci est aussi
une base de E car libre et constituée de n = dimE vecteurs de E.
�

7.2.2 Calcul des coordonnées dans une base orthonormale

Théorème
Les coordonnées x1, . . . , xn d’un vecteur x de E dans la base orthonormée e sont données par

∀k ∈ {1, . . . , n} , xk = (ek | x)

de sorte que

x =

n∑
k=1

(ek | x)ek

dém. :
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On a x =

n∑
k=1

xkek donc

(ek | x) =

(
ek |

n∑
`=1

x`e`

)
=

n∑
`=1

x`(ek | e`) =

n∑
`=1

x`δk,` = xk

�

Corollaire
La matrice A ∈ Mn(K) d’un endomorphisme u de E dans une base orthonormale e =
(e1, . . . , en) a pour coefficient général

ai,j = (ei | u(ej))

dém. :
Le coefficient d’indice (i, j) de A est la i-ème composante dans e du vecteur u(ej).
�

Exemple Si e = (e1, . . . , en) est une base orthonormale, alors

∀u ∈ L(E), tru =

n∑
k=1

(ek | u(ek))

7.2.3 Expression du produit scalaire et de la norme

Théorème
Si x, y ∈ E ont pour coordonnées x1, . . . , xn et y1, . . . , yn dans une base orthonormale e =
(e1, . . . , en) alors

(x | y) = x1y1 + · · ·+ xnyn = tXY et ‖x‖2 = x2
1 + · · ·+ x2

n = tXX

dém. :

x =

n∑
k=1

xkek et y =

n∑
k=1

ykek donc

(x | y) =

(
n∑
k=1

xkek |
n∑
`=1

y`e`

)
=

n∑
k=1

n∑
`=1

xky`(ek | e`) =

n∑
k=1

xkyk

car (ek | e`) = δk,`.
�

Remarque Considérons ϕ : E → Kn définie par ϕ(x) = (x1, . . . , xn) avec xk = (ek | x).
L’application ϕ est un isomorphisme de K-espace vectoriel qui conserve le produit scalaire.
Ainsi, quand l’espace E est rapporté à une base orthonormée, il se comporte comme Kn.
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Exemple Soit (x1, . . . , xp) une famille de p vecteurs d’un espace euclidien E muni d’une base
orthonormale e = (e1, . . . , en). Notons A = Mate(x1, . . . , xp). On a

tAA = (〈xi, xj〉)16i,j6p

En effet, [
tAA

]
i,j

=

p∑
k=1

ak,iak,j = 〈xi, xj〉

car les (ak,i)16k6n sont les coordonnées de xi dans la base orthonormale e.

7.2.4 Représentation d’une forme linéaire
Pour a ∈ E, l’application ϕa : E → R définie par

ϕa(x) = (a | x)

est une forme linéaire.
Théorème

Si E est un espace euclidien alors

∀ϕ ∈ E?,∃!a ∈ E,∀x ∈ E, ϕ(x) = (a | x)

dém. :
Considérons l’application Φ : E → E? qui à a ∈ E associe la forme linéaire ϕa : x 7→ (a | x).
L’application Φ est linéaire et injective car

(∀x ∈ E, (a | x) = 0)⇒ a = 0E

Puisque dimE? = dimE < +∞, l’application Φ est un isomorphisme.
�

Remarque Si e = (e1, . . . , en) est une base orthonormale de E et ϕ ∈ E? alors le vecteur a pour
lequel ϕ = ϕa est

a =

n∑
k=1

ϕ(ek)ek

En effet, les coordonnées de a dans la base orthonormale E sont

ak = (ek | a) = ϕ(ek)

Exemple Sur E =Mn(R), on considère le produit scalaire donné par (A | B) = tr
(
tAB

)
.

Si ϕ est une forme linéaire sur E alors il existe une matrice A ∈Mn(R) vérifiant

∀M ∈Mn(R), ϕ(M) = tr(AM)
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7.3 Sous-espaces vectoriels orthogonaux

7.3.1 Orthogonal d’une partie

Définition
On appelle orthogonal d’une partie A de E l’ensemble noté A⊥ constitué des vecteurs de E
orthogonaux à tous les vecteurs de A

A⊥ = {x ∈ E/∀a ∈ A, (a | x) = 0}

Exemple {0E}⊥ = E et E⊥ = {0E}.

Théorème
A⊥ est un sous-espace vectoriel fermé de E.

dém. :
A⊥ ⊂ E et 0E ∈ A⊥ car 0E est orthogonal à tous les vecteurs de E, notamment ceux de A.
Soit λ, µ ∈ K et x, y ∈ A⊥.
Pour tout a ∈ A, (a | λx+ µy) = λ(a | x) + µ(a | y) = 0 donc λx+ µy ∈ A⊥.
Soit (xn) ∈ (A⊥)N convergeant vers un élément x∞.
Soit a ∈ A. Pour tout n ∈ N, (a | xn) = 0 donc à la limite (a | x∞) = 0 car le produit scalaire est
continue.
On en déduit x∞ ∈ A⊥.
�

Proposition
Pour A,B ⊂ E
a) A ⊂

(
A⊥
)⊥

b) A ⊂ B ⇒ B⊥ ⊂ A⊥
c) A⊥ = Vect(A)⊥

dém. :
a) Soit x ∈ A. Pour tout y ∈ A⊥, (x | y) = 0 donc x ∈ A⊥⊥.
b) Supposons A ⊂ B.
Soit x ∈ B⊥. Pour tout y ∈ A on a (x | y) = 0 car x ∈ B⊥ et y ∈ B. Par suite x ∈ A⊥.
Ainsi A ⊂ B ⇒ B⊥ ⊂ A⊥.
c) A ⊂ Vect(A) donc Vect(A)⊥ ⊂ A⊥.
Aussi A ⊂ A⊥⊥ donc Vect(A) ⊂ A⊥⊥ puis A⊥ ⊂ A⊥⊥⊥ ⊂ Vect(A)⊥

�

Proposition
Si F = Vect(ek)16k6m alors

F⊥ = {x ∈ E/∀1 6 k 6 m, (ek | x) = 0}

dém. :
L’inclusion directe est immédiate, l’inclusion réciproque s’obtient par la propriété : si x est orthogonal à
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une famille de vecteurs, il l’est aussi aux combinaisons linéaires de cette famille.
�

7.3.2 Sous-espaces vectoriels orthogonaux

Définition
Deux sous-espaces vectoriels F et G de E sont dits orthogonaux s’ils sont formés de vecteurs
deux à deux orthogonaux i.e.

∀(x, y) ∈ F ×G, (x | y) = 0

Exemple

Exemple F et F⊥ sont des sous-espaces vectoriels orthogonaux.

Proposition
On a équivalence entre :
(i) F et G sont orthogonaux ;
(ii) F ⊂ G⊥ ;
(iii) G ⊂ F⊥.

dém. :
(i)⇒ (ii) Supposons F et G sont orthogonaux.
Soit x ∈ F . Pour tout y ∈ G, (x | y) = 0 donc x ∈ G⊥. Ainsi F ⊂ G⊥.
(ii)⇒ (i) Supposons F ⊂ G⊥.
Pour tout x ∈ F et y ∈ G, (x | y) = 0 car x ∈ G⊥ et y ∈ G. Ainsi, les espaces F et G sont orthogonaux.
Par un argument de symétrie, on a aussi (i)⇔ (ii).
�

Remarque Une orthogonalité est une inclusion dans un orthogonal.

http://mp.cpgedupuydelome.fr 172 cbna



CHAPITRE 7. ESPACES PRÉHILBERTIENS RÉELS

7.3.3 Somme directe orthogonale

Remarque Si F et G sont orthogonaux alors F ∩G = {0E} car

x ∈ F ∩G⇒ (x | x) = 0

Ainsi deux sous-espaces vectoriels orthogonaux sont en somme directe. Plus généralement :

Théorème
Si F1, . . . , Fm sont des sous-espaces vectoriels de E deux à deux orthogonaux alors ceux-ci
sont en somme directe.

dém. :
Supposons x1 + · · ·+ xm = 0E avec chaque xk dans Fk.
Pour tout 1 6 k 6 m,

(xk | x1 + · · ·+ xm) = (xk | 0E) = 0

donne ‖xk‖2 = 0 car (xk | xj) = 0 pour j 6= k. Ainsi xk = 0E pour tout 1 6 k 6 m.
�

Définition
Lorsque les sous-espaces vectoriels F1, . . . , Fm sont deux à deux orthogonaux, on dit qu’ils
sont en somme directe orthogonale et leur somme est notée

n
⊕
k=1

⊥Fk.

Exemple Les espaces F et F⊥ sont en somme directe orthogonale.

7.3.4 Supplémentaire orthogonal d’un sous-espace vectoriel de dimension finie

Théorème
Si F est un sous-espace vectoriel de dimension finie alors l’espace F⊥ est un supplémentaire
de F dans E.
On dit que F⊥ est le supplémentaire orthogonal de F .

dém. :
On sait déjà que F et F⊥ sont orthogonaux donc en somme directe.
Montrons F + F⊥ = E.
Soit e = (e1, . . . , em) une base orthonormale de F .
Analyse : Soit x ∈ E. Supposons x = a+ b avec a ∈ F et b ∈ G.

On a a =

m∑
k=1

(ek | a)ek or (ek | a) = (ek | x)− (ek | b) = (ek | x) car ek ∈ F et b ∈ F⊥.

On en déduit a =

m∑
k=1

(ek | x)ek et b = x− a.

Synthèse : Soit x ∈ E, a =

m∑
k=1

(ek | x)ek et b = x− a.

On a évidemment a ∈ F et x = a+ b. Il reste à vérifier b ∈ F⊥.
F = Vect(e1, . . . , em) et (ek | b) = (ek | x)− (ek | a) = 0 donc b ∈ F⊥.
�
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Corollaire
Si F est un sous-espace vectoriel d’un espace euclidien E alors

dimF⊥ = dimE − dimF et F =
(
F⊥
)⊥

dém. :
E = F ⊕ F⊥ donne dimE = dimF + dimF⊥.
F ⊂

(
F⊥
)⊥

et l’égalité des dimensions donne F =
(
F⊥
)⊥

.
�

Exemple DansMn(R) muni du produit scalaire canonique, les sous-espaces vectoriels Sn(R) et
An(R) sont supplémentaires orthogonaux.
En effet, Ceux-ci sont orthogonaux car pour A ∈ Sn(R) et B ∈ An(R)

(A | B) = tr(tAB) = tr(AB)

et
(A | B) = (B | A) = tr(tBA) = −tr(BA) = tr(AB)

donc (A | B) = 0.
On en déduit

An(R) ⊂ Sn(R)⊥

puis, par égalité des dimensions,

An(R) = Sn(R)⊥ et aussi An(R)⊥ = Sn(R)

7.3.5 Vecteur normal à un hyperplan en dimension finie
Soit H un hyperplan d’un espace euclidien E. Puisque dimH = dimE − 1, on obtient dimH⊥ = 1.

Définition
La droite H⊥ est appelée droite normale à l’hyperplan H .

Pour tout a ∈ H⊥ avec a 6= 0E , on a

H =
(
H⊥

)⊥
= Vect(a)⊥ = {a}⊥

et ainsi
∀x ∈ E, x ∈ H ⇔ (a | x) = 0
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Définition
Tout vecteur a non nul de H⊥ est appelée vecteur normal de l’hyperplan H .

Exemple Considérons E =Mn(R) et H = {M ∈Mn(R)/tr(M) = 0}.
Déterminons un vecteur normal de H .
H est un hyperplan car noyau de la forme linéaire non nulle trace.
Puisque tr(M) = tr(tInM) = (In |M), la matrice In est vecteur normal à H .

7.4 Projection orthogonale sur un sous-espace vectoriel de dimen-
sion finie

E désigne un espace préhilbertien réel de produit scalaire (. | .).
7.4.1 Projection orthogonale
Soit F un sous-espace vectoriel de dimension finie d’un espace préhilbertien E. On a

E = F ⊕ F⊥

Définition
On l’appelle projection orthogonale sur F la projection pF sur F parallèlement à F⊥.
On appelle symétrie orthogonale par rapport àF la symétrie sF par rapport àF et parallèlement
à F⊥.

Exemple Si F = {0E} alors pF = 0̃.
Si F = E alors pF = IdE .

Proposition
p2
F = pF , Sp(pF ) ⊂ {0, 1}

ker(pF − Id) = F = ImpF et ker pF = F⊥

De plus, sF = 2pF − IdE et Id− pF = pF⊥ .

dém. :
Ce sont les propriétés usuelles des projections qui sont ici particularisées.
�
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Exemple Soit p un projecteur de E euclidien.
Montrer que p est une projection orthogonale si, et seulement si,

∀x ∈ E, ‖p(x)‖ 6 ‖x‖

(⇒ ) Si p est la projection orthogonal sur F alors

x = p(x) + (x− p(x)) avec p(x) ∈ F et x− p(x) ∈ F⊥

Par Pythagore
‖x‖2 = ‖p(x)‖2 + ‖x− p(x)‖2 > ‖p(x)‖2

(⇐) Si p est une projection sur un sous-espace vectoriel F parallèlement à un sous-espace vectoriel G,
pour montrer que p est une projection orthogonale, il suffit de constater

∀(a, b) ∈ F ×G, (a | b) = 0

Supposons
∀x ∈ E, ‖p(x)‖ 6 ‖x‖

Soit λ ∈ R et x = a+ λb. On a p(x) = a et l’inégalité ‖p(x)‖ 6 ‖x‖ fournit

∀λ ∈ R, 2λ (a | b) + λ2 ‖b‖2 > 0

Si (a | b) 6= 0 alors
2λ (a | b) + λ2 ‖b‖2 ∼

λ→0
2λ (a | b)

n’est pas de signe constant au voisinage de 0.
Nécessairement, (a | b) = 0.

7.4.2 Expression du projeté orthogonal

Théorème
Si (e1, . . . , em) est une base orthonormale du sous-espace vectoriel F alors

∀x ∈ E, pF (x) =

m∑
k=1

(ek | x) ek

dém. :
Le vecteur pF (x) est élément de F . On peut donc écrire

pF (x) =

m∑
k=1

(ek | pF (x)) ek

Pour tout k ∈ {1, . . . ,m}, (ek | x− pF (x)) = 0 car x− pF (x) ∈ F⊥ donc

(ek | pF (x)) = (ek | x)

�
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Exemple Soit a 6= 0E et D = Vect(a).
(a/‖a‖) forme une base orthonormale de D donc

∀x ∈ E, pD(x) =
(a | x)

‖a‖2
a

Exemple Soit H hyperplan de vecteur normal a.
On a H = {a}⊥ = D⊥ avec D = Vect(a) et donc pH = Id− pD. Ainsi

∀x ∈ E, pH(x) = x− (a | x)

‖a‖2
a

Remarque Lors de la mise en place du procédé d’orthonormalisation de Schmidt d’une famille libre
(x1, . . . , xn), le calcul

ek+1 = u/‖u‖ avec u = xk −
k∑
i=1

(ei | xk)ei

s’interprète comme l’obtention du vecteur complémentaire au projeté orthogonal.

7.4.3 Distance à un sous-espace vectoriel
Soit F un sous-espace vectoriel de E tel que F et F⊥ sont supplémentaires.

Théorème
Soit x ∈ E.

∀y ∈ F, ‖x− y‖ > ‖x− pF (x)‖

avec égalité si, et seulement si, y = p(x).

dém. :
x− y = (x− pF (x)) + (pF (x)− y) avec x− pF (x) ∈ F⊥ et pF (x)− y ∈ F .
Par Pythagore ‖x− y‖2 = ‖x− pF (x)‖2 +‖pF (x)− y‖2 > ‖x− pF (x)‖2 avec égalité si, et seulement
si, y = pF (x).
�

Corollaire
d(x, F ) = ‖x− pF (x)‖.
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dém. :
d(x, F ) = inf

y∈F
‖x− y‖ = min

y∈F
‖x− y‖ = ‖x− pF (x)‖.

�

Corollaire
Soit a 6= 0E et D = Vect(a).

∀x ∈ E, d(x,D) =

∥∥∥∥∥x− (a | x)

‖a‖2
a

∥∥∥∥∥
H = Vect(a)⊥.

∀x ∈ E, d(x,H) =
|(a | x)|
‖a‖

Exemple Soit E =M2(R).

Calculons la distance de A =

(
1 2
3 4

)
à l’hyperplan H constitué des matrices de trace nulle.

Puisque I2 est vecteur normal de H ,

d(A,H) =
|tr(A)|
‖I2‖

=
5√
2

Exemple Calcul de

m = inf
(a,b)∈R2

∫ 1

0

(
t2 − (at+ b)

)2
dt

Considérons E = R [X] muni du produit scalaire

(P,Q) 7→
∫ 1

0

P (t)Q(t)dt

On a m = d(X2,R1 [X])2.
Soit p = pR1[X]. On a m =

∥∥X2 − p(X2)
∥∥2

.
Déterminons p(X2).
Pour cela formons une base orthonormée de R1 [X].
L’algorithme d’orthonormalisation de Schmidt donne la base orthonormée

P1 = 1 et P2 = 2
√

3

(
X − 1

2

)
On en déduit

p(X2) =
(
P1 | X2

)
P1 +

(
P2 | X2

)
P2 = X − 1/6

Après calculs

m =
∥∥X2 −X + 1/6

∥∥2
= 1/180
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7.4.4 Inégalité de Bessel

Théorème
Si (e1, . . . , en) est une famille orthonormale de vecteurs de E alors

∀x ∈ E,
n∑
k=1

(ek | x)
2 6 ‖x‖2

dém. :
Soit (e1, . . . , en) une famille orthonormale. Celle-ci est base orthonormale de l’espaceF = Vect(e1, . . . , en)
et

pF (x) =

n∑
k=1

(ek | x) ek

On a alors

‖pF (x)‖2 =

n∑
k=1

(ek | x)
2

et la relation ‖pF (x)‖2 6 ‖x‖2 donne celle proposée.
�

Remarque Si dimE < +∞ et si (e1, . . . , en) est une base orthonormale alors il y a égalité.
Si dimE = +∞ et si (en)n∈N est une famille orthonormée de vecteurs de E alors pour tout x ∈ E, la
série numérique

∑
(en | x)

2 converge et

+∞∑
n=0

(en | x)
2 6 ‖x‖2

En effet, les sommes partielles de la série à termes positifs
∑
|(en | x)|2 sont majorées par ‖x‖2.

7.4.5 Suite orthonormale de vecteurs d’un espace préhilbertien réel
Ici, E désigne un espace préhilbertien de dimension infinie.

Définition
On dit qu’une suite (en)n∈N de vecteurs de E est totale si l’espace vectoriel qu’elle engendre
est une partie dense de E i.e.

Vect {en/n ∈ N} = E

Exemple Soit E = C ([−1, 1] ,R) muni du produit scalaire

〈f, g〉 =

∫ 1

−1

f(t)g(t) dt

La suite (Xn)n∈N est totale (ou abusivement Xn désigne la fonction polynomiale t 7→ tn définie
sur [−1, 1]).
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En effet, par le théorème de Weierstrass

Vect {Xn/n ∈ N} = R [X]

est une partie dense de E normé par ‖ . ‖∞ donc, a fortiori, une partie dense de E normée par ‖ . ‖2
puisque

‖f‖2 6
√

2 ‖f‖∞

Théorème
Soit (en)n∈N une suite orthonormale totale d’éléments de E.
En notant pn la projection orthogonale sur l’espace Fn = Vect(e0, . . . , en) on a

∀x ∈ E, pn(x) −−−−−→
n→+∞

x

dém. :
Commençons par remarquer

Vect {en/n ∈ N} =
⋃
n∈N

Fn

L’inclusion (⊃) est immédiate. L’inclusion (⊂) provient de ce que la réunion des Fn est un sous-espace
vectoriel de E contenant tous les vecteurs en.
Soit x ∈ E.
Soit ε > 0. Puisque Vect {en/n ∈ N} est une partie dense de E, il existe y ∈ Vect {en/n ∈ N} vérifiant
‖x− y‖ 6 ε. Par la remarque précédente, il existe N ∈ N tel que y ∈ FN . Pour tout n > N , on a aussi
y ∈ Fn et donc

‖x− pn(x)‖ = d(x, Fn) 6 ‖x− y‖ 6 ε

�

Corollaire
Si (en)n∈N est une suite orthonormale totale d’éléments de E alors

∀x ∈ E, x =

+∞∑
n=0

(en | x) en

dém. :
Il suffit d’exprimer pn(x) et d’observer

pn(x) =

n∑
k=0

(ek | x) ek −−−−−→
n→+∞

x

�
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7.4.6 Musculations

7.4.6.1 Polynôme de Legendre

Soit E = C ([−1, 1] ,R) muni du produit scalaire

〈f, g〉 =

∫ 1

−1

f(t)g(t) dt

En orthonormalisant par l’algorithme de Schmidt, la famille (Xn)n∈N on obtient une famille orthonor-
male totale, mais celle-ci est difficile à calculer. . .
Considérons

Pn =
((
X2 − 1

)n)(n)

= U (n)
n avec Un = (X − 1)

n
(X + 1)

n

Exemple P0 = 1, P1 = 2X , P2 = 4
(
3X2 − 1

)
Proposition

degPn = n et ∀Q ∈ Rn−1 [X] , (Pn | Q) = 0

dém. :
degPn = n car deg

(
X2 − 1

)n
= 2n et l’on dérive n fois

Par intégration par parties successives, on obtient

∀Q ∈ Rn−1 [X] , (Pn | Q) = (−1)
(
U (n−1)
n | Q′

)
= . . . = (−1)n

(
Un | Q(n)

)
= 0

�

Théorème
La famille (Pn/‖Pn‖)n∈N est une famille orthonormale totale de E et donc

f =

+∞∑
n=0

(Pn | f)

‖Pn‖2
Pn

dém. :
La famille (Pn)n∈N est orthogonale car ∀m < n, (Pn | Pm) = 0 en vertu de ce qui précède.
De plus, étant de degrés étagés, elle constitue une base de R [X] et c’est donc une famille totale comme
cela a été vu au dessus.
�

Remarque La fonction polynôme

fN =

N∑
n=0

(Pn | f)

‖Pn‖2
Pn

constitue alors la meilleure approximation euclidienne de f parmi les polynômes de degré inférieur à N .
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7.4.6.2 Polynômes de Tchebychev

On a
cos(2t) = 2 cos2 t− 1, cos(3t) = 4 cos3 t− 3 cos t,. . .

De façon générale, pour n ∈ N, en développant

cos(nt) = Re
(
eint
)

= Re ((cos t+ i sin t)n)

on obtient

cos(nt) =

bn/2c∑
k=0

(−1)k

(
n

2k

)
cosn−2k(t) sin2k(t)

et puisque sin2k(t) = (1− cos2 t)k, cette expression est un polynôme en cos(t).

Définition
On appelle polynôme de Tchebychev, l’unique polynôme de R [X] vérifiant

∀t ∈ R, cos(nt) = Tn(cos t)

Exemple T0 = 1, T1 = X , T2 = 2X2 − 1 et T3 = 4X3 − 3X
En vertu des calculs qui précèdent

Tn(X) =

bn/2c∑
k=0

(
n

2k

)
Xn−2k(X2 − 1)k

Proposition
∀n ∈ N, Tn+1 = 2XTn − Tn−1

dém. :
On a

cos ((n+ 1)t) + cos ((n− 1)t) = 2 cos(t) cos(nt)

donc
Tn+1(cos t) = 2 cos(t)Tn(cos t)− Tn−1(cos t)

L’identité
Tn+1(x) = 2xTn(x)− Tn−1(x)

étant vraie pour une infinité de valeurs (celles de [−1, 1] ) on peut affirmer l’identité polynomiale propo-
sée.
�

Théorème
La famille (Tn)n∈N est une famille orthogonale totale sur l’espace E = C ([−1, 1] ,R) muni
du produit scalaire

〈f, g〉 =

∫ 1

−1

f(x)g(x)√
1− x2

dx

dém. :
On vérifie aisément que 〈., .〉 définit un produit scalaire sur E.
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La famille (Tn)n∈N est une famille de polynômes de degrés étagés, c’est donc une base de R [X].
Par le théorème de Weierstrass et la comparaison

‖f‖22 =

∫ 1

−1

f(x)2

√
1− x2

dx 6
∫ 1

−1

‖f‖2∞√
1− x2

dx = π ‖f‖2∞

on peut affirmer que cette famille est totale.
Enfin cette famille est orthogonale car pour n 6= m

〈Tn | Tm〉 =

∫ 1

−1

Tn(x)Tm(x)√
1− x2

=
x=cos t

∫ π

0

cos(nt) cos(mt) dt = 0

On peut donc écrire dans l’espace préhilbertien E

f =

+∞∑
n=0

〈Tn, f〉
‖Tn‖2

Tn

�

7.4.6.3 Séries de Fourier

Soit E l’espace des fonctions réelles continues T -périodiques.
On définit un produit scalaire sur E en posant

(f | g) =
1

T

∫ T

0

f(x)g(x) dx

On définit les familles de fonctions (cn)n∈N et (sn)n∈N? par

c0(x) = 1, cn(x) = cos(2πnx/T ) et sn(x) = sin(2πnx/T ) pour n ∈ N?

Ces fonctions sont deux à deux orthogonales car

∀n 6= m, (cn | cm) =
1

2T

∫ T

0

cos (2π(n+m)x/T ) + cos (2π(n−m)x/T ) dx = 0

et de façon analogue
∀n 6= m, (sn | sm) = 0 et ∀n,m, (cn | sm) = 0

On peut montrer (mais ce n’est pas immédiat) que la famille constituée de ces fonctions est une famille
totale. On peut alors écrire dans l’espace préhilbertien E

f =

+∞∑
n=0

(cn | f)

‖cn‖2
cn +

+∞∑
n=1

(sn | f)

‖sn‖2
sn

On obtient ainsi l’écriture utilisée en sciences physiques

f(x) =
a0

2
+

+∞∑
n=1

an cos

(
2πnx

T

)
+ bn sin

(
2πnx

T

)
avec

an =
2

T

∫ T

0

f(x) cos

(
2πnx

T

)
dx et bn =

2

T

∫ T

0

f(x) sin

(
2πnx

T

)
dx
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Chapitre 8

Endomorphismes des espaces
euclidiens

E désigne un espace vectoriel euclidien de dimension n ∈ N?.

8.1 Matrices orthogonales

8.1.1 Définition

Proposition
Pour A ∈Mn(R), on a équivalence entre :
(i) A est inversible et A−1 = tA ;
(ii) tAA = In ;
(iii) AtA = In.

dém. :
Il suffit d’appliquer le théorème d’inversibilité relatif aux matrices.
�

Définition
On dit qu’une matrice A ∈Mn(R) est orthogonale si tAA = In.

Exemple In et −In sont des matrices orthogonales.

Théorème
L’ensemble On(R) des matrices orthogonales de Mn(R) est un sous-groupe compact de
(GLn(R),×) appelé groupe orthogonal d’ordre n.

dém. :
On(R) ⊂ GLn(R), In ∈ On(R).
Soit A,B ∈ On(R). AB ∈ On(R) car t (AB)AB = tBtAAB = tBB = In.
Soit A ∈ On(R). A−1 ∈ On(R) car t

(
A−1

)
A−1 = t

(
tA
)
tA = AtA = In.

Ainsi On(R) est un sous-groupe de (GLn(R),×).
On(R) =

{
A ∈Mn(R)/tAA = In

}
= f−1 ({In}) avec f : A ∈Mn(R)→ tAA.

Puisque f est continue et {In} fermé, On(R) est un fermé relatif à Mn(R) et c’est donc une partie
fermée.
Enfin, considérons ‖ . ‖ la norme euclidienne associée au produit scalaire canonique surMn(R).
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Pour A ∈ On(R), ‖A‖ =
√

tr(tAA) =
√

trIn =
√
n. Par suite On(R) est une partie bornée.

PuisqueMn(R) est de dimension finie, On(R) est une partie compacte car fermée et bornée.
�

Théorème
Soit A ∈Mn(R) de colonnes C1, . . . , Cn et de lignes L1, . . . , Ln.
On a équivalence entre :
(i) la matrice A est orthogonale ;
(ii) la famille (C1, . . . , Cn) est orthonormée ;
(iii) la famille (L1, . . . , Ln) est orthonormée.

dém. :
Etudions (i)⇔ (ii).
SurMn,1(R), le produit scalaire considéré est le produit scalaire canonique défini par

(X | Y ) = tXY = x1y1 + · · ·+ xnyn

Pour tout 1 6 i, j 6 n, [
tAA

]
i,j

=

n∑
k=1

[
tA
]
i,k
Ak,j =

n∑
k=1

ak,iak,j = (Ci | Cj)

(i)⇔ tAA = In ⇔ ∀1 6 i, j 6 n,
[
tAA

]
i,j

= δi,j = ∀1 6 i, j 6 n, (Ci | Cj) = δi,j ⇔ (ii)
Etudions (i)⇔ (iii).
SurM1,n(R), le produit scalaire considéré est le produit scalaire canonique définie par

(L | L′) = LtL′ = `1`
′
1 + · · ·+ `n`

′
n

En remarquant que [
AtA

]
i,j

= (Lj | Li)
on démontre comme ci-dessus (i)⇔ (iii).
�

Exemple La matrice

A =
1

3

 2 1 −2
1 2 2
2 −2 1


est orthogonale.
En effet, ses colonnes sont unitaires et deux à deux orthogonales.

8.1.2 Changement de bases orthonormales

Théorème
Soit e = (e1, . . . , en) une base orthonormale de E et e′ = (e′1, . . . , e

′
n) une famille de vecteurs

de E.
On a équivalence entre :
(i) e′ est orthonormale ;
(ii) P = Matee′ est orthogonale.
De plus, si tel est le cas,

Mate′e = tP
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dém. :
Rappelons que si x et y sont des vecteurs de colonnes coordonnées X,Y dans une base orthonormale
alors

(x | y) = tXY

Notons C1, . . . , Cn les colonnes de P .
Les colonnes C1, . . . , Cn sont les colonnes des coordonnées des vecteurs e′1, . . . , e

′
n dans la base ortho-

normale e et donc pour tout 1 6 i, j 6 n,

(e′i | e′j) = tCiCj = (Ci | Cj)

Par suite, la famille e′ est orthonormée si, et seulement si, la famille (C1, . . . , Cn) l’est. Cela équivaut à
affirmer P ∈ On(R).
De plus, si tel est le cas, Mate′e = P−1 = tP .
�

Corollaire
Si e et e′ sont deux bases orthonormales de l’espace euclidien E alors la formule de change-
ment de base relative aux endomorphismes s’écrit

A′ = tPAP

avec A = Mateu, A′ = Mate′u et u ∈ L(E).

Définition
On dit alors que les matrices A et A′ sont orthogonalement semblables.

Remarque Deux matrices orthogonalement semblables sont a fortiori semblables.

8.1.3 Matrices orthogonales positives

Proposition
Si A est une matrice orthogonale alors detA = ±1.

dém. :
tAA = In donne det(tAA) = 1 or det(tAA) = det(tA) detA = (detA)

2 donc (detA)
2

= 1.
�

Définition
Les matrices orthogonales de déterminant 1 sont dite positives, les autres sont dites négatives.

Exemple In est une matrice orthogonale positive.
−In est une matrice orthogonale positive si, et seulement si, n est pair.

Proposition
L’ensemble SOn(R) des matrices orthogonales positives deMn(R) est un sous-groupe com-
pact de (GLn(R),×).
On l’appelle groupe spécial orthogonal d’ordre n.

dém. :
SOn(R) = On(R) ∩ SLn(R)
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avec On(R) sous-groupe compact de GLn(R) et
SLn(R) = {A ∈Mn(R)/ detA = 1} sous-groupe fermé de (GLn(R),×).
�

Proposition
Si e et e′ sont deux bases orthonormées directes d’un espace euclidien orienté alors dete e

′ = 1.

dém. :
Puisque les bases e et e′ ont même orientation dete e

′ > 0. Or dete e
′ = ±1 car Matee′ ∈ On(R). On en

déduit dete e
′ = 1

�

Remarque C’est cette relation qui permet de définir le produit mixte de n = dimE vecteurs d’un
espace euclidien orienté comme égal au déterminant de cette famille dans n’importe quelle base
orthonormale directe.

8.2 Isométries vectorielles

8.2.1 Définition

Définition
On appelle isométrie vectorielle de E tout endomorphisme u ∈ L(E) conservant la norme.

∀x ∈ E, ‖u(x)‖ = ‖x‖

Exemple IdE ,−IdE sont des isométries vectorielles.

Exemple Les symétries orthogonales sont des isométries vectorielles.
En effet, si s est une symétrie orthogonale par rapport à un sous-espace vectoriel F , pour x = a+ b avec
a ∈ F et b ∈ F⊥ alors s(x) = a− b et par le théorème de Pythagore

‖s(x)‖2 = ‖a‖2 + ‖b‖2 = ‖x‖2

Proposition
Si u est une isométrie vectorielle alors Spu ⊂ {1,−1}.

dém. :
Soit λ ∈ Spu et x 6= 0E vecteur propre associé.
D’une part ‖u(x)‖ = ‖λx‖ = |λ| ‖x‖, d’autre part ‖u(x)‖ = ‖x‖. On en déduit |λ| = 1

�

Remarque En particulier 0 /∈ Spu et donc u est un automorphisme.
On parle indifféremment d’automorphisme orthogonal ou d’isométrie vectorielle.
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Théorème
Soit u un endomorphisme de E. On a équivalence entre :
(i) u est orthogonal ;
(ii) u conserve le produit scalaire i.e.

∀x, y ∈ E, (u(x) | u(y)) = (x | y)

dém. :
(i)⇒ (ii) Supposons que pour tout x ∈ E, ‖u(x)‖ = ‖x‖.
D’une part

‖u(x+ y)‖2 = ‖u(x) + u(y)‖2 = ‖u(x)‖2 + 2(u(x) | u(y)) + ‖u(y)‖2

et d’autre part
‖u(x+ y)‖2 = ‖x+ y‖2 = ‖x‖2 + 2(x | y) + ‖y‖2

Or ‖u(x)‖ = ‖x‖ et ‖u(y)‖ = ‖y‖ donc

(u(x) | u(y)) = (x | y)

(ii)⇒ (i) Supposons que l’endomorphisme u conserve le produit scalaire.
Pour tout x ∈ E,

‖u(x)‖2 = (u(x) | u(x)) = (x | x) = ‖x‖2

donc ‖u(x)‖ = ‖x‖.
�

8.2.2 Matrice d’une isométrie en base orthonormale

Théorème
Soit u ∈ L(E) et e = (e1, . . . , en) une base orthonormale de E.
On a équivalence entre :
(i) u est orthogonal ;
(ii) la famille (u(e1), . . . , u(en)) est une base orthonormale ;
(iii) Mateu ∈ On(R).

dém. :
(i)⇒ (ii) Supposons l’endomorphisme u orthogonal.
Pour tout 1 6 i, j 6 n,

(u(ei) | u(ej)) = (ei | ej) = δi,j

donc la famille (u(e1), . . . , u(en)) est orthonormale et c’est donc une base orthonormée.
(ii)⇒ (iii) Supposons (u(e1), . . . , u(en)) orthonormale
Puisque Mateu = Mate (u(e1), . . . , u(en)), Mate(u) ∈ On(R) car matrice de passage entre deux bases
orthonormales.
(iii)⇒ (i) Supposons A = Mateu ∈ On(R).
Soit x un vecteur de E de colonne coordonnées X dans la base e.
Puisque la base e est orthonormale ‖x‖2 = tXX .
Puisque u(x) a pour colonne coordonnées AX ,

‖u(x)‖2 = t(AX)AX = tXtAAX = tXX = ‖x‖2
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Ainsi u conserve la norme et donc est une isométrie vectorielle.
�

Remarque Il est essentiel de vérifier que la base e est orthonormale pour exploiter ce résultat.

Corollaire
L’ensemble O(E) des isométries vectorielles de E est un sous-groupe compact de (GL(E), ◦)
appelé groupe orthogonal de E.

dém. :
Considérons e une base orthonormée de E et Φ : Mn(R) → L(E) l’application qui à M ∈ Mn(R)
associe u ∈ L(E) déterminé par Mateu = M . On a

Φ(On(R)) = O(E)

Φ est continue (car linéaire au départ d’un espace de dimension finie) donc O(E) est compact.
Φ est un morphisme de groupe multiplicatif donc O(E) est un sous-groupe de (GL(E), ◦).
�

8.2.3 Isométries positives

Remarque Si u ∈ O(E) alors detu = ±1.

Définition
On appelle isométrie positive (ou isométrie directe) toute isométrie vectorielle de déterminant
1. On parle d’isométrie négative (ou indirecte) sinon.

Exemple IdE est une isométrie positive
−IdE est une isométrie positive si, et seulement si, dimE est pair.

Exemple On appelle réflexion toute symétrie orthogonale par rapport à un hyperplan.
Les réflexions sont des isométries négatives.

Proposition
L’ensemble SO(E) des isométries positives de E est un sous-groupe compact de (GL(E), ◦)
appelé groupe spécial orthogonal de E.

dém. :
SO(E) = O(E) ∩ SL(E) avec SL(E) = {u ∈ L(E)/ detu = 1} sous-groupe fermé.
�

8.2.4 Isométries du plan

Soit E un plan euclidien orienté.
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8.2.4.1 Isométries positives

Théorème
Les matrices orthogonales positives deM2(R) sont les matrices de la forme

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
avec θ ∈ R.

De plus, ces dernières commutent entre elles car

R(θ)R(θ′) = R(θ + θ′)

dém. :

Soit M =

(
a b
c d

)
∈ SO2(R). On a a2 + c2 = 1 donc il existe θ ∈ R vérifiant a = cos θ et b = sin θ.

Puisque (a− d)2 + (b+ c)2 = 2− 2(ad− bc) = 0, on a aussi c = − sin θ et d = cos θ.
Enfin, on vérifie par le calcul la relation R(θ)R(θ′) = R(θ + θ′).
�

Corollaire
Une isométrie positive du plan a la même matrice dans toute base orthonormale directe.
Celle-ci est de la forme R(θ) avec θ ∈ R unique à 2π près de sorte et on parle alors de rotation
d’angle θ.

dém. :
Soit e et e′ deux bases orthonormales du plan et u ∈ SO(E). On pose A = Mateu et A′ = Mate′u. Par
formule de changement de base A′ = P−1AP = AP−1P = A car les matrices de SO2(R) commutent
entre elles.
�
8.2.4.2 Isométrie négatives

Théorème
Les matrices orthogonales négatives deM2(R) sont les matrices de la forme

S(θ) =

(
cos θ sin θ
sin θ − cos θ

)
avec θ ∈ R.

Elles vérifient (S(θ))
2

= I2.

dém. :
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Soit M =

(
a b
c d

)
∈ SO2(R). On a a2 + c2 = 1 donc il existe θ ∈ R vérifiant a = cos θ et b = sin θ.

Puisque (a+ d)2 + (b− c)2 = 2 + 2(ad− bc) = 0, on a aussi c = sin θ et d = − cos θ.
Enfin, on vérifie par le calcul la relation (S(θ))

2
= I2.

�

Corollaire
Les isométries négatives du plan sont les symétries orthogonales par rapport à des droites.
Il existe une base orthonormale dans laquelle la symétrie est représentée par la matrice

S(0) =

(
1 0
0 −1

)

dém. :
On a

S(θ) = S(0)R(θ) = S(0)R(θ/2)R(θ/2) = R(−θ/2)S(0)R(θ/2)

donc S(θ) est semblable à S(0) par le biais d’une matrice de passage orthogonale. Ainsi, une isométrie
négative représentée initialement dans une base orthonormale par S(θ) peut aussi être représentée dans
une base orthonormale par S(0). On reconnaît alors une symétrie orthogonale.
�

8.2.5 Réduction d’une isométrie vectorielle

Lemme
Soit u ∈ O(E). Si F est un sous-espace vectoriel stable par u alors F⊥ l’est aussi.

dém. :
On suppose F stable par u et donc u(F ) ⊂ F . Or u est bijective donc conserve la dimension et par
conséquent u(F ) = F . Soit x ∈ F⊥. Pour tout y ∈ F , on peut écrire y = u(a) avec a ∈ F et alors

(u(x) | y) = (u(x) | u(a)) = (x | a) = 0

Ainsi u(x) ∈ F⊥.
�

Lemme
Si u est un endomorphisme d’un R-espace vectoriel réel de dimension finie non nulle alors il
existe au moins une droite vectorielle ou un plan stable par u.

dém. :
Soit P ∈ R [X] un polynôme unitaire annulateur de u (par exemple, son polynôme caractéristique ou
minimal). On peut écrire P = P1P2 . . . Pm avec Pk polynômes unitaires irréductibles de R [X].
Puisque P (u) = 0̃, on a P1(u) ◦ P2(u) ◦ . . . ◦ Pm(u) = 0̃ et par conséquent, au moins l’un des en-
domorphismes composés n’est pas injectif. Supposons que ce soit celui d’indice k. Le polynôme Pk est
irréductible dans R [X], il est donc de l’une des deux formes suivantes :
Cas P (X) = X − λ
λ est alors valeur propre de u et tout vecteur propre associé engendre une droite vectorielle stable.
Cas P (X) = X2 + pX + q avec ∆ = p2 − 4q < 0
Soit x ∈ kerP (u). On a u2(x) + pu(x) + qx = 0E et donc F = Vect(x, u(x)) est stable par u.
Dans les deux cas, u admet une droite ou un plan stable.
�
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Théorème
Si u ∈ O(E) alors il existe une base orthonormale de E dans laquelle la matrice de u est
diagonale par blocs de blocs diagonaux de la forme

(1), (−1) ou
(

cos θ − sin θ
sin θ cos θ

)
avec θ ∈ R

Autrement dit, l’espace E est la somme directe orthogonale de E1(u), E−1(u) et de plans sur
lesquels u opère comme une rotation.

dém. :
Par récurrence sur la dimension de E.
Cas n = 1 :
u est une isométrie d’une droite et peut donc être représentée en base orthonormale par

(1) ou (−1)

Cas n = 2 :
u est une isométrie du plan et peut donc être représentée en base orthonormale par

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
ou
(

1 0
0 −1

)
Supposons la propriété établie jusqu’au rang n avec n > 2.
Soit E un espace euclidien de dimension n+ 1 et u ∈ O(E).
Il existe une droite ou un plan F stable par u et F⊥ est alors aussi stable par u.
Par hypothèse de récurrence, il existe une base orthonormale de F⊥ telle que la matrice de u dans celle-ci
soit de la forme voulue.
Par l’étude initiale, il existe une base orthonormale de F telle que la matrice de u dans celle-ci soit de la
forme voulue.
En accolant ces deux, on forme une base orthonormale de E comme voulue.
Récurrence établie.
�

Corollaire
Toute matrice deOn(R) est orthogonalement semblable à une matrice diagonale par blocs avec
des blocs diagonaux de la forme

(1), (−1) ou
(

cos θ − sin θ
sin θ cos θ

)
avec θ ∈ R

8.2.6 Réduction des isométries positives en dimension 3
Soit E un espace euclidien orienté de dimension 3.
8.2.6.1 Orientation induite

Soit P un plan de l’espace E et D = P⊥ sa droite normale.
Il n’existe pas a priori d’orientation préférentielle ni sur P , ni sur D.
Choisissons une orientation sur D et soit ~u vecteur unitaire direct de D : on dit alors que D est un axe.
Complétons ~u en une base orthonormale directe (~u,~v, ~w) de E.
La famille (~v, ~w) est une base orthonormale de P . En choisissant celle-ci pour base orientée de référence,
on dit qu’on a muni le plan P de l’orientation induite de celle de D. En effet, on peut montrer que cette
orientation est indépendante de la manière dont on a complété u en une base orthonormée directe.
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Remarque Si l’on inverse l’orientation sur D, l’orientation induite sur P est, elle aussi, inversée.

8.2.6.2 Rotation de l’espace

Une isométrie positive f de E autre que l’identité peut être représentée par la matrice 1 0 0
0 cos θ − sin θ
0 sin θ cos θ


dans une base orthonormale (~u,~v, ~w). Quitte à changer en son opposé le premier vecteur de base, on peut
supposer la base orthonormale (~u,~v, ~w) directe.
On introduit alors la droite D = Vect(~u) et le plan P = Vect(~v, ~w) orienté par le vecteur normal ~u. Pour
~x ∈ E, on peut écrire

~x = p(~x) + q(~x) avec p(~x) ∈ D et q(~x) ∈ P
et alors

f(~x) = p(~x) + Rotθ(q(~x))

Définition
On dit alors que f est la rotation d’axe dirigé et orienté par ~u et d’angle θ. On la note Rot~u,θ.
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Proposition
∀θ, θ′ ∈ R, Rotu,θ = Rotu,θ′ ⇔ θ = θ′ [2π]
∀θ, θ′ ∈ R, Rotu,θ ◦ Rotu,θ′ = Rotu,θ+θ′ = Rotu,θ′ ◦ Rotu,θ.
∀θ, θ′ ∈ R, Rot−1

u,θ = Rotu,−θ.

dém. :
Immédiat par calcul matriciel.
�

Remarque Si l’on change le vecteur en son opposé, l’orientation induite sur P l’est aussi et les mesures
angulaires dans P sont alors changées en leur opposée. Par suite

Rotu,θ = Rot−u,−θ

8.2.6.3 Réduction d’une rotation

Exemple Soit E un espace vectoriel euclidien muni d’une base orthonormée directe B = (~i,~j,~k).
Déterminons l’endomorphisme f de E de matrice dans B

A =

 0 0 1
1 0 0
0 1 0


La matrice A est orthogonale et detA = 1 donc f est une rotation autre que l’identité.
Axe D :
L’axe D est formé des vecteurs invariants par f .
Pour ~u = x~i+ y~j + z~k, on a

f(~u) = ~u⇔ x = y = z

Par suite D = Vect(~i+~j + ~k).
Orientons D par le vecteur ~u =~i+~j + ~k.
Angle θ de la rotation :
On a trf = 2 cos θ + 1 or trf = trA = 0 donc cos θ = −1/2.
Pour conclure, il reste à déterminer le signe de sin θ.
Soit ~x = α~u+ β~v + γ ~w /∈ D. On a

[~u, ~x, f(~x)] =

∣∣∣∣∣∣
1 α α
0 β β cos θ − γ sin θ
0 γ β sin θ + γ cos θ

∣∣∣∣∣∣ = (β2 + γ2) sin θ

Ainsi, le signe de sin θ est celui de
[~u, ~x, f(~x)]

En pratique, on détermine le signe de sin θ en étudiant celui de[
~u,~i, f(~i)

]
Ici [

~u,~i, f(~i)
]

=

∣∣∣∣∣∣
1 1 0
1 0 1
1 0 0

∣∣∣∣∣∣ = 1 > 0
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donc
θ = 2π/3 [2π]

Finalement, f est la rotation d’axe D dirigé et orienté par ~u =~i+~j + ~k et d’angle 2π/3.

8.3 Endomorphismes symétriques

8.3.1 Définition

Définition
Un endomorphisme u ∈ L(E) est dit symétrique si

∀x, y ∈ E, (u(x) | y) = (x | u(y))

Exemple 0̃ et Id sont symétriques.

Exemple Les projecteurs orthogonaux sont exactement les projecteurs symétriques.
En effet, soit p un projecteur orthogonal sur un sous-espace vectoriel F .
Pour tout x, y ∈ E,

(p(x) | y) = (p(x) | p(y)) + (p(x) | y − p(y)) = (p(x) | p(y))

car p(x) ∈ F et y − p(y) ∈ F⊥. De même

(x | p(y)) = (p(x) | p(y)) + (x− p(x) | p(y)) = (p(x) | p(y))

Ainsi
(p(x) | y) = (x | p(y))

Inversement, si p est un projecteur sur un sous-espace vectoriel F parallèlement à un sous-espace
vectoriel G et si celui-ci est symétrique alors pour tout x ∈ F et y ∈ G alors

(x | y) = (p(x) | y) = (x | p(y)) = (x | 0E) = 0

Les espaces F et G sont donc orthogonaux et la projection p est orthogonale.
De même, les symétries orthogonales correspondent aux « symétries symétriques » .
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Proposition
Si u ∈ L(E) est un endomorphisme symétrique alors

Imu = (keru)
⊥

dém. :
Soit x ∈ keru et y ∈ Imu. On peut écrire y = u(a) avec a ∈ E et alors

(x | y) = (x | u(a)) = (u(x) | a) = (0E | a) = 0

Ainsi, les espaces Imu et keru sont orthogonaux et donc Imu ⊂ (keru)
⊥ puis l’égalité par les dimen-

sions.
�

8.3.2 Matrice d’un endomorphisme symétrique

Théorème
Soit u ∈ L(E) et e = (e1, . . . , en) une base orthonormale de E.
On a équivalence entre :
(i) u est symétrique ;
(ii) la matrice Mateu est symétrique.

dém. :
(i)⇒ (ii) Supposons u symétrique et étudions A = (ai,j) = Mateu.
On a ai,j = (ei | u(ej)) et donc par symétrie,

ai,j = (u(ei) | ej) = (ej | u(ei)) = aj,i

La matrice A est donc symétrique.
(ii)⇒ (i) Supposons A = (ai,j) = Mateu symétrique.
Soit x, y ∈ E de colonnes coordonnées X et Y dans la base e. Puisque la base e est orthonormale

(u(x) | y) = t(AX)Y = tXtAY et (x | u(y)) = tXAY

Or tA = A donc (u(x) | y) = (x | u(y)).
�

Remarque Il est essentiel de vérifier que la base e est orthonormale pour exploiter ce résultat.

Corollaire
L’ensemble S(E) des endomorphismes symétriques deE est un sous-espace vectoriel deL(E)

de dimension
n(n+ 1)

2
.

dém. :
Sn(R) et S(E) sont isomorphes via représentation matricielle dans la base orthonormée e.
�
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8.3.3 Théorème spectral

Lemme
Si F est un sous-espace vectoriel stable par u ∈ L(E) symétrique alors F⊥ est aussi stable
par u.
De plus, les endomorphismes induits par u sur F et F⊥ sont encore symétriques.

dém. :
Soit x ∈ F⊥ et y ∈ F . On a

(u(x) | y) = (x | u(y)) = 0

car x ∈ F⊥ et u(y) ∈ F .
De plus, pour tout x, y ∈ F ,

(uF (x) | y) = (u(x) | y) = (x | u(y)) = (x | uF (y))

Ainsi, uF est symétrique et il en est de même de uF⊥ .
�

Lemme
Les sous-espaces propres d’un endomorphisme symétrique sont deux à deux orthogonaux.

dém. :
Soit λ, µ ∈ R distincts. Pour x ∈ Eλ(u) et y ∈ Eµ(u) :
D’une part, (u(x) | y) = (λx | y) = λ(x | y)
D’autre part, (u(x) | y) = (x | u(y)) = (x | µy) = µ(x | y)
On en déduit λ(x | y) = µ(x | y), or λ 6= µ donc (x | y) = 0.
�

Lemme
Tout endomorphisme symétrique d’un espace euclidien non nul admet au moins une valeur
propre réelle.

dém. :
Soit u ∈ L(E) un endomorphisme symétrique de E euclidien avec dimE > 0.
Si dimE = 1 : les éléments non nuls de E sont vecteurs propres de u.
Si dimE = 2 : la matrice de u dans une base orthonormale de E est de la forme(

a b
b c

)
Son polynôme caractéristique est χu = X2 − (a+ c)X + (ac− b2) de discriminant

∆ = (a+ c)2 − 4(ac− b2) = (a− c)2 + 4b2 > 0

L’endomorphisme u admet donc au moins une valeur propre réelle.
Si dimE > 2 : l’endomorphisme u admet au moins une droite ou un plan stable. L’endomorphisme
induit sur ce sous-espace vectoriel est encore symétrique et possède donc une valeur propre.
�

Théorème
Tout endomorphisme symétrique est diagonalisable dans une base orthonormale.

dém. :
Soit u ∈ S(E) et

F = ⊕⊥
λ∈Spu

Eλ(u)
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Le sous-espace vectoriel F est stable par u donc F⊥ aussi.
Par l’absurde, supposons F⊥ 6= {0E}. L’endomorphisme induit par u sur F⊥ est symétrique, il possède
donc au moins un vecteur propre. Or celui-ci est aussi vecteur propre de u et donc élément de F . C’est
absurde car F ∩ F⊥ = {0E}.
Ainsi, E est la somme directe des sous-espaces propres de u et puisque ceux-ci sont deux à deux ortho-
gonaux, on peut former une base orthonormale adaptée à cette décomposition, base qui diagonalise u.
�

Exemple Soit u ∈ S(E). Posons λmin = min Spu et λmax = max Spu.
On a

∀x ∈ E, λmin ‖x‖2 6 (u(x) | x) 6 λmax ‖x‖2

En effet, soit e = (e1, . . . , en) une base orthonormale diagonalisant u.
Mate(u) = diag(λ1, . . . , λn) avec λ1, . . . , λn les valeurs propres de u.

Pour x ∈ E, on peut écrire x =

n∑
i=1

xiei et on a alors u(x) =

n∑
i=1

λixiei.

Puisque la base e est orthonormale,

‖x‖2 =

n∑
i=1

x2
i et (u(x) | x) =

n∑
i=1

λix
2
i

Or, pour tout 1 6 i 6 n, λmin 6 λi 6 λmax donc

λmin ‖x‖2 6 (u(x) | x) 6 λmax ‖x‖2

8.3.4 Diagonalisation des matrices symétriques réelles

Théorème
Toute matrice symétrique réelle est orthogonalement diagonalisable

∀A ∈ Sn(R),∃P ∈ On(R),∃D ∈ Dn(R), A = PDP−1 = PDtP

dém. :
Soit A ∈ Sn(R). Munissons E = Rn du produit scalaire canonique et considérons u l’endomorphisme
de Rn représenté par A dans la base canonique e.
Puisque A est symétrique et e orthonormale, l’endomorphisme u est autoadjoint. Il existe donc une base
orthonormée e′ diagonalisant u. Par changement de base, on a alors A = PDP−1 avec D diagonale et
P orthogonale car matrice de passage entre deux bases orthonormées.
�

Exemple Pour A ∈Mn(R), tAA est diagonalisable car symétrique réelle.
Ses valeurs propres sont appelées valeurs singulières de A.

Attention : Une matrice symétrique complexe n’est pas nécessairement diagonalisable :

Exemple Pour A =

(
i 1
1 −i

)
, χA = X2 donc SpA = {0}.

Puisque A 6= O2, la matrice A n’est pas diagonalisable.
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8.3.5 Musculation : positivité

8.3.5.1 Endomorphisme symétrique positif

Définition
Un endomorphisme symétrique u de E est dit positif si

∀x ∈ E, (u(x) | x) > 0 ;

On le dit défini positif si de plus

∀x ∈ E, (u(x) | x) = 0⇒ x = 0E

On note S+(E) (resp. S++(E) ) l’ensemble des endomorphismes symétriques positifs (resp.
définis et positifs).

Proposition
Soit u un endomorphisme symétrique de E.
On a équivalence entre ;
(i) u est positif (resp. défini positif) ;
(ii) Spu ⊂ R+ (resp. Spu ⊂ R+? ).

dém. :
(i)⇒ (ii) Supposons u positif.
Soit λ une valeur propre de u et x un vecteur propre associé.
(u(x) | x) = (λx | x) = λ ‖x‖2 et (u(x) | x) > 0 donc λ ‖x‖2 > 0 puis λ > 0 car ‖x‖2 > 0.
(ii)⇒ (i) Supposons Sp(u) ⊂ R+.
Par le théorème spectral, il existe une base orthonormale e = (e1, . . . , en) diagonalisant u :

Mateu =

 λ1 (0)
. . .

(0) λn


avec λ1, . . . , λn les valeurs propres de u.

Pour tout x ∈ E, on peut écrire x =

n∑
i=1

xiei et alors

(u(x) | x) =

n∑
i=1

λix
2
i > 0

La démonstration s’adapté à l’étude des endomorphismes définis positifs.
�

Remarque On en déduit S++(E) = S+(E) ∩ GL(E) car

0 /∈ Spu⇔ u ∈ GL(E)
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8.3.5.2 Matrice symétrique positive

Définition
Une matrice A ∈Mn(R) symétrique est dite positive si

∀X ∈Mn,1(K), tXAX > 0

On la dit définie positive si de plus

∀X ∈Mn,1(K), tXAX = 0⇒ X = 0

On note S+
n (R) (resp. S++

n (R) ) l’ensemble des matrices symétriques positives (resp. définies
positives).

Remarque Si l’on introduit le produit scalaire canonique surMn,1(R) alors

tXAX = (AX | X)

De plus, il y a évidemment correspondance avec les endomorphismes symétriques positifs moyennant
représentation en base orthonormale.

Exemple Si M ∈Mn(R) alors A = tMM est symétrique positive.
tA = t

(
tMM

)
= tMM = A donc A est symétrique et pour tout X ∈Mn,1(R),

tXAX = t(MX)MX = ‖MX‖2 > 0
Si de plus M ∈ GLn(R) alors A = tMM est définie positive.
En effet, tXAX = ‖MX‖2 = 0⇒MX = 0 donc tXAX = 0⇒ X = 0 car M est inversible.

Proposition
Soit A ∈ Sn(R). On a équivalence entre :
(i) A est positive (resp. définie positive) ;
(ii) SpA ⊂ R+ (resp. SpA ⊂ R+? ).

dém. :
(i)⇒ (ii) Supposons A positive.
Soit λ ∈ SpA et X vecteur propre associé.
tXAX = λtXX = λ ‖X‖2 > 0 avec ‖X‖2 > 0 donc λ > 0.
(ii)⇒ (i) Supposons SpA ⊂ R+.
La matrice A est orthogonalement semblable à une matrice diagonale, donc il existe P ∈ On(R) telle
que tPAP = D avec D = diag(λ1, . . . , λn).
Pour tout X ∈Mn,1(R), tXAX = t(PX)DPX = tY DY avec Y = PX .

En notant y1, . . . , yn les coefficients de la colonne Y alors tXAX =

n∑
i=1

λiy
2
i > 0.

�

8.3.6 Musculation : matrice de Gram

Soit E un espace préhilbertien de produit scalaire 〈., .〉.
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Définition
On appelle matrice de Gram d’une famille (a1, . . . , an) de vecteurs de E la matrice carrée

G(a1, . . . , an) = (〈ai, aj〉)16i,j6n

Exemple La famille (a1, . . . , an) est orthogonale si, et seulement si, G (a1, . . . , an) est diagonale.
La famille (a1, . . . , an) est orthonormale si, et seulement si, G (a1, . . . , an) est l’identité.

Théorème
La matrice de Gram G (a1, . . . , an) est symétrique positive et inversible si, et seulement si, la
famille (a1, . . . , an) est libre.

dém. :
A = G (a1, . . . , an) est symétrique car 〈ai, aj〉 = 〈aj , ai〉.
Pour X = t

(
λ1 · · · λn

)
, on observe

tXAX = ‖λ1a1 + · · ·+ λnan‖2 > 0

La matrice symétrique A est donc positive. Elle est définie positive si, et seulement si,

tXAX = 0⇒ X = 0

c’est-à-dire
λ1a1 + · · ·+ λnan = 0E ⇒ λ1 = . . . = λn = 0

ce qui correspond à la liberté de la famille (a1, . . . an).
On en déduit que A est inversible si, et seulement si, (a1, . . . an) est libre.
�

Théorème
Soit x ∈ E et (a1, . . . , an) une base d’un sous-espace vectoriel F de E.
On a

d(x, F ) =

√
detG(a1, . . . , an, x)

detG(a1, . . . , an)

dém. :
On écrit x = y + z avec y ∈ F et z ∈ F⊥. On sait d(x, F ) = ‖z‖. Puisque

〈ai, x〉 = 〈ai, y〉+ 〈ai, z〉 = 〈ai, y〉 et 〈x, x〉 = 〈y, y〉+ 〈z, z〉

on peut écrire

G(a1, . . . , an, x) =


〈a1, a1〉 · · · 〈a1, an〉 〈a1, y〉

...
...

...
〈an, a1〉 · · · 〈an, an〉 〈an, y〉
〈y, a1〉 · · · 〈y, an〉 〈y, y〉+ 〈z, z〉


En décomposant la dernière colonne en somme de deux colonnes

det (G(a1, . . . , an, x)) = det (G(a1, . . . , an, y)) + det (G(a1, . . . , an)) ‖z‖2

http://mp.cpgedupuydelome.fr 202 cbna



CHAPITRE 8. ENDOMORPHISMES DES ESPACES EUCLIDIENS

La famille (a1, . . . , an, y) étant liée, on obtient

det (G(a1, . . . , an, x)) = det (G(a1, . . . , an)) ‖z‖2

qui permet de conclure.
�
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Chapitre 9

Suites et séries numériques

K désigne le corps R ou C.

9.1 Suites numériques

9.1.1 Limites

Définition
On dit qu’une suite (un)n∈N d’éléments de K converge vers ` ∈ K si

∀ε > 0,∃N ∈ N,∀n ∈ N, n > N ⇒ |un − `| 6 ε

On note alors un → ` ou un −−−−−→
n→+∞

`.

Il y a alors unicité du nombre ` qui est appelée limite de la suite (un).

Définition
On dit qu’une suite réelle (un)n∈N diverge vers +∞ si

∀A ∈ R,∃N ∈ N,∀n ∈ N, n > N ⇒ un > A

On note alors un → +∞ ou un −−−−−→
n→+∞

+∞.

On définit de façon analogue la divergence vers −∞.

Exemple Etudions lim
n→+∞

(
1 +

1

n

)n
On peut écrire (

1 +
1

n

)n
= exp

(
n ln

(
1 +

1

n

))
Or

n ln (1 + 1/n) ∼ n× 1

n
→ 1

donc (
1 +

1

n

)n
−−−−−→
n→+∞

e
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Exemple Soit (un) ∈ (R+)N. On suppose que n
√
un → ` ∈ [0, 1[.

Montrons qu’alors un → 0.
Introduisons ε > 0 (dont on précisera la valeur par la suite).
Puisque n

√
un → `, pour n assez grand `− ε 6 n

√
un 6 `+ ε donc 0 6 un 6 (`+ ε)n.

Si l’on choisit initialement ε > 0 pour que `+ ε < 1, on obtient un → 0 par encadrement.
On montre de façon similaire, on montre

n
√
un → ` > 1⇒ un → +∞

9.1.2 Limites monotones

Théorème
a) Toute suite réelle croissante et majorée converge.
b) Toute suite réelle croissante, mais non majorée, diverge vers +∞.

dém. :
Cas u croissante et majorée.
Posons ` = sup

n∈N
un ∈ R et montrons un → `.

On a déjà
∀n ∈ N, un 6 `

car ` = sup
n∈N

un majore la suite u.

Soit ε > 0. Comme ` − ε < ` = sup
n∈N

un, ` − ε n’est pas majorant de la suite u et donc il existe N ∈ N

vérifiant uN > `− ε. Par croissance de la suite u, on a alors

∀n > N, un > uN > `− ε

Alors, pour tout n > N , `− ε 6 un 6 ` donc |un − `| 6 ε. Finalement un → `.
Cas u croissante non majorée.
Soit A ∈ R. La suite u n’est pas majorée par A donc il existe N ∈ N vérifiant uN > A.
Par croissance de la suite u on a alors

∀n > N, un > uN > A

Ainsi un → +∞
Les deux autres cas du théorème s’obtiennent par passage à l’opposé.
�

Exemple Etudions la convergence de un =

2n∑
k=n+1

1

k

On a

un+1 − un =

2n+2∑
k=n+2

1

k
−

2n∑
k=n+1

1

k
=

1

2n+ 1
+

1

2n+ 2
− 1

n+ 1
> 0

De plus

un 6
2n∑

k=n+1

1

n+ 1
=

n

n+ 1
6 1

La suite (un) est croissante et majorée, donc elle converge.
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En fait, on peut montrer (par les sommes de Riemann, par exemple)

un → ln 2

9.1.3 Comparaisons asymptotiques

Définition
On dit que la suite (un) est dominée par la suite (vn) et l’on écrit un = O(vn) s’il existe
M ∈ R+ et N ∈ N vérifiant

∀n > N, |un| 6M |vn|

Remarque Il revient au même de dire que l’on peut écrire à partir d’un certain rang

un = vnbn avec (bn) bornée

Exemple On peut écrire
cos(n)

n2 + 1
= O

(
1

n2

)

Définition
On dit que la suite (un) est négligeable devant (vn) et l’on écrit un = o(vn) si, pour tout ε > 0,
il existe N ∈ N vérifiant

∀n > N, |un| 6 ε |vn|

Remarque Il revient au même de dire que l’on peut écrire à partir d’un certain rang

un = vnεn avec (εn) de limite nulle.

Exemple En écrivant unJvn pour signifier un = o(vn), on peut proposer la hiérarchie suivante ;

e−nJ
1

n2
J

1

n
J

1

lnn
J1JlnnJ

√
nJnJn2Jen

Définition
On dit que la suite (un) est équivalente à la suite (vn) et l’on écrit un ∼ vn si l’on peut écrire

un = vn + o(vn)
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Remarque Il revient au même de dire que l’on peut écrire à partir d’un certain rang

un = vnϕn avec (ϕn) de limite 1

Exemple On peut écrire sin

(
1

n

)
∼ 1

n

9.1.4 Développements asymptotiques

Définition
Un développement asymptotique d’une suite est la décomposition de son terme général en
somme de termes simples ordonnés en négligeabilité croissante.

Exemple Formons un DA à trois termes de
(

1 +
1

n

)n
Quand n→ +∞.(

1 +
1

n

)n
= exp

(
n ln(1 +

1

n
)

)
= exp

(
1− 1

2n
+

1

3n2
+ o

(
1

n2

))
Par composition (

1 +
1

n

)n
= e− e

2n
+

11e

24n2
+ o

(
1

n2

)

Exemple Soit n > 2. On considère l’équation xn = 1 + x d’inconnue x ∈ [1,+∞[.
a) Montrons que celle-ci admet une unique solution xn.
b) Déterminons la limite de (xn)n>2.
c) Formons un développement asymptotique à deux termes de la suite (xn)n>2.
Considérons fn : x 7→ xn − x− 1 définie sur [1,+∞[.
fn est de classe C∞ et f ′n(x) = nxn−1 − 1 > 0 sur [1,+∞[. La fonction f est donc strictement
croissante.
Puisque fn(1) = −1 et lim

x→+∞
fn(x) = +∞, la fonction f s’annule une unique fois sur [1,+∞[.

Ceci définit xn ∈ [1,+∞[
On a

fn(xn+1) = xnn+1 − xn+1 − 1 = xnn+1 − xn+1
n+1 < 0

et donc xn+1 < xn.
La suite (xn) est décroissante et minorée (par 1), elle est donc convergente.
Posons ` sa limite. Puisque xn ∈ [1,+∞[, à la limite ` ∈ [1,+∞[.
Par l’absurde, si ` > 1 alors xnn → +∞ car xnn > `

n → +∞.
Or xnn = 1 + xn → 1 + `. C’est absurde et on en déduit ` = 1.
On peut alors écrire xn = 1 + εn avec εn → 0.
Déterminons un équivalent de εn.
On a (1 + εn)

n
= 2 + εn donc n ln(1 + εn) = ln(2 + εn)→ ln 2 puis nεn ∼ ln(2)

On en déduit

xn = 1 +
ln 2

n
+ o

(
1

n

)
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9.1.5 Suites récurrentes

Exemple Etudions la suite (un) déterminée par u0 > 0 et ∀n ∈ N, un+1 = ln(1 + un)
La fonction itératrice f : x 7→ ln(1 + x) est définie sur ]−1,+∞[, il est facile d’en obtenir le tableau de
variation.
Pour D = ]0,+∞[, on a

u0 ∈ D et ∀x ∈ D, f(x) ∈ D

On en déduit que la suite (un) est bien définie et

∀n ∈ N, un ∈ ]0,+∞[

Si (un) converge, sa limite ` appartient à [0,+∞[.
De plus, en passant la relation de récurrence un+1 = ln(1 + un) à la limite, on obtient ` = ln(1 + `).
La seule solution de cette équation est ` = 0.
En visualisant le comportement de (un) à partir d’une représentation de f , on est inspiré à étudier sa
monotonie. . .
On a

un+1 − un = ln(1 + un)− un 6 0

car on sait ln(1 + x) 6 x pour tout x > −1.
La suite (un) est donc décroissante et convergente car minorée par 0.
Puisque la seule limite finie possible est 0, on peut conclure que un → 0.

Exemple Etudions la convergence de la suite (un) définie par u0 = 1 et un+1 =
√

3− un
Considérons f : x 7→

√
3− x définie sur ]−∞, 3]

Pour D = [0, 3], on a u0 ∈ D et pour tout x ∈ D, f(x) ∈ D.
La suite (un) est donc bien définie et pour tout n ∈ N, un ∈ [0, 3].
Supposons un → ` ∈ R.
Puisque pour tout n ∈ N, 0 6 un 6 3, à la limite ` ∈ [0, 3].
En passant la relation de récurrence un+1 =

√
3− un à la limite on obtient

` =
√

3− `

ce qui donne

` =
−1 +

√
13

2

car ` > 0.
Notons

α =
−1 +

√
13

2
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On a

|un+1 − α| =
∣∣√3− un −

√
3− α

∣∣ =
|un − α|√

3− un +
√

3− α
6
|un − α|√

3− α
avec

q =
1√

3− α
=

1

α
∈ [0, 1[

Ainsi
|un − α| 6 qn |u0 − α|

et donc un → α.

9.1.6 Théorème de Cesaro

Théorème
Si (un) est une suite numérique converge vers ` alors

vn =
u1 + · · ·+ un

n
→ `

dém. :
On a

vn − ` =
1

n
((u1 − `) + · · ·+ (un − `))

Pour ε > 0, il existe N ∈ N vérifiant

∀n > N , |un − `| 6 ε

Pour n > N ,

|vn − `| 6
|u1 − `|+ · · ·+ |uN−1 − `|

n
+
n−N + 1

n
ε

donc

|vn − `| 6
|u1 − `|+ · · ·+ |uN−1 − `|

n
+ ε

Or
|u1 − `|+ · · ·+ |uN−1 − `|

n
=
Cte

n
→ 0

donc il existe N ′ ∈ N tel que pour n > N ′,

|u1 − `|+ · · ·+ |uN−1 − `|
n

6 ε

Ainsi, pour n > max(N,N ′), |vn − `| 6 2ε ce qui permet de conclure.
�

Exemple Déterminons un équivalent de (un) donnée par u0 > 0 et ∀n ∈ N, un+1 = ln(1 + un)
On a déjà montré un → 0+. Déterminons maintenant un équivalent de (un).
On a

1

un+1
− 1

un
=
un − un+1

unun+1
∼

1
2u

2
n

u2
n

→ 1

2
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Par le théorème de Cesaro

1

n

n−1∑
k=0

(
1

uk+1
− 1

uk

)
=

1

n

(
1

un
− 1

u0

)
→ 1

2

On en déduit
un ∼

2

n

9.2 Séries numériques

9.2.1 Définition

Définition
Soit (un)n>n0

une suite numérique. On appelle série de terme général un la suite (Sn)n>n0

avec

Sn =

n∑
k=n0

uk

Cette série est notée
∑
n>n0

un ou
∑

un.

Le terme Sn est appelé somme partielle de rang n de cette série.

Remarque Une série est un cas particulier de suite, c’est une suite de sommes partielles.

Exemple La série
∑
n>0

n est la suite des sommes partielles

Sn =

n∑
k=0

k =
n(n+ 1)

2

Exemple La série
∑
n>0

qn est la suite des sommes partielles

Sn =

n∑
k=0

qk =
1− qn+1

1− q
(si q 6= 1 )

Exemple La série
∑
n>1

1

n
est la suite des sommes partielles

Sn =

n∑
k=1

1

k
(avec n > 1 )
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Exemple Soit (vn) une suite d’éléments de K.
Posons u0 = v0 et un = vn − vn−1.
La série

∑
n>0

un est la suite des sommes partielles

n∑
k=0

uk = vn

Ainsi, la suite (vn) se confond avec la série
∑

un.

On suppose désormais les séries étudiées définies à partir du rang n0 = 0.
On peut s’y ramener quitte à poser les premiers termes de la série comme étant nuls si non définis.

9.2.2 Convergence d’une série numérique
9.2.2.1 Nature d’une série numérique

Définition
On dit que qu’une série

∑
un converge si la suite de ses sommes partielles converge.

On peut alors introduire la somme de la série

+∞∑
k=0

uk =
déf

lim
n→+∞

n∑
k=0

uk

Attention : Par essence, une somme de série numérique est une limite, pour la manipuler, il est
indispensable de justifier a priori son existence, i.e. que la série soit convergente.

Exemple Etudions
∑
n>2

1

n(n− 1)

Pour n > 2,
n∑
k=2

1

k(k − 1)
=

n∑
k=2

1

k − 1
− 1

k
= 1− 1

n
−−−−−→
n→+∞

1

Ainsi la série
∑
n>2

1

n(n− 1)
converge et

+∞∑
n=2

1

n(n− 1)
= 1

Exemple Etudions
∑
n>1

1

n
.

Pour n > 1, la fonction t 7→ 1/t étant décroissante, on a

n∑
k=1

1

k
>

n∑
k=1

∫ k+1

k

dt

t
=

∫ n+1

1

dt

t
= ln(n+ 1)→ +∞
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Ainsi la série
∑
n>1

1

n
diverge.

Remarque
∑

un converge si, et seulement si, la somme des aires hachurées converge.

Exemple Etudions
∑
n>1

(−1)n−1

n
.

Pour n > 1,
n∑
k=1

(−1)k−1

k
=

n∑
k=1

(−1)k−1

∫ 1

0

tk−1 dt =

∫ 1

0

1− (−t)n

1 + t
dt

Or ∫ 1

0

dt

1 + t
= ln 2 et 0 6

∫ 1

0

tn

1 + t
dt 6

∫ 1

0

tn dt =
1

n+ 1

donc
n∑
k=1

(−1)k−1

k
−−−−−→
n→+∞

ln 2

Ainsi
∑
n>1

(−1)n−1

n
converge et

+∞∑
n=1

(−1)n−1

n
= ln 2

9.2.2.2 Reste d’une série convergente

Théorème
Soit n0 ∈ N. On a équivalence entre :
(i)
∑
n>0

un converge ;

(ii)
∑
n>n0

un converge.
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dém. :
Les sommes partielles de deux séries diffèrent d’une constante et donc l’une converge si, et seulement si,
l’autre aussi.
�

Corollaire
On ne modifie pas la nature d’une série en en modifiant la valeur d’un nombre fini de termes.
En revanche, cela modifie évidemment la valeur de la somme. . .

Définition
Si la série

∑
un converge, on peut introduire la somme

Rn =

+∞∑
k=n+1

uk

Ce terme est appelé reste de rang n de cette série.

Attention : On ne peut introduire le reste d’une série qu’après avoir justifié sa convergence.

Théorème
Si
∑

un converge alors pour tout n ∈ N,

+∞∑
k=0

uk =

n∑
k=0

uk +

+∞∑
k=n+1

uk

De plus

Rn =

+∞∑
k=n+1

uk −−−−−→
n→+∞

0

dém. :
Soit n ∈ N fixé.
Pour N > n,

N∑
k=0

uk =

n∑
k=0

uk +

N∑
k=n+1

uk

Quand N → +∞, on obtient
+∞∑
k=0

uk =

n∑
k=0

uk +

+∞∑
k=n+1

uk

égalité qu’on écrit souvent S = Sn +Rn.
De plus, on a alors

Rn = S − Sn −−−−−→
n→+∞

0

�
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9.2.3 Limite du terme d’une série convergente

Théorème
Si la série

∑
un converge alors un → 0.

dém. :

Posons Sn =

n∑
k=0

uk. Si (Sn) converge en posant S sa limite

un = Sn − Sn−1 → S − S = 0

�

Définition
Si (un) ne tend pas vers 0 alors on dit que la série de terme général un diverge grossièrement
(DVG).

Exemple La série
∑

cos(n) diverge grossièrement.

En effet, si cos(n)→ 0 alors la relation cos(2n) = 2 cos2(n)− 1 donne à la limite l’absurdité 0 = −1.

Exemple La série
∑
n>1

1

n
diverge, mais pas grossièrement.

Remarque Si
∑

un converge, alors

2n∑
k=n+1

uk = S2n − Sn −−−−−→
n→+∞

0

On peut alors retrouver la divergence de
∑

1/n en exploitant

2n∑
k=n+1

1

k
> n× 1

2n
=

1

2

9.2.4 Opérations sur les séries convergentes
9.2.4.1 Linéarité

Théorème
Si
∑

un et
∑

vn sont convergentes alors pour tout λ ∈ K, les séries
∑

λun et
∑

un + vn
convergent et

+∞∑
k=0

λuk = λ

+∞∑
k=0

uk et
+∞∑
k=0

(uk + vk) =

+∞∑
k=0

uk +

+∞∑
k=0

vk
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dém. :
Par opérations sur les limites.
�

Corollaire
L’ensemble constitué des suites u = (un)n∈N ∈ KN telles que la série

∑
un converge est un

sous-espace vectoriel de KN. L’application u 7→
∑+∞

n=0
un y définit une forme linéaire.

Exemple Si
∑

un et
∑

(un + vn) convergent alors
∑

vn converge.
En effet, on peut écrire

vn = (un + vn) + (−1).un

Attention : Pour écrire
+∞∑
k=0

(uk + vk) =

+∞∑
k=0

uk +

+∞∑
k=0

vk

il faut vérifier la convergence d’au moins deux des séries engagées.
Ceci interdit d’écrire des aberrations du type

+∞∑
n=0

0 =

+∞∑
n=0

1 +

+∞∑
n=0

(−1)

Exemple Si
∑

un converge et
∑

vn diverge alors
∑

(un + vn) diverge.

Attention : Si
∑

un et
∑

vn divergent, on ne peut rien conclure sur la nature de
∑

(un + vn).

9.2.4.2 Positivité

Théorème
Soit (un) une suite réelle.
Si
∑

un converge et si tous les termes de la suite sont positifs alors

+∞∑
n=0

un > 0

dém. :
Pour tout N ∈ N, on a

N∑
n=0

un > 0
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donc à la limite
+∞∑
n=0

un > 0

�

Corollaire
Soit (un) et (vn) deux suites réelles vérifiant un 6 vn pour tout n ∈ N.

Si
∑

un et
∑

vn convergent alors
+∞∑
n=0

un 6
+∞∑
n=0

vn.

dém. :
On a, avec convergences,

+∞∑
n=0

vn −
+∞∑
n=0

un =

+∞∑
n=0

(vn − un) > 0

�

Théorème
Soit (un) une suite réelle.

Si un > 0 pour tout n ∈ N, si
∑

un converge et si
+∞∑
n=0

un = 0 alors

∀n ∈ N, un = 0

dém. :
La suite (Sn) des sommes partielles est croissante car

Sn+1 − Sn = un+1 > 0

Or celle-ci est aussi positive et tend vers 0 donc

∀n ∈ N, Sn = 0

puis
∀n ∈ N, un = 0

�
9.2.4.3 Conjugaison

Théorème
Soit (zn) une suite complexe.
Si
∑

zn converge alors
∑

zn aussi et

+∞∑
k=0

zk =

+∞∑
k=0

zk
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dém. :
Par conjugaison de limites.

�

Corollaire
On a équivalence entre :
(i)
∑

zn converge ;

(ii)
∑

Re(zn) et
∑

Im(zn) convergent.
De plus, on a alors

+∞∑
k=0

zk =

+∞∑
k=0

Re(zk) + i

+∞∑
k=0

Im(zk)

dém. :
(i)⇒ (ii) car Re(zn) =

1

2
(zn + zn) et Im(zn) =

1

2i
(zn − zn).

(ii)⇒ (i) car zn = Re(zn) + iIm(zn).

�

9.3 Convergence par comparaison à une série positive

9.3.1 Cas des séries à termes réels positifs

Définition
Une série à termes positifs est une série dont le terme général est élément de R+.

Théorème
Soit

∑
un une série à termes positifs. On a équivalence entre :

(i)
∑

un converge ;

(ii) ∃M ∈ R,∀n ∈ N,
n∑
k=0

uk 6M .

dém. :
La suite (Sn) des sommes partielles est croissante car Sn − Sn−1 = un > 0. Ainsi, cette suite converge
si, et seulement si, elle est majorée.

�

Remarque Si
∑

un est une série à termes positifs divergente alors
n∑
k=0

uk −−−−−→
n→+∞

+∞
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9.3.2 Comparaison de séries à termes positifs

Théorème
Soit

∑
un et

∑
vn deux séries à termes positifs vérifiant

∀n ∈ N, un 6 vn

a) Si
∑

vn converge alors
∑

un aussi.

b) Si
∑

un diverge alors
∑

vn aussi.

dém. :
a)
∑

un converge car c’est une série à termes positifs aux sommes partielles majorées car

n∑
k=0

uk 6
n∑
k=0

vk 6
+∞∑
k=0

vk = M

b) C’est la contraposée de a).
�

Remarque Le résultat demeure même si la comparaison ne vaut qu’à partir d’un certain rang.

Exemple Déterminons la nature de
∑
n>1

1

n2

Pour n > 2,
1

n2
6

1

n(n− 1)

or
∑ 1

n(n− 1)
converge donc, par comparaison de série à termes positifs, la série

∑
n>2

1

n2
converge,

puis la série
∑
n>1

1

n2
converge.

Exemple Déterminons la nature de
∑
n>1

lnn

n+ 1

On a n
lnn

n+ 1
∼ lnn→ +∞ donc pour n assez grand,

lnn

n+ 1
>

1

n

Or
∑ 1

n
diverge donc, par comparaison de série à termes positifs, la série

∑ lnn

n+ 1
diverge.

Plus précisément, on peut même affirmer

n∑
k=1

ln k

k + 1
−−−−−→
n→+∞

+∞

car la suite des sommes partielles est croissante puisque ses termes sont positifs.
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Théorème
Soit

∑
un et

∑
vn deux séries à termes positifs.

Si un ∼ vn alors les séries
∑

un et
∑

vn ont même nature.

dém. :
A partir d’un certain rang n0, on peut écrire

1/2vn 6 un 6 2vn

Quitte à modifier les premiers termes des séries, on peut supposer l’encadrement vrai pour tout rang n.
Par cet encadrement, la convergence d’une série entraîne la convergence de l’autre.
�

Exemple Déterminons la nature de
∑ 1

n2 + n
On a

1

n2 + n
∼

n→+∞

1

n2

Or
∑

1/n2 converge et 1/n2 > 0 donc
∑

1/(n2 + n) converge.

Exemple Déterminons la nature de
∑ 1

n+
√
n

On a
1

n+
√
n
∼

n→+∞

1

n

Or
∑

1/n diverge et 1/n > 0 donc
∑

1/(n+
√
n) diverge.

Remarque Pour employer le résultat qui précède, il suffit seulement de vérifier la positivité de vn,
l’autre sera vraie (au moins à partir d’un certain rang) en vertu de l’équivalent.

Remarque Via passage à l’opposé, le résultat est aussi vrai pour les séries à termes négatifs.

Attention : La conversation de la nature d’une série par équivalence des termes n’est vraie que pour les
séries à termes de signe constant.

9.3.3 Convergence absolue.

Définition
Soit (un) une suite réelle ou complexe. On dit que la série

∑
un converge absolument si la

série à termes positifs
∑
|un| converge.

Exemple La série
∑
n>1

(−1)n−1

n2
converge absolument (CVA)

En effet,
∑
n>1

1

n2
converge.
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Théorème
Si
∑

un converge absolument alors celle-ci converge et∣∣∣∣∣
+∞∑
n=0

un

∣∣∣∣∣ 6
+∞∑
n=0

|un|

dém. :
Cas (un) est une suite réelle à termes positifs : il n’y a rien à démontrer.
Cas (un) est une suite réelle. On introduit u+

n et u−n définis par

u+
n = max(un, 0) et u−n = max(−un, 0)

On a
∀n ∈ N, un = u+

n − u−n et |un| = u+
n + u−n

Puisque 0 6 u+
n , u

−
n 6 |un|, on peut affirmer, par comparaison de séries à termes positifs, la convergence

des séries
∑

u+
n et

∑
u−n puis celle de

∑
un par différence de deux séries convergentes.

Cas (un) est une suite complexe. On introduit Re(un) et Im(un).
On a |Re(un)| , |Im(un)| 6 |un| donc les séries réelles

∑
Re(un) et

∑
Im(un) convergent puis la série

complexe
∑

un converge aussi.
�
Bilan :Pour une série réelle ou complexe :

CVA ⇒ CV

Pour une série à termes positifs :
CVA ⇔ CV

Remarque Plus généralement, pour une série à termes de signe constant à partir d’un certain rang, il y a
aussi équivalence.

Attention : Il se peut que la série
∑

un converge alors que
∑
|un| diverge.

Définition
Une série convergente, mais non absolument convergente, est dite semi-convergente.

Exemple La série
∑
n>1

(−1)n−1

n
est semi-convergente.
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9.3.4 Convergence par comparaison à une série positive

Théorème
Soit

∑
un une série numérique et

∑
vn une série à termes positifs.

Si un = O(vn) et si
∑

vn converge alors
∑

un converge absolument (et donc converge).

dém. :
Il existe M ∈ R et N ∈ N vérifiant

∀n > N, |un| 6Mvn

Quitte à modifier les premiers termes des séries (ce qui ne change pas la nature de celle-ci), on peut
supposer la majoration vraie pour tout n ∈ N. Or

∑
Mvn converge et Mvn > 0 donc, par comparaison

de séries à termes positifs,
∑
|un| converge.

�

Corollaire
Si un = o(vn) et si

∑
vn converge avec vn > 0 alors

∑
un converge absolument et donc

converge

Attention : Ces énoncés sont faux sans l’hypothèse vn > 0.
Il est essentiel de comparer à une série à termes positifs !

Exemple Déterminons la nature de la série
∑ sinn

n2
.

On a ∣∣∣∣ sinnn2

∣∣∣∣ 6 1

n2

donc
sinn

n2
= O

(
1

n2

)
Or
∑ 1

n2
converge et

1

n2
> 0 donc, par domination,

∑ sinn

n2
converge absolument et donc converge.

9.3.5 Séries et règles de référence
9.3.5.1 Séries de Riemann

Soit α ∈ R.
Théorème

La série à termes positifs
∑
n>1

1

nα
converge si, et seulement si, α > 1.

dém. :
Cas α 6 1
Puisque pour tout n > 1,

1

nα
>

1

n

http://mp.cpgedupuydelome.fr 224 cbna



CHAPITRE 9. SUITES ET SÉRIES NUMÉRIQUES

Puisque la série
∑ 1

n
diverge, on obtient par comparaison de séries à termes positifs que la série

∑ 1

nα
diverge.
Cas α > 1∑
n>1

1

nα
est une série à terme positifs. Nous allons montrer qu’elle converge en observant que ses sommes

partielles sont majorées. Puisque la fonction x 7→ 1/xα est décroissante sur ]0,+∞[, on a pour tout k > 2

1

kα
6
∫ k

k−1

dt

tα

et alors
n∑
k=2

1

kα
6
∫ n

1

dt

tα
=

[
−1

α− 1

1

tα

]n
1

=
1

α− 1

(
1− 1

nα−1

)
puis

Sn = 1 +

n∑
k=2

1

kα
6 1 +

1

α− 1
= M

Par conséquent la série
∑
n>1

1

nα
converge car c’est une série à termes positifs aux sommes partielles

majorées.
�

Exemple
∑ 1

n2
et
∑ 1

n1,001
convergent alors que

∑ 1

n
et
∑ 1√

n
divergent.

Remarque Puisqu’il s’agit d’une série à termes positifs, il est possible de comparer à
∑

1/nα pour
étudier la nature d’une série numérique.

9.3.5.2 Règles de Riemann

Exemple Nature de
∑
n>0

(−1)n

n2 − n+ 1

On a
(−1)n

n2 − n+ 1
−−−−−→
n→+∞

0 mais ce n’est pas décisif.

Cependant ∣∣∣∣ (−1)n

n2 − n+ 1

∣∣∣∣ ∼
n→+∞

1

n2

Or
∑ 1

n2
converge et

1

n2
> 0 donc

∑
n>0

(−1)n

n2 − n+ 1
converge.

Exemple Nature de
∑
n>1

(
tan

1

n
− 1

n

)
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On sait
tanu =

u→0
u+

1

3
u3 + o(u3)

et donc
tan

1

n
− 1

n
∼

n→+∞

1

3n3

or
∑ 1

3n3
converge et

1

3n3
> 0 donc

∑
tan

1

n
− 1

n
converge.

Exemple Nature de
∑
n>0

n+ 1

n2 + 1

On a
n+ 1

n2 + 1
∼

n→+∞

1

n

Or
∑ 1

n
diverge et

1

n
> 0 donc

∑ n+ 1

n2 + 1
diverge.

Exemple Nature de
∑
n>0

e−n

On a
n2e−n −−−−−→

n→+∞
0

donc

e−n =
n→+∞

o

(
1

n2

)
or
∑ 1

n2
converge et

1

n2
> 0 donc

∑
e−
√
n converge absolument et donc converge.

Exemple Nature de
∑
n>1

ln(n)

n2 + 1

On a

n3/2 ln(n)

n2 + 1
∼

n→+∞

ln(n)√
n
→ 0

donc
ln(n)

n2 + 1
=

n→+∞
o

(
1

n3/2

)
Or
∑ 1

n3/2
converge et

1

n3/2
> 0 donc

∑ ln(n)

n2 + 1
converge absolument puis converge.

Exemple Nature de
∑
n>1

1

ln(n)

On a
n× 1

lnn
−−−−−→
n→+∞

+∞
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donc pour n assez grand,

n× 1

lnn
> 1

puis
1

lnn
>

1

n

Puisque
∑ 1

n
diverge et

1

n
> 0 la série

∑
n>1

1

lnn
diverge.

Exemple Nature de
∑
n>1

1

d2
n

avec dn le nombre de diviseurs positifs de n.
Pour p nombre premier dp = 2.
Puisqu’il y a une infinité de nombre premiers, (1/d2

n) ne tend pas vers 0 et donc la série diverge
grossièrement.

Bilan :Les idées récurrentes :
- Si (un) ne tend pas vers 0 alors

∑
un diverge grossièrement ;

- Si un ∼ C/nα (avec C 6= 0 ) alors∑
un converge si, et seulement si, α > 1 ;

- Si on détermine α > 1 tel que nαun → 0 alors un = o (1/nα) et donc
∑

un converge absolument ;

- Si nun → ` 6= 0 alors
∑

un diverge.

9.3.5.3 Séries géométriques

Théorème
Soit q ∈ C.
Si |q| > 1 alors

∑
qn diverge grossièrement.

Si |q| < 1 alors
∑

qn converge absolument et

+∞∑
n=0

qn =
1

1− q

dém. :
Cas |q| > 1 :
On a |qn| = |q|n > 1 donc la suite (qn) ne tend par vers 0. Il y a divergence grossière.
Cas |q| < 1 :

n∑
k=0

|q|k =
1− |q|n+1

1− |q|
→ 1

1− |q|
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donc
∑

qn converge absolument.
De plus

n∑
k=0

qk =
1− qn+1

1− q
→ 1

1− q

donc
+∞∑
k=0

qk =
1

1− q

�

Exemple
+∞∑
n=0

1

2n
= 1 +

1

2
+

1

4
+ · · ·+ 1

2n
+ · · · = 2.

Exemple Pour |x| < 1,
+∞∑
k=0

(−1)kx2k =
1

1 + x2

Exemple Pour |z| < 1,
+∞∑
n=0

(−1)nzn =
1

1 + z

9.3.5.4 Règle de d’Alembert

Théorème
Soit

∑
un une série à termes non nuls.

On suppose ∣∣∣∣un+1

un

∣∣∣∣→ ` ∈ R+ ∪ {+∞}

Si ` > 1 alors
∑

un diverge grossièrement.

Si ` < 1 alors
∑

un est absolument convergente.
Si ` = 1 alors on ne peut rien conclure.
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dém. :
Cas ` > 1 :
A partir d’un certain rang n0

|un+1/un| > 1

et donc la suite (|un|)n>n0
est croissante. Elle ne peut alors converger vers 0 que si elle est constante

égale à 0 ce qui est exclu.
Cas ` < 1 :
Soit ε > 0 (qu’on fixera par la suite). A partir d’un certain rang n0,

||un+1/un| − `| 6 ε

et donc
|un+1/un| 6 `+ ε

Par récurrence
|un| 6 (`+ ε)n−n0 |un0

| = M(`+ ε)n

avec M = (`+ ε)−n0 |un0
|. En choisissant initialement ε > 0 pour que q = `+ ε ∈ [0, 1[, on a

un = O(qn) avec qn > 0 et
∑

qn converge

On en déduit que
∑

un converge absolument et donc converge.
Cas ` = 1 :
Considérons un = 1/nα avec α ∈ R.
On a ∣∣∣∣un+1

un

∣∣∣∣→ 1

alors que
∑

un converge si, et seulement si, α > 1.
�

Remarque C’est un critère grossier réservé aux suites dont le terme général comporte un produit (terme
géométrique, factoriel,. . . ) induisant la nature de la série.

Exemple Nature de
∑
n>0

un avec un = 1/

(
2n

n

)

On a un =
(n!)2

(2n)!
> 0 et

∣∣∣∣un+1

un

∣∣∣∣ =
un+1

un
=

(n+ 1)2

(2n+ 1)(2n+ 2)
→ 1

4
< 1

donc
∑
n>0

un converge absolument puis converge.
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9.4 Autres méthodes d’obtention de convergence

9.4.1 Séries alternées

Définition
Une suite réelle (un) est dite alternée si

∀n ∈ N, un = (−1)n |un| ou ∀n ∈ N, un = (−1)n+1 |un|

Une série réelle
∑

un est dite alternée si la suite (un) l’est.

Exemple Les séries
∑
n>1

(−1)n−1

n
et
∑
n>1

ln

(
1 +

(−1)n−1

n

)
sont alternées.

Théorème
Soit

∑
un une série alternée.

Si la suite (|un|)n>0 décroît vers 0 alors la série
∑

un est convergente.

De plus, son reste Rn =

+∞∑
k=n+1

uk vérifie :

- Rn est du signe de un+1 ;
- |Rn| 6 |un+1|.

dém. :
Quitte à considérer (−un), on peut supposer

∀n ∈ N, un = (−1)n |un|

Posons Sn =

n∑
k=0

uk.

Nous allons établir l’adjacence des suites (S2n) et (S2n+1).

S2n+2 − S2n = u2n+2 + u2n+1 = |u2n+2| − |u2n+1| 6 0

Ainsi (S2n) est décroissante.

S2n+3 − S2n+1 = u2n+3 + u2n+2 = − |u2n+3|+ |u2n+2| > 0

Ainsi (S2n+1) est croissante.
Enfin

S2n+1 − S2n = u2n+1 → 0
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donc les deux suites sont adjacentes.
Par conséquent, elles convergent vers une même limite S.
Ainsi

∑
un converge et sa somme S est encadrée par les sommes partielles consécutives.

Considérons maintenant le reste
Rn = S − Sn

R2n = S − S2n. Or S2n+1 6 S 6 S2n donc R2n ∈ [u2n+1, 0].
R2n+1 = S − S2n+1. Or S2n+1 6 S 6 S2n+2 donc R2n+1 ∈ [0, u2n+2]
�

Corollaire
Le signe de la somme est celui de son premier terme.

dém. :
La somme S de la série est encadrée par S0 = u0 et S1 = u0 + u1. Or |u1| 6 |u0| donc u0 + u1 est du
signe de u0 et donc S aussi.
�

Exemple Déterminons la nature de ∑
n>1

(−1)n−1

√
n

C’est une série alternée.∣∣∣∣ (−1)n−1

√
n

∣∣∣∣ =
1√
n

décroît vers 0 donc
∑
n>1

(−1)n−1

√
n

converge.

Exemple Déterminons la nature de
∑
n>2

(−1)n

n3 + 1

1ère méthode :

C’est une série alternée et
∣∣∣∣ (−1)n

n3 + 1

∣∣∣∣ =
1

n3 + 1
décroît vers 0 donc

∑
n>2

(−1)n

n3 + 1
converge.

2ème méthode :
(−1)n

n3 + 1
= O

(
1

n3

)
et
∑ 1

n3
converge avec

1

n3
> 0 donc

∑
n>2

(−1)n

n3 + 1
converge absolument.

9.4.2 Exploitation d’un DA à deux termes

Exemple Déterminons la nature de
∑
n>1

(−1)n

n+ (−1)n−1

La série est alternée, mais son terme ne décroît pas en valeur absolue :

n 1 2 3 4 5
|un| 1/2 1 1/4 1/3 1/6

Pour déterminer sa nature, on forme un développement asymptotique à deux termes

(−1)n

n+ (−1)n−1
=

(−1)n

n
+

1

n2
+ o

(
1

n2

)
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D’une part, la série alternée
∑ (−1)n

n
converge en vertu du critère spécial.

D’autre part, les séries
∑ 1

n2
et
∑

o

(
1

n2

)
convergent absolument.

Par somme, on peut conclure la convergence de la série étudiée

Exemple Déterminons la nature de
∑
n>1

ln

(
1 +

(−1)n−1

√
n

)
On écrit

ln

(
1 +

(−1)n−1

√
n

)
=

(−1)n−1

√
n

− 1

2n
+ o

(
1

n

)
La série alternée

∑ (−1)n−1

√
n

converge en vertu du critère spécial.

Mais
1

2n
+ o

(
1

n

)
∼ 1

2n
,

1

2n
> 0 et

∑ 1

2n
diverge

donc par comparaison à une série à termes positifs,
∑ 1

2n
+ o

(
1

n

)
diverge.

Finalement, par somme, la série
∑
n>2

(−1)n√
n+ (−1)n

diverge.

Remarque Ici

ln

(
1 +

(−1)n−1

√
n

)
∼ (−1)n−1

√
n

alors que ∑
ln

(
1 +

(−1)n−1

√
n

)
diverge et

∑ (−1)n−1

√
n

converge

Cet exemple illustre que la conservation de la nature d’une série par équivalence des termes est
incorrecte si la série n’est pas de signe constant.

9.4.3 Transformation d’Abel

Exemple Déterminons la nature de
∑
n>1

sin(n)

n

On introduit Sn =

n∑
k=0

sin(k) de sorte que sin(n) = Sn − Sn−1

N∑
n=1

sin(n)

n
=

N∑
n=1

Sn − Sn−1

n
=

N∑
n=1

Sn
n
−

N∑
n=1

Sn−1

n

Par translation d’indice,
N∑
n=1

sin(n)

n
=

N∑
n=1

Sn
n
−
N−1∑
n=0

Sn
n+ 1
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puis
N∑
n=1

sin(n)

n
=

N∑
n=1

Sn
n(n+ 1)

− S0 +
SN+1

N + 1

Montrons que (Sn) est bornée.

Sn =

n∑
k=0

sin(k) = Im

(
n∑
k=0

eik

)
= Im

(
ei(n+1) − 1

ei − 1

)
donc

|Sn| 6
∣∣∣∣1− ei(n+1)

1− ei

∣∣∣∣ 6 2

|1− ei|

Puisque (Sn) est bornée,
Sn+1

n+ 1
→ 0 et

Sn
n(n+ 1)

= O

(
1

n2

)
donc

∑ Sn
n(n+ 1)

converge absolument

et sa somme partielle
N∑
n=1

Sn
n(n+ 1)

converge quand n→ +∞.

Par opération, on en déduit que la suite de terme général
N∑
n=1

sinn

n
converge quand n→ +∞ et donc la

série
∑
n>1

sinn

n
converge.

On peut aussi montrer que
+∞∑
n=1

sinn

n
=
π − 1

2

mais c’est une autre histoire. . .

9.5 Applications

9.5.1 Lien suite-série

Théorème
La suite (un) et la série

∑
(un+1 − un) sont de même nature.

dém. :

On a Sn =

n∑
k=0

(uk+1 − uk) = un+1−u0 donc la suite (Sn) converge si, et seulement si, (un) converge.

�

Exemple Montrons que la suite de terme général un =

n∑
k=1

1√
k
− 2
√
n converge.

Etudions la série
∑

(un+1 − un).
On a

un+1 − un =
1√
n+ 1

− 2
√
n+ 1 + 2

√
n
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puis

un+1 − un =
1√
n

1√
1 + 1

n

− 2
√
n

√
1 +

1

n
+ 2
√
n

Ainsi

un+1 − un =
1√
n

(1 +O (1/n))− 2
√
n

(
1 +

1

2n
+O

(
1

n2

))
+ 2
√
n = O

(
1

n3/2

)
La série

∑
(un+1 − un) est absolument convergente donc converge puis (un) converge.

Exemple Soit (un) définie par u0 = 1 et un =
2n

2n+ 1
un−1 pour n > 1

Montrons qu’il existe A > 0, tel que un ∼
A√
n

.

On veut montrer que vn =
√
nun converge vers un réel > 0.

Etudions la série
∑

(ln vn − ln vn−1).

ln vn − ln vn−1 =
1

2
ln

(
n

n− 1

)
+ ln

(
2n

2n+ 1

)
= −1

2
ln

(
1− 1

n

)
− ln

(
1 +

1

2n

)
= O

(
1

n2

)
Ainsi

∑
(ln vn − ln vn−1) est absolument convergente donc la suite (ln vn) converge.

En posant ` sa limite, vn → e` = A > 0 et un ∼
A√
n

.

9.5.2 La constante d’Euler

Proposition

La suite de terme général un =

n∑
k=1

1

k
− lnn est convergente.

dém. :
Nous allons étudier la nature de la série de terme général un+1 − un.
On a

un+1 − un =
1

n+ 1
− ln

(
1 +

1

n

)
=

1

n+ 1
− 1

n
+O

(
1

n2

)
= O

(
1

n2

)
donc la série de terme général un+1 − un est absolument convergente donc convergente.
�

Définition

On pose γ = lim
n→+∞

(
n∑
k=1

1

k
− lnn

)
appelée constante d’Euler.

On a γ = 0, 577 à 10−3 près.

Théorème

n∑
k=1

1

k
= lnn+ γ + o(1)
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dém. :

Puisque un → γ on peut écrire un = γ + o(1) donc
n∑
k=1

1

k
− lnn = γ + o(1)

Cor :
n∑
k=1

1

k
∼ lnn

�

Exemple Calculons
+∞∑
n=1

(−1)n−1

n

On peut affirmer que cette série alternée converge en vertu du critère spécial.

S2n =

2n∑
k=1

(−1)k−1

k
=

(
1 +

1

3
+ · · ·+ 1

2n− 1

)
−
(

1

2
+

1

4
+ · · ·+ 1

2n

)
donc

S2n =

(
1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

2n− 1
+

1

2n

)
− 2

(
1

2
+

1

4
+ · · ·+ 1

2n

)
puis

S2n =

2n∑
k=1

1

k
−

n∑
k=1

1

k
= ln(2n) + γ − lnn− γ + o(1) = ln 2 + o(1)

Par suite
+∞∑
n=1

(−1)n−1

n
= ln 2

9.5.3 Produit infini

Pour étudier l’existence de lim
n→+∞

n∏
k=0

uk, on passe au logarithme si le contexte le permet

Exemple Etudions l’existence de lim
n→+∞

n∏
k=1

(
1 +

(−1)k−1

k

)
Pour tout n > 1, 1 +

(−1)n−1

n
> 0 donc

ln

n∏
k=1

(
1 +

(−1)k−1

k

)
=

n∑
k=1

ln

(
1 +

(−1)k−1

k

)
or

ln

(
1 +

(−1)k−1

k

)
=

(−1)k−1

k
− 1

2

1

k2
+ o

(
1

k2

)
∑
k>1

(−1)k−1

k
est convergente et

1

2

1

k2
+ o

(
1

k2

)
∼ 1

2

1

k2
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Par équivalence de série à termes positifs, la série
∑ 1

n2
+ o

(
1

n2

)
converge et donc

n∑
k=1

ln

(
1 +

(−1)k−1

k

)
converge quand n→ +∞. En posant ` sa limite, on a

n∏
k=1

(
1 +

(−1)k−1

k

)
−−−−−→
n→+∞

e` > 0

Exemple Soit α, x ∈ R avec |α| < 1.

Etudions l’existence de la limite de Pn(x) =

n∏
k=1

(
1− αkx

)
quand n→ +∞.

Les premiers facteurs du produit ne sont pas nécessairement strictement positifs, mais puisque
1− αkx −−−−−→

k→+∞
1, il existe N ∈ N tel que

∀k > N, 1− αkx > 0

Pour n > N , on peut écrire

Pn(x) = PN−1(x)

n∏
k=N

(
1− αkx

)
Or

ln

[
n∏

k=N

(
1− αkx

)]
=

n∑
k=N

ln
(
1− αkx

)
et

ln
(
1− αkx

)
∼ −αkx car αkx→ 0

Puisque |α| < 1, la série géométrique
∑

αn converge et, par équivalence de série à termes de signe

constant, la série
∑

ln
(
1− αkx

)
converge. Ainsi

n∑
k=N

ln
(
1− αkx

)
−−−−−→
n→+∞

`

puis
Pn(x) −−−−−→

n→+∞
PN (x)e`

9.5.4 Musculation : séries de Bertrand

Théorème
Soit (α, β) ∈ R2. On a∑ 1

nα(lnn)β
converge si, et seulement si, α > 1 ou (α = 1 et β > 1)
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dém. :
Cas α < 1 :
On a

n× 1

nα(lnn)β
=

n1−α

(lnn)β
→ +∞

donc, à partir d’un certain rang,
1

nα(lnn)β
>

1

n

Or la série
∑

1/n diverge et 1/n > 0 donc la série étudiée diverge.
Cas α > 1 :
On peut introduire ρ ∈ ]1, α[ et on a

nρ × 1

nα(lnn)β
=

1

nα−ρ(lnn)β
−−−−−→
n→+∞

0

donc la série étudiée est de terme général négligeable devant 1/nρ avec ρ > 1. Cette série est donc
convergente.
Cas α = 1 et β 6= 1 :
Par le théorème des accroissement finis

1

(ln(n+ 1))β−1
− 1

(lnn)β−1
∼

n→+∞

β − 1

n(lnn)β

et donc la série étudiée converge si, et seulement si, la suite
(
1/(lnn)β−1

)
converge i.e. β > 1.

Cas α = 1 et β = 1 :
On exploite

ln(ln(n+ 1))− ln(ln(n)) ∼
n→+∞

1

n ln(n)

pour conclure que la série étudiée diverge.
�
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Chapitre 10

Fonctions réelles

10.1 Limite et continuité
I désigne un intervalle de R.
10.1.1 Définitions quantifiées
10.1.1.1 Limite en a ∈ R

Soit a un élément de I ou une extrémité finie de I .
Définition

On dit que f : I → R tend vers ` ∈ R en a si

∀ε > 0,∃α > 0,∀x ∈ I, (|x− a| 6 α⇒ |f(x)− `| 6 ε)

On note alors f −→
a
` ou f(x) −−−→

x→a
`.

Remarque Cette définition peut être transformée en une définition équivalente en remplaçant :
- |x− a| 6 α par |x− a| < α ;
- |f(x)− `| 6 ε par |f(x)− `| < ε.

Définition
On dit que f : I → R tend vers +∞ en a si

∀M ∈ R,∃α > 0,∀x ∈ I, (|x− a| 6 α⇒ f(x) >M)

On note alors f −→
a

+∞ ou f(x) −−−→
x→a

+∞.

Remarque Sous réserve d’existence, on définit aussi la limite à droite de f en a comme étant la limite
en a de la restriction f |I∩]a,+∞[.

10.1.1.2 Limite en +∞

On suppose l’intervalle I non majoré.
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Définition
On dit que f : I → R tend vers ` ∈ R en +∞ si

∀ε > 0,∃A ∈ R,∀x ∈ I, (x > A⇒ |f(x)− `| 6 ε)

Définition
On dit que f : I → R tend vers +∞ en +∞ si

∀M ∈ R,∃A ∈ R,∀x ∈ I, (x > A⇒ f(x) >M)

Remarque Dans les cas « simples » une limite s’obtient :
- par opérations, quitte à lever des indéterminations par transformation d’écriture ;
- par comparaison, mais cela nécessite d’avoir parfois l’intuition de la limite à obtenir.

Exemple Etudions la limite quand x→ +∞ de x− lnx.
Quand x→ +∞,

x− lnx = x

(
1− lnx

x

)
→ +∞

car par limite de référence
lnx

x
→ 0.

Attention : Ne pas rédiger lim . . . = lim . . . = . . ..

10.1.1.3 Théorème de la limite monotone

Théorème
Soit a < b ∈ R̄. Si f : ]a, b[→ R est monotone alors f admet des limites en a+ et b− qui sont

inf
]a,b[

f et sup
]a,b[

f
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Remarque Cet outil permet, entre autres, de calculer le sup et l’inf d’une fonction réelle à partir de son
tableau de variation.

10.1.2 Continuité

Remarque Si f : I → R admet une limite en a ∈ I celle-ci est nécessairement égale à f(a).

Définition
Une fonction f : I → R est dite continue en a ∈ I si f(x) −−−→

x→a
f(a).

Une fonction f : I → R est dite continue si elle l’est en tout a ∈ I .

Remarque Usuellement, la continuité d’une fonction s’obtient par argument d’opérations sur les
fonctions continues.

Exemple Si f, g : I → R sont continues alors la fonction sup(f, g) : x 7→ max(f(x), g(x)) l’est aussi.
En effet, on remarque

max(a, b) =
1

2
(a+ b+ |a− b|)

donc

sup(f, g) =
1

2
(f + g + |f − g|)

est continue par opérations sur les fonctions continues.
En particulier, si f : I → R est continue alors les fonctions f+ = sup(f, 0) et f− = sup(−f, 0) le sont
aussi.

Exemple Etudions la continuité de f : R→ R définie par

f(x) =

{
e−1/x si x > 0
0 si x 6 0

Soit a ∈ R.
Cas a < 0 :
Au voisinage de a, f(x) = 0 et donc f est continue en a.
Cas a > 0 :
Au voisinage de a, f(x) = e−1/x et donc f est continue en a.
Cas a = 0.
Quand x→ 0+, f(x) = e−1/x → 0 = f(0) et quand x→ 0−, f(x) = 0→ 0 = f(0).
Ainsi f est aussi continue en 0 et finalement f est continue sur R.
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10.1.3 Théorème des valeurs intermédiaires

Théorème
L’image d’un intervalle par une fonction continue est un intervalle.
En particulier, une fonction continue prend toutes les valeurs comprises entre deux valeurs déjà
prises.

Exemple Soit f : [a, b]→ R continue. On suppose

∀x ∈ [a, b] , f(x) ∈ [a, b]

Montrons qu’il existe x ∈ [a, b] tel que f(x) = x.
On introduit ϕ(x) = f(x)− x.
La fonction ϕ est continue par opérations sur les fonctions continues.
ϕ(a) = f(a)− a > 0 car f(a) ∈ [a, b] et ϕ(b) = f(b)− b 6 0 car f(b) ∈ [a, b].
Par le théorème des valeurs intermédiaires, ϕ s’annule ce qui établit

∃x ∈ [a, b] , f(x) = x

10.1.4 Théorème de la borne atteinte

Théorème
Toute fonction continue sur un segment [a, b] admet un minimum et un maximum.
On dit qu’elle est bornée et atteint ses bornes.

Exemple Soit f : [0,+∞[→ R continue. On suppose que ` = lim
+∞

f existe dans R.

Montrons que f est bornée.
Pour ε = 1, il existe A ∈ R+ tel que pour tout x > A, |f(x)− `| 6 1 et donc

|f(x)| 6 1 + |`|

Ainsi f est bornée sur [A,+∞[.
Sur [0, A], f est continue sur un segment donc bornée.
Au final, la fonction f est bornée sur R+.

10.1.5 Théorème de la bijection continue strictement monotone

Théorème
Si f : I → R est continue et strictement monotone alors f réalise une bijection de I vers un
intervalle J dont les extrémités sont les limites de f aux extrémités de I .
De plus f−1 : J → I est continue, de même stricte monotonie que f .

Remarque Inversement, si f : I → J est une bijection continue, celle-ci est nécessairement strictement
monotone et sa bijection réciproque est continue.
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Exemple Etudions les bijections induites par f : x ∈ R+ 7→ x− 2
√
x .

f est continue sur R+, dérivable sur ]0,+∞[ et f ′(x) = 1− 1/
√
x.

x 0 1 +∞
f ′(x) || − 0 +
f(x) 0 ↘ −1 ↗ +∞

Considérons ϕ = f�[1,+∞[.
ϕ′(x) > 0 sauf pour x = 1 donc réalise une bijection de [1,+∞[ vers [−1,+∞[.

1 +∞
ϕ 1 ↗ +∞ ,

−1 +∞
ϕ−1 1 ↗ +∞

Considérons ψ = f�[0,1].
ψ′(x) < 0 sauf pour x = 0 ou 1 donc ψ réalise une bijection de [0, 1] vers [−1, 0].

1 0
ψ 0 ↘ −1

,
−1 0

ψ−1 1 ↘ 0

10.2 Dérivation
I et J désignent des intervalles contenant chacun au moins deux points.
10.2.1 Nombre dérivé

Définition
On dit que f : I → R est dérivable en a ∈ I si le taux d’accroissement

1

h
(f(a+ h)− f(a))

admet une limite finie quand h→ 0 (avec h 6= 0 ). Cette limite est notée f ′(a).

Définition
On dit que f : I → R est dérivable si elle est dérivable en tout a ∈ I ; on peut alors introduire
sa fonction dérivée

f ′ : I → K

Définition
On dit que f : I → R est de classe C1 si f est dérivable et si de surcroît sa dérivée est continue.

10.2.2 Théorème de Rolle

Théorème
Soit a < b ∈ R, f : [a, b]→ R continue sur [a, b] et dérivable sur ]a, b[.
Si f(a) = f(b) alors il existe c ∈ ]a, b[ tel que f ′(c) = 0.

dém. :
f est continue sur le segment [a, b] donc f admet des extremums en c, d ∈ [a, b]

∀x ∈ [a, b] , f(c) 6 f(x) 6 f(d)
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Si f(c) = f(d) alors f est constante.
Sinon, l’un au moins des extremums de f n’est ni en a, ni en b et la fonction f ′ s’y annule
�

Exemple Soit f : I → R une fonction n fois dérivable.
On suppose que f s’annule au moins n+ 1 fois. Montrons qu’il existe c ∈ I tel que f (n)(c) = 0.

dém. :
Introduisons a0 < a1 < . . . < an les valeurs d’annulation de f ordonnées.
Pour i ∈ J1, nK, f est continue sur [ai−1, ai], dérivable sur ]ai−1, ai[ et f(ai−1) = f(ai) donc par le
théorème de Rolle, il existe bi ∈ ]ai−1, ai[ tel que f ′(bi) = 0.
Puisque

a0 < b1 < a1 < b2 < . . . < bn < an

les b1, . . . , bn sont deux à deux distincts. Ainsi f ′ s’annule n fois au moins.
En itérant ce processus, f ′′ s’annule n− 1 fois au moins,. . . , f (n) s’annule 1 fois au moins.
�

Exemple Soit Un(X) =
(
(X2 − 1)n

)(n)
. Montrons que Un possède exactement n racines distinctes,

toutes dans ]−1, 1[.
Posons

Pn(X) = (X2 − 1)n = (X − 1)n(X + 1)n

1 et −1 sont racines de multiplicité n de Pn.
1 et −1 sont donc racines de Pn, P ′n, . . . , P

(n−1)
n .

En appliquant successivement le théorème de Rolle avec appui sur 1 et −1, on montre que pour tout
k ∈ J1, nK, P (k)

n admet au moins k racines dans ]−1, 1[.
En particulier Un = P (n)

n admet au moins n = degUn racines dans ]−1, 1[. On en déduit que celles-ci
sont simples et qu’il n’y en a pas d’autres.

10.2.3 Théorème des accroissements finis

Théorème
Soit a < b ∈ R, f : [a, b]→ R continue sur [a, b] et dérivable sur ]a, b[.
Il existe c ∈ ]a, b[ tel que

f(b)− f(a) = f ′(c)(b− a)

dém. :
Posons K ∈ R tel que

f(b)− f(a) = K(b− a)

i.e. K déterminé par

K =
f(b)− f(a)

b− a
et introduisons ϕ : x 7→ f(x)−K(x− a).
ϕ est continue sur [a, b], dérivable sur ]a, b[ et ϕ(a) = f(a) = ϕ(b).
Par application théorème de Rolle, il existe c ∈ ]a, b[ vérifiant ϕ′(c) = 0 i.e. f ′(c) = K.
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�

Exemple Soit f : [a, b]→ R de classe C2 et g la fonction affine prenant les mêmes valeurs que f en a
et b.
Montrons

∀x0 ∈ ]a, b[ ,∃c ∈ ]a, b[ , f(x0)− g(x0) =
(x0 − a)(x0 − b)

2
f ′′(c)

Cette identité est intéressant car elle permet de mesurer l’erreur commise lorsqu’on remplace f(x) par
g(x) (comme dans la méthode d’intégration des trapèzes).

g(x) =
f(b)− f(a)

b− a
(x− a) + f(a)

Posons K ∈ R tel que

f(x0) = g(x0) +
(x0 − a)(x0 − b)

2
K

i.e.

K = 2
f(x0)− g(x0)

(x0 − a)(x0 − b)
Considérons la fonction

ϕ : x 7→ f(x)− g(x)− (x− a)(x− b)
2

K

La fonction ϕ est de classe C2 et s’annule en x0, a, b.
Par application du théorème de Rolle, il existe c ∈ ]a, b[ vérifiant ϕ′′(c) = 0 i.e. f ′′(c) = K.

10.2.4 Inégalité des accroissements finis

Théorème
Soit f : I → R dérivable et M ∈ R+. On a équivalence entre :
(i) ∀x ∈ I, |f ′(x)| 6M ;
(ii) f est M lipschitzienne i.e.

∀x, y ∈ I, |f(y)− f(x)| 6M |y − x|
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Exemple Si f : [a, b]→ R est de classe C1 alors f est lipschitzienne.
En effet, la fonction |f ′| est continue sur un segment donc bornée.

10.2.5 Théorème de la limite de la dérivée

Théorème
Soit f : I → R et a ∈ I .
On suppose f continue sur I et dérivable sur I\ {a}.
Si f ′(x) −−−−−−→

x→a,x 6=a
` ∈ R alors f est dérivable en a et f ′(a) = `.

Si f ′(x) −−−−−−→
x→a,x 6=a

+∞ alors f n’est pas dérivable en a, mais présente une tangente verticale
en a.

dém. :
Supposons f ′(x) −−−−−−→

x→a,x6=a
` ∈ R̄.

Pour h 6= 0, on étudie le taux d’accroissement

1

h
(f(a+ h)− f(a))

Par le théorème des accroissements finis, il existe ch compris entre a et a+ h tel que

1

h
(f(a+ h)− f(a)) = f ′(ch)

Quand h→ 0 (avec h 6= 0 ), par encadrement ch → a et par composition de limites

1

h
(f(a+ h)− f(a))→ `

�

Corollaire
Soit f : I → R une fonction de classe Ck sur I\ {a}.
Si f (i)(x) possède une limite finie quand x→ a pour chaque i ∈ {0, . . . , k} alors f admet un
prolongement de classe Ck sur I .

Exemple Soit f : R? → R définie par f(x) =
sinx

x
Montrer que f se prolonge en une fonction de classe C1.

f(x) =
sinx

x
∼
x→0

x

x
→ 1

f ′(x) =
x cosx− sinx

x2
=
x→0

o(x2)

x2
→ 0

On peut donc prolonger f une fonction de classe C1 sur R en posant f(0) = 1.
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10.2.6 Dérivation de bijection réciproque

Théorème
Soit ϕ : I → J une bijection continue et x ∈ I .
Si ϕ est dérivable en x et si ϕ′(x) 6= 0 alors ϕ−1 est dérivable en y = ϕ(x) et

(ϕ−1)′(y) =
1

ϕ′(x)

Corollaire
Si ϕ est dérivable et si ϕ′ ne s’annule pas alors ϕ−1 est dérivable et

(ϕ−1)′ =
1

ϕ′ ◦ ϕ−1

Remarque Cette formule de dérivation peut être retrouvée en dérivant la relation

ϕ ◦ ϕ−1 = Id

Corollaire
Si ϕ est de classe Cn et si ϕ′ ne s’annule pas alors ϕ−1 est de classe Cn.

Exemple C’est ce résultat qui a fourni les dérivées suivantes

d

dx
(arcsinx) =

1√
1− x2

et
d

dx
(arctanx) =

1

1 + x2

Exemple Etudions la bijection réciproque de f : R+ → R définie par f(x) =
√
x+ x+ 1.

f réalise une bijection de R+ sur [1,+∞[ car c’est une fonction continue, strictement croissante (par
opérations sur de telles fonctions) vérifiant f(0) = 1 et lim

+∞
f = +∞.

http://mp.cpgedupuydelome.fr 247 cbna



10.3. INTÉGRATION

La fonction f est dérivable sur R+? et

∀x > 0, f ′(x) =
1

2
√
x

+ 1 6= 0

Par le théorème précédent, on peut affirmer que son application réciproque f−1 est dérivable sur

f(R+?) = ]1,+∞[

Etude de la dérivabilité en 1.
Quand h→ 0 (avec h 6= 0 ),

1

h

(
f−1(1 + h)− f−1(1)

)
=

1

h
f−1(1 + h) =

x=f−1(1+h)

x

f(x)− 1
=

x√
x+ x

∼ x√
x

=
√
x→ 0

Ainsi f−1 est dérivable en 1 et (f−1)′(1) = 0.
Cela pouvait être attendu car la fonction f admet une tangente verticale en 0.

10.3 Intégration
I désigne un intervalle de R contenant au moins deux points.
10.3.1 Intégrale

Définition
Une fonction f : [a, b]→ R est dite continue par morceaux s’il existe un découpage

a0 = a < a1 < · · · < an = b

vérifiant, pour tout i ∈ {1, . . . , n} :
- f est continue sur ]ai−1, ai[ ;
- f admet des limites finies en a+

i−1 et a−i .
Une fonction f : I → R est dite continue par morceaux si elle l’est sur tout segment [a, b]
inclus dans I .

Définition
Pour f : I → R continue par morceaux et a, b ∈ I , il a été donné en première année un sens à
l’intégrale ∫ b

a

f(t) dt

Exemple Calculons
∫ 1

0

t+ 1

t2 + t+ 1
dt.

On a
d

dt
(t2 + t+ 1) = 2t+ 1

donc on décompose ∫ 1

0

t+ 1

t2 + t+ 1
dt =

1

2

∫ 1

0

2t+ 1

t2 + t+ 1
dt+

1

2

∫ 1

0

1

t2 + t+ 1
dt
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Or ∫ 1

0

2t+ 1

t2 + t+ 1
dt =

[
ln
∣∣t2 + t+ 1

∣∣]1
0

= ln 3

et ∫ 1

0

1

t2 + t+ 1
dt =

∫ 1

0

1

(t+ 1/2)2 + 3/4
dt

Sachant ∫
du

u2 + a2
=

1

a
arctan

u

a

avec ici u = t+ 1/2 et a =
√

3/2, on obtient directement∫ 1

0

1

t2 + t+ 1
dt =

[
2√
3

arctan
2t+ 1√

3

]1

0

=
π

3
√

3

Finalement ∫ 1

0

t+ 1

t2 + t+ 1
dt =

1

2
ln 3 +

π

6
√

3

Exemple Calculons
∫ 1

0

√
1− x2 dx.

On réalise le changement de variable x = sin t.
dx = cos tdt, pour t = 0, x = 0 et pour t = π/2, x = 1.∫ 1

0

√
1− x2 dx =

∫ π/2

0

√
1− sin2 t cos tdt =

∫ π/2

0

cos2 tdt

Or cos 2a = 2 cos2 a− 1 donc
cos2 t =

1

2
(1 + cos 2t)

puis ∫ 1

0

√
1− x2 dx =

[
t

2
+

sin 2t

4

]π/2
0

=
π

4

10.3.2 Calcul des intégrales de Wallis

Exemple Calculons In =

∫ π/2

0

sinn(t) dt

(ou encore
∫ π/2

0

cosn(u) du via u = π/2− t ).

Pour n > 2,

In =

∫ π/2

0

sin t. sinn−1(t) dt

Par intégration par parties,

In =
[
− cos t. sinn−1 t

]π/2
0

+ (n− 1)

∫ π/2

0

cos2(t) sinn−2(t) dt
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Or [
− cos t. sinn−1 t

]π/2
0

= 0

et ∫ π/2

0

cos2(t) sinn−2(t) dt =

∫ π/2

0

(1− sin2(t)) sinn−2(t) dt = In − In−2

donc
In = (n− 1)(In − In−2)

puis enfin

In =
n− 1

n
In−2

Par cette relation de récurrence, il est possible d’exprimer In en fonction de I1 ou de I0 selon la parité
de n.
Cas n impair : n = 2p+ 1.

I2p+1 =
2p

2p+ 1
I2p−1 =

2p

2p+ 1

2p− 2

2p− 1
I2p−3 = . . .

A terme
I2p+1 =

2p

2p+ 1

2p− 2

2p− 1
· · · 2

3
I1

Or

2p(2p− 2) . . . 2 = 2pp! et (2p+ 1)(2p− 1) . . . 3 =
(2p+ 1)!

2pp!

De plus

I1 =

∫ π/2

0

sin(t) dt = 1

donc

I2p+1 =
(2pp!)2

(2p+ 1)!

Cas n pair : n = 2p. De façon analogue

I2p =
(2p)!

(2pp!)2

π

2

10.3.3 Intégrale fonction de sa borne supérieure

Théorème
Si f : I → R est continue, pour a ∈ I , l’application

x 7→
∫ x

a

f(t) dt

est l’unique primitive de f s’annulant en a.

Remarque On a donc la formule de dérivation

d

dx

(∫ x

a

f(t) dt

)
= f(x)
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Remarque On ne peut pas exprimer les primitives des fonctions suivantes à l’aide des fonctions usuelles

t 7→ e−t
2

, t 7→ sin t

t
, t 7→ cos t

t
, t 7→ et

t
, t 7→ 1

ln t
,. . .

Cependant celles-ci existent car toute fonction continue sur un intervalle y admet des primitives en vertu
du résultat précédent.

Corollaire
Si f : I → R est continue et si F est une primitive de f alors

∀a, b ∈ I ,
∫ b

a

f = [F ]
b
a

Proposition
Soit a < b et f : [a, b]→ R

Si f est continue et si
∫ b

a

f(t) dt = 0 alors f s’annule.

dém. :

En introduisant F une primitive de f , la relation
∫ b

a

f(t) dt = 0 donne F (a) = F (b) et le théorème de

Rolle permet de conclure que F ′ = f s’annule.
�

Proposition
Soit a < b et f : [a, b]→ R.

Si f est continue, f > 0 et si
∫ b

a

f(t) dt = 0 alors f = 0̃.

dém. :

On introduit F une primitive de f . Puisque F ′ = f > 0, on a F croissante et
∫ b

a

f(t) dt = 0 donne

F (a) = F (b) et donc F est constante. On en déduit que f = F ′ = 0.
�

Exemple Etudions sur ]1,+∞[ la fonction ϕ : x 7→
∫ x2

x

dt

ln t
.

Définition :
La fonction t 7→ 1

ln t
est définie et continue par morceaux sur ]1,+∞[ et

∀x > 1, x, x2 ∈ ]1,+∞[

Par suite ϕ(x) est bien définie pour tout x > 1.
Variation :
Puisque t 7→ 1

ln t
est continue sur ]1,+∞[, elle y admet une primitive de F et alors

ϕ(x) = F (x2)− F (x)
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Puisque F est de classe C1, ϕ l’est aussi et

ϕ′(x) = 2xF ′(x)− F ′(x) =
x− 1

lnx
> 0

Ainsi ϕ est croissante.
Limite en +∞ :
Quand x→ +∞. Pour t ∈

[
x, x2

]
,

1

2 lnx
6

1

ln t
6

1

lnx

En intégrant,
1

2

x2 − x
lnx

6 ϕ(x) 6
x2 − x

lnx

Or
x2 − x

lnx
∼ x2

lnx
→ +∞

donc ϕ(x)→ +∞.
Limite en 1+ :
Quand x→ 1+. Pour t ∈

[
x, x2

]
,

x

t ln t
6

1

ln t
=

t

t ln t
6

x2

t ln t

En intégrant

x

∫ x2

x

dt

t ln t
6 ϕ(x) 6 x2

∫ x2

x

dt

t ln t

Or ∫ x2

x

dt

t ln t
= [ln |ln t|]x

2

x = ln 2

donc ϕ(x)→ ln 2.
Finalement, on obtient le tableau de variation suivant

x 1 +∞
ϕ(x) ln 2 ↗ +∞

10.3.4 Formules de Taylor

10.3.4.1 Avec reste intégrale

Remarque On peut exprimer f : I → R de classe C1 par sa dérivée avec la formule

f(x) = f(a) +

∫ x

a

f ′(t) dt

On peut généraliser :
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Théorème
Soit f : I → R et a ∈ I .
Si f est de classe Cn+1 alors pour tout x ∈ I

f(x) =

n∑
k=0

f (k)(a)

k!
(x− a)k +

∫ x

a

(x− t)n

n!
f (n+1)(t) dt

Remarque Par le changement de variable x = a+ λ(x− a), le reste intégrale se réécrit

(x− a)n+1

∫ 1

0

(1− λ)n

n!
f (n+1)(a+ λ(x− a)) du

Cette écriture révèle l’ordre de grandeur du reste intégrale. . .

10.3.4.2 Inégalité de Taylor-Lagrange

Remarque L’inégalité des accroissements finis donne

∀x ∈ I, |f ′(x)| 6M ⇒ ∀a, x ∈ I, |f(x)− f(a)| 6M |x− a|

On généralise :

Théorème
Soit f : I → K et M ∈ R+.
Si f est de classe Cn+1 et si

∀x ∈ I,
∣∣∣f (n+1)(x)

∣∣∣ 6M
alors pour chaque a, x ∈ I∣∣∣∣∣f(x)−

n∑
k=0

f (k)(a)

k!
(x− a)k

∣∣∣∣∣ 6 |x− a|n+1

(n+ 1)!
M

Exemple Soit f : R→ R de classe C2 telle que f et f ′′ soient bornées. On pose M0 = sup |f | et
M2 = sup |f ′′|.
Montrons que f ′ est bornée et

M1 = sup |f ′| 6 2
√
M0M2

Par l’inégalité de Taylor-Lagrange

|f(a+ h)− f(a)− hf ′(a)| 6 h2M2

2

On en déduit

|hf ′(a)| 6 2M0 +
h2M2

2
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Pour h > 0, cela conduit à

|f ′(a)| 6 2M0

h
+
h2M2

2

La fonction f ′ est donc bornée et

M1 6
2M0

h
+
h2M2

2

Cette dernière relation vaut pour tout h > 0, il s’agit ensuite de trouver l’optimal. C’est h = 2
√
M0/M2

et l’on obtient
M1 6 2

√
M0M2

10.3.4.3 Formule de Taylor Young

Remarque Lorsqu’une fonction f est dérivable en a, on peut exprimer un développement limité à
l’ordre 1

f(x) =
x→a

f(a) + f ′(a)(x− a) + o (x− a)

Théorème
Si f : I → R est de classe Cn alors f admet un développement limité à l’ordre n en tout a ∈ I
de la forme

f(x) =

n∑
k=0

f (k)(a)

k!
(x− a)k + o ((x− a)n)

10.3.4.4 Développements limités usuels

1

1− u
= 1 + u+ u2 + · · ·+ un + o(un) =

n∑
k=0

uk + o(un)

1

1 + u
= 1− u+ u2 + · · ·+ (−1)nun + o(un) =

n∑
k=0

(−1)kuk + o(un)

ln(1 + u) = u− 1

2
u2 + · · ·+ (−1)n−1

n
un + o(un) =

n∑
k=1

(−1)k−1

k
uk + o(un)

eu = 1 + u+
1

2
u2 +

1

6
u3 + · · ·+ 1

n!
un + o(un) =

n∑
k=0

1

k!
uk + o(un)

(1 + u)α = 1 + αu+
α(α− 1)

2!
u2 + · · ·+ α(α− 1) . . . (α− n+ 1)

n!
un + o(un)

cosu = 1− 1

2
u2 +

1

24
u4 + · · ·+ (−1)n

(2n)!
u2n + o(u2n+1) =

n∑
k=0

(−1)k

(2k)!
u2k + o(u2n+1)

sinu = u− 1

6
u3 +

1

120
u5 + · · ·+ (−1)n

(2n+ 1)!
u2n+1 + o(u2n+2) =

n∑
k=0

(−1)k

(2k + 1)!
u2k+1 + o(u2n+2)

chu = 1 +
1

2
u2 +

1

24
u4 + · · ·+ 1

(2n)!
u2n + o(u2n+1) =

n∑
k=0

1

(2k)!
u2k + o(u2n+1)
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shu = u+
1

6
u3 + · · ·+ 1

(2n+ 1)!
u2n+1 + o(u2n+2) =

n∑
k=0

1

(2k + 1)!
u2k+1 + o(u2n+2)

tanu = u+
1

3
u3 + o(u3)

arctanu = u− 1

3
u3 + · · ·+ (−1)n

2n+ 1
u2n+1 + o(u2n+1) =

n∑
k=0

(−1)k

2k + 1
u2k+1 + o(u2n+1)

10.4 Fonctions convexes
E désigne un R-espace vectoriel.
10.4.1 Barycentre
Soit (ui)i∈I une famille finie de vecteurs de E et (λi)i∈I une famille de coefficients réels avec∑

i∈I
λi 6= 0

Définition
On appelle barycentre de la famille (ui)i∈I affectés des coefficients (λi)i∈I le vecteur v de E
déterminé par

v =
1∑

i∈I
λi

∑
i∈I

λiui

On dit encore que v est le barycentre de la famille de vecteurs massiques ((ui, λi))i∈I .

Remarque Dans le plan ou l’espace géométrique muni d’un repère d’origine O, on peut identifier point
M et vecteur

−−→
OM .

On définit alors le centre de gravité (ou centre de masse) des points A1, . . . , An affectés de masses
m1, . . . ,mn comme étant le point G tel que le vecteur

−−→
OG est le barycentre de la famille de vecteurs(−−→

OA1, . . . ,
−−→
OAn

)
affectés des coefficients (m1, . . . ,mn).

On peut montrer que ce centre de gravité ne dépend pas du choix du repère initial.

Exemple Le barycentre des u1 et u2 affectés des coefficients 1 et 1 correspond au vecteur milieu de u1

et u2.

Exemple
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Remarque Les barycentres de deux vecteurs u1, u2 figurent sur la droite u1 + Vect(u2 − u1).

Définition
On appelle isobarycentre d’une famille de vecteurs (u1, . . . , un) le barycentre v affecté de
coefficients égaux à 1

v =
1

n
(u1 + · · ·+ un)

Proposition
Le barycentre est inchangé si :
a) on retire de la famille les vecteurs affectés d’un coefficient nul ;
b) on permute les vecteurs et les coefficients de la famille ;
c) on multiplie chaque coefficient par un scalaire non nul.

Remarque En exploitant un facteur de dilatation, tout barycentre peut être ramené à celui d’une famille
dont la somme des coefficients vaut 1.

Théorème
On suppose I = I1 ∪ I2 avec

I1 ∩ I2 = ∅, µ1 =
∑
i∈I1

λi 6= 0 et µ2 =
∑
i∈I2

λi 6= 0

Si v1 et v2 sont les barycentres des familles ((ui, λi))i∈I1 et ((ui, λi))i∈I2 alors le barycentre
v de la famille ((ui, λi))i∈I est aussi le barycentre de la famille ((v1, µ1), (v2, µ2)).

dém. :
On a v1 =

1

µ1

∑
i∈I1

λiui et v2 =
1

µ2

∑
i∈I2

λiui donc

1

µ1 + µ2
(µ1v1 + µ2v2) =

1

µ1 + µ2

∑
i∈I1∪I2

λiui =
1∑

i∈I
λi

∑
i∈I

λiui

�

Remarque On peut calculer le barycentre d’une famille de plusieurs vecteurs en regroupant ceux-ci par
paquets et se ramener à des situations où l’on ne considère que des familles de deux vecteurs.
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10.4.2 Parties convexes

Définition
Soit a, b ∈ E. On appelle segment d’extrémités a et b l’ensemble [a, b] constitué des bary-
centres des vecteurs a et b affectés de coefficients positifs :

[a, b] = {λ1a+ λ2b/λ1, λ2 > 0, (λ1, λ2) 6= (0, 0)}

En se ramenant à une somme de coefficients égale à 1

[a, b] = {(1− λ)a+ λb/λ ∈ [0, 1]}

Remarque On peut aussi comprendre le segment [a, b] comme obtenu par le paramétrage

[a, b] = {a+ λ(b− a)/λ ∈ [0, 1]}

Définition
Une partie X de E est dite convexe si

∀a, b ∈ X, [a, b] ⊂ X

Exemple

Exemple ∅ et E sont des parties convexes.

Exemple Les segments, les sous-espaces vectoriels et les sous-espaces affines sont des parties convexes.
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Théorème
Soit X une partie de E. On a équivalence entre :
(i) X est une partie convexe ;
(ii) X contient tous les barycentres de ses vecteurs affectés de coefficients positifs.

dém. :
(ii)⇒ (i) Supposons (ii). Pour tout a, b ∈ X , la partieX contient le segment [a, b] car celui-ci est constitué
des barycentres de a et b affectés de coefficients positifs.
(i)⇒ (ii) Supposons X convexe et montrons par récurrence sur n > 1 que X contient les barycentres des
familles de n éléments de X affectés de coefficients positifs.
Cas n = 1 : il n’y a rien à démontrer.
Cas n = 2 : on retrouve la définition de la convexité.
Supposons la propriété vraie au rang n > 2.
Soit v le barycentre de ((ui, λi))16i6n+1 avec ui ∈ X et λi > 0.
On peut supposer les λi strictement positifs, sinon le problème est immédiatement résolu par l’hypothèse
de récurrence. Considérons ensuite a le barycentre de la sous famille ((ui, λi))16i6n. Par hypothèse de
récurrence a ∈ X . Par associativité, v est barycentre de a et un+1 affectés de coefficients positifs et donc

v ∈ [a, un+1] ⊂ X

Récurrence établie.
�

Remarque De manière semblable, on peut définir la notion de partie convexe du plan et de l’espace
géométrique.

10.4.3 Fonction convexe, fonction concave

Définition
On dit qu’une fonction f : I → R est convexe si elle vérifie

∀a, b ∈ I, ∀λ ∈ [0, 1] , f ((1− λ)a+ λb) 6 (1− λ)f(a) + λf(b)

Proposition
Une fonction est convexe si ses arcs sont en dessous des cordes associées
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dém. :
Pour a, b ∈ I , notons A = (a, f(a)) et B = (b, f(b)) les points du graphe de f d’abscisses a et b.
La corde d’extrémités A et B le segment [A,B].

[A,B] = {(1− λ)(a, f(a)) + λ(b, f(b))/λ ∈ [0, 1]}

soit encore
[A,B] = {((1− λ)a+ λb, (1− λ)f(a) + λf(b)) /λ ∈ [0, 1]}

L’arc associé est

)

AB formé des points de Γf d’abscisses comprises entre a et b.

)
AB = {(t, f(t))/t ∈ [a, b]}

soit encore en écrivant t = (1− λ)a+ λb avec λ ∈ [0, 1]

)

AB = {((1− λ)a+ λb, f ((1− λ)a+ λb)) /λ ∈ [0, 1]}

L’inégalité de convexité signifie alors que, pour une même abscisse, l’ordonnée du point de la corde est
supérieure à celle du point de l’arc.

Ainsi, pour une fonction convexe, l’arc

)

AB est en dessous de la corde [A,B].
�

Exemple Les fonctions affines x 7→ αx+ β sont convexes.
Pour ces fonctions, l’inégalité de convexité est en fait une égalité.

Exemple La fonction | . | est convexe.
En effet,

∀a, b ∈ R, |λa+ (1− λ)b| 6 |λ| |a|+ |1− λ| |b| = λ |a|+ (1− λ) |b|

Définition
On dit qu’une fonction f : I → R est concave si elle vérifie

∀a, b ∈ I, ∀λ ∈ [0, 1] , f ((1− λ)a+ λb) > (1− λ)f(a) + λf(b)

Remarque Pour une fonction concave, l’arc est au dessus de la corde.

Exemple Les fonctions affines sont concaves.

Proposition
Pour f : I → R, on a équivalence entre :
(i) f est concave ;
(ii) −f est convexe.

dém. :
Par passage à l’opposé l’inégalité de convexité est renversée.
�
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Remarque Par passage à l’opposé et renversement d’inégalité, les résultats qui suivent présentés pour
les fonctions convexes se transposent aux fonctions concaves.

10.4.4 Caractérisation géométrique de la convexité

10.4.4.1 Épigraphe

Définition
On appelle graphe d’une fonction f : I → R l’ensemble

Γf =
{

(x, y) ∈ R2/x ∈ I et f(x) = y
}

On appelle épigraphe d’une fonction f : I → R l’ensemble

Epi(f) =
{

(x, y) ∈ R2/x ∈ I et f(x) 6 y
}

Théorème
Pour f : I → R, on a équivalence entre :
(i) la fonction f est convexe ;
(ii) l’épigraphe de f est convexe.

dém. :
(i)⇒ (ii) Supposons f convexe.
Soit A et B des points de l’épigraphe de f et A′, B′ les points du graphe de f de mêmes abscisses. Le

segment [A,B] est au dessus du segment [A′, B′] lui même au dessus de l’arc

)

A′B′. On en déduit que le
segment [A,B] est inclus dans l’épigraphe de f .
(ii)⇒ (i) Supposons l’épigraphe de f convexe.
Les cordes du graphe de f sont incluses dans l’épigraphe de f et sont donc au dessus des arcs. On en
déduit que la fonction f est convexe.
Ex :
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�

10.4.4.2 Inégalité des pentes

Définition
Pour f : I → R et a 6= b éléments de I , on note

τ(a, b) =
f(b)− f(a)

b− a

la pente (ou coefficient directeur) de la droite joignant les points d’abscisses a et b du graphe
de f .

Théorème
Soit f : I → R. On a équivalence entre :
(i) f est convexe ;
(ii) ∀a, b, c ∈ I , a < c < b⇒ τ(a, c) 6 τ(a, b) 6 τ(c, b) ;
(iii) ∀a, b, c ∈ I , a < c < b⇒ τ(a, c) 6 τ(c, b)

dém. :
(i)⇒ (ii) Supposons f convexe
Soit a, b, c ∈ I tels que a < c < b. On peut écrire c = (1− λ)a+ λb avec

λ =
c− a
b− a

∈ ]0, 1[
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Par convexité
f(c) = f ((1− λ)a+ λb) 6 (1− λ)f(a) + λf(b)

donc

f(c)− f(a) 6 λ(f(b)− f(a)) =
c− a
b− a

(f(b)− f(a))

d’où τ(a, c) 6 τ(a, b).
Aussi

f(b)− f(c) > (1− λ)(f(b)− f(a)) =
b− c
b− a

(f(b)− f(a))

ce qui fournit τ(a, b) 6 τ(b, c).
(ii)⇒ (iii) C’est entendu
(iii)⇒ (i) Supposons (iii)
Soit a, b ∈ I et λ ∈ [0, 1]. Montrons

f ((1− λ)a+ λb) 6 (1− λ)f(a) + λf(b)

Si a = b : ok
Si a 6= b, quitte à échanger a et b d’une part, et λ et 1− λ d’autre part, on peut supposer a < b.
Si λ = 0 ou λ = 1 : ok
Si λ ∈ ]0, 1[, posons c = (1− λ)a+ λb. Puisque a < c < b, on a τ(a, c) 6 τ(c, b) ce qui donne

f(c)− f(a) 6
c− a
b− c

(f(b)− f(c)) avec
c− a
b− c

=
c− a
b− a

b− a
b− c

=
λ

1− λ

puis
f(c) 6 (1− λ)f(a) + λf(b)

Ainsi f est convexe.
�

Corollaire
Si f : I → R est convexe alors, pour chaque x0 ∈ I , la fonction x 7→ τ(x0, x) est croissante

10.4.5 Fonctions convexes dérivables

Théorème
Soit f : I → R dérivable. On a équivalence entre :
(i) f est convexe ;
(ii) f ′ est croissante.
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dém. :
(i)⇒ (ii) Supposons f convexe. Soit a, b ∈ I tels que a < b et x ∈ ]a, b[.
On a

τ(a, x) 6 τ(a, b) 6 τ(b, x)

Quand x→ a+, on obtient f ′(a) 6 τ(a, b). Quand x→ b−, on obtient τ(a, b) 6 f ′(b).
Ainsi f ′(a) 6 f ′(b) et f ′ est une fonction croissante.
(ii)⇒ (i) Supposons f ′ croissante.
Soit a, b, c ∈ I tels que a < c < b.
Par le théorème des accroissements finis, il existe α ∈ ]a, c[ tel que τ(a, c) = f ′(α) et il existe β ∈ ]c, b[
tel que τ(c, b) = f ′(β). Puisque α 6 β, on obtient

τ(a, c) 6 τ(c, b)

On peut alors conclure que f est convexe en vertu du théorème d’inégalité des pentes.
�

Corollaire
Soit f : I → R deux fois dérivable. On a équivalence entre :
(i) f est convexe ;
(ii) f ′′ > 0.

dém. :
La monotonie de f ′ est donnée par le signe de f ′′.
�

Exemple Les fonctions x 7→ x2, x 7→ ex, x 7→ chx sont convexes.
En effet, ces fonctions sont de dérivées secondes positives.

Exemple La fonction x 7→ lnx est une concave.
En effet, sa dérivée seconde négative.

Exemple Etudions la convexité de la fonction f : x 7→ ln(1 + x2) définie sur R.
La fonction f est deux fois dérivable,

f ′(x) =
2x

1 + x2
et f ′′(x) = 2

1− x2

(1 + x2)2

du signe de 1− x2

On en déduit que f est convexe sur [−1, 1] et concave sur ]−∞,−1] et sur [1,+∞[.
Il y a inflexion aux points d’abscisse 1 et −1.
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Notons que nous ne dirons pas que f est concave sur la réunion ]−∞,−1] ∪ [1,+∞[ car la notion de
convexité d’une fonction réelle n’a de sens que pour une fonction définie sur un intervalle.

10.4.6 Inégalités de convexité
10.4.6.1 Position relative d’une courbe et de ses tangentes

Théorème
Si f : I → R dérivable est convexe alors son graphe Γf est au dessus de chacune de ses
tangentes.

dém. :
Soit a ∈ I . L’équation de la tangente T en a est

y = f ′(a)(x− a) + f(a)

Considérons la fonction g : I → R définie par

g(x) = f(x)− (f ′(a)(x− a) + f(a))

Par opérations, la fonction g est dérivable et g′(x) = f ′(x)− f ′(a).
La croissance de f ′ donne le signe de g′ et on en déduit que g admet un minimum en a avec g(a) = 0.
Par suite, pour tout x ∈ I , g(x) > 0 puis l’inégalité

f(x) > f ′(a)(x− a) + f(a)

�

Corollaire
Si f : I → R dérivable est concave alors son graphe Γf est en dessous de chacune de ses
tangentes.

dém. :
Il suffit de considérer la fonction −f qui est convexe.
�
10.4.6.2 Inégalités de convexité classiques

Exemple ∀x ∈ R, ex > 1 + x
En effet, la fonction x 7→ ex est convexe, en positionnant son graphe par rapport à sa tangente en 0, on
obtient la propriété.

Exemple ∀x > −1, ln(1 + x) 6 x
Puisque la fonction x 7→ ln(1 + x) est concave, il suffit de positionner son graphe par rapport à sa
tangente en 0.

Exemple ∀x ∈ [0, π/2] ,
2

π
x 6 sinx 6 x
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La fonction x 7→ sinx est concave sur [0, π/2], en positionnant son graphe par rapport à sa tangente en 0
et par rapport à sa corde joignant les points d’abscisse 0 et π/2, on obtient l’encadrement proposé.

10.4.6.3 Inégalité de Jensen

Théorème
Soit f : I → R une fonction convexe et n ∈ N?. On a

∀a1, . . . , an ∈ I , f(λ1a1 + · · ·+ λnan) 6 λ1f(a1) + · · ·+ λnf(an)

pour toute famille λ1, . . . , λn de réels positifs de somme 1.

dém. :
Posons Ai = (ai, f(ai)) points de l’épigraphe de f .
Puisque f est convexe, son épigraphe l’est aussi et celui-ci contient barycentre de la famille ((Ai, λi))16i6n.
Celui-ci est le couple (

n∑
i=1

λiai,

n∑
i=1

λif(ai)

)
et donc

f

(
n∑
i=1

λiai

)
6

n∑
i=1

λif(ai)

�

Corollaire
Pour f : I → R convexe, on a

∀a1, . . . , an ∈ I , f
(
a1 + · · ·+ an

n

)
6

1

n
(f(a1) + · · ·+ f(an))

dém. :
Il suffit de prendre λ1 = . . . = λn = 1/n
�

Exemple Montrons

∀a1, . . . , an ∈ R+, n
√
a1 . . . an 6

a1 + · · ·+ an
n
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Si l’un des ai est nul, c’est immédiat.
Sinon, exploitons la concavité de x 7→ lnx.
Pour tout a1, . . . , an > 0,

1

n
(ln a1 + · · ·+ ln an) 6 ln

(
a1 + · · ·+ an

n

)
donc

ln n
√
a1 . . . an 6 ln

(
a1 + · · ·+ an

n

)
puis en composant avec la fonction exponentielle qui est croissante, on obtient l’inégalité voulue.

10.4.7 Musculation : dérivabilité et continuité des fonctions convexes

Théorème
Si f : I → R est convexe alors en tout point x0 ∈ I qui n’est pas extrémité de I , f est dérivable
à droite et à gauche avec

f ′g(x0) 6 f ′d(x0)

dém. :
Soit a ∈ I tel que a < x0.
L’application restreinte τx0

: ]x0,+∞[ ∩ I est croissante et minorée par τ(a, x0), cette application
converge donc en x+

0 . Ainsi f est dérivable à droite en x0 et

f ′d(x0) > τ(a, x0)

L’application restreinte τx0
: ]−∞, x0[ ∩ I est croissante et majorée, en vertu de l’étude précédente, par

f ′d(x0). Cette application converge donc en x−0 et f est dérivable à gauche en x0 avec f ′g(x0) 6 f ′d(x0).
�

Corollaire
Si f : I → R est convexe alors f est continue en tout point intérieur à l’intervalle I .

dém. :
Car continue à droite et à gauche par dérivabilité à droite et à gauche.

�
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Chapitre 11

Intégration sur un intervalle
quelconque

On sait intégrer sur les segments [a, b] et on souhaite étendre la notion à tout intervalle et ainsi donner un
sens entre autre à

∫ +∞

0

e−t dt et
∫ 1

0

dt√
t

K désigne R ou C.

11.1 Intégration sur [a,+∞[

Soit a ∈ R.

11.1.1 Convergence

Définition
Soit f : [a,+∞[→ K continue par morceaux.

On dit que l’intégrale de f sur [a,+∞[ converge si l’intégrale partielle
∫ x

a

f(t) dt converge

quand x→ +∞.
On pose alors ∫ +∞

a

f(t) dt=
déf

lim
x→+∞

∫ x

a

f(t) dt

Cette intégrale s’écrit aussi
∫ +∞

a

f s’il n’est pas utile de préciser une variable d’intégration

(qui par ailleurs est muette) ou encore
∫

[a,+∞[

f(t) dt.

Remarque L’intégrale converge si, et seulement si, l’aire hachurée converge quand x→ +∞

267
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Attention : Par essence, une intégrale impropre est une limite, pour la manipuler il faut préalablement
en justifier l’existence.

Exemple Etude de
∫ +∞

0

e−t dt.

La fonction t 7→ e−t est définie et continue par morceaux sur [0,+∞[∫ x

0

e−t dt = 1− e−x −−−−−→
x→+∞

1

donc
∫ +∞

0

e−t dt converge et ∫ +∞

0

e−t dt = 1

Exemple Etude de
∫ +∞

0

1 dt.

La fonction t 7→ 1 est définie et continue par morceaux sur [0,+∞[.∫ x

0

1 dt = x −−−−−→
x→+∞

+∞ donc
∫ +∞

0

1 dt diverge.

Exemple Etude de
∫ +∞

1

dt

t
La fonction t 7→ 1/t est définie et continue par morceaux sur [1,+∞[∫ x

1

dt

t
= lnx −−−−−→

x→+∞
+∞ donc

∫ +∞

1

dt

t
diverge.
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Pour la fonction inverse, il y a trop d’espace entre la courbe et l’axe des abscisses pour que l’intégrale
converge, la fonction inverse converge trop lentement vers 0 en +∞.

11.1.2 Reste d’une intégrale convergente

Soit f : [a,+∞[→ K continue par morceaux.

Théorème
Pour tout b ∈ [a,+∞[, on a équivalence entre :

(i)
∫ +∞

a

f(t) dt converge ;

(ii)
∫ +∞

b

f(t) dt converge.

dém. :
On a ∫ x

a

f =

∫ b

a

f +

∫ x

b

f

donc une intégrale partielle converge si, et seulement si, l’autre converge aussi.
�

Corollaire
On ne change pas la nature d’une intégrale sur [a,+∞[ en modifiant les valeurs de la fonc-

tion intégrée sur [a, c]. La nature de
∫ +∞

a

f(t) dt ne dépend que du comportement de f au

voisinage de +∞.

Définition

Si
∫ +∞

a

f(t) dt converge alors on peut introduire l’intégrale
∫ +∞

x

f(t) dt pour tout x ∈

[a,+∞[.
La fonction ainsi définie s’appelle le reste de l’intégrale convergente.

Théorème

Si
∫ +∞

a

f(t) dt converge alors pour tout x > a

∫ +∞

a

f(t) dt =

∫ x

a

f(t) dt+

∫ +∞

x

f(t) dt

De plus ∫ +∞

x

f(t) dt −−−−−→
x→+∞

0

dém. :
Soit x ∈ [a,+∞[ fixé. On introduit y ∈ [x,+∞[ et on a∫ y

a

f(t) dt =

∫ x

a

f(t) dt+

∫ y

x

f(t) dt
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Quand y → +∞, on obtient ∫ +∞

a

f(t) dt =

∫ x

a

f(t) dt+

∫ +∞

x

f(t) dt

De plus ∫ +∞

x

f(t) dt =

∫ +∞

a

f(t) dt−
∫ x

a

f(t) dt −−−−−→
x→+∞

0

�

11.1.3 Cas des fonctions continues
Soit f : [a,+∞[→ K une fonction continue de primitive F .

Théorème
On a équivalence entre :

(i)
∫ +∞

a

f(t) dt converge ;

(ii) F (x) converge quand x→ +∞.
De plus, on a alors ∫ +∞

a

f(t) dt = lim
x→+∞

F (x)− F (a) =
déf

[F (x)]
+∞
a

Exemple Etude de
∫ +∞

0

dt

t2 + 1
L’intégrale converge car arctan t est primitive de l’intégrande et converge en +∞.
De plus ∫ +∞

0

dt

t2 + 1
= [arctan t]

+∞
0 =

π

2

Proposition

Si f est continue et si
∫ +∞

a

f converge alors

d

dx

(∫ +∞

x

f

)
= −f(x)

dém. :
Introduisons une primitive F de f . Puisque l’intégrale converge, F admet une limite en +∞ et on peut
écrire ∫ +∞

x

f = lim
+∞

F − F (x)

La fonction x 7→
∫ +∞

x

f est alors de classe C1 et

d

dx

(∫ +∞

x

f

)
= −F ′(x) = −f(x)
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�

11.1.4 Propriétés
11.1.4.1 Linéarité

Théorème
Soit f, g : [a,+∞[→ K continues par morceaux et λ ∈ K.

Si les intégrales
∫ +∞

a

f et
∫ +∞

a

g convergent alors
∫ +∞

a

f + g et
∫ +∞

a

λf convergent avec

∫ +∞

a

f + g =

∫ +∞

a

f +

∫ +∞

a

g et
∫ +∞

a

λf = λ

∫ +∞

a

f

Corollaire
L’ensemble constitué des fonctions continues par morceaux de [a,+∞[ vers K dont l’intégrale
converge définit un sous-espace vectoriel de C0

pm ([a,+∞[ ,K).

L’application f 7→
∫ +∞

a

f y définit une forme linéaire.

Exemple Si
∫ +∞

a

f + g et
∫ +∞

a

f convergent alors
∫ +∞

a

g converge.

En effet, on peut écrire
g = (f + g) + (−1)g

Attention : Pour exploiter la relation
∫ +∞

a

f + g =

∫ +∞

a

f +

∫ +∞

a

g, il faut préalablement justifier

la convergence d’au moins deux des intégrales engagées !
Ceci empêche d’écrire des aberrations telles∫ +∞

0

0 dt =

∫ +∞

0

1 dt+

∫ +∞

0

(−1) dt

ou, un peu moins grossièrement∫ +∞

1

dt

t(t+ 1)
=

∫ +∞

1

dt

t
−
∫ +∞

1

dt

t+ 1

Exemple Si
∫ +∞

a

f converge et
∫ +∞

a

g diverge alors
∫ +∞

a

f diverge.

Attention : Si
∫ +∞

a

f et
∫ +∞

a

g divergent alors on ne peut rien dire sur la nature de
∫ +∞

a

f + g.
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11.1.4.2 Positivité

Théorème
Soit f : [a,+∞[→ R continue par morceaux.

Si
∫ +∞

a

f converge et si f > 0 alors
∫ +∞

a

f > 0

dém. :
En tant qu’intégrale bien ordonnée d’une fonction positive, pour tout x > a, on a∫ x

a

f > 0

A la limite quand x→ +∞, on obtient
∫ +∞

a

f > 0.

�

Corollaire
Soit f, g : [a,+∞[→ R continues par morceaux

Si
∫ +∞

a

f et
∫ +∞

a

g convergent et si f 6 g alors

∫ +∞

a

f 6
∫ +∞

a

g

dém. :
Avec convergence, on a ∫ +∞

a

g −
∫ +∞

a

f =

∫ +∞

a

g − f > 0

�

Théorème
Soit f : [a,+∞[→ R continue.

Si f > 0 et si
∫ +∞

a

f converge avec
∫ +∞

a

f = 0 alors f est la fonction nulle.

dém. :
Introduisons F une primitive de f . La fonction F est croissante et puisque l’intégrale de f converge et
vaut 0, on a F (a) = lim

+∞
F . On en déduit que F est constante et donc f = F ′ = 0.

�
11.1.4.3 Conjugaison

Théorème
Soit f : [a,+∞[→ C continue par morceaux.

Si
∫ +∞

a

f converge alors
∫ +∞

a

f̄ convergent et alors

∫ +∞

a

f̄ =

∫ +∞

a

f
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dém. :
Par conjugaison de limites.
�

Corollaire
On a équivalence entre :

(i)
∫ +∞

a

f converge ;

(ii)
∫ +∞

a

Ref et
∫ +∞

a

Imf convergent.

De plus, on a alors ∫ +∞

a

f =

∫ +∞

a

Ref + i.

∫ +∞

a

Imf

Exemple Calcul de
∫ +∞

0

cos(ωt)e−t dt et
∫ +∞

0

sin(ωt)e−t dt.

Introduisons
∫ +∞

0

e(iω−1)t dt.

∫ x

0

eiωte−t dt =

∫ x

0

e(iω−1)t dt =

[
e(iω−1)t

iω − 1

]x
0

→
x→+∞

1

1− iω
=

1 + iω

1 + ω2

On en déduit ∫ +∞

0

cos(ωt)e−t dt =
1

1 + ω2
et
∫ +∞

0

sin(t)e−t dt =
ω

1 + ω2

11.2 Intégrabilité sur [a,+∞[

Soit a ∈ R.
11.2.1 Cas des fonctions positives

Théorème
Soit f : [a,+∞[→ R continue par morceaux. Si f est positive on a équivalence entre :

(i)
∫ +∞

a

f converge ;

(ii) ∃M ∈ R+,∀x ∈ [a,+∞[,
∫ x

a

f(t) dt 6M .

dém. :
Puisque f est positive, pour tout x 6 y ∈ [a,+∞[, on a∫ x

a

f(t) dt 6
∫ y

a

f(t) dt

L’intégrale partielle
∫ x

a

f(t) dt définit donc une fonction croissante de x. Si celle-ci est majorée alors

elle converge quand x→ +∞ et la réciproque est vraie.
�
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Remarque Au contraire, si
∫ +∞

a

f diverge avec f > 0 alors

∫ x

a

f −−−−−→
x→+∞

+∞

11.2.2 Comparaison de fonctions positives

Théorème
Soit f, g : [a,+∞[→ R continues par morceaux telles que 0 6 f 6 g.

Si
∫ +∞

a

g converge alors
∫ +∞

a

f aussi.

Si
∫ +∞

a

f diverge alors
∫ +∞

a

g aussi.

dém. :
Soit x ∈ [a,+∞[. Puisque f 6 g, on a∫ x

a

f(t) dt 6
∫ x

a

g(t) dt 6
∫ +∞

a

g(t) dt

La fonction f est positive et ses intégrales partielles sont majorées, l’intégrale de f sur [a,+∞[ est donc
convergente.
�

Exemple Nature de
∫ +∞

0

e−t

t+ 1
dt.

La fonction f : t 7→ e−t

t+ 1
est définie et continue par morceaux sur [0,+∞[.

Pour t > 0, on a 0 6 f(t) 6 e−t.

Or
∫ +∞

0

e−t dt converge donc, par comparaison de fonctions positives,
∫ +∞

0

e−t

t+ 1
dt converge.

Exemple Nature de
∫ +∞

1

ln(1 + t)

t
dt.

La fonction f : t 7→ ln(1 + t)

t
est définie et continue par morceaux sur [1,+∞[.

Pour t > 1, on a f(t) >
ln 2

t
> 0.

Or
∫ +∞

1

dt

t
diverge donc, par comparaison de fonctions positives,

∫ +∞

1

ln(1 + t)

t
dt diverge.

Théorème
Soit f, g : [a,+∞[→ R+ continues par morceaux.

Si f(t) ∼
t→+∞

g(t) alors les intégrales
∫ +∞

a

f et
∫ +∞

a

g ont même nature.
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dém. :
Pour t assez grand, on a la comparaison

1

2
g(t) 6 f(t) 6 2g(t)

qui est décisive !
�

11.2.3 Intégrabilité
Soit f : [a,+∞[→ K continue par morceaux.

Définition

On dit que f est intégrable sur [a,+∞[ si l’intégrale
∫ +∞

a

|f | converge.

On dit aussi que l’intégrale
∫ +∞

a

f est absolument convergente.

Remarque Si f est positive, il est équivalent de dire que f est intégrable sur [a,+∞[ que de dire que
son intégrale de f converge.

Exemple Intégrabilité de t 7→ cos(t)

1 + t2
sur [0,+∞[.

On

0 6

∣∣∣∣ cos(t)

1 + t2

∣∣∣∣ 6 1

1 + t2

Or il y a convergence de
∫ +∞

0

dt

1 + t2
donc, par comparaison de fonctions positives, il y a convergence

de l’intégrale
∫ +∞

0

∣∣∣∣ cos(t)

1 + t2

∣∣∣∣dt.
Ainsi, la fonction t 7→ cos(t)

1 + t2
est intégrable sur [0,+∞[.

Théorème

Si f est intégrable sur [a,+∞[ alors
∫ +∞

a

f converge et
∣∣∣∣∫ +∞

a

f

∣∣∣∣ 6 ∫ +∞

a

|f |

dém. :
Cas f à valeurs positives
C’est immédiat compte tenu des résultats qui précède.
Cas f à valeurs réelles
On pose f+ = sup(f, 0) et f− = sup(−f, 0).
Les fonctions f+, f− : I → R+ sont continues par morceaux et vérifient f = f+ − f−.
On a aussi |f | = f+ + f− donc 0 6 f+, f− 6 |f |.

Par comparaison de fonctions positives, les intégrales
∫ +∞

a

f+ et
∫ +∞

a

f− convergent puis, par opéra-

tions, l’intégrale
∫ +∞

a

f converge aussi.
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Cas f à valeurs complexes
On écrit f = Ref + iImf .
Ref, Imf : I → R sont continues par morceaux.

Puisque |Ref | , |Imf | 6 |f |, on a, par comparaison de fonctions positives, les intégrales
∫ +∞

a

|Ref | et∫ +∞

a

|Imf | convergent donc
∫ +∞

a

Ref et
∫ +∞

a

Imf convergent puis par opérations
∫ +∞

a

f converge

aussi.
Enfin, pour tout x ∈ [a,+∞[ ∣∣∣∣∫ x

a

f

∣∣∣∣ 6 ∫ x

a

|f |

donc à la limite quand x→ +∞ ∣∣∣∣∫ +∞

a

f

∣∣∣∣ 6 ∫ +∞

a

|f |

�
Bilan :Pour une fonction réelle ou complexe

f intégrable ⇒
∫ +∞

a

f converge

Pour une fonction positive, f = |f | donc

f intégrable ⇔
∫ +∞

a

f converge

Remarque Plus généralement, pour une fonction de signe constant, il y a aussi équivalence.
On peut encore approfondir : si f est de signe constant au voisinage de +∞ alors l’intégrabilité de f sur

[a,+∞[ équivaut à la convergence de l’intégrale
∫ +∞

a

f .

Attention : Il se peut que
∫ +∞

a

f converge alors que
∫ +∞

a

|f | diverge.

Ce phénomène se rencontre lorsque la convergence de l’intégrale provient d’une compensation entre
aires positive et négative.

Définition

Si
∫ +∞

a

f converge alors que
∫ +∞

a

|f | diverge, on dit que l’intégrale
∫ +∞

a

f est semi-

convergente.

Exemple Les intégrales
∫ +∞

0

sin t

t
dt et

∫ +∞

0

cos(t2) dt sont des intégrales semi-convergentes

fameuses.
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11.2.4 Intégrabilité par comparaison

11.2.4.1 Domination

Théorème
Soit f : [a,+∞[→ K et ϕ : [a,+∞[→ R+ continues par morceaux.
Si

∀t ∈ [a,+∞[ , |f(t)| 6 ϕ(t) avec ϕ intégrable

alors f est intégrable.

dém. :

L’intégrale
∫ +∞

a

ϕ(t) dt converge et donc, par comparaison de fonctions positives,
∫ +∞

a

|f(t)| dt converge.

Ainsi f est intégrable.
�

11.2.4.2 Comparaisons asymptotiques

Définition
Soit f, g : [a,+∞[→ K.
On dit que f est dominée par g au voisinage de +∞ si

∃M ∈ R+,∃A ∈ [a,+∞[ ,∀t > A, |f(t)| 6M |g(t)|

On écrit alors
f(t) =

t→+∞
O (g(t))

Remarque Il revient au même de dire qu’il est possible d’écrire au voisinage de +∞

f(t) = b(t)g(t) avec b une fonction bornée

Définition
Soit f, g : [a,+∞[→ K.
On dit que f est négligeable devant g au voisinage de +∞ si

∀ε > 0+,∃A ∈ [a,+∞[ ,∀t > A, |f(t)| 6 ε |g(t)|

On écrit alors
f(t) =

t→+∞
o (g(t))

Remarque Il revient au même de dire qu’il est possible d’écrire au voisinage de +∞

f(t) = ε(t)g(t) avec ε(t) −−−−→
t→+∞

0
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Définition
Soit f, g : [a,+∞[→ K.
On dit que f est équivalente à g au voisinage de +∞ si l’on peut écrire

f(t) =
t→+∞

g(t) + o (g(t))

On écrit alors
f(t) ∼

t→+∞
g(t)

Remarque Il revient au même de dire qu’il est possible d’écrire au voisinage de +∞

f(t) = u(t)g(t) avec u(t) −−−−→
t→+∞

1

11.2.4.3 Intégrabilité par comparaison asymptotique

Théorème
Soit f : [a,+∞[→ K et g : [a,+∞[→ R+ continues par morceaux.
Si f(t) =

t→+∞
O (g(t)) et si g est intégrable sur [a,+∞[ alors f est intégrable sur [a,+∞[

dém. :
Il existe A ∈ [a,+∞[ et M ∈ R+ vérifiant

∀t ∈ [A,+∞[ , |f(t)| 6Mg(t)

En considérant ϕ(t) = Mg(t), on peut affirmer par domination qu’il y a convergence de
∫ +∞

A

|f | et

donc de
∫ +∞

a

|f | qui n’en diffère que d’une constante.

�

Corollaire
Si f(t) =

t→+∞
o (g(t)) et si g est intégrable sur [a,+∞[ alors f est intégrable sur [a,+∞[

dém. :
f(t) =

t→+∞
o (g(t)) alors f(t) =

t→+∞
O (g(t)).

�

Corollaire
Si f(t) ∼

t→+∞
g(t) alors l’intégrabilité de f sur [a,+∞[ équivaut à celle de g.

dém. :
si f(t) ∼

t→+∞
g(t) alors f(t) =

t→+∞
O (g(t)) et aussi g(t) =

t→+∞
O (f(t)) de sorte que l’intégrabilité d’une

fonction entraîne l’intégrabilité de l’autre.
�

Attention : Ces énoncés sont faux en terme de convergence d’intégrale. Il est indispensable de
s’exprimer en terme d’intégrabilité. Cependant, on peut énoncer le théorème d’équivalence suivant :
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11.2.5 Intégrales de Riemann
Soit α ∈ R.
Théorème ∫ +∞

1

dt

tα
converge si, et seulement si, α > 1

dém. :
La fonction t 7→ 1/tα est définie et continue par morceaux sur [1,+∞[.
Pour α 6 1, ∫ x

1

dt

tα
>
∫ x

1

dt

t
= lnx −−−−−→

x→+∞
+∞

et donc
∫ +∞

1

dt

tα
diverge.

Pour α > 1, ∫ x

1

dt

tα
=

[
− 1

α− 1

1

tα−1

]x
1

−−−−−→
x→+∞

1

α− 1

et donc
∫ +∞

1

dt

tα
converge.

�

Exemple
∫ +∞

1

dt

t2
et
∫ +∞

1

dt

t1,00001
convergent alors que

∫ +∞

1

dt

t
et
∫ +∞

1

dt√
t

divergent.

Corollaire
La fonction t 7→ 1/tα est intégrable sur [1,+∞[ si, et seulement si, α > 1.

11.2.6 En pratique

Exemple Nature de
∫ +∞

0

dt

t4 + 1
.

La fonction f : t 7→ 1/(t4 + 1) est définie et continue par morceaux sur [0,+∞[.
Quand t→ +∞,
f(t)→ 0, on ne peut rien en conclure

f(t) ∼
t→+∞

1

t4

Or t 7→ 1/t4 est intégrable sur [1,+∞[ (car 4 > 1 ) donc f est intégrable sur [1,+∞[, puis sur [0,+∞[.

Ainsi, l’intégrale
∫ +∞

0

dt

t4 + 1
est convergente.

Exemple Nature de
∫ +∞

0

t+ 1

t2 + 1
dt.

La fonction f : t 7→ (t+ 1)/(t2 + 1) est définie et continue par morceaux sur [0,+∞[.
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On a
t+ 1

t2 + 1
∼

t→+∞

1

t

Or l’intégrale
∫ +∞

1

dt

t
diverge donc, par équivalence de fonctions positives, l’intégrale

∫ +∞

1

t+ 1

t2 + 1
dt

diverge.

On en déduit la divergence de
∫ +∞

0

t+ 1

t2 + 1
dt.

Exemple Nature de
∫ +∞

0

e−t
2

dt.

La fonction f : t 7→ e−t
2

est définie et continue par morceaux sur [0,+∞[.
Quand t→ +∞, f(t)→ 0 mais ce n’est en rien décisif. Cependant t2f(t) −−−−→

t→+∞
0 donc

f(t) =
t→+∞

o

(
1

t2

)
Or t 7→ 1/t2 est intégrable sur [1,+∞[ (car 2 > 1 ) donc f est intégrable sur [0,+∞[.

L’intégrale
∫ +∞

0

e−t
2

dt converge.

Exemple Nature de
∫ +∞

0

cos(t)

1 + t2
dt.

La fonction f : t 7→ cos(t)/(1 + t2) est définie et continue par morceaux sur [0,+∞[.
On a

f(t) ∼
t→+∞

cos(t)

t2

donc

t3/2f(t) ∼
t→+∞

cos(t)√
t
→ 0

Ainsi f(t) =
t→+∞

o(1/t3/2) et on peut conclure que f est intégrable sur [0,+∞[ et
∫ +∞

0

cos t

1 + t2
dt

converge.

Exemple Nature de
∫ +∞

1

1

ln(t+ 1)
dt.

La fonction f : t 7→ 1/ln(t+ 1) est définie et continue par morceaux sur [1,+∞[.
On a

tf(t) −−−−→
t→+∞

+∞

Il existe A ∈ [1,+∞[ tel que pour t > A, tf(t) > 1 et donc f(t) > 1/t.

Or
∫ +∞

1

dt

t
diverge, donc par comparaison de fonctions positives (et moyennant un découpage des

intégrales en A ) on peut conclure que l’intégrale
∫ +∞

1

1

ln(t+ 1)
dt diverge.
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Bilan :Pour f : [a,+∞[→ K continue par morceaux :
- Si f(t) ∼

t→+∞
C/tα (avec C 6= 0 ) quand t→ +∞ alors

f est intégrable sur [a,+∞[ si, et seulement si, α > 1 ;

- Si on détermine α > 1 tel que tαf(t) −−−−→
t→+∞

0 quand t→ +∞ alors f est intégrable sur [a,+∞[ ;

- Si tf(t) −−−−→
t→+∞

` 6= 0 alors l’intégrale de f sur [a,+∞[ diverge.

11.2.7 Intégrabilité et limite en +∞

Théorème
Soit f : [a,+∞[→ K continue par morceaux.
Si f(t)→ ` 6= 0 alors l’intégrale de f sur [a,+∞[ diverge.

dém. :
Cas K = R
Quitte à considérer −f , on peut supposer ` > 0. Puisque f tend vers ` en +∞, il existe A ∈ [a,+∞[
vérifiant

∀t > A, f(t) > `/2

et alors ∫ x

a

f(t) dt =

∫ A

a

f(t) dt+

∫ x

A

f(t) dt

et donc ∫ x

a

f(t) dt > Cte +
`

2
(x− a) −−−−−→

x→+∞
+∞

Ainsi l’intégrale de
∫ +∞

a

f(t) dt diverge (et donc f n’est pas intégrable)

Cas K = C
On raisonne par parties réelle ou imaginaire sachant que l’une des deux fonctions ne tend pas vers 0
en +∞.
�

Attention : Etonnamment, la condition f(t) −−−−→
t→+∞

0 n’est pas une condition nécessaire

d’intégrabilité.

Exemple Soit f : [0,+∞[→ R la fonction continue définie par
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f est intégrable mais n’est pas de limite nulle en +∞.
En effet, la fonction f est positive et∫ x

0

f(t) dt 6
∫ bxc+1

0

f(t) dt =

bxc+1∑
n=1

1

2n
6

+∞∑
n=1

1

2n
= 1

Les intégrales partielles de f sont majorées et donc
∫ +∞

0

f(t) dt converge.

Aussi, f ne tend pas vers 0 en +∞ car

f

(
n+

1

2n+1

)
= 1 −−−−−→

n→+∞
1

11.3 Extension à un intervalle quelconque

11.3.1 Intégration sur un intervalle semi ouvert
11.3.1.1 Intégration sur [a, b[

Soit a ∈ R et b ∈ R ∪ {+∞} avec a < b.

Définition
Soit f : [a, b[ → K continue par morceaux. On dit que l’intégrale de f sur [a, b[ converge si

l’intégrale partielle
∫ x

a

f(t) dt converge quand x→ b−.

On pose alors ∫ b

a

f(t) dt=
déf

lim
x→b−

∫ x

a

f(t) dt

encore notée
∫

[a,b[

f(t) dt.

On peut aussi introduire le reste d’intégrale convergente∫ b

x

f(t) dt −−−−→
x→b−

0

Remarque L’intégrale converge si, et seulement si, l’aire hachurée converge quand x→ b−
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Exemple Etude de
∫ 1

0

dt√
1− t2

.

Il s’agit d’une intégrale impropre en la borne 1 (i.e. d’une intégrale sur [0, 1[ )
Puisque ∫ x

0

dt√
1− t2

= [arcsin t]
x
0 = arcsinx −−−−→

x→1−

π

2

Ainsi l’intégrale impropre
∫ 1

0

dt√
1− t2

converge et vaut
π

2
.

On peut aussi procéder à un calcul plus immédiat assurant directement la convergence∫ 1

0

dt√
1− t2

=

∫
[0,1[

dt√
1− t2

= [arcsin t]
1−

0 =
π

2

11.3.1.2 Intégration sur ]a, b]

Soit a ∈ R ∪ {−∞} et b ∈ R avec a < b.

Définition
Soit f : ]a, b]→ K continue par morceaux avec a ∈ R ∪ {−∞} et b ∈ R.

On dit que l’intégrale de f sur ]a, b] converge si l’intégrale partielle
∫ b

x

f(t) dt converge quand

x→ a+.
On pose alors ∫

]a,b]

f(t) dt =

∫ b

a

f(t) dt = lim
x→a+

∫ b

x

f(t) dt

et on peut introduire le reste d’intégrale convergente∫ x

a

f(t) dt −−−−→
x→a+

0

Exemple Etude de
∫ 1

0

dt√
t
.

L’intégrale est impropre en la borne 0.
La fonction t 7→ 1/

√
t est définie et continue par morceaux sur ]0, 1].∫ 1

x

dt√
t

=
[
2
√
t
]1
x

= 2− 2
√
x −−−−→

x→0+
2

donc l’intégrale impropre
∫ 1

0

dt√
t

converge et

∫ 1

0

dt√
t

= 2
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Exemple Etude de
∫ 1

0

dt

t
.

L’intégrale est impropre en la borne 0.
La fonction t 7→ 1/t est définie et continue par morceaux sur ]0, 1]∫ 1

x

dt

t
= − lnx −−−−→

x→0+
+∞

donc l’intégrale impropre
∫ 1

0

dt

t
diverge.

Pour la fonction inverse, il y a trop d’espace entre la courbe et l’axe des ordonnées pour que l’intégrale
converge, cette fonction tend trop rapidement vers +∞ en 0+.

11.3.1.3 Lien avec une éventuelle intégration sur [a, b]

La notation
∫ b

a

f(t) dt peut être ambiguë dans le cas où f est définie et continue par morceaux sur [a, b].

Cependant, il n’en est rien en vertu du résultat suivant.

Proposition
Si f : [a, b]→ K continue par morceaux alors∫ x

a

f(t) dt −−−−→
x→b−

∫ b

a

f(t) dt

où l’intégrale limite est comprise au sens de l’intégration sur un segment

dém. :
La fonction f est continue par morceaux sur le segment [a, b], elle y est donc bornée par un certain
M ∈ R+. On a alors ∣∣∣∣∣

∫ b

a

f(t) dt−
∫ x

a

f(t) dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

x

f(t) dt

∣∣∣∣∣ 6
∫ b

x

|f(t)| dt

puis ∣∣∣∣∣
∫ b

a

f(t) dt−
∫ x

a

f(t) dt

∣∣∣∣∣ 6
∫ b

x

M dt = M(b− x) −−−−−→
x→+∞

0
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�

Définition
Lorsqu’une fonction f est définie et continue par morceaux sur un segment [a, b] on dit encore
que son intégrale converge et l’on a∫

[a,b]

f(t) dt =

∫
[a,b[

f(t) dt =

∫
]a,b]

f(t) dt

Cette valeur commune est celle désignée par∫ b

a

f(t) dt

Remarque Soit f : [a, b[→ K continue. Si f(t) −−−−→
t→b−

` ∈ K alors on peut prolonger f par continuité

en b. La fonction ainsi obtenue étant alors continue sur [a, b], on peut affirmer que l’intégrale sur [a, b[
converge et vaut l’intégrale sur [a, b]. On dit alors que l’intégrale est faussement impropre en b.

Exemple Etude de
∫ π/2

0

sin t

t
dt.

L’intégrale converge car faussement impropre en 0 puisque

sin t

t
−−−−→
t→0+

1

11.3.2 Intégrale sur un intervalle ouvert

Définition
Soit f : ]a, b[→ K continue par morceaux avec a ∈ R ∪ {−∞} et b ∈ R ∪ {+∞}.
On dit que l’intégrale de f sur ]a, b[ converge si, pour c ∈ ]a, b[, les intégrales de f sur ]a, c] et
sur [c, b[ convergent. On pose alors∫

]a,b[

f =
déf

∫
]a,c]

f +

∫
[c,b[

f

ou encore ∫ b

a

f(t) dt =

∫ c

a

f(t) dt+

∫ b

c

f(t) dt

Remarque Ni la notion, ni la valeur de l’intégrale ne dépendent du choix de c ∈ ]a, b[.

Remarque Si f : [a, b[→ K est continue par morceaux, la convergence et la valeur des intégrales∫
]a,b[

f(t) dt et
∫

[a,b[

f(t) dt sont les mêmes et encore une fois la notation
∫ b

a

f(t) dt ne crée pas

d’ambiguïté.
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Exemple Etude de
∫ +∞

−∞

dt

1 + t2
.

La fonction t 7→ 1

1 + t2
est définie et continue par morceaux sur R.

R = ]−∞, 0] ∪ [0,+∞[∫ x

0

dt

1 + t2
= arctanx −−−−−→

x→+∞

π

2
donc

∫
[0,+∞[

dt

1 + t2
converge et vaut

π

2
.∫ 0

x

dt

1 + t2
= − arctan(x) −−−−−→

x→−∞

π

2
donc

∫
]−∞,0]

dt

1 + t2
converge et vaut

π

2
.

Par suite
∫ +∞

−∞

dt

1 + t2
converge et ∫ +∞

−∞

dt

1 + t2
= π

Exemple Etude de
∫
R
tdt.

La fonction t 7→ t est définie et continue par morceaux sur R.
R = ]−∞, 0] ∪ [0,+∞[∫ x

0

tdt =
1

2
x2 −−−−−→

x→+∞
+∞ donc

∫
[0,+∞[

tdt diverge puis
∫
R
tdt aussi.

Attention : Ici
∫ x

−x
tdt = 0 −−−−−→

x→+∞
0. On n’aurait pu vouloir poser

∫
R
tdt = 0 mais cela n’est pas

conforme à la définition.

En fait, on peut aussi remarquer
∫ x+1

−x
tdt = x+

1

2
−−−−−→
x→+∞

+∞ et cette fois-ci
∫
R
tdt n’a plus de

sens.
Pour cette raison, la convergence d’une l’intégrale sur ]a, b[ s’étudie en la coupant en deux et non en
étudiant conjointement les deux bornes.

11.3.3 Propriétés
Les propriétés calculatoires de linéarité, de positivité et de conjugaison présentées pour les intégrales
sur [a,+∞[ restent vraies pour une intégration sur un intervalle I quelconque et se démontrent par des
procédés analogues.

Théorème
L’ensemble des fonctions continues par morceaux de I vers K dont l’intégrale converge est

un sous-espace vectoriel de l’espace C0
pm(I,K) et l’application f 7→

∫
I

f(t) dt y définit une

forme linéaire.

Théorème
Pour f : I → R continue par morceaux.

Si f > 0 alors
∫
I

f(t) dt > 0.
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Théorème
Pour f : I → R continue

Si f > 0 et si
∫
I

f(t) dt = 0 alors f est la fonction nulle.

11.3.4 Relation de Chasles

Soit f : I → C est continue par morceaux telle que
∫
I

f converge.

Pour a < b ∈ R̄ des éléments ou des extrémités de I , la théorie qui précède permet de donner un sens à

∫ b

a

f(t) dt

en tant qu’intégrale convergente de f sur [a, b], ]a, b], [a, b[ ou ]a, b[ selon les possibilités. Si plusieurs
interprétations sont possibles, celles-ci se correspondent. On pose encore

∫ a

b

f(t) dt = −
∫ b

a

f(t) dt et
∫ a

a

f(t) dt = 0

On peut alors énoncer le résultat suivant

Théorème

Soit f : I → C continue par morceaux telle que
∫
I

f converge.

Pour tous a, b, c éléments ou extrémités de I , on a∫ b

a

f(t) dt =

∫ c

a

f(t) dt+

∫ b

c

f(t) dt

avec convergence des intégrales engagées.

dém. :
Il suffit d’étudier tous les cas de figures possibles. . .

�
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11.4 Intégrabilité sur un intervalle quelconque

11.4.1 Cas des fonctions positives

Théorème
Soit f : I → R continue par morceaux et positive.
On a équivalence entre :

(i)
∫
I

f converge ;

(ii) ∃M ∈ R,∀ [α, β] ⊂ I,
∫ β

α

f 6M .

dém. :
Notons a < b ∈ R̄ les extrémités de I .

(i)⇒ (ii) Supposons que
∫
I

f =

∫ b

a

f converge. Pour tout [α, β] ⊂ I ,

∫ b

a

f =

∫ α

a

f +

∫ β

α

f +

∫ b

β

f >
∫ β

α

f

(ii)⇒ (i) Supposons (ii)

Cas I = [a, b[ : l’intégrale partielle
∫ x

a

f est croissante sur [a, b[ et majorée par M donc converge en b−.

Ainsi
∫

[a,b[

f converge.

Cas I = ]a, b] : c’est analogue
Cas I = ]a, b[ : on découpe l’intervalle en c ∈ ]a, b[.

�

Corollaire
Soit f, g : I → R continues par morceaux telles que 0 6 f 6 g.

Si
∫
I

g converge alors
∫
I

f aussi.

Si
∫
I

f diverge alors
∫
I

g aussi.
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11.4.2 Intégrabilité

Définition
On dit qu’une fonction f : I → K continue par morceaux est intégrable sur I si l’intégrale∫
I

|f(t)| dt converge. On dit encore que l’intégrale
∫
I

f(t) dt est absolument convergente.

Exemple Si f : [a, b]→ K est continue par morceaux alors f est intégrable sur [a, b] mais aussi sur
]a, b], [b, a[ et ]a, b[.

Théorème

Si f : I → K continue par morceaux est intégrable alors l’intégrale
∫
I

f converge et

∣∣∣∣∫
I

f

∣∣∣∣ 6 ∫
I

|f |

dém. :
Cas f à valeurs positives : C’est immédiat par définition.
Cas f à valeurs réelles :
On pose f+ = sup(f, 0) et f− = sup(−f, 0).
Les fonctions f+, f− : I → R+ sont continues par morceaux et vérifient f = f+ − f−.
On a aussi |f | = f+ + f− donc 0 6 f+, f− 6 |f |.

Par comparaison de fonctions positives, les intégrales
∫
I

f+ et
∫
I

f− convergent puis, par opérations,

l’intégrale
∫
I

f converge aussi.

Cas f à valeurs complexes
On écrit f = Ref + iImf .
Ref, Imf : I → R sont continues par morceaux.

Puisque |Ref | , |Imf | 6 |f |, on a, par comparaison de fonctions positives,
∫
I

|Ref | et
∫
I

|Imf | convergent

donc
∫
I

Ref et
∫
I

Imf convergent puis par opérations
∫
I

f aussi.

Démontrons maintenant l’inégalité ∣∣∣∣∫
I

f

∣∣∣∣ 6 ∫
I

|f |

Notons a < b ∈ R̄ les extrémités de I .
Posons c ∈ ]a, b[
Pour x ∈ ]a, c] et y ∈ [c, b[, ∣∣∣∣∫ y

x

f

∣∣∣∣ 6 ∫ y

x

|f |

donne ∣∣∣∣∫ c

x

f +

∫ y

c

f

∣∣∣∣ 6 ∫ c

x

|f |+
∫ y

c

|f |

A la limite quand x→ a+ ∣∣∣∣∣
∫

]a,c]

f +

∫ y

c

f

∣∣∣∣∣ 6
∫

]a,c]

|f |+
∫ y

c

|f |
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puis quand y → b−, on obtient ∣∣∣∣∣
∫

]a,c]

f +

∫
[c,b[

f

∣∣∣∣∣ 6
∫

]a,c]

|f |+
∫

[c,b[

|f |

ce qui donne ∣∣∣∣∫
I

f

∣∣∣∣ 6 ∫
I

|f |

�
Bilan :Pour une fonction réelle ou complexe

f intégrable ⇒
∫
I

f converge

Pour une fonction positive, f = |f | donc

f intégrable ⇔
∫
I

f convergence

Plus généralement, pour une fonction de signe constant, il y a équivalence.

Attention : Il se peut que
∫
I

f converge et
∫
I

|f | diverge. Dans ce cas, on dit que l’intégrale
∫
I

f est

semi-convergente.

11.4.3 Opérations
11.4.3.1 Sur les fonctions

Théorème
Soit f, g : I → K continues par morceaux et λ, µ ∈ K.
Si f et g sont intégrables alors λf + µg l’est aussi.

dém. :
On a

|λf + µg| 6 |λ| |f |+ |µ| |g|

Or
∫
I

|f(t)| dt et
∫
I

|g(t)| dt convergent donc, par opérations
∫
I

|λ| |f(t)|+ |µ| |g(t)| dt converge.

Par comparaison de fonctions positives,
∫
I

|λf + µg| converge et donc λf + µg est intégrable.

�

Corollaire
L’ensemble L1(I,K) formé des fonctions de I vers K continues par morceaux et intégrable

et un sous-espace vectoriel de l’espace C0
pm(I,K) et l’application f 7→

∫
I

f(t) dt définit une

forme linéaire sur L1(I,K).

Remarque En revanche, on ne peut rien dire quant au produit de deux fonctions intégrables.
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Par exemple 1/
√
t est intégrable sur ]0, 1] alors que

1

t
=

1√
t
× 1√

t
ne l’est pas.

Cependant, si f2 et g2 sont intégrables sur I alors le produit fg l’est aussi car

|fg| 6 1

2

(
|f |2 + |g|2

)

11.4.3.2 Sur l’intervalle

Proposition
Soit f : I → K continue par morceaux et J un intervalle inclus dans I .
Si f est intégrable sur I alors f est intégrable sur J .

dém. :
Pour tout [α, β] ⊂ J , on a ∫ β

α

|f(t)| dt 6
∫
I

|f(t)| dt = M

et donc
∫
J

|f(t)| dt converge.

�

Proposition
Soit f : ]a, b[→ K continue par morceaux.
f est intégrable sur ]a, b[ si, et seulement si, f est intégrable sur ]a, c] et sur [c, b[.

dém. :
Car par définition∫

]a,b[

|f(t)| dt converge si, et seulement si,
∫

]a,c]

|f(t)| dt et
∫

[c,b[

|f(t)| dt convergent

�

11.4.4 Intégrabilité par comparaison
11.4.4.1 Domination

Théorème
Soit f : I → K et ϕ : I → R+ continues par morceaux.
Si

∀t ∈ I, |f(t)| 6 ϕ(t) avec ϕ intégrable

alors ϕ est intégrable.

dém. :
Par comparaison de fonctions positives, on obtient la convergence de

∫
I

|f(t)| dt.

�

Exemple Si I est un intervalle borné et si f : I → K est continue par morceaux et bornée alors f est
intégrable sur I .
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11.4.4.2 Comparaison asymptotique

Théorème
Soit f, g : [a, b[→ C continues par morceaux avec a ∈ R et b ∈ R ∪ {+∞}.
Si f(t) =

t→b−
O (g(t)) et si g est intégrable alors f est intégrable.

Corollaire
Si f(t) =

t→b−
o (g(t)) avec g intégrable alors f l’est aussi.

Si f(t) ∼
t→b−

g(t) alors f est intégrable si, et seulement si, g l’est.

Remarque On peut énoncer des résultats analogues pour une étude d’intégrabilité sur ]a, b].

Exemple Soit f, g : [a, b[→ R+ continues par morceaux.

Si f(t) ∼
t→b−

g(t) alors les intégrales
∫

[a,b[

f(t) dt et
∫

[a,b[

g(t) dt ont même nature.

11.4.5 Intégrales de Riemann

11.4.5.1 Au voisinage de l’infini

Rappelons le résultat suivant.

Théorème ∫ +∞

1

dt

tα
converge si, et seulement si, α > 1

Par considération de symétrie, on a aussi

Théorème ∫ −1

−∞

dt

|t|α
converge si, et seulement si, α > 1

11.4.5.2 Au voisinage d’une extrémité finie

Théorème
Soit a < b deux réels et α ∈ R∫ b

a

dt

(t− a)α
converge si, et seulement si, α < 1

dém. :

Etude de
∫ b

a

dt

(t− a)α
.
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L’intégrale est impropre en a.
Cas α = 1 ∫ b

x

dt

t− a
= [ln (t− a)]

b
x = ln(b− a)− ln(x− a) −−−−→

x→a+
+∞

et donc l’intégrale
∫ b

a

dt

t− a
diverge.

Cas α 6= 1
On a ∫ b

x

dt

(t− a)α
=

[
1

1− α
1

(t− a)α−1

]b
x

−−−−→
x→a+

 (b− a)1−α

1− α
si α < 1

+∞ si α > 1

et donc l’intégrale
∫ b

a

dt

(t− a)α
converge si, et seulement si, α < 1.

�

Exemple
∫ 1

0

dt√
t
,
∫ 1

0

dt

t0,999
convergent.∫ 1

0

dt

t
et
∫ 1

0

dt

t2
divergent.

Exemple Pour λ ∈ R,
∫ 1

0

tλ dt =

∫ 1

0

dt

t−λ
converge si, et seulement si, λ > −1.

Exemple L’intégrale
∫ +∞

0

dt

tα
diverge pour toute valeur du réel α.

Théorème
Soit a < b deux réels et α ∈ R∫ b

a

dt

(b− t)α
converge si, et seulement si, α < 1

dém. :
C’est une configuration symétrique de la précédente.
�

Exemple
∫ 1

0

dt√
1− t

converge alors que
∫ 1

0

dt

1− t
diverge.
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11.4.6 En pratique
11.4.6.1 Intégrabilité sur [a,+∞[ ou ]−∞, a]

Les démarches d’intégrabilité déjà vu sur [a,+∞[ se transposent à ]−∞, a] en écrivant |t|α au lieu de tα

lorsque l’exposant α est non entier.

Exemple Nature de
∫ +∞

−∞
e−t

2

dt.

La fonction f : t 7→ e−t
2

est définie et continue par morceaux sur ]−∞,+∞[.
On a t2f(t) −−−−→

t→+∞
0 donc f est intégrable sur [0,+∞[

On a t2f(t) −−−−→
t→−∞

0 donc f est intégrable sur ]−∞, 0].

Finalement f est intégrable sur R.

11.4.6.2 Intégrabilité sur ]0, a]

Exemple Nature de
∫ +∞

0

t

et − 1
dt.La fonction f : t 7→ t/(et − 1) est définie et continue par

morceaux sur ]0,+∞[.
On a

t

et − 1
∼

t→0+

t

t
→ 1

La fonction est prolongeable par continuité et l’intégrale est faussement impropre en 0.
On a aussi

t2 × t

et − 1
∼

t→+∞
t3e−t −−−−→

t→+∞
0

et donc f est intégrable sur [1,+∞[.
Finalement, f est intégrable sur ]0,+∞[.

Exemple Nature de
∫ 1

0

cos t√
t

dt.

La fonction f : t 7→ cos(t)/
√
t est définie et continue par morceaux sur ]0, 1].

On a f(t) −−−−→
t→0+

+∞ mais ce n’est en rien décisif.

Cependant
f(t) ∼

t→0+
1/
√
t

or t→ 1/
√
t est intégrable sur ]0, 1] ( α = 1/2 < 1 ) donc f est intégrable sur ]0, 1] et

∫ 1

0

cos t√
t

dt

converge.

Exemple Nature de
∫ 1

0

ln tdt.

La fonction f : t 7→ ln t est définie et continue par morceaux sur ]0, 1].√
tf(t) −−−−→

t→+∞
0 donc f(t) =

t→+∞
o
(

1/
√
t
)

.

Or t→ 1/
√
t est intégrable sur ]0, 1] ( α = 1/2 < 1 ) donc f est intégrable sur ]0, 1] et

∫ 1

0

ln tdt

converge.
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Exemple Nature de
∫ 1

0

ln t

t
dt.

La fonction f : t 7→ ln(t)/t est définie et continue par morceaux sur ]0, 1].
Quand t→ 0+, tf(t)→ −∞.
Il existe a > 0 tel que sur ]0, a], f(t) 6 −1/t 6 0.

Par comparaison de fonctions négatives, l’intégrale
∫ 1

0

ln t

t
dt diverge.

Bilan :Pour f : ]0, a]→ C continue par morceaux :
- si f(t)→ ` ∈ C alors f est intégrable sur ]0, a] ;
- si f(t) ∼

t→0+
C/tα alors f est intégrable sur ]0, a] si, et seulement si, α < 1 ;

- s’il existe α < 1 vérifiant tαf(t) −−−−→
t→0+

0 alors f est intégrable sur ]0, a] ;

- si tf(t) −−−−→
t→0+

` 6= 0 alors l’intégrale de f sur ]0, a] diverge.

11.4.6.3 Intégration ]a, b] ou [a, b[

On transpose les démarches ci-dessus. Il pourra être pertinent de se ramener en 0 par translation/symétrie
de la variable pour mieux percevoir les ordres de grandeur.

Exemple Nature de
∫ 1

0

dt√
1− t3

.

La fonction f : t 7→ 1/
√

1− t3 est définie et continue par morceaux sur [0, 1[.
Quand t→ 1−, t = 1− h avec h→ 0+.

f(t) ∼ 1√
3h

=
1/
√

3√
1− t

Or t 7→ 1/
√

1− t est intégrable sur [0, 1[ donc f aussi et
∫ 1

0

dt√
1− t3

converge.

Exemple Nature de
∫ +∞

1

dt

t2 − 1
.

La fonction f : t 7→ 1/(t2 − 1) est définie et continue par morceaux par morceaux sur ]1,+∞[.
Quand t→ 1+, t = 1 + h avec h→ 0+.

f(t) ∼ 1

2h
=

1

2(t− 1)

Or t 7→ 1

t− 1
n’est pas intégrable sur ]1, 2] donc f non plus.

A fortiori, f n’est pas intégrable sur ]1,+∞[.

Puisque f est de signe constant, on peut affirmer que l’intégrale
∫ +∞

1

dt
t2 − 1

diverge.

Exemple Etude de
∫ 1

0

t− 1

ln t
dt.
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La fonction f : t 7→ (t− 1)/ln t est définie et continue par morceaux sur ]0, 0[ = ]0, 1/2] ∪ [1/2, 1[.
D’une part

f(t) −−−−→
t→0+

0

donc f est intégrable sur ]0, 1/2].
D’autre part

f(t) −−−−→
t→1−

1

donc f est intégrable sur [1/2, 1[.

Finalement f est intégrable sur ]0, 1[ et
∫ 1

0

t− 1

ln t
dt converge.

Elle vaut ln 2, mais c’est une longue histoire. . .

11.5 Calcul d’intégrales impropres

11.5.1 Par les intégrales partielles ou détermination de primitive

Pour justifier l’existence tout en calculant
∫ b

a

f(t) dt =

∫
[a,b[

f(t) dt on peut

- calculer l’intégrale partielle
∫ x

a

f(t) dt puis passer à la limite quand x→ b−,

- introduire une primitive F de f (supposée continue) et exploiter
∫

[a,b[

f(t) dt = [F ]
b−

a .

Pour
∫ b

a

f(t) dt =

∫
]a,b[

f(t) dt on peut

- calculer
∫ y

x

f(t) dt puis passer à la limite quand x→ a+ et y → b−,

- introduire une primitive F de f et exploiter
∫

]a,b[

f(t) dt = [F ]
b−

a+ .

Exemple Calcul de
∫ +∞

1

dt

t(t+ 1)
.

On peut justifier l’existence a priori de l’intégrale par l’argument d’intégrabilité

1

t(t+ 1)
∼

t→+∞

1

t2

Ce qui suit va aussi justifier l’existence tout en donnant la valeur
On calcule l’intégrale grâce à la décomposition en éléments simples

1

t(t+ 1)
=

1

t
− 1

t+ 1

1ère méthode :∫ x

1

dt

t(t+ 1)
=

∫ x

1

dt

t
−
∫ x

1

dt

t+ 1
= lnx− ln(x+ 1) + ln 2 −−−−−→

x→+∞
ln 2

2ème méthode :∫ +∞

1

dt

t(t+ 1)
=

∫ +∞

1

(
1

t
− 1

t+ 1

)
dt =

[
ln

t

t+ 1

]+∞

1

= − ln
1

2
= ln 2
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Le calcul direct par primitive est souvent plus rapide, mais permet moins de liberté qu’un calcul mené
par les intégrales partielles.

11.5.2 Changement de variable

Théorème
Soit ϕ : ]a, b[ → ]α, β[ une bijection de classe C1 croissante et f : ]α, β[ → K une fonction
continue par morceaux. On a équivalence entre :

(i)
∫ β

α

f(u) du converge ;

(ii)
∫ b

a

f (ϕ(t))ϕ′(t) dt converge.

De plus, si tel est le cas ∫ b

a

f (ϕ(t))ϕ′(t) dt =

∫ β

α

f(u) du

dém. :

(i)⇒ (ii) Supposons la convergence de
∫ β

α

f(u) du.

Soit c ∈ ]a, b[ et γ = ϕ(c). Pour x ∈ [c, b[, on a∫ x

c

f (ϕ(t))ϕ′(t) dt =
u=ϕ(t)

∫ ϕ(x)

γ

f(u) du

Puisque ϕ est une bijection croissante
ϕ(x) −−−−→

x→b−
β

et donc ∫ x

c

f (ϕ(t))ϕ′(t) dt −−−−→
x→b−

∫ β

γ

f(u) du

L’intégrale
∫ b

c

f (ϕ(t))ϕ′(t) dt converge et vaut
∫ β

γ

f(u) du.

De même, l’intégrale
∫ c

a

f (ϕ(t))ϕ′(t) dt converge et vaut
∫ γ

α

f(u) du.

Finalement
∫ b

a

f (ϕ(t))ϕ′(t) dt converge et vaut
∫ β

α

f(u) du.

(ii)⇒ (i) Même démarche en exploitant ϕ−1.
�

Remarque Si ϕ : ]a, b[→ ]α, β[ est une bijection de classe C1 décroissante, on a un résultat analogue
avec ∫ b

a

f (ϕ(t))ϕ′(t) dt =

∫ α

β

f(u) du
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Remarque En appliquant aussi ce résultat avec |f | et en exploitant que ϕ′ est de signe constant, on
obtient aussi

u 7→ f (ϕ(u))ϕ′(u) intégrable sur ]a, b[ si, et seulement si, u 7→ f(u) est intégrable sur ]α, β[

Exemple Calcul de
∫ +∞

0

e−
√
t

√
t

dt.

La fonction f : t 7→ e−
√
t/
√
t est définie et continue par morceaux sur ]0,+∞[.

Réalisons le changement de variable u =
√
t

La fonction t 7→
√
t réalise une bijection de classe C1 de ]0,+∞[ vers ]0,+∞[

u =
√
t, t = u2, dt = 2udu

et donc ∫ +∞

0

e−
√
t

√
t

dt =

∫ +∞

0

2e−u du

Puisque l’intégrale obtenue par le changement de variable est connue convergente, il en est de même de
l’intégrale initiale et donc ∫ +∞

0

e−
√
t

√
t

dt =
[
−2e−u

]+∞
0

= 2

11.5.3 Intégration par parties

Théorème
Soit I un intervalle d’extrémités a < b ∈ R̄ et u, v : I → K de classe C1.
Si le produit uv converge en a+ et b− alors les intégrales∫ b

a

u′(t)v(t) dt et
∫ b

a

u(t)v′(t) dt

ont même nature et en cas de convergence∫ b

a

u′(t)v(t) dt = [uv]
b−

a+ −
∫ b

a

u(t)v′(t)

dém. :
La fonction uv est de classe C1 avec (uv)′ = u′v + uv′.
Si uv converge en a+ et b− alors, il y a convergence de l’intégrale∫ b

a

u′(t)v(t) + u(t)v′(t) dt

et ∫ b

a

u′(t)v(t) + u(t)v′(t) dt = [uv]
b
a
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Si l’une des intégrales ∫ b

a

u′(t)v(t) dt ou
∫ b

a

u(t)v′(t) dt

alors, par opérations, l’autre aussi et

∫ b

a

u′(t)v(t) dt+

∫ b

a

u(t)v′(t) dt = [uv]
b
a

�

Exemple Soit n ∈ N. Calcul de In =

∫ +∞

0

tne−tdt.

fn : t 7→ tne−t est définie et continue par morceaux sur [0,+∞[.
Quand t→ +∞, t2fn(t)→ 0 donc l’intégrale définissant In converge.
Posons u′(t) = e−t et v(t) = tn avec u(t) = −e−t et v′(t) = ntn−1.
Les fonctions u et v sont de classe C1 et uv possède des limites finies en 0 et +∞.
Par intégration par parties

In =

∫ +∞

0

tne−t dt =
[
−tne−t

]+∞
0
−
∫ +∞

0

ntn−1(−e−t) dt

avec convergence de l’intégrale introduite en second membre.

Ainsi In = nIn−1 puis, sachant I0 =

∫ +∞

0

e−t dt = 1, on conclut

In = n!

Exemple Calcul de
∫ 1

0

ln(t)

(1 + t)2
dt.

f : t 7→ ln(t)/(1 + t)2 est définie et continue par morceaux sur ]0, 1].
√
tf(t) ∼

t→0+

√
t ln(t)→ 0

donc f intégrable sur ]0, 1] et donc l’intégrale
∫ 1

0

ln(t)

(1 + t)2
dt converge.

Posons u′(t) = 1/(1 + t)2 et v(t) = ln(t) avec u(t) = −1/(1 + t) et v′(t) = 1/t.
Les fonctions u et v sont de classe C1 mais le produit uv ne possède pas une limite finie en 0.
On ne peut procéder à cette intégration par parties. . . Il y a cependant deux solutions
1ère méthode : on réalise l’intégration par parties sur les intégrales partielles
Pour x ∈ ]0, 1] ∫ 1

x

ln t

(1 + t)2
dt =

[
− ln t

1 + t

]1

x

+

∫ 1

x

dt
t(t+ 1)

et donc ∫ 1

x

ln t

(1 + t)2
dt =

lnx

1 + x
+ [ln t− ln(t+ 1)]

1
x

puis ∫ 1

x

ln t

(1 + t)2
dt = −x lnx

1 + x
+ ln(1 + x)− ln 2 →

x→0
− ln 2
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donc ∫ 1

0

ln t

(1 + t)2
dt = − ln 2

2ème méthode : on choisit u(t) = t/(1 + t) qui est aussi convenable et qui s’annulant en 0, permet
d’avoir le produit uv convergeant en 0∫ 1

0

ln t

(1 + t)2
dt =

[
t ln t

1 + t

]1

0

−
∫ 1

0

dt
t+ 1

= − ln 2

11.6 Musculation

11.6.1 Intégrales de Bertrand

Théorème

Pour α, β ∈ R,
∫ +∞

e

dt

tα(ln t)β
converge si, et seulement si, α > 1 ou ( α = 1 et β > 1 ).

dém. :
La fonction f : t 7→ 1/tα(ln t)β est définie, continue et positive sur [e,+∞[.
Cas α < 1

tf(t) =
t1−α

(ln t)β
−−−−→
t→+∞

+∞

donc pour t assez grand
f(t) > 1/t > 0

Or
∫ +∞

e

dt

t
diverge donc par comparaison de fonctions positives,

∫ +∞

e

dt

tα(ln t)β
diverge.

Cas α > 1 :
Sous cas inutile : β > 0
On a

tαf(t) −−−−→
t→+∞

0

donc f est intégrable sur [e,+∞[ car f(t) = o(1/tα) avec α > 1.
Sous cas général :
On introduit m ∈ ]1, α[, on a

tmf(t) =
1

tα−m(ln t)β
−−−−→
t→+∞

0

donc f est intégrable sur [e,+∞[ car f(t) = o(1/tm) avec m > 1.
Cas α = 1

∫ x

e

dt

t(ln t)β
=

u=ln t

∫ ln x

1

du

uβ

converge quand x→ +∞ si, et seulement si, β > 1.
�
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11.6.2 L’intégrale de Dirichlet

Proposition

L’intégrale
∫ +∞

0

sin t

t
dt converge.

dém. :
La fonction t 7→ sin t

t
est définie et continue par morceaux sur ]0,+∞[.

Cette fonction se prolonge par continuité en 0 donc
∫

]0,1]

sin t

t
dt converge.

Etudions
∫

[1,+∞[

sin t

t
dt

Soit A > 1. Par intégration par parties∫ A

1

sin t

t
dt =

[
− cos t

t

]A
1

−
∫ A

1

cos t

t2
dt

Quand A→ +∞,
cosA

A
→ 0 et

∫ A

1

cos t

t2
dt −−−−−→

A→+∞

∫ +∞

1

cos t

t2
dt

car cette dernière intégrale converge puisque

cos t

t2
=

t→+∞
O

(
1

t2

)

�

Remarque Par une intégration par parties judicieuse, on montre∫ +∞

0

sin t

t
dt =

∫ +∞

0

1− cos t

t2
dt

En exploitant 1− cos t = 2 sin2(t/2) et le changement de variable u = t/2∫ +∞

0

sin t

t
dt =

∫ +∞

0

sin2 u

u2
du

Proposition

La fonction t 7→ sin t

t
n’est pas intégrable sur ]0,+∞[

dém. :

Montrons que
∫ +∞

0

∣∣∣∣ sin tt
∣∣∣∣ dt diverge, le problème se posant en +∞.

∫ nπ

0

|sin t|
t

dt =

n∑
k=1

∫ kπ

(k−1)π

|sin t|
t

dt =

n∑
k=1

∫ π

0

sinu

u+ (k − 1)π
du

Or ∫ π

0

sinu

u+ (k − 1)π
du >

∫ π

0

sinu

kπ
du =

2

kπ
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donc ∫ nπ

0

∣∣∣∣ sin tt
∣∣∣∣dt > 2

π

n∑
k=1

1

k
→ +∞

�

Remarque On peut montrer que
∫ +∞

0

sin t

t
dt =

π

2
mais c’est une longue histoire. . .
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Chapitre 12

Comportement asymptotique de
sommes et d’intégrales

K désigne R ou C.

12.1 Comparaison série intégrale

12.1.1 Principe
Cas f décroissante :

On a∫ n+1

n

f(t) dt 6 f(n) 6
∫ n

n−1

f(t) dt et f(n+ 1) 6
∫ n+1

n

f(t) dt 6 f(n)

Cas f croissante :∫ n

n−1

f(t) dt 6 f(n) 6
∫ n+1

n

f(t) dt et f(n) 6
∫ n+1

n

f(t) dt 6 f(n+ 1)

Théorème
Soit f : [0,+∞[→ R continue par morceaux, décroissante et positive.

La série de terme général wn =

∫ n

n−1

f(t) dt− f(n) est convergente.

dém. :
Puisque f est décroissante, on a
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f(n) 6
∫ n

n−1

f(t) dt 6 f(n− 1)

et donc
0 6 wn 6 f(n− 1)− f(n)

La nature de
∑

(f(n− 1)− f(n)) est celle de la suite (f(n)).
Or la fonction f est décroissante et minorée, elle converge donc en +∞ et par conséquent, la suite (f(n))

aussi. Ainsi la série
∑

(f(n− 1)− f(n)) converge et, par comparaison de séries à termes positifs, la
série de terme général wn est convergente.
�

Remarque Cet énoncé signifie qu’il y a convergence des portions d’aire hachurée dans la figure
ci-dessous

Corollaire

Sous les hypothèses qui précédent, la série
∑

f(n) et l’intégrale impropre
∫ +∞

0

f(t) dt sont

de même nature.

dém. :

Puisque
∑

wn converge,
∑
n>1

f(n) et
∑
n>1

∫ n

n−1

f(t) dt sont de même nature. Or

n∑
k=1

∫ k

k−1

f(t) dt =

∫ n

0

f(t) dt

Si l’intégrale
∫ +∞

0

f(t) dt converge alors la série
∑
n>1

f(n) converge.

Si l’intégrale
∫ +∞

0

f(t) dt diverge alors, puisque f est positive
∫ x

0

f(t) dt −−−−−→
x→+∞

+∞ et donc
∑
n>1

f(n)

diverge.
�

Exemple Pour α > 0, la fonction t 7→ 1/tα est décroissante et l’on retrouve∑ 1

nα
converge si, et seulement si,

∫ +∞

1

dt

tα
converge

Remarque On peut aussi faire le lien entre la convergence des séries de Bertrand et celle des intégrales
de Bertrand.
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12.1.2 Reste d’une série de Riemann convergente

Pour α > 1, la série
∑
n>1

1

nα
est convergente.

Donnons un équivalent de son reste de rang n.

La fonction t 7→ 1

tα
est décroissante sur ]0,+∞[.

Pour k > 2,∫ k+1

k

dt

tα
6

1

kα
6
∫ k

k−1

dt

tα

donc∫ N+1

n+1

dt

tα
6

N∑
k=n+1

1

kα
6
∫ N

n

dt

tα

Quand N → +∞,∫ +∞

n+1

dt

tα
6

+∞∑
k=n+1

1

kα
6
∫ +∞

n

dt

tα

avec convergence des intégrales engagées.
Or∫ +∞

n

dt

tα
=

1

α− 1

1

nα−1
et
∫ +∞

n+1

dt

tα
∼ 1

α− 1

1

nα−1

donc par encadrement
+∞∑

k=n+1

1

kα
∼ 1

α− 1

1

nα−1

Exemple En particulier
+∞∑

k=n+1

1

k2
∼ 1

n

12.1.3 Sommes partielles d’une série de Riemann divergente

Pour α 6 1, la série
∑
n>1

1

nα
est divergente.

Donnons un équivalent de sa somme partielle de rang n.
Cas α = 1.
On sait déjà :
n∑
k=1

1

k
= lnn+ γ + o(1)

Cas 0 < α < 1.
La fonction t 7→ 1

tα
est décroissante sur ]0,+∞[.∫ k+1

k

dt

tα
6

1

kα
6
∫ k

k−1

dt

tα

En sommant∫ n+1

1

dt

tα
6

n∑
k=1

1

kα
6
∫ n

0

dt

tα

(avec convergence de l’intégrale de droite).
Or
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∫ n

0

dt

tα
=
n1−α

1− α
et
∫ n+1

1

dt

tα
∼ n1−α

1− α
donc par comparaison
n∑
k=1

1

kα
∼ n1−α

1− α
Cas α 6 0.
On écrit α = −β (avec β > 0 ) et on étudie
n∑
k=1

1

kα
=

n∑
k=1

kβ

La fonction x 7→ xβ est croissante sur [0,+∞[.∫ k

k−1

tβ dt 6 kβ 6
∫ k+1

k

tβ dt

En sommant∫ n

0

tβ dt 6
n∑
k=1

kβ 6
∫ n+1

1

tβ dt

Or∫ n

0

tβ dt =
nβ+1

β + 1
et
∫ n+1

1

tβ dt ∼ nβ+1

β + 1
donc par encadrement
n∑
k=1

kβ ∼ nβ+1

β + 1
i.e.

n∑
k=1

1

kα
∼ n1−α

1− α

Exemple En particulier

n∑
k=1

1√
k
∼ 2
√
n
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12.2 Sommation des relations de comparaison

12.2.1 Cas de la convergence

Théorème
Soit

∑
un une série numérique et

∑
vn une série à termes positifs convergente.

Si un = o(vn) alors la série
∑

un converge et

+∞∑
k=n+1

uk = o

(
+∞∑

k=n+1

vk

)

Si un = O(vn) alors la série
∑

un converge et

+∞∑
k=n+1

uk = O

(
+∞∑

k=n+1

vk

)

Si un ∼ vn alors la série
∑

un converge et

+∞∑
k=n+1

uk ∼
+∞∑

k=n+1

vk

dém. :
Cas un = o(vn).
Par comparaison, la série

∑
un est absolument convergente.

Soit ε > 0. Il existe N ∈ N tel que
∀n > N, |un| 6 ε |vn| = εvn
Pour k > n+ 1, |uk| 6 εvk puis en sommant∣∣∣∣∣

+∞∑
k=n+1

uk

∣∣∣∣∣ 6
+∞∑

k=n+1

|uk| 6 ε
+∞∑

k=n+1

vk

Ainsi
+∞∑

k=n+1

uk = o

(
+∞∑

k=n+1

vk

)
Cas un = O(vn) : démarche analogue sachant
∃M ∈ R+,∃N ∈ N,∀n > N, |un| 6Mvn
Cas un ∼ vn.
Par équivalence de séries à termes positifs, la série

∑
un converge.

On a
un = vn + o(vn) = vn + wn avec wn = o(vn)
donc

+∞∑
k=n+1

uk =

+∞∑
k=n+1

vk +

+∞∑
k=n+1

wk =

+∞∑
k=n+1

vk + o

(
+∞∑

k=n+1

vk

)
∼

+∞∑
k=n+1

vk

�
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Attention : La suite (vn) de référence doit être positive ou, pour le moins, positive à partir d’un certain
rang.

Exemple Déterminons un équivalent simple de

+∞∑
k=n+1

1

k2 + 1

On a
1

k2 + 1
∼ 1

k2
et
∑
k>1

1

k2
est une série à termes positifs convergente donc

+∞∑
k=n+1

1

k2 + 1
∼

+∞∑
k=n+1

1

k2
∼ 1

n

12.2.2 Cas de la divergence

Théorème
Soit

∑
un une série numérique et

∑
vn une série à termes positifs divergente.

Si un =
n→+∞

o(vn) alors
n∑
k=0

uk =
n→+∞

o

(
n∑
k=0

vk

)
Si un =

n→+∞
O(vn) alors

n∑
k=0

uk =
n→+∞

O

(
n∑
k=0

vk

)
Si un ∼

n→+∞
vn alors

n∑
k=0

uk ∼
n→+∞

n∑
k=0

vk

dém. :

Remarquons que
n∑
k=0

vk −−−−−→
n→+∞

+∞ car
∑

vn est une série à termes positifs divergente.

Cas un =
n→+∞

o(vn).

Soit ε > 0. Il existe N ∈ N vérifiant
∀n > N, |un| 6 ε |vn| = εvn
Pour n > N ,∣∣∣∣∣
n∑
k=0

uk

∣∣∣∣∣ 6
∣∣∣∣∣
N−1∑
k=0

uk

∣∣∣∣∣+

∣∣∣∣∣
n∑

k=N

uk

∣∣∣∣∣ 6
∣∣∣∣∣
N−1∑
k=0

uk

∣∣∣∣∣+ ε

n∑
k=N

vk

Or, puisque
n∑
k=0

vk → +∞, il existe N ′ ∈ N tel que
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∀n > N ′,

∣∣∣∣∣
N−1∑
k=0

uk

∣∣∣∣∣ 6 ε
n∑
k=0

vk

Pour n > max(N,N ′), on obtient∣∣∣∣∣
n∑
k=0

uk

∣∣∣∣∣ 6 2ε

n∑
k=0

vk

Ainsi
n∑
k=0

uk =
n→+∞

o

(
n∑
k=0

vk

)
Cas un =

n→+∞
O(vn) : semblable.

Cas un ∼
n→+∞

vn : on écrit un =
n→+∞

vn + o(vn).

�

Attention : La suite (vn) de référence doit être positive ou, pour le moins, positive à partir d’un certain
rang.

Exemple Etudions
n∑
k=1

1

k +
√
k

On a
1

n+
√
n
∼

n→+∞

1

n

Or
∑ 1

n
est une série à termes positifs divergente donc

n∑
k=1

1

k +
√
k
∼

n→+∞

n∑
k=1

1

k
∼ lnn

12.2.3 Théorème de Césaro
Soit (un)n>1 une suite numérique convergeant vers `. On peut écrire

un =
n→+∞

`+ o(1) = `+ εn avec εn = o(1)

et alors
1

n
(u1 + · · ·+ un) = `+

1

n
(ε1 + · · ·+ εn)

Puisque εn = o(1) avec
∑
n>0

1 est une série à termes positifs divergente

n∑
k=1

εk = o

(
n∑
k=1

1

)
= o(n)

Ainsi
1

n
(u1 + · · ·+ un) = `+

1

n
o(n) = `+ o(1)→ `
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Exemple Considérons la suite (un) donnée par

u0 ∈ ]0, π[ et ∀n ∈ N, un+1 = sin(un)

La suite (un) est bien définie et à valeurs dans ]0, π[

∀x ∈ ]0, π[ , sin(x) ∈ ]0, 1] ⊂ ]0, π[

La suite (un) est décroissante car
un+1 = sin(un) 6 un

La suite (un) est donc converge et sa limite ` vérifie

sin(`) = `

Cette limite est ` = 0. Déterminons maintenant un équivalent de (un).
On a

1

u2
n+1

− 1

u2
n

=
(un − un+1)(un + un+1)

(unun+1)
2 ∼

1
3u

4
n

u4
n

→ 1

3

Donc par le théorème de Cesaro

1

n

n−1∑
k=0

(
1

u2
k+1

− 1

u2
k

)
=

1

n

(
1

u2
n

− 1

u2
0

)
→ 1

3

et on en déduit

un ∼
√

3

n

12.2.4 Musculation développement asymptotique à trois termes de Hn

Etudions

Hn =

n∑
k=1

1

k

On a déjà vu
Hn =

n→+∞
lnn+ γ + o(1)

Approfondissons ce développement asymptotique. Posons

εn =
n∑
k=1

1

k
− lnn− γ

Nous allons exprimer εn comme le reste d’une série convergente.

lnn =

n∑
k=2

ln k − ln(k − 1) =

n∑
k=2

− ln

(
1− 1

k

)
donc

εn = 1 +

n∑
k=2

(
1

k
+ ln

(
1− 1

k

))
− γ
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Puisque εn → 0, on a
+∞∑
k=2

1

k
+ ln

(
1− 1

k

)
= γ − 1

puis

εn =

n∑
k=2

(
1

k
+ ln

(
1− 1

k

))
−

+∞∑
k=2

(
1

k
+ ln

(
1− 1

k

))
= −

+∞∑
k=n+1

(
1

k
+ ln

(
1− 1

k

))
Or

1

n
+ ln

(
1− 1

n

)
∼

n→+∞
− 1

2n2

et
∑ 1

n2
est une série à termes positifs convergente donc

+∞∑
k=n+1

(
1

k
+ ln

(
1− 1

k

))
∼

n→+∞
−1

2

+∞∑
k=n+1

1

k2
= − 1

2n

puis enfin εn ∼ 1/2n. Finalement

n∑
k=1

1

k
=

n→+∞
lnn+ γ +

1

2n
+ o

(
1

n

)

12.3 Intégration des relations de comparaison

12.3.1 Cas de la convergence sur [a,+∞[

Théorème
Soit f : [a,+∞[→ K et g : [a,+∞[→ R+ continues par morceaux.
On suppose que g est intégrable.
Si f(t) =

t→+∞
o (g(t)) alors f est intégrable et

∫ +∞

x

f(t) dt =
x→+∞

o

(∫ +∞

x

g(t) dt

)
Si f(t) =

t→+∞
O (g(t)) alors f est intégrable et

∫ +∞

x

f(t) dt =
x→+∞

O

(∫ +∞

x

g(t) dt

)
Si f(t) ∼

t→+∞
g(t) alors f est intégrable et

∫ +∞

x

f(t) dt ∼
x→+∞

∫ +∞

x

g(t) dt

dém. :
Dans les trois cas, la fonction f est évidemment intégrable
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Cas f(t) =
t→+∞

o (g(t)).

Soit ε > 0. Il existe A ∈ [a,+∞[ tel que
∀t ∈ [A,+∞[ , |f(t)| 6 ε |g(t)| 6 εg(t)
et alors, pour x > A∣∣∣∣∫ +∞

x

f(t) dt

∣∣∣∣ 6 ∫ +∞

x

|f(t)| dt 6
∫ +∞

x

εg(t) dt = ε

∫ +∞

x

g(t) dt

Ainsi ∫ +∞

x

f(t) dt =
x→+∞

o

(∫ +∞

x

g(t) dt

)
Cas f(t) =

t→+∞
O (g(t)). Démarche analogue avec

∃A ∈ [a,+∞[ ,∃M ∈ R+,∀t ∈ [A,+∞[ , |f(t)| 6Mg(t)

Cas f(t) ∼
t→+∞

g(t). On peut écrire

f(t) =
t→+∞

g(t) + o (g(t))

puis, avec convergence des intégrales écrites∫ +∞

x

f(t) dt =

∫ +∞

x

g(t) dt+ o

(∫ +∞

x

g(t) dt

)
∼

x→+∞

∫ +∞

x

g(t) dt

�

Attention : La fonction de référence g est positive, ou pour le moins, au voisinage de +∞.

Exemple Déterminons un équivalent quand x→ +∞ de∫ +∞

x

dt

t3 + 1

Puisque
1

t3 + 1
∼

t→+∞

1

t3
avec

1

t3
> 0 et intégrable sur [1,+∞[

Par intégration de relation de comparaison, on obtient∫ +∞

x

dt

t3 + 1
∼

x→+∞

∫ +∞

x

dt

t3
=

[
− 1

2t2

]+∞

x

=
1

2x2

Exemple Déterminons un équivalent quand x→ +∞ du terme∫ +∞

x

e−t

t
dt

L’intégrale étudiée est convergente puisque t2e−t/t −−−−→
t→+∞

0.
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Procédons à une intégration par parties avec u(t) = −e−t et v(t) = 1/t.
Les fonctions u et v sont de classe C1 et le produit uv converge en +∞. On a donc∫ +∞

x

e−t

t
dt =

e−x

x
−
∫ +∞

x

e−t

t2
dt

Or
e−t

t2
=

t→+∞
o

(
e−t

t

)
donc, par intégration de relation de comparaison∫ +∞

x

e−t

t2
dt = o

(∫ +∞

x

e−t

t
dt

)
et finalement ∫ +∞

x

e−t

t
dt ∼

x→+∞

e−x

x

12.3.2 Cas de la divergence sur [a,+∞[

Théorème
Soit f : [a,+∞[→ K et g : [a,+∞[→ R+ continues par morceaux.
On suppose que g n’est pas intégrable.
Si f(t) =

t→+∞
o (g(t)) alors

∫ x

a

f(t) dt =
x→+∞

o

(∫ x

a

g(t) dt

)
Si f(t) =

t→+∞
O (g(t)) alors

∫ x

a

f(t) dt =
x→+∞

O

(∫ x

a

g(t) dt

)
Si f(t) ∼

t→+∞
g(t) alors ∫ x

a

f(t) dt ∼
x→+∞

∫ x

a

g(t) dt

dém. :
Puisque la fonction g est positive, mais non intégrable, on a∫ x

a

g(t) dt −−−−−→
x→+∞

+∞

Cas f(t) =
t→+∞

o (g(t)).

Soit ε > 0. Il existe A ∈ [a,+∞[ tel que
∀t ∈ [A,+∞[ , |f(t)| 6 ε |g(t)| 6 εg(t)
et alors, pour x > A ∣∣∣∣∫ x

a

f(t) dt

∣∣∣∣ 6 ∫ x

a

|f(t)| dt 6
∫ A

a

|f(t)| dt+ ε

∫ x

A

g(t) dt
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Puisque le terme
∫ A

a

|f(t)| dt est constant et que
∫ x

a

g(t) dt tend vers l’infini, il existe A′ ∈ [a,+∞[ tel
que

∀x > A′,
∫ A

a

|f(t)| dt 6 ε
∫ x

a

|g(t)| dt

et alors, pour tout x > max(A,A′)∣∣∣∣∫ x

a

f(t) dt

∣∣∣∣ 6 ε∫ x

a

g(t) dt+ ε

∫ x

A

g(t) dt 6 2ε

∫ x

a

g(t) dt

Ainsi ∫ x

a

f(t) dt =
x→+∞

o

(∫ x

a

g(t) dt

)
Cas f(t) =

t→+∞
O (g(t)). Démarche analogue.

Cas f(t) ∼
t→+∞

g(t). On peut écrire

f(t) =
t→+∞

g(t) + o (g(t))

puis ∫ x

a

f(t) dt =

∫ x

a

g(t) dt+ o

(∫ x

a

g(t) dt

)
∼

x→+∞

∫ x

a

g(t) dt

�

Exemple Soit f : [0,+∞[→ R continue admettant une limite ` en +∞.
On peut écrire f(t) =

t→+∞
`+ o(1) et donc, par intégration de relation de comparaison

∫ x

0

f(t) dt = `x+ o(x)

Exemple Déterminons un équivalent quand x→ +∞ du terme∫ x

1

ln t

t+ 1
dt

On a
ln t

t+ 1
∼

t→+∞

ln t

t
avec

ln t

t
> 0 et non intégrable sur [1,+∞[

Par intégration de relation de comparaison, on obtient∫ x

1

ln t

t+ 1
dt ∼

∫ x

1

ln t

t
dt =

1

2
(lnx)

2
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12.3.3 Enoncé général

Théorème
Soit a < b avec a ∈ R et b ∈ R ∪ {+∞}.
Soit f : [a, b[→ K et g : [a, b[→ R+ continues par morceaux vérifiant

f(x) =
x→b−

o (g(x))

Si g est intégrable sur [a, b[ alors f aussi∫ b

x

f(t) dt =
x→+∞

o

(∫ b

x

g(t) dt

)

Si g n’est pas intégrale sur [a, b[ alors∫ x

a

f(t) dt =
x→+∞

o

(∫ x

a

g(t) dt

)

dém. :
Analogue aux précédentes.
�

Remarque Cet énoncé se transpose aux situations f(x) =
x→b−

O (g(x)) et f(x) ∼
x→b−

g(x).

Cet énoncé se transpose aux intégrales sur ]a, b].

Exemple On retrouve la formule permettant d’intégrer les développements limités∫ x

a

o ((t− a)n) dt = o
(
(x− a)n+1

)

Exemple Si f : [0, 1]→ R est continue alors f(t) =
t→0+

f(0) + o(1) et donc∫ x

0

f(t) dt =
x→0+

f(0)x+ o(x)

Exemple Déterminons un équivalent quand x→ 0+ de∫ 1

x

et

t
dt

On a
et

t
∼

t→0+

1

t
et t 7→ 1

t
est positive et non intégrable sur ]0, 1]

donc, par intégration de relation de comparaison∫ 1

x

et

t
dt ∼

∫ 1

x

dt

t
= lnx
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12.3.4 Musculation
Soit f : [0,+∞[→ R une fonction de classe C1 ne s’annulant pas et vérifiant

xf ′(x)

f(x)
−−−−−→
x→+∞

α 6= 1

Etudions l’existence de ∫ +∞

0

f(t) dt

On a
f ′(x)

f(x)
∼

x→+∞

α

x
+ o

(
1

x

)
Par intégration de relation de comparaison

ln (f(x)) = ln(xα) + o(lnx) ∼
x→+∞

ln(xα)

On ne peut cependant pas aller jusqu’à affirmer f(x) ∼
x→+∞

xα. . . mais l’on va néanmoins déterminer la

nature de l’intégrale
∫ +∞

0

f(t) dt.

Cas α < 1. On a
ln(xf(x)) = ln(x) + ln(f(x)) ∼

x→+∞
(1− α) lnx −−−−−→

x→+∞
+∞

Ainsi xf(x) −−−−−→
x→+∞

+∞ et donc ∫ +∞

0

f(t) dt diverge

Cas α > 1. On introduit ρ ∈ ]1, α[

ln(xρf(x)) = ρ ln(x) + ln(f(x)) ∼
x→+∞

(ρ− α) lnx −−−−−→
x→+∞

−∞

et donc

f(x) =
x→+∞

o

(
1

xρ

)
ce qui assure que f est intégrable sur [0,+∞[.
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Chapitre 13

Familles sommables

13.1 Ensembles dénombrables

13.1.1 Définition

Définition
Un ensemble est dit dénombrable s’il est en bijection avec N (dans un sens ou dans l’autre).

Exemple N? est dénombrable.
Il suffit de considérer la bijection s : N→ N? donnée par s(n) = n+ 1.

Exemple Z est dénombrable.
Il suffit de considérer la bijection δ : N→ Z donnée par

δ(n) =

{
n/2 si n est pair
−(n+ 1)/2 sinon

pour laquelle
n 0 1 2 3 4 5 · · ·
δ(n) 0 −1 1 −2 2 −3 · · ·

Exemple N2 est dénombrable.
Il suffit de considérer la bijection π : N2 → N numérotant les éléments de N2 comme illustré ci-dessous
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On peut aussi construire une bijection de N2 vers N? en posant

ϕ(k, `) = 2k(2`+ 1)

Remarque Dire qu’un ensemble est dénombrable signifie qu’il est possible de numéroter de façon
exhaustive ses éléments.

Définition
Si E est un ensemble dénombrable et si ϕ : N→ E est une application bijective, on dit que la
suite (xn)n∈N définie par xn = ϕ(n) est une énumération des éléments de E.

13.1.2 Propriétés

Théorème
Toute partie infinie de N est dénombrable.

dém. :
Soit F une partie infinie de N. Considérons la suite (un) définie par récurrence en posant

u0 = minF et ∀n ∈ N, un+1 = min (F\ {u0, . . . , un})

La suite (un)n∈N est constituée d’éléments de F et est strictement croissante. De plus, tout élément de F
figure dans cette suite. Considérons en effet x ∈ F . Puisque la suite (un) tend vers +∞, il existe N ∈ N
tels que x < uN+1 et donc x /∈ F\ {u0, . . . , uN}. Or x ∈ F donc x ∈ {u0, . . . , uN}.
La fonction ϕ : N→ F définie par ϕ(n) = un réalise alors une bijection de N vers F .
�

Théorème
Un ensemble est fini ou dénombrable si, et seulement si, il est en bijection avec une partie de N.

dém. :
( ⇒ ) Si un ensemble est fini de cardinal n alors il est en bijection avec J1, nK (comprendre ∅, quand
n = 0 ). Si un ensemble est dénombrable, il est par définition en bijection avec N.
(⇐) Soit E un ensemble en bijection avec une partie F de N via une application ϕ : E → F .
Si l’ensemble E est fini, le problème est résolu.
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Si l’ensemble E est infini alors F est une partie infinie de N et il existe alors une bijection de ψ : N→ F .
L’application ϕ−1 ◦ ψ est alors une bijection de N vers E. L’ensemble E est dans ce cas dénombrable.
�

Définition
Un ensemble est dit au plus dénombrable s’il est fini ou bien dénombrable i.e. s’il est en
bijection avec une partie de N.

13.1.3 Opérations
13.1.3.1 Inclusion

Théorème
Toute partie d’un ensemble dénombrable est au plus dénombrable.

dém. :
Car par restriction en bijection avec une partie de N.
�

Corollaire
S’il existe une injection d’un ensemble E dans un ensemble dénombrable alors E est dénom-
brable.

dém. :
Soit ϕ : E → F injective avec F dénombrable. Par l’application ϕ, E est en bijection avec ϕ(E) qui est
une partie de F donc ϕ est en bijection avec une partie au plus dénombrable.
�
13.1.3.2 Produit cartésien

Théorème
Si E et F sont des ensembles dénombrables alors E × F est dénombrable.

dém. :
Soit ϕ : E → N, ψ : F 7→ N et π : N2 7→ N bijectives. L’application (x, y) 7→ π(ϕ(x), ψ(y)) est une
bijection de E × F vers N.
�

Corollaire
Si E1, . . . , En sont des ensembles au plus dénombrables alors E1× . . .×En est dénombrable.

dém. :
Par récurrence sur n ∈ N?.
Cas n = 1 : ok
Supposons la propriété établie au rang n > 1.
Soit E1, . . . , En, En+1 dénombrables.
Par hypothèse de récurrence E = E1× . . .×En est dénombrable et donc, par le théorème E×En+1 est
dénombrable. Or E × En+1 n’est autre que E1 × . . .× En × En+1.
Récurrence établie.
�

Exemple Q est une partie dénombrable.
En effet, on peut construire une injection de Q dans Z× N par l’application

r = p/q 7→ (p, q)

en notant p/q le représentant irréductible du nombre rationnel r
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Or l’ensemble Z× N est dénombrable et Q est alors dénombrable car c’est un ensemble infini en
bijection avec une partie d’un ensemble dénombrable.

Remarque En revanche, l’ensemble R n’est pas dénombrable ni ℘(N) ou {0, 1}N.

13.1.3.3 Réunion

Théorème
Soit (Ei)i∈I une famille d’ensembles.
Si chaque Ei est au plus dénombrable et que l’ensemble d’indexation I est aussi dénombrable
alors la réunion

⋃
i∈I

Ei est au plus dénombrable.

dém. :
Cette démonstration est hors programme.
Entrapercevons cependant le résultat dans le cas d’une réunion dénombrable d’ensembles dénombrables.
On peut introduire ϕi : N → Ei bijective pour chaque i ∈ I et ψ : N → I bijective. Considérons alors
l’application

f : N2 →
⋃
i∈I

Ei

définie par f(k, `) = ϕk(`). Celle-ci est une surjection de N2 sur
⋃
i∈I

Ei.

Pour chaque x ∈
⋃

i∈I
Ei, l’ensemble des antécédents f−1 ({x}) est non vide ce qui permet de définir

une injection de
⋃

i∈I
Ei dans N2.

�

13.2 Familles sommables

Si (ui)i∈I est une famille finie de réels ou de complexes, on sait donner un sens à la somme de ses termes

∑
i∈I

ui

La notion de famille sommable vise à étendre aux familles infinies dénombrables cette notion.
Contrairement aux séries, la sommation ne sera pas ordonnée, le résultat du calcul sera indépendant de la
manière dont il est organisé.
I désigne un ensemble au plus dénombrable ( I fini, I = N, I = Z, I = N2,. . . )
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13.2.1 Familles à termes positifs

Définition
On dit qu’une famille (ui)i∈I de réels positifs est sommable s’il existe un réel M tel que

∀F fini ⊂ J,
∑
i∈F

ui 6M

Si tel est le cas, on pose ∑
i∈I

ui = sup
F finie⊂I

∑
i∈F

ui

Sinon, on pose ∑
i∈I

ui = +∞

Exemple On suppose I fini. La famille (ui)i∈I est assurément sommable et
∑
i∈I

ui désigne à nouveau la

somme de ses termes.

Exemple On dit que la famille (ui)i∈I est à support fini si son support J = {i ∈ I/ui 6= 0} est fini.
Si la famille (ui)i∈I est à support fini alors celle-ci est sommable.
En effet, pour toute partie F finie ⊂ I ,∑

i∈F
ui 6

∑
i∈F∪J

ui =
∑
i∈J

ui = M

De plus
∑
i∈I

ui =
∑
i∈J

uj car ici le majorant est un maximum.

Exemple La famille de réels positifs (un)n∈N est sommable si, et seulement si, la série
∑

un converge.
De plus, on a alors ∑

n∈N
un =

+∞∑
n=0

un

En effet, si la famille (un) est sommable alors
∑

un converge car il s’agit d’une série à termes positifs
aux sommes partielles majorées. De plus

+∞∑
n=0

un = lim
N→+∞

N∑
n=0

un 6
∑
n∈N

un

Inversement, si la série
∑

un converge alors pour toute partie F finie ⊂ I , il existe N ∈ N tel que
F ⊂ J0, NK et donc ∑

n∈F
un 6

N∑
n=0

un 6
+∞∑
n=0

un
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La famille (un)n∈N est alors sommable et

∑
n∈N

un 6
+∞∑
n=0

un

Exemple Soit q ∈ [0, 1[ et un = q|n| pour n ∈ Z. La famille (un)n∈N est sommable.
En effet, pour toute partie F finie ⊂ Z, il existe N ∈ N tel que F ⊂ J−N,NK et alors

∑
i∈F

ui 6
N∑

n=−N
q|n| = 1 + 2

N∑
n=1

qn = 1 + 2q
1− qN

1− q
6

1 + q

1− q

De plus, on a ∑
n∈Z

q|n| =
1 + q

1− q
car

∀F finie ⊂ I ,
∑
i∈F

ui 6
1 + q

1− q
et

N∑
n=−|N |

q|n| −−−−−→
N→+∞

1 + q

1− q

Remarque Si (ui)i∈I est sommable alors pour tout permutation σ ∈ S(I), la famille permutée
(uσ(i))i∈I l’est aussi et de même somme.
En effet, les sommes finies considérées pour étudier (ui)i∈I et (uσ(i))i∈I sont les mêmes.

13.2.2 Comparaison

Théorème
Soit (ui)i∈I et (vi)i∈I deux familles de réels positifs indexées par I .
Si ui 6 vi pour tout i ∈ I et si la famille (vi)i∈I est sommable alors la famille (ui)i∈I l’est
aussi et ∑

i∈I
ui 6

∑
i∈I

vi

dém. :
Pour toute partie finie F incluse dans I∑

i∈F
ui 6

∑
i∈F

vi 6
∑
i∈I

vi

�

Théorème
Soit (ui)i∈I une famille de réels positifs et J ⊂ I .
Si la famille (ui)i∈I est sommable alors la sous-famille (ui)i∈J l’est aussi et∑

i∈J
ui 6

∑
i∈I

ui
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dém. :
Pour toute partie finie F incluse dans J ∑

i∈F
ui 6

∑
i∈I

ui

�

13.2.3 Regroupement de la sommation
Soit (ui)i∈I une famille de réels positifs indexée par un ensemble I dénombrable.

Théorème
On suppose I = I1 ∪ I2 avec I1, I2 disjoints. On a équivalence entre
(i) (ui)i∈I est sommable ;
(ii) (ui)i∈I1 et (ui)i∈I2 sont sommables.
De plus, on a alors ∑

i∈I
ui =

∑
i∈I1

ui +
∑
i∈I2

ui

dém. :
(i) ⇒ (ii) Supposons (ui)i∈I sommable. Puisque I1, I2 ⊂ I , les sous-familles (ui)i∈I1 et (ui)i∈I2 sont
sommables. De plus, pour F1 finie ⊂ I1 et F2 finie ⊂ I2∑

i∈F1

ui +
∑
i∈F2

ui =
∑

i∈F1∪F2

ui 6
∑
i∈I

ui = M

donc ∑
i∈I1

ui +
∑
i∈I2

ui 6
∑
i∈I

ui

(ii)⇒ (i) Supposons (ui)i∈I1 et (ui)i∈I2 sommables.
Pour F finie ⊂ I , on a ∑

i∈F
ui =

∑
i∈F∩I1

ui +
∑

i∈F∩I2

ui 6
∑
i∈I1

ui +
∑
i∈I2

ui = M

donc (ui)i∈I est sommable et ∑
i∈I

ui 6
∑
i∈I1

ui +
∑
i∈I2

ui

�

Remarque Ce résultat s’étend évidemment à I = I1 ∪ I2 ∪ . . . ∪ IN avec (Ij)16j6N deux à deux
disjoints.

Exemple Soit (un)n∈Z une famille de réels positifs.
La famille (un)n∈Z est sommable si, et seulement si, les familles (un)n∈N? et (u−n)n∈N? le sont.
De plus, on a alors ∑

n∈Z
un = u0 +

∑
n∈N?

un +
∑
n∈N?

u−n
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13.2.4 Sommation par paquets

Théorème
Soit (ui)i∈I une famille dénombrable de réels positifs et (In)n∈N une famille de parties de I
vérifiant

∀n 6= m, In ∩ Im = ∅ et
⋃
n∈N

In = I

On a équivalence entre :
(i) la famille (ui)i∈I est sommable ;

(ii) chaque famille (ui)i∈In est sommable et la série
∑(∑

i∈In
ui

)
converge.

De plus, si tel est le cas ∑
i∈I

ui =

+∞∑
n=0

(∑
i∈In

ui

)

dém. :
Cette démonstration est hors programme.
(i)⇒ (ii) Supposons (ui)i∈I sommable
Pour tout n ∈ N, In ⊂ I donc (ui)i∈In est aussi sommable.
Pour tout N ∈ N, considérons la partition finie de I réalisée à partir de I0, . . . , IN et J =

⋃
n>N+1

In.

On a
N∑
n=0

∑
i∈In

ui 6
N∑
n=0

∑
i∈In

ui +
∑
i∈J

ui =
∑
i∈I

ui

Puisque
∑(∑

i∈In
ui

)
est une série à termes positifs aux sommes partielles majorées, celle-ci converge

et
+∞∑
n=0

(∑
i∈In

ui

)
6
∑
i∈I

ui

(ii)⇒ (i) Supposons (ii). Soit une partie F finie ⊂ I . Il existe N ∈ N tel que

F ⊂
N⋃
n=0

In

et alors ∑
i∈F

ui =

N∑
n=0

∑
i∈F∩In

ui 6
N∑
n=0

∑
i∈In

ui 6
+∞∑
n=0

∑
i∈In

ui = M

La famille (ui)i∈I est donc sommable et

∑
i∈I

ui 6
+∞∑
n=0

(∑
i∈In

ui

)

�

Exemple Soit x ∈ [0, 1[. Montrons
x

1− x
=

+∞∑
n=0

x2n

1− x2n+1 .

La famille (xp)p∈N? est sommable. Pour n ∈ N, considérons In = {2n(2k + 1)/k ∈ N}.
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Par sommation par paquets

+∞∑
p=1

xp =

+∞∑
n=0

∑
p∈In

xp =

+∞∑
n=0

+∞∑
k=0

x2n(2k+1)

et ainsi

x

1− x
=

+∞∑
n=0

x2n

1− x2n+1

Corollaire
Si ϕ : N→ I est une bijection alors on a équivalence entre :
(i) (ui)i∈I est sommable ;
(ii)
∑

uϕ(n) converge.
De plus, si tel est le cas ∑

i∈I
ui =

+∞∑
n=0

uϕ(n)

dém. :
Il suffit de considérer la partition de I constituée de In = {ϕ(n)}.
�

Remarque En conséquence, après indexation des éléments de I , la sommabilité de la famille (ui)i∈I se
ramène à la convergence d’une série à termes positifs.

13.2.5 Extension aux familles réelles ou complexes

Soit (ui)i∈I une famille de nombres réels ou complexes indexée par un ensemble I au plus dénombrable.

Définition
On dit que la famille (ui)i∈I est sommable si la famille (|ui|)i∈I l’est i.e. s’il existe un réel M
tel que

∀F fini ⊂ J,
∑
i∈F
|ui| 6M

Théorème
S’il existe une famille de réels positif (vi)i∈I sommable vérifiant

∀i ∈ I, |ui| 6 vi

alors la famille (ui)i∈I est sommable
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Définition
Soit (ui)i∈I une famille sommable de réels. Pour tout i ∈ I , on introduit

u+
i = max(ui, 0) et u−i = max(−ui, 0)

Les familles de réels positifs (u+
i )i∈I et (u−i )i∈I étant sommables, on pose∑
i∈I

ui =
∑
i∈I

u+
i −

∑
i∈I

u−i

Définition
Soit (ui)i∈I une famille sommable de complexes. Les familles de réels (Reui)i∈I et (Imui)i∈I
étant sommables, on pose ∑

i∈I
ui =

∑
i∈I

Re(ui) + i.
∑
i∈I

Im(ui)

Exemple On suppose I fini. La famille (ui)i∈I est assurément sommable et
∑
i∈I

ui désigne à nouveau la

somme de ses termes.

Exemple On suppose la famille (ui)i∈I est à support fini et l’on introduit son support
J = {i ∈ I/ui 6= 0}.
La famille (ui)i∈I est assurément sommable et

∑
i∈I

ui =
∑
i∈J

uj

Exemple Une famille de réels ou de complexes (un)n∈N est sommable si, et seulement si, la famille
(|un|)n∈N l’est . Ceci revient à affirmer la convergence de la série

∑
|un|.

Ainsi, la sommabilité de (un)n∈Néquivaut à la convergence absolument de
∑

un.
De plus, on a alors

∑
n∈N

un =

+∞∑
n=0

un
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13.2.6 Sommation par paquets

Théorème
Soit (ui)i∈I une famille dénombrable de réels positifs et (In)n∈N une familles de parties de I
vérifiant

∀n 6= m, In ∩ Im = ∅ et
⋃
n∈N

In = I

Si la famille (ui)i∈I est sommable alors chaque famille (ui)i∈In l’est aussi et la série∑(∑
i∈In

ui

)
converge absolument.

De plus, on a alors ∑
i∈I

ui =

+∞∑
n=0

(∑
i∈In

ui

)

dém. :
Cette démonstration est hors programme.
Puisque la famille (ui)i∈I est sommable, la famille (|ui|)i∈I l’est aussi et donc les familles (|ui|)i∈In le
sont encore et la série

∑(∑
i∈In
|ui|
)

converge. Ainsi les familles (ui)i∈In sont sommables et la série∑(∑
i∈In

ui

)
est absolument convergente car dans le cadre réel∣∣∣∣∣∑

i∈In

ui

∣∣∣∣∣ 6∑
i∈In

u+
i +

∑
i∈In

u−i 6
∑
i∈In

|ui|

et dans le cadre complexe∣∣∣∣∣∑
i∈In

ui

∣∣∣∣∣ 6
∣∣∣∣∣∑
i∈In

Re(ui)

∣∣∣∣∣+

∣∣∣∣∣∑
i∈In

Im(ui)

∣∣∣∣∣ 6 2
∑
i∈In

|ui|

Il reste à établir l’égalité ∑
i∈I

ui =

+∞∑
n=0

(∑
i∈In

ui

)
Celle-ci est connue si tous les termes ui sont réels positifs.
Celle-ci est encore vraie si tous les ui sont réels en raisonnant par u+

i et u−i .
Celle-ci est aussi vraie si tous les ui sont complexes en raisonnant par Re(ui) et Im(ui).
�

Corollaire
On suppose I = I1 ∪ I2 avec I1, I2 disjoints.
Si (ui)i∈I est sommable alors (ui)i∈I1 et (ui)i∈I2 sont sommables et∑

i∈I
ui =

∑
i∈I1

ui +
∑
i∈I2

ui

dém. :
Prendre In = ∅ pour n 6= 1, 2.
�
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Corollaire
Soit ϕ : N → I une bijection. Si la famille (ui)i∈I est sommable alors la série

∑
uϕ(n)

converge et ∑
i∈I

ui =

+∞∑
n=0

uϕ(n)

dém. :
On utilise In = {ϕ(n)}.
�

Remarque Pour utiliser ces résultats, il faut préalablement justifier la sommabilité de (|ui|)i∈I ce qui
pourra se faire en employant le résultat analogue connu pour les familles de réels positifs.

Exemple Considérons un = (−1)n/n et I = N?.
La série

∑
un converge et cependant la famille (un)n∈N? n’est pas sommable.

En effet, pour I1 = {2p/p ∈ N?} et I2 = {2p+ 1/p ∈ N}, les familles (un)n∈I1 et (un)n∈I2 ne sont
pas sommables.

13.2.7 Propriétés
13.2.7.1 Linéarité

Théorème
Soit (ui)i∈I et (vi)i∈I deux familles d’éléments de K = R ou C et λ, µ ∈ K.
Si (ui)i∈I et (vi)i∈I sont sommables alors (λui + µvi)i∈I l’est aussi et∑

i∈I
λui + µvi = λ

∑
i∈I

ui + µ
∑
i∈I

vi

dém. :
Pour tout i ∈ I ,

|λui + µvi| 6 |λ| |ui|+ |µ| |vi|
donc toute partie F finie ⊂ I ,∑

i∈F
|λui + µvi| 6 |λ|

∑
i∈F
|ui|+ |µ|

∑
i∈F
|vi| 6 |λ|

∑
i∈I
|ui|+ |µ|

∑
i∈I
|vi| = M

Ainsi (λui + µvi)i∈I est sommable.
De plus, si ϕ : N→ I est une bijection

∑
i∈I

λui + µvi =

+∞∑
n=0

λuϕ(n) + µvϕ(n)

Par linéarité des séries convergentes

∑
i∈I

λui + µvi = λ

+∞∑
n=0

uϕ(n) + µ

+∞∑
n=0

vϕ(n) = λ
∑
i∈I

ui + µ
∑
i∈I

vi

http://mp.cpgedupuydelome.fr 328 cbna



CHAPITRE 13. FAMILLES SOMMABLES

�

Corollaire
L’ensemble des familles (ui)i∈I sommables est un sous-espace vectoriel de l’espace KI des
familles indexées sur I et l’application (ui)i∈I 7→

∑
i∈I

ui y définit une forme linéaire.

13.2.7.2 Positivité

Théorème
Soit (ui)i∈I une famille de réels positifs.
Si (ui)i∈I est sommable alors

∑
i∈I

ui > 0.

dém. :
Par définition

∑
i∈I

ui est la borne supérieure d’un ensemble de quantités positives.

�

Corollaire
Si (ui)i∈I et (vi)i∈I sont deux familles de réels sommables vérifiant

∀i ∈ I, ui 6 vi

alors ∑
i∈I

ui 6
∑
i∈I

vi

dém. :
Il suffit de considérer la famille positive (vi − ui)i∈I .
�

Théorème
Soit (ui)i∈I une famille de réels positifs.
Si (ui)i∈I est sommable et si

∑
i∈I

ui = 0 alors ui = 0 pour tout i ∈ I .

dém. :
Pour tout i ∈ I , on a

0 6 ui 6
∑
i∈I

ui = 0

car la somme est la borne supérieure de l’ensemble des sommes sur les parties finies F ; il suffit ici de
considérer F = {i}.
�
13.2.7.3 Conjugaison

Théorème
Si (ui)i∈I est une famille de complexes sommable alors (ui)i∈I l’est aussi et∑

i∈I
ui =

∑
i∈I

ui
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Corollaire
On a équivalence entre :
(i) la famille (ui)i∈I est sommable ;
(ii) les familles (Re(ui))i∈I et (Im(ui))i∈I sont sommables.

dém. :
(i)⇒ (ii) via Re(ui) = (ui + ui)/2 et Re(ui) = (ui − ui)/2i.
(ii)⇒ (i) via ui = Re(ui) + i.Im(ui).
�
13.2.7.4 Inégalité triangulaire

Théorème
Si (ui)i∈I est une famille de réels ou de complexes sommable alors∣∣∣∣∣∑

i∈I
ui

∣∣∣∣∣ 6∑
i∈I
|ui|

dém. :
Soit ϕ : N→ I est une bijection∣∣∣∣∣∑

i∈I
ui

∣∣∣∣∣ =

∣∣∣∣∣
+∞∑
n=0

uϕ(n)

∣∣∣∣∣ 6
+∞∑
n=0

∣∣uϕ(n)

∣∣ =
∑
i∈I
|ui|

�

13.3 Application à la réorganisation des sommes

13.3.1 Permutation des termes d’une série

Soit
∑

un une série et σ ∈ S(N). Que dire de la série
∑

uσ(n) ?

Exemple Considérons la série
∑
n>1

(−1)n−1

n
de somme S = ln 2 et permutons ses termes.

S = 1− 1

2
+

1

3
− 1

4
+ · · ·+ 1

2k + 1
− 1

2k + 2
+ · · ·

Permutons les termes de S de la manière suivante :

S = 1−
(

1

2
+

1

4

)
+

1

3
−
(

1

6
+

1

8

)
+ · · ·+ 1

2k + 1
−
(

1

4k + 2
+

1

4k + 4

)
+ · · ·

on obtient

S =
1

2
− 1

4
+

1

6
− 1

8
+ · · · − 1

4k + 2
+

1

4k + 4
+ · · ·

puis

S =
1

2

(
1− 1

2
+

1

3
− 1

4
+ · · ·

)
=

1

2
S

Ainsi, on peut changer la somme d’une série en en permutant ses termes !
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Théorème
Si
∑

un converge absolument alors pour tout σ ∈ S(N), la série permutée
∑

uσ(n) converge
absolument et

+∞∑
n=0

uσ(n) =

+∞∑
n=0

un

dém. :
Si
∑

un converge absolument alors (un)n∈N est sommable et

+∞∑
n=0

un =
∑
n∈N

un

La famille permutée (uσ(n))n∈N est alors elle aussi sommable et∑
n∈N

uσ(n) =
∑
n∈N

un

On en déduit que la série
∑

uσ(n) converge absolument et donc

+∞∑
n=0

uσ(n) =
∑
n∈N

uσ(n) =
∑
n∈N

un =

+∞∑
n=0

un

�

Exemple Nature de
∑
n>1

1

nσ(n)
pour σ ∈ S(N?).

Sachant

ab 6
1

2

(
a2 + b2

)
on a

1

nσ(n)
6

1

2

(
1

n2
+

1

σ(n)2

)
Or
∑ 1

n2
converge absolument et donc

∑ 1

σ(n)2
aussi.

Par comparaison de séries à termes positifs, on obtient la convergence de
∑
n>1

1

nσ(n)
.

13.3.2 Sommes doubles

Soit (um,n)(m,n)∈N2 une famille de réels ou de complexes. A-t-on

+∞∑
m=0

+∞∑
n=0

um,n =

+∞∑
n=0

+∞∑
m=0

um,n ?
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Théorème
Soit (um,n)(m,n)∈N2 une famille de réels ou de complexes. On a équivalence entre
(i) la famille (um,n)(m,n)∈N2 est sommable ;

(ii) pour tout n ∈ N, la série
∑
m

|um,n| converge et la série
∑
n

+∞∑
m=0

|um,n| converge.

De plus, on a alors ∑
(m,n)∈N2

um,n =

+∞∑
n=0

+∞∑
m=0

um,n

dém. :
On caractérise la sommabilité (|um,n|)(m,n)∈N2 par le théorème de sommation par paquets avec In =
N× {n}.
Une fois la sommabilité acquise, on calcule la somme par la même organisation par paquets.
�

Corollaire
On a alors

+∞∑
n=0

+∞∑
m=0

um,n =

+∞∑
m=0

+∞∑
n=0

um,n

avec convergence des séries écrites.

dém. :
On calcule ∑

(m,n)∈N2

um,n

en procédant à deux sommations par paquets.
La première avec In = N× {n}, la seconde avec Jm = {m} × N.
�

Exemple Montrons
+∞∑
m=1

+∞∑
n=m

1

n3
=

+∞∑
n=1

1

n2
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Commençons par interpréter le premier membre sous la forme
+∞∑
m=1

+∞∑
n=1

um,n

Posons um,n =
1

n3
si n > m et 0 sinon.∑

m>1

|um,n| converge car um,n = 0 pour m > n.

+∞∑
m=1

|um,n| =
n∑

m=1

1

n3
=

1

n2
donc

∑
n>1

+∞∑
m=1

|um,n| converge.

Ainsi, la famille (um,n)(m,n)∈(N?)2 est sommable et par le théorème de Fubini, on a l’égalité

+∞∑
n=1

+∞∑
m=1

um,n =

+∞∑
m=1

+∞∑
n=1

um,n

avec convergence des séries engagées. On obtient ainsi
+∞∑
n=1

1

n2
=

+∞∑
m=1

+∞∑
n=m

1

n3

13.3.3 Produit de Cauchy

Soit
∑

um et
∑

vn deux séries convergentes. On a(
+∞∑
m=0

um

)(
+∞∑
n=0

vn

)
=

+∞∑
m=0

(
um

+∞∑
n=0

vn

)
=

+∞∑
m=0

+∞∑
n=0

(umvn)

qui se comprend (u0v0+u0v1+u0v2+· · · )+(u1v0+u1v1+u1v2+· · · )+(u2v0+u2v1+u2v2+· · · )+· · · .
Peut-on réorganiser la somme en u0v0 + (u0v1 + u1v0) + (u0v2 + u1v1 + u2v0) + · · · ?
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Définition
On appelle produit de Cauchy des séries

∑
un et

∑
vn la série de terme général

wn =

n∑
k=0

ukvn−k

Théorème
Si
∑

um et
∑

vn sont deux séries absolument convergentes alors la famille (umvn)(m,n)∈N2

est sommable et ∑
(m,n)∈N2

umvn =

(
+∞∑
m=0

um

)(
+∞∑
n=0

un

)

dém. :

Pour tout n ∈ N, la série
∑
m

|umvn| converge et la série
∑
n

+∞∑
m=0

|umvn| converge donc la famille

(umvn)(m,n)∈N2 est sommable.
�

Corollaire
Si
∑

um et
∑

vn convergent absolument alors la série produit de Cauchy
∑

wn converge
absolument aussi et on a

+∞∑
n=0

wn =

(
+∞∑
m=0

um

)(
+∞∑
n=0

vn

)

dém. :
On procède à une sommation par paquets avec

Ip =
{

(m,n) ∈ N2/m+ n = p
}

sachant ∑
(m,n)∈Ip

umvn = wp

�

Exemple Soit a ∈ C tel que |a| < 1. Montrons
1

(1− a)2
=

+∞∑
n=0

(n+ 1)an

Par sommation géométrique
1

(1− a)2
=

(
+∞∑
n=0

an

)(
+∞∑
n=0

an

)
Par produit de Cauchy de séries absolument convergentes,

1

(1− a)2
=

+∞∑
n=0

n∑
k=0

(
akan−k

)
=

+∞∑
n=0

(n+ 1)an
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Exemple Pour x ∈ R, on pose f(x) =

+∞∑
n=0

1

n!
xn.

Vérifions
∀x, y ∈ R, f(x)f(y) = f(x+ y)

On vérifie aisément l’absolue convergence de la série définissant f(x) par application du critère
d’Alembert. On a

f(x)f(y) =

(
+∞∑
n=0

1

n!
xn

)(
+∞∑
n=0

1

n!
yn

)
Par produit de Cauchy de séries absolument convergentes

f(x)f(y) =

+∞∑
n=0

n∑
k=0

xk

k!

yn−k

(n− k)!

Or
n∑
k=0

xk

k!

yn−k

(n− k)!
=

1

n!

n∑
k=0

(
n

k

)
xkyn−k =

(x+ y)n

n!

donc

f(x)f(y) =

+∞∑
n=0

(x+ y)n

n!
= f(x+ y)

On a établira ultérieurement que f n’est autre que la fonction exponentielle.
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Chapitre 14

Espaces normés

K désigne R ou C et E désigne un K-espace vectoriel.

14.1 Norme

14.1.1 Définition

Définition
On appelle norme sur E toute application N : E → R+ vérifiant :
1) ∀x ∈ E, N(x) = 0⇒ x = 0E [séparation].
2) ∀λ ∈ K, ∀x ∈ E, N(λ.x) = |λ|N(x) [homogénéité]
3) ∀x, y ∈ E, N(x+ y) 6 N(x) +N(y) [inégalité triangulaire].
On dit alors que le couple (E,N) est un espace normé.

Remarque Les normes sont usuellement notées N(.), ‖ . ‖ ou | . |, elles servent à définir la longueur
d’un vecteur.

Exemple La valeur absolue sur R et le module sur C sont des normes.

Exemple Soit E un espace préhilbertien réel de produit scalaire noté 〈., .〉.
La norme euclidienne associée à ce produit scalaire est une norme. Celle-ci est définie par

∀x ∈ E, ‖x‖ =
√
〈x, x〉

Exemple Si F est un sous-espace vectoriel d’un espace E normé par ‖ . ‖ alors la restriction
‖ . ‖ : F → R+ définit une norme sur F .

Proposition
Si ‖ . ‖ est une norme sur E alors :
a) ∀x ∈ E, ‖x‖ = 0⇔ x = 0E ;
b) ∀x ∈ E, ‖−x‖ = ‖x‖ ;
c) ∀x, y ∈ E, |‖x‖ − ‖y‖| 6 ‖x− y‖ [inégalité triangulaire renversée].
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dém. :
a) (⇒ ) par définition et (⇐ ) par homogénéité avec λ = 0.
b) par homogénéité avec λ = −1.
c) par l’inégalité triangulaire ‖x‖ = ‖x− y + y‖ 6 ‖x− y‖ + ‖y‖ donc ‖x‖ − ‖y‖ 6 ‖x− y‖ et par
un raisonnement symétrique ‖y‖ − ‖x‖ 6 ‖x− y‖.
�

Définition
Un vecteur x d’un espace E normé par ‖ . ‖ est dit unitaire si ‖x‖ = 1.

Exemple Si x 6= 0E alors u =
1

‖x‖
x est un vecteur unitaire colinéaire à x.

14.1.2 Normes usuelles sur Kn

Pour x = (x1, . . . , xn) ∈ Kn, on pose

‖x‖1 =
déf
|x1|+ · · ·+ |xn| =

n∑
k=1

|xk|, ‖x‖2 =
déf

√
|x1|2 + · · ·+ |xn|2 =

(
n∑
k=1

|xk|2
)1/2

et

‖x‖∞ =
déf

max {|x1| , . . . , |xn|} = max
16k6n

|xk|

Théorème
‖ . ‖1 définit une norme sur Kn.

dém. :

‖ . ‖1 : Kn → R+ est bien définie. Soit x ∈ Kn. Si ‖x‖1 = 0 alors
n∑
k=1

|xk| = 0.

Par somme nulle de quantités positives |x1| = . . . = |xn| = 0 et donc x = 0Kn .
Soit λ ∈ K et x ∈ Kn

‖λx‖ =

n∑
k=1

|λxk| =
n∑
k=1

|λ| |xk| = |λ|
n∑
k=1

|xk| |λxn| = |λ| ‖x‖1

Soit x, y ∈ Kn.

‖x+ y‖1 =

n∑
k=1

|xk + yk| 6
n∑
k=1

(|xk|+ |yk|) =

n∑
k=1

|xk|+
n∑
k=1

|yk| = ‖x‖1 + ‖y‖1

Finalement ‖ . ‖1 est une norme sur Kn.
�

Théorème
‖ . ‖2 définit une norme sur Kn.

dém. :
‖ . ‖2 : Kn → R+ est bien définie.

Soit x ∈ Kn. Si ‖x‖2 = 0 alors
n∑
k=1

|xk|2 = 0.
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Par somme nulle de quantités positives |x1|2 = . . . = |xn|2 = 0 et donc x = 0Kn .
Soit λ ∈ K et x ∈ Kn

‖λx‖2 =

√√√√ n∑
k=1

|λxk|2 =

√√√√|λ|2 n∑
k=1

|xk|2 = |λ| ‖x‖2

Soit x, y ∈ Kn

‖x+ y‖22 =

n∑
k=1

|xk + yk|2

Or |xk + yk| 6 |xk|+ |yk| donc

‖x+ y‖22 =

n∑
k=1

|xk|2 + 2

n∑
k=1

|xk| |yk|+
n∑
k=1

|yk|2

Rappelons l’inégalité de Cauchy-Schwarz

∀ak, bk ∈ R,

∣∣∣∣∣
n∑
k=1

akbk

∣∣∣∣∣ 6
(

n∑
k=1

a2
k

)1/2( n∑
k=1

b2k

)1/2

On en déduit
n∑
k=1

|xk| |yk| 6

√√√√ n∑
k=1

|xk|2
√√√√ n∑
k=1

|yk|2

donc
‖x+ y‖22 6 (‖x‖2 + ‖y‖2)

2

puis
‖x+ y‖2 6 ‖x‖2 + ‖y‖2

Finalement ‖ . ‖2 est une norme sur Kn.
�

Théorème
‖ . ‖∞ définit une norme sur Kn.

dém. :
‖ . ‖∞ : Kn → R+ est bien définie
Soit x ∈ Kn. Si ‖x‖∞ = 0 alors pour tout 1 6 k 6 n, 0 6 |xk| 6 ‖x‖∞ donc |xk| = 0 et donc x = 0Kn .
Soit λ ∈ K et x ∈ Kn

‖λx‖∞ = max
16k6n

|λxk| = |λ| max
16k6n

|xk| = |λ| ‖x‖∞

Soit x, y ∈ Kn.

‖x+ y‖∞ = max
16k6n

|xk + yk| 6 max
16k6n

(|xk|+ |yk|) 6 max
16k6n

|xk|+ max
16k6n

|yk| = ‖x‖∞ + ‖y‖∞

Finalement ‖ . ‖∞ est une norme sur Kn.
�
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Remarque Plus généralement, pour p ∈ [1,+∞[, on peut montrer que

‖x‖p =
déf

(|x1|p + · · ·+ |xn|p)
1/p

définit une norme sur Kn. De plus

‖x‖∞ = lim
p→+∞

‖x‖p

14.1.3 Distance associée

Soit ‖ . ‖ une norme sur E.

Définition
On appelle distance associée à la norme ‖ . ‖ sur E l’application d : E × E → R+ définie par

d(x, y) =
déf
‖y − x‖

Exemple Sur E = R ou C, d(x, y) = |y − x| définit la distance associée à | . |.

Proposition
a) ∀x, y ∈ E, d(x, y) = 0⇔ x = y [séparation] ;
b) ∀x, y ∈ E, d(x, y) = d(y, x) [symétrie] ;
c) ∀x, y, z ∈ E, d(x, z) 6 d(x, y) + d(y, z) [inégalité triangulaire] ;
d) ∀x, y, z ∈ E, d(x+ z, y + z) = d(x, y) [invariance par translation].

dém. :
a) ‖y − x‖ = 0⇔ y − x = 0E .
b) ‖y − x‖ = ‖x− y‖.
c) ‖z − x‖ = ‖(z − y) + (y − x)‖ 6 ‖z − y‖+ ‖y − x‖.
d) ‖(y + z)− (x+ z)‖ = ‖y − x‖.
�

14.1.4 Boules

Soit ‖ . ‖ une norme sur E.
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Définition
Soit a ∈ E et r > 0. On définit :
- la boule ouverte de centre a et de rayon r :

B(a, r) =
déf
{x ∈ E/ ‖x− a‖ < r}

- la boule fermée de centre a et de rayon r :

Bf (a, r) =
déf
{x ∈ E/ ‖x− a‖ 6 r}

- la sphère de centre a et de rayon r :

S(a, r) =
déf
{x ∈ E/ ‖x− a‖ = r}

Exemple Dans (R, | . |), B(a, r) = ]a− r, a+ r[, Bf (a, r) = [a− r, a+ r].

Exemple Dans (C, | . |), B(a, r) = D(a, r) =
déf
{z ∈ C/ |z − a| < r} est le disque ouvert de centre a et

de rayon r.

Définition
Les boules de centre 0E et de rayon 1, sont appelées boules unités.

Exemple Boules unités fermées sur E = R2
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Proposition
B(a, r) = a+ rB(0E , 1) et Bf (a, r) = a+ rBf (0E , 1).
Ainsi, les boules générales se déduisent des boules des boules unités par homothéties et trans-
lations.

dém. :
a+ rB(0E , 1) = {a+ ru/ ‖u‖ < 1}.
Si x ∈ a+ rB(0E , 1) alors ‖x− a‖ = ‖ru‖ = r ‖u‖ < r donc x ∈ B(a, r).

Si x ∈ B(a, r) alors pour u =
1

r
(x− a), on a x = a+ ru avec ‖u‖ < 1.

�

Proposition
Les boules sont des parties convexes.

dém. :
Etudions B(a, r).
Soit x, y ∈ B(a, r). [x, y] = {(1− λ)x+ λy/λ ∈ [0, 1]}.
Soit z ∈ [x, y]. On peut écrire z = (1− λ)x+ λy avec λ ∈ [0, 1].
On a alors ‖z − a‖ 6 λ ‖x− a‖+(1−λ) ‖y − a‖ < λr+(1−λ)r = r l’inégalité stricte étant maintenue
car l’un au moins des deux facteurs λ ou 1− λ est strictement positif.
�

14.1.5 Bornitude

Soit ‖ . ‖ une norme sur E.

Définition
Une partie A de E est dite bornée s’il existe M ∈ R+ vérifiant

∀x ∈ A, ‖x‖ 6M

Exemple Les boules sont des parties bornées. En effet

∀x ∈ Bf (a, r), ‖x‖ 6 ‖a‖+ ‖x− a‖ 6 ‖a‖+ r = M

Définition
Soit X un ensemble. On dit qu’une fonction vectorielle f : X → E est bornée lorsque son
image l’est i.e.

∃M ∈ R+,∀x ∈ X, ‖f(x)‖ 6M

Exemple La fonction x 7→ (2 + cosx) sinx est bornée.
En effet,

∀x ∈ R, |(2 + cosx) sinx| = |2 + cosx| |sinx| 6 3

Il est plus aisé de raisonner ainsi que par les concepts de fonctions minorées et majorées.
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Définition
Pour X = N, une fonction au départ de N est communément appelée une suite. La définition
qui précède se transpose donc aux suites de vecteurs et par conséquent une suite (un)n∈N ∈ EN

est dite bornée si
∃M ∈ R+,∀n ∈ N, ‖un‖ 6M

Théorème
Soit f, g : X → E et λ, µ ∈ K.
Si f et g sont bornées alors λf + µg l’est aussi.

dém. :
Il existe M,M ′ ∈ R+ tels que

∀x ∈ X, ‖f(x)‖ 6M et ‖g(x)‖ 6M ′

On a alors
∀x ∈ X, ‖λf(x) + µg(x)‖ 6 |λ|M + |µ|M ′

donc λf + µg est bornée.
�

Corollaire
L’ensemble B(X,E) des fonctions bornées de X vers E est un sous-espace vectoriel de l’es-
pace F(X,E) des fonctions de X vers E .

14.2 Espaces normés usuels

14.2.1 Normes sur un espace de dimension finie

Théorème
Tout K-espace vectoriel de dimension finie peut être muni d’une norme.

dém. :
Soit E un K-espace vectoriel de dimension finie n ∈ N.
Cas n = 0.
E = {0E} est muni de la norme définie par N(0E) = 0.
Cas n ∈ N?.
Soit e = (e1, . . . , en) une base de E. Pour tout x ∈ E, il existe d’uniques x1, . . . , xn vérifiant

x = x1.e1 + · · ·+ xn.en

Posons ϕj : E → K l’application qui à x associe sa j-ème coordonnée dans la base e.
L’application ϕj est une forme linéaire sur E.
Considérons ‖ . ‖ une norme sur Kn et posons, pour tout x ∈ E,

N(x) = ‖(ϕ1(x), . . . , ϕn(x))‖

L’application N est bien définie de E vers R+.
Si N(x) = 0 alors (ϕ1(x), . . . , ϕn(x)) = 0Kn et donc x = 0E .
Soit λ ∈ K et x ∈ E.

N(λ.x) = ‖(ϕ1(λ.x), . . . , ϕn(λ.x))‖ = ‖λ.(ϕ1(x), . . . , ϕn(x))‖ = |λ|N(x)
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Soit x, y ∈ E.

N(x+y) = ‖(ϕ1(x+ y), . . . , ϕn(x+ y))‖ = ‖(ϕ1(x), . . . , ϕn(x)) + (ϕ1(y), . . . , ϕn(y))‖ 6 N(x)+N(y)

�

Définition
En choisissant sur Kn, ‖ . ‖ = ‖ . ‖1, ‖ . ‖2, ou ‖ . ‖∞, la norme N ci-dessus est notée ‖ . ‖1,e,
‖ . ‖2,e ou ‖ . ‖∞,e.

Exemple Soit E =Mn,p(K) et B = (Ei,j) sa base canonique.
Pour A = (ai,j) ∈Mn,p(K)

‖A‖1 =

n∑
i=1

p∑
j=1

|ai,j |, ‖A‖2 =

 n∑
i=1

p∑
j=1

|ai,j |2
1/2

et ‖A‖∞ = max
16i6n
16j6p

|ai,j |

14.2.2 Norme de la convergence uniforme

Soit X un ensemble non vide. Pour f : X → K bornée, on pose

‖f‖∞ =
déf

sup
x∈X
|f(x)|

Cette borne supérieure existe car

{|f(x)| /x ∈ X} est une partie de R non vide et majorée

Cette borne supérieure désigne le plus petit réel M vérifiant

∀x ∈ X, |f(x)| 6M

Théorème
‖ . ‖∞ définit une norme sur l’espace B(X,K).

dém. :
L’application ‖ . ‖∞ est bien définie de B(X,K) vers R+.
Soit f ∈ B(X,K). Si ‖f‖∞ = 0 alors sup {|f(x)| /x ∈ X} = 0 donc pour tout x ∈ X , ‖f(x)‖ = 0
puis f = 0.
Soit λ ∈ K et f ∈ B(X,K). Pour tout x ∈ X ,

|λf(x)| = |λ| |f(x)| 6 |λ| ‖f‖∞

donc ‖λf‖∞ 6 |λ| ‖f‖∞. Pour λ 6= 0,

‖f‖∞ =

∥∥∥∥ 1

λ
λf

∥∥∥∥
∞
6

∣∣∣∣ 1λ
∣∣∣∣ ‖λf‖∞
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et donc |λ| ‖f‖∞ 6 ‖λf‖∞ puis l’égalité. Pour λ = 0, l’égalité est bien entendu aussi vérifiée.
Soit f, g ∈ B(X,K). Pour tout x ∈ X

|(f + g)(x)| = |f(x) + g(x)| 6 |f(x)|+ |g(x)| 6 ‖f‖∞ + ‖g‖∞

�

Corollaire
‖ . ‖∞ définit une norme sur l’espace B(N,K) des suites bornées où

‖u‖∞ = sup
n∈N
|un|

dém. :
Il suffit de considérer X = N.
�

14.2.3 Norme de la convergence en moyenne et en moyenne quadratique
Soit a < b deux réels et E = C ([a, b] ,K) l’espace des fonctions continues de [a, b] vers K.
Cet espace est inclus dans celui des fonctions bornée de [a, b] vers K. On peut donc le munir de la norme
induite

‖f‖∞ = sup
t∈[a,b]

|f(t)|

et, de surcroît, la borne supérieure est ici un maximum en vertu du théorème de la borne atteinte.
Pour f : [a, b]→ K continue, on pose aussi

‖f‖1 =
déf

∫ b

a

|f(t)| dt et ‖f‖2 =
déf

(∫ b

a

|f(t)|2 dt

)1/2

Théorème
‖ . ‖1 définit une norme sur C ([a, b] ,K).

dém. :
L’application ‖ . ‖1 : C ([a, b] ,K)→ R+ est bien définie.

Soit f ∈ C ([a, b] ,K). Si ‖f‖1 = 0 alors
∫ b

a

|f(t)| dt = 0 or |f | est continue et positive sur [a, b]

donc f = 0̃.
Soit λ ∈ K et f ∈ C ([a, b] ,K).

‖λ.f‖1 =

∫ b

a

|λf(t)| dt =

∫ b

a

|λ| |f(t)| dt = |λ|
∫ b

a

|f(t)| dt = |λ| ‖f‖1

Soit f, g ∈ C ([a, b] ,K).

‖f + g‖1 =

∫ b

a

|f(t) + g(t)| dt 6
∫ b

a

|f(t)|+ |g(t)| dt = ‖f‖1 + ‖g‖1

�
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Théorème
‖ . ‖2 définit une norme sur C ([a, b] ,K).

dém. :
L’application ‖ . ‖2 : C ([a, b] ,K)→ R+ est bien définie.

Soit f ∈ C ([a, b] ,K). Si ‖f‖2 = 0 alors
∫ b

a

|f(t)|2 dt = 0 or |f |2 est continue et positive sur [a, b]

donc f = 0̃.
Soit λ ∈ K et f ∈ C ([a, b] ,K).

‖λ.f‖2 =

(∫ b

a

|λf(t)|2 dt

)1/2

=

(∫ b

a

|λ|2 |f(t)|2 dt

)1/2

= |λ|

(∫ b

a

|f(t)|2 dt

)1/2

= |λ| ‖f‖2

Soit f, g ∈ C ([a, b] ,K).

‖f + g‖22 =

∫ b

a

|f(t) + g(t)|2 dt 6
∫ b

a

(|f(t)|+ |g(t)|)2
dt

En développant

‖f + g‖22 6
∫ b

a

|f(t)|2 dt+ 2

∫ b

a

|f(t)| |g(t)| dt+

∫ b

a

|g(t)|2 dt

Par l’inégalité de Cauchy-Schwarz∣∣∣∣∣
∫ b

a

|f(t)g(t)| dt

∣∣∣∣∣ 6
(∫ b

a

|f(t)|2 dt

)1/2(∫ b

a

|g(t)|2 dt

)1/2

donc
‖f + g‖22 6 ‖f‖

2
2 + 2 ‖f‖2 ‖g‖2 + ‖g‖22

�

14.2.4 Produit d’espaces normés
Soit (E1, N1), . . . , (Ep, Np) des espaces normés. Considérons le produit cartésien

E = E1 × · · · × Ep =

p∏
j=1

Ej

E est un K-espace vectoriel dont les éléments x sont des tuples (x1, . . . , xp) avec

∀1 6 j 6 p, xj ∈ Ej

Le vecteur nul est le tuple nul
0E =

(
0E1 , . . . , 0Ep

)
Les opérations sur E se déduisent de celles sur les espaces Ej

λ.(x1, . . . , xp) = (λ.x1, . . . , λ.xp) et (x1, . . . , xp) + (y1, . . . , yp) = (x1 + y1, . . . , xp + yp)
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Pour x = (x1, . . . , xp) ∈ E, on pose

‖x‖ = max
16j6p

Nj(xj)

Théorème
‖ . ‖ définit une norme sur E.

dém. :
L’application ‖ . ‖ est bien définie de E vers R+.
Soit x = (x1, . . . , xp) ∈ E. Si ‖x‖ = 0 alors

∀j ∈ {1, . . . , p} , Nj(xj) = 0

et donc
∀j ∈ {1, . . . , p} , xj = 0Ej

On en déduit x = 0E .
Soit λ ∈ K et x = (x1, . . . , xp) ∈ E

‖λ.x‖ = max
16j6p

Nj(λxj) = max
16j6p

|λ|Nj(xj) = |λ| max
16j6p

Nj(xj) = |λ| ‖x‖

Soit x, y ∈ E

‖x+ y‖ = max
16j6p

Nj(xj+yj) 6 max
16j6p

(Nj(xj) +Nj(yj)) 6 max
16j6p

Nj(xj)+ max
16j6p

Nj(yj) = ‖x‖+‖y‖

�

Définition
(E, ‖ . ‖) est appelé espace normé produit des espaces normés (E1, N1), . . . , (Ep, Np)

14.2.5 Normes d’algèbres
Soit (E,+,×, .) une K-algèbre.

Définition
On appelle norme d’algèbre sur E toute application ‖ . ‖ : E → R+ vérifiant :
1) ‖ . ‖ est une norme sur E ;
2) ∀x, y ∈ E, ‖xy‖ 6 ‖x‖ ‖y‖ [sous-multiplicativité]
On dit alors que le couple (E, ‖ . ‖) est une algèbre normée.

Exemple La valeur absolue est une norme d’algèbre sur K = R ou C.

Exemple ‖ . ‖∞ est une norme d’algèbre sur Kn.

Exemple ‖ . ‖∞ est une norme d’algèbre sur B(X,K).
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Exemple SurMn(K), ‖ . ‖∞ définie par

‖A‖∞ = max
16i,j6n

|ai,j |

n’est pas une norme d’algèbre car on a seulement

∀A,B ∈Mn(K), ‖AB‖∞ 6 n ‖A‖∞ ‖B‖∞

Cependant, l’application ‖ . ‖ définie par ‖A‖ = n ‖A‖∞ est encore une norme surMn(K) et celle-ci
vérifie

‖AB‖ 6 ‖A‖ ‖B‖

C’est une norme d’algèbre surMn(K).

14.3 Equivalence de normes

14.3.1 Comparaison de normes

Définition
On dit qu’une norme N1 sur E est dominée par une norme N2 lorsque

∃α > 0,∀x ∈ E,N1(x) 6 αN2(x)

Exemple Sur Kn, comparons deux à deux les normes ‖ . ‖1, ‖ . ‖2 et ‖ . ‖∞.
a) ‖x‖∞ 6 ‖x‖1 6 n ‖x‖∞.

En effet , ‖x‖∞ = max
16k6n

|xk| 6
n∑
k=1

|xk| = ‖x‖1 et ‖x‖1 =

n∑
k=1

|xk| 6
n∑
k=1

‖x‖∞ = n ‖x‖∞

b) ‖x‖∞ 6 ‖x‖2 6
√
n ‖x‖∞.

En effet, ‖x‖∞ = max
16k6n

|xk|2 6
n∑
k=1

|xk|2 = ‖x‖22 et ‖x‖22 6
n∑
k=1

‖x‖2∞ = n ‖x‖∞.

c) ‖x‖2 6 ‖x‖1 6
√
n ‖x‖2.

En effet, ‖x‖22 =

n∑
k=1

|xk|2 6

(
n∑
k=1

|xk|

)2

= ‖x‖21 et ‖x‖1 6
√
n ‖x‖2 par l’inégalité de

Cauchy-Schwarz.

Exemple Sur E = C ([0, 1] ,K) comparons les normes ‖ . ‖1 et ‖ . ‖∞.

On a ‖f‖1 =

∫ 1

0

|f(t)| dt 6
∫ 1

0

‖f‖∞ dt = ‖f‖∞.

Ainsi ‖ . ‖1 est dominée par ‖ . ‖∞.
Montrons qu’en revanche ‖ . ‖∞ n’est pas dominée par ‖ . ‖1.
Pour cela considérons fn : t 7→ tn.
On a

‖fn‖1 =
1

n+ 1
et ‖fn‖∞ = 1
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Par l’absurde, supposons qu’il existe α > 0 tel que

∀f ∈ E, ‖f‖∞ 6 α ‖f‖1

Appliquée en f = fn, on obtient
1 6

α

n+ 1
−−→
n∞

0

C’est absurde !

Remarque Sur E = C ([a, b] ,K), on a aussi

‖f‖1 6
√
b− a ‖f‖2 et ‖f‖2 6

√
b− a ‖f‖∞

Cependant ‖ . ‖2 n’est pas dominée par ‖ . ‖1, ni ‖ . ‖∞ n’est pas dominée par ‖ . ‖2.

14.3.2 Normes équivalentes

Définition
Deux normes N1 et N2 sur un même espace E sont dites équivalentes lorsqu’elles se dominent
mutuellement i.e.

∃α, β > 0,∀x ∈ E,αN2(x) 6 N1(x) 6 βN2(x)

Proposition
L’équivalence de norme définit une relation d’équivalence sur l’ensemble des normes sur E.

Exemple Sur Kn, les normes ‖ . ‖1, ‖ . ‖2 et ‖ . ‖∞ sont équivalentes.

Théorème
Sur un K-espace vectoriel de dimension finie, les normes sont deux à deux équivalentes.
(admis)

Exemple Sur l’espace de dimension infinie E = C ([a, b] ,K), les normes ‖ . ‖1, ‖ . ‖2 et ‖ . ‖∞ ne sont
pas équivalentes.

Exemple Soit E = C1 ([0, 1] ,R). On y définit les normes

N(f) = |f(0)|+ ‖f ′‖∞ et N ′(f) = ‖f‖∞ + ‖f ′‖∞

Celles-ci sont équivalentes.
En effet, il est évident que N(f) 6 N ′(f) mais aussi, sachant

f(x) = f(0) +

∫ x

0

f ′(t) dt
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on a
‖f‖∞ 6 N(f)

puis
N ′(f) 6 2N(f)

14.3.3 Encadrement des boules

Proposition
SiN1 etN2 sont deux normes équivalentes alors toute boule de centre a pour l’une des normes
est incluse et contient des boules de même centre a pour l’autre norme.

dém. :
Supposons αN2 6 N1 6 βN2 et considérons B = B1(a, r).
On a B2(a, r/β) ⊂ B car N2(x− a) < r/β ⇒ N1(x− a) < r
et B ⊂ B2(a, r/α) car N1(x− a) < r ⇒ N2(x− a) < r/α.
�

Exemple Sur R2

14.3.4 Notion invariante par passage à une norme équivalente

Définition
On dit qu’une notion est invariante par passage à une norme équivalente si, lorsqu’elle est
vérifiée dans une espace normé (E,N1), elle l’est encore dans l’espace normée (E,N2) quand
N2 est équivalente à N1.

Exemple La notion de partie bornée est invariante par passage à une norme équivalente.
En effet, une partie est bornée si, et seulement si, elle est incluse dans une boule de centre 0E et cette
notion n’est pas changée lorsqu’on passe à une norme équivalente.
De même pour la notion de suite ou de fonction bornée.
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Exemple La notion de vecteur unitaire n’est pas invariante par passage à une norme équivalente.

Remarque Lorsque deux normes ne sont pas équivalentes, certaines propriétés peuvent être vraies pour
une norme sans l’être pour l’autre.

Exemple Dans E = C ([0, 1] ,K), considérons la suite (fn)n∈N des fonctions fn : t 7→ ntn.
Cette suite est bornée pour ‖ . ‖1 , mais ne l’est pas pour ‖ . ‖∞.

On a ‖fn‖1 =
n

n+ 1
→ 1 donc la suite (fn)n∈N est bornée pour ‖ . ‖1.

En revanche ‖fn‖∞ = n→ +∞ donc la suite (fn)n∈N n’est pas bornée pour ‖ . ‖∞.
Conclusion : on retrouve à nouveau que ‖ . ‖1 et ‖ . ‖∞ ne sont pas équivalentes sur E.

14.4 Suites d’éléments d’un espace normé
On s’intéresse ici aux suites d’éléments d’un espace normé. L’étude s’appliquera aux suites numériques,
aux suites d’éléments de Kn, aux suites matricielles ou encore aux suites de fonctions. . .
(E, ‖ . ‖) désigne un espace normé.
14.4.1 Convergence

Définition
On dit qu’une suite u = (un)n∈N d’éléments de E tend vers ` ∈ E si ‖un − `‖ → 0 i.e. :

∀ε > 0,∃N ∈ N,∀n ∈ N, n > N ⇒ ‖un − `‖ 6 ε

On note alors un −−−−−→
n→+∞

` ou un
‖ . ‖−−−−−→

n→+∞
`.

Exemple Etudions un =

(
sinn

n
,
n+ 1

n

)
∈ R2.

Pour ‖ . ‖ = ‖ . ‖1,

‖un − (0, 1)‖ =

∣∣∣∣ sinnn
∣∣∣∣+

∣∣∣∣n+ 1

n
− 1

∣∣∣∣→ 0

donc un → (0, 1).

Exemple Soit ‖ . ‖ une norme d’algèbre surMp(K).
Si ‖A‖ < 1 alors An −−−−−→

n→+∞
Op.

En effet
‖An −Op‖ = ‖An‖ 6 ‖A‖n → 0

Théorème
Si un → ` et un → `′ alors ` = `′.
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dém. :
0 6 ‖`− `′‖ 6 ‖`− un‖+ ‖un − `′‖ → 0 donc ‖`− `′‖ = 0 puis ` = `′.
�

Définition
On dit qu’une suite u = (un)n∈N d’éléments de E converge s’il existe ` ∈ E tel que un → `.
Cet élément ` est alors unique, on l’appelle limite de u et on note

` = limu ou ` = lim
n→+∞

un

Remarque Si deux suites sont égales à partir d’un certain rang, elles ont même nature et même
éventuelle limite : on ne modifie pas la limite d’une suite en modifiant la valeur d’un nombre fini de ses
termes.

14.4.2 Opérations

Théorème
Si un → ` alors ‖un‖ → ‖`‖.
Par conséquent toute suite convergente est bornée.

dém. :
Par l’inégalité triangulaire renversée

|‖un‖ − ‖`‖| 6 ‖un − `‖ → 0

�

Théorème
Si un ∈ E → ` et vn ∈ E → `′ alors λun + µvn → λ`+ µ`′.
Si de plus E est une algèbre normée alors unvn → ``′.

dém. :
‖λun + µ`− (λ`+ µ`′)‖ 6 |λ| ‖un − `‖+ |µ| ‖vn − `′‖ → 0.
‖unvn − ``′‖ 6 ‖unvn − un`′‖+ ‖un`′ − ``′‖ 6 ‖un‖ ‖vn − `′‖+ |`′| ‖un − `‖ → 0.
�

Théorème
Si αn ∈ K→ α et un ∈ E → ` alors αn.un → α.`.

dém. :
‖αn.un − α.`‖ 6 ‖αn.un − α.un‖+ ‖α.un − α.`‖ = |αn − α| ‖un‖+ |α| ‖un − `‖ → 0.
�

14.4.3 Effet d’un changement de norme

Théorème
Si N1 est dominée par N2 alors toute suite convergeant pour N2 converge vers la même limite
pour N1.
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dém. :
Car avec les notations qui précèdent

N1(un − `) 6 αN2(un − `)→ 0

�

Corollaire
Deux normes équivalentes définissent les mêmes suites convergentes et celles-ci ont mêmes
limites pour les deux normes.

Attention : Si N1 et N2 ne sont pas équivalentes, il se peut qu’une suite converge pour une norme et
diverge pour l’autre voire qu’elle converge deux pour ces deux normes, mais vers des limites différentes !

Exemple E = C([0, 1] ,R) muni de ‖ . ‖1 et ‖ . ‖∞. Etudions la convergence de la suite des fonctions
fn : t 7→ tn pour ces deux normes.

On a ‖fn‖1 =
1

n+ 1
→ 0 donc fn

‖ . ‖1−−−→ 0̃.

Or ‖fn‖∞ = 1 qui ne tend pas vers 0.
Conclusion : on retrouve à nouveau que ‖ . ‖1 et ‖ . ‖∞ ne sont pas équivalentes sur E.

14.4.4 Convergence en dimension finie
Soit E un K-espace vectoriel de dimension finie p ∈ N? muni d’une base e = (e1, . . . , ep).
Soit u = (u(n))n∈N une suite d’éléments de E. Pour tout n ∈ N, on peut écrire

u(n) = u1(n).e1 + · · ·+ up(n).ep

Définition
Les suites scalaires uj = (uj(n))n∈N sont appelées suites coordonnées (ou composantes) de
la suite vectorielle u dans la base e .

Exemple Supposons E = R2 et un =
(
n2, 1/(n+ 1)

)
.

Les suites coordonnées de u dans la base canonique de R2 sont (n2)n∈N et (1/(n+ 1))n∈N.

Théorème
On a équivalence entre :
(i) u converge ;
(ii) les suites u1, . . . , up convergent.
De plus, si tel est le cas,

limu = (limu1).e1 + · · ·+ (limun).ep

dém. :
Choisissons ‖ . ‖ = ‖ . ‖∞,e.
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(i)⇒ (ii) Supposons que la suite u converge vers ` = `1e1 + · · ·+ `pep.
Pour tout j ∈ {1, . . . , p},

|uj(n)− `j | 6 ‖u(n)− `‖ → 0

donc uj(n)→ `j .
(ii)⇒ (i) Supposons que pour tout j ∈ {1, . . . , p}, uj(n)→ `j . Considérons alors ` = `1e1 + · · ·+ `pep.
On a

‖u(n)− `‖∞,e = max {|u1(n)− `1| , . . . , |up(n)− `p|} 6
p∑
j=1

|uj(n)− `j | → 0

donc u→ `.
�

Exemple Dans R2, (
n sin

1

n
,

(
1 +

1

n

)n)
−−−−−→
n→+∞

(1, e)

Exemple DansMp,q(K),

An → A⇔ ∀i ∈ {1, . . . , p} ,∀j ∈ {1, . . . , q} , [An]i,j → [A]i,j

Exemple DansMp(K),
An → A et Bn → B ⇒ AnBn → AB

En effet

[AnBn]i,j =

n∑
k=1

[An]i,k [Bn]k,j −−−−−→n→+∞
[AB]i,j

Exemple Soit A ∈Mp(K). On suppose An → B. Montrons B2 = B.
Par extraction A2n → B et par ce qui précède

A2n = An ×An → B2

Par unicité de la limite
B2 = B

14.4.5 Convergence dans un espace produit

Soit (E1, N1), . . . , (Ep, Np) des espaces normés et E = E1 × · · · × Ep =

p∏
j=1

Ej muni de la norme

‖x‖ = max
16j6p

Nj(xj)

Soit u = (u(n)) une suite d’éléments de E. Pour tout n ∈ N,

u(n) = (u1(n), . . . , up(n))

http://mp.cpgedupuydelome.fr 354 cbna



CHAPITRE 14. ESPACES NORMÉS

Définition
Les suites vectorielles uj = (uj(n)) sont appelées suites coordonnées de la suite u.

Exemple Supposons E1 = E2 =Mp(K) et pour A ∈Mp(K) considérons

un =

(
An,

1

n+ 1
A

)

Les suites coordonnées de u sont (An)n∈N et
(

1

n+ 1
A

)
n∈N

.

Théorème
On a équivalence entre :
(i) u converge ;
(ii) les suites u1, . . . , up convergent.
De plus, si tel est le cas

limu = (limu1, . . . , limup)

Exemple Si An → A et Bn → B dansMp(K) alors (An +Bn, AnBn)→ (A+B,AB) dans
Mp(K)2.

14.4.6 Séries d’éléments d’un espace normé

Soit (un) une suite d’éléments de l’espace normé (E, ‖ . ‖).
14.4.6.1 Vocabulaire

Définition
On appelle série de terme général un la suite (Sn) définie par

Sn =

n∑
k=0

uk

Cette série est notée
∑

un et le terme Sn est appelé somme partielle de rang n de cette série.

Exemple Les séries numériques sont un cas particulier.

Exemple Soit A ∈Mp(K),
∑

An et
∑ 1

n!
An sont des séries matricielles.
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Définition
On dit que la série

∑
un converge si la suite (Sn) converge.

Sa limite S est alors appelée somme de la série et est notée

+∞∑
n=0

un

On introduit aussi

Rn =

+∞∑
k=n+1

uk = S − Sn

appelé reste de rang n de la série.

14.4.6.2 Série absolument convergente

Définition
Une série

∑
un d’éléments de E est dite absolument convergente s’il y a convergence de la

série numérique à termes positifs
∑
‖un‖.

Théorème
Si l’espace E est de dimension finie, l’absolue convergence d’une série d’éléments de E en-
traîne sa convergence

dém. :
Introduisons e = (e1, . . . , ep) une base de E.
Soit

∑
u(n) une série d’éléments de E et u1, . . . , up les suites coordonnées dans e de la suite u.

u(n) = u1(n).e1 + · · ·+ up(n).ep

Toutes les normes étant équivalentes sur E, il existe α > 0 tel que

‖ . ‖∞,e 6 α ‖ . ‖

et alors, pour tout j ∈ {1, . . . , p}

∀n ∈ N, |uj(n)| 6 ‖u‖∞,e 6 α ‖u‖

Par comparaison de séries à termes positifs, il y a convergence absolue, et donc convergence de
∑

n
uj(n).

On en déduit la convergence de la série
∑

u(n) car sa suite de sommes partielles converge.
�

Exemple Soit E =Mp(K) muni d’une norme d’algèbre ‖ . ‖.
Soit A ∈Mp(K) vérifiant ‖A‖ < 1. Etudions

∑
An.

La série matricielle
∑

An converge absolument car

‖An‖ 6 ‖A‖n

et la série
∑
‖A‖n converge puisque ‖A‖ < 1.
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On peut alors introduire la matrice

B =

+∞∑
n=0

An

Pour N ∈ N, on a

(Ip −A)

N∑
n=0

Ak = Ip −AN+1 −−−−−→
N→+∞

Ip

Or on a aussi

(Ip −A)

N∑
n=0

Ak −−−−−→
N→+∞

(Ip −A)B

On en déduit
B = (Ip −A)−1

14.4.7 Musculation

Théorème
Soit E un espace de dimension finie et f : E → E une application telle qu’il existe k ∈ [0, 1[
vérifiant

∀x, y ∈ E, ‖f(x)− f(y)‖ 6 k ‖x− y‖

Montrons que f admet un unique point fixe.

dém. :
Unicité : si x et y sont deux points fixes de f alors

‖x− y‖ = ‖f(x)− f(y)‖ 6 k ‖x− y‖

Sachant k ∈ [0, 1[, ceci entraîne x = y.
Existence : soit x0 ∈ E et (xn)n∈N donnée par xn+1 = f(xn). On vérifie par récurrence ‖xn+1 − xn‖ 6
kn ‖x1 − x0‖. On en déduit que la série télescopique

∑
xn+1 − xn converge absolument et donc la suite

(xn) converge. On peut alors introduire x∞ sa limite. Puisque ‖f(x∞)− xn+1‖ 6 k ‖x∞ − xn‖ → 0,
on obtient xn+1 → f(x∞) puis, par unicité de la limite, f(x∞) = x∞.
�

http://mp.cpgedupuydelome.fr 357 cbna



14.4. SUITES D’ÉLÉMENTS D’UN ESPACE NORMÉ

http://mp.cpgedupuydelome.fr 358 cbna



Chapitre 15

Suites et séries de fonctions numériques

Les fonctions étudiées sont à valeurs dans K = R ou C.
I et J désignent des intervalles de R contenant au moins deux points.

15.1 Suites de fonctions

15.1.1 Présentation

Définition
On appelle suite de fonctions de I vers K toute suite (un) d’éléments de F(I,K).

Exemple Considérons un : [0, 1]→ R définie par un(t) = tn.
(un)n∈N est une suite de fonctions de [0, 1] vers R.

15.1.2 Convergence simple
Soit (un) une suite de fonctions de I vers K.

Définition
On dit que la suite de fonctions (un) converge simplement vers u : I → K si

∀t ∈ I, un(t) −−−−−→
n→+∞

u(t)

On note alors un
CV S−−−→
I

u.

359
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Exemple Convergence simple de (un)n∈N avec

un(t) = tn avec t ∈ [0, 1]

Soit t ∈ [0, 1].
Quand n→ +∞
Si t ∈ [0, 1[ alors un(t)→ 0.
Si t = 1 alors un(t)→ 1.
Par suite un

CV S−−−→ u avec

u : t 7→
{

0 si t ∈ [0, 1[
1 si t = 1

Exemple Convergence simple de (un)n∈N avec

un(t) =
tn

1 + tn
avec t ∈ R+

Soit t ∈ R+.
Quand n→ +∞
Si t ∈ [0, 1[ alors un(t)→ 0.
Si t = 1 alors un(t) = 1/2→ 1/2.
Si t ∈ ]1,+∞[ alors un(t)→ 1.
Finalement un

CV S−−−→ u avec

u : t 7→

 0 si t ∈ [0, 1[
1/2 si t = 1
1 si t = ]1,+∞[

Exemple Convergence simple de (un)n>1 avec

un(t) =


(

1− t

n

)n
si t ∈ [0, n[

0 si t ∈ [n,+∞[
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Soit t ∈ R+.
Quand n→ +∞
Pour n assez grand, t < n donc

un(t) =

(
1− t

n

)n
= exp (n ln(1− t/n))→ e−t

Ainsi un
CV S−−−→ u avec

u : t 7→ e−t

Théorème
Si un

CV S−−−→
I

u et un
CV S−−−→
I

v alors u = v.

dém. :
Pour tout t ∈ I , on a un(t)→ u(t) et un(t)→ v(t) donc u(t) = v(t).
�

Définition
Si un

CV S−−−→
I

u alors on dit que u est la limite simple de la suite (un) et on note

u = lim
n→+∞

un

15.1.3 Propriétés de la limite simple

Proposition

Si un
CV S−−−→
I

u et si chaque un est positive alors u est positive.

dém. :
Si toutes les fonctions un sont positives alors pour tout t ∈ I , u(t) > 0 par passage à la limite de
l’inégalitéun(t) > 0.
�

Proposition

Si un
CV S−−−→
I

u et si chaque un est croissante alors u est croissante.
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dém. :
Si toutes les fonctions un sont croissantes alors pour tout x 6 y ∈ I , u(x) 6 u(y) par passage à la limite
de l’inégalitéun(x) 6 un(y).
�
( !)un

CV S−−−→ u et chaque un continue n’implique pas u continue !

un
CV S−−−→ u n’implique pas

∫
I

un(t) dt→
∫
I

u(t) dt !

Exemple Etudions
∫ 1

0

un(t) dt avec un(t) = n2tn(1− t)

Soit t ∈ [0, 1].
Quand n→ +∞.
Si t ∈ [0, 1[ alors un(t)→ 0 par croissance comparée.
Si t = 1 alors un(t) = 0→ 0.
Finalement un

CV S−−−→ 0̃.
Cependant ∫ 1

0

un(t) dt = n2

(∫ 1

0

tn dt−
∫ 1

0

tn+1 dt

)
=

n

n+ 1
→ 1

En fait

un

(
1− 1

n

)
∼ n

e
→ +∞ !

15.1.4 Convergence uniforme
Soit (un) une suite de fonctions de I vers K.

Définition
On dit que (un) converge uniformément vers u : I → K si

∀ε > 0,∃N ∈ N,∀n ∈ N, n > N ⇒ ∀t ∈ I, |un(t)− u(t)| 6 ε

On dit alors que u est limite uniforme de la suite (un) et on note

un
CV U−−−→ u ou un

CV U−−−→
I

u

Remarque Comparativement, dire que (un) converge simplement vers u signifie :

∀t ∈ I, ∀ε > 0,∃N > 0,∀n ∈ N, n > N ⇒ |un(t)− u(t)| 6 ε
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Pour la convergence simple, le rang N est susceptible de dépendre de t alors que pour la convergence
uniforme N doit convenir pour tout t ∈ I (on dit qu’il est uniforme en t ).

Remarque La convergence simple se comprend comme la convergence des fonctions « point par
point » .
La convergence uniforme se comprend comme la convergence des fonctions « dans leur globalité » .

Théorème
Si un

CV U−−−→ u alors un
CV S−−−→ u.

Ainsi, s’il y a convergence uniforme, c’est vers la limite simple de la suite de fonctions ; en
particulier il y a unicité de la limite uniforme.

dém. :
Qui peut le plus, peut le moins.
�

Théorème
Soit (un) une suite de fonctions de I vers K convergeant simplement vers u : I → K.
S’il existe une suite réelle (αn) vérifiant

∀t ∈ I, |un(t)− u(t)| 6 αn et αn −−−−−→
n→+∞

0

alors la convergence de la suite (un) est uniforme.

dém. :
Pour tout ε > 0, il existe N ∈ N vérifiant

∀n ∈ N, n > N ⇒ |αn| 6 ε

et alors
∀n ∈ N, n > N ⇒ ∀t ∈ I, |un(t)− u(t)| 6 ε

�

Exemple Convergence uniforme de (un)n>1 avec

un(t) =
t+ n

n(1 + t2)
pour t ∈ R
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Soit t ∈ R.
Quand n→ +∞,

un(t)→ 1

1 + t2

Ainsi un
CV S−−−→ u avec

u : t 7→ 1

1 + t2

Etudions

un(t)− u(t) =
1

n

t

1 + t2

En vertu de l’inégalité
2 |ab| 6 a2 + b2

on a

|un(t)− u(t)| 6 1

2n
= αn

Puisque αn → 0, on obtient finalement un
CV U−−−→ u.

15.1.5 Convergence en norme uniforme

L’algèbre B(I,K) des fonctions bornées de I vers K est normée par

‖f‖∞ = sup
t∈I
|f(t)|

Définition
La norme infinie ‖ . ‖∞ est encore appelée norme uniforme et est parfois notée ‖ . ‖∞,I .

Remarque On peut calculer exactement ‖f‖∞ à partir du tableau de variation de f .

Théorème
Soit (un) une suite de fonctions de I vers K.
On a équivalence entre :
(i) (un) converge uniformément vers une fonction u : I → K ;
(ii) A partir d’un certain rang, les fonctions un − u sont bornées et ‖un − u‖∞,I → 0.

dém. :
Ecrire

∀t ∈ I, |un(t)− u(t)| 6 ε

équivaut à signifier
un − u bornée et ‖un − u‖∞,I 6 ε

�
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Exemple Convergence uniforme de (un)n∈N avec

un(t) = tn pour t ∈ [0, 1]

un
CV S−−−→
[0,1]

u avec

u(t) =

{
0 si t ∈ [0, 1[
1 si t = 1

Etudions un − u. On a

un(t)− u(t) =

{
tn si t ∈ [0, 1[
1 si t = 1

donc ‖un − u‖∞ = 1 qui ne tend pas vers 0 donc la suite de fonctions (un) ne converge pas
uniformément.
Cependant, pour a ∈ [0, 1[,

‖un − u‖∞,[0,a] = an → 0

donc
un

CV U−−−→
[0,a]

0̃

Exemple Convergence uniforme de (un)n∈N avec

un(t) = nt(1− t)n pour t ∈ [0, 1]

Soit t ∈ [0, 1]
Quand n→ +∞
Si t = 0 alors un(t) = 0→ 0.
Si t ∈ ]0, 1] alors un(t)→ 0 par croissances comparées.
Finalement un

CV S−−−→ u = 0̃.
En étudiant les variations de δn(t) = un(t)− u(t) on obtient

t 0 1/(n+ 1) 1
un(t)− u(t) 0 ↗ un(1/(n+ 1)) ↘ 0

donc

‖un − u‖∞ = un

(
1

n+ 1

)
=

n

n+ 1

(
1− 1

n+ 1

)n
∼ 1

e

Par conséquent la suite de fonctions (un) ne converge pas uniformément.
Cependant pour a ∈ ]0, 1].
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Pour n assez grand
1

n+ 1
6 a, et puisque

t 0 1/(n+ 1) a 1
un(t)− u(t) 0 ↗ un(1/(n+ 1)) ↘ un(a) ↘ 0

On obtient donc

‖un − u‖∞ = un(a) −−−−−→
n→+∞

0

Ainsi un
CV U−−−→
[a,1]

0̃ pour tout a ∈ ]0, 1].

15.2 Séries de fonctions

15.2.1 Présentation

Soit (un)n>n0
une suite de fonctions de I vers K.

Définition
On appelle série de fonctions de terme général un la suite de fonctions (Sn)n>n0

avec

Sn =

n∑
k=n0

uk

Cette série de fonctions est notée
∑
n>n0

un et Sn est appelée somme partielle de rang n de

celle-ci.

Remarque Dans la suite on supposera n0 = 0 quitte à poser nulles les premières fonctions de la suite
(un)n∈N. La série de fonctions est alors simplement notée

∑
un.

Exemple Considérons un : R→ R définie par un(t) = tn.
La série de fonctions

∑
un est la suite de fonctions (Sn) avec

Sn(t) =

n∑
k=0

uk(t) =

n∑
k=0

tk =

 1− tn+1

1− t
si t 6= 1

n+ 1 si t = 1

15.2.2 Convergence simple

Soit
∑

un une série de fonctions de I vers K.
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Définition
On dit que la série de fonctions

∑
un converge simplement si la suite (Sn) de ses sommes

partielles converge simplement vers une certaine fonction S.
Cette fonction S est appelée somme de la série de fonctions et on note

S =

+∞∑
n=0

un

Théorème
On a équivalence entre :
(i) la série de fonctions

∑
un converge simplement sur I ;

(ii) la série numérique
∑

un(t) converge pour chaque t ∈ I .
De plus, si tel est le cas (

+∞∑
n=0

un

)
(t) =

+∞∑
n=0

un(t)

dém. :
(i)⇔ ∀t ∈ I , (Sn(t)) converge.

Or Sn(t) =

(
n∑
k=0

uk

)
(t) =

n∑
k=0

uk(t) donc

(i)⇔ ∀t ∈ I,
∑

un(t) converge.
De plus, on a alors

S(t) = lim
n→+∞

Sn(t) =

+∞∑
n=0

un(t)

�

Définition
Si la série de fonctions

∑
un converge simplement, on peut introduire son reste de rang n

Rn =

+∞∑
k=n+1

uk : t 7→
+∞∑

k=n+1

uk(t)

Proposition

Si la série de fonctions
∑

un converge simplement alors sa somme S vérifie

S = Sn +Rn et Rn
CV S−−−→ 0̃

dém. :
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Pour tout t ∈ I ,

S(t) =

(
+∞∑
k=0

uk

)
(t) =

+∞∑
k=0

uk(t) =

n∑
k=0

uk(t) +

+∞∑
k=n+1

uk(t) = Sn(t) +Rn(t)

De plus, pour tout t ∈ I , Rn(t)→ 0 car Rn(t) est le reste d’une série numérique convergente.
�

Exemple Convergence simple de
∑

un avec

un : R→ R définie par un(t) = tn

Pour t ∈ R, la série numérique
∑

un(t) =
∑

tn converge si, et seulement si, t ∈ ]−1, 1[.

Par conséquent, la série de fonctions
∑

un converge simplement sur ]−1, 1[.
Sa somme S est définie sur ]−1, 1[ et

S(t) =

+∞∑
n=0

tn =
1

1− t
pour t ∈ ]−1, 1[

Exemple Convergence simple de
∑
n>1

un avec

un : R→ R définie par un(t) = 1/nt

Pour t ∈ R,
∑

un(t) =
∑

1/nt converge si, et seulement si, t > 1.

Par conséquent, la série de fonctions
∑

un converge simplement sur ]1,+∞[.
Sa somme est définie sur ]1,+∞[, on la note ζ et cela définit la fonction zêta de Riemann

ζ(t) =

+∞∑
n=1

1

nt
pour t ∈ ]1,+∞[

Remarque L’étude de la convergence simple de
∑

un fournit le domaine de définition de la

fonction
+∞∑
n=0

un.

15.2.3 Convergence uniforme

Soit
∑

un une série de fonctions de I vers K.

Définition
On dit que la série de fonctions

∑
un converge uniformément lorsque la suite (Sn) de ses

sommes partielles converge uniformément.
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Théorème
On a équivalence entre :
(i) la série de fonctions

∑
un converge uniformément sur I ;

(ii) la série de fonctions
∑

un converge simplement et Rn
CV U−−−→
I

0̃.

dém. :
(i)⇔ ∃S : I → K, Sn

CV U−−−→ S

⇔ ∃S : I → K, Sn
CV S−−−→ S et Sn − S

CV U−−−→ 0̃
⇔ (ii)
�

Remarque Pour étudier la convergence uniforme de (Rn) vers la fonction nulle, on pourra :
- raisonner par majoration uniforme, c’est-à-dire déterminer (αn) telle que

∀t ∈ I, |Rn(t)| 6 αn avec αn → 0

- évaluer ‖Rn‖∞ et étudier si ‖Rn‖∞ → 0.

Exemple Convergence uniforme de
∑
n>1

un avec

un(t) =
(−1)n

n+ t
pour t ∈ R+

Pour t ∈ R+, la série
∑ (−1)n

n+ t
est convergente en vertu du CSSA donc la série de fonctions

∑
un

converge simplement sur R+.

La fonction S : t 7→
+∞∑
n=1

(−1)n

n+ t
est donc définie sur R+

On a

Rn(t) =

+∞∑
k=n+1

(−1)k

k + t

Par le CSSA,

|Rn(t)| 6 1

n+ 1 + t
6

1

n+ 1
−−−−−→
n→+∞

0

Par majoration uniforme, on peut affirmer que
∑

un converge uniformément sur R+.

15.2.4 Convergence normale

Soit
∑

un une série de fonctions de I vers K.

Définition
On dit que la série de fonctions

∑
un converge normalement lorsque :

- les fonctions un sont toutes bornées ;
- la série numérique

∑
‖un‖∞ est convergente.
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Théorème
Si la série de fonctions

∑
un converge normalement alors celle-ci converge uniformément et

la convergence est absolue en tout point.

dém. :
Supposons la série de fonctions

∑
un normalement convergente sur I .

Pour tout t ∈ I , |un(t)| 6 ‖un‖∞ donc par comparaison de séries à termes positifs, la série numérique∑
un(t) est absolument convergente.

En particulier, cette série converge et donc la série de fonctions
∑

un converge simplement.
Aussi, pour tout t ∈ I ,

|Rn(t)| 6
+∞∑

k=n+1

|uk(t)| 6
+∞∑

k=n+1

‖uk‖∞

donc

|Rn(t)| 6
+∞∑

k=n+1

‖uk‖∞ → 0

Par majoration uniforme de limite nulle, on peut affirmer que la série de fonctions
∑

un converge uni-
formément.
�

Remarque CV N ⇒ CV U ⇒ CV S.
Les réciproques sont fausses.

Remarque Pour montrer qu’une série de fonctions
∑

un converge normalement sur I , il suffit de
déterminer (αn) telle que

∀t ∈ I, |un(t)| 6 αn et
∑

αn converge

Exemple Convergence uniforme de
∑

un avec

un(t) =
sin(nt)

n2 + 1
pour t ∈ R

On a
|un(t)| 6 1

n2 + 1

Or
∑ 1

n2 + 1
converge et donc, par majoration uniforme, la série de fonctions

∑
un converge

normalement.
Par conséquent,

∑
un converge simplement et uniformément sur R.

Exemple Convergence uniforme de
∑
n>1

un avec

un(t) =
1

n
− 1

n+ t
pour t ∈ [0,+∞[
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Pour t ∈ R+,
∑

un(t) =
∑(

1

n
− 1

n+ t

)
avec

1

n
− 1

n+ t
=

t

n(n+ t)
∼

n→+∞

t

n2

Par équivalence de série à termes positifs, il y a convergence de
∑

un(t) et donc la série de fonctions
converge simplement sur R+.
Etudions sa convergence normale. Puisque

t 0 +∞
un(t) 0 ↗ 1/n

un est bornée et ‖un‖∞,R+ = 1/n. Il n’y a pas convergence normale sur R+

Cependant pour a > 0, on a
∀t ∈ [0, a] , |un(t)| 6 un(a)

et puisque
∑

un(a) converge, il y a convergence normale (et donc uniforme) de la série de fonctions
étudiée sur [0, a] pour tout a ∈ R+.

Remarque En pratique la convergence uniforme d’une série de fonctions s’obtient le plus souvent :
- par convergence normale ;
- par ‖Rn‖∞ → 0 via exploitation du critère spécial des séries alternées si cela est contextuel.

15.3 Continuité et limite

15.3.1 Continuité
Soit (un) une suite de fonctions de I vers K.

Théorème
Si un

CV U−−−→ u et si chaque un est continue en a ∈ I alors u est continue en a.

dém. :
Exploitons

|u(t)− u(a)| 6 |u(t)− un(t)|+ |un(t)− un(a)|+ |un(a)− u(a)|

Soit ε > 0. Il existe N ∈ N tel que pour tout n ∈ N,

n > N ⇒ ∀t ∈ I, |un(t)− u(t)| 6 ε

Fixons un tel n > N . La relation précédente donne

|u(t)− u(a)| 6 2ε+ |un(t)− un(a)|

La fonction un étant continue en a, il existe α > 0 tel que

∀t ∈ I, |t− a| 6 α⇒ |un(t)− un(a)| 6 ε
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En vertu de la relation initiale, on a alors

∀t ∈ I, |t− a| 6 α⇒ |u(t)− u(a)| 6 3ε

Ainsi, la fonction u est continue en a.

�

Corollaire
La limite uniforme d’une suite de fonctions continues est continue.

Exemple Soit un : [0, 1]→ R définie par un(t) = tn.
La limite simple de (un) n’est pas continue alors que chaque un l’est : il n’y a pas convergence uniforme
sur [0, 1] !

Corollaire
Si
∑

un est une série de fonctions continues uniformément convergente alors sa somme S est
continue.

dém. :

Sn =

n∑
k=0

uk
CV U−−−→ S et chaque Sn est continue donc S est continue.

�

Exemple Définition et continuité sur [0, 1] de la fonction

S : t 7→
+∞∑
n=0

(−1)ntn

2n+ 1

Introduisons

un : t ∈ [0, 1] 7→ (−1)ntn

2n+ 1

Pour tout t ∈ [0, 1], la série numérique
∑

un(t) converge via CSSA.

Par suite la série de fonctions
∑

un converge simplement sur [0, 1] et donc S est définie sur [0, 1].
De plus, par le CSSA,

|Rn(t)| 6 tn+1

2n+ 3
6

1

2n+ 3
−−−−−→
n→+∞

0
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Par majoration uniforme de limite nulle, on peut affirmer que la série de fonctions
∑

un converge
uniformément sur [0, 1]. Or chaque un est continue donc la somme S est continue sur [0, 1].

15.3.2 Continuité par convergence uniforme sur tout segment
Soit (un) une suite de fonctions de I vers K.

Définition
On dit que la suite de fonctions (un) converge uniformément sur tout segment de I vers u :
I → K lorsque

∀ [a, b] ⊂ I, un
CV U−−−→
[a,b]

u

Proposition
Si tel est le cas, la suite (un) converge simplement vers u sur I .

dém. :
Pour t ∈ I , il existe [a, b] ⊂ I tel que t ∈ [a, b] et un

CV U−−−→
[a,b]

u entraîne un(t) −−−−−→
n→+∞

u(t).

�

Exemple Si (un) converge uniformément sur I alors (un) converge a fortiori uniformément sur tout
segment de I .

Attention : La réciproque est fausse : la convergence uniforme sur tout segment de I n’implique pas la
convergence uniforme sur I .

Exemple Précédemment, pour un(t) =
1

n
− 1

n+ t
, on a vu que

∑
un convergeait normalement sur

[0, a] pour tout a > 0 donc
∑

un converge uniformément sur tout segment de [0,+∞[.

Théorème
Si (un) converge uniformément vers u sur tout segment de I et si chaque un est continue alors
u est continue.

dém. :
Soit t0 ∈ I .
Si t0 n’est pas extrémité de I , il existe α > 0 tels que [t0 − α, t0 + α] ⊂ I .
Par convergence uniforme de (un) sur le segment [t0 − α, t0 + α], on peut affirmer que la fonction u est
continue sur ce segment et en particulier la fonction u est continue en t0.
Si t0 est une extrémité de I : idem avec des segments [t0, t0 + α] ou [t0 − α, t0].
�

Corollaire
Si
∑

un est une série de fonctions continues convergeant uniformément sur tout segment de
I alors sa somme est continue.
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Exemple Définition et continuité sur R de la fonction S : t 7→
+∞∑
n=0

tn

(2n+ 1)!

Introduisons un : R→ R définie par un(t) =
tn

(2n+ 1)!
.

Pour t ∈ R.

un(t) =
1

(2n+ 1)

1

2n

tn

(2n− 1)!
= o

(
1

n2

)
car par croissances comparées

tn

(2n− 1)!
→ 0

La série numérique
∑

un(t) est absolument convergente et donc convergente.

Ainsi, la série
∑

un converge simplement sur R et donc S est définie sur R.
Etudions la convergence uniforme via convergence normale.
La fonction un n’est pas bornée sur R, il n’y a pas convergence normale sur R.
Soit a > 0.
Sur [−a, a],

|un(t)| 6 an

(2n+ 1)!
= un(a)

Puisque la série numérique
∑

un(a) converge, on peut par majoration uniforme, affirmer que la série

de fonctions
∑

un converge normalement, et donc uniformément, sur [−a, a].

Puisque ceci vaut pour tout a > 0, on peut affirmer que
∑

un converge uniformément sur tout segment
de R, or chaque un est continue donc S est continue sur R.

15.3.3 Limite et comportement asymptotique
Soit (un) une suite de fonctions de I vers K et a un point ou une extrémité éventuellement infinie de I .

Théorème
Si (un) converge uniformément sur I vers u : I → K et si chaque un tend vers une limite finie
`n en a alors la suite (`n) converge et

u(t) −−−→
t→a

lim
n→+∞

`n

Autrement dit
lim
t→a

lim
n→+∞

un(t) = lim
n→+∞

lim
t→a

un(t)

dém. :
Commençons par établir que la suite (`n) est bornée.
Pour ε = 1 > 0, il existe N ∈ N tel que

∀n > N, ∀t ∈ I, |un(t)− u(t)| 6 1

et donc
∀n > N, ∀t ∈ I, |un(t)− uN (t)| 6 2
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En passant à la limite quand t→ a, on obtient

|`n − `N | 6 2

Ainsi, la suite (`n) est bornée.
Par le théorème de Bolzano Weierstrass, elle possède une suite extraite convergente (`ϕ(n)) de limite `∞.
Montrons que u tend vers `∞ en a.
Soit ε > 0. Il existe N ∈ N tel que

∀n > N, ∀t ∈ I, |un(t)− u(t)| 6 ε

En particulier
∀n > N, ∀t ∈ I,

∣∣uϕ(n)(t)− u(t)
∣∣ 6 ε

Parallèlement, il existe N ′ ∈ N tel que

∀n > N ′,
∣∣`ϕ(n) − `∞

∣∣ 6 ε
Considèrons, n = max(N,N ′). Puisque uϕ(n) −→

a
`ϕ(n), on obtient au voisinage de a∣∣uϕ(n)(t)− `ϕ(n)

∣∣ 6 ε
puis

|u(t)− `∞| 6 3ε

Ainsi u converge vers `∞ en a. Ceci détermine alors la valeur de `∞ de façon unique et puisque la suite
(`n) est bornée et ne possède qu’une seule valeur d’adhérence, elle converge vers celle-ci.
�

Corollaire
Si
∑

un converge uniformément sur I et si chaque un tend vers une limite finie `n en a alors

la série numérique
∑

`n converge et

+∞∑
n=0

un(t) −−−→
t→a

+∞∑
n=0

`n

Autrement dit

lim
t→a

+∞∑
n=0

un(t) =

+∞∑
n=0

lim
t→a

un(t)

dém. :

Sn =

n∑
k=0

un converge uniformément vers S =

+∞∑
n=0

un et Sn −→
a

n∑
k=0

lim
a
uk donc par le théorème de la

double limite, la suite

(
n∑
k=0

lim
a
uk

)
converge et S −→

a
lim

n→+∞

n∑
k=0

lim
a
uk.

�

Exemple a) Définition et continuité de S(x) =

+∞∑
n=1

1

n2 + x2
pour x ∈ R.

b) Limite en +∞.
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c) Equivalent en +∞.
a) Posons

un(x) =
1

n2 + x2

Les fonctions un sont définies et continues sur R et

∀x ∈ R, |un(x)| 6 1

n2

Puisque la série
∑

1/n2 converge, la série de fonctions
∑

un converge normalement, et donc
uniformément sur R. On en déduit que S est définie et continue sur R.
b) On a

∀n ∈ N?, lim
x→+∞

1

n2 + x2
= 0

Puisqu’il y a convergence uniforme au voisinage de +∞, on peut appliquer le théorème de la double
limite et affirmer

lim
x→+∞

S(x) =

+∞∑
n=1

0 = 0

c) La fonction t 7→ 1/(t2 + x2) est décroissante et donc∫ n+1

n

dt

t2 + x2
6

1

n2 + x2
6
∫ n

n−1

dt

t2 + x2

En sommant, on obtient ∫ +∞

1

dt

t2 + x2
6 S(x) 6

∫ +∞

0

dt

t2 + x2

Puisque∫ +∞

0

dt

t2 + x2
=

[
1

x
arctan

(
t

x

)]+∞

0

=
π

2x
et
∫ +∞

1

dt

t2 + x2
=
π/2− arctan (1/x)

x
∼ π

2x

on obtient
S(x) ∼

x→+∞

π

2x

Exemple a) Définition et continuité de S(t) =

+∞∑
n=0

(−1)n

nt+ 1
pour t > 0.

b) Limite de S en +∞.
c) Développement asymptotique à deux termes en +∞.

a) Introduisons un : t ∈ R+? 7→ (−1)n

nt+ 1
.

Pour t > 0,
∑

un(t) converge en vertu du CSSA.∑
un converge simplement sur R+? donc S est définie sur R+?.

Par le critère spécial des séries alternées

|Rn(t)| 6 1

(n+ 1)t+ 1
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Pour a > 0, sur [a,+∞[,

|Rn(t)| 6 1

(n+ 1)a+ 1
−−−−−→
n→+∞

0∑
un converge uniformément sur [a,+∞[ pour tout a > 0 donc

∑
un converge uniformément sur

tout segment de R+?. On en déduit que la fonction S est continue.
b)
∑

un converge uniformément sur [a,+∞[ et

lim
+∞

un =

{
1 si n = 0
0 sinon

Par le théorème de la double limite, la série
∑

lim
+∞

un converge et

lim
+∞

S =

+∞∑
n=0

lim
+∞

un = 1 + 0 + 0 + · · · = 1

c) On a déjà S(t) =
t→+∞

1 + o(t). Déterminons un équivalent de S(t)− 1 quand t→ +∞.

On a

S(t)− 1 =

+∞∑
n=1

(−1)n

nt+ 1

donc

t(S(t)− 1) =

+∞∑
n=1

(−1)nt

nt+ 1

Introduisons

vn : t > 0 7→ (−1)nt

nt+ 1

Le critère spécial des séries alternées s’applique à
∑

vn(t) donc

|Rn(t)| 6 t

(n+ 1)t+ 1
6

1

n+ 1
−−−−−→
n→+∞

0

∑
vn converge uniformément sur R+? et puisque

lim
+∞

vn =
(−1)n

n

le théorème de la double limite s’applique et la série
∑ (−1)n

n
est donc convergente avec

lim
t→+∞

t(S(t)− 1) =

+∞∑
n=1

(−1)n

n
= − ln 2

On en déduit
S(t)− 1 ∼

t→+∞
− ln 2

t
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15.4 Intégration et dérivation

15.4.1 Intégration sur un segment

Théorème
Soit (un) une suite de fonctions de [a, b] vers K.
Si (un) converge uniformément sur [a, b] et si chaque un est continue alors la fonction u =

lim
n→+∞

un est continue et la suite

(∫ b

a

un(t) dt

)
converge vers

∫ b

a

u(t) dt.

Autrement dit

lim
n→+∞

∫ b

a

un(t) dt =

∫ b

a

u(t) dt

dém. :

u est continue car limite uniforme d’une suite de fonctions continues, on peut donc introduire
∫ b

a

u.

Puisque ∣∣∣∣∣
∫ b

a

un(t) dt−
∫ b

a

u(t) dt

∣∣∣∣∣ 6
∫ b

a

|un(t)− u(t)| dt 6 (b− a) ‖un − u‖∞ → 0

on a ∫ b

a

un(t) dt→
∫ b

a

u(t) dt

�

Corollaire
Soit

∑
un est une série de fonctions de [a, b] vers K

Si
1) chaque un est continue ;
2)
∑

un converge uniformément sur [a, b] ;

alors sa somme
+∞∑
n=0

un est continue et la série numérique
∑∫ b

a

un(t) dt converge vers∫ b

a

+∞∑
n=0

un(t) dt.

Autrement dit
+∞∑
n=0

∫ b

a

un(t) dt =

∫ b

a

+∞∑
n=0

un(t) dt

dém. :

Sn =

n∑
k=0

uk
CV U−−−→ S =

+∞∑
n=0

un donc
∫ b

a

Sn →
∫ b

a

S i.e.
n∑
k=0

∫ b

a

uk →
∫ b

a

+∞∑
n=0

un.

�

Exemple Calculons
∫ 1

0

S(t) dt avec S(t) =

+∞∑
n=1

(
1

n
− 1

n+ t

)
.
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Introduisons un : [0, 1]→ R définie par un(t) =
1

n
− 1

n+ t
.

On a

‖un‖∞ =
1

n(n+ 1)
= O

(
1

n2

)
La série de fonctions

∑
un converge normalement sur [0, 1] donc uniformément et

∫ 1

0

S(t) dt =

∫ 1

0

+∞∑
n=0

(
1

n
− 1

n+ t

)
dt =

+∞∑
n=1

(∫ 1

0

1

n
− 1

n+ t
dt

)
Or ∫ 1

0

1

n
− 1

(n+ t)
dt =

1

n
− ln

n+ 1

n

et
n∑
k=1

(
1

k
− ln

k + 1

k

)
=

n∑
k=1

1

k
− ln(n+ 1)→ γ

donc ∫ 1

0

S(t) dt = γ

Attention : Ces résultats ne valent que pour une intégration sur un segment !

Exemple Considérons un : [0,+∞[→ R définie par un(t) =
1

n
e−t/n.

‖un‖∞ =
1

n
→ 0 donc un

CV U−−−−→
[0,+∞[

0̃ alors que
∫ +∞

0

un(t) dt = 1 ne tend pas vers 0 !

15.4.2 Dérivation

Lemme
Soit (ϕn) une suite de fonctions continues de I vers K et a ∈ I .
On pose

Φn(x) =

∫ x

a

ϕn(t) dt

Si (ϕn) converge uniformément sur tout segment de I vers une fonction ϕ, alors la suite de
fonctions (Φn) converge uniformément sur tout segment de I vers la fonction Φ avec

Φ(x) =

∫ x

a

ϕ(t) dt

dém. :
Notons que ϕn et ϕ sont continues ce qui permet d’introduire les intégrales définissant Φn et Φ.
Soit [α, β] un segment de I . Quitte à agrandir ce segment, on peut supposer que a ∈ [α, β].
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Pour tout x ∈ [α, β]
Cas x > a

|Φn(x)− Φ(x)| 6
∫ x

a

|ϕn(t)− ϕ(t)| dt 6 (x− a) ‖ϕn − ϕ‖∞,[α,β] 6 (β − α) ‖ϕn − ϕ‖∞,[α,β]

Cas x 6 a
Idem.
Ainsi

‖Φn − Φ‖∞,[α,β] 6 (β − α) ‖ϕn − ϕ‖∞,[α,β] → 0

�

Théorème
Soit (un) une suite de fonctions de classe C1 de I vers K
Si (un) converge simplement sur I et si (u′n) converge uniformément sur tout segment de I ;
alors la fonction u = lim

n→+∞
un est de classe C1 et u′ = lim

n→+∞
u′n.

Ainsi (
lim

n→+∞
un

)′
= lim
n→+∞

u′n

De plus, la convergence de la suite (un) est uniforme sur tout segment de I .

dém. :
Posons ϕn = u′n et ϕ = limu′n = limϕn.
Soit a ∈ I et Φn définie par

Φn(x) =

∫ x

a

ϕn(t) dt

Par le lemme, (Φn) converge uniformément sur tout segment de I vers Φ donnée par

Φ(x) =

∫ x

a

ϕ(t) dt

L’application Φ est de classe C1 avec Φ′ = ϕ
Parallèmement

Φn(x) =

∫ x

a

u′n(t) dt = un(x)− un(a) −−−−−→
n→+∞

u(x)− u(a)

pour tout x ∈ I .
Par unicité de limite,

Φ(x) = u(x)− u(a)

puis
u(x) = Φ(x) + u(a)

Par suite u est de classe C1 avec u′ = ϕ = limu′n.
De plus, soit [α, β] ⊂ I .
On a

un(x)− u(x) = Φn(x)− Φ(x) + un(a)− u(a)

donc
‖un − u‖∞,[α,β] 6 ‖Φn − Φ‖∞,[α,β] + |un(a)− u(a)|
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or Φn
CV U−−−→
[α,β]

Φ et un(a)→ u(a) donc

‖un − u‖∞,[α,β] → 0

Ainsi la convergence de (un) est uniforme sur [α, β].
�

Corollaire
Soit

∑
un une série de fonctions de classe C1 de I vers K.

Si
∑

un converge simplement sur I et si
∑

u′n converge uniformément sur tout segment de
I

alors la somme
+∞∑
n=0

un est de classe C1 et

(
+∞∑
n=0

un

)′
=

+∞∑
n=0

u′n

Attention : L’hypothèse de travail est « classe C1 » et non seulement « dérivable » !

Exemple Monotonie sur ]0,+∞[ de la fonction S : t 7→
+∞∑
n=0

(−1)n

n+ t

Introduisons les fonctions un : ]0,+∞[→ R définies par

un(t) =
(−1)n

n+ t

Soit t > 0. la série numérique
∑

un(t) converge en vertu du CSSA.

La série de fonctions
∑

un converge alors simplement sur ]0,+∞[ et sa somme S est donc bien définie
sur ]0,+∞[.
un est de classe C1 et

u′n(t) =
(−1)n+1

(n+ t)2

Soit t > 0. La série numérique
∑

u′n(t) converge en vertu du CCSA
On a

|Rn(t)| 6 1

(n+ 1 + t)2
6

1

(n+ 1)2
−−−−−→
n→+∞

0

Ainsi la série de fonctions
∑

u′n converge uniformément sur ]0,+∞[.

On peut alors affirmer que S est de classe C1 et

S′(t) =

+∞∑
n=0

(−1)n+1

(t+ n)2

Par le CSSA, S′(t) est du signe de son premier terme
(−1)0+1

t2
6 0.
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La fonction S est donc décroissante.
Pour compléter le tableau de variation de S, exploitons le CSSA pour encadrer S par deux sommes
partielles consécutives :

1

t
− 1

t+ 1
6 S(t) 6

1

t

On peut alors affirmer S −−→
+∞

0 et S −−→
0+

+∞.

15.4.3 Dérivées d’ordres supérieurs

Théorème
Soit (un) une suite de fonctions de classe Cp de I vers K.
Si les suites (un),. . . , (u(p−1)

n ) convergent simplement sur I et si la suite de fonctions (u(p)
n )

converge uniformément sur tout segment de I alors la fonction u = lim
n→+∞

un est de classe Cp

et pour tout k ∈ {1, . . . , p},
u(k) = lim

n→+∞

(
u(k)
n

)

dém. :
Par récurrence sur p ∈ N?.
Pour p = 1 : ok
Supposons la propriété vraie au rang p et étudions celle-ci au rang p+ 1.
Puisque (u(p)

n ) converge simplement et que (u(p+1)
n ) converge uniformément sur tout segment, on peut

affirmer que lim
n→+∞

u(p)
n est de classe C1 et

(
lim

n→+∞
u(p)
n

)′
= lim
n→+∞

(
u(p+1)
n

)
De plus (u(p)

n ) converge uniformément sur tout segment.
Par l’hypothèse de récurrence, on a alors lim

n→+∞
un de classe Cp et pour tout k ∈ {1, . . . , p},

(
lim

n→+∞
un

)(k)

= lim
n→+∞

(
u(k)
n

)
En particulier (

lim
n→+∞

un

)(p)

= lim
n→+∞

(
u(p)
n

)
est une fonction de classe C1 et donc u est de classe Cp+1 avec(

lim
n→+∞

un

)(p+1)

= lim
n→+∞

(
u(p)
n

)′
= lim
n→+∞

(
u(p+1)
n

)
Récurrence établie.
�
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Corollaire
Soit

∑
un une série de fonctions de classe Cp de I vers K.

Si les séries
∑

un,. . . ,
∑

u(p−1)
n convergent simplement et si la série

∑
u(p)
n converge

uniformément sur tout segment de I alors la fonction
+∞∑
n=0

un est de classe Cp et, pour tout

k ∈ {1, . . . , p}, (
+∞∑
n=0

un

)(k)

=

+∞∑
n=0

u(k)
n

15.4.4 Application : l’exponentielle réelle

Exemple Pour x ∈ R, posons

e(x) =

+∞∑
n=0

1

n!
xn

a) Définition.
b) Dérivation.
a) On introduit un(x) = xn/n! définie sur R.
Pour x = 0, la série

∑
un(0) est évidemment convergente et

e(0) =

+∞∑
n=0

0n

n!
= 1 + 0 + · · · = 1 car 00 = 1

Pour x 6= 0, ∣∣∣∣un+1(x)

un(x)

∣∣∣∣ =
|x|
n+ 1

−−−−−→
n→+∞

0 < 1

Par application de la règle de d’Alembert, la série
∑

un(x) converge.

Ainsi, la série de fonctions
∑

un converge simplement sur R.
Dérivation :
Les fonctions un sont de classe C1 et

u′n(x) =

{
0 si n = 1
xn−1/(n− 1)! si n > 1

Soit a > 0. Pour x ∈ [−a, a] et n > 1,

|u′n(x)| 6 an−1

(n− 1)!

Or
∑

an−1/(n− 1)! converge donc
∑

u′n converge normalement sur [−a, a].

Résumons : les un sont de classe C1,
∑

un converge simplement et
∑

u′n converge uniformément sur

tout segment. On en déduit que la fonction e est de classe C1 et

e′(x) =

+∞∑
n=1

u′n(x) =

+∞∑
n=1

xn−1

(n− 1)!
= e(x)

Ainsi, la fonction e est solution de l’équation différentielle y′ = y et vérifie y(0) = 1. On reconnaît
l’exponentielle réelle.
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Théorème

∀x ∈ R, ex =

+∞∑
n=0

1

n!
xn

Exemple En particulier

e =

+∞∑
n=0

1

n!

15.4.5 Application : étude de la fonction zêta

Exemple Pour s ∈ ]1,+∞[, posons

ζ(s) =

+∞∑
n=1

1

ns

a) Définition et classe C∞.
b) Monotonie et convexité.
c) Etude en +∞.
d) Etude en 1+.
a) Posons un : s 7→ 1/ns définie sur ]1,+∞[ pour n ∈ N?.
La série de fonctions

∑
un converge simplement sur ]1,+∞[ et la fonction ζ est sa somme.

b) Les fonctions un sont de classe C∞ sur ]1,+∞[ et

u(k)
n (s) =

(− lnn)k

ns

Sur [a, b] ⊂ ]1,+∞[,

∀s ∈ [a, b] ,
∣∣∣u(k)
n (s)

∣∣∣ 6 (lnn)k

na

Soit ρ ∈ ]1, a[, on a

nρ × (lnn)k

na
−−−−−→
n→+∞

0

et il y a donc convergence de la série
∑ (lnn)k

na
.

Par majoration uniforme, la série de fonctions
∑

u(k)
n converge normalement sur [a, b].

Par convergence uniformément sur tout segment de ]1,+∞[, on peut affirmer que ζ est de classe C∞ sur
]1,+∞[ et

ζ(p)(s) =

+∞∑
n=1

(− lnn)p

ns

b) Monotonie :

ζ ′(s) =

+∞∑
n=1

− lnn

ns
6 0

ζ est décroissante.
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Convexité :

ζ ′′(s) =

+∞∑
n=1

(lnn)2

ns
> 0

ζ est convexe.
c) Limite en +∞ :

lim
s→+∞

1

ns
=

{
0 si n > 1
1 si n = 1

Pour appliquer le théorème de la double limite, observons la convergence uniforme au voisinage de +∞.
Pour s > 2

|un(s)| 6 1

n2

Or
∑ 1

n2
converge normalement, donc

∑
un converge normalement et donc uniformément sur

[2,+∞[
Par le théorème de la double limite

lim
s→+∞

ζ(s) =

+∞∑
n=1

lim
s→+∞

1

ns
= 1 + 0 + 0 + · · · = 1

Equivalent de ζ(s)− 1 quand s→ +∞ :
On a

ζ(s)− 1 =
1

2s
+

+∞∑
n=3

1

ns

avec

0 6
+∞∑
n=3

1

ns
6
∫ +∞

2

dt

ts
=

1

(s− 1)

1

2s

donc

ζ(s)− 1 =
1

2s
+ o

(
1

2s

)
∼ 1

2s

d) Limite en 1+ :
Par monotonie, on peut affirmer que la fonction ζ admet une limite en 1+.
Puisque

ζ(s) >
n∑
k=1

1

ks

à la limite

lim
s→1+

ζ(s) >
n∑
k=1

1

k

Or ceci vaut pour tout n et on sait
n∑
k=1

1

k
−−−−−→
n→+∞

+∞ donc

lim
s→1+

ζ(s) = +∞

Equivalent en 1+ :
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La fonction t 7→ 1

ts
est décroissante donc

∫ n+1

n

dt

ts
6

1

ns
6
∫ n

n−1

dt

ts

On en déduit ∫ +∞

1

dt

ts
6 ζ(s) 6 1 +

∫ +∞

1

dt

ts

i.e.
1

s− 1
6 ζ(s) 6 1 +

1

s− 1

Par suite
ζ(s) ∼

s→1

1

s− 1
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Chapitre 16

Topologie des espaces normés

K désigne R ou C
(E, ‖ . ‖) désigne un K-espace vectoriel normé.
Les notions qui suivront ne seront pas modifiées lorsqu’on passe d’une norme à une norme équivalente.
En particulier, si l’espace E est de dimension finie, elles ne dépendent pas de la norme choisie.

16.1 Intérieur et adhérence
X désigne une partie de E.
16.1.1 Intérieur d’une partie

Définition
Un élément a ∈ E est dit intérieur à une partie X si X est voisinage de a i.e.

∃α > 0, B(a, α) ⊂ X

On note X◦ l’ensemble des éléments intérieurs à X appelé intérieur de X .

Exemple

Exemple Les éléments intérieurs à X sont éléments de X i.e. X◦ ⊂ X .

Exemple Si X ⊂ R alors a est intérieur à X si, et seulement si,

∃α > 0, ]a− α, a+ α[ ⊂ R

387
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Exemple L’intérieur d’un intervalle non vide est l’intervalle ouvert de mêmes extrémités.

Exemple L’intérieur du demi-plan complexe

P = {z ∈ C/Im(z) > 0}

est
P ◦ = {z ∈ C/Im(z) > 0}

Exemple L’intérieur d’une boule ouverte B(a, r) est elle-même.
En effet, pour tout x ∈ B(a, r), on vérifie B(x, α) ⊂ B(a, r) avec α = r − ‖x− a‖ > 0.

16.1.2 Adhérence d’une partie

Définition
On dit qu’un élément a est adhérent à X si X intercepte tous les voisinages de a i.e. :

∀α > 0, B(a, α) ∩X 6= ∅

On appelle adhérence de X l’ensemble noté X̄ des éléments adhérents à X .

Exemple

Exemple Les éléments de X sont adhérents à X i.e. X ⊂ X̄ .

Exemple Si X ⊂ R alors a est adhérent à X si, et seulement si,

∀α > 0, ]a− α, a+ α[ ∩X 6= ∅

Exemple L’adhérence d’un intervalle non vide est l’intervalle fermé de mêmes extrémités.
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Exemple 0 est adhérent à C?.

Proposition
On a

CEX̄ = (CEX)
◦ et CEX◦ = CEX

dém. :

x ∈ CEX̄ ⇔ x /∈ X̄ ⇔ ∃α > 0, B(a, α) ∩ X̄ = ∅ ⇔ ∃α > 0, B(a, α) ⊂ CEX ⇔ a ∈ (CEX)
◦

L’autre égalité se déduit de la précédente par passage au complémentaire et substitution de CEX à X .
�

16.1.3 Caractérisation séquentielle des points adhérents

Théorème
Soit X une partie non vide.
On a équivalence entre :
(i) a est adhérent à X ;
(ii) ∃(xn) ∈ XN, xn → a ;

dém. :
(i)⇒ (ii) Supposons que pour tout α > 0, B(a, α) ∩X 6= ∅.
Pour n ∈ N et α =

1

n+ 1
> 0, l’ensemble B (a, 1/(n+ 1)) ∩X est non vide.

Soit xn un élément de celui-ci. En faisant varier n, cela définit une suite (xn) ∈ XN vérifiant

‖xn − a‖ 6
1

n+ 1
→ 0

et donc xn → a.
(ii)⇒ (i) Supposons (ii). Pour tout α > 0, il existe N ∈ N tel que

∀n > N, ‖xn − a‖ < α

et donc B(a, α) ∩X 6= ∅.
�

Exemple Si X est une partie non vide et majorée de R alors le réel supX est adhérent à X .
En effet, il existe une suite d’éléments de X convergeant vers supX

Exemple La matrice nulle Op est adhérente à GLp(K).
En effet,

1

n
Ip ∈ GLp(K)→ Op
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Exemple L’adhérence d’une boule ouverte est la boule fermée de mêmes centre et rayon.
En effet, si x ∈ B(a, r) alors il existe (xn) ∈ B(a, r)N telle que xn → x et l’inégalité ‖xn − a‖ < r
donne à la limite ‖x− a‖ 6 r donc x ∈ Bf (a, r).
Inversement, si x ∈ Bf (a, r) alors x = lim(xn) avec

xn = a+
n

n+ 1
(x− a) ∈ B(a, r)

16.1.4 Frontière

Définition
On appelle frontière d’une partie X de E l’ensemble Fr(X) = X\X◦.

Exemple

Exemple Dans E = R, Fr ([a, b[) = [a, b] \ ]a, b[ = {a, b} et Fr(Q) = Q\Q◦ = R.

Exemple Dans E = C, la frontière du demi-plan P = {z ∈ C/Im(z) > 0} est la droite réelle R.

Exemple La frontière d’une boule (ouverte ou fermée) est la sphère de mêmes centre et rayon.

Proposition
Fr(X) = X ∩ CEX = Fr(CEX).

dém. :
Fr(X) = X̄\X◦ = X̄ ∩ CE (X◦) = X̄ ∩ CEX .
�

Proposition
X̄ = X ∪ Fr(X) et X◦ = X\Fr(X).
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16.2 Parties ouvertes et parties fermées

16.2.1 Voisinage

Définition
On appelle voisinage d’un élément a de E toute partie V de E vérifiant

∃α > 0, B(a, α) ⊂ V

Exemple

Exemple Dans E = R, une partie V de R est un voisinage de a ∈ R si, et seulement si,

∃α > 0, ]a− α, a+ α[ ⊂ V

Proposition
Si V est un voisinage de a et W une partie de E contenant V alors W est un voisinage de a.

dém. :
Il existe α > 0 tel que B(a, α) ⊂ V or V ⊂W donc B(a, α) ⊂W
�

Proposition
Si V1, . . . , Vn sont des voisinages de a alors V1 ∩ . . . ∩ Vn est un voisinage de a.

dém. :
Il existe α1, . . . , αn > 0 tels que pour tout i ∈ {1, . . . , n}, B(a, αi) ⊂ Vi.
Pour α = min {α1, . . . , αn} > 0, B(a, α) ⊂ V1 ∩ . . . ∩ Vn.
�

Remarque Ce résultat est faux pour une intersection infinie. Par exemple⋂
n∈N?

[−1/n, 1/n] = {0}

est une intersection infinie de voisinage de 0 qui n’est pas un voisinage de 0.
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16.2.2 Parties ouvertes

Définition
Une partie U de E est dite ouverte si elle est voisinage de chacun de ses points i.e. :

∀a ∈ U,∃α > 0, B(a, α) ⊂ U

On dit encore que U est un ouvert de E.

Exemple

Exemple Une partie U est ouverte si, et seulement si, U◦ = U .
En particulier, on a alors U ∩ Fr(U) = ∅.

Exemple ∅ et E sont des parties ouvertes de E.

Exemple Dans E = R, les intervalles ouverts ]a, b[ , ]a,+∞[ , ]−∞, a[ sont des parties ouvertes.

Exemple Une boule ouverte B(a, r) est une partie ouverte.
En effet, pour x ∈ B(a, r) et α = r − ‖x− a‖ > 0, on a B(x, α) ⊂ B(a, r).

Théorème
Une réunion (finie ou infinie) de parties ouvertes est une partie ouverte.

dém. :
Soit (Ui)i∈I une famille de parties ouvertes de E et U =

⋃
i∈I

Ui.

Soit a ∈ U , il existe i ∈ I tel que a ∈ Ui. Puisque Ui est un ouvert, il existe α > 0 tel que B(a, α) ⊂ Ui
et donc B(a, α) ⊂ U .
�
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Exemple X◦ est la réunion des ouverts inclus dans X .
Par suite, X◦ est le plus grand ouvert inclus dans X .
En effet
Notons U la réunion des ouverts inclus dans X .
U est un ouvert inclus dans X et U contient tous les ouverts inclus dans X . Montrons U = X◦

U est un ouvert inclus dans X donc X est voisinage de chacun des points de U et donc U ⊂ X◦.
Inversement, si a ∈ X◦ il existe α > 0 tel que B(a, α) ⊂ X . B(a, α) est alors un ouvert inclus dans X
donc B(a, α) ⊂ U puis a ∈ U . Ainsi X◦ ⊂ U puis =.

Exemple Soit X ⊂ E et α > 0. Xα =
⋃
a∈X

B(a, α) est un ouvert de E contenant X .

Théorème
Une intersection finie de parties ouvertes est une partie ouverte.

dém. :

Soit (Ui)16i6n une famille finie de parties ouvertes de E et U =

n⋂
i=1

Ui.

Soit a ∈ U . Pour tout i ∈ {1, . . . , n}, il existe αi > 0 tel que a ∈ Ui. Pour α = min {α1, . . . , αn} > 0,
on a pour tout i ∈ {1, . . . , n}, B(a, α) ⊂ B(a, αi) ⊂ Ui donc B(a, α) ⊂ U .
�

Remarque Une intersection infinie de parties ouvertes peut ne pas être ouverte :⋂
n∈N?

]−1/n, 1/n[ = {0}

n’est pas une partie ouverte.

Proposition
SiU1, . . . , Up sont des parties ouvertes des espaces normésE1, . . . , Ep alorsU = U1×· · ·×Up
est une partie ouverte de l’espace normé produit E = E1 × · · · × Ep.

dém. :
Commençons par préciser les boules de E.
Notons N1, . . . , Np les normes sur E1, . . . , Ep et ‖ . ‖ la norme sur E.
Pour x = (x1, . . . , xp) ∈ E, ‖x‖ = max

16j6p
Nj(xj).

Soit a = (a1, . . . , ap) et r > 0.

x ∈ B(a, r)⇔ ∀j ∈ {1, . . . , p} , xj ∈ Bj(aj , r)

Ainsi

B(a, r) =

p∏
j=1

Bj(aj , r)

Soit U1, . . . , Up des parties ouvertes de E et U = U1 × · · · × Up.
Soit a = (a1, . . . , ap) ∈ U . Pour tout j ∈ {1, . . . , p}, aj ∈ Uj , or Uj est ouvert donc il existe αj > 0
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tel que Bj(aj , αj) ⊂ Uj . Considérons alors α = min {α1, . . . , αp} > 0. Pour tout j ∈ {1, . . . , p},
Bj(aj , α) ⊂ Uj donc

B(a, α) =

p∏
j=1

Bj(aj , α) ⊂
p∏
j=1

Uj = U

�

Exemple Dans R2, le produit cartésien de deux intervalles ouverts de R est un ouvert de R2.

16.2.3 Parties fermées

Définition
Une partie F de E est dite fermée si son complémentaire est une partie ouverte.
On dit encore que F est un fermé de E.

Exemple

Exemple Une partie F est fermée si, et seulement si, F̄ = F .
En particulier, on a alors Fr(F ) ⊂ F .

Exemple E et ∅ sont des fermés.

Exemple Dans E = R, les intervalles fermés [a, b] , [a,+∞[ , ]−∞, a] sont des parties fermées de R.

Théorème
Une intersection (finie ou infinie) de parties fermées est un fermé.
Une union finie de parties fermées est fermée.

dém. :
Par passage au complémentaire d’une union ou d’une intersection d’ouverts.
�
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Exemple Fr(X) est une partie fermée.
En effet, Fr(X) = X̄ ∩ CEX est l’intersection de deux fermés.

Exemple X̄ est l’intersection des fermés contenant X .
Par suite, X̄ est le plus petit fermé contenant X .
En effet, notons F l’intersection de tous les fermes contenant X .
F est un fermé qui contient.
Si a /∈ X̄ alors il existe α > 0 tel que B(a, α) ⊂ CEX i.e. X ⊂ CEB(a, α).
Or CEB(a, α) est un fermé et donc a /∈ F car a /∈ CEB(a, α).
Inversement, si a /∈ F , puisque F est fermé, il existe α > 0 tel que B(a, α) ⊂ CEF et donc
X ⊂ F ⊂ CEB(a, α). On en déduit que a /∈ X̄ .

Remarque Une union infinie de parties fermées peut ne pas être fermée :
⋃
n∈N?

[1/n, 1] = ]0, 1]

16.2.4 Caractérisation séquentielle des parties fermées

Théorème
Soit F une partie de E. On a équivalence entre :
(i) F est fermée ;
(ii) ∀(xn) ∈ FN, xn → a⇒ a ∈ F
On dit qu’une partie fermée contient les limites de ses suites convergentes.

dém. :
(i)⇒ (ii) Par contraposée.
Supposons qu’il existe (xn) ∈ FN telle que xn → a et a /∈ F .
Soit α > 0. Pour n assez grand, ‖xn − a‖ < α donc xn ∈ B(a, α) et donc B(a, α) ∩ F 6= ∅.
Ainsi a ∈ CEF et

∀α > 0, B(a, α) 6⊂ CEF

La partie CEF n’est pas ouverte et donc F n’est pas fermée.
(ii)⇒ (i) Par contraposée.
Supposons F non fermée i.e. CEF non ouvert.
Il existe a ∈ CEF tel que

∀α > 0, B(a, α) ∩ F 6= ∅

Soit n ∈ N. Pour α = 1/(n+ 1) > 0, il existe xn ∈ B(a, 1/(n+ 1)) ∩ F .
En faisant varier n, ceci détermine une suite (xn) ∈ FN telle que xn → a avec a /∈ F .
�

Exemple Les singletons sont des parties fermées.

Exemple Les boules fermées sont des parties fermées.
En effet, si (xn) ∈ Bf (a, r)N converge vers ` alors pour tout n ∈ N, ‖xn − a‖ 6 r donne à la limite
‖`− a‖ 6 r et donc ` ∈ Bf (a, r). La caractérisation séquentielle des parties fermées permet alors de
conclure.
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Exemple Les sphères sont des parties fermées.

Proposition
Si F1, . . . , Fp sont des parties fermées des espaces vectoriels normés E1, . . . , Ep alors F =
F1 × . . .× Fp est une partie fermée de l’espace vectoriel normé produit E = E1 × · · · × Ep.

dém. :
Soit (x(n)) ∈ FN une suite convergente de limite a.
On peut écrire x(n) = (x1(n), . . . , xp(n)) avec xj(n)→ aj où a = (a1, . . . , ap).
Pour tout j ∈ {1, . . . , p}, (xj(n)) ∈ FN

j , or Fj est fermée, donc aj ∈ Fj puis a ∈ F .
�

Exemple Dans R2, le produit cartésien de deux intervalles fermés de R est un fermé de R2.

16.3 Topologie et continuité

16.3.1 Topologie relative
Soit X une partie de E.
16.3.1.1 Voisinage relatif à X

Soit a un élément de E.
Définition

On appelle voisinage de a relatif à X , tout ensemble de la forme V ∩X avec V voisinage de a.

Exemple

Exemple [0, 1] est un voisinage de 0 relatif à R+.
En effet, [0, 1] = [−1, 1] ∩ R+.

Proposition
Soit A une partie de X . On a équivalence entre :
(i) A est un voisinage de a relatif à X ;
(ii) il existe α > 0 tel que B(a, α) ∩X ⊂ A.
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dém. :
(i)⇒ (ii) Si A est un voisinage de a relatif à X alors il existe V voisinage de a tel que A = V ∩ X . Il
existe α > 0 tel que B(a, α) ⊂ V et alors B(a, α) ∩X ⊂ A.
(ii) ⇒ (i) Supposons qu’il existe α > 0 tel que B(a, α) ∩ X ⊂ A. Pour V = B(a, α) ∪ A, V est un
voisinage de A et V ∩X = (B(a, α) ∩X) ∪ (A ∩X) = A.
�

16.3.1.2 Ouvert relatif à X

Définition
On appelle ouvert relatif à X tout ensemble de la forme U ∩X avec U ouvert de E.

Exemple

Exemple [0, 1[ est un ouvert relatif de R+.
En effet, [0, 1[ = ]−1, 1[ ∩ R+.

Exemple ∅ et X sont des ouverts relatifs à X .

Proposition
Soit A une partie de X . On a équivalence entre :
(i) A est un ouvert relatif à X ;
(ii) A est voisinage relatif à X de chacun de ses points.

dém. :
(i)⇒ (ii) Si A est un ouvert relatif à X alors A = U ∩X avec U ouvert.
Pour tout a ∈ A, a ∈ U or U est ouvert donc U est voisinage de a et A = U ∩ X est voisinage de a
relatif à X .
(ii)⇒ (i) Supposons (ii)
Soit a ∈ A. A est un voisinage relatif à X de a donc il existe αa > 0 tel que B(a, αa) ∩X ⊂ A.
Posons alors

U =
⋃
a∈A

B(a, αa)

U est ouvert comme réunion d’ouverts et on vérifie A = U ∩X .
�
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16.3.1.3 Fermé relatif à X

Définition
On appelle fermé relatif à X tout ensemble de la forme F ∩X avec F fermé de E.

Exemple

Exemple ]0, 1] est un fermé relatif de ]0,+∞[.
En effet, ]0, 1] = ]0,+∞[ ∩ [0, 1].

Exemple ∅ et X sont des fermés relatifs à X .

Théorème
Soit A une partie de X . On a équivalence entre :
(i) A est un fermé relatif à X ;
(ii) A contient les limites de ses suites convergeant dans X .
(iii) le complémentaire de A dans X est un ouvert relatif à X ;

dém. :
(i) ⇒ (ii) Supposons A = F ∩ X avec F fermé. Si (xn) ∈ AN converge vers x ∈ X alors puisque
(xn) ∈ FN, on a x ∈ F donc x ∈ F ∩X = A.
(ii)⇒ (iii) Par contraposée. Supposons que le complémentaire de A dans X n’est pas un ouvert relatif à
X . Il existe alors a ∈ X\A tel que X\A n’est pas voisinage relatif à X de a. Pour tout α > 0, on a alors
B(a, α) ∩X 6⊂ X\A et donc B(a, α) ∩ A 6= ∅. Cette propriété utilisée avec α = 1/(n+ 1) permet de
construire une suite (xn) ∈ AN telle que xn → a ∈ X\A.
(iii)⇒ (i) Si X\A = U ∩X avec U ouvert alors A = X ∩ F avec F = CEU fermée.
�

16.3.2 Continuité et topologie

Théorème
Soit f : X ⊂ E → F . On a équivalence entre :
(i) f est continue ;
(ii) l’image réciproque de chaque ouvert de F est un ouvert relatif à X ;
(iii) l’image réciproque de chaque fermé de F est un fermé relatif à X .
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dém. :
(i)⇒ (ii) Supposons f continue et considérons V un ouvert de F . Pour tout a ∈ f−1(V ), f(a) ∈ V or
V est ouvert et donc il existe ε > 0 tel que B(f(a), ε) ⊂ V . Par continuité de f en a, il existe α > 0
vérifiant

∀x ∈ X, ‖x− a‖E < α⇒ ‖f(x)− f(a)‖F < ε

et donc
∀x ∈ B(a, α) ∩X, f(x) ∈ B(f(a), ε) ⊂ V

et ainsi
B(a, α) ∩X ⊂ f−1(V )

Par suite f−1(V ) est ouvert relatif à X car voisinage de chacun de ses points.
(ii) ⇒ (i) Supposons (ii). Pour tout a ∈ X et tout ε > 0 considérons l’ouvert V = B(f(a), ε). Par
hypothèse, f−1(V ) est un ouvert relatif à X . Or a ∈ f−1(V ) donc f−1(V ) est un voisinage de a relatif
à X et donc il existe α > 0 tel que

B(a, α) ∩X ⊂ f−1 (B(`, ε))

On a alors
∀x ∈ X , ‖x− a‖E < α⇒ ‖f(x)− f(a)‖F < ε

(ii)⇔ (iii) via f−1(CFY ) = CXf
−1(Y ) pour Y ⊂ F .

�

Remarque Le résultat est faux en terme d’image directe

sin(]0, π[) = ]0, 1] et exp(R−) = ]0, 1]

Corollaire
Pour f : E → F continue, l’image réciproque d’une partie ouverte (resp. fermée) de F est une
partie ouverte de E (resp. fermée).

dém. :
Car un ouvert (resp. un fermé) relatif à E est un ouvert (resp. un fermé) de E.
�

Exemple U =
{

(x, y) ∈ R2/x < y
}

est un ouvert de R2.
En effet, considérons f : R2 → R définie par f(x, y) = y − x.
U = f−1(R+?) or f est continue et R+? est ouvert donc U est un ouvert relatif à R2 i.e. un ouvert
de R2.

Exemple Soit X continue et X̄ = E.
Les ensembles X , E et ∀a ∈ E,∀α > 0, B(a, α) ∩X 6= ∅ sont fermés.
Les ensembles ∀a ∈ E,∃(xn) ∈ XN, xn → a, E ⊂ X̄ et Q sont ouverts.

Exemple R est une partie ouverte de R\Q.
En effet, D et det est continue et R est un ouvert.
De même, on obtient que GLn(K) est un fermé.
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Exemple Mn(K) est une partie fermée de A ∈Mn(K).

En effet, Ap = A+
1

p
In → A avec A continue et p fermé.

16.4 Densité

16.4.1 Définition

Définition
Une partie X de E est dite dense si X̄ = E.

Théorème
On a équivalence entre :
(i) X est une partie dense de E ;
(ii) ∀a ∈ E,∀α > 0, B(a, α) ∩X 6= ∅ ;
(iii) ∀a ∈ E,∃(xn) ∈ XN, xn → a.

dém. :
(ii) et (iii) signifient E ⊂ X̄ .
�

Exemple Q est une partie dense de R.
En effet, tout réel est limite d’une suite de rationnels.

Exemple Aussi, R\Q et D sont des parties denses de R.

Exemple GLn(K) est une partie dense deMn(K).

En effet, pour tout A ∈Mn(K), on a Ap = A+
1

p
In → A.

Or la matrice A n’a qu’un nombre fini de valeurs propres, donc pour p assez grand f, g : E → F .

16.4.2 Continuité et densité

Théorème
Soit f, g : E → F continues.
Si f et g sont égales sur une partie X de E dense alors f = g.

dém. :
Soit x ∈ X . Il existe (xn) ∈ XN telle que xn → x. Or pour tout n ∈ N f(xn) = g(xn) donc à la limite

f(x) = g(x)

�

Exemple Déterminons les fonctions f : R→ R continues vérifiant

∀x, y ∈ R, f(x+ y) = f(x) + f(y)
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Soit f solution.
On a f(0 + 0) = f(0) + f(0) donc f(0) = 0.
On a f(2a) = f(a+ a) = f(a) + f(a) = 2f(a),. . .
Par récurrence, on montre

∀a ∈ R,∀n ∈ N, f(na) = nf(a)

Puisque f(x) + f(−x) = f(0) = 0 on a f(−x) = −f(x).
Par suite

∀a ∈ R,∀n ∈ Z, f(na) = nf(a)

Soit x = p/q ∈ Q avec p ∈ Z et q ∈ N?.
f(x) = pf(1/q) et f(1) = qf(1/q) donc f(x) =

p

q
f(1) = αx en posant α = f(1).

Les fonctions x 7→ f(x) et x 7→ αx sont continues sur R et coïncident sur la partie Q dense dans R,
elles sont donc égales sur R.

Exemple Montrons que

∀A,B ∈Mn(K), χAB = χBA

Soit λ ∈ K et B ∈Mn(K).
Pour A ∈ GLn(K),

χAB(λ) = det(λIn −AB) = det(A) det(λA−1 −B)

puis

χAB(λ) = det(λA−1 −B) det(A) = det(λIn −BA) = χBA(λ)

Les applications A 7→ χAB(λ) et A 7→ χBA(λ) sont continues surMn(K) et coïncident sur GLn(K)
partie dense deMn(K), elles sont donc égales surMn(K).
Ainsi, pour tout λ ∈ K, χAB(λ) = χBA(λ) et donc χAB = χBA.

16.4.3 Approximations uniformes

Soit a < b ∈ R.
16.4.3.1 Par des fonctions en escalier

Rappel :
On appelle subdivision d’un segment [a, b] toute suite réelle finie σ = (a0, a1, . . . , an) avec

a0 = a < a1 < . . . < an−1 < an = b
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Définition
Une fonction ϕ : [a, b]→ K est dite en escalier s’il existe une subdivision σ = (a0, a1, . . . , an)
de [a, b]
vérifiant

∀i ∈ {1, . . . , n} , ϕ�]ai−1,ai[ est constante

Une telle subdivision est alors dite adaptée à ϕ.

Théorème
Soit f : [a, b]→ K continue par morceaux.
Pour tout ε > 0, il existe une fonction en escalier ϕ : [a, b]→ K vérifiant

∀t ∈ [a, b] , |f(t)− ϕ(t)| 6 ε

dém. :
Cas f continue sur [a, b].
Soit ε > 0. Puisque f est continue sur le segment [a, b], elle y est uniformément continue et donc il existe
α > 0 tel que

∀s, t ∈ [a, b] , |s− t| < α⇒ |f(s)− f(t)| 6 ε

Soit n ∈ N? tel que (b− a)/n 6 α et σ = (a0, . . . , an) la subdivision de [a, b] définie par

ai = a+ i
b− a
n

Considérons ϕ : [a, b]→ C définie par ϕ(t) = f(ai) sur ]ai−1, ai] et ϕ(a) = f(a).

La fonction ϕ est une fonction en escalier et pour tout i ∈ {1, . . . , n} et tout t ∈ ]ai−1, ai], on a

|t− ai| 6
b− a
n
6 α
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et donc
|f(t)− ϕ(t)| 6 ε

Cas f continue par morceaux sur [a, b].
Soit σ = (a0, . . . , an) une subdivision de [a, b] adaptée à f .
Pour tout i ∈ {1, . . . , n}, on peut prolonger f�]ai−1,ai[ en une fonction continue fi définie sur [ai−1, ai].
La fonction fi étant continue, il existe (ϕi) fonction en escalier telle que

∀t ∈ [ai−1, ai] , |fi(t)− ϕi(t)| 6 ε

Posons alors ϕ : [a, b]→ E définie par

ϕ(ai) = f(ai) et ϕ(t) = ϕi(t) si t ∈ ]ai−1, ai[

On a clairement par construction

∀t ∈ [a, b] , |f(t)− ϕ(t)| 6 ε

�

Corollaire
L’ensemble E ([a, b] ,K) des fonctions en escalier de [a, b] vers K est une partie dense de l’es-
pace C0

pm ([a, b] ,K) normé par ‖ . ‖∞.
Toute fonction continue par morceaux est limite uniforme d’une suite de fonctions en escalier.

Exemple Montrons

∀f ∈ C0
pm ([a, b] ,K) , lim

n→+∞

∫ b

a

f(t)eint dt = 0

Cas f constante : C’est immédiat par calcul.
Cas f en escalier : C’est immédiat en découpant l’intégrale.
Cas f continue par morceaux :
Soit ε > 0. Il existe ϕ : [a, b]→ K en escalier vérifiant

∀t ∈ [a, b] , |f(t)− ϕ(t)| 6 ε

et alors pour tout n ∈ N∫ b

a

f(t)eint dt =

∫ b

a

ϕ(t)eint dt+

∫ b

a

(f(t)− ϕ(t)) eint dt

avec ∣∣∣∣∣
∫ b

a

(f(t)− ϕ(t)) eint dt

∣∣∣∣∣ 6
∫ b

a

|f(t)− ϕ(t)| dt 6 (b− a)ε

Or ∫ b

a

ϕ(t)eint dt −−−−−→
n→+∞

0

donc pour n assez grand ∣∣∣∣∣
∫ b

a

f(t)eint dt

∣∣∣∣∣ 6 (b− a+ 1)ε
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16.4.3.2 Par des fonctions polynômes

On note P([a, b] ,K) l’espace des fonctions polynomiales de [a, b] vers K.

Théorème
Soit f : [a, b]→ K une fonction continue.
Pour tout ε > 0, il existe une fonction ϕ : [a, b]→ K polynomiale vérifiant

∀t ∈ [a, b] , |f(t)− ϕ(t)| 6 ε

Corollaire
P ([a, b] ,K) est une partie dense de C ([a, b] ,K) normé par ‖ . ‖∞
Toute fonction continue sur [a, b] est limite uniforme d’une suite de fonctions polynomiales.

Remarque Puisque ‖ . ‖1 et ‖ . ‖2 sont dominées par ‖ . ‖∞, P ([a, b] ,K) est encore une partie dense de
C ([a, b] ,K) normé par ‖ . ‖1 ou ‖ . ‖2.

Remarque Pour k ∈ N? ∪ {∞}, on a P ([a, b] ,K) ⊂ Ck ([a, b] ,K).
Par conséquent, Ck ([a, b] ,K) est aussi une partie dense de C ([a, b] ,K) normé par ‖ . ‖∞, ‖ . ‖2 ou ‖ . ‖1.

Exemple Soit f ∈ C([0, 1] ,R) vérifiant

∀n ∈ N,
∫ 1

0

tnf(t) dt = 0

Montrons que f est la fonction nulle.
Pour tout P ∈ R [X], on a par linéarité ∫ 1

0

P (t)f(t) dt = 0

Par le théorème de Weierstrass, il existe une suite de fonctions polynômes (ϕn) convergeant
uniformément vers f sur [a, b]. On a alors∣∣∣∣∫ 1

0

ϕn(t)f(t) dt−
∫ 1

0

f2(t) dt

∣∣∣∣ 6 ∫ 1

0

|ϕn(t)− f(t)| |f(t)| dt

et donc ∣∣∣∣∫ 1

0

ϕn(t)f(t) dt−
∫ 1

0

f2(t) dt

∣∣∣∣ 6 ‖ϕn − f‖∞ ∫ 1

0

|f(t)| dt→ 0

Ainsi ∫ 1

0

ϕn(t)f(t) dt→
∫ 1

0

f2(t) dt

et puisque
∫ 1

0

ϕn(t)f(t) dt = 0, on en déduit∫ 1

0

f2(t) dt = 0

Par nullité de l’intégrale d’une fonction continue et positive, on peut conclure f = 0.
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16.4.4 Musculation : Sous-groupe de (R,+)

Théorème
Les sous-groupes de (R,+) sont de la forme aZ avec a ∈ R ou bien sont des parties denses
de R.

dém. :
Soit H un sous-groupe de (R,+).
Si H = {0} alors H = aZ avec a = 0.
Sinon, il existe h ∈ H tel que h 6= 0 et, quitte à considérer son opposé, on peut supposer h > 0.
Posons alors a = inf H+ avec H+ = {h ∈ H/h > 0}.
Cette borne inférieure existe car H+ est une partie de R non vide et minorée.
Cas a > 0 :
Montrons H = aZ.
Commençons par justifier a ∈ H .
Puisque a = inf H+, 2a n’est pas minorant de H+ et donc il existe b ∈ H+ tel que a 6 b < 2a.
Si b > a alors b − a > 0 or, par opération dans le sous-groupe H , on a b − a ∈ H . Ainsi b − a ∈ H+.
Cependant b− a < a = inf H+, c’est absurde.
On en déduit b = a et, puisque b ∈ H+, on obtient a ∈ H .
Sachant a ∈ H , on peut affirmer aZ = 〈a〉 ⊂ H .
Inversement, soit x ∈ H .
Par division euclidienne, on peut écrire x = aq + r avec a ∈ Z et r ∈ [0, a[.
Notons que r = x− aq ∈ H car x ∈ H et aq ∈ aZ ⊂ H .
Si r > 0 alors r ∈ H+. Or r < a = inf H+. C’est absurde.
On en déduit r = 0 puis x = aq ∈ aZ.
Par double inclusion, on obtient H = aZ.
Cas a = 0 :
Montrons que H est dense dans R.
Soit x ∈ R et ε > 0.
Puisque inf H+ = 0, il existe h ∈ H+ tel que 0 < h < ε.
Posons alors n = bx/hc ∈ Z.
On a x/h− 1 < n 6 x/h donc x− h < nh 6 x puis nh ∈ ]x− ε, x].
Or nh ∈ H donc on peut affirmer H ∩ ]x− ε, x+ ε[ 6= ∅.
�

Exemple Montrons que {cos(n)/n ∈ N} est dense dans [−1, 1].
Considérons H = Z + 2πZ.
H est un sous-groupe de (R,+).
S’il est de la forme aZ avec a ∈ R alors, puisque Z ⊂ H = aZ, on a a ∈ Q.
De plus, puisque 2πZ ⊂ H = aZ, on a aussi π ∈ aQ.
On en déduit que π est rationnel.
C’est absurde.
On peut donc affirmer que H = Z + 2πZ est un sous-groupe dense dans R.
Considérons alors x ∈ [−1, 1] et θ = arccosx ∈ [0, π] ⊂ R.
Il existe une suite d’éléments de H convergeant vers θ et donc il existe deux suites d’entiers (an) et (bn)
telles que an + 2πbn → θ.
On a alors cos(|an|) = cos(an + bn)→ cos θ = x.
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Chapitre 17

Continuité d’une fonction vectorielle

E et F désignent des K-espaces vectoriels normés par ‖ . ‖E et ‖ . ‖F . Les notions qui vont suivre sont
inchangées lorsqu’on passe d’une norme à une norme équivalente. En particulier, elles ne dépendent pas
du choix de la norme lorsque les espaces sont de dimensions finies.
X désigne une partie de E.
On s’intéresse ici aux applications f : X ⊂ E → F . En pratique, l’étude s’appliquera :
- aux fonctions numériques d’une ou plusieurs variables réelles ;
- aux fonctions d’une variable complexe ( z 7→ z̄/1 + z, z 7→ ez ,. . . ) ;
- aux applications d’une variable matricielle ( det : Mn(K) → K, A ∈ GLn(K) 7→ A−1 ), aux
applications linéaires ou multilinéaires. . .

17.1 Limites

17.1.1 Convergence
Soit f : X ⊂ E → F et a un point adhérent à X .

Définition
On dit que f tend vers ` ∈ F en a si

∀ε > 0,∃α > 0,∀x ∈ X, ‖x− a‖E 6 α⇒ ‖f(x)− `‖F 6 ε

On note alors f −→
a
` ou f(x) −−−→

x→a
`

Exemple Pour f constante égale à C, on obtient C −→
a
C.

Exemple Pour f = Id, on obtient x −−−→
x→a

a.

Exemple Pour f = ‖ . ‖, on obtient ‖x‖ −−−→
x→a

‖a‖.

Théorème
Si f −→

a
` et f −→

a
`′ alors ` = `′.
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dém. :
Soit ε > 0. Il existe α, α′ > 0 tels que

∀x ∈ X, ‖x− a‖E 6 α⇒ ‖f(x)− `‖F 6 ε

et
∀x ∈ X, ‖x− a‖E 6 α

′ ⇒ ‖f(x)− `′‖F 6 ε

Pour α′′ = min(α, α′) > 0 et x ∈ B(a, α′′) ∩ X (qui est non vide car a est adhérent à X ), on a
‖f(x)− `‖ 6 ε et ‖f(x)− `′‖ 6 ε. On en déduit

‖`− `′‖ 6 ‖`− f(x)‖+ ‖f(x)− `′‖ 6 2ε

Or ceci vaut pour tout ε > 0 donc ‖`− `′‖ = 0 i.e. ` = `′.
�

Définition
On dit que f converge en a s’il existe ` ∈ F tel que f −→

a
`.

Cet élément ` est alors unique, on l’appelle limite de f en a et on note

` = lim
a
f ou ` = lim

x→a
f(x)

17.1.2 Théorèmes de convergences
a désigne un élément adhérent à X .
17.1.2.1 Caractérisation séquentielle

Théorème
Soit f : X ⊂ E → F et ` ∈ F .
On a équivalence entre :
(i) f −→

a
` ;

(ii) ∀(xn) ∈ XN, xn → a⇒ f(xn)→ `.

dém. :
(i)⇒ (ii) Supposons f −→

a
`.

Soit (xn) ∈ XN telle que xn → a.
Soit ε > 0. Il existe α > 0 tel que

∀x ∈ X, ‖x− a‖ 6 α⇒ ‖f(x)− `‖ 6 ε

Puisque xn → a et α > 0, il existe N ∈ N tel que

∀n ∈ N, n > N ⇒ ‖xn − a‖ 6 α

et donc
n > N ⇒ ‖f(xn)− `‖ 6 ε

(ii)⇒ (i) Par contraposée.
Supposons f 6 −→

a
`. Il existe ε > 0 tel que

∀α > 0,∃x ∈ X, ‖x− a‖ 6 α et ‖f(x)− `‖ > ε
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Soit n ∈ N, pour α =
1

n+ 1
> 0, il existe xn ∈ X tel que ‖xn − a‖ 6

1

n+ 1
et ‖f(xn)− `‖ > ε.

En faisant varier n, ceci détermine une suite (xn) ∈ XN telle que xn → a et f(xn) 6 →`.
�

Corollaire
Si f tend vers ` en a alors ` est adhérent à f(X).
Ce dernier résultat est une extension du théorème de passage à la limite des inégalités larges.

17.1.2.2 Opérations

Théorème
Soit f, g : X ⊂ E → F et λ, µ ∈ K
Si f −→

a
` et g −→

a
`′ alors λf + µg −→

a
λ`+ µ`′.

Si de plus F est une algèbre normée, fg −→
a
``′

dém. :
Soit (xn) ∈ XN de limite a.
On a f(xn)→ ` et g(xn)→ `′.
Par opérations sur les suites vectorielles convergentes, (λf + µg)(xn)→ λ`+ µ`′.
Or ceci vaut pour toute suite (xn) ∈ XN convergeant vers a donc, par la caractérisation séquentielle des
limites, λf + µg −→

a
λ`+ µ`′.

�

Théorème
Soit α : X ⊂ E → K, f : X ⊂ E → F ..
Si α −→

a
λ et f −→

a
` alors α.f −→

a
λ.`.

dém. :
Par la caractérisation séquentielle des limites et opérations sur les suites vectorielles convergentes.
�

Théorème
Soit f : X ⊂ E → F et g : Y ⊂ F → G telles que f(X) ⊂ Y .
Si f −→

a
b et si g −→

b
` alors g ◦ f −→

a
`.

dém. :
Par la caractérisation séquentielle des limites.
Notons que b est adhérent à Y car b = lim

a
f est adhérent à f(X) et f(X) ⊂ Y .

�

Corollaire
Si f −→

a
` alors ‖f‖ −→

a
‖`‖.

17.1.2.3 Comparaison

Théorème
Soit f : X ⊂ E → F , g : X ⊂ E → R et a adhérent à X .
Si ‖f(x)− `‖ 6 g(x) et g −→

a
0 alors f −→

a
`.

dém. :
Par la caractérisation séquentielle des limites et comparaison de suites réelles.
�
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17.1.3 Convergence à valeurs dans espace de dimension finie
Soit F un K-espace vectoriel de dimension finie et e = (e1, . . . , ep) une base de F .
Considérons f : X ⊂ E → F .

Pour tout x ∈ X , on peut écrire f(x) = f1(x).e1 + · · ·+ fp(x).ep =

p∑
j=1

fj(x).ej avec fj(x) ∈ K.

Définition
Les applications scalaires f1, . . . , fp sont appelées fonctions coordonnées (ou composantes) de
f relatives à la base (e1, . . . , ep).

Théorème
Soit a adhérent à X . On a équivalence entre :
(i) la fonction vectorielle f converge en a ;
(ii) les fonctions numériques f1, . . . , fp convergent en a.
De plus, si tel est le cas

lim
a
f =

(
lim
a
f1

)
.e1 + · · ·+

(
lim
a
fp

)
.ep =

p∑
j=1

(
lim
a
fj

)
ej

dém. :
Par la caractérisation séquentielle des limites.
�

17.1.4 Convergence à valeurs dans un espace normé produit
Soit F1, . . . , Fp des espaces vectoriels normés respectivement par N1, . . . , Np et F = F1 × . . . × Fp
l’espace vectoriel normé produit. Pour x = (x1, . . . , xp) ∈ F ,

‖x‖ = max
16j6n

Nj(xj)

Considérons f : X ⊂ E → F .
Pour tout x ∈ X f(x) = (f1(x), . . . , fp(x)) avec fj(x) ∈ Fj .

Définition
Les applications f1, . . . , fp sont appelées applications coordonnées de f .

Théorème
Soit a ∈ E adhérent X . On a équivalence entre :
(i) f converge en a ;
(ii) f1, . . . , fp convergent en a.
De plus, si tel est le cas,

lim
a
f =

(
lim
a
f1, . . . , lim

a
fp

)

dém. :
Par la caractérisation séquentielle des limites.
�

17.1.5 Convergence et restriction
Soit f : X ⊂ E → F et a adhérent à X .
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Définition
Soit X ′ ⊂ X tel que a soit adhérent à X ′.
On appelle limite de f en a selon X ′ l’éventuelle limite de la restriction f |X′ en a. On la note

lim
x→a,x∈X′

f(x)

Exemple Si a est adhérent à X? = X\ {a}, on note

lim
x→a,x 6=a

f(x) =
déf

lim
x→a,x∈X?

f(x)

Exemple Si X ⊂ R et a adhérent à X+ = X ∩ ]a,+∞[, on note

lim
x→a+

f(x) ou lim
x→a,x>a

f(x) =
déf

lim
x→a,x∈X+

f(x)

Proposition
Si a est adhérent à X ′ ⊂ X et si f converge en a alors la restriction f |X′ converge en a vers
la même limite.

dém. :
Qui peut le plus, peut le moins.
�

Proposition
Soit r > 0 et X ′ = B(a, r) ∩X .
Si la restriction f |X′ converge en a alors f converge en a vers la même limite

dém. :
Supposons f�X′ converge vers ` en a.
Soit ε > 0. Il existe α > 0 tel que

∀x ∈ X ′, ‖x− a‖E 6 α⇒ ‖f(x)− `‖F 6 ε

Pour α′ = min(α, r) > 0, on a

∀x ∈ X, ‖x− a‖E < α′ ⇒ ‖x− a‖E 6 α et x ∈ X ′
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donc
∀x ∈ X, ‖x− a‖E < α′ ⇒ ‖f(x)− `‖F 6 ε

�

Proposition
On suppose X = X ′ ∪X ′′ avec a adhérent à X ′ et X ′′.
Si les restrictions f |X′ et f |X′′ convergent en a vers la même limite alors f converge en a vers
cette limite.

dém. :
Notons ` la limite commune.
Soit ε > 0. Il existe α′, α′′ > 0 tels que

∀x ∈ X ′, ‖x− a‖E 6 α
′ ⇒ ‖f(x)− `‖F 6 ε et ∀x ∈ X ′′, ‖x− a‖E 6 α

′′ ⇒ ‖f(x)− `‖F 6 ε

Pour α = min(α′, α′′) > 0, on a

∀x ∈ X = X ′ ∪X ′′, ‖x− a‖E 6 α⇒ ‖f(x)− `‖F 6 ε

�

Remarque Cet outil permet l’étude de limite de fonction définie par une alternative.

17.1.6 Extension « à l’infini »

Définition
Soit f : X ⊂ R→ F avec X partie non majorée.
On dit que f tend vers ` ∈ F en +∞ si

∀ε > 0,∃A ∈ R,∀x ∈ X,x > A⇒ ‖f(x)− `‖ 6 ε

On note alors f(x) −−−−−→
x→+∞

`.

De façon analogue, pour X ⊂ R non minorée, on définit f −−→
−∞

`
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Définition
Soit f : X ⊂ E → F avec X non bornée.
On dit que f(x) tend vers ` ∈ F quand ‖x‖ → +∞ si

∀ε > 0,∃A ∈ R,∀x ∈ X, ‖x‖ > A⇒ ‖f(x)− `‖ 6 ε

On note alors f(x) −−−−−−→
‖x‖→+∞

`.

Définition
Soit f : X ⊂ E → R et a ∈ E adhérent à X .
On dit que f tend vers +∞ en a si

∀M ∈ R,∃α > 0,∀x ∈ X, ‖x− a‖ 6 α⇒ f(x) >M

On note alors f(x) −−−→
x→a

+∞.

De façon analogue, on définit aussi f(x) −−−→
x→a

−∞, f(x) −−−−−−→
‖x‖→+∞

+∞, etc.

17.1.7 Exemples

Exemple Dans R2, étude de lim
(x,y)→(0,0)

√
x2 + xy + y2.

Soit f : (x, y) 7→
√
x2 + xy + y2 définie sur X = R2 car

x2 + xy + y2 > (x+ 1/2)
2

+ 3y2/4

(0, 0) est adhérent à R2.
Quand (x, y)→ (0, 0).
On a x→ 0 et y → 0 (car |x| 6 ‖(x, y)‖∞ → 0 )
Par opérations algébriques x2 + xy + y2 → 0.
Par composition

√
x2 + xy + y2 → 0.

Exemple Dans R2, étude de lim
(x,y)→(0,0)

xy√
x2 + y2

.

Soit f : (x, y) 7→ xy√
x2 + y2

définie sur X = R2\ {(0, 0)}.

(0, 0) est adhérent à X
Quand (x, y)→ (0, 0) (avec (x, y) ∈ X )
On pose x = r cos θ, y = r sin θ avec r =

√
x2 + y2 → 0 et θ incontrôlable.

Par composition, on a alors
f(x, y) = r cos θ sin θ → 0

Attention : Etudier lim
(x,y)→(0,0)

ne correspond pas à étudier lim
x→0

lim
y→0

ou lim
y→0

lim
x→0

Exemple Dans R2, étude de lim
(x,y)→(0,0)

x2 − y2

x2 + y2
.
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Soit f : (x, y) 7→ x2 − y2

x2 + y2
définie sur X = R2\ {(0, 0)}.

(0, 0) est adhérent à X et

lim
x→0

lim
y→0

f(x, y) = −1 et lim
y→0

lim
x→0

f(x, y) = 1. . .

Pour x = r cos θ, y = r sin θ avec r =
√
x2 + y2 → 0, on a

f(x, y) = cos2 θ − sin2 θ

qui ne semble pas converger. . .
Puisque f(1/n, 0)→ 1 et f(0, 1/n)→ −1, la fonction f diverge en (0, 0).

Exemple Dans R3, étude de lim
(x,y,z)→(0,0,0)

xyz

x2 + y2 + z2
.

Soit f : (x, y, z) 7→ xyz

x2 + y2 + z2
définie sur X = R3\ {(0, 0, 0)}.

Quand (x, y, z)→ (0, 0, 0) (avec (x, y, z) ∈ X )
On pose x = r cosϕ sin θ, y = r sinϕ sin θ, z = r cos θ avec r =

√
x2 + y2 + z2 → 0 et ϕ, θ

incontrôlables.
xyz

x2 + y2 + z2
= r cosϕ sinϕ cos2 θ sin θ → 0

Exemple Dans C, étude de lim
z→0

z2

|z|
.

Soit f : z 7→ z2

|z|
définie sur X = C?.

0 est adhérent à C?.
Quand z → 0 (avec z ∈ C? )
On peut écrire z = reiθ avec r = |z| → 0.
On a alors

f(z) = re2iθ → 0

Exemple Dans C, étude de lim
|z|→+∞

1

z + 1
.

f : z 7→ 1/(z + 1) est définie sur X = C\ {−1}.
X n’est pas bornée.
Quand |z| → +∞ (avec z ∈ X ).

On a |z + 1| > |z| − 1 donc
∣∣∣∣ 1

z + 1

∣∣∣∣ 6 1

|z| − 1
→ 0 (pour |z| > 1 ).

Ainsi lim
|z|→+∞

1

z + 1
= 0
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17.2 Continuité

17.2.1 Continuité en un point

Remarque Si f : X ⊂ E → F admet une limite en a ∈ X , celle-ci ne peut qu’être égale à f(a).

Définition
On dit que f : X ⊂ E → F est continue en a ∈ X si f(x) −−−→

x→a
f(a).

Théorème
On a équivalence entre :
(i) f : X ⊂ E → F est continue en a ∈ X ;
(ii) ∀(xn) ∈ XN, (xn → a⇒ f(xn)→ f(a))

dém. :
En vertu de la caractérisation séquentielle des limites.
�

Exemple Soit f : R2 → R définie par

f(x, y) =
xy

x2 + y2
si (x, y) 6= (0, 0) et f(0, 0) = 0

La fonction f n’est pas continue en (0, 0).
En effet

f(1/n, 1/n) = 1/2 6 →f(0, 0)

17.2.2 Continuité sur le domaine de définition

Définition
On dit que f : X ⊂ E → F est continue si f est continue en chaque point a ∈ X .
On note C(X,F ) l’ensemble des fonctions continues de X vers F .

Exemple Les fonctions constantes sont continues.

Exemple La fonction IdE est continue.

Exemple La fonction x 7→ ‖x‖ est continue.

Exemple La fonction z 7→ 1

z
est continue sur C?.

En effet, pour a ∈ C?, ∣∣∣∣1z − 1

a

∣∣∣∣ =
|z − a|
|z| |a|

−−−→
z→a

0
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Exemple Etudions la continuité de f : R2 → R définie par

f(x) =


sin y − sinx

y − x
si x 6= y

cosx si x = y

Soit (x0, y0) ∈ R2.
Cas x0 6= y0.
Sur une boule centrée en (x0, y0),

f(x, y) =
sin y − sinx

y − x
−−−−−−−−−→
(x,y)→(x0,y0)

sin y0 − sinx0

y0 − x0
= f(x0, y0)

Cas x0 = y0.
Quand (x, y)→ (x0, x0) avec x 6= y

f(x, y) =
sin y − sinx

y − x
=

2 sin y−x
2 cos x+y

2

y − x
→ cosx0 = f(x0, x0)

En effet
2 sin t

2

t
−−−→
t→0

1 et y − x→ 0

Quand (x, y)→ (x0, x0) avec x = y

f(x, y) = cosx→ cos(x0) = f(x0, x0)

17.2.3 Applications lipschitziennes

Définition
Une application f : X ⊂ E → F est dite lipschitzienne s’il existe k ∈ R+ tel que

∀x, y ∈ X, ‖f(y)− f(x)‖F 6 k ‖y − x‖E

Exemple L’application x 7→ ‖x‖ est lipschitzienne de E vers R.
En effet

|‖x‖ − ‖y‖| 6 ‖x− y‖

Exemple On appelle distance de x ∈ E à une partie A non vide de E le réel

d(x,A) =
déf

inf {d(x,A)/a ∈ A}

L’application x ∈ E 7→ d(x,A) est lipschitzienne.
Soit x, y ∈ E.
Pour tout a ∈ E,

d(x,A) 6 ‖x− a‖ 6 ‖x− y‖+ ‖y − a‖
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donc
d(x,A)− ‖x− y‖ 6 ‖y − a‖

puis par passage à la borne inférieure

d(x,A)− ‖x− y‖ 6 d(y,A)

Ainsi
d(x,A)− d(y,A) 6 ‖x− y‖

Par un raisonnement symétrique on a aussi d(y,A)− d(x,A) 6 ‖y − x‖ et donc

|d(y,A)− d(x,A)| 6 ‖y − x‖

Ainsi l’application x 7→ d(x,A) est lipschitzienne.

Théorème
Les applications lipschitziennes sont continues.

dém. :
Soit f : X ⊂ E → F une fonction lipschitzienne.
Il existe k ∈ R+ tel que

∀x, y ∈ X, ‖f(y)− f(x)‖F 6 k ‖y − x‖E
Soit a ∈ X .
Quand x→ a, ‖f(x)− f(a)‖F 6 k ‖x− a‖E → 0 donc f(x)→ f(a).
Ainsi f est continue en chaque a ∈ X .
�

Exemple Soit E un K-espace vectoriel de dimension finie et e = (e1, . . . , ep) une base de E.
Les formes linéaires coordonnées dans la base e sont lipschitziennes.
En effet, notons ϕ1, . . . , ϕp les formes linéaires coordonnées dans la base e.
Pour x = x1.e1 + · · ·+ xp.ep ∈ E, on a ϕj(x) = xj .
Etudions l’application ϕj : E → K.
En choisissant ‖ . ‖ = ‖ . ‖∞,e, on a pour tout j ∈ {1, . . . , p} et tout x, y ∈ E,

|ϕj(y)− ϕj(x)| = |yj − xj | 6 ‖y − x‖

Ainsi les formes linéaires coordonnées dans une base sont lipschitziennes et donc continues.

Remarque En particulier, les applications suivantes sont continues

(x1, . . . , xp) 7→ xj , z 7→ Re(z), z 7→ Im(z) et A 7→ ai,j

Exemple Soit (E1, N1),. . . , (Ep, Np) des espaces normés et (E, ‖ . ‖) l’espace normé produit.
Les applications coordonnées pj : x = (x1, . . . , xp) ∈ E 7→ xj sont lipschitziennes.
En effet, pour tout x, y ∈ E,

Nj(pj(x)− pj(y)) = Nj(xj − yj) 6 ‖x− y‖

Les projections coordonnées pj sont lipschitziennes donc continues.
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Remarque En particulier, les applications suivantes sont continues

E × F → E
(x, y) 7→ x

et
E × F → F
(x, y) 7→ y

17.2.4 Opérations sur les fonctions continues

Théorème
Soit f, g : X ⊂ E → F et λ, µ ∈ K.
Si f et g sont continues alors λf + µg est continue.
Si de plus F est une algèbre normée, fg est aussi continue.

dém. :
Par opérations sur les limites en tout point a ∈ X .
�

Corollaire
C(X,F ) est un sous-espace vectoriel (voire une sous-algèbre) de F(X,F ).

Définition
On appelle fonction monôme sur Kp toute application de la forme

x = (x1, . . . , xp) 7→ xα1
1 × . . .× xαpp

On appelle fonction polynôme sur Kp toute combinaison linéaire de fonctions monômes.

Exemple Les fonctions polynômes sur Kp sont continues.

Exemple L’application det :Mp(K)→ K est continue.
En effet

detA =
∑
σ∈Sn

ε(σ)

n∏
i=1

aσ(i),i

et donc l’application det se comprend comme une somme de produits de fonctions continues.
On dit que le déterminant est une fonction polynôme en les coefficients de la matrice.

Théorème
Soit α : X ⊂ E → K et f : X ⊂ E → F .
Si α et f sont continues alors α.f est continue.

dém. :
Par opérations sur les limites en tout point a ∈ X .
�

Théorème
Soit f : X ⊂ E → F et g : Y ⊂ F → G telle que f(X) ⊂ Y .
Si f et g sont continues alors g ◦ f est continue.

dém. :
Par opérations sur les limites en tout point a ∈ X .
�
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Définition
On appelle fonctions rationnelles sur Kp toute fonction qui est le rapport de deux fonctions
polynômes sur Kp.

Exemple Les fonction rationnelles sur Kp sont continues sur leur domaine de définition.

Exemple La fonction

f : (x, y) 7→ sin(x+ y2)

2 + ln(1 + x2 + y2)

est continue sur R2

Par opérations sur les fonctions continues !

Attention : Ne pas argumenter f est continue car « continue en x et continue en y » .
Cette dernière notion correspond à de la continuité partielle, elle est nécessaire mais pas suffisante.

Exemple Soit f(x, y) =
xy

x2 + y2
si (x, y) 6= (0, 0) et f(0, 0) = 0.

Pour tout y ∈ R.
Si y 6= 0 alors x 7→ f(x, y) =

xy

x2 + y2
est continue.

Si y = 0 alors x 7→ f(x, y) = 0 est continue.
Par symétrie, on a aussi y 7→ f(x, y) est continue pour tout x ∈ R.
Ainsi la fonction f est « continue en x et en y » .
Cependant, la fonction f n’est pas continue puisque f(1/n, 1/n) = 1/2 6 →f(0, 0).

Théorème
Si F est de dimension finie alors f : X ⊂ E → F est continue si, et seulement si, ses fonctions
coordonnées dans une base de F le sont.

Exemple L’application M 7→ com(M) est continue deMp(K) vers lui-même.
En effet, ses applications coordonnées dans la base canonique sont des polynômes en les coefficients
de M .

Exemple L’application M 7→M−1 est continue sur GLp(K).
En effet, on sait

M−1 =
1

detM
tcomM

et donc les coefficients de M−1 sont des fonctions rationnelles en les coefficients de M .

Théorème
Si F est un espace normé produit alors f : X ⊂ E → F est continue si, et seulement si, ses
fonctions coordonnées le sont.

Exemple L’application A ∈Mn(K) 7→ (detA, comA) ∈ K×Mn(K) est continue.
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17.3 Continuité et linéarité

17.3.1 Continuité des applications linéaires

Définition
On note Lc(E,F ) l’ensemble formé des applications linéaires continues de E vers F .

Théorème
Lc(E,F ) est un K-espace vectoriel

dém. :
Lc(E,F ) = L(E,F ) ∩ C(E,F ) est un sous-espace vectoriel de F(E,F ).
�

Théorème
Soit une application linéaire u : E → F . On a équivalence entre :
(i) u est continue ;
(ii) u est continue en 0E ;
(iii) ∃k > 0, ∀x ∈ E, ‖u(x)‖F 6 k ‖x‖E [lipschitzianité en 0] ;
(iv) u est lipschitzienne.

dém. :
(i)⇒ (ii) : ok
(ii)⇒ (iii) : Supposons u continue en 0.
Pour ε = 1, il existe α > 0 tel que

∀x ∈ E, ‖x‖E 6 α⇒ ‖u(x)‖F 6 1

Posons k = 1/α ∈ R+ et montrons que

∀x ∈ E, ‖u(x)‖F 6 k ‖x‖E

Pour x = 0 : ok
Pour x 6= 0, posons x′ =

α

‖x‖E
x. On a ‖x′‖E 6 α donc ‖u(x′)‖F 6 1.

Or ‖u(x′)‖F =
α

‖x‖E
‖u(x)‖F donc puis ‖u(x)‖F 6

1

α
‖x‖E .

(iii)⇒ (iv) : Supposons qu’il existe k > 0 tel que ‖u(x)‖ 6 k ‖x‖ pour tout x ∈ E.
Pour x, y ∈ E,

‖u(x)− u(y)‖F = ‖u(x− y)‖F 6 k ‖x− y‖E
donc u est lipschitzienne.
(iv)⇒ (i) : ok
�

Exemple Soit E = C([0, 1] ,K) et u : E → K définie par u(f) = f(1)− f(0).
u est une forme linéaire sur E.
Etudions sa continuité pour ‖ . ‖E = ‖ . ‖∞ et ‖ . ‖E = ‖ . ‖1.
Cas ‖ . ‖E = ‖ . ‖∞.
Pour tout f ∈ E, |u(f)| = |f(1)|+ |f(0)| 6 2 ‖f‖∞ donc u est continue.
Cas ‖ . ‖E = ‖ . ‖1.
Pour fn : t 7→ tn,

|u(fn)| = 1 et ‖fn‖1 =
1

n+ 1
→ 0
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Par suite, u n’est pas continue (car discontinue en 0E )

Exemple Soit E = C∞([a, b] ,K) normé par ‖ . ‖∞.
Considérons l’application I : E → E déterminée par

I(f) est la primitive de f s’annulant en a

Etudions la continuité de l’endomorphisme I de E.
Pour tout f ∈ E, on a

I(f)(x) =

∫ x

a

f(t) dt

donc

|ϕ(f)(x)| 6
∫ x

a

|f(t)| dt 6 (b− a) ‖f‖∞

Ainsi
‖I(f)‖∞ 6 (b− a) ‖f‖∞

et l’application I est continue.
Considérons inversement l’application D de dérivation.
D est un endomorphisme de E .
Pour fn : t 7→ tn, on a

‖fn‖∞ = 1 et ‖D(fn)‖∞ = n −−−−−→
n→+∞

0

L’endomorphisme de dérivation n’est pas continue.

17.3.2 Linéarité en dimension finie

Théorème
Si E est de dimension finie, toute application linéaire de E vers F est continue.

dém. :
Cas dimE = 0 : ok.
Cas dimE = n ∈ N? : on introduit e = (e1, . . . , en) base de E et on considère ‖ . ‖E = ‖ . ‖∞,e.
Soit u ∈ L(E,F ). Pour x = x1.e1 + · · ·+ xn.en,

u(x) = x1.u(e1) + · · ·+ xn.u(en)

et donc
‖u(x)‖F 6 |x1| ‖u(e1)‖F + · · ·+ |xn| ‖u(en)‖F 6 k ‖x‖

avec
k = ‖u(e1)‖F + · · ·+ ‖u(en)‖F ∈ R+

�

Corollaire
Si E est de dimension finie Lc(E,F ) = L(E,F ).

Exemple L’application Tr :Mn(K)→ K est continue, l’application de transposition deMn,p(K) vers
Mp,n(K),. . .
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Exemple Soit E un K-espace vectoriel de dimension n ∈ N?.
Montrons que l’application detL(E) : L(E)→ K est continue.
Notons que celle-ci n’est pas linéaire !
Cependant, on sait que detMn(K) :Mn(K)→ K est continue. Soit e une base de E, l’application de
représentation matricielle

Me : L(E)→Mn(K)

est linéaire au départ de L(E) qui est K-espace vectoriel de dimension finie, c’est donc une application
continue. On en déduit que

detL(E) = detMn(K) ◦Me

est continue par composition d’applications continues.

17.3.3 Continuité des applications multilinéaires

Théorème
Soit B : E × F → G une application bilinéaire. On a équivalence entre :
(i) B est continue ;
(ii) B est continue en (0E , 0F ) ;
(iii) ∃k ∈ R+, ∀(x, y) ∈ E × F , ‖B(x, y)‖G 6 k ‖x‖E ‖y‖F .

dém. :
(i)⇒ (ii) : ok
(ii)⇒ (iii) : Supposons B continue en (0E , 0F ).
Pour ε = 1, il existe α > 0 vérifiant

∀(x, y) ∈ E × F , ‖(x, y)‖E×F 6 α⇒ ‖B(x, y)‖G 6 1

Soit k = 1/α2 ∈ R+. Montrons

∀(x, y) ∈ E × F , ‖B(x, y)‖ 6 k ‖x‖ ‖y‖

Si x = 0E ou y = 0F : ok
Sinon, on pose x′ =

α

‖x‖
x et y′ =

α

‖y‖
y. On a ‖(x′, y′)‖ = α donc ‖B(x′, y′)‖ 6 1.

Or ‖B(x′, y′)‖ =
α2

‖x‖ ‖y‖
‖B(x, y)‖ donc ‖B(x, y)‖ 6 1

α2
‖x‖ ‖y‖.

(iii)⇒ (i) Supposons qu’il existe k ∈ R+ tel que ‖B(x, y)‖ 6 k ‖x‖ ‖y‖ pour tout x ∈ E et y ∈ F .
Soit (x0, y0) ∈ E × F .

‖B(x, y)−B(x0, y0)‖ = ‖B(x, y)−B(x0, y)‖+ ‖B(x0, y)−B(x0, y0)‖

donc

‖B(x, y)−B(x0, y0)‖ = ‖B(x− x0, y)‖+ ‖B(x0, y − y0)‖ 6 k ‖x− x0‖ ‖y‖+ k ‖x0‖ ‖y − y0‖

Quand (x, y)→ (x0, y0), B(x, y)→ B(x0, y0) et donc B est continue en (x0, y0).
�

Corollaire
Si E et F sont de dimensions finies alors toute application bilinéaire au départ de E × F est
continue.
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dém. :
Cas E = {0E} ou F = {0F } : ok
Cas E 6= {0E} et F 6= {0F } : on introduit e = (e1, . . . , en) une base de E, f = (f1, . . . , fp) une base
de F et on considère ‖ . ‖E = ‖ . ‖∞,e et ‖ . ‖F = ‖ . ‖∞,f .

Pour x =

n∑
i=1

xiei ∈ E et y =

p∑
j=1

yjfj ∈ F on a

b(x, y) =

n∑
i=1

p∑
j=1

xiyjb(ei, fj)

donc
‖b(x, y)‖ 6 k ‖x‖ ‖y‖

avec

k =

n∑
i=1

p∑
j=1

‖b(ei, fj)‖

�

Théorème
Soit m : E = E1 × · · · × Ep → F une application multilinéaire. On a équivalence entre :
(i) m est continue ;
(ii) ∃k ∈ R+, ∀x = (x1, . . . , xp) ∈ E, ‖m(x)‖F 6 k ‖x1‖E1

· · · ‖xp‖Ep .

dém. :
Même principe qu’au dessus.
�

Corollaire
Les applications multilinéaires au départ d’un produit d’espaces dimensions finies sont conti-
nues.

dém. :
Semblable à l’étude relative à la bilinéarité.
�

Exemple Soit E un K-espace vectoriel de dimension n ∈ N? muni d’une base e.
L’application dete : En → K est continue car multilinéaire au départ d’un espace de dimension finie.

17.4 Connexité par arcs
X désigne une partie de E.
17.4.1 Chemin

Définition
On appelle chemin inscrit dans X ⊂ E toute application γ : [0, 1]→ E continue vérifiant

∀t ∈ [0, 1] , γ(t) ∈ X

Les éléments a = γ(0) et b = γ(1) sont appelés extrémités du chemin.
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Définition
On dit qu’un élément a ∈ X peut être relié dans X à un élément b ∈ X s’il existe un chemin
γ : [0, 1]→ E inscrit dans X vérifiant

γ(0) = a et γ(1) = b

Exemple

Proposition
Soit a, b, c ∈ X .
a) a peut être relié à lui-même dans X ;
b) si a peut être relié à b dans X , b peut être relié à a dans X ;
c) si a peut être relié à b dans X et si b peut être relié à c dans X alors a peut être relié à c
dans X .

dém. :
a) Il suffit de considérer un chemin constant égal à a.
b) Si γ est un chemin inscrit dansX joignant a à b alors γ̃ défini par γ̃(t) = γ(1−t) détermine un chemin
inscrit dans X joignant b à a.
c) Si γ1 est chemin inscrit dans X joignant a à b et γ2 joignant b à c alors γ donné par

γ(t) =

{
γ1(2t) si t ∈ [0, 1/2]
γ2(2t− 1) si t ∈ [1/2, 1]

détermine un chemin inscrit X joignant a à c.
�
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Remarque La relation binaireR définie sur X par

aRb⇔ il existe un chemin inscrit dans X joignant a à b

définit une relation d’équivalence sur X .
Celle-ci met en relation les éléments qui peuvent être joints et ses classes d’équivalence regroupent
ensemble les éléments qui peuvent être joints.

Définition
Les classes d’équivalences de la relation R sont appelées les composantes connexes par arcs
de la partie X .

Exemple

17.4.2 Parties connexes par arcs

Définition
Une partie X de E est dite connexe par arcs si elle ne possède qu’une seule composante
connexe par arcs. Cela signifie encore que pour tout a, b ∈ X , il existe un chemin inscrit
dans X d’extrémités a et b.

Exemple
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Exemple Dans E = R, les intervalles sont connexes par arcs.
En revanche, R? n’est pas une partie connexe par arcs.

Proposition
Les parties convexes sont connexes par arcs.

dém. :
Soit X une partie convexe.
Pour tout a, b ∈ X , [a, b] = {(1− λ)a+ λb/λ ∈ [0, 1]} ⊂ X .
Considérons alors γ : t ∈ [0, 1] 7→ γ(t) = (1− t)a+ tb.
γ est continue, γ(0) = a, γ(1) = b et γ ([0, 1]) ⊂ A.
�

Exemple Les boules, les sous-espaces vectoriels et les sous-espaces affines sont des parties connexes
par arcs car convexes.

Définition
Une partie X de E est dite étoilée s’il existe a ∈ X vérifiant

∀x ∈ X, [a, x] ⊂ X

Exemple

Proposition
Les parties étoilée sont connexes par arcs.

dém. :
Car tout élément de X appartient à la composante connexes par arcs possédant a.
�
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Remarque - la réunion de deux connexes par arcs non disjoints est évidemment connexe par arcs ;
- l’intersection de deux connexes par arcs ne l’est pas nécessairement. ;
- le produit cartésien de deux connexes pas arcs est connexe par arcs.

17.4.3 Image continue d’un connexe par arcs

Théorème
L’image directe d’un connexe par arcs par une application continue est connexe par arcs.

dém. :
Soit f : X ⊂ E → F continue avec X connexe par arcs.
Pour a′, b′ ∈ f(X), il existe a, b ∈ X tels que a′ = f(a) et b′ = f(b).
Puisque X est connexe par arcs, il existe γ : [0, 1] → E continue telle que γ(0) = a, γ(1) = b et
γ ([0, 1]) ⊂ X .
Considérons alors γ′ = f ◦ γ : [0, 1] → F . γ′ est continue, γ′(0) = a′, γ′(1) = b′ et γ′ ([0, 1]) =
f (γ ([0, 1])) ⊂ f(X).
�

Exemple Le cercle U = {z ∈ C/ |z| = 1} est connexe par arcs.
En effet, c’est l’image du connexe R par l’application continue t 7→ eit.

Exemple GLn(R) n’est pas connexe par arcs.
En effet det GLn(R) = R? et R? n’est pas connexe par arcs.

17.4.4 Généralisation du théorème des valeurs intermédiaires

Théorème
Les parties connexes par arcs de R sont ses intervalles.

dém. :
Autrement dit, les parties convexes de R sont exactement les intervalles de R.
Soit X un intervalle de R, X est convexe donc connexe par arcs.
Inversement, soit X une partie connexe par arcs de R.
Si X = ∅ alors X est intervalle.
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Sinon, pour tout a 6 b ∈ X , il existe γ : [0, 1] → R continue telle que γ(0) = a, γ(1) = b et
γ ([0, 1]) ⊂ X . Or, par application du théorème des valeurs intermédiaires, la fonction γ prend toutes les
comprises entre a et b. Ainsi [a, b] ⊂ γ ([0, 1]) ⊂ X et donc

∀a 6 b ∈ X, [a, b] ⊂ X

Posons alors α = inf X ∈ R ∪ {−∞} et β = supX ∈ R ∪ {+∞}.
Pour tout x ∈ ]α, β[, x n’est ni minorant, ni majorant de X et donc il existe a, b ∈ X tel que a < x < b
et donc x ∈ [a, b] ⊂ X . Ainsi ]α, β[ ⊂ X et donc X = ]α, β[, ]α, β], [α, β[ ou [α, β].
Finalement, X est un intervalle de R.
�

Théorème
Si X est une partie connexe par arcs de E et f : X → R une application continue alors f(X)
est un intervalle de R.
En conséquence, f prend toute valeur intermédiaire entre deux valeurs déjà prises.

dém. :
f(X) est l’image d’un connexe par arcs par une application continue, c’est donc une partie connexe par
arcs de R. Or ces dernières sont des intervalles.
�

Exemple Soit f : R→ R continue injective.
Montrons que f est strictement monotone.
Considérons X =

{
(x, y) ∈ R2/x < y

}
. X est une partie convexe de R2 donc connexe par arcs.

La fonction v : X → R définie par v(x, y) = f(y)− f(x) est continue et ne s’annule pas en vertu de
l’injectivité de f . L’image par v de X est donc un intervalle de R qui ne contient pas 0. Par suite
v(X) ⊂ R+? ou v(X) ⊂ R−? et dans les deux cas f est strictement monotone.
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Compacité

18.1 Valeur d’adhérence

18.1.1 Suite extraite

Définition
On appelle suite extraite (ou sous-suite) d’une suite u = (un)n∈N d’éléments E toute suite
v = (vk)k∈N pour laquelle il existe une fonction ϕ : N→ N strictement croissante vérifiant

∀k ∈ N, vk = uϕ(k)

Remarque En posant nk = ϕ(k), une suite extraire peut se comprendre comme une sélection de termes
qui se succèdent

(unk)k∈N avec nk < nk+1

Exemple (u2k)k∈N et (u2k+1)k∈N sont deux suites extraites de (un)n∈N.

Proposition
Si w est une suite extraire d’une suite v elle-même extraite d’une suite u alors w est extraite
de u.

dém. :
On suppose (vk) = (uϕ(k)) et (w`) = (vψ(`)) avec ϕ,ψ : N→ N strictement croissantes.
On a alors (w`) = (uθ(`)) avec θ = ϕ ◦ ψ : N→ N strictement croissante.
�

Théorème
Si (un) converge vers ` alors toute suite extraite de (un) converge aussi vers `.

dém. :
Soit (vk) = (uϕ(k)) une suite extraite de (un) avec un → `.
Soit ε > 0. Il existe N ∈ N tel que pour tout n > N , ‖un − `‖ 6 ε.
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On montre par une récurrence facile que

∀k ∈ N, ϕ(k) > k

Pour k > N , ϕ(k) > k > N donc

‖vk − `‖ =
∥∥uϕ(k) − `

∥∥ 6 ε
Ainsi vk → `.
�

18.1.2 Valeur d’adhérence d’une suite

Définition
On appelle valeur d’adhérence d’une suite u = (un) d’éléments de E toute limite d’une suite
convergente extraite de u. On note Adh(u) l’ensemble des valeurs d’adhérence de la suite u.

Exemple Si un → ` alors Adh(u) = {`}.

Remarque Une suite possédant au moins deux valeurs d’adhérence (ou n’en possédant aucune) diverge.

Exemple Déterminons les valeurs d’adhérence de un = (−1)n +
1

n+ 1
.

On a u2n → 1 et u2n+1 → −1 donc Adh(u) = {1,−1}.

Exemple Déterminons les valeurs d’adhérence de u = (un)n∈N ∈ EN telle que ‖un‖ → +∞.
Aucune suite extraite de u ne converge car aucune suite extraite de u n’est bornée.
On en déduit Adh(u) = ∅.

Remarque Les valeurs d’adhérence d’une suite sont les valeurs au voisinage desquelles s’accumule une
infinité de termes de la suite.

Théorème
Toute suite bornée d’éléments de K admet au moins une valeur d’adhérence.

18.2 Partie compacte

18.2.1 Définition

Définition
Une partie K de E est dite compacte si toute suite d’éléments de K possède au moins une
valeur d’adhérence dans K i.e.

∀(un) ∈ KN, ∃ϕ : N→ N strictement croissante, uϕ(n) → ` ∈ K

On dit encore que K est un compact de E.
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Remarque Dans une partie compacte K, on ne peut répartir les éléments d’une suite sans qu’il y ait
accumulation au voisinage d’un point de K.

Exemple Sur E = R, les segments [a, b] sont des parties compactes.
En effet, une suite d’éléments de [a, b] est bornée donc admet une suite extraite convergente dont la
limite sera élément de [a, b].

Exemple Sur E = C, D(0, R) = {z ∈ C/ |z| 6 R} est une partie compacte.
En effet, une suite d’éléments de D(0, R) est bornée donc admet une suite extraite convergente dont la
limite sera élément de D(0, R).

Exemple Sur E = R, [a,+∞[ n’est pas compact.
En effet la suite définie par un = a+ n n’a pas de valeur d’adhérence.

Exemple Sur E = R, ]a, b] n’est pas compact.
En effet, la suite définie un = a+ (b− a)/(n+ 1) n’a qu’une valeur d’adhérence et celle-ci n’est pas
élément de ]a, b].

18.2.2 Topologie des parties compactes

Théorème
Toute partie compacte est fermée et bornée.

dém. :
Soit K une partie compacte.
Montrons que K est fermée.
Soit (xn)n∈N une suite convergente d’éléments de K et posons ` sa limite.
Puisque K est compact, (xn)n∈N admet une valeur d’adhérence dans K, or puisque ` est la seule valeur
d’adhérence de la suite convergente (xn)n∈N, on peut conclure que ` ∈ K. En vertu de la caractérisation
séquentielle des parties fermées, on obtient la partie K fermée.
Montrons que K est bornée.
Par l’absurde, supposons K non bornée. Pour tout n ∈ N, il existe xn ∈ K tel que ‖xn‖ > n. En faisant
varier n, cela détermine une suite (xn) ∈ KN telle que ‖xn‖ → +∞. Or cette suite n’a pas de valeur
d’adhérence. C’est absurde.
�

Théorème
Toute partie fermée d’une partie compacte est elle-même compacte.

dém. :
Soit F une partie fermée d’un compact K.
Soit (xn) une suite d’éléments de F . La suite (xn) apparaît aussi comme une suite d’éléments du compact
K, elle admet donc une valeur d’adhérence ` ∈ K c’est-à-dire qu’il existe ϕ : N → N strictement
croissante telle que xϕ(n) → `. La suite (xϕ(n))n∈N est une suite convergente d’éléments du fermé F
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donc ` ∈ F .
Finalement, (xn)n∈N admet une valeur d’adhérence dans F .
�

18.2.3 Opérations sur les parties compactes

Proposition
Une intersection de deux parties compactes est un compact.

dém. :
Car détermine une partie fermée à l’intérieur d’un compact.
�

Proposition
Une réunion de deux parties compactes est un compact

dém. :
Soit K1 et K2 deux parties compactes de E et u = (un)n∈N une suite d’éléments de K1 ∪K2.
Cette suite contient une infinité d’éléments de K1 (ou de K2 ) et possède donc une valeur d’adhérence
dans K1 (ou dans K2 ).
�

Théorème
Si K1 et K2 sont deux parties compactes d’espaces normés E1 et E2 alors K1 ×K2 est une
partie compacte de l’espace normé produit E1 × E2.

dém. :
Soit (un)n∈N une suite d’éléments de K1 ×K2.
Pour tout n ∈ N, on peut écrire un = (xn, yn) avec xn ∈ K1 et yn ∈ K2.
La suite (xn) est une suite d’éléments du compact K1 donc elle admet une valeur d’adhérence x dans
K1. Ainsi, il existe une extractrice ϕ telle que xϕ(n) → x avec x ∈ K1.
La suite extraite (yϕ(n)) est une suite d’éléments du compact K2 donc elle admet une valeur d’adhérence
y dans K2. Ainsi, il existe une extractrice ψ telle que yϕ(ψ(n)) → y avec y ∈ K2.
Or, par extraction d’une suite convergente, on a encore xϕ(ψ(n)) → x et donc uϕ(ψ(n)) = (xϕ(ψ(n)), yϕ(ψ(n)))→
(x, y) avec (x, y) ∈ K1,K2. Finalement, toute suite d’éléments de K1 ×K2 admet une valeur d’adhé-
rence dans K1 ×K2.
�

Corollaire
Si K1, . . . ,Kp sont des parties compactes d’espaces vectoriels normés E1, . . . , Ep alors K =
K1×· · ·×Kp est une partie compacte de l’espace vectoriel normé produitE = E1×· · ·×Ep.

dém. :
Par récurrence via

K1 × . . .×Kp ×Kp+1 = (K1 × . . .×Kp)×Kp+1

�

18.2.4 Compacité en dimension finie

Théorème
En dimension finie, les parties compactes sont exactement les parties fermées et bornées.

dém. :
Les parties compactes sont assurément de cette forme. Etudions la réciproque.
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Soit K une partie fermée bornée d’un espace vectoriel normé E de dimension finie p ∈ N.
Si p = 0 alors E = {0E} et K = ∅ ou K = {0E}. Dans les deux cas K est une partie compacte.
Sinon, on peut introduire une base e = (e1, . . . , ep) de E et considérer la norme ‖ . ‖∞,e.
Soit u = (u(n))n∈N une suite d’éléments de K.
Notons u1, . . . , up les suites coordonnées de u.
Considérons v ∈ (Kp)N définie par v(n) = (u1(n), . . . , up(n))
Puisque la partie K est bornée, il existe M ∈ R+ vérifiant

∀x ∈ K, ‖x‖ 6M

En particulier
∀n ∈ N, ‖u(n)‖ 6M

et donc
∀1 6 j 6 p,∀n ∈ N, |uj(n)| 6M

La suite v est donc une suite d’éléments du compact [−M,M ]
p (si K = R ) ou du compact D(0,M)

p

(si K = C ). La suite v admet donc une valeur d’adhérence et il existe ϕ : N → N strictement crois-
sante telle que (v(ϕ(n)))n∈N converge. Les suites coordonnées (ui(ϕ(n)))n∈N convergent et finalement
(u(ϕ(n)))n∈N converge.
De plus, (u(ϕ(n)))n∈N ∈ K

N et K est fermé donc (u(ϕ(n)))n∈N converge dans K.
�

Exemple En dimension finie, les boules fermées sont compactes.

Exemple On(R) est une partie compacte deMn(R).
En effet On(R) est une partie fermée car

On(R) = f−1({In}) avec f : A ∈Mn(R) 7→ tAA continue

et On(R) est une partie bornée car

∀A ∈ On(R),∀1 6 i, j 6 n, |ai,j | 6 1

Corollaire
En dimension finie, toute suite bornée admet une valeur d’adhérence.

dém. :
Car une telle suite évolue dans une boule fermée qui est compacte.
�

18.2.5 Applications
18.2.5.1 Convergence d’une suite d’éléments d’un compact

Théorème
Une suite d’éléments d’une partie compacte converge si, et seulement si, elle admet une unique
valeur d’adhérence.

dém. :
(⇒ ) On a déjà vu que l’ensemble des valeurs d’adhérence d’une suite convergente est un singleton.
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(⇐) Soit u = (un)n∈N une suite d’éléments d’un compactK possédant une unique valeur d’adhérence `.
Par l’absurde, supposons que la suite u ne converge pas vers `. Il existe ε > 0 vérifiant

∀N ∈ N,∃n ∈ N, n > N et ‖un − `‖ > ε

Il existe donc une infinité de termes de la suite u en dehors de Bf (`, ε). On peut ainsi définir une suite
extraite (uϕ(n))n∈N vérifiant

∀n ∈ N,
∥∥uϕ(n) − `

∥∥ > ε

Or celle-ci est une suite d’éléments du compact K et admet donc une valeur d’adhérence m ∈ K. Cette
valeur d’adhérence vérifie

‖m− `‖ > ε
C’est absurde, car la suite u ne possède qu’une seule valeur d’adhérence.
�

Corollaire
En dimension finie, toute suite bornée admettant une unique valeur d’adhérence converge vers
celle-ci.

dém. :
Soit u = (un)n∈N une telle suite. Il existe M ∈ R+ vérifiant

∀n ∈ N, ‖un‖ 6M

La suite u apparaît alors comme étant une suite du compact Bf (0E ,M) et comme elle n’admet qu’une
valeur d’adhérence, elle converge vers celle-ci.
�
18.2.5.2 Fermeture des sous-espaces vectoriels de dimension finie

Théorème
Tout sous-espace vectoriel de dimension finie d’un espace normé est une partie fermée.

dém. :
Soit F sous-espace vectoriel de dimension finie d’un espace normé E.
Soit (un)n∈N une suite convergente d’éléments de F de limite u∞.
La suite (un)n∈N converge, elle est donc bornée et il existe M ∈ R+ vérifiant

∀n ∈ N, ‖un‖ 6M

La suite (un)n∈N est alors une suite du compactK = Bf (0E ,M)∩F , elle admet une valeur d’adhérence
dans K qui ne peut qu’être u∞. En particulier, u∞ ∈ F .
Le sous-espace vectoriel F est donc fermé puisqu’il contient les limites de ses suites convergentes.
�
18.2.5.3 Distance à un fermé en dimension finie

Exemple Soit F une partie fermée non vide d’un K-espace vectoriel de dimension finie et x un vecteur
de E.
Montrons qu’il existe y ∈ F tel que d(x, F ) = ‖y − x‖.
Par définition

d(x, F ) = inf
y∈F
‖y − x‖

Pour tout n ∈ N, il existe yn ∈ F tel que

d(x, F ) 6 ‖yn − x‖ < d(x, F ) +
1

n+ 1
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En faisant varier n, cela définit une suite (yn) ∈ FN telle que ‖yn − x‖ → d(x, F ).
Puisque ‖yn‖ 6 ‖x‖+ ‖yn − x‖, la suite (yn) est bornée. Il existe donc une suite extraite (yϕ(n))
convergente de limite y.
Puisque (yϕ(n)) est une suite d’éléments du fermé F , on a y ∈ F .
Puisque yϕ(n) → y et

∥∥yϕ(n) − x
∥∥→ d(x, F ) on a aussi ‖y − x‖ = d(x, F ).

18.3 Continuité et compacité

18.3.1 Image continue d’un compact

Théorème
L’image d’une partie compacte par une application continue est une partie compacte

dém. :
Soit f : K ⊂ E → F continue avec K partie compacte.
Soit (yn) ∈ f(K)N, il existe (xn) ∈ KN telle que yn = f(xn).
La suite (xn) admet une valeur d’adhérence dans K et par continuité son image par f est valeur d’adhé-
rence de (yn) dans f(K).
�

Exemple Si A et B sont des parties compactes de E alors A+B est un compact de E.
En effet, A+B est l’image du compact A×B par l’application continue (x, y) 7→ x+ y.

Corollaire
Soit f : K ⊂ E → F .
Si K est une partie compacte et si f est continue alors f est bornée.

dém. :
Une fonction continue sur un compact à une image compacte donc bornée.
�

18.3.2 Théorème des bornes atteintes

Théorème
Toute fonction réelle définie et continue sur un compact non vide admet un minimum et un
maximum : on dit qu’elle est bornée et qu’elle atteint ses bornes.

dém. :
Soit f : K ⊂ E → R continue avec K partie compacte non vide de E.
f(K) est un compact non vide de R donc m = inf f(K) et M = sup f(K) existent.
Pour tout n ∈ N, M − 1/(n+ 1) < M donc il existe xn ∈ K tel que

M − 1

n+ 1
< f(xn) 6M

En faisant varier n, cela détermine une suite (xn) ∈ KN telle que f(xn)→M .
Puisque la partie K est compacte, il existe ϕ extractrice telle que xϕ(n) → a ∈ K.
Par continuité de f en a, on a f(xϕ(n))→ f(a) et par extraction f(xϕ(n))→M donc M = f(a).
�
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Exemple Soit K un compact non vide et x ∈ E.
On pose

d(x,K) = inf
y∈K
‖y − x‖

Montrons qu’il existe y0 ∈ K tel que d(x,K) = ‖y0 − x‖.
La fonction y 7→ ‖y − x‖ est continue sur le compact K, elle y admet donc un minimum et par
conséquent, il existe y0 ∈ K tel que

inf
y∈K
‖y − x‖ = min

y∈K
‖y − x‖ = ‖y0 − x‖

18.3.3 Uniforme continuité

Définition
Une application f : X ⊂ E → F est dite uniformément continue si

∀ε > 0,∃α > 0,∀x, y ∈ X, ‖y − x‖E 6 α⇒ ‖f(y)− f(x)‖F 6 ε

Remarque f : X ⊂ E → F continue signifie

∀x ∈ X,∀ε > 0,∃α > 0,∀y ∈ X, ‖y − x‖ 6 α⇒ ‖f(y)− f(x)‖ 6 ε

Pour l’uniforme continuité, on exige que le paramètre α soit indépendant de x.

Proposition
Toute fonction uniformément continue est continue.

dém. :
Qui peut le plus, peut le moins.
�

Proposition
Toute fonction lipschitzienne est uniformément continue.

dém. :
Supposons f : X ⊂ E → F lipschitzienne. Il existe k ∈ R+ tel que

∀x, y ∈ X, ‖f(y)− f(x)‖ 6 k ‖y − x‖

Sans perte de généralité, on peut suppose k > 0.
Soit ε > 0. Pour α = ε/k > 0, on a

∀x, y ∈ X, ‖y − x‖ 6 α⇒ ‖f(y)− f(x)‖ 6 ε

�
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18.3.4 Théorème de Heine

Théorème
Soit f : K ⊂ E → F .
Si K est une partie compacte et si f est continue alors f est uniformément continue.

dém. :
Par l’absurde, supposons que f non uniformément continue.
Il existe ε > 0 tel que

∀α > 0,∃x, y ∈ X, ‖y − x‖ 6 α et ‖f(y)− f(x)‖ > ε

Soit n ∈ N. Pour α =
1

n+ 1
> 0, il existe xn, yn ∈ K vérifiant

‖yn − xn‖ 6
1

n+ 1
et ‖f(yn)− f(xn)‖ > ε

En faisant varier n, cela détermine deux suites (xn) et (yn) d’éléments de K telles que ‖yn − xn‖ → 0
et ‖f(yn)− f(xn)‖ > ε. Puisque la suite (xn) évolue dans le compactK, il existe une extractrice ϕ telle
que xϕ(n) → x avec x ∈ K. Puisque

∥∥yϕ(n) − xϕ(n)

∥∥ → 0, on a aussi yϕ(n) → x. Or f est continue
donc f(xn)→ f(x) et f(yn)→ f(x). En passant à la limite la relation ‖f(yn)− f(xn)‖ > ε, on obtient
alors une absurdité.
�

Corollaire
Toute fonction continue de [a, b] vers F est uniformément continue.

dém. :
Car [a, b] est une partie compacte.
�

18.3.5 Musculation

Exemple Soit f : [0,+∞[→ R continue. On suppose que f −−→
+∞

`, montrons que f est uniformément

continue.Soit ε > 0. Il existe A ∈ R+ tel que

∀x > A, |f(x)− `| 6 ε/2

et alors
∀x, y ∈ [A,+∞[ , |f(y)− f(x)| 6 ε (*)

De plus, f est continue sur [0, A] donc uniformément continue et il existe α > 0 tel que

∀x, y ∈ [0, A] , |y − x| 6 α⇒ |f(y)− f(x)| 6 ε(**)

Soit x, y ∈ R+ avec |y − x| 6 α. On peut supposer x 6 y.
Si x, y ∈ [0, A], on a |f(y)− f(x)| 6 ε en vertu de (**)
Si x, y ∈ [A,+∞[, on a à nouveau |f(y)− f(x)| 6 ε cette fois-ci en vertu de (*).
Si x ∈ [0, A] et y ∈ [A,+∞[, on a nécessairement |x−A| 6 α. (*) et (**) donnent alors

|f(x)− f(y)| 6 |f(x)− f(A)|+ |f(A)− f(y)| 6 2ε

Quitte à adapter le ε de départ, on obtient ce que l’on veut.
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Chapitre 19

Dérivation et intégration d’une
fonction vectorielle

K désigne R ou C et E,F,G, . . . désignent des K-espaces vectoriels de dimensions finies.
I désigne un intervalle de R d’intérieur non vide.
On étudie ici des fonctions d’une variable réelle à valeurs dans un espace de dimension finie

t 7→ z(t) ∈ C, t 7→ (x(t), y(t), . . .) ∈ Rn, t 7→
(
a(t) b(t)
c(t) d(t)

)
∈M2(R),. . .

19.1 Dérivation

19.1.1 Vecteur dérivé

Définition
On dit que f : I → E est dérivable en a ∈ I si le taux d’accroissement

1

h
(f(a+ h)− f(a))

converge quand h→ 0 (avec h 6= 0)
Sa limite est alors appelée vecteur dérivé de f en a, on la note f ′(a).

Théorème
Soit f : I → E et a élément de I . On a équivalence entre :
(i) f : I → E est dérivable en a ;
(ii) il existe ` ∈ E tel que

f(t) = f(a) + (t− a).`+ (t− a)ε(t) avec ε(t) −−−→
t→a

0E

De plus, on a alors ` = f ′(a).
L’égalité asymptotique écrite dans (ii) s’appelle un développement limité à l’ordre 1 de f en a.

dém. :
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(i)⇒ (ii) Si f est dérivable en a on peut écrire, pour t 6= a

1

t− a
(f(t)− f(a)) = f ′(a) + ε(t)

Avec ε(t) −−−→
t→a

0. On alors

f(t)− f(a) = (t− a).f ′(a) + (t− a)ε(t)

et cette relation vaut aussi pour t = a en posant ε(a) = 0E . On obtient donc

f(t)− f(a) =
t→a

(t− a).f ′(a) + o(t− a)

(ii)⇒ (i) Si f(t) =
t→a

f(a) + (t− a).`+ (t− a)ε(t) avec ε(t) −−−→
t→a

0E alors

1

h
(f(a+ h)− f(a)) =

1

h
(h.`+ hε(a+ h)) −−−→

h→0
`

�

Remarque On écrit alors
f(t) =

t→a
f(a) + (t− a).`+ o ((t− a))

en introduisant le concept de fonction négligeable comme cela a été fait pour les fonctions réelles ou
complexes.

Corollaire
Si f est dérivable en a alors f est aussi continue en a.

Remarque Si t 7→ f(t) est le paramétrage d’un mobile alors f ′(a) est le vecteur vitesse du mobile à
l’instant t = a.

19.1.2 Dérivabilité à droite et à gauche

Définition
Soit f : I → E et a ∈ I qui n’est pas extrémité droite de I . On dit que f est dérivable à droite
en a si le taux d’accroissement

1

h
(f(a+ h)− f(a))

converge quand h → 0+. Sa limite est appelée vecteur dérivé à droite de f en a. On le
note f ′d(a).
De façon analogue, on définit f ′g(a) vecteur dérivé à gauche de f en a.

Proposition
Soit f : I → E et a élément intérieur à I . On a équivalence entre :
(i) f est dérivable en a ;
(ii) f est dérivable à droite et à gauche en a avec f ′d(a) = f ′g(a).
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19.1.3 Fonction dérivable

Définition
Une fonction f : I → E est dite dérivable si elle l’est en tout point de I .
On peut alors introduire l’application

f ′ :

{
I → E

t ∈ I 7→ f ′(t)

appelée fonction dérivée de f .

Proposition
Les fonctions dérivables de I vers E sont continues.

dém. :
Si f : I → E est dérivable alors f est continue en tout a ∈ I .
�

Théorème
Soit f : I → E de fonctions coordonnées f1, . . . , fp dans une base e = (e1, . . . , ep) de E.
On a équivalence entre :
(i) f est dérivable ;
(ii) f1, . . . , fp sont dérivables.
De plus, si tel est le cas

∀t ∈ I, f ′(t) =

p∑
j=1

f ′j(t).ej

dém. :
On a

1

h
(f(a+ h)− f(a)) =

p∑
j=1

1

h
(fj(a+ h)− fj(a)) .ej

La convergence de la fonction vectorielle en premier membre équivaut à la convergence des fonctions
coordonnées mises en exergue dans le second membre.
�

Exemple z : I → C est dérivable si, et seulement si, Re(z) et Im(z) le sont. On a alors

z′(t) = (Rez)′(t) + i(Imz)′(t)

Exemple x : I → Rp définie par x(t) = (x1(t), . . . , xp(t)) est dérivable si, et seulement si, x1, . . . , xp
le sont. On a alors

x′(t) = (x′1(t), . . . , x′p(t))

Exemple A : I →Mn,p(K) est dérivable si, et seulement si, les fonctions coefficients t 7→ ai,j(t) le
sont. On a alors

A′(t) =

 a′1,1(t) · · · a′1,p(t)
...

...
a′n,1(t) · · · a′n,p(t)


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19.1.4 Opérations sur les fonctions dérivables

Théorème
Soit f, g : I → E et λ ∈ K.
Si f et g sont dérivables alors λf et f + g le sont aussi avec

(λf)′ = λf ′, (f + g)′ = f ′ + g′

dém. :
Par opérations sur les limites ou par les fonctions coordonnées dans une base de E.
�

Corollaire
L’ensemble D(I, E) des fonctions de I vers E dérivables est un sous-espace vectoriel de
F(I, E) et l’application f 7→ f ′ y est linéaire.

Théorème
Soit ϕ : J → I et f : I → E.
Si f et ϕ sont dérivables alors f ◦ ϕ l’est aussi

(f ◦ ϕ)
′

= ϕ′.f ′ ◦ ϕ

dém. :
Immédiat par les fonctions coordonnées dans une base de E.
�

Théorème
Soit f : I → E et L ∈ L(E,F ).
Si f est dérivable alors L(f) : t 7→ L(f(t)) est dérivable et

[L(f)]
′

= L(f ′)

dém. :
Soit a ∈ I . Pour h 6= 0

1

h
(L(f(a+ h))− L(f(a))) = L

(
1

h
(f(a+ h)− f(a))

)
−−−→
h→0

L(f ′(a))

car L est continue puisque linéaire au départ d’un espace vectoriel de dimension finie.
�

Attention : Ici écrire la formule (L(f))′ = f ′ × L′(f) n’a pas de sens car L′ n’en a pas.

Exemple Si A : I →Mn(K) est dérivable alors t 7→ tr(A(t)) est dérivable et

d

dt
(tr(A(t))) = tr(A′(t))
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Théorème
Soit f : I → E, g : I → F et B : E × F → G bilinéaire.
Si f et g sont dérivables alors B(f, g) : t 7→ B(f(t), g(t)) est dérivable et

B(f, g)′ = B(f ′, g) +B(f, g′)

dém. :
Soit a ∈ I . Pour h 6= 0, on peut écrire

1

h
(B (f(a+ h), g(a+ h))−B (f(a), g(a)))

= B

(
1

h
(f(a+ h)− f(a)) , g(a+ h)

)
+B

(
f(a),

1

h
(g(a+ h)− g(a))

)
Par continuité de l’application bilinéaire B,

1

h
(B (f(a+ h), g(a+ h))−B (f(a), g(a))) −−−→

h→0
B (f ′(a), g(a)) +B (f(a), g′(a))

�

Corollaire
Si α : I → K et f : I → E sont dérivables alors α.f aussi et

(α.f)′ = α′.f + α.f ′

dém. :
L’application produit extérieur . : K× E → E est bilinéaire.
�

Corollaire
On suppose que E est une algèbre.
Si f, g : I → E sont dérivables alors fg l’est aussi

(fg)′ = f ′g + fg′

En particulier, D(I, E) est une sous-algèbre de F(I, E).

dém. :
L’application produit E × E → E est bilinéaire.
�

Corollaire
On suppose E euclidien de produit scalaire (. | .).
Si f, g sont dérivables alors (f | g) : t 7→ (f(t) | g(t)) est dérivable et

(f | g)′ = (f ′ | g) + (f | g′)

dém. :
(. | .) est une application bilinéaire.
�
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Théorème
Soit f1 : I → E1, . . . , fp : I → Ep et m : E1 × E2 × · · · × Ep → F multilinéaire.
Si f1, . . . , fp sont dérivables alors m(f1, . . . , fp) : t 7→ m(f1(t), . . . , fp(t)) est dérivable et

m(f1, . . . , fp)
′ =

p∑
j=1

m(f1, . . . , f
′
j , . . . , fp)

Exemple Si u, v, w : I → R sont dérivables alors uvw aussi et

(uvw)′ = u′vw + uv′w + uvw′

Plus généralement, on a pour f1, . . . , fp : I → R dérivables, la relation

(f1 . . . fp)
′

=

p∑
i=1

f1 . . . (fi)
′ . . . fp

Exemple Soit A : t 7→ A(t) une fonction dérivable de I versMn(K).
La fonction t 7→ detA(t) est dérivable car

detA(t) =
∑
σ∈Sn

ε(σ)

n∏
i=1

aσ(i),i(t)

Exprimons la dérivée de t 7→ detA(t).
Notons C1(t), . . . , Cn(t) les colonnes de A(t) et E = (E1, . . . , En) la base canonique deMn,1(K).
Les fonctions C1, . . . , Cn sont dérivables et puisque

det(A(t)) = detE (C1(t), . . . , Cn(t))

avec detE application multilinéaire, on a

d

dt
(detA(t)) =

n∑
i=1

detE (C1(t), . . . , C ′i(t), . . . , Cn(t))

Exemple
d

dt

∣∣∣∣ a(t) b(t)
c(t) d(t)

∣∣∣∣ =

∣∣∣∣ a′(t) b(t)
c′(t) d(t)

∣∣∣∣+

∣∣∣∣ a(t) b′(t)
c(t) d′(t)

∣∣∣∣

Remarque On pourrait aussi raisonner par ligne plutôt que par colonne.
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19.1.5 Dérivées d’ordres supérieurs

Définition
Soit f : I → E.
On pose f (0) = f appelée dérivée d’ordre 0 de f .

Pour n ∈ N, si f (n) existe et est dérivable, on pose f (n+1) =
(
f (n)

)′
appelée dérivée d’ordre

n+ 1 de f .
On dit que f : I → E est n fois dérivable si f (n) existe.

Théorème
Soit f : I → E de fonctions coordonnées f1, . . . , fp dans une base e = (e1, . . . , ep) de E.
On a équivalence entre :
(i) f est n fois dérivable ;
(ii) f1, . . . , fp sont n fois dérivables.
De plus, si tel est le cas :

∀t ∈ I , f (n)(t) = f
(n)
1 (t).e1 + · · ·+ f (n)

p (t).ep

dém. :
Par récurrence sur n ∈ N.
�

Théorème
Soit f, g : I → E et λ ∈ K.
Si f et g sont n fois dérivables alors λf et f + g le sont aussi et

(λf)(n) = λf (n) et (f + g)(n) = f (n) + g(n)

dém. :
Par récurrence sur n ∈ N.
�

Corollaire
L’ensemble Dn(I, E) des fonctions n fois dérivables de I vers E est un sous-espace vectoriel
de F(I, E).

Théorème
Soit f : I → E et L ∈ L(E,F ).
Si f est n fois dérivable alors L(f) aussi et

(L(f))(n) = L(f (n))

dém. :
Par récurrence sur n ∈ N.
�
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Théorème
Soit B : E × F → G une application bilinéaire.
Si f : I → E et g : I → F sont n fois dérivables alors B(f, g) l’est aussi et

B(f, g)(n) =

n∑
k=0

(
n

k

)
B
(
f (n−k), g(k)

)

dém. :
Par récurrence sur n ∈ N.
Pour n = 0 : ok.
Supposons la propriété vraie au rang n > 0.
Soit f : I → E et g : I → F des fonctions n+ 1 fois dérivables.
Par hypothèse de récurrence B(f, g) est n fois dérivable et

B(f, g)(n) =

n∑
k=0

(
n

k

)
B
(
f (n−k), g(k)

)
Or pour tout k ∈ {0, . . . , n}, f (n−k) et g(k) sont dérivables donc B

(
f (n−k), g(k)

)
aussi.

Par suite, B(f, g) est n+ 1 fois dérivable et

B(f, g)(n+1) =

n∑
k=0

(
n

k

)[
B
(
f (n+1−k), g(k)

)
+B

(
f (n−k), g(k+1)

)]
En séparant les deux sommes et par décalage d’indice

B(f, g)(n+1) =

n∑
k=0

(
n

k

)
B
(
f (n+1−k), g(k)

)
+

n+1∑
k=1

(
n

k − 1

)
B
(
f (n+1−k), g(k)

)
En adjoignant des termes nuls à chaque somme

B(f, g)(n+1) =

n+1∑
k=0

(
n

k

)
B
(
f (n+1−k), g(k)

)
+

n+1∑
k=0

(
n

k − 1

)
B
(
f (n+1−k), g(k)

)
En réunissant les deux sommes et par la formule du triangle de Pascal

B(f, g)(n+1) =

n+1∑
k=0

(
n+ 1

k

)
B
(
f (n+1−k), g(k)

)
Récurrence établie.
�

Corollaire
Si α : I → K et f : I → E sont n fois dérivables alors α.f aussi.

Corollaire
On suppose que E est une algèbre.
Si f, g : I → E sont n fois dérivables alors fg aussi.
En particulier, Dn(I, E) est une sous-algèbre de C(I, E)

http://mp.cpgedupuydelome.fr 446 cbna



CHAPITRE 19. DÉRIVATION ET INTÉGRATION D’UNE FONCTION VECTORIELLE

Corollaire
Soit E un espace euclidien
Si f, g : I → E sont n fois dérivables alors (f | g) aussi.

Exemple Soit f : I → E une fonction n+ 1 fois dérivable.

(t.f(t))(n+1) = t.f (n+1)(t) + (n+ 1)f (n)(t)

19.1.6 Classe d’une fonction

Définition
Une fonction f : I → E est dite de classe Cn si f est n fois dérivable et si f (n) est continue.
Une fonction f : I → E est dite de classe C∞ si elle est de classe Cn pour tout n ∈ N.

Les théorèmes présentés ci-dessus se transposent aux fonctions de classe Cn avec n ∈ N ∪ {∞}. On en
déduit :
Proposition

Pour n ∈ N ∪ {∞}, f : I → E est de classe Cn si, et seulement si, ses fonctions coordonnées
dans une base de E le sont.

Théorème
Pour n ∈ N ∪ {∞}, l’ensemble Cn(I, E) des fonctions de classe Cn de I vers E est un sous-
espace vectoriel (voire une sous-algèbre) de F(I, E).

19.2 Intégration sur un segment

19.2.1 Fonctions continues par morceaux

Soit e = (e1, . . . , ep) une base de l’espace E.

Définition
Une fonction f : I → E est dite continue par morceaux si ses fonctions coordonnées dans la
base e le sont.

Proposition
La notion ne dépend pas du choix de la base e de E.

dém. :
Si ẽ = (ẽ1, . . . , ẽp) désigne une autre base de E et si P est la matrice de passage de e à ẽ, la formule de
changement de base

X = PX̃ et X̃ = P−1X

montre que les fonctions coordonnées f̃1, . . . , f̃p de f dans ẽ sont combinaisons linéaires des fonctions
coordonnées de f dans e. Si ces dernières sont continues par morceaux, ces premières aussi.
�

Théorème
L’ensemble C0

pm(I, E) des fonctions continues par morceaux de I dans E est un sous-espace
vectoriel de l’espace F(I, E).

http://mp.cpgedupuydelome.fr 447 cbna



19.2. INTÉGRATION SUR UN SEGMENT

dém. :
Par opérations sur les fonctions coordonnées.
�

19.2.2 Intégration entre deux bornes

Soit e = (e1, . . . , ep) une base de l’espace E.

Définition
Soit f : I → E une fonction continue par morceaux de fonctions coordonnées f1, . . . , fp dans
la base e.
Pour tout a, b ∈ I , on appelle intégrale de f de a à b le vecteur∫ b

a

f(t) dt=
déf

p∑
j=1

∫ b

a

fj(t) dt.ej

Cette intégrale peut aussi être notée
∫ b

a

f ou
∫

[a,b]

f lorsque a 6 b.

Proposition
La valeur de l’intégrale ici définie ne dépend pas du choix de la base e de E.

dém. :
Considérons ẽ = (ẽ1, . . . , ẽp) une autre base de E et introduisons P = (pi,j) la matrice de passage de e
à ẽ. On a

ẽj =

p∑
i=1

pi,jei et f(t) =

p∑
j=1

fj(t).ej =

p∑
j=1

f̃j(t).ẽj

et donc

p∑
j=1

∫ b

a

f̃j(t) dt.ẽj =

p∑
j=1

p∑
i=1

pi,j

∫ b

a

f̃j(t) dt.ei =

p∑
i=1

∫ b

a

p∑
i=1

pi,j f̃j(t) dt.ei =

p∑
i=1

∫ b

a

fi(t) dt.ei

�

19.2.3 Opérations

Théorème
Soit f, g : I → E continues par morceaux, λ, µ ∈ K et a, b ∈ I∫ b

a

λf + µg = λ

∫ b

a

f + µ

∫ b

a

g

dém. :
Via les fonctions coordonnées dans une base de E.
�
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Théorème
Soit f : I → E continue par morceaux.

∀a, b, c ∈ I ,
∫ b

a

f =

∫ c

a

f +

∫ b

c

f

dém. :
Via les fonctions coordonnées dans une base de E.
�

19.2.4 Sommes de Riemann

Théorème
Si f : [a, b]→ E est continue par morceaux alors

b− a
n

n−1∑
k=0

f

(
a+ k

b− a
n

)
−−−−−→
n→+∞

∫ b

a

f(t) dt

dém. :
Via les fonctions coordonnées dans une base de E.
�

Remarque On a aussi
b− a
n

n∑
k=1

f

(
a+ k

b− a
n

)
−−−−−→
n→+∞

∫ b

a

f(t) dt

Corollaire
En particulier, pour f : [0, 1]→ E continue par morceaux

1

n

n−1∑
k=0

f

(
k

n

)
et

1

n

n∑
k=1

f

(
k

n

)
tendent vers

∫ 1

0

f(t) dt

19.2.5 Inégalité triangulaire

Théorème
Soit f : [a, b]→ E continue par morceaux et ‖ . ‖ une norme sur E.∥∥∥∥∥

∫
[a,b]

f

∥∥∥∥∥ 6
∫

[a,b]

‖f‖

dém. :
D’une part

b− a
n

n−1∑
k=0

f

(
a+ k

b− a
n

)
−−−−−→
n→+∞

∫ b

a

f(t) dt

http://mp.cpgedupuydelome.fr 449 cbna



19.3. INTÉGRALES ET PRIMITIVES

et d’autre part
b− a
n

n−1∑
k=0

∥∥∥∥f (a+ k
b− a
n

)∥∥∥∥ −−−−−→n→+∞

∫ b

a

‖f(t)‖ dt

Or par inégalité triangulaire∥∥∥∥∥b− an
n−1∑
k=0

f

(
a+ k

b− a
n

)∥∥∥∥∥ 6 b− a
n

n−1∑
k=0

∥∥∥∥f (a+ k
b− a
n

)∥∥∥∥
On conclut par passage à la limite.
�

19.3 Intégrales et primitives

19.3.1 Primitive

Définition
On appelle primitive de f : I → E, s’il en existe, toute fonction F : I → E dérivable vérifiant
F ′ = f .

Remarque Les primitives de f peuvent se calculer à partir des fonctions coordonnées de f .

Théorème
Si f : I → E admet des primitives, celles-ci se déduisent les unes des autres par addition d’une
constante vectorielle.

dém. :
Si F est primitive de f alors F + C aussi car (F + C)′ = F ′ = f .
Si F et G sont deux primitives de f alors (F − G)′ = 0 et donc F − G est constante (car ses fonctions
coordonnées le sont).
�

19.3.2 Intégrale fonction de sa borne supérieure

Théorème
Soit f : I → E et a ∈ I . Si f est continue alors f possède une unique primitive s’annulant en
a, c’est la fonction

F : x 7→
∫ x

a

f(t) dt

dém. :

La fonction F : x 7→
∫ x

a

f(t) dt est définie de I vers E et s’annule en a.

Soit x ∈ I . Montrons
1

h
(F (x+ h)− F (x)) −−−→

h→0
f(x)

Soit h > 0.∥∥∥∥ 1

h
(F (x+ h)− F (x))− f(x)

∥∥∥∥ =
1

h

∥∥∥∥∥
∫ x+h

x

f(t)− f(x) dt

∥∥∥∥∥ 6 1

h

∫ x+h

x

‖f(t)− f(x)‖ dt
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Puisque f est continue en x, pour ε > 0, il existe α > 0 tel que

∀t ∈ I, |t− x| 6 α⇒ ‖f(t)− f(x)‖ 6 ε

et alors
0 < h 6 α⇒ t ∈ [x, x+ h] , ‖f(t)− f(x)‖ 6 ε

et donc

0 < h 6 α⇒
∥∥∥∥ 1

h
(F (x+ h)− F (x))− f(x)

∥∥∥∥ 6 ε
Ainsi

1

h
(F (x+ h)− F (x)) −−−−→

h→0+
f(x)

De même on montre
1

h
(F (x+ h)− F (x)) −−−−→

h→0−
f(x)

�

Remarque On retient la formule
d

dx

(∫ x

a

f(t) dt

)
= f(x)

Corollaire
Si f : I → E est continue de primitive F alors

∀a, b ∈ I,
∫ b

a

f(t) dt = [F (t)]
b
a

dém. :
Pour tout x ∈ I , on a ∫ x

a

f(t) dt = F (x)− F (a)

car x 7→
∫ x

a

f(t) dt et F sont primitives de f . En particularisant en x = b, on obtient la relation voulue.

�

19.3.3 Changement de variable et intégration par parties

Théorème
Soit ϕ : I → J de classe C1 et f : J → E continue.

∀a, b ∈ I ,
∫ b

a

ϕ′(t).f(ϕ(t)) dt =

∫ ϕ(b)

ϕ(a)

f(s) ds

La manipulation consistant à transformer une intégrale en l’autre est appelée changement de
variable définie par la relation s = ϕ(t).
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dém. :
Soit F une primitive de la fonction continue f .∫ ϕ(b)

ϕ(a)

f(s) ds = [F (s)]
ϕ(b)
ϕ(a)

On vérifie par les fonctions coordonnées que F ◦ ϕ est primitive de la fonction continue ϕ′.f ◦ ϕ et donc∫ b

a

f(ϕ(t))ϕ′(t) dt = [F (ϕ(t))]
b
a

�

Théorème
Soit B : E × F → G bilinéaire, u : I → E et v : I → F de classe C1.

∀a, b ∈ I ,
∫ b

a

B(u′, v) = [B(u, v)]
b
a −

∫ b

a

B(u, v′)

dém. :
Puisque la dérivée de B(u, v) est B(u′, v) +B(u, v′)∫ b

a

B(u′, v) +

∫ b

a

B(u, v′) =

∫ b

a

(B(u, v))
′

= [B(u, v)]
b
a

�

19.3.4 Inégalité des accroissements finis

Théorème
Soit f : I → E de classe C1. S’il existe M ∈ R+ vérifiant

∀t ∈ I, ‖f ′(t)‖ 6M

alors
∀a, b ∈ I , ‖f(b)− f(a)‖ 6M |b− a|

En d’autres termes, la fonction f est lipschitzienne.

dém. :
Puisque f est de classe C1, on peut écrire

∀x ∈ I, f(x) = f(a) +

∫ x

a

f ′(t) dt

Cas a 6 b

‖f(b)− f(a)‖ =

∥∥∥∥∥
∫

[a,b]

f ′(t) dt

∥∥∥∥∥ 6
∫

[a,b]

‖f ′(t)‖ dt

et donc
‖f(b)− f(a)‖ 6

∫
[a,b]

M dt = M(b− a)
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Cas a > b : analogue.
�

19.3.5 Formules de Taylor
19.3.5.1 Formule de Taylor avec reste intégral

Théorème
Soit f : I → E et a ∈ I . Si f est de classe Cn+1

∀x ∈ I, f(x) =

n∑
k=0

(x− a)k

k!
f (k)(a) +

∫ x

a

(x− t)n

n!
f (n+1)(t) dt

dém. :
Par récurrence en exploitant l’intégration par parties∫ x

a

(x− t)n

n!
f (n+1)(t) dt =

[
− (x− t)n+1

(n+ 1)!
f (n+1)(t)

]x
a

+

∫ x

a

(x− t)n+1

(n+ 1)!
f (n+2)(t) dt

�

Remarque Cette formule constitue une généralisation de l’identité

f(x) = f(a) +

∫ x

a

f ′(t) dt

Remarque Par le changement de variable affine t = a+ (x− a)u, on peut réécrire le reste intégrale∫ x

a

(x− t)n

n!
f (n+1)(t) dt = (x− a)n+1

∫ 1

0

(1− u)n

n!
f (n+1)(a+ (x− a)u) du

Cette nouvelle écriture permet de mieux appréhender l’ordre de grandeur du reste.

19.3.5.2 Inégalité de Taylor-Lagrange

Théorème
Soit f : I → E et a ∈ I . Si f est de classe Cn+1 et si f (n+1) bornée alors

∀x ∈ I ,

∥∥∥∥∥f(x)−
n∑
k=0

(x− a)k

k!
f (k)(a)

∥∥∥∥∥ 6 |x− a|n+1

(n+ 1)!
sup
t∈I

∥∥∥f (n+1)(t)
∥∥∥

dém. :
On a ∥∥∥∥∫ 1

0

(1− u)n

n!
f (n+1)(a+ (x− a)u) du

∥∥∥∥ 6 1

n!

∫ 1

0

(1− u)n
∥∥∥f (n+1)

∥∥∥
∞

du =

∥∥f (n+1)
∥∥
∞

(n+ 1)!

�

Remarque Ce résultat constitue une généralisation de l’inégalité des accroissements finis.
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19.3.5.3 Formule de Taylor-Young

Théorème
Soit f : I → E et a ∈ I . Si f est de classe Cn

f(x) =

n∑
k=0

(x− a)k

k!
.f (k)(a) + (x− a)

n
ε(x) avec ε(x) −−−→

x→a
0E

Cette relation est appelée développement limité de f à l’ordre n en a.

dém. :
Puisque que f est classe Cn

∀x ∈ I, f(x) =

n−1∑
k=0

(x− a)k

k!
f (k)(a) +

∫ x

a

(x− t)n−1

(n− 1)!
f (n)(t) dt

Puisque f (n) est continue en a, on peut écrire

f (n)(t) = f (n)(a) + ϕ(t) avec ϕ −→
a

0

et alors ∫ x

a

(x− t)n−1

(n− 1)!
f (n)(t) dt =

(x− a)n

n!
f (n)(a) +

∫ x

a

(x− t)n−1

(n− 1)!
ϕ(t) dt

Soit ε > 0. Il existe α > 0 tel que
|t− a| 6 α⇒ ‖ϕ(t)‖ 6 ε

et alors pour |x− a| 6 α, ∥∥∥∥∫ x

a

(x− t)n−1

(n− 1)!
ϕ(t) dt

∥∥∥∥ 6 ε |x− a|nn!

On peut alors écrire ∫ x

a

(x− t)n−1

(n− 1)!
ϕ(t) dt = (x− a)nε(x) avec ε(x) −−−→

x→a
0E

�

Remarque En introduisant le concept de fonction négligeable, on peut aussi écrire

f(x) =
x→a

n∑
k=0

(x− a)k

k!
.f (k)(a) + o ((x− a)n)

Remarque La formule de Taylor-Young est locale : elle ne donne qu’une information sur le
comportement asymptotique de f au voisinage de a. La formule de Taylor avec reste intégrale est quant
à elle globale, elle fournit une information sur le comportement de la fonction sur l’intervalle I en entier.
Il en est de même pour l’inégalité de Taylor-Lagrange.
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19.4 Arcs paramétrés

19.4.1 Définition

Définition
On appelle arc paramétré de classe Ck (avec k ∈ N? ∪{∞} ) de E tout couple (I, f) constitué
d’un intervalle I de R et d’une fonction vectorielle f : I → E de classe Ck.
On s’intéresse alors à l’ensemble de point

Γ = {f(t)/t ∈ I}

appelé support de l’arc (I, f) (et l’on parle aussi de courbe paramétrée).
On dit aussi que la fonction f définit un paramétrage de la courbe Γ.

Remarque La valeur f(t) permet de désigner un point de la courbe Γ, on dit que c’est le point de
paramètre t.

Exemple Soit a ∈ E et u 6= 0E
L’application t 7→ a+ t.u définit un paramétrage de la droite affine a+ Vect(u).

Exemple Considérons E = C.
La fonction f : t ∈ [0, 2π] 7→ eit définit un paramétrage de U = {z ∈ C/ |z| = 1}.

Remarque Il est fréquent de confondre l’arc paramétré et le support qu’il définit. C’est cependant
maladroit car un arc paramétré détermine aussi une dynamique de parcours sur ce support.

19.4.2 Paramétrage dans le plan géométrique.

En munissant le plan géométrique d’un repère orthonorméR = (O;~i,~j), on peut identifier le plan et R2.
Un arc paramétré donné par f : I → R2 détermine alors à une courbe du plan.
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Définition
Soit x, y : I → R au moins de classe C1.
On appelle arc du plan défini par le système{

x = x(t)

y = y(t)
avec t ∈ I

l’arc paramétré déterminé par l’application

f : t 7→ (x(t), y(t))

Exemple Soit A(x0, y0) un point et ~u(a, b) un vecteur non nul

{
x = x0 + t.a

y = y0 + t.b
avec t ∈ R

définit un paramétrage de la droite passant par A et dirigée par ~u.

Exemple Soit Ω(a, b) un point et R > 0

{
x = x0 +R cos(t)

y = y0 +R sin(t)
avec t ∈ [0, 2π]

définit un paramétrage du cercle de centre Ω et de rayon R.

19.4.3 Tangente en un point

Soit (I, f) un arc paramétré de classe au moins C1 et t0 ∈ I .
On suppose qu’au voisinage de t0,

f(t) = f(t0)⇒ t = t0

ce qui signifie que la courbe ne se recoupe pas infiniment sur elle-même en t0. . .
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Définition
On dit que l’arc (I, f) admet une demi-tangente à droite en t0 si le vecteur unitaire

f(t)− f(t0)

‖f(t)− f(t0)‖

admet une limite en t0. On dit alors que la droite issue du point f(t0) dirigée par ce vecteur est
la demi-tangente à droite en t0.
Mutatis mutandis, on définit la demi-tangente à gauche en t0.
Enfin, si les deux droites demi-tangentes sont confondues, on dit que l’arc (I, f) admet une
tangente en t0 qui est cette droite commune.

Remarque Pour qu’il y ait tangente en t0, il faut et il suffit que les vecteurs unitaires

lim
t→t+0

f(t)− f(t0)

‖f(t)− f(t0)‖
et lim

t→t−0

f(t)− f(t0)

‖f(t)− f(t0)‖

existent et soient égaux ou opposés.

19.4.4 Tangente en un point régulier
Soit (I, f) un arc paramétré de classe au moins C1 et t0 ∈ I .

Définition
On dit que le paramètre t0 est régulier lorsque f ′(t0) 6= 0E .
On dit que l’arc est régulier lorsque tous ses paramètres le sont.

Théorème
Si t0 est un paramètre régulier alors l’arc admet une tangente en f(t0) et celle-ci est dirigée
par f ′(t0).

dém. :
On peut écrire

f(t)− f(t0) = (t− t0).f ′(t0) + (t− t0) ε(t) avec ε(t) −−−→
t→t0

0E

et donc pour t 6= t0
f(t)− f(t0)

‖f(t)− f(t0)‖
=

t− t0
|t− t0|

f ′(t0) + ε(t)

‖f ′(t0) + ε(t)‖
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donc

lim
t→t+0

f(t)− f(t0)

‖f(t)− f(t0)‖
=

f ′(t0)

‖f ′(t0)‖
et lim

t→t−0

f(t)− f(t0)

‖f(t)− f(t0)‖
= − f ′(t0)

‖f ′(t0)‖

�

Remarque Si f ′(t0) = 0E et si f ′′(t0) 6= 0E , on peut encore montrer l’existence d’une tangente en
f(t0), cette fois-ci dirigée par f ′′(t0) car

f(t)− f(t0) =
1

2
(t− t0)

2
f ′′(t0) + (t− t0)2ε(t) avec ε(t) −−−→

t→t0
0E

Exemple Considérons un arc du plan donné par{
x = x(t)

y = y(t)
avec t ∈ I

Si t est un paramètre régulier de cet arc, la tangente en le point de paramètre t0 passe par le point de
coordonnées (x(t0), y(t0)) et est dirigée par le vecteur de coordonnées (x′(t0), y′(t0)). Cette tangente a
pour équation ∣∣∣∣ x− x(t0) x′(t0)

y − y(t0) y′(t0)

∣∣∣∣ = 0

c’est-à-dire
y′(t0) (x− x(t0))− x′(t0) (y − y(t0)) = 0

La droite perpendiculaire à la tangente au point de coordonnées (x(t0), y(t0)) est appelée droite normale
à l’arc. Elle a pour équation (

x− x(t0) x′(t0)
y − y(t0) y′(t0)

)
= 0

c’est à dire
x′(t0) (x− x(t0)) + y′(t0) (y − y(t0)) = 0

19.4.5 Vocabulaire cinématique

Soit f : I → E au moins de classe C2 définissant un arc paramétré.

Définition
En cinématique, les vecteurs ~v(t) = f ′(t) et ~a(t) = f ′′(t) sont appelés vecteurs vitesse et
accélération à l’instant t.

Remarque Le vecteur vitesse dirige la tangente (lorsqu’il n’est pas nul) et le vecteur accélération
oriente la concavité de la courbe. Selon que l’angle géométrique entre ~v(t) et ~a(t) est aigu ou obtus, il y
a accélération ou décélération lors du parcours de la courbe. En effet

d

dt
(v2) =

d

dt
(~v | ~v) = 2 (~a | ~v)
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19.4.6 Exemples d’arcs plans

Exemple Considérons l’arc déterminé par{
x = a cos t

y = b sin t
avec a > b > 0

Posons x(t) = a cos t et y(t) = b sin t. Les fonctions t 7→ x(t) et t 7→ y(t) sont de classe C∞ définies
sur R. La fonction de paramétrage f : R→ R2 définie par f(t) = (x(t), y(t)) est de classe C∞.{

x(t+ 2π) = x(t)

y(t+ 2π) = y(t)

donc f(t+ 2π) et f(t) sont confondus. Etude sur [−π, π].{
x(−t) = x(t)

y(−t) = −y(t)

donc f(−t) se déduit de f(t) par une symétrie d’axe (Ox). Etude sur [0, π]{
x(π − t) = −x(t)

y(π − t) = y(t)

donc f(π − t) se déduit de f(t) par une symétrie d’axe (Oy). Etude sur [0, π/2]{
x′(t) = −a sin t

y′(t) = b cos t

t 0 π/2
x′(t) 0 −
x(t) a ↘ 0
y(t) 0 ↗ b
y′(t) + 0

En t = 0, il y a une tangente verticale.
En t = π, il y a une tangente horizontale.
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Exemple Considérons l’arc déterminé par

{
x = 3t2

y = 2t3

Posons x(t) = 3t2 et y(t) = 2t3. Les fonctions t 7→ x(t) et t 7→ y(t) sont de classe C∞ définies sur R.
La fonction de paramétrage f : R→ R2 définie par f(t) = (x(t), y(t)) est de classe C∞.

{
x(−t) = x(t)

y(−t) = −y(t)

donc f(−t) se déduit de f(t) par une symétrie d’axe (Ox).
On peut limiter l’étude à [0,+∞[. {

x′(t) = 6t

y′(t) = 6t2

t 0 +∞
x′(t) 0 +
x(t) 0 ↗ +∞
y(t) 0 ↗ +∞
y′(t) 0 +

Etude en t = 0 : Le paramètre n’est pas régulier, cependant

f(t)− f(0)

‖f(t)− f(0)‖
→ (1, 0)

Il y a donc une tangente horizontale en ce point.
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Déterminons une équation de la tangente en tout point de paramètre t 6= 0.
Le point a pour coordonnées (3t2, 2t3) et la tangente est dirigée par (6t, 6t2). Elle a donc pour équation

−6t2
(
x− 3t2

)
+ 6t

(
y − 2t3

)
= 0

soit encore
tx− y = t3

Il est remarquable que cette équation est aussi valable en t = 0.

Exemple Etudions l’arc paramétré déterminé par{
x = t− sin t

y = 1− cos t

Posons x(t) = t− sin t et y(t) = 1− cos t.
Les fonctions t 7→ x(t) et t 7→ y(t) sont de classe C∞ définies sur R.
La fonction de paramétrage f : R→ R2 définie par f(t) = (x(t), y(t)) est de classe C∞.{

x(t+ 2π) = x(t) + 2π

y(t+ 2π) = y(t)

donc f(t+ 2π) se déduit de f(t) par une translation de vecteur 2π~i.
On peut limiter l’étude à [−π, π]. {

x(−t) = −x(t)

y(−t) = y(t)

donc f(−t) se déduit de f(t) par une symétrie d’axe (Oy).
On peut limiter l’étude à [0, π]. {

x′(t) = 1− cos t

y′(t) = sin t
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t 0 π
x′(t) 0 + 2
x(t) 0 ↗ π
y(t) 0 ↗ 2
y′(t) 0 + 0

Etude en t = π : Le paramètre est régulier, la tangente y est dirigée par~i.
Etude en t = 0 : Le paramètre n’est pas régulier, cependant

f(t)− f(0)

‖f(t)− f(0)‖
→ (0, 1)

La tangente y est verticale

Déterminons une équation de la tangente en tout point de paramètre t 6= 0 [2π].
Le point a pour coordonnées (t− sin t, 1− cos t) et la tangente est dirigée par (1− cos t, sin t). Elle a
donc pour équation

− sin(t) (x− (t− sin(t)) + (1− cos(t)) (y − (1− cos(t))) = 0

soit encore
− sin(t)x+ (1− cos(t))y = 2− 2 cos(t)− t sin(t)

19.4.7 Application : vecteurs tangents à une partie d’un espace normé de dimen-
sion finie

Soit a un élément d’une partie X d’un espace vectoriel réel de l’espace E.

Définition
On dit qu’un vecteur v de E est tangent à X en a, s’il existe ε > 0 et une fonction f définie
sur ]−ε, ε[ à valeurs dans X vérifiant

f(0) = a et f ′(0) = v

Lorsque le vecteur v est non nul, on dit que la droite

a+ Vectv

est tangente à X en a.

Exemple Si X correspond à un cercle, les vecteurs tangents correspondent aux vecteurs orthogonaux au
vecteur rayon.

Exemple Si X correspond à une courbe se recoupant en a, il peut y avoir deux tangentes distinctes en
ce point.
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Exemple Si X correspond à une surface de l’espace, la définition qui précède permet aussi de parler de
droite tangente à une surface.
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Chapitre 20

Suites et séries de fonctions vectorielles

Soit E et F des espaces de dimensions finies. Ces espaces E et F peuvent être normés et le choix des
normes n’a pas d’incidence sur la suite.

20.1 Modes de convergence

20.1.1 Suite de fonctions

Soit (un) suite de fonctions de X ⊂ E vers F .

Définition
On dit que (un) converge simplement vers u : X → F si

∀x ∈ X,un(x)→ u(x)

Définition
On dit que (un) converge uniformément vers u : X → F si

∀ε > 0,∃N ∈ N,∀n > N, ∀x ∈ X, ‖un(x)− u(x)‖F 6 ε

Théorème
S’il y a convergence uniforme, il y aussi convergence simple et ce vers la même limite.

Remarque Sur B(X,F ) espace des fonctions bornées de X vers F , on peut introduire la norme ‖ . ‖∞
définie par

‖f‖∞ = sup
x∈X
‖f(x)‖F

On peut alors énoncer de nouveau la convergence uniforme

un
CV U−−−→ un ⇔

{
∃N ∈ N,∀n > N, un − u bornée
‖un − u‖∞ → 0
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20.1.2 Séries de fonctions

Soit
∑

un une série de fonctions de X ⊂ E vers F i.e. une suite de fonctions (Sn) avec

Sn =

n∑
k=0

uk

On définit la convergence simple et uniforme de la série de fonction
∑

un à partir de la suite (Sn) de
ses sommes partielles.

Théorème∑
un converge simplement si, et seulement si,

∀x ∈ X,
∑

un(x) converge

La somme de la série de fonctions est alors donnée par

S(x) =

+∞∑
n=0

un

et son reste de rang n par

Rn(x) =

+∞∑
k=n+1

uk(x) = S(x)− Sn(x)

Théorème∑
un converge uniformément si, et seulement si,∑

un converge simplement et Rn
CV U−−−→ 0̃

Définition
On dit que

∑
un converge normalement si

1) chaque un est bornée ;
2) la série numérique

∑
‖un‖∞ converge

Théorème
La convergence normale entraîne la convergence uniforme.

dém. :
Si
∑

un converge normalement alors pour tout x ∈ X , la série vectorielle
∑

un(x) converge absolu-
ment car

‖un(x)‖ 6 ‖un‖∞
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et donc
∑

un converge simplement. De plus∥∥∥∥∥
+∞∑

k=n+1

uk(x)

∥∥∥∥∥ 6
+∞∑

k=n+1

‖uk(x)‖ 6
+∞∑

k=n+1

‖uk‖∞ → 0

et il y a donc convergence uniforme.
�

Remarque Les théorèmes qui suivront prolongeant ceux pour les fonctions numériques se démontrent
de la même manière en substituant ‖‖ à ||.

20.2 Limite et continuité

20.2.1 Continuité par convergence uniforme
Soit (un) une suite de fonctions de X ⊂ E vers F .

Théorème
Si
1) chaque un est continue ;
2) la suite (un) converge uniformément vers u : X → F ;
alors la fonction u est continue.

Corollaire
Si
1) chaque un est continue ;
2) la série

∑
un converge uniformément sur X ;

alors la fonction somme
+∞∑
n=0

un est continue.

Exemple Etude sur R2 de S : (x, y) 7→
+∞∑
n=1

1

(n+ x2)(n+ y2)
.

Définition :
Pour n > 1, on introduit

un : (x, y) 7→ 1

(n+ x2)(n+ y2)

Pour tout (x, y) ∈ R2,

un(x, y) ∼ 1

n2

Or
∑

1/n2 converge et 1/n2 > 0 donc la série
∑

un(x, y) converge.

On en déduit que la fonction S =

+∞∑
n=0

un est définie sur R2.

Continuité :
Les fonctions un sont continues.
Pour tout (x, y) ∈ R2,

|un(x, y)| 6 1

n2
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Or
∑

1/n2 converge donc
∑

un converge normalement sur R2.

On en déduit que S est continue sur R2.

20.2.2 Continuité par convergence uniforme locale
Si l’on parvient à justifier la convergence uniforme sur des parties suffisamment générales pour déterminer
des voisinages de tout a ∈ X , on peut affirmer à nouveau la continuité de l’objet limite.

Exemple Etude de S(x, y) =

+∞∑
n=1

cos(ny)

1 + n2x
sur D =

{
(x, y) ∈ R2/x > 0

}
.

Pour n > 1, on introduit

un(x, y) =
cos(ny)

1 + n2x

Définition :
Pour tout (x, y) ∈ D, on a

|un(x, y)| 6 1

1 + n2x
∼ 1

n2x

La série
∑

un(x, y) converge absolument et donc
∑

un converge simplement sur D.
Continuité :
Chaque fonction un est continue sur D.
Pour a > 0, considérons Da =

{
(x, y) ∈ R2/x > a

}
.

Pour (x, y) ∈ Da, on a

|un(x, y)| 6 1

n2a

Or
∑

1/n2a converge donc
∑

un converge normalement sur Da.
La fonction S est donc continue sur Da et puisque ceci vaut pour tout a > 0, elle est continue sur D.

Exemple Etude de L : z 7→
+∞∑
n=1

1

n
znsur D = {z ∈ C/ |z| < 1}.

Définition :
Pour n > 1, on introduit

un : z 7→ 1

n
zn

Pour tout z ∈ D, on a |un(z)| = o (zn). Or
∑

zn converge absolument donc
∑

un(z) converge

absolument. Ainsi
∑

un converge simplement sur D.
Continuité :
Soit r ∈ [0, 1[. Pour |z| 6 r, on a

|un(z)| 6 1

n
rn 6 rn

Or
∑

rn converge donc
∑

un converge normalement sur D(0, r).

La fonction L est définie et continue sur tous les domaines D(0, r) pour r ∈ [0, 1[ donc elle est continue
sur D.
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20.2.3 Théorème de la double limite

Soit (un) une suite de fonctions de X ⊂ E vers F et a ∈ X̄ .

Théorème
Si
1) (un) converge uniformément sur X vers une fonction u ;
2) pour tout n ∈ N, un −→

a
`n ;

Alors la suite (`n) converge et en notant ` sa limite

u(x) −−−→
x→a

`

Ainsi

lim
x→a

(
lim

n→+∞
un(x)

)
= lim
n→+∞

(
lim
x→a

un(x)
)

Corollaire
Si
1)
∑

un converge uniformément sur X ;
2) pour tout n ∈ N, un −→

a
`n ;

Alors la série
∑

`n converge et

+∞∑
n=0

un(x) −−−→
x→a

+∞∑
n=0

`n

Exemple Non convergence uniforme de la série définissant L : z 7→
+∞∑
n=1

1

n
zn sur D(0, 1).

On a 1 ∈ D(0, 1) et

un(z) =
1

n
zn −−−→

z→1

1

n

Or la série
∑ 1

n
diverge donc la série de fonction

∑
un ne converge par uniformément sur D(0, 1).

20.3 Intégration et dérivation

Désormais la variable est supposée réelle
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20.3.1 Intégration sur [a, b]

Théorème
Soit (un) une suite de fonctions de [a, b] vers F .
Si
1) chaque un est continue ;
2) (un) converge uniformément vers u : [a, b]→ F
alors la fonction u est continue et∫ b

a

un(t) dt −−−−−→
n→+∞

∫ b

a

u(t) dt

Autrement dit ∫ b

a

lim
n→+∞

un = lim
n→+∞

∫ b

a

un

Corollaire
Si
1) chaque un est continue ;
2)
∑

un converge uniformément sur [a, b]

alors la fonction
+∞∑
n=0

un est continue et

+∞∑
n=0

∫ b

a

un =

∫ b

a

+∞∑
n=0

un

20.3.2 Dérivation

I désigne un intervalle de R d’intérieur non vide

Théorème
Soit (un) une suite de fonctions de I vers F .
Si
1) chaque un est de classe C1 ;
2) (un) converge simplement vers u : I → F ;
3) (u′n) converge uniformément sur tout segment ;
alors u est de classe C1 et (

lim
n→+∞

un

)′
= lim
n→+∞

u′n
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Corollaire
Si
1) chaque un est de classe C1 ;
2)
∑

un converge simplement sur I ;

3)
∑

u′n converge uniformément sur tout segment de I ;

alors la fonction
+∞∑
n=0

un est de classe C1 sur I et

(
+∞∑
n=0

un

)′
=

+∞∑
n=0

u′n

Remarque On peut aussi énoncer un résultat pour les fonctions de classe Cn.

20.4 Exponentielles

20.4.1 Exponentielle complexe

Théorème

Pour tout z ∈ C, la série
∑
n>0

1

n!
zn est absolument convergente.

dém. :
Pour z = 0 : ok.
Pour z 6= 0, on introduit un = zn/n! 6= 0.
On a ∣∣∣∣un+1

un

∣∣∣∣ =
|z|
n+ 1

→ 0 < 1

donc, par la règle de d’Alembert,
∑
n>0

1

n!
zn est absolument convergente.

�

Définition
On pose

exp(z) =
déf

+∞∑
n=0

zn

n!

Remarque Cette définition prolonge l’exponentielle réelle car on a déjà vue

∀x ∈ R, ex =

+∞∑
n=0

1

n!
xn

Exemple exp(0) = 1 car 00 = 1.
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Proposition
∀z ∈ C, exp(z) = exp z̄.

dém. :
Par conjugaison de séries convergentes.
�

Théorème

∀z, z′ ∈ C, exp(z) exp(z′) = exp(z + z′)

dém. :

exp(z) exp(z′) =

+∞∑
n=0

zn

n!

+∞∑
n=0

z′n

n!

Par produit de Cauchy de séries absolument convergentes

exp(z) exp(z′) =
+∞∑
n=0

wn

avec

wn =

n∑
k=0

zk

k!

z′n−k

(n− k)!
=

1

n!
(z + z′)n

en vertu de la formule du binôme de Newton.
Ainsi

exp(z) exp(z′) = exp(z + z′)

�

Corollaire

∀θ ∈ R, exp(iθ) ∈ U

dém. :
Pour θ ∈ R, on a |exp(iθ)|2 = exp(iθ) exp(−iθ) = 1 donc exp(iθ) ∈ U.
�

Remarque A partir de cette définition de l’exponentielle complexe, on définit les fonctions cos et sin
par :

cos θ =
eiθ + e−iθ

2
= Re(eiθ) et sin θ =

eiθ − e−iθ

2i
= Im(eiθ)

On peut alors retrouver les propriétés usuelles de ses fonctions.
Par exemple :
? |exp(iθ)|2 = 1 donne cos2 θ + sin2 θ = 1 ;
- exp(−iθ) = exp(iθ) donne cos(−θ) = cos(θ) et sin(−θ) = − sin(θ) ;
- exp(i(a+ b)) = exp(ia) exp(ib) donne

cos(a+ b) = cos a cos b− sin a sin b et sin(a+ b) = sin(a) cos(b) + sin(b) cos(a). . .
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On peut aussi définir précisément le nombre π comme étant le double de la première annulation
strictement positive de la fonction cosinus et achever la construction de la trigonométrie. . .

20.4.2 Exponentielle d’une matrice

Théorème

Pour toute matrice A ∈Mp(K), la série
∑ 1

n!
An est absolument convergente.

dém. :
Introduisons ‖ . ‖2 surMp(K) définie par

‖A‖2 =

n∑
i,j=1

|ai,j |2

Vérifions que celle-ci est sous multiplicative i.e.

∀A,B ∈Mn(K), ‖AB‖2 6 ‖A‖2 ‖B‖2
On a

(AB)i,j =

n∑
k=1

ai,kbk,j

et par l’inégalité de Cauchy-Schwarz,

‖AB‖22 =

n∑
i,j=1

∣∣∣∣∣
n∑
k=1

ai,kbk,j

∣∣∣∣∣
2

6
n∑

i,j=1

(
n∑
k=1

|ai,k|2
n∑
k=1

|bj,k|2
)

= ‖A‖22 ‖B‖
2
2

On a alors ∥∥∥∥ 1

n!
An
∥∥∥∥

2

=
1

n!
‖An‖2 6

1

n!
‖A‖n2

Or
∑

xn/n! converge pour tout x ∈ R, donc par comparaison de série à termes positifs, la série∑ 1

n!
An converge absolument.

�

Définition
On appelle exponentielle de la matrice A ∈Mp(K) la somme

exp(A) =

+∞∑
n=0

1

n!
An

Exemple exp(Op) = Ip.

Théorème
Soit A,B ∈Mp(K).
Si AB = BA alors

exp(A+B) = exp(A) exp(B)
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dém. :
C’est la même que pour exp(z + z′) = exp(z) exp(z′) en admettant que le théorème relatif aux produits
de Cauchy de séries absolument convergentes et encore vrai surMp(K). L’hypothèse de commutation
est nécessaire à l’usage de la formule du binôme.
�

Corollaire
∀A ∈Mp(K), exp(A) est inversible et exp(A)−1 = exp(−A).

Théorème
L’application A 7→ exp(A) est continue.

dém. :
On introduit les fonctions données par un(A) = An/n! définies pour A ∈Mp(K).
Les fonctions un sont toutes continues.
Soit R ∈ R+. Pour ‖A‖ 6 R, on a

‖un(A)‖2 6
1

n!
‖A‖n2 6

1

n!
Rn

Or
∑

Rn/n! converge et donc
∑

un converge normalement sur Bf (Op, R).
On en déduit que la fonction A 7→ exp(A) est continue sur Bf (Op, R) et puisque ceci vaut pour tout
R ∈ R+, la fonction A 7→ exp(A) est continue surMp(K).
�

20.4.3 Calcul d’exponentielle de matrices
Pour A ∈Mn(K), calculons

exp(A) =

+∞∑
k=0

1

k!
Ak

20.4.3.1 Cas A est diagonale

A =

 λ1 0
. . .

0 λn

, Ak =

 λk1 0
. . .

0 λkn

 et
N∑
k=0

1

k!
Ak =



N∑
k=0

1

k!
λk1 0

. . .

0

N∑
k=0

1

k!
λkn


Ainsi

exp(A) =

 eλ1 0
. . .

0 eλn


20.4.3.2 Cas A diagonalisable

A = PDP−1 avec D diagonale. Ak = PDkP−1 et
N∑
k=0

1

k!
Ak = P

(
N∑
k=0

1

k!
Dk

)
P−1. Ainsi

exp(A) = P exp(D)P−1
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Exemple Calcul de exp(A) pour A =

(
0 −2
1 3

)
.

Sp(A) = {1, 2}.
La matrice A est diagonalisable.
Il existe P tel que A = PDP−1 avec D = diag(1, 2) et alors exp(A) = PD′P avec D′ = diag(e, e2).
Soit T polynôme tel que T (1) = e et T (2) = e2.

T (X) = e(e− 1)(X − 1) + e convient

On a T (D) = D′ et par similitude T (A) = exp(A). Ainsi

exp(A) = e (e− 1)A+ e(2− e)I2

20.4.3.3 Cas A nilpotente

Supposons Ap = On.
Pour N > p,

N∑
k=0

1

k!
Ak =

p∑
k=0

1

k!
Ak

Ainsi

exp(A) =

p−1∑
k=0

1

k!
Ak

20.4.3.4 Cas général

On improvise, par exemple en exploitant un polynôme annulateur. . .

Exemple Calcul de exp(A) avec A =

 3 1 2
1 1 1
−2 −1 −1

 ∈M3(R)

On a χA = (X − 1)3 et donc la matrice A est trigonalisable.
Par Cayley-Hamilton, on a (A− I3)3 = O3. Posons N = A− I3.
On a A = I3 +N avec I3 et N commutant donc

exp(A) = exp(I3) exp(N) = e

(
I3 +N +

1

2
N2

)
Ainsi

exp(A) = e

 7/2 1 5/2
1 1 1
−5/2 −1 −3/2



20.4.4 Exponentielle d’un endomorphisme

Soit a ∈ L(E). Etudions la série
∑ 1

n!
an.

On introduit e une base de E et on peut définir une norme sur L(E) en posant

‖a‖ = ‖Mate(a)‖2
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Celle-ci vérifie ‖a ◦ b‖ 6 ‖a‖ ‖b‖ et l’on peut dès lors adapter l’étude matricielle aux endomorphismes.

Définition
On appelle exponentielle de a l’endomorphisme

exp(a) =

+∞∑
n=0

1

n!
an

Exemple exp(0̃) = IdE .

Exemple Si A = Mate(a) alors
Mate (exp(a)) = exp(A)

Théorème
Si a, b ∈ L(E) vérifie a ◦ b = b ◦ a alors

exp(a) ◦ exp(b) = exp(a+ b)

Corollaire
∀a ∈ L(E), exp(a) est inversible et exp(a)−1 = exp(−a).

Théorème
L’application a 7→ exp(a) est continue.

20.4.5 Dérivation de l’application t 7→ exp(t.a)

Fixons a ∈ L(E) et considérons la fonction

ea : t 7→ ea(t) = exp(t.a) ∈ L(E)

avec

exp(t.a) =

+∞∑
n=0

tn

n!
.an

Théorème
L’application ea : t 7→ exp(t.a) est de classe C∞ sur R et

e′a(t) = a ◦ ea(t) = ea(t) ◦ a

dém. :
Introduisons les fonctions un : R→ E définies par

un(t) =
tn

n!
.an
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La série
∑

un converge simplement et sa somme est la fonction ea.

Chaque un est de classe C1 et

un(t) =
tn−1

(n− 1)!
.an si n > 1 et un(t) = 0 si n = 0

Soit M > 0 et |t| 6M .

‖un(t)‖ 6 Mn−1

(n− 1)!
‖an‖ 6 Mn−1

(n− 1)!
‖a‖n =

(M ‖a‖)n−1

(n− 1)!
‖a‖

Or on sait que pour tout x ∈ R,
∑ xn

n!
converge donc

∑
n>1

(M ‖a‖)n−1

(n− 1)!
converge.

Par comparaison de séries à terme positifs, on obtient la convergence normale de
∑

un sur [−M,M ].
Finalement, par convergence uniforme sur tout segment de R, on peut affirmer que ea est une fonction de
classe C1 et

e′a(t) =
+∞∑
n=1

tn−1

(n− 1)!
.an =

+∞∑
n=0

tn

n!
.an+1 = a ◦ exp(t.a) = exp(t.a) ◦ a

Enfin, par récurrence, on obtient que t→ exp(ta) est de classe C∞.
�

Corollaire
On a aussi

d

dt
(exp(tA)) = A exp(tA) = exp(tA)A

dém. :
En adaptant la démonstration précédente ou en raisonnant via endomorphisme canoniquement associé.
�
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Chapitre 21

Intégrales dépendant d’un paramètre

21.1 Passage à la limite sous l’intégrale

21.1.1 Théorème de convergence dominée
On étudie

lim
n→+∞

∫
I

fn(t) dt

Rappel :
Cas I = [a, b]

Si les fonctions fn sont continues et si fn
CV U−−−→
[a,b]

f alors

∫ b

a

fn −−−−−→
n→+∞

∫ b

a

f

Cet outil ne suffit pas à résoudre tous les cas possibles.

Théorème
Soit (fn) une suite de fonctions de I vers K
Si
1) les fonctions (fn) sont continues par morceaux sur I ;
2) la suite de fonctions (fn) converge simplement vers une fonction f continue par morceaux ;
3) il existe ϕ : I → R+ continue par morceaux et intégrable vérifiant

∀n ∈ N, |fn| 6 ϕ [hypothèse de domination]

alors les fonctions fn et f sont intégrables sur I et∫
I

fn →
∫
I

f

Exemple Etudions

lim
n→+∞

∫ +∞

−∞

1 + 2 sin(t/n)

1 + t2
dt
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Posons fn : R→ R définie par

fn(t) =
1 + 2 sin(t/n)

1 + t2

On a fn
CV S−−−→ f avec f(t) =

1

1 + t2
.

Les fonctions fn et la fonction f sont continues par morceaux.
De plus

|fn(t)| 6 3

1 + t2
= ϕ(t)

avec ϕ intégrable sur R.
Par convergence dominée, les fonctions fn et la fonction f sont intégrables et

lim
n→+∞

∫ +∞

−∞

1 + 2 sin(t/n)

1 + t2
dt =

∫ +∞

−∞

dt

1 + t2
= π

Exemple Etudions

lim
n→+∞

∫ π/2

0

sinn(t) dt

Posons fn : [0, π/2]→ R définie par fn(t) = sinn(t) sur [0, π/2].
fn

CV S−−−→ f avec

f(t) =

{
1 si t = π/2
0 sinon

Les fonctions fn et la fonction f sont continues par morceaux.
Pour tout n ∈ N,

|fn| 6 1 = ϕ

ϕ est intégrable sur [0, π/2] car définie et continue sur un segment.
Par convergence dominée ∫ π/2

0

fn →
∫ π/2

0

f

et donc

lim
n→+∞

∫ π/2

0

sinn(t) dt = 0

Remarque Ici la suite de fonctions (fn) ne converge pas uniformément vers f mais on est parvenu à
permuter limite et intégrale.

Exemple Etudions

lim
n→+∞

∫ +∞

0

e−t
n

dt

Posons fn : R+ → R définie par fn(t) = e−t
n

.
Pour t ∈ [0, 1[, fn(t) −−−−−→

n→+∞
1.

Pour t = 1, fn(t) −−−−−→
n→+∞

1/e.
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Pour t > 1, fn(t) −−−−−→
n→+∞

0.

Ainsi fn
CV S−−−→ f avec

f(t) =

 1 si t ∈ [0, 1[
1/e si t = 1
0 si t > 1

Les fonctions fn et la fonction f sont continues par morceaux.
Pour tout n ∈ N?, |fn| 6 ϕ avec

ϕ(t) =

{
1 si t ∈ [0, 1]
e−t si t > 1

Par convergence dominée, les fonctions fn et la fonction f sont intégrables et

lim
n→+∞

∫ +∞

0

e−t
n

dt =

∫ +∞

0

f(t) dt =

∫ 1

0

1 dt = 1

Exemple Etudions

lim
n→+∞

∫ n

0

(
1− t

n

)n
ln tdt

Problème :
∫ n

0

et non
∫
I

.

Solution :
∫ n

0

f(t) dt =

∫ +∞

0

f̃(t) dt avec

f̃(t) =

{
f(t) si t 6 n
0 sinon

Ici, introduisons fn : ]0,+∞[→ R définie par

fn(t) =


(

1− t

n

)n
ln t si t ∈ ]0, n[

0 sinon

Soit t ∈ ]0,+∞[.
Quand n→ +∞, pour n assez grand t < n et

fn(t) =

(
1− t

n

)n
ln t −−−−−→

n→+∞
e−t ln t

Ainsi fn
CV S−−−→ f avec f : t 7→ e−t ln t

Les fonctions fn et la fonction f sont continues par morceaux.
Sachant ln(1 + u) 6 u on a pour t ∈ ]0, n[

|fn(t)| = exp (n ln(1− t/n)) |ln t| 6 exp(−t) |ln t| = ϕ(t)

La fonction ϕ est continue par morceaux sur ]0,+∞[ et intégrable car
√
tϕ(t) −−−−→

t→0+
0 et t2ϕ(t) −−−−→

t→+∞
0

Par convergence dominée, les fonctions fn et la fonction f sont intégrables et

lim
n→+∞

∫ n

0

(
1− t

n

)n
ln tdt =

∫ +∞

0

e−t ln tdt
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Remarque En calculant
∫ n

0

(
1− t

n

)n
ln tdt, on parvient à montrer alors

∫ +∞

0

e−t ln tdt = −γ

21.1.2 Autres techniques pour étudier une limite
Convergence uniforme sur un segment [a, b] et convergence dominée ne suffisent pas toujours pour déter-
miner

lim
n→+∞

∫
I

fn

On peut aussi :
- procéder par comparaison ;
- réexprimer l’intégrale (par changement de variable, intégration par parties, astuce,. . . ) ;
- raisonner par les ε.

Exemple Montrons que pour tout f ∈ C1 ([a, b] ,K),∫ b

a

f(t)eint dt→ 0

Par intégration par parties,∫ b

a

f(t)eint dt =

[
1

in
eintf(t)

]b
a

− 1

in

∫ b

a

f ′(t)eint dt

Par suite ∣∣∣∣∣
∫ b

a

f(t)eint dt

∣∣∣∣∣ 6 1

n

(
|f(a)|+ |f(b)|+

∫ b

a

|f ′(t)| dt

)
→ 0

Ainsi ∫ b

a

f(t)eint dt→ 0

21.1.3 Intégration terme à terme
On étudie si ∫

I

+∞∑
n=0

fn(t) dt =

+∞∑
n=0

∫
I

fn(t) dt

Rappel : Cas I = [a, b]

Si les fonctions fn sont continues et si la série
∑

fn converge uniformément sur [a, b] alors

∫ b

a

+∞∑
n=0

fn =

+∞∑
n=0

∫ b

a

fn
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Théorème
Soit

∑
fn une série de fonctions de I vers K.

Si
1) les fonctions fn sont continues par morceaux et intégrables sur I ;

2) la série de fonctions
∑

fn converge simplement vers une fonction
+∞∑
n=0

fn continue par

morceaux ;

3) la série numérique
∑∫

I

|fn| converge

Alors la fonction
+∞∑
n=0

fn est intégrable sur I et

∫
I

+∞∑
n=0

fn =

+∞∑
n=0

∫
I

fn

Exemple Montrons ∫ 1

0

ln t

t− 1
dt =

+∞∑
n=1

1

n2

On a
1

1− t
= −

+∞∑
n=0

tn sur [0, 1[

donc
ln t

t− 1
=

+∞∑
n=0

(− ln t)tn sur ]0, 1[

On a alors ∫ 1

0

ln t

t− 1
dt =

∫
]0,1[

+∞∑
n=0

fn(t) dt

avec fn : ]0, 1[→ R définie par fn(t) = (− ln t)tn.

Par les calculs qui précédent, la série de fonctions
∑

fn converge simplement et sa somme t 7→ ln t

t− 1
est continue par morceaux.
Chaque fonction fn est continue par morceaux et intégrable sur ]0, 1[ car

√
tfn(t) −−−→

t→0
0 et fn(t) −−−→

t→1
0

Enfin, par intégration par parties∫ 1

0

|fn(t)| dt =

∫ 1

0

(− ln(t))tn dt =
1

(n+ 1)2

La série numérique
∑∫ 1

0

|fn| converge donc par théorème d’intégration terme à terme

∫ 1

0

ln t

t− 1
dt =

+∞∑
n=0

1

(n+ 1)2
=

+∞∑
n=1

1

n2
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21.1.4 Autre technique d’intégration terme à terme
Pour résoudre des situations « plus délicates » , on peut aussi intégrer terme à terme en revenant aux
sommes partielles. Notons

Sn =

n∑
k=0

fk et S =

+∞∑
n=0

fn

Par convergence dominée ou comparaison, supposons avoir montré∫
I

Sn(t) dt −−−−−→
n→+∞

∫
I

S(t) dt

En remarquant ∫
I

Sn =

∫
I

n∑
k=0

fk =

n∑
k=0

∫
I

fk

on affirme
n∑
k=0

∫
I

fk →
∫
I

+∞∑
n=0

fn

et donc
+∞∑
n=0

∫
I

fn =

∫
I

+∞∑
n=0

fn

Exemple Montrons ∫ 1

0

dt

1 + t2
=

+∞∑
n=0

(−1)n

2n+ 1

On peut écrire
1

1 + t2
=

1

1− q
=

+∞∑
n=0

(−1)nt2n sur [0, 1[

Par suite ∫ 1

0

dt

1 + t2
=

∫
[0,1[

+∞∑
n=0

fn

avec fn(t) = (−1)nt2n définie sur [0, 1[

Ici
∑∫

[0,1[

|fn| =
∑ 1

2n+ 1
diverge et on ne peut pas appliquer le théorème d’intégration terme à

terme. Transitons alors par les sommes partielles
On pose

Sn(t) =

n∑
k=0

(−1)kt2k

On a Sn
CV S−−−→ S avec S(t) =

1

1 + t2
.

Les fonctions Sn et S sont continues par morceaux.

|Sn(t)| =
∣∣1− (−1)n+1t2n+2

∣∣
1 + t2

6
2

1 + t2
= ϕ(t)

avec ϕ intégrable.
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Par convergence dominée ∫ 1

0

Sn(t) dt→
∫ 1

0

S(t) dt

Or ∫ 1

0

Sn(t) dt =

∫ 1

0

n∑
k=0

(−1)kt2k dt =

n∑
k=0

∫ 1

0

(−1)kt2k dt =

n∑
k=0

(−1)k

2k + 1

donc
+∞∑
n=0

(−1)n

2n+ 1
=

∫ 1

0

dt

1 + t2

avec en substance la convergence de la série introduite.

21.2 Continuité d’une intégrale à paramètre
On étudie dans cette partie les fonctions de la forme

g : x ∈ X 7→
∫
I

f(x, t) dt

Dans un premier temps X désigne un intervalle de R.
21.2.1 Continuité par domination

Théorème
Si f : X × I → K vérifie
1) ∀x ∈ X , t 7→ f(x, t) est continue par morceaux sur I ;
2) ∀t ∈ I , x 7→ f(x, t) est continue sur X ;
3) ∃ϕ : I → R+ continue par morceaux et intégrable vérifiant

∀(x, t) ∈ X × I , |f(x, t)| 6 ϕ(t) [hypothèse de domination]

Alors la fonction g : x 7→
∫
I

f(x, t) dt est définie et continue sur X .

dém. :
Pour tout x ∈ X , la fonction t 7→ f(x, t) est intégrable sur I et donc g(x) est bien définie.
Etudions la continuité en a ∈ X via la caractérisation séquentielle des limites.
Soit (xn) une suite d’éléments de X convergeant vers a.

g(xn) =

∫
I

f(xn, t) dt =

∫
I

un(t) dt avec un(t) = f(xn, t).

Pour tout t ∈ I , un(t) = f(xn, t) −−−−−→
n→+∞

f(a, t) = u∞(t),

Ainsi (un) converge simplement vers la fonction u∞ : t 7→ u(a, t).
Chaque un et u∞ sont continues par morceaux.
Pour tout n ∈ N, |un(t)| 6 ϕ(t) avec ϕ intégrable.

Par convergence dominée
∫
I

un(t) dt −−−−−→
n→+∞

∫
I

u∞(t) dt i.e. g(xn)→ g(a).

Par caractérisation séquentielle de la continuité g est continue en a.
�
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Exemple Définition et continuité de g(x) =

∫ +∞

0

e−xt

1 + t2
dt avec x ∈ R+.

Considérons f : (x, t) 7→ e−xt

1 + t2
définie sur R+ × [0,+∞[.

∀x ∈ R, t 7→ f(x, t) est continue par morceaux sur [0,+∞[.
∀t ∈ [0,+∞[, x 7→ f(x, t) est continue sur R+.

∀(x, t) ∈ R+ × [0,+∞[, |f(x, t)| 6 1

1 + t2
= ϕ(t)

avec ϕ : [0,+∞[→ R+ continue par morceaux et intégrable sur [0,+∞[ car ϕ(t) ∼
t→+∞

1

t2
.

Par domination, la fonction g est définie et continue sur R+.

Exemple Définition et continuité de g(x) =

∫ π

0

cos(x sin θ) dθ avec x ∈ R.

Considérons f : (x, θ) 7→ cos(x sin θ) définie sur R× [0, π].
∀x ∈ R, θ 7→ cos(x sin θ) est continue par morceaux sur [0, π].
∀θ ∈ [0, π], x 7→ cos(x sin θ) est continue sur R.
∀(x, θ) ∈ R× [0, π], |f(x, θ)| 6 1 = ϕ(θ).
La fonction constante ϕ est évidemment intégrable sur [0, π].
Par domination, g est définie et continue sur R.

Remarque Les hypothèses 1) et 2) du théorème sont évidemment réunies lorsque f est continue
sur X × I . En pratique, elles sont faciles à obtenir, c’est surtout l’hypothèse 3 qui importe.

21.2.2 Continuité par domination sur tout segment
Pour obtenir la continuité de g, il n’est pas toujours possible de vérifier l’hypothèse de domination direc-
tement sur l’intégralité de l’intervalle X .

Théorème
Si f : X × I → K vérifie
1) ∀x ∈ X , t 7→ f(x, t) est continue par morceaux sur I ;
2) ∀t ∈ I , x 7→ f(x, t) est continue sur X ;
3) ∀ [a, b] ⊂ X , ∃ϕ : I → R+ continue par morceaux et intégrable vérifiant

∀(x, t) ∈ [a, b]× I , |f(x, t)| 6 ϕ(t) [hypothèse de domination locale]

Alors la fonction g : x 7→
∫
I

f(x, t) dt est définie et continue sur X .

dém. :
g est définie et continue sur chaque [a, b] ⊂ X donc définie et continue sur X .
�

Exemple Définition et continuité de g(x) =

∫ +∞

0

e−xt

1 + t
dt avec x > 0.

On introduit

f(x, t) =
e−xt

1 + t
définie sur R+? × [0,+∞[
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Définition
Soit x > 0. La fonction t 7→ f(x, t) est continue par morceaux sur [0,+∞[ et

f(x, t) ∼
t→+∞

e−xt

t

donc

t2f(x, t) −−−−→
t→+∞

0

t 7→ f(x, t) est donc intégrable sur [0,+∞[ et par conséquent g(x) est bien définie pour tout x > 0
Continuité
La fonction f est continue sur R+? × [0,+∞[.
Soit [a, b] ⊂ ]0,+∞[. Pour x ∈ [a, b]

|f(x, t)| 6 e−at

1 + t
= ϕ(t)

Par l’étude au dessus, la fonction ϕ : [0,+∞[→ R est continue par morceaux et intégrable.
Par domination sur tout segment, on en déduit que g est continue sur R+?.

Exemple Définition et continuité de g(x) =

∫ +∞

0

ln(1 + xt)

1 + t2
dt avec x > 0.

On introduit

f(x, t) =
ln(1 + xt)

1 + t2
définie sur R+ × [0,+∞[

Définition
Soit x ∈ R+. La fonction t 7→ f(x, t) est continue par morceaux sur [0,+∞[ et

f(x, t) ∼
t→+∞

ln t

t2

donc

t3/2f(x, t) −−−−→
t→+∞

0

t 7→ f(x, t) est donc intégrable sur [0,+∞[ et par conséquent g(x) est bien définie pour tout x > 0
Continuité
La fonction f est continue sur R+ × [0,+∞[.
Soit [a, b] ⊂ [0,+∞[. Pour x ∈ [a, b]

|f(x, t)| 6 ln(1 + bt)

1 + t2
= ϕ(t)

Par l’étude au dessus, la fonction ϕ : [0,+∞[→ R est continue par morceaux et intégrable.
Par domination sur tout segment, on en déduit que g est continue sur R+.
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21.2.3 Limite
Soit a une extrémité de l’intervalle X .
On désire étudier la limite de g(x) quand x→ a.

Théorème
Si f : X × I → K vérifie :
1) ∀x ∈ X, f(x, .) est continue par morceaux sur I ;
2) ∀t ∈ I , f(x, t) −−−→

x→a
`(t) avec ` continue par morceaux ;

3) ∃ϕ : I → R+ continue par morceaux et intégrable vérifiant

∀(x, t) ∈ X × I , |f(x, t)| 6 ϕ(t) [hypothèse de domination]

alors
g(x) =

∫
I

f(x, t) dt −−−→
x→a

∫
I

`(t) dt

dém. :
Soit (xn) une suite d’éléments de X convergeant vers a.∫

I

f(xn, t) dt =

∫
I

un(t) dt

avec un(t) = f(xn, t).
Pour tout t ∈ I , un(t) = f(xn, t) −−−−−→

n→+∞
`(t),

Ainsi (un) converge simplement vers la fonction `.
Chaque un et ` sont continues par morceaux.
Pour tout n ∈ N, |un(t)| 6 ϕ(t) avec ϕ intégrable.

Par convergence dominée
∫
I

un(t) dt −−−−−→
n→+∞

∫
I

`(t) dt i.e.

∫
I

f(xn, t) dt −−−→
x→a

∫
I

`(t) dt

Par caractérisation séquentielle des limites,∫
I

f(x, t) dt −−−→
x→a

∫
I

`(t) dt

�

Remarque L’hypothèse de domination peut être avantageusement remplacée par une hypothèse de
domination exprimée sur un intervalle inclus dans X dont a est extrémité, mais pas par une hypothèse de
domination sur tout segment.

Exemple Limite quand x→ +∞ de g(x) =

∫ +∞

0

ln(t)e−xt dt.

Posons f(x, t) = ln(t)e−xt définie sur R+? × [0,+∞[.

f(x, t) −−−−−→
x→+∞

0
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Pour x > 1,
|f(x, t)| 6 ln(t)e−t = ϕ(t)

avec ϕ intégrable sur ]0,+∞[.
Par domination, on obtient

lim
x→+∞

g(x) =

∫ +∞

0

0 dt = 0

Remarque Il est souvent tout aussi efficace de raisonner par comparaison de limites lorsque cela est
possible.

Exemple Limite quand x→ +∞ de g(x) =

∫ +∞

0

e−xt

1 + t
dt.

On a

0 6
∫ +∞

0

e−xt

1 + t
dt 6

∫ +∞

0

e−xt dt =
1

x
−−−−−→
x→+∞

0

donc par encadrement g tend vers 0 en +∞.
Etudions lim

x→0+
g(x).

On a

g(x) >
∫ 1/x

0

e−1

1 + t
dt =

1

e
ln

(
1 +

1

x

)
−−−−→
x→0+

+∞

donc par comparaison g tend vers +∞ en 0.

21.2.4 Extension aux fonctions d’une variable vectorielle
Ici X désigne une partie d’un espace normé de dimension finie ( X ⊂ R,C,Rn, . . . )

Théorème
Si f : X × I → K vérifie
1) ∀x ∈ X , t 7→ f(x, t) est continue par morceaux sur I ;
2) ∀t ∈ I , x 7→ f(x, t) est continue sur X ;
3) ∃ϕ : I → R+ continue par morceaux et intégrable vérifiant

∀(x, t) ∈ X × I , |f(x, t)| 6 ϕ(t) [hypothèse de domination]

Alors la fonction g : x 7→
∫
I

f(x, t) dt est définie et continue sur X .

dém. :
Il suffit de reprendre à l’identique la démonstration précédente du résultat analogue vu quand X est un
intervalle.
�

Remarque Il n’est pas toujours possible d’obtenir l’hypothèse de domination sur X entier. Cependant,
il peut suffire de l’obtenir sur des domaines suffisamment généraux si ceux-ci incluent des voisinages de
tout a ∈ X .
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Exemple Définition et continuité de g(z) =

∫ 1

0

ln t

t+ z
dt avec z ∈ C vérifiant Re(z) > 0.

On introduit

f(z, t) =
ln t

z + t
définie sur Ω× ]0, 1] avec Ω = {z ∈ C/Re(z) > 0}

Définition
Soit z ∈ Ω. La fonction t 7→ f(z, t) est continue par morceaux sur ]0, 1] et

f(z, t) ∼
t→0+

ln t

z

donc √
tf(z, t) −−−−→

t→0+
0

t 7→ f(z, t) est donc intégrable sur ]0, 1] et par conséquent g(z) est bien définie pour tout z ∈ C.
Continuité
La fonction f est continue sur Ω× ]0, 1]

|f(z, t)| = |ln t|
|z + t|

6
|ln t|

t+ Re(z)

Soit a > 0 et Ωa = {z ∈ C/Re(z) > a}.
Pour z ∈ Ωa et t ∈ ]0, 1],

|f(z, t)| 6 ln t

t+ a
= ϕa(t)

Par l’étude au dessus, la fonction ϕa : [0,+∞[→ R est continue par morceaux et intégrable.
On en déduit que la fonction g est continue sur Ωa pour tout a > 0, elle est donc continue sur Ω.

21.3 Dérivation d’une intégrale à paramètre
On étudie dans cette partie les fonctions de la forme

g : x ∈ X 7→
∫
I

f(x, t) dt

avec X un intervalle d’intérieur non vide de R.
21.3.1 Formule de Leibniz

Définition
Soit f : (x, t) 7→ f(x, t) définie sur X × I .

On dit que f admet une dérivée partielle
∂f

∂x
si

∀t ∈ I, la fonction x 7→ f(x, t) est dérivable

On pose alors
∂f

∂x
(x, t) =

d

dx
(f(x, t))
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Théorème
Soit f : X × I → K. On suppose que f admet une dérivée partielle

∂f

∂x

Si
1) ∀x ∈ I , t 7→ f(x, t) est continue par morceaux et intégrable sur I ;

2) ∀x ∈ I , t 7→ ∂f

∂x
(x, t) est continue par morceaux sur I ;

3) ∀t ∈ I , x 7→ ∂f

∂x
(x, t) est continue sur X ;

4) ∃ϕ : I → R+ continue par morceaux et intégrable vérifiant

∀(x, t) ∈ X × I ,
∣∣∣∣∂f∂x (x, t)

∣∣∣∣ 6 ϕ(t)

Alors la fonction g : x 7→
∫
I

f(x, t) dt est définie et de classe C1 sur X avec

g′(x) =

∫
I

∂f

∂x
(x, t) dt

dém. :
Etudions la dérivabilité en a ∈ X

g(x)− g(a)

x− a
−−−→
x→a

?

Pour x 6= a
g(x)− g(a)

x− a
=

∫
I

u(x, t) dt

avec

u(x, t) =
f(x, t)− f(a, t)

x− a
Soit t ∈ I .

u(x, t) =
h(x)− h(a)

x− a
en introduisant la fonction h : x 7→ f(x, t).
Par hypothèse, la fonction h est dérivable et donc

u(x, t) −−−→
x→a

h′(a) =
∂f

∂x
(a, t) = `(t)

La fonction ` est continue par morceaux sur I .
Soit t ∈ I .
L’application h : x 7→ f(x, t) est dérivable et sa dérivée vérifie

|h′(x)| =
∣∣∣∣∂f∂x (x, t)

∣∣∣∣ 6 ϕ(t)

Par l’inégalité des accroissements finis, h : x 7→ f(x, t) est ϕ(t)-lipschitzienne.
Par suite

|u(x, t)| = |h(x)− h(a)|
|x− a|

6 ϕ(t)
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avec ϕ continue par morceaux et intégrable.
Par domination ∫

I

u(x, t) dt −−−→
x→a

∫
I

`(t) dt

i.e.
g(x)− g(a)

x− a
→
∫
I

∂f

∂x
(a, t) dt

Finalement g est dérivable en a et

g′(a) =

∫
I

∂f

∂x
(a, t) dt

Enfin g′ est continue par application du théorème de continuité par domination.
�

Remarque Le résultat énoncé est encore vrai si l’on remplace l’hypothèse « t 7→ f(x, t) est intégrable

sur I » par celle de « convergence de
∫
I

f(x, t) dt » .

Exemple Calcul de g(x) =

∫ +∞

0

e−t
2

cos(xt)dt avec x ∈ R.

Posons u(x, t) = e−t
2

cos(xt).
La fonction u est définie sur R× [0,+∞[ et admet une dérivée partielle

∂u

∂x
(x, t) = −te−t

2

sin(xt)

∀x ∈ R, t 7→ u(x, t) est continue par morceaux et intégrable sur [0,+∞[ car négligeable devant 1/t2

en +∞.

∀x ∈ R, t 7→ ∂u

∂x
(x, t) est continue par morceaux sur [0,+∞[.

∀t ∈ [0,+∞[, x 7→ ∂u

∂x
(x, t) est continue sur R.

Enfin

∀(x, t) ∈ R× [0,+∞[ ,

∣∣∣∣∂u∂x (x, t)

∣∣∣∣ 6 te−t2 = ϕ(t)

avec ϕ : [0,+∞[→ R continue par morceaux et intégrable sur [0,+∞[.
Par domination, la fonction g est de classe C1 et

g′(x) =

∫ +∞

0

−te−t
2

sin(xt)dt

Procédons à une intégration par parties avec les fonctions de classe C1

u(t) =
1

2
e−t

2

et v(t) = sin(xt)

Puisque le produit uv converge en 0 et +∞, l’intégration par parties impropre est possible et

g′(x) =

[
1

2
e−t

2

sin(xt)

]+∞

0

− 1

2

∫ +∞

0

xe−t
2

cos(xt) dt
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Ainsi, on obtient

g′(x) = −1

2
xg(x)

g est solution d’une équation différentielle linéaire d’ordre 1 et g(0) =
√
π/2 on conclut

ϕ(x) =

√
π

2
e−

1
4x

2

21.3.2 Dérivation par domination sur tout segment

Théorème
Soit f : X × I → K. On suppose que f admet une dérivée partielle

∂f

∂x

Si
1) ∀x ∈ I , t 7→ f(x, t) est continue par morceaux et intégrable sur I ;

2) ∀x ∈ I , t 7→ ∂f

∂x
(x, t) est continue par morceaux sur I ;

3) ∀t ∈ I , x 7→ ∂f

∂x
(x, t) est continue sur X ;

4) ∀ [a, b] ⊂ X , ∃ϕ : I → R+ continue par morceaux et intégrable vérifiant

∀(x, t) ∈ [a, b]× I,
∣∣∣∣∂f∂x (x, t)

∣∣∣∣ 6 ϕ(t)

Alors la fonction g : x 7→
∫
I

f(x, t) dt est définie et de classe C1 sur X avec

g′(x) =

∫
I

∂f

∂x
(x, t) dt

dém. :
La fonction g est de classe C1 sur tout segment [a, b] ⊂ X donc de classe C1 sur l’intervalle X .
�

Exemple Calcul de g(x) =

∫ 1

0

tx − 1

ln t
dt avec x ∈ ]−1,+∞[. Considérons f : (x, t) 7→ tx − 1

ln t
définie

sur ]−1,+∞[× ]0, 1[.
Soit x > −1. La fonction t 7→ f(x, t) est continue par morceaux sur ]0, 1[.
Quand t→ 1−.
t = 1− h avec h→ 0+.

f(x, t) =
(1 + h)x − 1

ln(1 + h)
→ x

et donc f est intégrable sur [1/2, 1[.
Quand t→ 0+.
On a

tx −−−−→
t→0+

 0 si x > 0
1 si x = 0
+∞ si x ∈ ]−1, 0[
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Si x > 0, on obtient f(x, t)→ 0 ce qui permet un prolongement par continuité.
Si x < 0, on a f(x, t) = o (tx) = o

(
1/t−x

)
avec −x < 1.

Dans les deux cas, t 7→ f(x, t) est intégrable sur ]0, 1/2].
Finalement t 7→ f(x, t) est intégrable sur ]0, 1[ et donc g est définie sur ]−1,+∞[.

La fonction x 7→ f(x, t) =
tx − 1

ln t
est dérivable donc f admet une dérivée partielle

∂f

∂x
et

∂f

∂x
(x, t) = tx

∀x ∈ ]−1,+∞[, t 7→ ∂f

∂x
(x, t) est continue par morceaux sur ]0, 1[

∀t ∈ ]0, 1[, x 7→ ∂f

∂x
(x, t) est continue sur ]−1,+∞[.

Soit [a, b] ⊂ ]−1,+∞[. Pour x ∈ [a, b],

∣∣∣∣∂f∂x (x, t)

∣∣∣∣ 6 ta = ϕ(t)

avec ϕ : ]0, 1[→ R+ continue par morceaux et intégrable sur ]0, 1[.
Par domination sur tout segment, g est de classe C1 et

g(x) =

∫ 1

0

tx dt =
1

x+ 1

On en déduit

g(x) = g(0) +

∫ x

0

dt

1 + t
= ln(1 + x)

21.3.3 Dérivées d’ordres supérieurs

Définition

On dit que f : (x, t) 7→ f(x, t) admet une dérivée partielle
∂jf

∂xj
si pour chaque valeur de t, la

fonction x 7→ f(x, t) est j fois dérivable et on pose alors

∂jf

∂xj
(x, t) =

dj

dxj
(f(x, t))
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Théorème
Soit f : X × I → K. On suppose que f admet des dérivées partielles

∂f

∂x
, . . . ,

∂nf

∂xn

Si

1) ∀j ∈ {0, . . . , n− 1}, ∀x ∈ X , t 7→ ∂jf

∂xj
(x, t) est continue par morceaux et intégrable

sur I .
et si

2) ∀x ∈ X , t 7→ ∂nf

∂xn
(x, t) est continue par morceaux

3) ∀t ∈ I, x 7→ ∂nf

∂xn
(x, t) est continue ;

4) ∀ [a, b] ⊂ I , ∃ϕ : I → R+ continue par morceaux et intégrable vérifiant

∀(x, t) ∈ [a, b]× I ,
∣∣∣∣∂nf∂xn

(x, t)

∣∣∣∣ 6 ϕ(t)

Alors la fonction g : x 7→
∫
I

f(x, t) dt est définie et de classe Cn sur X et pour tout j ∈

{1, . . . , n}

g(j)(x) =

∫
I

∂jf

∂xj
(x, t) dt

dém. :
Par récurrence sur n > 1.
Cas n = 1 : résolu ci-dessus
Supposons le théorème vrai au rang n > 1.
Soit f vérifiant les hypothèses données au rang n+ 1.
Pour [a, b] ⊂ X , il existe ϕa,b : I → R+ continue par morceaux intégrable vérifiant

∀(x, t) ∈ X × I ,
∣∣∣∣∂n+1f

∂xn+1
(x, t)

∣∣∣∣ 6 ϕ(t)

Par calcul intégral
∂nf

∂xn
(x, t) =

∂nf

∂xn
(a, t) +

∫ x

a

∂n+1f

∂xn+1
(y, t) dy

et donc ∣∣∣∣∂nf∂xn
(x, t)

∣∣∣∣ 6 ∣∣∣∣∂nf∂xn
(a, t)

∣∣∣∣+ (b− a)ϕ(t) = ψ(t)

La fonction ψ étant intégrable, on peut employer l’hypothèse de récurrence et affirmer que g est de classe
Cn avec

∀1 6 j 6 n, g(j)(x) =

∫
I

∂jf

∂xj
(x, t) dt

En particulier

g(n)(x) =

∫
I

∂nf

∂xn
(x, t) dt
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et les hypothèses vérifiées par f au rang n+ 1 assurent que g(n) est de classe C1 avec

(g(n))′(x) =

∫
I

∂n+1f

∂xn+1
(x, t) dt

Ce qui permet de conclure.
Récurrence établie.
�

Exemple Montrons que g(x) =

∫ +∞

0

e−xt

1 + t2
dt définit une solution sur R+? de l’équation différentielle

y′′ + y =
1

x

Considérons f : (x, t) 7→ e−xt

1 + t2
définie sur ]0,+∞[× [0,+∞[

Pour t ∈ [0,+∞[, la fonction x 7→ f(x, t) est deux fois dérivable sur ]0,+∞[ donc les dérivées

partielles
∂f

∂x
et
∂2f

∂x2
existent et

∂f

∂x
(x, t) = −t e−xt

1 + t2
et
∂2f

∂x2
(x, t) = t2

e−xt

1 + t2

Pour tout x ∈ ]0,+∞[, t 7→ f(x, t) et t 7→ ∂f

∂x
(x, t) sont continues par morceaux sur [0,+∞[ et

intégrables sur [0,+∞[ car

t2f(x, t) −−−−→
t→+∞

0 et t2
∂f

∂x
(x, t) −−−−→

t→+∞
0

De plus

∀x ∈ ]0,+∞[, t 7→ ∂2f

∂x2
(x, t) est continue par morceaux.

∀t ∈ [0,+∞[, x 7→ ∂2f

∂x2
(x, t) est continue.

Enfin, pour [a, b] ⊂ [0,+∞[. On a

∀(x, t) ∈ [a, b]× [0,+∞[ ,

∣∣∣∣∂2f

∂x2
(x, t)

∣∣∣∣ 6 e−at

avec ϕ : t 7→ e−at continue par morceaux et intégrable sur [0,+∞[.
Par domination sur tout segment, la fonction g est de classe C2 sur R+? et

g′′(x) + g(x) =

∫ +∞

0

t2
e−xt

1 + t2
dt+

∫ +∞

0

e−xt

1 + t2
dt =

∫ +∞

0

e−xtdt =
1

x

21.4 Applications
Les résultats qui suivent ne sont pas explicitement au programme : on ne peut les utiliser qu’en les
redémontrant.

http://mp.cpgedupuydelome.fr 496 cbna



CHAPITRE 21. INTÉGRALES DÉPENDANT D’UN PARAMÈTRE

21.4.1 Transformée de Laplace
Soit f : [0,+∞[→ C continue bornée

Définition
On appelle transformée de Laplace de f l’application L(f) définie par

∀x > 0, L(f)(x) =

∫ +∞

0

f(t)e−xt dt

Exemple Pour f(t) = 1, on obtient L(f)(x) = 1/x.

Exemple Pour f(t) = sin(ωt), on obtient

L(f)(x) = Im
(∫ +∞

0

e(−x+iω)t dt

)
=

ω

x2 + ω2

Théorème
L’application L est linéaire de L∞([0,+∞[ ,C) vers C(]0,+∞[ ,C).

dém. :
Soit f : [0,+∞[→ C continue et bornée.
Posons u(x, t) = f(t)e−xt définie sur R+? × [0,+∞[.
Pour chaque x > 0, la fonction t 7→ u(x, t) est continue par morceaux sur [0,+∞[.
Pour chaque t ∈ [0,+∞[, la fonction x 7→ u(x, t) est continue sur ]0,+∞[.
Pour [a, b] ⊂ ]0,+∞[, on a

∀(x, t) ∈ [a, b]× [0,+∞[ , |u(x, t)| 6 ‖f‖∞ e−at = ϕ(t)

avec ϕ : R+ → R continue par morceaux et intégrable.
Par domination sur tout segment, l’application

L(f) : x 7→
∫ +∞

0

u(x, t) dt

est définie et continue sur ]0,+∞[
Ainsi, l’application L est bien définie de l’espace L∞([0,+∞[ ,C) vers C(]0,+∞[ ,C).
Sa linéarité est évidente par linéarité du calcul intégral.
�

Remarque On peut aussi montrer que cette application L est injective.

Théorème
Si f : [0,+∞[→ C est de classe C1 et si les fonctions f et f ′ sont bornées alors

∀x > 0, L(f ′)(x) = xL(f)(x)− f(0)

http://mp.cpgedupuydelome.fr 497 cbna



21.4. APPLICATIONS

dém. :
Soit x > 0. On a

L(f ′)(x) =

∫ +∞

0

f ′(t)e−xt dt

Procédons à une intégration par parties avec u′(t) = f ′(t) et v(t) = e−xt.
Les fonctions u et v sont de classe C1 et le produit uv admet des limites en 0 et +∞ donc

L(f ′)(x) =
[
f(t)e−xt

]+∞
0
−
∫ +∞

0

(−x)f(t)e−xt dt

Ainsi
L(f ′)(x) = xL(f)(x)− f(0)

�

Proposition

lim
x→+∞

xL(f)(x) = f(0)

dém. :
Par le changement de variable u = xt, on obtient

xL(f)(x) =

∫ +∞

0

f(s/x)e−s ds

Posons u(x, s) = f(s/x)e−s.
∀x > 0, s 7→ u(x, s) est continue par morceaux sur [0,+∞[
∀s ∈ [0,+∞[, u(x, s) −−−−−→

x→+∞
f(0)e−s = `(s) avec ` continue par morceaux

Enfin
∀(x, s) ∈ ]0,+∞[× [0,+∞[ , |u(x, s)| 6 ‖f‖∞ e−s = ϕ(s)

avec ϕ : R+ → R continue par morceaux et intégrable.
Par domination

xL(f)(x) −−−−−→
x→+∞

∫ +∞

0

`(s) ds = f(0)

�

Proposition
Si f admet une limite en +∞ alors

lim
x→0+

xL(f)(x) = lim
t→+∞

f(t)

dém. :
Ce sont les mêmes calculs avec cette fois-ci

`(s) = Le−s où L = lim
t→+∞

f(t)

�
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21.4.2 Transformée de Fourier

Soit f : R→ C continue intégrable.

Définition
On appelle transformée de Fourier de f l’application f̂ : R→ C définie par

∀x ∈ R, f̂(x) =

∫ +∞

−∞
f(t)e−ixt dt

Théorème
L’application f 7→ f̂ est une application linéaire de l’espace L1(R,C) vers L∞(R,C).

dém. :
Soit f : R→ C continue intégrable.
Posons u(x, t) = f(t)e−ixt définie sur R× ]−∞,+∞[.
Pour chaque x ∈ R, la fonction t 7→ u(x, t) est continue par morceaux sur ]−∞,+∞[.
Pour chaque t ∈ ]−∞,+∞[, la fonction x 7→ u(x, t) est continue sur R.
On a

∀(x, t) ∈ R× ]−∞,+∞[ , |u(x, t)| 6 |f(t)| = ϕ(t)

avec ϕ : R→ R continue par morceaux et intégrable.
Par domination, la fonction

f̂ : x 7→
∫ +∞

−∞
u(x, t) dt

est définie et continue sur R.
De plus, elle est bornée car

∀x ∈ R,
∣∣∣f̂(x)

∣∣∣ 6 ∫ +∞

−∞
|f(t)| dt

Enfin l’application f 7→ f̂ est évidemment linéaire par linéarité de l’intégrale.
�

Remarque On peut aussi montrer que cette application linéaire est continue car∥∥∥f̂∥∥∥
∞
6 ‖f‖1

On peut encore établir, mais c’est difficile, que cette application est injective.

Théorème
Si pour n ∈ N, l’application t 7→ tnf(t) est intégrable alors f̂ est de classe Cn et

∀k ∈ {1, . . . , n} ,
(
f̂
)(k)

(x) =

∫ +∞

−∞
(−it)kf(t)e−ixt

dém. :
Posons u(x, t) = f(t)e−ixt définie sur R× ]−∞,+∞[.
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u admet des dérivée partielles
∂ku

∂xk
à tout ordre k ∈ {0, . . . , n} avec

∂ku

∂xk
(x, t) = (−it)kf(t)e−ixt

Pour k ∈ {0, . . . , n− 1}

∀x ∈ R, t 7→ ∂ku

∂xk
(x, t) continue par morceaux sur ]−∞,+∞[ et intégrable car

∣∣∣∣∂ku∂xk
(x, t)

∣∣∣∣ = |f(t)|+ |t|n |f(t)|

puisque
∀t ∈ R,

∣∣tk∣∣ 6 1 + |t|n

Pour k = n

∀x ∈ R, t 7→ ∂nu

∂xn
(x, t) est continue par morceaux sur ]−∞,+∞[,

∀t ∈ ]−∞,+∞[ , x 7→ ∂nu

∂xn
(x, t) est continue sur R et

Pour tout [a, b] ⊂ R, on a

∀(x, t) ∈ [a, b]× ]−∞,+∞[ ,

∣∣∣∣∂nu∂xn
(x, t)

∣∣∣∣ 6 |t|n |f(t)| = ϕ(t)

avec ϕ : R→ R continue par morceaux et intégrable.
Par domination sur tout segment, la fonction f̂ est de classe Cn et

∀k ∈ {1, . . . , n} ,
(
f̂
)(k)

(x) =

∫ +∞

−∞
(−it)kf(t)e−ixt

�

Exemple Calcul de la transformée de Fourier de f(t) = e−t
2/2.

Puisque t 7→ tf(t) est intégrable, on a

f̂ ′(x) = −i
∫ +∞

−∞
te−t

2/2e−ixt

Par intégration par parties
f̂ ′(x) = −xf̂(x)

f̂ est donc solution sur R de l’équation différentielle

y′ + xy = 0

C’est une équation différentielle linéaire d’ordre 1 homogène de solution générale y(x) = λe−x
2/2.

Sachant que f̂(0) =
√
π (intégrale de Gauss) on obtient λ =

√
π puis

∀x ∈ R, f̂(x) =
√
πe−x

2/2
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21.4.3 La fonction Γ d’Euler
21.4.3.1 Définition

Lemme
Soit x ∈ R.

L’intégrale
∫ +∞

0

tx−1e−t dt converge si, et seulement si, x > 0.

dém. :
La fonction g : t 7→ tx−1e−t est définie et continue par morceaux sur ]0,+∞[.
Cette fonction est positive donc∫ +∞

0

tx−1e−t dt converge si, et seulement si, g est intégrable sur ]0,+∞[

Quand t→ +∞, t2g(t) = t2tx−1e−t → 0 donc

g est intégrable sur [1,+∞[ pour tout x ∈ R

Quand t→ 0+, g(t) ∼ tx−1 = 1/t1−x donc

g est intégrable sur ]0, 1] si, et seulement si, 1− x < 1 i.e. x > 0

�

Définition
Pour tout x > 0, on pose

Γ(x) =

∫ +∞

0

tx−1e−t dt

Exemple Γ(1) =

∫ +∞

0

e−t dt = 1.

Proposition
∀x > 0,Γ(x+ 1) = xΓ(x).

dém. :

On a Γ(x+ 1) =

∫ +∞

0

txe−t dt

On procède à une intégration par parties avec

u(t) = tx et v(t) = −e−t

Les fonctions u et v sont de classe C1 et uv converge en 0+ et +∞.
Par intégration par parties impropre

Γ(x+ 1) =
[
−txe−t

]+∞
0

+

∫ +∞

0

xtxe−t dt

Ainsi Γ(x+ 1) = xΓ(x)
�
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Exemple Par récurrence
∀n ∈ N?, Γ(n) = (n− 1)!

21.4.3.2 Continuité

Théorème
La fonction Γ est définie et continue sur R+?.

dém. :
Considérons g(x, t) = tx−1e−t définie sur R+? × ]0,+∞[.
∀x > 0, t 7→ g(x, t) est continue par morceaux sur ]0,+∞[.
∀t ∈ ]0,+∞[, x 7→ g(x, t) est continue sur R+?.
Soit [a, b] ⊂ R+?.
Pour tout x ∈ [a, b], si t > 1, tx−1 6 tb−1 et si t 6 1, tx−1 6 ta−1. Dans les deux cas

tx−1 6 ta−1 + tb−1

Par suite
|g(x, t)| 6 (ta−1 + tb−1)e−t = ϕa,b(t)

avec ϕa,b intégrable sur ]0,+∞[ car somme de deux fonctions intégrables.
La fonction Γ est continue sur [a, b] et puisque ceci vaut pour tout [a, b] ⊂ R+?, Γ est continue sur R+?.
�
21.4.3.3 Dérivabilité

Lemme
∀x > 0,∀n ∈ N?, t 7→ (ln t)ntx−1e−t est intégrable sur ]0,+∞[.

dém. :
La fonction h : t 7→ (ln t)ntx−1e−t est continue par morceaux sur ]0,+∞[.
Quand t→ +∞, t2h(t) = t2(ln t)ntx−1e−t → 0.
Quand t→ 0+, pour ρ ∈ ]0, x[, t1−ρh(t) ∼ (ln t)ntx−ρ → 0 avec 1− ρ < 1
�

Théorème
La fonction Γ est de classe C∞ sur R+? et

∀n ∈ N,Γ(n)(x) =

∫ +∞

0

(ln t)ntx−1e−t dt

dém. :
g(x, t) = tx−1e−t = e(x−1) ln te−t.

La fonction x 7→ g(x, t) est de classe C∞ donc, la fonction g admet une dérivée partielle
∂ng

∂xn
pour tout

n ∈ N? et
∂ng

∂xn
(x, t) = (ln t)ntx−1e−t

La fonction
∂ng

∂xn
est continue sur R+? × ]0,+∞[.

Pour tout [a, b] ⊂ ]0,+∞[ et tout (x, t) ∈ [a, b]× ]0,+∞[,∣∣∣∣∂ng∂xn
(x, t)

∣∣∣∣ 6 (ln t)n(ta−1 + tb−1)e−t = ϕn,a,b(t)
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avec ϕn,a,b intégrable sur ]0,+∞[.
Par domination Γ est de classe C∞ sur [a, b] et puisque ceci vaut pour [a, b] ⊂ R+?, Γ est de classe C∞
sur R+?.
�
21.4.3.4 Allure

Le signe de Γ′(x) =

∫ +∞

0

ln(t)tx−1e−t dt est incertain.

En revanche Γ′′(x) =

∫ +∞

0

(ln t)2tx−1e−t dt > 0 en tant qu’intégrale d’une fonction positive, continue

qui n’est pas la fonction nulle.
On en déduit que Γ′ est strictement croissante.
Γ(1) = 1 = Γ(2) donc par théorème de Rolle il existe α ∈ ]0, 1[ tel que Γ′(α) = 0.
Sur ]0, α[, Γ′(x) < 0 et Γ est strictement décroissante.
Sir ]α,+∞[, Γ′(x) > 0 et Γ est strictement croissante.
Numériquement α = 1, 46 à 10−2 près et Γ(α) = 0, 89 à 10−2 près.
Quand x→ 0+

Γ(x+ 1) = xΓ(x) donc Γ(x) =
Γ(x+ 1)

x
∼ 1

x
car Γ(x+ 1)→ Γ(1) = 1.

Quand x→ +∞
Γ est croissante donc la limite de Γ en +∞ existe dans R ∪ {+∞}.
Puisque Γ(n+ 1) = n!→ +∞ on peut conclure Γ(x)→ +∞.
De plus

Γ(x)

x
=
x− 1

x
Γ(x− 1)→ +∞

donc Γ présente une branche parabolique verticale.

http://mp.cpgedupuydelome.fr 503 cbna



21.4. APPLICATIONS

http://mp.cpgedupuydelome.fr 504 cbna



Chapitre 22

Séries entières

On souhaite étudier les fonctions de la forme

x 7→
+∞∑
n=0

anx
n

Ce sont des sommes de séries de fonctions, on étudiera le problème de convergence, on observera leur
régularité et on verra qu’un grand nombre de fonctions usuelles peuvent s’écrire ainsi.

22.1 Convergence des séries entières

22.1.1 Série entière

Définition
On appelle série entière définie par la suite de coefficients (an) ∈ CN, la série des fonctions

un : z ∈ C 7→ anz
n

Par abus, cette série de fonctions
∑

un est notée
∑

anz
n.

L’ensemble D des z ∈ C pour lesquels la série numérique
∑

anz
n converge est appelé do-

maine de convergence de la série entière et la fonction S : D → C définie par

S(z) =

+∞∑
n=0

anz
n

est appelée somme de cette série entière.

Exemple La série entière
∑

anz
n converge en z = 0 et

+∞∑
n=0

an0n = a0.

En effet 00 = 1 et 0n = 0 pour n ∈ N?.

Exemple La série entière
∑

zn converge pour tout z ∈ C tel que |z| < 1 et on a

+∞∑
n=0

zn =
1

1− z
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Exemple La série entière
∑ 1

n!
zn converge pour tout z ∈ C et par définition

+∞∑
n=0

1

n!
zn = ez

Exemple Si à partir d’un certain rang an = 0 alors la série entière
∑

anz
n converge sur C et sa

somme est une fonction polynôme.

Déterminons la forme du domaine de convergence d’une série entière
∑

anz
n.

22.1.2 Rayon de convergence

Lemme
Soit z0 ∈ C tel que la suite (anz

n
0 )n∈N soit bornée.

Pour tout z ∈ C tel que |z| < |z0|, la série numérique
∑

anz
n est absolument convergente.

dém. :
Il existe M ∈ R+ tel que |anzn0 | 6M pour tout n ∈ N.
Pour |z| < |z0|, on peut écrire

|anzn| = |azn0 × (z/z0)
n| 6M

∣∣∣∣ zz0

∣∣∣∣n
Or |z/z0| < 1 donc

∑
|z/z0|n est absolument convergente et par comparaison

∑
anz

n l’est aussi.
�

Définition
On appelle rayon de convergence de la série entière

∑
anz

n, le nombre

R =
déf

sup {r > 0/(anr
n) est borne} ∈ R+ ∪ {+∞}

Exemple Rayon de convergence de
∑

zn.
{r > 0/(rn) est borne} = [0, 1] donc R = 1.

Exemple Rayon de convergence de
∑ 1

n!
zn.

{r > 0/(rn/n!) est borne} = R+ donc R = +∞.

Exemple Rayon de convergence
∑

n!zn.
{r > 0/(anr

n) est borne} = {0} donc R = 0.
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22.1.3 Convergence simple

Théorème
Soit

∑
anz

n une série entière de rayon de convergence R et z ∈ C.

Si |z| < R alors la série
∑

anz
n est absolument convergente.

Si |z| > R alors la série
∑

anz
n diverge grossièrement (plus précisément la suite (anz

n)

n’est même pas bornée).

dém. :
Notons A = {r > 0/(anr

n) est borne} et R = supA.
Si |z| < R alors |z| ne majore pas A et donc il existe r > 0 tel que |z| < r et tel que la suite (anr

n) soit
bornée. En vertu du lemme d’Abel, la série

∑
anz

n est absolument convergente.
Si |z| > R alors |z| /∈ A et donc (anz

n) n’est pas bornée.

�

Corollaire
Soit D le domaine de convergence d’une série entière de rayon de convergence R.
Si R = 0 alors D = {0}.
Si R = +∞ alors D = C.
Si R ∈ ]0,+∞[ alors D(0, R) ⊂ D ⊂ D(0, R) en notant D(0, R) = {z ∈ C/ |z| < R}
Sur le cercle de centre 0 et de rayon R, les natures de

∑
anz

n peuvent être diverses.

Définition
Le disque

D(0, R) = {z ∈ C/ |z| < R}

est appelé disque ouvert de convergence de la série entière.

Remarque Sur ce disque, la série entière converge assurément. Elle peut aussi converger en certains
points du cercle limite.
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22.1.4 Convergence normale

Théorème
Une série entière de rayon de convergence R > 0 converge normalement, et donc uniformé-
ment, sur tout disque fermé de centre 0 et de rayon r < R.

dém. :
Soit

∑
anz

n une série entière de rayon de convergence R > 0.
Cette série entière est par définition la série des fonctions un : z 7→ anz

n

Soit D = D(0, r) = {z ∈ C/ |z| 6 r} avec r < R.
Pour tout z ∈ D, |un(z)| 6 |an| rn.
Or il y a convergence absolue de la série

∑
anr

n donc
∑

un converge normalement sur D.
�

Corollaire
La somme d’une série entière de rayon de convergence R > 0 est continue sur son disque
ouvert de convergence.

dém. :
Par convergence uniforme sur tout compact d’une série de fonctions continues.
�

Exemple La fonction z 7→ ez est continue sur C.

Attention : Il peut ne pas y avoir convergence normale de la série entière sur le disque ouvert de
convergence.

Exemple Considérons la série entière
∑

zn.
Son rayon de convergence est R = 1.
Cependant sup

|z|<1

|zn| = 1 et il n’y a donc pas convergence normale sur D(0, 1) = {z ∈ C/ |z| < 1}.

22.1.5 Calcul du rayon de convergence
Idée :On sait
|z| < R⇒

∑
anz

n converge

|z| > R⇒
∑

anz
n diverge.

Par contraposition :
Si
∑

anz
n converge alors |z| 6 R.

Si
∑

anz
n diverge alors R 6 |z|.

22.1.5.1 Exploitation de la règle de d’Alembert

Rappel :
Soit

∑
un une série numérique à termes non nuls à partir d’un certain rang.

On suppose ∣∣∣∣un+1

un

∣∣∣∣→ ` ∈ R+ ∪ {+∞}
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Si ` < 1 alors
∑

un est absolument convergente.

Si ` > 1 alors
∑

un est grossièrement divergente.

En exploitant ce critère, on peut étudier la convergence de
∑

anz
n et préciser le rayon de conver-

gence R.
Exemple Rayon de convergence de ∑

(−1)
n(n+1)

2 (n− 1)2nzn

Soit z ∈ C.
Posons un(z) = (−1)

n(n+1)
2 (n− 1)2nzn.

Pour z 6= 0 et n > 2, on a un 6= 0.∣∣∣∣un+1(z)

un(z)

∣∣∣∣ =
n

n− 1

2n+1

2n

∣∣∣∣zn+1

zn

∣∣∣∣→ 2 |z|

Si |z| < 1/2 alors
∑

un(z) est absolument convergente.

Si |z| > 1/2 alors
∑

un(z) diverge grossièrement.
On en déduit R = 1/2.

Exemple Rayon de convergence de ∑ 1

(2n)!
zn

Posons un(z) =
1

(2n)!
zn pour z ∈ C?.

∣∣∣∣un+1(z)

un(z)

∣∣∣∣ =
1

(2n+ 2)(2n+ 1)
|z| → 0

Pour tout z ∈ C?,
∑

un(z) est absolument convergente (et aussi pour z = 0 ) donc R = +∞.

Exemple Rayon de convergence de ∑ n− 1

n2 + 1
zn

un(z) =
n+ 1

n2 + 1
zn avec z 6= 0.∣∣∣∣un+1(z)

un(z)

∣∣∣∣ ∼ 1/(n+ 1)

1/n
|z| → |z|.

On en déduit R = 1.

Remarque Plus généralement, soit F ∈ C(X)\ {0}, le rayon de convergence de
∑

F (n)zn vaut 1 car
pour z 6= 0 ∣∣F (n+ 1)zn+1

∣∣
|F (n)zn|

=

∣∣∣∣F (n+ 1)

F (n)

∣∣∣∣ |z| → |z|
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en effet
F (n) =

apn
p + · · ·

bqnq + · · ·
∼ apn

p

bqnq
= λnp−q

donc
F (n+ 1)

F (n)
∼ λ(n+ 1)p−q

λnp−q
→ 1

22.1.5.2 Cas des séries lacunaires

Remarque La série de fonctions
∑

anz
2n peut se comprendre comme une série entière. En effet∑
anz

2n =
∑

bnz
n

avec
b2p = ap et b2p+1 = 0

Le rayon de convergence d’une telle série peut souvent se déterminer par la démarche précédente.

Exemple Rayon de convergence de ∑ (−1)n

n+ 1
z2n+1

Soit z 6= 0.∑ (−1)n

n+ 1
z2n+1 =

∑
un(z) avec un(z) =

(−1)n

n+ 1
z2n+1 6= 0.

∣∣∣∣un+1(z)

un(z)

∣∣∣∣ =
n+ 1

n+ 2
|z|2 → |z|2

Si |z| < 1 alors
∑ (−1)n

n+ 1
z2n+1 est absolument convergente.

Si |z| > 1 alors
∑ (−1)n

n+ 1
z2n+1 est grossièrement divergente.

On en déduit R = 1

Exemple Rayon de convergence de ∑(
2n

n

)
z3n

Posons un(z) =

(
2n

n

)
z3n =

(2n)!

(n!)2
z3n pour z ∈ C?.

∣∣∣∣un+1(z)

un(z)

∣∣∣∣ =
(2n+ 2)(2n+ 1)

(n+ 1)2

∣∣∣∣z3(n+1)

z3n

∣∣∣∣ = 2
2n+ 1

n+ 1
|z|3 → 4 |z|3

On en déduit R = 3
√

1/4.
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Remarque La démarche exploitant le critère de d’Alembert possède deux inconvénients majeurs :
- elle ne possède pas de réciproque ;
- il se peut que le rapport |un+1/un| n’ait pas de limite. . .
Pour déterminer un rayon de convergence, on procède alors généralement par double inégalité comme
on le verra par exemple pour la série entière

∑
sin(n)zn

22.1.5.3 Par comparaison

Soit Ra et Rb les rayons de convergence de deux séries entières
∑

anz
n et

∑
bnz

n.

Théorème
Si an = O(bn) alors Ra > Rb.

dém. :
Soit z ∈ C tel que |z| < Rb. La série

∑
bnz

n est absolument convergente et par comparaison
∑

anz
n

l’est aussi. Puisque
∑

anz
n converge pour tout |z| < Rb, on a nécessairement Rb 6 Ra.

�

Corollaire
1) Si |an| 6 |bn| alors Ra > Rb
2) Si an = o(bn) alors Ra > Rb.
3) Si an ∼ bn alors Ra = Rb.

Exemple Les séries entières
∑

anz
n
∑
|an| zn ont même rayon de convergence.

Exemple Rayon R de convergence de
∑

sin(n)zn.

On a |an| 6 1, or
∑

zn est de rayon de convergence 1, donc R > 1.

De plus (an) ne tend pas vers 0 donc
∑

anz
n diverge pour z = 1 et donc R 6 1.

On peut conclure R = 1.

Remarque Plus généralement, si (an) est bornée et ne tend pas vers 0 alors
∑

anz
n a un rayon de

convergence égal à 1.

22.1.5.4 Rayon de
∑

nanz
n

Théorème
Les séries entières

∑
anz

n et
∑

nanz
n ont même rayon de convergence.

dém. :
Notons R et R′ les deux rayons de convergence de ces séries entières.
Puisque an = o(nan), on a déjà R > R′.
Inversement, soit z ∈ C tel que |z| < R. Introduisons ρ tel que |z| < ρ < R, on a

nanz
n = n (z/ρ)

n
anρ

n = o(anρ
n)
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Or il y a convergence absolue de
∑

anρ
n, donc

∑
nanz

n converge absolument.
Ainsi R′ > R puis il y a égalité.
�

Exemple Montrons que pour tout α ∈ R,
∑

anz
n et

∑
nαanz

n ont même rayon de convergence.

Par récurrence, on obtient aisément l’égalité des rayons de convergence de
∑

anz
n et

∑
nkanz

n

pour k ∈ Z.
En considérant k = bαc, on a nk |an| 6 nα |an| 6 nk+1 |an| ce qui permet de conclure.

22.1.6 Somme et produit de séries entières

22.1.6.1 Somme

Définition
On appelle somme des séries entières

∑
anz

n et
∑

bnz
n la série entière

∑
(an + bn)zn.

Théorème
Si Ra et Rb sont les rayons de convergence des séries entières

∑
anz

n et
∑

bnz
n alors le

rayon de convergence R de la série entière somme
∑

(an + bn)zn vérifie

R > min(Ra, Rb)

De plus, pour |z| < min(Ra, Rb),

+∞∑
n=0

(an + bn)zn =

+∞∑
n=0

anz
n +

+∞∑
n=0

bnz
n

dém. :
On remarque anzn + bnz

n = (an + bn)zn.
Soit z ∈ C tel que |z| < min(Ra, Rb).
Les séries numériques

∑
anz

n et
∑

bnz
n convergent absolument donc par somme la série numérique∑

(an + bn)zn converge aussi et de plus

+∞∑
n=0

(an + bn)zn =

+∞∑
n=0

anz
n +

+∞∑
n=0

bnz
n

Puisque
∑

(an + bn)zn converge pour tout |z| < min(Ra, Rb), on a

min(Ra, Rb) 6 R

�

Remarque Il est possible que R > min(Ra, Rb), par exemple quand bn = −an.
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Proposition
Si Ra 6= Rb alors R = min(Ra, Rb).

dém. :
Quitte à échanger supposons Ra < Rb.
On sait déjà que R > Ra.
Pour Ra < |z| < Rb,

∑
anz

n diverge alors que
∑

bnz
n converge donc

∑
(an + bn)zn diverge.

On en déduit R = Ra = min(Ra, Rb).
�

Exemple Soit
∑

anz
n une série entière de rayon de convergence R.

Considérons
∑

a2pz
2p et

∑
a2p+1z

2p+1 de rayons de convergence R′ et R′′.
Montrons

R = min(R′, R′′)

Remarquons∑
a2pz

2p =
∑

bnz
n avec b2p = a2p et b2p+1 = 0∑

a2p+1z
2p+1 =

∑
cnz

n avec c2p = 0 et c2p+1 = a2p+1

D’une part an = bn + cn pour tout n ∈ N donc
∑

anz
n est la somme des séries entières

∑
a2pz

2p et∑
a2p+1z

2p+1 puis R > min(R′, R′′).
D’autre part, |bn| , |cn| 6 |an| donc R′, R′′ > R puis min(R′, R′′) > R.
Finalement R = min(R′, R′′).

22.1.6.2 Produit

Définition
On appelle produit des séries entières

∑
anz

n et
∑

bnz
n la série entière

∑
cnz

n avec

cn =

n∑
k=0

akbn−k.

Théorème
Si Ra et Rb sont les rayons de convergence des séries entières

∑
anz

n et
∑

bnz
n alors le

rayon de convergence R de la série entière produit
∑

cnz
n vérifie

R > min(Ra, Rb)

De plus, pour |z| < min(Ra, Rb), on a

+∞∑
n=0

cnz
n =

(
+∞∑
n=0

anz
n

)(
+∞∑
n=0

bnz
n

)

dém. :
On remarque

cnz
n =

n∑
k=0

(akz
k)(bn−kz

n−k)
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Ainsi la série numérique
∑

cnz
n est le produit de Cauchy des séries numériques

∑
anz

n et
∑

bnz
n.

Pour z ∈ C tel que |z| < min(Ra, Rb),
∑

anz
n et

∑
bnz

n sont absolument convergentes donc par

produit de Cauchy
∑

cnz
n est absolument convergente et de plus

+∞∑
n=0

cnz
n =

(
+∞∑
n=0

anz
n

)(
+∞∑
n=0

bnz
n

)

Puisque
∑

cnz
n converge pour tout |z| < min(Ra, Rb), on a min(Ra, Rb) 6 R.

�

Exemple Soit
∑

anz
n une série entière de rayon de convergence R > 1.

Etudions la série entière
∑

Snz
n avec Sn =

n∑
k=0

ak.

Pour tout n ∈ N, Sn =

n∑
k=0

ak × 1 donc
∑

Snz
n est le produit des séries entières

∑
anz

n et
∑

zn.

Par suite
∑

Snz
n est de rayon de convergence > min(R, 1) = 1 et pour tout z ∈ C tel que |z| < 1,

+∞∑
n=0

Snz
n =

1

1− z

+∞∑
n=0

anz
n

22.2 Série entière d’une variable réelle

Désormais, nous étudions z 7→
+∞∑
n=0

anz
n pour z ∈ R, on préfère alors noter la variable x (ou t ).

22.2.1 Particularisation

Soit
∑

anx
n une série entière de rayon de convergence R > 0.

Pour tout x ∈ ]−R,R[,
∑

anx
n converge absolument.

Pour tout |x| > R :
∑

anx
n diverge grossièrement.

Pour x = R ou x = −R : ça dépend.

Définition
L’intervalle ]−R,R[ est appelé intervalle ouvert de convergence de la série

∑
anx

n.

Définition
L’ensemble I des x pour lesquels la série numérique converge vérifie

]−R,R[ ⊂ I ⊂ [−R,R]

on l’appelle intervalle de convergence de la série entière étudiée.

Théorème
La série entière

∑
anx

n converge normalement sur tout segment inclus dans ]−R,R[.
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dém. :
Car

∑
anz

n converge normalement sur tout disque fermé inclus dans le disque ouvert D(0, R).
�

Corollaire

La fonction S : x 7→
+∞∑
n=0

anx
n est continue sur ]−R,R[.

Exemple Etudions

S : x 7→
+∞∑
n=1

(−1)n−1

2n+ 1
xn

S est une série entière de rayon de convergence R = 1.
S est donc assurément définie et continue sur ]−1, 1[.
Etude en x = −1∑ (−1)n−1

2n+ 1
(−1)n =

∑ −1

2n+ 1
diverge.

S n’est pas définie en −1.
Etude en x = 1∑ (−1)n−1

2n+ 1
1n =

∑ (−1)n−1

2n+ 1
est une série alternée convergente en vertu du critère spécial.

S est définie en 1.
Continuité en 1

Considérons un : [0, 1]→ R définie par un(x) =
(−1)n−1

2n+ 1
xn avec n > 1.

Les fonctions un sont continues.∑
un(x) converge par le critère spécial.

|Rn(x)| 6 |un+1(x)| 6 1

2n+ 1
xn+1 6

1

2n+ 1
→ 0

Il y a convergence uniforme sur [0, 1] donc S est continue sur [0, 1].

22.2.2 Intégration

Définition
On appelle série entière primitive de

∑
anx

n la série entière
∑ an

n+ 1
xn+1.

Proposition∑
anx

n et
∑ an

n+ 1
xn+1 ont même rayon de convergence.

dém. :
Le rayon de convergence de

∑ an
n+ 1

xn+1 est le même que celui de

∑
(n+ 1)× an

n+ 1
xn+1 =

∑
anx

n+1

qui est aussi celui de
∑

anx
n.

�
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Théorème
Si
∑

anx
n est une série entière de rayon de convergence R > 0 alors

x 7→
+∞∑
n=0

an
n+ 1

xn+1

est sur ]−R,R[ la primitive s’annulant en 0 de

x 7→
+∞∑
n=0

anx
n

dém. :

Sur ]−R,R[, la primitive s’annulant en 0 de la fonction continue x 7→
+∞∑
n=0

anx
n est

x 7→
∫ x

0

+∞∑
n=0

ant
n dt

Pour tout x ∈ ]−R,R[, la série entière converge uniformément sur le segment d’extrémités 0 et x. On
peut donc intégrer terme à terme et affirmer∫ x

0

+∞∑
n=0

ant
n dt =

+∞∑
n=0

∫ x

0

ant
n dt =

+∞∑
n=0

an
n+ 1

xn+1

�

Exemple On sait que pour x ∈ ]−1, 1[

+∞∑
n=0

xn =
1

1− x

Par intégration de série entière, on obtient

∀x ∈ ]−1, 1[ ,

+∞∑
n=0

xn+1

n+ 1
=

∫ x

0

dt

1− t
= − ln(1− x)

On peut retenir la formule

∀x ∈ ]−1, 1[ ,− ln(1− x) =

+∞∑
n=1

xn

n

22.2.3 Dérivation

Définition
On appelle série entière dérivée d’une série entière

∑
anx

n la série entière∑
n>1

nanx
n−1 =

∑
(n+ 1)an+1x

n
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Proposition∑
anx

n et
∑

n>1
nanx

n−1 ont même rayon de convergence.

dém. :∑
anx

n a le rayon de convergence de
∑

nanx
n qui est aussi celui de

∑
n>1

nanx
n−1

�

Proposition

Si
∑

anx
n est une série entière de rayon de convergence R > 0 alors sa somme S : x 7→

+∞∑
n=0

anx
n

est de classe C1 sur ]−R,R[ et

∀x ∈ ]−R,R[ , S′(x) =

+∞∑
n=1

nanx
n−1 =

+∞∑
n=0

(n+ 1)an+1x
n

dém. :
Introduisons un : x 7→ anx

n.
Les fonctions un sont de classe C1,

∑
un converge simplement sur ]−R,R[ et

∑
u′n converge norma-

lement sur tout segment inclus dans ]−R,R[ car la série entière dérivée a pour rayon de convergence R.

�

Théorème
Si
∑

anx
n est une série entière de rayon de convergence R > 0 alors sa somme S : x 7→

+∞∑
n=0

anx
n est de classe C∞ sur ]−R,R[ et ses dérivées successives s’obtiennent en dérivant

terme à terme :

∀p ∈ N,∀x ∈ ]−R,R[ , S(p)(x) =

+∞∑
n=p

n(n− 1) . . . (n− p+ 1)anx
n−p

ou encore

∀p ∈ N,∀x ∈ ]−R,R[ , S(p)(x) =

+∞∑
n=0

(n+ p)(n+ p− 1) . . . (n+ 1)an+px
n

Attention : En ±R, on ne peut rien dire à partir de la seule connaissance du rayon de convergence.
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22.2.4 Expression des coefficients d’une série entière

Théorème
Si
∑

anx
n est une série entière de rayon de convergence R > 0 et de somme S alors

∀n ∈ N, an =
S(n)(0)

n!

dém. :
S est de classe C∞ sur ]−R,R[ et

S(p)(x) =

+∞∑
n=0

(n+ p)(n+ p− 1) . . . (n+ 1)an+px
n

En particularisant en x = 0, on obtient S(p)(0) = p!ap.
�

Corollaire
Soit

∑
anx

n et
∑

bnx
n sont deux séries entières de rayons de convergence Ra, Rb > 0.

S’il existe un voisinage de 0 sur lequel

+∞∑
n=0

anx
n =

+∞∑
n=0

bnx
n

alors
∀n ∈ N, an = bn

dém. :

Notons Sa : x 7→
+∞∑
n=0

anx
n et Sb : x 7→

+∞∑
n=0

bnx
n.

Par hypothèse, il existe r > 0 tel que

∀x ∈ ]−r, r[ , Sa(x) = Sb(x)

On a alors
∀p ∈ N,∀x ∈ ]−r, r[ , S(p)

a (x) = S
(p)
b (x)

donc

ap =
S

(p)
a (0)

p!
=
S

(p)
b (0)

p!
= bp

�

Exemple Soit
∑

anx
n une série entière de rayon de convergence R > 0 et de somme

S : x ∈ ]−R,R[ 7→
+∞∑
n=0

anx
n
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Montrons
S est paire si, et seulement si, ∀p ∈ N, a2p+1 = 0

(⇐ ) Supposons ∀p ∈ N, a2p+1 = 0.

S(x) =

+∞∑
n=0

anx
n =

+∞∑
p=0

a2px
2p donc S est une fonction paire définie sur ]−R,R[ ou [−R,R].

(⇒ ) Supposons S paire.

Pour tout x ∈ ]−R,R[, S(x) = S(−x) donc
+∞∑
n=0

anx
n =

+∞∑
n=0

(−1)nanx
n.

Par identification des coefficients de séries entières de rayons de convergence > 0, on a pour tout n ∈ N,
an = (−1)nan et donc

∀p ∈ N, a2p+1 = 0

De même, on montre :
S est impaire si, et seulement si, ∀p ∈ N, a2p = 0

22.3 Développements en série entière
I désigne un intervalle de R qui est voisinage de 0.
Soit r ∈ R+? ∪ {+∞} tel que ]−r, r[ ⊂ I .
22.3.1 Fonctions développables en série entière

Définition
On dit que f : I → C est développable en série entière sur ]−r, r[ s’il existe une série entière∑

anx
n telle que

∀x ∈ ]−r, r[ ,
∑

anx
n converge et f(x) =

+∞∑
n=0

anx
n

Remarque Cette série entière est nécessairement de rayon de convergence R > r

Exemple Considérons f : x 7→ 1

1− x
définie sur ]−∞, 1[

f est développable en série entière sur ]−1, 1[ car on sait

1

1− x
=

+∞∑
n=0

xn

et donc f(x) apparaît sur ]−1, 1[ comme égale à la somme d’une série entière convergente.

Exemple Considérons f : x 7→ 1

1 + x2
définie sur R.
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f est développable en série entière sur ]−1, 1[ car

1

1 + x2
=

u=−x2

1

1− u
=
|u|<1

+∞∑
n=0

un =

+∞∑
n=0

(−1)nx2n

et donc f(x) apparaît sur ]−1, 1[ comme égale à la somme d’une série entière convergente.

Exemple x 7→ ex est développable en série entière sur R avec

ex =

+∞∑
n=0

1

n!
xn

Définition
On dit que f : I → C est développable en série entière en 0 s’il existe r > 0 telle que f est
développable en série entière sur ]−r, r[.

Exemple Les fonctions x 7→ 1

1− x
,

1

1 + x2
, ex sont développables en série entière en 0.

22.3.2 Série de Taylor

Définition
On appelle série de Taylor (en 0) d’une fonction f : I → C de classe C∞ la série entière

∑ f (n)(0)

n!
xn

Théorème
Si f : I → C est développable en série entière sur ]−r, r[ avec

∀x ∈ ]−r, r[ , f(x) =

+∞∑
n=0

anx
n

alors f est de classe C∞ sur ]−r, r[ et

∀n ∈ N, an =
f (n)(0)

n!

Autrement dit, il n’y a qu’une seule série entière qui puisse correspondre à f , à savoir sa série
de Taylor.

f(x) =

+∞∑
n=0

f (n)(0)

n!
xn

http://mp.cpgedupuydelome.fr 520 cbna



CHAPITRE 22. SÉRIES ENTIÈRES

dém. :
Il existe une série entière

∑
anx

n de rayon de convergence R > r tel que sur ]−r, r[

f(x) =

+∞∑
n=0

anx
n

Considérons alors la fonction S : x 7→
+∞∑
n=0

anx
n.

La fonction S est définie et de classe C∞ sur ]−R,R[ donc sur ]−r, r[
Puisque f et S coïncident sur ]−r, r[, f est de classe C∞ sur ]−r, r[.
De plus, pour tout n ∈ N,

an =
S(n)(0)

n!
=
f (n)(0)

n!
donc la série entière introduite n’est autre que la série de Taylor de f .
�

Remarque Une fonction qui n’est pas de classe C∞ sur ]−r, r[ ne peut y être développable en série
entière.

Remarque Si f est de classe C∞, on peut étudier si f est développable en série entière en vérifiant si
n∑
k=0

f (k)(0)

k!
xk −−−−−→

n→+∞
f(x)

On peut pour cela exploiter l’inégalité de Taylor-Lagrange ou l’égalité de Taylor avec reste intégral.

Exemple Soit f : [−1, 1]→ C de classe C∞ et vérifiant∥∥∥f (n)
∥∥∥
∞
6MKnn!

avec M ∈ R+ et K > 0. Montrons que f est développable en série entière en 0.
Pour tout x ∈ [−1, 1],∣∣∣∣∣f(x)−

n∑
k=0

f (k)(0)

k!
xk

∣∣∣∣∣ 6
∥∥f (n+1)

∥∥
∞

(n+ 1)!

∣∣xn+1
∣∣ 6 ∥∥f (n+1)

∥∥
∞

∣∣xn+1
∣∣

(n+ 1)!
6MKn+1 |x|n+1

Pour |x| < r = min(1, 1/|K|) on a (K |x|)n+1 → 0 et donc
n∑
k=0

f (k)(0)

k!
xk → f(x)

Ainsi la série
∑ f (n)(0)

n!
xn converge et

f(x) =

+∞∑
n=0

f (n)(0)

n!
xn

La fonction f s’écrit sur ]−r, r[ comme égale à la somme d’une série entière convergente, elle est donc
développable en série entière sur ]−r, r[.
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Attention : Il existe des fonctions de classe C∞ qui ne sont pas développables en série entière !

22.3.3 Opérations sur les fonctions développables en série entière

Théorème
Si f, g : I → C sont développables en série entière sur ]−r, r[ alors pour tout λ ∈ C, λf , f +g
et fg sont développables en série entière sur ]−r, r[.

dém. :
Il existe des séries entières

∑
anx

n et
∑

bnx
n de rayons de convergence Ra, Rb > r telles que

sur ]−r, r[,

f(x) =

+∞∑
n=0

anx
n et g(x) =

+∞∑
n=0

bnx
n

Pour tout x ∈ ]−r, r[, on a

(λf)(x) = λf(x) = λ

+∞∑
n=0

anx
n =

+∞∑
n=0

λanx
n

La fonction λf est sur ]−r, r[ somme d’une série entière convergente, elle est donc développable en série
entière.
Pour tout x ∈ ]−r, r[, on a

(f + g)(x) = f(x) + g(x) =

+∞∑
n=0

anx
n +

+∞∑
n=0

bnx
n =

+∞∑
n=0

(an + bn)xn

La fonction f + g est sur ]−r, r[ somme d’une série entière convergente, elle est donc développable en
série entière.
Enfin, par produit de Cauchy de séries absolument convergentes

(fg)(x) = f(x)g(x) =

(
+∞∑
n=0

anx
n

)(
+∞∑
n=0

bnx
n

)
=

+∞∑
n=0

(
n∑
k=0

akbn−k

)
xn

La fonction fg est sur ]−r, r[ somme d’une série entière convergente, elle est donc développable en série
entière.
�

Exemple Pour tout x ∈ R, ex =

+∞∑
n=0

1

n!
xn et e−x =

+∞∑
n=0

(−1)n

n!
xn donc les fonctions ch et sh sont

développables en série entière sur R avec

chx =

+∞∑
n=0

1

(2n)!
x2n et shx =

+∞∑
n=0

1

(2n+ 1)!
x2n+1

Théorème
Si f : I → C est développable en série entière sur ]−r, r[ alors f̄ , Re(f) et Im(f) l’est aussi.
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dém. :

Si f(x) =

+∞∑
n=0

anx
n sur ]−r, r[ alors f(x) =

+∞∑
n=0

anx
n, Re(f(x)) =

+∞∑
n=0

Re(an)xn, Im(f(x)) =

+∞∑
n=0

Im(an)xn.

Les fonction s f̄ , Re(f) et Im(f) sont donc développables en série entière sur ]−r, r[ car sommes de
séries entières convergentes sur cet intervalle.
�

Exemple Pour tout x ∈ R,

eix =

+∞∑
n=0

in

n!
xn

donc les fonctions cos et sin sont développables en série entière sur R avec

cosx =

+∞∑
n=0

(−1)n

(2n)!
x2n et sinx =

+∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1

Théorème
Si f : I → C est développable en série entière sur ]−r, r[ alors ses dérivées successives le sont
aussi.

dém. :

Si f(x) =

+∞∑
n=0

anx
n sur ]−r, r[ alors par dérivation de la somme d’une série entière

f ′(x) =

+∞∑
n=0

(n+ 1)an+1x
n

et donc f ′ est développable en série entière sur ]−r, r[. Il en est de même de f ′′, . . . , f (n), . . ..
�

Exemple On sait

∀x ∈ ]−1, 1[ ,
1

1− x
=

+∞∑
n=0

xn

Par dérivation d’un développement en série entière

∀x ∈ ]−1, 1[ ,
1

(1− x)2
=

d

dx

(
1

1− x

)
=

+∞∑
n=0

(n+ 1)xn
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Théorème
Si f : I → C est développable en série entière sur ]−r, r[ avec

f(x) =

+∞∑
n=0

anx
n

alors les primitives F de f le sont aussi avec

F (x) = F (0) +

+∞∑
n=0

an
n+ 1

xn+1

dém. :

On sait que x 7→
+∞∑
n=0

an
n+ 1

xn+1 est la primitive s’annulant en 0 de x 7→
+∞∑
n=0

anx
n donc F ne diffère de

cette fonction sur ]−r, r[ que de la valeur F (0).
�

Exemple x 7→ ln(1 + x) est définie sur ]−1,+∞[ et

d

dx
(ln(1 + x)) =

1

1 + x

Or
1

1 + x
=

+∞∑
n=0

(−1)nxn sur ]−1, 1[

Par intégration d’un développement en série entière, on a

ln(1 + x) = ln(1) +

+∞∑
n=0

(−1)n

n+ 1
xn+1 =

+∞∑
n=1

(−1)n−1

n
xn sur ]−1, 1[

Par une étude de série de fonctions, on peut établir la définition et la continuité du second membre en
x = 1. Cela permet de prolonger l’identité en x = 1.

Exemple x 7→ arctanx est définie sur R et

d

dx
(arctanx) =

1

1 + x2
=

+∞∑
n=0

(−1)nx2n sur ]−1, 1[

Par intégration d’un développement en série entière, on obtient

arctanx =

+∞∑
n=0

(−1)n

2n+ 1
x2n+1 sur ]−1, 1[

Comme ci-dessus, on peut prolonger cette identité à x = 1 et x = −1.
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22.3.4 Développement du binôme (1 + x)α

Théorème
Pour tout α ∈ R, la fonction x 7→ (1 + x)α est développable en série entière sur ]−1, 1[ et

(1 + x)α =

+∞∑
n=0

α(α− 1) . . . (α− n+ 1)

n!
xn

dém. :
Posons

an =
α(α− 1) . . . (α− n+ 1)

n!

et étudions la série entière
∑

anx
n

On a

a0 = 1, a1 = α, a2 =
α(α− 1)

2
, . . . , an+1 =

α− n
n+ 1

an

Déterminons le rayon de convergence R de la série entière
∑

anx
n.

Cas α ∈ N
Pour n > α, an = 0 et donc R = +∞ (polynôme)
Cas α /∈ N
Pour tout n ∈ N, an 6= 0
Pour x ∈ R?, considérons un = anx

n

et
∣∣∣∣un+1

un

∣∣∣∣ =
|α− n|
n+ 1

|x| → |x| donc R = 1.

Dans les deux cas, la fonction

S : x 7→
+∞∑
n=0

anx
n

est définie et de classe C∞ sur ]−1, 1[ et

S′(x) =

+∞∑
n=1

nanx
n−1 =

+∞∑
n=0

(n+ 1)an+1x
n

donc

S′(x) =

+∞∑
n=0

(n+ 1)an+1x
n =

+∞∑
n=0

(α− n)anx
n

puis

S′(x) = α

+∞∑
n=0

anx
n − x

+∞∑
n=1

nanx
n−1 = αS(x)− xS′(x)

La fonction S est donc solution sur ]−1, 1[ de l’équation différentielle

(1 + x)′ + αy = 0

de solution générale y(x) = λ(1 + x)α.
Il existe donc λ ∈ R tel que pour tout x ∈ ]−1, 1[

S(x) = λ(1 + x)α
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Or λ = S(0) = a0 = 1 donc
S(x) = (1 + x)α

�

Exemple Cas α ∈ N
Si α = p ∈ N

(1 + x)p =

+∞∑
k=0

p(p− 1) . . . (p− k + 1)

k!
xk =

p∑
k=0

(
p

k

)
xk

On retrouve la formule du binôme.

Exemple Cas α ∈ Z\N.
On écrit α = −(p+ 1) avec p ∈ N

1

(1 + x)p+1
=

+∞∑
n=0

(−1)n
(p+ 1)(p+ 2) . . . (p+ n)

n!
xn =

+∞∑
n=0

(−1)n

(
n+ p

n

)
xn

Exemple Cas α = −1/2.
1√

1 + x
=

+∞∑
n=0

(−1)n
(2n)!

(2nn!)2
xn

22.3.5 Calcul de développements en série entière
22.3.5.1 Cas des fonctions rationnelles

Exemple Soit a ∈ C?. La fonction x 7→ 1

x− a
est développable en série entière sur ]−r, r[ avec

r = |a|.
En effet, pour |x| < |a|,

1

x− a
= −1

a

1

1− x/a
=

+∞∑
n=0

−1

an+1
xn

Exemple Soit a ∈ C?. La fonction x 7→ 1

(x− a)2
est développable en série entière sur ]−r, r[ avec

r = |a|.
En effet, en dérivant le développement précédent

1

(x− a)2
=

+∞∑
n=0

n+ 1

an+2
xn

Remarque Plus généralement, et par dérivations successives, on peut former le développement de
1/(x− a)p.

http://mp.cpgedupuydelome.fr 526 cbna



CHAPITRE 22. SÉRIES ENTIÈRES

Exemple Formons le développement en série entière en 0 de

f : x 7→ 1

(x− 1)2(x+ 2)

La partie entière de f est nulle, 1 est pôle double et −2 est pôle simple. La décomposition en éléments
simples de f est alors de la forme

f(x) =
1

(x− 1)2(x+ 2)
=

a

x+ 2
+

b

x− 1
+

c

(x− 1)2

avec

a =
1

(x− 1)2

∣∣∣∣
x=−2

=
1

9
, c =

1

(x+ 2)

∣∣∣∣
x=1

=
1

3
et b =

(
1

(x+ 2)

)′∣∣∣∣∣
x=1

= −1

9

Sur ]−1, 1[,

f(x) =
1

18

1

1 + x
2

+
1

9

1

1− x
+

1

3

1

(1− x)2
=

+∞∑
n=0

(
(−1)n

18.2n
+

3n+ 4

9

)
xn

Exemple Formons le développement en série entière en 0 de

f : x 7→ 1

x2 + x+ 1

Pour x ∈ ]−1, 1[,

f(x) =
1− x
1− x3

=

+∞∑
n=0

(1− x)x3n =

+∞∑
n=0

anx
n

avec a3n = 1, a3n+1 = −1 et a3n+2 = 0.

22.3.5.2 Calcul par dérivation puis intégration

Exemple Formons le développement en série entière en 0 de

f : x 7→ ln(1 + x+ x2)

On a

f ′(x) =
1 + 2x

1 + x+ x2
=

(1 + 2x)(1− x)

1− x3
=

1 + x− 2x2

1− x3
= (1 + x− 2x2)

+∞∑
n=0

x3n

pour |x| < 1.
Ainsi

f ′(x) =

+∞∑
n=0

x3n + x3n+1 − 2x3n+2 =

+∞∑
n=0

anx
n

avec a3n = 1, a3n+1 = 1 et a3n+2 = −2.
Par intégration d’un développement en série entière

f(x) = f(0) +

+∞∑
n=0

an
n+ 1

xn+1 =

+∞∑
n=0

an
n+ 1

xn+1
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Exemple Formons le développement en série entière en 0 de la fonction arcsin.

(arcsinx)′ =
1√

1− x2
=

+∞∑
n=0

α(α− 1) . . . (α− n+ 1)

n!
(−x2)n

pour x ∈ ]−1, 1[ et α = 1/2.

α(α− 1) . . . (α− n+ 1)

n!
=

(
− 1

2

) (
− 3

2

)
· · ·
(
− 2n−1

2

)
n!

= (−1)n
(2n)!

(2nn!)2

donc (arcsinx)′ =

+∞∑
n=0

(2n)!

(2nn!)2
x2n puis par intégration d’un développement en série entière

arcsinx =

+∞∑
n=0

(2n)!

(2nn!)2

x2n+1

2n+ 1

On peut aussi former le développement en série entière de la fonction arccos via
arccosx = π/2− arcsinx.

22.3.5.3 Calcul en exploitant une équation différentielle

Exemple Formons le développement en série entière en 0 de

f : x 7→ arcsinx√
1− x2

Les fonctions x 7→ 1/
√

1− x2 et x 7→ arcsinx sont développables en série entière sur ]−1, 1[ donc f
l’est aussi par produit. On pourrait calculer ce développement en procédant à un produit, mais
l’expression finale ne serait pas très explicite. On va plutôt calculer ce développement en exploitant une
équation différentielle vérifiée par f . La fonction f est dérivable sur ]−1, 1[ et

f ′(x) =
1

1− x2
+

x arcsinx

(1− x2)3/2

Ainsi, f vérifie l’équation différentielle

(1− x2)y′ − xy = 1

La fonction f étant impaire, son développement en série entière sur ]−1, 1[ peut s’écrire

f(x) =

+∞∑
n=0

anx
2n+1

Par dérivation de série entière sur ]−1, 1[, on peut écrire

f ′(x) =

+∞∑
n=0

(2n+ 1)anx
2n
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La relation (1− x2)f ′(x)− xf(x) = 1 donne alors

a0 +

+∞∑
n=1

((2n+ 3)an+1 − (2n+ 2)an)x2n+2 = 1

Par unicité des coefficients d’un développement en série entière

a0 = 1 et ∀n > 1, an+1 =
2n+ 2

2n+ 3
an

Ainsi

an+1 =
2n

2n+ 1

2n− 2

2n− 1
· · · 2

3
a0 =

(2nn!)2

(2n+ 1)!

Finalement

f(x) =

+∞∑
n=0

(2nn!)2

(2n+ 1)!
x2n+1

22.4 Applications

22.4.1 Régularité d’un prolongement continu

Exemple Soit f : R? → R définie par f(x) =
ex − 1

x
. Prolongeons f en 0.

Quand x→ 0, ex = 1 + x+ o(x) donc

f(x) =
x+ o(x)

x
→ 1

On peut prolonger f par continuité en 1 en posant f(0) = 1.
Montrer que la fonction f ainsi prolongée est de classe C∞ sur R.
Pour tout x ∈ R,

ex − 1 =

+∞∑
n=1

1

n!
xn

Pour tout x ∈ R?,
ex − 1

x
=

+∞∑
n=1

1

n!
xn−1 =

+∞∑
n=0

1

(n+ 1)!
xn

puis pour tout x ∈ R,

f(x) =
+∞∑
n=0

1

(n+ 1)!
xn

Ainsi f est développable en série entière sur R et c’est donc une fonction de classe C∞.
De plus

∀n ∈ N, f (n)(0) =
1

n+ 1

car par série de Taylor
f (n)(0)

n!
=

1

(n+ 1)!
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Exemple De même, on obtient que la fonction sinus cardinal est de classe C∞ sur R.

Remarque On en déduit que la fonction x 7→ sinx

ex − 1
se prolonge en une fonction de classe C∞ car

sinx

ex − 1
=

sinx

x

x

ex − 1

est produit des deux fonctions x 7→ x

ex − 1
et x 7→ sinx

x
qui se prolongent en des fonctions de

classe C∞.

22.4.2 Calcul de sommes

Exemple Calcul de
+∞∑
n=0

(−1)nx2n+1

(n+ 1)!
.

On a immédiatement R = +∞.
Pour x ∈ R, par décalage d’indice

S(x) =

+∞∑
n=0

(−1)nx2n+1

(n+ 1)!
=

+∞∑
n=1

(−1)n−1

n!
x2n−1

donc

xS(x) =

+∞∑
n=1

(−1)n−1

n!
x2n = 1−

+∞∑
n=0

(−1)n

n!

(
x2
)n

Finalement

S(x) =
1− e−x

2

x
pour x 6= 0 et S(0) = 0

Exemple Calcul de
+∞∑
n=0

1

(2n)!
xn.

On a immédiatement R = +∞.
Si x > 0 alors

+∞∑
n=0

1

(2n)!
xn =

+∞∑
n=0

1

(2n)!

√
x

2n
= ch
√
x

Si x 6 0 alors

+∞∑
n=0

1

(2n)!
xn =

+∞∑
n=0

(−1)n

(2n)!
|x|n =

+∞∑
n=0

(−1)n

(2n)!

√
|x|

2n
= cos

√
|x|
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Exemple Calcul de
+∞∑
n=2

(−1)n

n2 − 1
xn.

On a immédiatement R = 1.
Puisque la série converge en x = 1 et x = −1, l’intervalle de convergence est [−1, 1]
Par décomposition en éléments simples

1

n2 − 1
=

1

2

(
1

n− 1
− 1

n+ 1

)
Pour x ∈ ]−1, 1[,

+∞∑
n=2

(−1)nxn

n− 1
=

+∞∑
n=1

(−1)n−1

n
xn+1 = x ln(1 + x)

Pour x ∈ ]−1, 1[ et x 6= 0,

+∞∑
n=2

(−1)nxn

n+ 1
=

1

x

+∞∑
n=3

(−1)n−1

n
xn =

1

x

(
ln(1 + x)− x+

1

2
x2

)
Ainsi, pour x ∈ ]−1, 1[ et x 6= 0,

+∞∑
n=2

(−1)n

n2 − 1
xn =

1

2

(
x− 1

x

)
ln(1 + x) +

1

2
− 1

4
x

Pour x = 0, la somme est nulle (car le coefficient constant est nul)
Etude en x = ±1

Posons un(x) =
(−1)n

n2 − 1
xn. Les fonctions un : [−1, 1]→ R sont continues et ‖un‖∞ =

1

n2 − 1
est

sommable. La série
∑

un converge normalement sur [−1, 1] et sa somme y est continue.

S(1) = lim
x→1−

S(x) =
1

4
et S(−1) = lim

x→(−1)+
S(x) =

3

4

Exemple Calcul de
+∞∑
n=0

x2n+1

2n+ 1
.

On a immédiatement R = 1.
Pour x ∈ ]−1, 1[, on peut écrire

S(x) =

+∞∑
n=1

xn

n
−

+∞∑
n=1

x2n

2n

avec convergence des séries écrites. On a alors

S(x) = − ln(1− x) +
1

2
ln(1− x2) =

1

2
ln

1 + x

1− x

On aurait aussi pu calculer directement S′(x).
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22.4.3 Intégration terme à terme
22.4.3.1 Intégration sur I = [a, b] ⊂ ]−R,R[

Une série entière converge normalement sur tout [a, b] inclus dans ]−R,R[, cela permet d’intégrer terme
à terme.

Exemple Montrons
∫ π

0

sinc(t) dt =

+∞∑
n=0

(−1)n

(2n+ 1)!

π2n+1

2n+ 1

La fonction sinus cardinale est développable en série entière

sinc(t) =

+∞∑
n=0

(−1)n

(2n+ 1)!
t2n

avec un rayon de convergence R = +∞. Cette série entière converge donc normalement sur tout
segment inclus dans R et donc en particulier sur [0, π].
Puisque les fonctions sommées sont continues et que la série de fonctions converge uniformément∫ π

0

+∞∑
n=0

(−1)n

(2n+ 1)!
t2n dt =

+∞∑
n=0

∫ π

0

(−1)n

(2n+ 1)!
t2n dt

ce qui donne la formule proposée.

22.4.3.2 Intégration sur I = [0, R[

On peut intégrer terme à terme sous réserver de vérifier la convergence de
∑∫

I

|un|.

Exemple Calcul de I =

∫ 1

0

ln(1 + t)

t
dt.

Sur ]0, 1[,

f(t) =
ln(1 + t)

t
=

+∞∑
n=1

(−1)n−1

n
tn−1 =

+∞∑
n=1

(−1)n−1

n
tn−1

(et la relation vaut aussi 1 et peut valoir en 0 par prolongement par continuité)
Posons un : ]0, 1[→ R définie par

un(t) =
(−1)n−1

n
tn−1

La série de fonctions
∑

un converge simplement et sa somme
+∞∑
n=1

un = f est continue par morceaux.

Chaque un est continue par morceaux et intégrable sur ]0, 1[.

Enfin, la série
∑∫

|un| converge car

∫
]0,1[

|un| =
∫ 1

0

tn−1

n
dt =

1

n2

Par théorème, f est intégrable sur ]0, 1[ et

I =

∫
]0,1[

f =

+∞∑
n=1

∫ 1

0

un(t) dt =

+∞∑
n=1

(−1)n

n2
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Sachant
+∞∑
n=1

1

n2
=
π2

6
, on peut achever le calcul de I ,

I =

+∞∑
p=0

1

(2p+ 1)2
−

+∞∑
p=1

1

(2p)2
=

(
+∞∑
p=0

1

(2p+ 1)2
+

+∞∑
p=1

1

(2p)2

)
− 2

+∞∑
p=1

1

(2p)2

et donc

I =

+∞∑
n=1

1

n2
− 1

2

+∞∑
p=1

1

p2
=

1

2

+∞∑
n=1

1

n2
=
π2

12

22.4.4 Musculation : fonction C∞ non développable en série entière.
Soit f : R? → R définie par

f(x) = e−1/x2

f est de classe C∞ sur ]−∞, 0[ et ]0,+∞[.
Quand x→ 0, f(x)→ 0.
On prolonge f par continuité en 0 en posant f(0) = 0.

Montrons par récurrence sur n ∈ N

∀n ∈ N,∀x 6= 0, f (n)(x) = Pn

(
1

x

)
e−1/x2

avec Pn ∈ R [X]

Cas n = 0 : P0(X) = 1 convient.
Cas n = 1 : P1(X) = 2X3 convient.
Supposons la propriété vérifiée au rang n > 0

f (n+1)(x) =
d

dx

(
Pn

(
1

x

)
e−1/x2

)
=

(
− 1

x2
P ′n

(
1

x

)
+

2

x3
Pn

(
1

x

))
e−1/x2

Le polynôme Pn+1(X) = X2P ′n(X) + 2X3Pn(X) convient.
Récurrence établie.
Quand x→ 0+ (ou 0− ) (avec x 6= 0 )

f (n)(x) = Pn

(
1

x

)
e−1/x2

=
X=1/x

Pn(X)e−X
2

→ 0
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On peut alors conclure que f est de classe C∞ avec

∀n ∈ N, f (n)(0) = 0

Finalement, f est de classe C∞ sur R et sa série de Taylor est nulle.
On en déduit que f n’est pas développable en série entière car, si par l’absurde, f l’est sur ]−r, r[ alors

∀x ∈ ]−r, r[ , f(x) =

+∞∑
n=0

anx
n = 0 car an =

f (n)(0)

n!
= 0

C’est absurde, puisque f n’est pas nulle sur un voisinage de 0.

22.4.5 Musculation : fonction absolument monotone
Soit r ∈ R+? ∪ {+∞} et f : ]−r, r[→ R de classe C∞ telle que f (n) > 0 pour tout n ∈ N.
Montrer que f est développable en série entière sur ]−r, r[.
Soit x ∈ ]−r, r[. On peut écrire

f(x) =
n∑
k=0

f (k)(0)

k!
xk +Rn(x)

avec

Rn(x) =

∫ x

0

(x− t)n

n!
f (n+1)(t) dt

Par le changement de variable t = xu, on peut écrire

Rn(x) = xn+1

∫ 1

0

(1− u)n

n!
f (n+1)(xu) du

Choisissons y tel que |x| < y < r. Puisque f (n+1) est croissante, on a

∀u ∈ [0, 1] , f (n+1)(xu) 6 f (n+1)(yu)

et donc

|Rn(x)| 6 |x|n+1
∫ 1

0

(1− u)n

n!
f (n+1)(yu) du 6 |x/y|n+1

Rn(y)

De plus Rn(y) 6 f(y) car les termes de la somme partielle de Taylor en y sont tous positifs et donc

|Rn(x)| 6 |x/y|n+1
f(y) −−−−−→

n→+∞
0

Finalement, f est aussi égale à la somme de sa série de Taylor sur ]−r, r[.
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Chapitre 23

Equations différentielles linéaires
vectorielles

K désigne R ou C.
E désigne un K-espace vectoriel de dimension finie n ∈ N?
I désigne un intervalle de R d’intérieur non vide.

23.1 Les équations vectorielles

23.1.1 Equation et systèmes différentiels

Définition
On appelle équation différentielle vectorielle linéaire d’ordre 1, définie sur I et à valeurs dans
E, toute équation de la forme

(E) : x′ = a(t)(x) + b(t)

avec t 7→ a(t) fonction continue de I vers L(E), t 7→ b(t) fonction continue de I vers E et
d’inconnue t 7→ x(t) fonction dérivable de I vers E.

Exemple Cas E = K.
Les endomorphismes sur K correspondent aux applications x 7→ ax avec a ∈ K.
Une équation scalaire s’apparente alors à une équation vectorielle à valeurs dans E = K et inversement.

Remarque En introduisant une base e = (e1, . . . , en) de E et en posant

A(t) = Mate (a(t)) ∈Mn(K), B(t) = Mate (b(t)) ∈Mn,1(K) et X(t) = Mate (x(t)) ∈Mn,1(K),

l’équation vectorielle

x′ = a(t)(x) + b(t)

équivaut à l’équation matricielle

X ′ = A(t)X +B(t)
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23.1. LES ÉQUATIONS VECTORIELLES

En notant ai,j(t) les coefficients de la matrice A(t), bi(t) ceux de la colonne B(t) et xi(t) ceux de la
colonne X(t), l’équation étudiée équivaut encore au système différentiel

(Σ) :


x′1 = a1,1(t)x1 + · · ·+ a1,n(t)xn + b1(t)

...
x′n = an,1(t)x1 + · · ·+ an,n(t)xn + bn(t)

En pratique, c’est fréquemment sous la forme d’un système différentiel que sont présentés les équations
linéaires vectorielles.

Exemple Le système {
x′1 = t.x1 + 2.x2 + et

x′2 = (1− t).x1 + t.x2

définit un système différentiel de taille 2.

Exemple Résoudre l’équation différentielle scalaire

(E) : x′′ = a(t)x′ + b′(t)x+ c(t)

revient à résoudre le système différentiel

(Σ) :

{
x′ = y

y′ = a(t)y + b(t)x+ c(t)

car x est solution de (E) si, et seulement si, (x, x′) est solution de (Σ).

Proposition
Les solutions de l’équation (E) : x′ = a(t)(x) + b(t) sont des fonctions de classe C1.

dém. :
Soit x une solution de (E). La fonction x est dérivable et

∀t ∈ I, x′(t) = a(t)(x(t)) + b(t)

Introduisons l’application V : L(E)× E → E définie par V (u, x) = u(x).
L’application V est bilinéaire donc continue (car dimE < +∞ ).
Puisque x′ = V (a, x) + b, la fonction x′ est continue et donc x est de classe C1.
�

23.1.2 Problème de Cauchy
Soit a : I → L(E) et b : I → E des fonctions continues. On étudie l’équation différentielle

(E) : x′ = a(t)(x) + b(t)
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Définition
Soit (t0, x0) ∈ I × E. Un problème de Cauchy associé à l’équation (E) en t0 consiste à
déterminer les solutions de l’équation de l’équation

(E) : x′ = a(t)(x) + b(t)

vérifiant la condition initiale x(t0) = x0.

Exemple Pour les équations scalaires, on a vu qu’un problème de Cauchy détermine une solution
unique.

Proposition
Soit x : I → E une fonction continue. On a équivalence entre :
(i) x est solution sur I du problème de Cauchy{

x′ = a(t)(x) + b(t)

x(t0) = x0

(ii) x vérifie

x(t) = x0 +

∫ t

t0

a(u)(x(u)) + b(u) du

dém. :
(i)⇒ (ii) Supposons (i)
Puisque la fonction x est de classe C1,

x(t) = x(t0) +

∫ t

t0

x′(u) du

donc

x(t) = x0 +

∫ t

t0

a(u)(x(u)) + b(u) du

(ii)⇒ (i) Supposons (ii)

x(t0) = x0 +

∫ t0

t0

. . . du = x0

et puisque

t 7→
∫ t

t0

a(u)(x(u)) + b(u) du

est dérivable, x est dérivable avec

x′(t) = a(t)(x(t)) + b(t)

�
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Théorème
(admis)
Soit (t0, x0) ∈ I × E . Le problème de Cauchy{

x′ = a(t)(x) + b(t)

x(t0) = x0

possède une unique solution définie sur I .

23.1.3 Structure de l’ensemble solution
Soit a : I → L(E) et b : I → E des fonctions continues. On étudie l’équation différentielle

(E) : x′ = a(t)(x) + b(t)

23.1.3.1 Équation homogène

Définition
L’équation (E0) : x′ = a(t)(x) est appelée équation homogène associée à l’équation (E).
Ses solutions sont appelées solutions homogènes de l’équation (E).

Théorème
L’ensemble S0 des solutions sur I de l’équation homogène (E0) est un sous-espace vectoriel
de C1(I, E) de dimension n = dimE.

dém. :
Les solutions de l’équation (E0) sont de classe C1 donc S0 ⊂ C1(I, E).
Considérons la fonction Φ : C1(I,K)→ C(I,K) définie par

Φ(x) = x′ − a(x)

En fait, Φ(x) désigne la fonction t 7→ x′(t)− a(t) (x(t))
La fonction Φ est linéaire et S0 = ker Φ donc S0 est un sous-espace vectoriel de C1(I, E).
Pour t0 ∈ I , considérons l’application Et0 : S0 → E définie par

Et0 : x 7→ x(t0)

Et0 est une application linéaire car

Et0(λ1x1 + λ2x2) = (λ1x1 + λ2x2)(t0) = λ1x1(t0) + λ2x2(t0) = λ1Et0(x1) + λ2Et0(x2)

Par le théorème de Cauchy linéaire, on peut affirmer que l’application Et0 est bijective.
Par suite Et0 est un isomorphisme et donc dimS0 = dimE.
�

Exemple L’ensemble des solutions d’un système différentiel

(Σ) :

{
x′ = a(t)x+ b(t)y

y′ = c(t)x+ d(t)y

est un plan vectoriel.
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23.1.3.2 Système fondamental de solutions

Puisque l’espace S0 est de dimension n, il possède une base à n éléments.

Définition
On appelle système fondamental de solutions de l’équation homogène (E0) toute base
(ϕ1, . . . , ϕn) de l’espace S0.

Remarque Si (ϕ1, . . . , ϕn) est un système fondamental de solution de (E0), la solution générale
homogène est

x(t) = λ1ϕ1(t) + · · ·+ λnϕn(t) avec λ1, . . . , λn ∈ K

23.1.3.3 Résolution de l’équation complète

Théorème
L’ensemble S des solutions sur I de l’équation

(E) : x′ = a(t)(x) + b(t)

est un sous-espace affine de C1(I, E) de direction l’espace S0.
C’est donc un sous-espace affine de dimension n = dimE.

dém. :
Les solutions sont de classe C1 donc S ⊂ C1(I, E).
Par le théorème de Cauchy linéaire, en fixant une condition initiale, on peut assurer l’existence d’au moins
une solution x̃ à l’équation étudiée.
Soit x ∈ C1(I, E). En introduisant à nouveau l’application Φ présentée dans le théorème ci-dessus,
l’équation (E) s’écrit Φ(x) = b. On a alors

x ∈ S ⇔ Φ(x) = Φ(x̃)

En ramenant au premier membre

x ∈ S ⇔ Φ(x− x̃) = 0

et donc

x ∈ S ⇔ x− x̃ ∈ S0

Ainsi S = x̃+ S0 est un sous-espace affine de direction S0.
�

Protocole : Pour résoudre (E) :
- on identifie le type l’équation (E) ;
- on résout l’équation homogène (E0) : x0(t) = . . . ;
- on cherche une solution particulière : x̃(t) = . . . ;
- on exprime la solution générale : x(t) = x̃(t) + x0(t).

http://mp.cpgedupuydelome.fr 539 cbna



23.1. LES ÉQUATIONS VECTORIELLES

Proposition
Si b(t) = b1(t) + b2(t) avec b1 et b2 : I → E fonctions continues et si x1 et x2 sont respecti-
vement solutions des équations

(E1) : x′ = a(t)(x) + b1(t) et (E2) : x′ = a(t)(x) + b2(t)

alors x̃ est solution de l’équation

(E) : x′ = a(t)(x) + b(t)

dém. :
Φ(x1) = b1 et Φ(x2) = b2 donc Φ(x1 + x2) = b1 + b2 = b.
Pour tout t ∈ I

x′(t) = x′1(t) + x′2(t) = a(t) (x1(t)) + b1(t) + a(t) (x2(t)) + b2(t)

et donc, par linéarité de l’endomorphisme a(t)

x′(t) = a(t) (x1(t) + x2(t)) + b1(t) + b2(t) = a(t) (x(t)) + b(t)

�

23.1.4 Méthode de variation des constantes
On cherche une solution à l’équation complète

(E) : x′ = a(t)(x) + b(t)

Supposons résolue l’équation homogène associée

(E0) : x′ = a(t)(x)

On connaît alors (ϕ1, . . . , ϕn) système fondamental de solutions de l’équation homogène.
La solution générale homogène s’écrit

x(t) = λ1.ϕ1(t) + · · ·+ λn.ϕn(t)

Théorème
On peut trouver par quadrature une solution particulière de l’équation complète

(E) : x′ = a(t)(x) + b(t)

de la forme
x(t) = λ1(t).ϕ1(t) + · · ·+ λn(t).ϕn(t)

avec λ1, . . . , λn fonctions dérivables.

dém. :
Soit x(t) = λ1(t).ϕ1(t) + · · ·+ λn(t).ϕn(t) avec λ1, . . . , λn fonctions dérivables.
On a

x′(t) = λ′1(t).ϕ1(t) + · · ·+ λ′n(t).ϕn(t) + λ1(t).ϕ′1(t) + · · ·+ λn(t).ϕ′n(t)
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et puisque ϕ′i(t) = a(t) (ϕi(t)), on obtient

x′(t) = a(t) (x(t)) + b(t)⇔ λ′1(t).ϕ1(t) + · · ·+ λ′n(t).ϕn(t) = b(t)

Soit e = (e1, . . . , en) une base de l’espace E. Posons

Xj(t) = Mate(ϕj(t)) et B(t) = Mateb(t)

L’équation précédente s’écrit

λ1(t)X1(t) + · · ·+ λn(t)Xn(t) = B(t)

Considérons encore

W (t) = Mate (ϕ1(t), . . . , ϕn(t)) = (X1(t) | . . . | Xn(t)) ∈Mn(K)

et Y (t) = t(λ′1(t), . . . , λ′n(t)). L’équation devient le système linéaire

W (t)Y (t) = B(t)

Or la matrice W (t) est inversible. En effet, pour chaque t0 ∈ I , l’application Et0 : S0 → E définie par
x 7→ x(t0) est un isomorphisme. Celui-ci transforme en une base en une base et donc

W (t0) = Mate (ϕ1(t0), . . . , ϕn(t0)) est inversible

On a alors
x′(t) = a(t)x(t) + b(t)⇔ Y (t) = W (t)−1B(t)

Enfin, la fonction t 7→ W (t)−1B(t) est continue, on peut donc déterminer par quadrature des fonctions
λ1, . . . , λn telles que la fonction donnée par x(t) = λ1(t)ϕ1(t) + · · · + λn(t)ϕn(t) est alors solution
particulière de l’équation (E).
�

Remarque Cette méthode explique la méthode de variation de la constante vue pour les équations
scalaires d’ordre 2.

23.1.5 Un exemple de résolution

Exemple Résoudre l’équation

(Σ) :

{
x′1 = 3x1 − 2x2 + et

x′2 = x1 + et

C’est un système différentiel de taille 2 de système homogène associé

(Σ0) :

{
x′1 = 3x1 − 2x2

x′2 = x1

On peut observer que

X1(t) =

(
et

et

)
, X2(t) =

(
2e2t

e2t

)
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sont deux solutions indépendantes de Σ0, elles forment donc un système fondamental de solutions et la
solution générale homogène est

X(t) = λ1X1(t) + λ2X2(t)

Déterminons une solution particulière à l’équation complète de la forme

X(t) = λ1(t)X1(t) + λ2(t)X2(t)

avec λ1, λ2 fonctions dérivables.
On injectant dans (Σ) on obtient {

λ′1(t)et + 2λ′2(t)et = et

λ′1(t)et + λ′2(t)e2t = et

La résolution donne {
λ′1(t) = 1

λ′2(t) = 0

puis la solution particulière

X(t) =

(
tet

tet

)

23.2 Equation linéaire d’ordre 1 à coefficient constant
E désigne un K-espace vectoriel de dimension finie n ∈ N?

23.2.1 Définition

Définition
On appelle équation différentielle linéaire d’ordre 1 à coefficient constant, définie sur I et à
valeurs dans E, toute équation différentielle de la forme

(E) : x′ = a(x) + b(t)

avec a ∈ L(E), t 7→ b(t) continue de I vers E et d’inconnue t 7→ x(t) dérivable de I vers E.

Remarque Via l’introduction d’une base de E, une telle équation différentielle correspond :
- à une équation matricielle

X ′ = AX +B(t) avec A ∈Mn(K) et B(t) ∈Mn,1(K)

- à un système différentiel

(Σ) :


x′1 = a1,1x1 + · · ·+ a1,nxn + b1(t)

...
x′n = an,1x1 + · · ·+ an,nxn + bn(t)

avec ai,j ∈ K et bi(t) ∈ K

Remarque Compte tenu de la méthode de variation des constantes, il suffit de savoir résoudre
l’équation homogène (E0) pour résoudre complètement (E).
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23.2.2 Résolution théorique de l’équation homogène
Rappel :

Pour a ∈ L(E), exp(a) =

+∞∑
k=0

1

k!
ak ∈ L(E). En particulier exp(0̃) = IdE .

Pour a ∈ L(E), l’application t 7→ exp(t.a) est de classe C∞ et

d

dt
(exp(t.a)) = a ◦ exp(t.a)

Théorème
Soit a ∈ L(E) et x0 ∈ E. L’unique solution au problème de Cauchy{

x′ = a(x)

x(0) = x0

est la fonction
x : t 7→ exp (t.a) (x0)

dém. :
On sait déjà que le problème de Cauchy possède une solution unique. Vérifions que celle proposée
convient.

x(t) = exp (t.a) (x0)

On a déjà x(0) = IdE(x0) = x0. Vérifions que la fonction x est dérivable et calculons x′(t). Introduisons
l’application V : L(E)×E → E qui à (u, x) ∈ L(E)×E associe V (u, x) = u(x). Cette application est
bilinéaire. Par composition avec les fonctions t 7→ exp (t.a) et t 7→ x0, toutes deux dérivables, on peut
affirmer que la fonction t 7→ x(t) = V (exp (t.a) , x0) est dérivable avec

x′(t) = V (a ◦ exp (t.a) , x0) + V (exp (t.a) , 0E)

et donc
x′(t) = a (exp (t.a) (x0)) = a (x(t))

�

Remarque La solution au problème de Cauchy{
x′ = a(x)

x(t0) = x0

est alors x : t 7→ exp ((t− t0).a) (x0)(x0).

Corollaire
L’espace S0 des solutions sur R de l’équation homogène x′ = a(x) est

S0 = {t 7→ exp (t.a) (x0)/x0 ∈ E}
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Exemple Soit e = (e1, . . . , en) une base de E.
En posant ϕi : t 7→ exp (t.a) (ei) et en écrivant x0 = λ1.e1 + · · ·+ λn.en, la solution générale de E
s’exprime

x(t) = λ1.ϕ1(t) + · · ·+ λn.ϕn(t)

Remarque Matriciellement, la solution de l’équation X ′ = AX vérifiant X(0) = X0 est

X(t) = exp(t.A)X0

Exemple Si X0 est vecteur propre de A associée à la valeur propre λ alors

exp(t.A)X0 =

+∞∑
n=0

1

n!
tnAnX0 =

+∞∑
n=0

1

n!
tnλnX0 = eλtX0

23.2.3 Résolution pratique de l’équation homogène
La résolution de l’équation homogène x′ = a(x) (resp. X ′ = AX ) se ramène à la détermination de
exp(t.a) (resp. exp(t.A) ). Il est alors pertinent d’opérer la réduction de l’endomorphisme a (resp. la
matrice A ).
Exemple Résoudre

(Σ) :

{
x′1 = 3x1 − 4x2

x′2 = 2x1 − 3x2

C’est un système différentiel de taille 2 linéaire à coefficient constant d’équation matricielle X ′ = AX
avec

X =

(
x1

x2

)
, A =

(
3 −4
2 −3

)
Equation homogène : X ′ = AX .

χA = X2 − 1, Sp(A) = {1,−1}, E1(A) = Vect

(
2

1

)
et E−1(A) = Vect

(
1

1

)
.

On a

A = PDP−1 avec P =

(
2 1
1 1

)
et D =

(
1 0
0 −1

)
et donc

X ′ = AX ⇔ X ′ = PDP−1X ⇔ P−1X ′ = DP−1X

Posons Y = P−1X . On a Y ′ = P−1X ′ et donc

X ′ = AX ⇔ Y ′ = DY

Posons Y =

(
y1

y2

)
.

Y ′ = DY ⇔

{
y′1 = y1

y′2 = −y2

⇔

{
y1(t) = λ1et

y2(t) = λ2e−t
avec λ1, λ2 ∈ K
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X = PY ⇔

(
x1

x2

)
=

(
2 1
1 1

)(
y1

y2

)
⇔

{
x1 = 2y1 + y2

x2 = y1 + y2

X ′ = AX ⇔ X(t) =

(
2λ1et + λ2e−t

λ1et + λ2e−t

)
= λ1

(
2et

et

)
+ λ2

(
e−t

e−t

)

X1(t) =

(
2et

et

)
et X2(t) =

(
e−t

e−t

)
définissent un système fondamental de solutions.

Exemple Résoudre {
x′1 = x1 − x2

x′2 = x1 + x2

Système différentiel de taille 2 linéaire homogène à coefficients constants.
Equation matricielle : X ′ = AX avec

A =

(
1 −1
1 1

)
et X =

(
x1

x2

)

χA(X) = (X − 1)2 + 1.
Cas K = C :

Sp(A) = {1± i}, E1+i(A) = Vect

(
1

−i

)
et E1−i(A) = Vect

(
1

i

)
.

A = PDP−1 avec P =

(
1 1
−i i

)
et D =

(
1 + i 0

0 1− i

)
et donc

X ′ = AX ⇔ Y ′ = DY avec Y = P−1X

En écrivant Y =

(
y1

y2

)
,

Y ′ = DY ⇔

{
y′1 = (1 + i)y1

y′2 = (1− i)y2

⇔

{
y1(t) = λ1e(1+i)t

y2(t) = λ2e(1−i)t avec λ1, λ2 ∈ C

X = PY =

(
1 1
−i i

)(
y1

y2

)

X ′ = AX ⇔ X(t) =

(
λ1e(1+i)t + λ2e(1−i)t

−iλ1e(1+i)t + iλ2e(1−i)t

)
avec λ1, λ2 ∈ C

X1(t) =

(
e(1+i)t

−ie(1+i)t

)
et X2(t) =

(
e(1−i)t

ie(1−i)t

)
= X1(t) définissent un système fondamental de

solutions.
Cas K = R :
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X1(t) =

(
e(1+i)t

−ie(1+i)t

)
est solution complexe de l’équation X ′ = AX or la matrice A est réelle donc

Re(X1(t)) =

(
cos(t)et

sin(t)et

)
et Im(X1(t)) =

(
sin(t)et

− cos(t)et

)

sont des solutions réelles de l’équation X ′ = AX .
Celles-ci sont clairement indépendantes et donc forment un système fondamental de solutions.
Solution générale

X(t) = α

(
cos(t)et

sin(t)et

)
+ β

(
sin(t)et

− cos(t)et

)
avec α, β ∈ R

Remarque On peut aussi procéder efficacement par la transformation de système suivante{
x′1 = x1 − x2

x′2 = x1 + x2

⇔

{
x2 = x1 − x′1
x′1 − x′′1 = x1 + (x1 − x′1)

⇔

{
x2 = x1 − x′1
x′′1 − 2x′1 + 2x1 = 0

On sait alors résoudre l’équation définissant x1 puis exprimer la fonction x2 associée.

Exemple Résoudre

(Σ) :

{
x′1 = 3x1 + 2x2

x′2 = −2x1 − x2

C’est un système différentielle linéaire d’ordre 1 homogène et à coefficients constants d’équation
matricielle X ′ = AX avec

A =

(
3 2
−2 −1

)
et X =

(
x1

x2

)
χA(X) = (X − 1)2.

E1(A) = Vect

(
1

−1

)

Posons C1 =

(
1

−1

)
. On a

A = PTP−1 avec P =

(
1 0
−1 1

)
et T =

(
1 2
0 1

)
et donc

X ′ = AX ⇔ Y ′ = TY avec Y = P−1X

En posant Y =

(
y1

y2

)
,

Y ′ = TY ⇔

{
y′1 = y1 + 2y2

y′2 = y2

⇔

{
y1(t) = λ1et + 2λ2te

t

y2(t) = λ2et
avec λ1, λ2 ∈ K
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puis

X ′ = AX ⇔ X(t) =

(
λ1et + λ2(2t+ 1)et

−λ1et + λ2(1− 2t)et

)

23.2.4 Comportement asymptotique des solutions homogènes
On limite l’étude au cas n = 2 et K = R.
On étudie le système différentiel

(Σ) :

{
x′1 = ax1 + bx2

x′2 = cx1 + dy2

avec a, b, c, d ∈ R. L’équation matricielle associée est X ′ = AX avec

A =

(
a b
c d

)
et X =

(
x1

x2

)

23.2.4.1 Lignes de champ

Définition
On appelle ligne de champ du système (Σ) tout arc de R2 paramétré par{

x = x1(t)

y = x2(t)

avec (x1, x2) solution sur R du système (Σ).

Proposition
En tout point régulier,une ligne de champ est tangente au champ de vecteurs

(x, y) 7→ (ax+ by, cx+ dy)

dém. :
Soit (x1, x2) une solution de Σ et t0 ∈ R tel que le point

(x0, y0) = (x(t0), y(t0)) = (x1(t0), x2(t0))

soit régulier.
La tangente en (x0, y0) est dirigée par le premier vecteur dérivé qui a pour coordonnées{

x′(t0) = x′1(t0) = ax1(t0) + bx2(t0) = ax0 + by0

y′(t0) = x′2(t0) = cx1(t0) + dx2(t0) = cx0 + dy0

C’est le vecteur du champ de vecteur proposé
�
23.2.4.2 Comportement en l’infini

Pour étudier le comportement en +∞ des lignes de champ, on introduit le polynôme caractéristique
χA(X) ∈ R [X] de discriminant ∆.
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Cas ∆ > 0 : la matrice A est diagonalisable dansM2(R) de valeurs propres λ1 < λ2.
Notons V1, V2 des vecteurs propres associés aux valeurs propres λ1, λ2. Les fonctions définies parX1(t) =
eλ1tV1 et X2(t) = eλ2tV2 déterminent un système fondamental de solution de l’équation X ′ = AX .
La solution générale de l’équation est alors de la forme(

x1(t)

x2(t)

)
= µ1eλ1tV1 + µ2eλ2tV2 avec µ1, µ2 ∈ R

On peut aussi écrire (
x1(t)

x2(t)

)
= eλ2t(µ1e(λ1−λ2)tV1 + µ2V2)

Si λ2 < 0 : les lignes de champ convergent vers 0 en +∞ avec une tangente dirigée par V2.
Si 0 < λ2 : les lignes de champ divergent vers +∞ en prenant la direction de V2.
Si λ2 = 0 : les lignes de champ convergent vers les points d’une droite dirigée par V2.

Cas ∆ = 0 : on a une racine réelle double et des comportements proches de ceux présentés ci-dessus.
Cas ∆ < 0 : la matrice A est diagonalisable dansM2(C) avec des valeurs propres λ, λ̄.
Pour V1 vecteur propre associé la valeur propre λ, la colonne

Z(t) = eλtV1

est solution complexe de l’équation Z ′ = AZ et alors X1 = Re(Z) et X2 = Im(Z) déterminent un
système fondamental de solutions de l’équation X ′ = AX . Puisque

eλt = eRe(λ)t (cos(ωt) + i sin(ωt)) avec ω = Im(λ)
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on obtient une écriture générale des solutions de la forme

{
x1(t) = (α cos(ωt) + β sin(ωt))eRe(λ)t

x2(t) = (γ cos(ωt) + δ sin(ωt))eRe(λ)t

Si Re(λ) < 0 : les lignes de champ s’enroulent vers (0, 0) en +∞
Si Re(λ) > 0 : les lignes de champ s’échappent en branche spirale en +∞.
Si Re(λ) = 0 : les lignes de champ sont refermées sur elles-mêmes.

Remarque Le comportement en −∞ des solutions se déduit de l’étude précédente par renversement
temporelle. Celui-ci nous ramène aux études précédentes en ayant passé à l’opposé la matrice et donc
aussi ses valeurs propres.
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23.3 Equations scalaires d’ordre n

23.3.1 Présentation

Définition
On appelle équation différentielle scalaire linéaire d’ordre n définie sur I toute équation de la
forme

(E) : x(n) = an−1(t)x(n−1) + an−2(t)x(n−2) + · · ·+ a1(t)x′ + a0(t)x+ b(t)

avec a0, . . . , an : I → K et b : I → K continues, et d’inconnues x : I → K fonction n fois
dérivable.

Proposition
Les solutions d’une telle équation sont de classe Cn.

Lemme
Soit x : I → K dérivable. On a équivalence entre :
(i) x est solution de l’équation (E) ;
(ii) x est le premier élément d’un tuple (x1, . . . , xn) solution du système différentiel

(Σ) :



x′1 = x2

x′2 = x3

...
x′n−1 = xn

x′n = an−1(t)xn + · · ·+ a1(t)x2 + a0(t)x1 + b(t)

dém. :
(i)⇒ (ii) Si x est solution sur I de l’équation alors x est n fois dérivable et le tuple (x, x′, . . . , x(n−1))
est solution sur I du système.
(ii)⇒ (i) Si x est le premier élément d’un tuple (x1, . . . , xn) solution sur I du système alors les premières
équations fournissent x2 = x′1 = x′, x3 = x′′,. . . , xn = x(n−1) et la dernière fournit la vérification par
x de l’équation (E).
�

23.3.2 Problème de Cauchy
Soit a0, . . . , an : I → K et b : I → K continues. On étudie l’équation

(E) : x(n) = an−1(t)x(n−1) + an−2(t)x(n−2) + · · ·+ a1(t)x′ + a0(t)x+ b(t)

et on considère le système (Σ) associé comme défini dans la section ci-dessus.

Définition
Soit (t0, x0, x1 . . . , xn−1) ∈ I × Kn. Un problème de Cauchy associé à l’équation (E) en t0
consiste à déterminer les solutions de l’équation (E) vérifiant les conditions initiales

∀0 6 k 6 n− 1, x(k)(t0) = xk
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Remarque Ce problème est naturellement associé à un problème de Cauchy relatif au système (Σ) où
la condition initiale sur ce système transpose les multiples conditions initiales imposées pour
l’équation (E).

Théorème
Le problème de Cauchy proposé possède une solution unique définie sur I .

dém. :
Car le problème de Cauchy associé au système différentiel admet une solution unique.
�

23.3.3 Structure de l’ensemble des solutions
Soit a0, . . . , an : I → K et b : I → K continues. On étudie l’équation

(E) : x(n) = an−1(t)x(n−1) + an−2(t)x(n−2) + · · ·+ a1(t)x′ + a0(t)x+ b(t)

23.3.3.1 Équation homogène

Définition
L’équation (E0) : x(n) = an−1(t)x(n−1) + · · · + a1(t)x′ + a0(t)x est appelée équation
homogène associée à (E) .

Théorème
L’ensemble S0 des solutions sur I de l’équation homogène (E0) est un sous-espace vectoriel
de dimension n de l’espace Cn(I,K).

dém. :
Les solutions de l’équation homogène sont de classe Cn donc S0 ⊂ Cn(I,K).
Considérons l’application Φ : Cn(I,K)→ C(I,K) définie par

Φ(x) = x(n) −
(
an−1x

(n−1) + · · ·+ a1x
′ + a0x

)
L’application Φ est linéaire et S0 = ker Φ donc S0 est un sous-espace vectoriel de Cn(I,K).
Soit t0 ∈ I . Considérons Et0 : S0 → Kn définie par Et0(x) = (x(t0), x′(t0), . . . , x(n−1)(t0)).
L’application Et0 est linéaire et comme un problème de Cauchy possède une solution unique, elle est
bijective. C’est donc un isomorphisme et par conséquent

dimS0 = dimKn = n

�
23.3.3.2 Équation complète

Théorème
L’ensemble S des solutions sur I de l’équation complète (E) est un sous-espace affine de
Cn(I,K) de direction S0.

dém. :
Les solutions de l’équation complète sont de classe Cn et donc S ⊂ Cn(I,K).
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Par le théorème de Cauchy, on peut assurer l’existence d’une solution x̃.
Considérons à nouveau l’application Φ de la démonstration du théorème précédent.
Pour x ∈ C2(I,K)

x ∈ S ⇔ Φ(x) = Φ(x̃)

et donc
x ∈ S ⇔ x− x̃ ∈ S0

Ainsi l’ensemble S des solutions sur I est le sous-espace affine x̃+ S0.
�

Remarque Pour résoudre (E) : x′′ = a(t)x′ + b(t)x+ c(t) :
- on reconnaît le type l’équation ;
- on résout l’équation homogène : x0(t) = . . . ;
- on détermine une solution particulière : x̃(t) = . . . ;
- on exprime la solution générale : x(t) = x̃(t) + x0(t).

23.3.4 Musculation : résolution des équations à coefficients constants
On étudie l’ensemble S des solutions à valeurs complexes de l’équation différentielle linéaire d’ordre n
à coefficients constants :

x(n) + an−1x
(n−1) + · · ·+ a1x

′ + a0x = 0

avec ai ∈ C d’inconnue x : R→ C n fois dérivable.

Proposition
Les solutions sur R de cette équation sont des fonctions de classe C∞.

Considérons l’espace E = C∞(R,C) et l’endomorphisme de celui-ci D : x 7→ x′.
Pour P = Xn + an−1X

n−1 + · · ·+ a0 on a

S = kerP (D)

Dans C [X], on peut factoriser

P = (X − λ1)α1 . . . (X − λm)αm

avec λk ∈ C deux à deux distincts et αk ∈ N?.
Pour k 6= `, (X − λk)αk ∧ (X − λ`)α` = 1 donc

kerP (D) =
m
⊕
k=1

ker(D − λkId)αi

Reste à déterminer : ker(D − λId)α avec λ ∈ C et α ∈ N?.
Cas α = 1 :

(D − λId)(x) = 0⇔ x′ − λx = 0⇔ ∃C ∈ C,∀t ∈ R, x(t) = Ceλt

Introduisons eλ : t 7→ eλt. On a donc

ker(D − λId) = Vect(eλ)

Cas général :
Soit x ∈ E et y la fonction définie de sorte x = eλy i.e. y : t→ e−λtx(t). On a

(D − λId)(x) = eλD(y), (D − λId)2(x) = eλD
2(y),. . . , (D − λId)α(x) = eλD

α(y)
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donc
x ∈ ker(D − λId)α ⇔ y ∈ kerDα

Or la solution générale de l’équation y(α) = 0 est

y(t) = c0 + c1t+ · · ·+ cα−1t
α−1

avec c0, c1, . . . , cα−1 ∈ C.
Ainsi

ker(D − λId)α =
{
t 7→ (c0 + c1t+ · · ·+ cα−1t

α−1)eλt/c0, c1, . . . , cα−1 ∈ C
}

Exemple Résoudre l’équation
y(4) − 2y′′ + y = 0

C’est une équation différentielle linéaire d’ordre 4 homogène à coefficients constants d’équation
caractéristique r4 − 2r2 + 1 = 0 i.e. (r − 1)2(r + 1)2 = 0.
1 et −1 sont racines doubles.
La solution générale est

y : t 7→ (at+ b)et + (ct+ d)e−t

Remarque On a

dim kerP (D) =

m∑
k=1

dim ker(D − λkId)αk =

m∑
k=1

αk = n

et l’on retrouve que l’espace des solutions est de dimension n.
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Chapitre 24

Equations différentielles linéaires
scalaires

K désigne R ou C.
I désigne un intervalle de R d’intérieur non vide.

24.1 Equations linéaires d’ordre 1

24.1.1 Equation différentielle scalaire

Définition
On appelle équation différentielle (scalaire) linéaire d’ordre 1 définie sur I toute équation de
la forme

(E) : x′ = a(t)x+ b(t)

avec t 7→ a(t) et t 7→ b(t) fonctions continues de I vers K et d’inconnue t 7→ x(t) fonction
dérivable de I vers K.

Remarque L’usage veut qu’on n’exprime pas la variable pour la fonction inconnue. Néanmoins,
vérifier que la fonction x est solution sur I consiste à observer

∀t ∈ I, x′(t) = a(t)x(t) + b(t)

Remarque Pour la théorie la fonction inconnue est notée x. En pratique, elle est souvent notée y.

Exemple Pour a ∈ C, la solution générale de l’équation

(E) : y′ + ay = 0

est
y(t) = λe−at avec λ ∈ C

Proposition
Les fonctions solutions de (E) sont de classe C1 et même de classe Cn+1 si a et b sont de
classe Cn.
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24.1.2 Problème de Cauchy

Soit a, b : I → K continue. On étudie l’équation

(E) : x′ = a(t)x+ b(t)

Définition
On appelle courbe intégrale de l’équation différentielle (E) tout graphe dans R2 d’une solution
de celle-ci.

Remarque En chaque point d’une courbe intégrale, la tangente est déterminée par l’expression du
second membre de l’équation différentielle. On peut alors figurer un champ de vecteurs dans le plan
permettant d’anticiper l’allure des courbes intégrales.

Exemple Champ de vecteurs et quelques courbes intégrales associées à l’équation différentielle
y′ = x+ y.
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Définition
Soit (t0, x0) ∈ I × K. Un problème de Cauchy associé à l’équation (E) en t0 consiste à
déterminer les solutions de (E) : x′ = a(t)x+ b(t) vérifiant la condition initiale

x(t0) = x0

Théorème
Soit (t0, x0) ∈ I ×K. Le problème de Cauchy{

x′ = a(t)x+ b(t)

x(t0) = x0

possède une unique solution définie sur I .

dém. :
Introduisons A la primitive s’annulant en t0 de la fonction continue a : I → K.
Unicité : Si x est solution alors

d

dt

(
x(t)e−A(t)

)
= (x′(t)− a(t)x(t)) e−A(t) = b(t)e−A(t)

donc t 7→ x(t)e−A(t) est de classe C1 et

x(t)e−A(t) = x(t0) +

∫ t

t0

e−A(u)b(u) du

puis

x(t) = eA(t)

(
x0 +

∫ t

t0

e−A(u)b(u) du

)
Existence : La fonction définie par

x(t) =

(
x0 +

∫ t

t0

b(u)e−A(u) du

)
eA(t)

est bien solution.
�

Corollaire
Par chaque point de coordonnées (t0, x0) ∈ I × K passe une courbe intégrale et une seule.
En particulier, les courbes intégrales ne se recoupent pas, elles constituent une partition du
domaine I ×K du plan.

24.1.3 Structure de l’ensemble solution
Soit a, b : I → K continues. On étudie l’équation différentielle

(E) : x′ = a(t)x+ b(t)
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24.1.3.1 Équation homogène

Définition
L’équation est appelée équation homogène associée à l’équation (E).
Ses solutions sont appelées solutions homogènes de l’équation (E).

Théorème
L’ensemble S0 des solutions sur I de l’équation homogène (E0) est la droite vectorielle en-
gendrée par

t 7→ eA(t)

où A désigne une primitive de la fonction continue a.

dém. :
Soit x une fonction dérivable. On a

x′(t) = a(t)x(t)⇔ d

dt

(
x(t)e−A(t)

)
= 0

et donc x est solution de (E0) sur I si, et seulement si, x est de la former

t 7→ λeA(t) avec λ ∈ K

�
24.1.3.2 Résolution de l’équation complète

Rappel :
On appelle sous-espace affine d’un espace vectoriel E tout ensemble de la forme

V = a+ F = {a+ x/x ∈ F}

avec F un sous-espace vectoriel de E
Le sous-espace vectoriel F est unique, on l’appelle direction de V .
Il n’y a pas unicité de l’élément a décrivant le sous-espace affine V , au contraire, pour tout a ∈ V , on
peut écrire

V = a+ F

Un sous-espace affine est donc entièrement déterminé par la connaissance de sa direction et de l’un de
ses éléments.
Théorème

L’ensemble S des solutions sur I de l’équation complète

(E) : x′ = a(t)x+ b(t)

est une droite affine de C1(I,K) de direction l’espace S0.

dém. :
Les solutions sont de classe C1 donc S ⊂ C1(I,K).
Par problème de Cauchy, on peut assurer l’existence d’au moins une solution x̃ à l’équation étudiée.
Soit x ∈ C1(I,K). On a alors

x ∈ S ⇔ ∀t ∈ I, x′(t)− a(t)x(t) = x̃′(t)− a(t)x̃(t)
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En ramenant au premier membre

x ∈ S ⇔ ∀t ∈ I, (x− x̃)′(t)− a(t) (x(t)− x(t)) = 0

et donc
x ∈ S ⇔ x− x̃ ∈ S0

Ainsi S = x̃+ S0 est un sous-espace affine de direction S0.
�
Protocole : Pour résoudre (E) : x′ = a(t)x+ b(t) :
- on identifie le type de l’équation (E) en reconnaissant a et b fonctions continues ;
- on résout l’équation homogène (E0) : x0(t) = . . . ;
- on cherche une solution particulière : x̃(t) = . . . ;
- on exprime la solution générale : x(t) = x̃(t) + x0(t).
Remarque Si b(t) = b1(t) + b2(t) avec b1 et b2 : I → E fonctions continues et si x1 et x2 sont
respectivement solutions des équations

(E1) : x′ = a(t)x+ b1(t) et (E2) : x′ = a(t)x+ b2(t)

alors x̃ = x1 + x2 est solution de l’équation

(E) : x′ = a(t)(x) + b(t)

24.1.3.3 Méthode de la variation de la constante

Supposons la solution générale homogène de la forme

x0(t) = λϕ(t) avec λ ∈ K

Théorème
Par quadrature, on peut déterminer une solution particulière de l’équation complète (E) de la
forme x(t) = λ(t)ϕ(t) avec λ fonction dérivable bien choisie.

dém. :
x est solution de (E) si, et seulement si,

∀t ∈ I, λ′(t)ϕ(t) = b(t)

Puisque la fonction ϕ est continue ne s’annule pas (c’est une fonction composée avec une exponentielle),
on peut déterminer λ convenable pour que x soit solution de (E).
�

Exemple Résolvons l’équation
(E) : (1 + t2)y′ + 2ty = 1

On a
(E)⇔ y′ +

2t

1 + t2
y =

1

1 + t2

(E) est équivalente à une équation différentielle linéaire d’ordre 1 définie sur R.
Equation homogène :

(1 + t2)y′ + 2ty = 0⇔ y′ = − 2t

1 + t2
y
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On a ∫
−2t

1 + t2
dt = − ln(1 + t2)

Solution homogène : y(t) =
λ

1 + t2
avec λ ∈ R

Solution particulière : y(t) =
λ(t)

1 + t2
avec t 7→ λ(t) fonction dérivable.

(1 + t2)y′(t) + 2ty(t) = 1⇔ λ′(t) = 1

λ(t) = t convient et y(t) =
t

1 + t2
est solution particulière.

Solution générale

y(t) =
λ+ t

1 + t2
avec λ ∈ R

24.2 Equation linéaire d’ordre 2

24.2.1 Définition

Définition
On appelle équation différentielle linéaire (scalaire) d’ordre 2 définie sur I toute équation de
la forme

(E) : x′′ = a(t)x′ + b(t)x+ c(t)

avec a, b, c : I → K continues et d’inconnue x : I → K deux fois dérivable.

Exemple Lorsque les fonctions a et b sont constantes, on parle d’équation à coefficients constants.

Exemple y′′ + 2ty′ + (1− t2)y = et est une équation linéaire d’ordre 2 définie sur R.

Exemple (1 + t2)y′′ + 2ty′ + y = 0 est équivalente sur R à une équation linéaire d’ordre 2 car

∀t ∈ R, (1 + t2) 6= 0

Proposition
Les solutions de (E) sont de classe C2 et plus généralement de classe Cn+2 si a, b, c sont Cn.

24.2.2 Problème de Cauchy.
Soit a, b, c : I → K des fonctions continues.

Définition
Soit (t0, x0, x

′
0) ∈ I × K2. Un problème de Cauchy associé à l’équation (E) en t0 consiste à

déterminer les solutions de l’équation (E) : x′′ = a(t)x′+ b(t)x+ c(t) vérifiant les conditions
initiales

x(t0) = x0 et x′(t0) = x′0
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Théorème
Soit (t0, x0, x

′
0) ∈ I ×K2. Le problème de Cauchy

x′′ = a(t)x′ + b(t)x+ c(t)

x(t0) = x0

x′(t0) = x′0

possède une unique solution définie sur I . (admis)

Attention : Il ne faut pas confondre un problème de Cauchy avec un problème de conditions aux bords.
Par exemple, les conditions y(0) = 0 et y(2π) = 0 ne déterminent pas une solution unique pour
l’équation différentielle y′′ + y = 0.

Exemple Considérons l’équation

(E) : y′′ + p(x)y′ + q(x)y = 0

avec p, q : I → R continues.
Montrons que s’il existe x0 ∈ I vérifiant y(x0) = y′(x0) = 0 alors y est la fonction nulle.
En effet, la fonction nulle et la fonction y sont solutions au problème de Cauchy :{

y′′ + p(x)y′ + q(x)y = 0

y(x0) = y′(x0) = 0

Or ce problème de Cauchy détermine une solution unique.

24.2.3 Structure de l’ensemble des solutions
Soit a, b, c : I → K continues. On étudie l’équation

(E) : x′′ = a(t)x′ + b(t)x+ c(t)

24.2.3.1 Équation homogène

Définition
L’équation (E0) : x′′ = a(t)x′ + b(t)x est appelée équation homogène associée à (E).
Ses solutions sont appelées solutions homogènes de l’équation (E).

Théorème
L’ensemble S0 des solutions sur I de l’équation homogène (E0) est un sous-espace vectoriel
de C2(I,K) de dimension 2.

dém. :
Les solutions de l’équation homogène sont de classe C2 donc S0 ⊂ C2(I,K).
Considérons la fonction Φ : C2(I,K)→ C(I,K) définie par

Φ(x) = x′′ − (ax′ + bx)
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En fait, la fonction Φ(x) désigne l’application t 7→ x′′(t)− (a(t)x′(t) + b(t)x(t)).
La fonction Φ est linéaire et S0 = ker Φ donc S0 est un sous-espace vectoriel de C2(I,K).
Soit t0 ∈ I . Considérons l’application Et0 : S0 → K2 définie par

Et0(x) = (x(t0), x′(t0))

L’application Et0 est linéaire, par résolution d’un problème de Cauchy

∀(x0, x
′
0) ∈ K2,∃!x ∈ S0, Et0(x) = (x0, x

′
0)

L’application Et0 est donc bijective et c’est par conséquent un isomorphisme. On en déduit

dimS0 = dimK2 = 2

�
24.2.3.2 Système fondamental de solutions

Définition
On appelle système fondamental de solutions de l’équation homogène x′′ = a(t)x′ + b(t)x
toute base (ϕ,ψ) de l’espace S0.

Remarque Si (ϕ,ψ) est un système fondamental de solutions alors on peut exprimer la solution
générale de l’équation (E0) qui est

x(t) = λϕ(t) + µψ(t) avec λ, µ ∈ K

Exemple Les solutions ϕ,ψ de l’équation homogène vérifiant les conditions initiales{
ϕ(t0) = 1

ϕ′(t0) = 0
et

{
ψ(t0) = 0

ψ′(t0) = 1

forment un système fondamental de solutions.

24.2.3.3 Wronskien

Définition
On appelle wronskien de deux solutions (ϕ,ψ) de l’équation homogène (E0) la fonction

t 7→ w(t) =

∣∣∣∣ ϕ(t) ψ(t)
ϕ′(t) ψ′(t)

∣∣∣∣
Théorème

Le wronskien w de deux solutions de l’équation (E0) : x′′ = a(t)x′ + b(t)x est solution de
l’équation différentielle d’ordre 1

w′(t) = a(t)w(t)
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dém. :
Par dérivation par ligne du déterminant

w′(t) =

∣∣∣∣ ϕ′(t) ψ′(t)
ϕ′(t) ψ′(t)

∣∣∣∣+

∣∣∣∣ ϕ(t) ψ(t)
ϕ′′(t) ψ′′(t)

∣∣∣∣ =

∣∣∣∣ ϕ(t) ψ(t)
a(t)ϕ′(t) + b(t)ϕ(t) a(t)ψ′(t) + b(t)ψ(t)

∣∣∣∣
En décomposant la deuxième ligne en combinaison linéaire de deux lignes

w′(t) = a(t)

∣∣∣∣ ϕ(t) ψ(t)
ϕ′(t) ψ′(t)

∣∣∣∣+ b(t)

∣∣∣∣ ϕ(t) ψ(t)
ϕ(t) ψ(t)

∣∣∣∣ = a(t)w(t)

�

Exemple Le wronskien d’un couple de solutions de l’équation x′′ + q(t)x = 0 est constant.

Corollaire
Un wronskien qui s’annule est la fonction nulle.

Théorème
Si ϕ,ψ sont solutions de l’équation homogène alors on a équivalence entre :
(i) (ϕ,ψ) est un système fondamental de solutions ;
(ii) ∀t ∈ I, w(t) 6= 0 ;
(iii) ∃t0 ∈ I, w(t0) 6= 0.

dém. :
Soit t0 ∈ I , l’application Et0 : S0 → K2 définie par Et0(x) = (x(t0), x′(t0)) est un isomorphisme
d’espaces vectoriels. Par conséquent la famille (ϕ,ψ) est un système fondamental de solutions de (E0)
si, et seulement si, la famille (Et0(ϕ), Et0(ψ)) est une base de K2 i.e. si, et seulement si, w(t0) 6= 0.
�

24.2.3.4 Équation complète

Théorème
L’ensemble S des solutions sur I de l’équation complète

(E) : x′′ = a(t)x′ + b(t)x+ c(t)

est un plan affine de C2(I,K) de direction S0.

dém. :
Les solutions sur I de l’équation complète sont de classe C2 donc S ⊂ C2(I,K).
Considérons à nouveau l’application Φ : C2(I,K)→ C(I,K) définie par

Φ(x) = x′′ − (ax′ + bx)

L’équation (E) se comprend alors comme l’équation Φ(x) = c.
Par résolution d’un problème de Cauchy, on peut assurer l’existence d’une solution particulière x̃.
Pour x ∈ C2(I,K)

x ∈ S ⇔ Φ(x) = Φ(x̃)

et donc
x ∈ S ⇔ x− x̃ ∈ S0 ⇔ x ∈ x̃+ S0
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Ainsi l’ensemble S des solutions sur I est un sous-espace affine de direction S0.
�

Remarque Pour résoudre (E) : x′′ = a(t)x′ + b(t)x+ c(t) :
- on identifie le type de l’équation (E) en reconnaissant a, b, c fonctions continues ;
- on résout l’équation homogène (E0) : x0(t) = . . . ;
- on détermine une solution particulière : x̃(t) = . . . ;
- on exprime la solution générale : x(t) = x̃(t) + x0(t).

Remarque On peut aussi énoncer un principe de superposition des solutions.

24.2.4 Cas des équations à coefficients constants
On étudie l’équation

(E) : y′′ + ay′ + by = 0

avec a, b ∈ K et c : I → K continue.
24.2.4.1 Solution homogène

Considérons l’équation homogène associée

(E0) : y′′ + ay′ + by = 0

Soit λ ∈ K. La fonction t 7→ eλt est solution de (E0) si, et seulement si, λ est racine de l’équation

r2 + ar + b = 0

Définition
L’équation r2 + ar + b = 0 est appelée équation caractéristique associée à l’équation (E) (ou
(E0) ).

Cas K = C.
Si ∆ 6= 0 : deux solutions α, β
ϕ(t) = eαt et ψ(t) = eβt sont solutions de (E0).

w(0) =

∣∣∣∣ 1 1
α β

∣∣∣∣ = β − α 6= 0

(ϕ,ψ) est un système fondamental de solutions de (E0).
La solution générale est alors et

x(t) = λeαt + µeβt avec λ, µ ∈ C

Si ∆ = 0 : une solution double α
ϕ(t) = eαt et (après calculs) ψ(t) = teαt sont solutions de (E0).

w(0) =

∣∣∣∣ 1 0
α 1

∣∣∣∣ = 1 6= 0

La solution générale est alors
x(t) = λeαt + µteαt avec λ, µ ∈ C
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Cas K = R.
Si ∆ > 0 ou ∆ = 0 : idem avec λ, µ ∈ R
Si ∆ < 0, 2 solutions conjuguées α± iω avec ω 6= 0.
La fonction t 7→ e(α+iω)t est solution complexe de (E0) donc ses parties réelle et imaginaire ϕ(t) =
eαt cos(ωt) et ψ(t) = eαt sin(ωt) sont solutions réelles de (E0).

ω(0) =

∣∣∣∣ 1 0
α ω

∣∣∣∣ = ω 6= 0

La solution générale est alors

x(t) = (λ cos(ωt) + µ sin(ωt))eαt avec λ, µ ∈ R

24.2.4.2 Solution particulière

Cas c(t) = Aeαt avec A ∈ K
On peut trouver une solution particulière de la forme

y(t) =


Ceαt si α n′est pas racine de r2 + ar + b = 0
Cteαt si α est racine simple de r2 + ar + b = 0
Ct2eαt si α est racine double de r2 + ar + b = 0

avec C ∈ K bien choisi
Cas K = R et c(t) = B cos(ωt) ou B sin(ωt).
On peut aussi trouver une solution particulière en étudiant l’équation complexe

z′′ + az′ + bz = Beiωt

et en considérant la partie réelle ou imaginaire d’une solution particulière.
24.2.5 Méthode de la variation des constantes
Soit a, b, c : I → K continues. On cherche une solution particulière de l’équation

(E) : x′′ = a(t)x′ + b(t)x+ c(t)

Supposons connu un système fondamental (ϕ,ψ) de solutions de l’équation homogène

(E0) : x′′ = a(t)x′ + b(t)x

La solution générale de l’équation homogène est

x(t) = λϕ(t) + µψ(t)

Théorème
Par quadrature, on peut trouver une solution particulière sur I de l’équation

(E) : x′′ = a(t)x′ + b(t)x+ c(t)

de la forme
x(t) = λ(t)ϕ(t) + µ(t)ψ(t)

avec λ, µ : I → K fonctions dérivables vérifiant :{
λ′(t)ϕ(t) + µ′(t)ψ(t) = 0

λ′(t)ϕ′(t) + µ′(t)ψ′(t) = c(t)
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dém. :
Le système proposé est de Cramer car de déterminant∣∣∣∣ ϕ(t) ψ(t)

ϕ′(t) ψ′(t)

∣∣∣∣ = w(t) 6= 0

On peut donc trouver des fonctions λ et µ dérivables vérifiant

λ′(t) =

∣∣∣∣ 0 ψ(t)
c(t) ψ′(t)

∣∣∣∣
w(t)

et µ′(t) =

∣∣∣∣ ϕ(t) 0
ϕ′(t) c(t)

∣∣∣∣
w(t)

Considérons alors la fonction x = λϕ+ µψ.
x est dérivable et x′ = (λ′ϕ+ µ′ψ) + (λϕ′ + µψ′)
Puisque λ′ϕ+ µ′ψ = 0, on simplifie x′ = λϕ′ + µψ′.
x est alors deux fois dérivable et x′′ = λ′ϕ′ + µ′ψ′ + λϕ′′ + µψ′′.
On vérifie alors x′′ = a(t)x′ + b(t)x + c(t) puisque ϕ,ψ sont solutions de l’équation homogène et
λ′ϕ′ + µ′ψ′ = c
�

Exemple Résolvons

y′′ − 2y′ + y =
et

1 + t2

C’est une équation différentielle linéaire d’ordre 2 à coefficients constants.
Equation caractéristique r2 − 2r + 1 = 0 de racine double 1.
Solution générale homogène y(t) = (λt+ µ)et avec λ, µ ∈ R.
Solution particulière y(t) = λ(t)tet + µ(t)et avec λ, µ fonction dérivables.
y′(t) = λ′(t)tet + µ′(t)et + λ(t)(t+ 1)et + µ(t)et.
On pose λ′(t)tet + µ′(t)et = 0.
y′′(t) = λ′(t)(t+ 1)et + µ′(t)et + λ(t)(t+ 2)et + µ(t)et.

y′′(t)− 2y′(t) + y(t) =
et

1 + t2
si, et seulement si, λ′(t)(t+ 1)et + µ′(t)et =

et

1 + t2
.

Résolvons 
λ′(t)tet + µ′(t)et = 0

λ′(t)(t+ 1)et + µ′(t)et =
et

1 + t2

On obtient 
λ′(t) =

1

1 + t2

µ′(t) = − t

1 + t2

λ(t) = arctan t et µ(t) = −1

2
ln
(
1 + t2

)
conviennent.

Solution particulière

y(t) =
1

2

(
2t arctan(t)− ln(1 + t2)

)
et

Solution génératrice

y(t) =
1

2

(
2t arctan(t)− ln(1 + t2)

)
et + λtet + µet avec λ, µ ∈ R
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Exemple Résolvons y′′ + y = f(t) avec f : R→ R continue.
C’est une équation différentielle linéaire d’ordre 2 à coefficients constants.
Equation caractéristique r2 + 1 = 0 de racines ±i.
Solution générale homogène y(t) = λ cos(t) + µ sin(t) avec λ, µ ∈ R.
Solution particulière

y(t) = λ(t) cos(t) + µ(t) sin(t)

avec λ et µ fonctions dérivables solutions du système{
λ′(t) cos t+ µ′(t) sin t = 0

−λ′(t) sin t+ µ′(t) cos t = f(t)

Par les formules de Cramer, on obtient {
λ′(t) = − sin(t)f(t)

µ′(t) = cos(t)f(t)

Pour

λ(t) = −
∫ t

0

sin(u)f(u) du et µ(t) =

∫ t

0

f(u) cos(u) du

on a

y(t) = λ(t) cos(t) + µ(t) sin(t) =

∫ t

0

sin(t− u)f(u) du

solution particulière.
Solution générale

y(t) =

∫ t

0

sin(t− u)f(u) du+ λ cos(t) + µ sin(t) avec λ, µ ∈ R

24.2.6 Résolution pratique de l’équation homogène
En dehors des équations à coefficients constants, il n’y a pas de méthode systématique (et surtout pas
d’équation caractéristique).
24.2.6.1 Recherche de solutions polynomiales

Exemple Résolvons
(E) : (t2 + 2t+ 2)y′′ − 2(t+ 1)y′ + 2y = 0

Pour tout t ∈ R, t2 + 2t+ 2 6= 0 donc (E) est équivalente à une équation différentielle linéaire d’ordre 2
homogène définie sur R.
Recherchons les fonctions polynomiales solutions.
Soit y(t) = tn + · · · une fonction polynomiale.

(t2 + 2t+ 2)y′′ − 2(t+ 1)y′(t) + 2y(t) = (n(n− 1)− 2n+ 2)tn + · · ·

Si y est solution de (E) alors n2 − 3n+ 2 = 0 donc n = 1 ou 2.
On recherche désormais y de la forme y(t) = at2 + bt+ c.

(t2 + 2t+ 2)y′′ − 2(t+ 1)y′(t) + 2y(t) = 2(c− b+ 2a)
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y(t) = at2 + bt+ c est solution de (E)⇔ c = b− 2a⇔ y(t) = a(t2 − 2) + b(t+ 1)
Posons ϕ(t) = t2 − 2 et ψ(t) = t+ 1.
ϕ et ψ sont solutions de (E), elles sont visiblement indépendantes, elles forment donc un système
fondamental de solutions.
Solution générale de (E) :

y(t) = λ(t2 − 2) + µ(t+ 1) avec λ, µ ∈ R

24.2.6.2 Recherche de solutions développables en séries entières

Exemple Résolvons sur ]−1, 1[

(E) : (1− t2)y′′ − 4ty′ − 2y = 0

Pour tout t ∈ ]−1, 1[, 1− t2 6= 0 donc (E) est équivalente à une équation différentielle linéaire d’ordre 2
homogène définie sur ]−1, 1[.
Recherchons les fonctions développables en série entière au voisinage de 0.
Analyse :
Soit y la somme de la série entière

∑
ant

n de rayon de convergence R > 0.
Sur ]−R,R[,

y(t) =

+∞∑
n=0

ant
n, y′(t) =

+∞∑
n=1

nant
n−1

et

y′′(t) =

+∞∑
n=2

n(n− 1)ant
n−2 =

+∞∑
n=0

(n+ 2)(n+ 1)an+2t
n

ce qui donne

(1− t2)y′′ − 4ty′ − 2y =

+∞∑
n=0

(n+ 2)(n+ 1)(an+2 − an)tn

Par unicité des coefficients d’un développement en série entière

∀t ∈ ]−R,R[ ,

+∞∑
n=0

(n+ 2)(n+ 1)(an+2 − an)tn = 0⇔ ∀n ∈ N, (n+ 2)(n+ 1)(an+2 − an) = 0

Ainsi y est solution de (E) sur ]−R,R[ si, et seulement si,

∀n ∈ N, an+2 − an = 0

On a alors pour tout p ∈ N, a2p = a0 et a2p+1 = a1 puis, par sommabilité

y(t) =

+∞∑
p=0

a2pt
2p +

+∞∑
p=0

a2p+1t
2p+1 =

+∞∑
p=0

a0t
2p +

+∞∑
p=0

a1t
2p+1

ce qui donne

y(t) =
a0

1− t2
+

a1t

1− t2
pour t ∈ ]−R,R[ avec nécessairement R 6 1
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Synthèse :
Soit

ϕ(t) =
1

1− t2
et ψ(t) =

t

1− t2

ϕ est développable en série entière sur ]−1, 1[ et par les calculs qui précèdent est solutions de l’équation
différentielle (E) sur ]−1, 1[. Il en est de même pour ψ. Les fonctions ϕ et ψ sont deux solutions
indépendantes, elles forment donc un système fondamental de solutions de (E).
Solution générale :

y(t) =
λ+ µt

1− t2
avec λ, µ ∈ R

24.2.7 Autres démarches
24.2.7.1 Changement de fonction inconnue

Résoudre une équation différentielle par changement de fonction inconnue consiste à traduire l’équation
étudiée en une nouvelle équation en la fonction inconnue proposée, généralement plus simple à résoudre.
Exemple Résolvons sur R l’équation

(E) : (1 + t2)y′′ + 4ty′ + (1− t2)y = 0

en posant z = (1 + t2)y.
Soient y : R→ R deux fois dérivable et z : R→ R définie par z(t) = (1 + t2)y(t).
z est deux fois dérivable

z(t) = (1 + t2)y(t)

z′(t) = (1 + t2)y′(t) + 2ty(t)

z′′(t) = (1 + t2)y′′(t) + 4ty′(t) + 2y(t)

On remarque
(1 + t2)y′′(t) + 4ty′(t) + (1− t2)y(t) = z′′(t)− z(t)

donc
y est solution de (E) sur R⇔ z est solution sur R de (E′) : z′′ − z = 0

(E′) est une équation différentielle linéaire d’ordre 2 homogène à coefficients constants.
Solution générale

z(t) = λet + µe−t

et

y(t) =
λet + µe−t

1 + t2
avec λ, µ ∈ R

Remarque Lorsque ϕ(t) détermine une solution ne s’annulant pas de l’équation homogène associée à
une équation

y′′ + a(t)y′ + b(t)y = c(t)

alors le changement de fonction inconnue y(t) = z(t)ϕ(t) permet de résoudre cette équation. En effet,
on a alors

y′′ + a(t)y′ + b(t)y = c(t)⇔ ϕ(t)z′′ + (2ϕ′(t) + a(t)ϕ(t))z′ = c(t)

qui apparaît comme une équation d’ordre 1 en la fonction inconnue z′.
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Exemple Résolvons sur ]0,+∞[ l’équation

(E) : t2y′′ + ty′ − y = t2

La fonction t 7→ t est solution de l’équation homogène associée.
Réalisons alors le changement de fonction inconnue y(t) = tz(t).
Pour y : ]0,+∞[→ R deux fois dérivable, la fonction z est aussi deux fois dérivable et

y′(t) = tz′(t) + z(t) et y′′(t) = tz′′(t) + 2z′(t)

La fonction y est alors solution de (E) si, et seulement si,

∀t > 0, t3z′′(t) + 3t2z′(t) = t2

La résolution de cette équation d’ordre 1 en la fonction z′ donne

z′(t) =
λ

t3
+

1

3
avec λ ∈ R

En intégrant

z(t) =
λ′

t2
+
t

3
+ µ avec λ′, µ ∈ R

et enfin la solution générale de (E) est

y(t) =
λ

t
+ µt+

t2

3
avec λ, µ ∈ R

24.2.7.2 Changement de variable

Résoudre une équation différentielle par changement de variable consiste à traduire l’équation étudiée
en une nouvelle équation en la fonction inconnue de la nouvelle variable. Cette nouvelle équation est
généralement plus simple à résoudre.
Exemple Résolvons sur ]0,+∞[ l’équation

(E) : x2y′′ + 3xy′ + y = 0

On procède au changement de variable x = et.
Soit y : ]0,+∞[→ R deux fois dérivable et z : R→ R définie par z(t) = y(x) = y

(
et
)
.

La fonction z est deux fois dérivable et

y(x) = z(lnx), y′(x) =
1

x
z′(lnx) et y′′(x) =

1

x2
z′′(lnx)− 1

x2
z′(lnx)

La fonction y est alors solution de (E) sur ]0,+∞[ si, et seulement si,

∀x > 0, z′′(lnx) + 2z′(lnx) + z(lnx) = 0

ce qui revient à dire que z est solution sur R de l’équation

z′′(t) + 2z′(t) + z(t)

La solution générale de cette équation est

z(t) = (λt+ µ)e−t avec λ, µ ∈ R

La solution générale de l’équation (E) est donc

y(x) =
λ lnx+ µ

x
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Remarque Le changement de variable x = et est adapté à la résolution sur ]0,+∞[ des équations de la
forme

x2y′′ + axy′ + by = 0

qu’il transforme en équation à coefficients constants

z′′ + (a− 1)z′ + bz = 0

Pour résoudre sur ]−∞, 0[, il suffit de poser x = −et.
Ce sont ici les équations différentielles d’Euler.

24.3 L’épineux problème des raccords

24.3.1 Rappel

Théorème
Soit a ∈ I et f : I\ {a} → R continue sur I et dérivable sur I\ {a}.
Si f ′(t) −−−−−→

t→a,t6=a
` ∈ R alors f est dérivable en a et f ′(a) = `.

Si f ′(t) −−−−−→
t→a,t6=a

+∞ (ou−∞ ) alors f n’est pas dérivable en a, mais y présente une tangente

verticale.

dém. :
Supposons f ′(t) −−−→

t→a
` ∈ R̄. On étudie le taux de variation

1

h
(f(a+ h)− f(a))

Cas a est intérieur à I :
Quand h→ 0+, en appliquant le théorème des accroissements finis entre a et a+ h, il existe ch compris
entre a et a+ h tel que

f(a+ h)− f(a) = f ′(ch)h

et alors
1

h
(f(a+ h)− f(a)) = f ′(ch)→ `

car ch → a par encadrement. On en déduit f ′d(a) = `.
L’étude quand h→ 0− est analogue et fournit f ′g(a) = ` ce qui permet de conclure.
Cas a est extrémité de I : Une seule des deux études précédentes suffit pour conclure.
�

24.3.2 Résolution de l’équation a(t)y′ + b(t)y = c(t)

Soit a, b, c : I → K continues. On étudie l’équation différentielle

(E) : a(t)y′ + b(t)y = c(t)

Si a ne s’annule pas sur I alors l’équation (E) est équivalente à

y′ = α(t)y + β(t) avec α = −b/a et β = c/a qu’on sait résoudre

Si a s’annule alors
- on commence par résoudre (E) sur les plus grands intervalles J ⊂ I sur lesquels a ne s’annule pas ;
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- on procède ensuite au raccord des solutions aux points où a s’annule.
Pour raccorder les solutions en un point t0 où a s’annule :
- on exprime une solution à droite et à gauche de t0 ;
- on étudie s’il est possible de la prolonger par continuité en t0 ;
- on étudie si ce prolongement est dérivable en t0 ;
- on vérifie que l’équation différentielle est alors satisfaite en t0.
Exemple Résolvons l’équation (E) : ty′ − y = t2 sur R.

Sur I = R+? ou R−? : (E)⇔ y′ − 1

t
y = t.

C’est une équation linéaire d’ordre 1.
Solution générale sur I : y(t) = t2 + λt avec λ ∈ R.
Déterminons les solutions de (E) sur R.
Soit y : R? → R une solution de (E) sur R+? et R−?.
Il existe λ, λ′ ∈ R tels que

∀t > 0, y(t) = t2 + λt et ∀t < 0, y(t) = t2 + λ′t

A quelle(s) condition(s) sur λ et λ′ peut-on prolonger y en 0 pour obtenir une solution sur R ?
Continuité en 0 :
Quand t→ 0+, y(t) = t2 + λt→ 0.
Quand t→ 0−, y(t) = t2 + λ′t→ 0.
Le prolongement en 0 est possible avec y(0) = 0 sans conditions sur λ, λ′.
Dérivabilité en 0 :
Quand t→ 0+, y′(t) = 2t+ λ→ λ donc y′d(0) = λ.
Quand t→ 0−, y′(t) = 2t+ λ′ → λ′ donc y′g(0) = λ′.
Le prolongement en 0 est dérivable si, et seulement si, λ = λ′ et alors y′(0) = λ
Equation différentielle en 0 :
0y′(0)− y(0) = 0 : ok.
Finalement :
Solution générale sur R : y(t) = t2 + λt avec λ ∈ R.

http://mp.cpgedupuydelome.fr 572 cbna



CHAPITRE 24. EQUATIONS DIFFÉRENTIELLES LINÉAIRES SCALAIRES

Exemple Résolvons l’équation (E) : ty′ − 2y = 0 sur R.

Sur I = R+? ou R−?, (E)⇔ y′ =
2

t
y.

C’est une équation différentielle linéaire d’ordre 1.
Solution générale sur I , y(t) = λt2 avec λ ∈ R.
Recherchons les solutions sur R.
Soit y : R? → R une fonction solution sur R+? et R−?.
Il existe λ, λ′ ∈ R tels que

∀t > 0, y(t) = λt2 et ∀t < 0, y(t) = λ′t2

A quelle(s) condition(s) sur λ et λ′ peut-on prolonger y en 0 pour obtenir une solution sur R ?
Continuité en 0 :
Quand t→ 0+, y(t) = λt2 → 0.
Quand t→ 0−, y(t) = λ′t2 → 0.
On peut prolonger y par continuité en 0 par y(0) = 0 sans conditions sur λ, λ′.
Quand t→ 0+, y′(t) = 2λt→ 0 donc y′d(0) = 0.
Quand t→ 0−, y(t) = 2λ′t→ 0 donc y′g(0) = 0
Le prolongement en 0 est dérivable avec y′(0) = 0 sans conditions sur λ, λ′.
Equation différentielle en 0 :
0y′(0)− 2y(0) = 0 : ok.
Finalement :
Solution générale sur R

y(t) =

 λt2 si t > 0
0 si t = 0
λ′t2 si t < 0

avec λ, λ′ ∈ R

Exemple Résolvons l’équation (E) : t ln(t)y′ + y = 0 sur ]0,+∞[.

Sur I = ]0, 1[ ou ]1,+∞[, (E)⇔ y′ = − 1

t ln t
y.
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C’est une équation différentielle linéaire d’ordre 1 homogène.

Solution générale sur I , y(t) =
λ

ln t
.

Recherchons les solutions sur ]0,+∞[.
Soit y : ]0, 1[ ∪ ]1,+∞[→ R une solution sur ]0, 1[ et ]1,+∞[.
Il existe λ, λ′ ∈ R tels que

∀t ∈ ]0, 1[ , y(t) =
λ

ln t
et ∀t > 1, y(t) =

λ′

ln t

Continuité en 1 :

Quand t→ 1+, y(t)→

 +∞ si λ′ > 0
0 si λ′ = 0
−∞ si λ′ < 0

.

Quand t→ 1−, y(t)→

 −∞ si λ > 0
0 si λ = 0

+∞ si λ < 0

Le prolongement par continuité en 1 n’est possible que si λ = λ′ = 0 et alors y(t) = 0 sur ]0,+∞[.
Inversement, cette fonction est évidemment solution sur ]0,+∞[
Solution générale sur ]0,+∞[ : y(t) = 0.

Exemple Résolvons l’équation (E) : ty′ − y = t sur R.

Sur I = R+? ou R−?, (E)⇔ y′ =
1

t
y + 1.

C’est une équation différentielle linéaire d’ordre 1.
Solution générale sur I , y(t) = t ln |t|+ λt avec λ ∈ R.
Recherchons les solutions sur R.
Soit y : R? → R une fonction solution sur R+? et R−?.
Il existe λ, λ′ ∈ R tels que

∀t > 0, y(t) = t ln t+ λt et ∀t < 0, y(t) = t ln(−t) + λ′t
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A quelle(s) condition(s) sur λ et λ′ peut-on prolonger y en 0 pour obtenir une solution sur R ?
Continuité en 0 :
Quand t→ 0+, y(t) = t ln t+ λt→ 0.
Quand t→ 0−, y(t) = t ln |t|+ λ′t→ 0.
On peut prolonger y par continuité en 0 par y(0) = 0 sans conditions sur λ, λ′.
Quand t→ 0+, y′(t) = λ+ 1 + ln t→ −∞.
Le prolongement en 0 n’est pas être dérivable en 0.
Il n’y a pas de solutions sur R à l’équation (E)

24.3.3 Résolution de l’équation a(t)y′′ + b(t)y′ + c(t)y = d(t)

La problématique est identique, cependant les raccords aux points où a s’annule s’obtiennent en étudiant
la dérivabilité jusqu’à l’ordre 2.

Exemple Résolvons l’équation (E) : (t− 1)y′′ − ty′ + y = 0 sur R.
Sur I = ]−∞, 1[ ou ]1,+∞[ :

(E)⇔ y′′ − t

t− 1
y′ +

1

t− 1
y = 0

C’est une équation linéaire homogène d’ordre 2.
t 7→ t et t 7→ et sont solutions linéairement indépendantes donc forment un système fondamental de
solutions sur R.
La solution générale sur I est y(t) = λt+ µet.
Notons que l’argument ne vaut pas sur I = R, car on ne sait pas a priori si l’espace des solutions de (E)
est de dimension 2.
Déterminons les solutions de (E) sur R :
Soit y : R\ {1} → R une solution sur ]−∞, 1[ et ]1,+∞[.
Il existe λ, λ′, µ, µ′ ∈ R tels que

∀t > 1, y(t) = λt+ µet et ∀t < 1, y(t) = λ′t+ µ′et
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Continuité en 1 :
Quand t→ 1+, y(t)→ λ+ µe.
Quand t→ 1−, y(t)→ λ′ + µ′e.
On peut prolonger y en 1 si, et seulement si, λ+ µe = λ′ + µ′e et alors y(1) = λ+ µe.
Dérivabilité en 1 :
Quand t→ 1+, y′(t) = λ+ µet → λ+ µe donc y′d(1) = λ+ µe
Quand t→ 1−, y′(t) = λ′ + µ′et → λ′ + µ′e donc y′g(1) = λ+ µe
Le prolongement par continuité en 1 est dérivable et y′(1) = λ+ µe.
Dérivabilité à l’ordre 2 en 1 :
Quand t→ 1+, y′′(t) = µet → µe.
Quand t→ 1−, y′′(t) = µ′et = µ′e.
Le prolongement est dérivable à l’ordre 2 en 1 si, et seulement si, µ = µ′ et alors λ = λ′ et y′′(1) = µ.
Vérification de l’équation différentielle en 1 :
0y′′(1)− y′(1) + y(1) = 0 : ok
Finalement :
Solution générale de (E) sur R y(t) = λt+ µet avec λ, µ ∈ R.

Remarque Comme pour les équations d’ordre 1 différents comportements sont possibles lors des
raccords.
Par exemple, pour l’équation différentielle t2y′′ + ty′ − y = 0, la solution générale sur R+? ou sur R−?
est y(t) = λt+ µ/t et la solution générale sur R est y(t) = λt.
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Chapitre 25

Calcul différentiel

K désigne R ou C.
E,F,G et H désignent des R-espaces vectoriels de dimensions finies non nulles indifféremment normés.
On pose n = dimE et m = dimF
Ω et Ω′ désignent des ouverts de E et F .
I désigne un intervalle ouvert de R.

25.1 Différentielle d’une fonction

25.1.1 Développement limité à l’ordre 1

Soit f : Ω ⊂ E → F et a ∈ Ω

Définition
On appelle développement limité à l’ordre 1 de f en a toute écriture :

f(a+ h) = f(a) + `(h) + ‖h‖ ε(h)

avec ` ∈ L(E,F ) et ε(h)→ 0F quand h→ 0E
On dit alors que ` est application linéaire tangente à f en a.

Remarque On écrit souvent o(h) pour ‖h‖ ε(h).

Exemple Pour f : (x, y) ∈ R2 → R un développement limité à l’ordre 1 en (0, 0) est de la forme

f(x, y) = f(0, 0) + ax+ by + o(x, y) quand (x, y)→ (0, 0)

Proposition
Il y a unicité de l’application linéaire tangente décrivant un développement limité à l’ordre 1
de f en a.

dém. :
Supposons que `,m ∈ L(E,F ) conviennent.

`(h)−m(h) = o(h) = ‖h‖ ε(h) avec ε −−→
0E

0F
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Pour v ∈ E, considérons h = λ.v avec λ→ 0+.

`(λv)−m(λv) = ‖λ.v‖ ε(λ.v)

donne
`(v)−m(v) = ‖v‖ ε(λ.v)

Quand λ→ 0+, on obtient `(v)−m(v)→ 0F et donc `(v) = m(v) puis ` = m.
�

25.1.2 Différentiabilité en un point
Soit f : Ω ⊂ E → F et a ∈ Ω

Définition
On dit que f est différentiable en a si f admet un développement limité à l’ordre 1 en a.
L’application linéaire tangente à f en a est aussi appelée différentielle de f en a et on la note
df(a). Ainsi :

f(a+ h) = f(a) + df(a) · h+ o(h) quand h→ 0E

avec df(a) ∈ L(E,F ).

Remarque On a ici adopté la notation d’opérateur. Il faut comprendre

df(a) · h = [df(a)] (h)

Cette quantité se lit différentielle de f en a le long du vecteur h.

Théorème
Si f est différentiable en a alors f est continue en a.

dém. :
Par développement limité à l’ordre 1

f(a+ h) = f(a) + df(a) · h+ ‖h‖ ε(h) avec ε(h) −−−−→
h→0E

0F

L’application linéaire df(a) étant continue puisqu’au départ d’un espace de dimension finie, on obtient

f(a+ h) −−−−→
h→0E

f(a) + 0F + 0F = f(a)

�

Exemple Si f : E → F est constante alors

∀a ∈ E,df(a) = 0̃

En effet, soit a ∈ E. On peut écrire
f(a+ h) = f(a)

Quand h→ 0E , f(a+ h) = f(a) + `(h) + o(h) avec ` = 0̃ linéaire
Ainsi,f est différentiable en a et df(a) = 0̃.
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Exemple Si f : E → F est linéaire alors

∀a ∈ E,df(a) = f

En effet, soit a ∈ E. On peut écrire

f(a+ h) = f(a) + f(h)

Quand h→ 0E , f(a+ h) = f(a) + `(h) + o(h) avec ` = f linéaire.
Ainsi f est différentiable en a et df(a) = f .

Exemple Soit f :Mn(R)→Mn(R) définie par f(M) = M2 et A ∈Mn(R).
Déterminons df(A).

f(A+H) = (A+H)2 = A2 +AH +HA+H2

Ainsi quand H → On,

f(A+H) = (A+H)2 = f(A) + `(H) + o(H)

avec `(H) = AH +HA, ` ∈ L(Mn(R)),
donc f est différentiable en A et df(A) : H → AH +HA.

Exemple Soit f : C? → C définie par f(z) = 1/z et a ∈ C?.
Déterminons df(a).

f(a+ h) =
1

a+ h
=

1

a

1

1 + h/a

Or quand u ∈ C→ 0,
1

1 + u
= 1− u+ o(u) car

1

1 + u
− (1− u) =

u2

1 + u
= O(u2) = o(u).

Par suite
Quand h→ 0 :

f(a+ h) =
1

a

(
1− h

a
+ o(h)

)
= f(a) + `(h) + o(h)

avec ` : h 7→ −h/a2 linéaire.
Ainsi f est différentiable en a et

df(a) : h 7→ − h

a2

Proposition
Soit f : I ⊂ R→ F et a ∈ I . On a équivalence entre :
(i) f est dérivable en a ;
(ii) f est différentiable en a.
De plus, on a alors

df(a) : h 7→ h.f ′(a) et f ′(a) = df(a) · 1
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dém. :
(i)⇒ (ii) Supposons f dérivable en a.
Quand h→ 0,

1

h
(f(a+ h)− f(a))→ f ′(a)

donc
1

h
(f(a+ h)− f(a)) = f ′(a) + ε(h) avec ε(h) −−−→

h→0
0

puis
f(a+ h) = f(a) + h.f ′(a) + hε(h) = f(a) + `(h) + o(h)

avec ` : h 7→ h.f ′(a), ` ∈ L(R, F ).
Par suite f est différentiable en a et df(a) : h 7→ h.f ′(a).
(ii)⇒ (i) Supposons f différentiable en a.
Quand h→ 0, f(a+ h) = f(a) + df(a) · h+ o(h) donc

1

h
(f(a+ h)− f(a)) =

1

h
(df(a) · h+ o(h)) = df(a) · 1 + o(1)→ df(a)(1)

Ainsi f est dérivable en a et f ′(a) = df(a) · 1.
�

25.1.3 Fonctions différentiables

Définition
Une fonction f : Ω ⊂ E → F est dite différentiable si elle est différentiable en tout point
a ∈ Ω. L’application df : Ω→ L(E,F ) est alors appelée différentielle de f .

Théorème
Les fonctions différentiables sont continues.

Exemple Pour f : I ⊂ R→ F

f est différentiable si, et seulement si, f est dérivable

Exemple Si f : E → F est constante alors f est différentiable en tout a ∈ E et df(a) = 0̃.
Par suite f est différentiable et df = 0̃.

Exemple Si f ∈ L(E,F ) alors f est différentiable en tout a ∈ E et df(a) = f .
Par suite f est différentiable et df : a 7→ f .
En identifiant constante et fonction égale à la constante, on écrit df = f .
En particulier
- (x1, . . . , xp) ∈ Kp 7→ xj est différentiable ;
- z ∈ C 7→ Re(z), Im(z) sont différentiables ;
- A ∈Mn,p(K) 7→ ai,j est différentiable.
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25.1.4 Opérations

Théorème
Soit f, g : Ω ⊂ E → F et λ, µ ∈ R.
Si f et g sont différentiables alors λf + µg l’est aussi et

d(λf + µg) = λdf + µdg

dém. :
Soit a ∈ U .

(λf + µg)(a+ h) = λf(a+ h) + µg(a+ h)

donc

(λf + µg)(a+ h) = λ (f(a) + df(a) · h+ ‖h‖ ε(h)) + µ (g(a) + dg(a) · h+ ‖h‖ ε̃(h))

Par suite
(λf + µg)(a+ h) = (λf + µg)(a) + `(h) + ‖h‖ (ε(h) + ε̃(h))

avec ` = λdf(a) + µdg(a) ∈ L(E,F )
Par suite λf + µg est différentiable en a et d(λf + µg)(a) = λdf(a) + µdg(a).
�

Corollaire
L’ensemble des fonctions différentiables de Ω vers F constitue une sous-espace vectoriel de
F(Ω, F ).

Théorème
Soit f : Ω ⊂ E → F , g : Ω ⊂ E → F et b : F ×G→ H bilinéaire.
Si f et g sont différentiables alors b(f, g) l’est aussi et

d (b(f, g)) = b(df, g) + b(f, dg)

dém. :
Soit a ∈ U .

b(f, g)(a+ h) = b (f(a+ h), g(a+ h))

donne
b (f(a), g(a)) = b (f(a) + df(a) · h+ ‖h‖ ε(h), g(a) + dg(a) · h+ ‖h‖ ε̃(h))

En développant

b(f, g)(a+ h) = b(f, g)(a) + b ( df(a) · h, g(a)) + b (f(a), dg(a) · h) + ϕ(h)

avec
ϕ(h) = b (f(a), ‖h‖ ε̃(h)) + b (df(a) · h, dg(a) · h) + · · ·

(où les termes de · · · sont semblables ou pires. . . )
Les applications linéaires df(a) et dg(a) sont continues et donc il existe kf , kg ∈ R+ vérifiant

∀h ∈ E, ‖df(a) · h‖ 6 kf ‖h‖ et ‖dg(a) · h‖ 6 kg ‖h‖
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De plus, la forme bilinéaire b étant au départ d’un produit d’espace de dimension finie, elle est aussi
continue et il existe donc k ∈ R+ vérifiant

∀(h, h′) ∈ E × F, ‖b(h, h′)‖ 6 k ‖h‖ ‖h′‖

On a alors
‖ϕ(h)‖ 6 k ‖f(a)‖ ‖h‖ ‖ε̃(h)‖+ kkfkg ‖h‖2 + · · · = o(h)

Ainsi
b(f, g)(a+ h) = b(f, g)(a) + `(h) + o(h)

avec ` : h 7→ b (df(a) · h, g(a)) + b (f(a),dg(a) · h) linéaire.
Ainsi b(f, g) est différentiable en a et

d (b(f, g)) (a) : h 7→ b (df(a) · h, g(a)) + b (f(a),dg(a) · h)

Abusivement, on écrit

d (b(f, g)) (a) = b ( df(a), g(a)) + b (f(a), dg(a))

puis
db(f, g) = b(df, g) + b(f, dg)

�

Corollaire
Si F est une algèbre (par exemple F = R, C,Mn(R),. . . ) alors pour f, g : Ω → F différen-
tiables, fg est différentiable et

d(fg) = (df)g + f(dg)

L’ensemble des fonctions différentiables de Ω vers F constitue alors une sous-algèbre de
F(Ω, F ).

dém. :
L’application b : F × F → F définie par b(x, y) = xy est bilinéaire.
�

Remarque On peut aussi appliquer ce résultat à un produit scalaire, un produit extérieur,. . .

Exemple Les fonctions polynomiales sur Rn sont différentiables.

Exemple La fonction det :Mn(K)→ K est différentiable car det est somme et produit de fonctions
différentiables.

Théorème
Soit f : Ω ⊂ E → F .
On a équivalence entre :
(i) f est différentiable ;
(ii) les fonctions coordonnées de f dans une base de F le sont.
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dém. :
Soit e′ = (e′1, . . . , e

′
m) une base de F .

(i)⇒ (ii) Si f est différentiable en a alors

f(a+ h) = f(a) + df(a) · h+ ‖h‖ ε(h) avec ε(h) −−−−→
h→0E

0F

En notant :
- f1, . . . , fm les fonctions coordonnées de f dans la base e′ ;
- ε1, . . . , εm les fonctions coordonnées de ε dans la base e′ ;
- (df(a))1 , . . . , (df(a))m les fonctions coordonnées de df(a) dans la base e′ ;
on obtient en passant aux coordonnées le développement limité précédent

∀1 6 k 6 m, fk(a+ h) = fk(a) + (df(a))k · h+ ‖h‖ εk(h)

avec (df(a))k linéaire et εk(h) −−−−→
h→0E

0F .

(ii)⇒ (i) C’est un raisonnement analogue en sens inverse.
�

Exemple La fonction f : R2 → R2 définie par f(x, y) = (x+ y, xy) est différentiable.
En effet, ses fonctions coordonnées le sont.

Exemple La fonction M 7→ com(M) est différentiable.
En effet, les coefficients de com(M) sont des polynômes en les coefficients de M donc des fonctions
différentiables.

25.1.5 Composition

Théorème
Soit f : Ω ⊂ E → F et g : Ω′ ⊂ F → G telles que f(Ω) ⊂ Ω′.
Si f et g sont différentiables alors g ◦ f aussi et

∀a ∈ Ω, d(g ◦ f)(a) = [dg(f(a))] ◦ df(a)

dém. :
Soit a ∈ Ω. On peut écrire

f(a+ h) = f(a) + df(a) · h+ ‖h‖ ε(h) avec ε(h) −−−−→
h→0E

0F

Ainsi
f(a+ h) = f(a) + h′ avec h′ = df(a) · h+ ‖h‖ ε(h)

Aussi
g(f(a) + h′) = g(f(a)) + dg(f(a)) · h′ + ‖h′‖ ε′(h′) avec ε′(h′) −−−−→

h′→0E
0F

puis
(g ◦ f)(a+ h) = g (f(a)) + dg(f(a)) · (df(a) · h) + ϕ(h)
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avec
ϕ(h) = ‖h‖ dg(f(a)) · ε(h) + ‖h′‖ ε̃(h′)

Par continuité de df(a), on a ‖df(a) · h‖ 6 kf ‖h‖ puis ‖h′‖ 6 (kf + |ε(h)|) ‖h‖ ce qui donne ϕ(h) =
o(h).
Ainsi

(g ◦ f)(a+ h) = g (f(a)) + (dg(f(a)) ◦ df(a)) · h+ o(h)

avec dg(f(a)) ◦ df(a) ∈ L(E,H).
Finalement g ◦ f est différentiable en a et

d(g ◦ f)(a) = dg(f(a)) ◦ df(a)

�

Exemple Les fonctions rationnelles sur Rp sont différentiables.
En effet, l’inverse d’une fonction polynomiale est différentiable par un argument de composition.

Exemple La fonction Φ : R2 → R2 définie par Φ(r, θ) = (r cos θ, r sin θ) est différentiable.
En effet, ses fonctions coordonnées le sont par un argument de composition.

Corollaire
Soit f : Ω ⊂ E → R et ϕ : I ⊂ R→ R telles que f(Ω) ⊂ I .
Si f est différentiable et ϕ dérivable ϕ(f) = ϕ ◦ f l’est aussi

dϕ(f) = ϕ′(f).df

dém. :
d(ϕ ◦ f)(a) = dϕ(f(a)) ◦ df(a) or dϕ(f(a)) : h 7→ ϕ′(f(a)).h donc d(ϕ ◦ f)(a) = ϕ′(f(a)).df(a).
�

Exemple d(fn) = nfn−1df , d

(
1

f

)
= − 1

f2
df , d (ln f) =

df

f
,. . .

Corollaire
Soit γ : I ⊂ R→ E et f : Ω ⊂ E → F telles que γ(I) ⊂ Ω.
Si γ est dérivable et f différentiable alors t 7→ f(γ(t)) est dérivable et

(f ◦ γ)′(t) = df(γ(t)) · γ′(t)

dém. :
(f ◦ γ)′(t) = d(f ◦ γ)(t) · 1 = (df(γ(t)) ◦ dγ(t)) · 1 = df(γ(t))γ′(t) car γ′(t) = dγ(t) · 1.
�
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Remarque L’application γ se comprend comme le paramétrage d’un mobile inscrit évoluant dans E.
Si l’on comprend f comme une transformation géométrique, f ◦ γ est un paramétrage de l’arc
transformé. La formule de dérivation montre que le vecteur vitesse en un point de l’arc γ est transformé
par la différentielle à f en ce point pour former le vecteur vitesse à l’arc transformé.

25.2 Dérivées partielles
La différentielle est une application compliquée. Par la notion de dérivée partielle, nous allons accéder
simplement à ses valeurs.
25.2.1 Dérivation selon un vecteur
Soit f : Ω ⊂ E → F et a ∈ Ω. Puisque Ω est ouvert, il existe α > 0 tel que B(a, α) ⊂ Ω.
Pour v ∈ E fixé, la fonction t ∈ R 7→ f(a + t.v) est définie au voisinage de 0, elle étudie les valeurs
prises par f sur la droite affine a+ Vectv.

Définition
On dit que f est dérivable en a selon le vecteur v si la fonction t 7→ f(a+ t.v) est dérivable en
0.
On pose alors

Dvf(a) = lim
t→0

1

t
(f(a+ t.v)− f(a))

appelé vecteur dérivé de f en a selon le vecteur v.

http://mp.cpgedupuydelome.fr 585 cbna



25.2. DÉRIVÉES PARTIELLES

Théorème
Si f est différentiable en a alors f est dérivable en a selon tout vecteur v ∈ E et

Dvf(a) = df(a) · v

dém. :
Quand h→ 0E ,

f(a+ h) = f(a) + df(a) · h+ ‖h‖ ε(h) avec ε(h) −−−−→
h→0E

0F

Pour v ∈ E fixé.
Quand t→ 0,

f(a+ t.v) = f(a) + df(a) · (t.v) + ‖t.v‖ ε(t.v) = f(a) + t.df(a) · h+ o(t)

car df(a) est linéaire.
Par suite

1

t
(f(a+ t.v)− f(a))→ df(a) · v

�

Exemple Soit f : R2 → R définie par f(x, y) = x3/y pour y 6= 0 et f(x, 0) = 0.
Soit v = (vx, vy) ∈ R2. Etudions Dvf(0, 0).

1

t
(f((0, 0) + t.v)− f(0, 0)) =

1

t
f(t.vx, t.vy)

Si vy 6= 0 alors
1

t
f(t.vx, t.vy) =

t3v3
x

t2vy
−−−→
t→0

0

Si vy = 0 alors
1

t
f(t.vx, t.vy) = 0 −−−→

t→0
0

Ainsi f est dérivable en (0, 0) selon tout vecteur v et Dvf(0, 0) = 0.
Cependant f n’est pas continue en (0,0) (et a fortiori n’y est pas différentiable) car
f(1/n, 1/n3) = 1 −−−−−→

n→+∞
1 6= f(0, 0) alors

(
1/n, 1/n3

)
→ (0, 0).

25.2.2 Dérivées partielles
Choisissons arbitrairement une base e = (e1, . . . , en) de E.
Soit f : Ω ⊂ E → F .

Définition
Sous réserve d’existence, on appelle i-ème dérivé partiel de f (dans la base e) en a ∈ Ω le
vecteur dérivé de f en a selon le vecteur ei. On note alors

∂if(a) = Deif(a) = lim
t→0

1

t
(f(a+ t.ei)− f(a))
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Exemple Calculons les dérivées partielles de f : R2 → R définie par f(x1, x2) = x1x
2
2 relatives à la

base canonique.
Notons c = (c1, c2) la base canonique de R2.
Les dérivées partielles de f dans c en (x1, x2) sont

∂1f(x1, x2) = lim
t→0

1

t
(f(x1 + t, x2)− f(x1, x2)) = x2

2

∂2f(x1, x2) = lim
t→0

1

t
(f(x1, x2 + t)− f(x1, x2)) = 2x1x2

Définition
Sous réserve d’existence, l’application ∂if : Ω ⊂ E → F est appelée i-ème dérivée partielle
de f (dans la base e).

Théorème
Si f : Ω ⊂ E → F est différentiable alors les dérivées partielles de f dans la base e =
(e1, . . . , en) existent et pour tout a ∈ Ω on a

∂if(a) = df(a) · ei

De plus,

∀h =

n∑
i=1

hi.ei ∈ E, df(a) · h = Dhf(a) =

n∑
i=1

hi.∂if(a)

dém. :
Si f est différentiable alors pour tout a ∈ U et tout h ∈ E, f est dérivable a selon le vecteur h et

Dhf(a) = df(a) · h

En particulier, pour h = ei,
∂if(a) = Deif(a) = df(a) · ei

De plus, si h1 = h1.e1 + · · ·+ hn.en alors

df(a) · h = df(a) ·

(
n∑
i=1

hi.ei

)
=

n∑
i=1

hi.df(a) · ei =

n∑
i=1

hi.∂if(a)

car df(a) est une application linéaire.
�

Corollaire
Le développement limité à l’ordre 1 de f en a s’écrit alors

f(a+ h) = f(a) +

n∑
i=1

hi.∂if(a) + o(h) quand h→ 0E

Remarque Sous l’hypothèse « f est différentiable en a » , les dérivées partielles permettent de calculer
la différentielle de f . . . Il reste à savoir calculer les dérivées partielles de f !
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25.2.3 Dérivées partielles d’une fonction de n variables réelles
Soit f : Ω ⊂ Rn → F donnée par

f : x = (x1, . . . , xn) 7→ f(x1, . . . , xn)

On étudie les dérivées partielles de f dans la base canonique e = (e1, . . . , en) de Rn.

Théorème
Sous réserve d’existence

∂if(a) =
d

dxi
(f(a1, . . . , xi, . . . , an))|xi=ai

dém. :
Sous réserve d’existence

∂if(a) = lim
t→0

(
1

t
(f(a+ tei)− f(a))

)
= lim
t→0

(
1

t
(f(a1, . . . , ai + t, . . . , an)− f(a1, . . . , an)

)
Ainsi ∂if(a) apparaît comme la dérivée en xi = ai de l’application xi 7→ f(a1, . . . , xi, . . . , an).
�

Remarque Ainsi et de façon synthétique

∂if(x) =
d

dxi
(f(x1, . . . , xi, . . . , xn))

Définition
Si l’on a convenu de noter x1, . . . , xn les éléments du n-uplet x, il est usuel de noter

∂f

∂x1
, . . . ,

∂f

∂xn

plutôt que ∂1f, . . . , ∂nf les dérivées partielles de f . Ainsi

∂f

∂xi
(x1, . . . , xn) =

d

dxi
(f(x1, . . . , xn)) = lim

t→0

1

t
(f(x+ tei)− f(x))

Exemple Calcul des dérivées partielles dans la base canonique de f : R3 → R définie par
f(x, y, z) = x2 + z sin(xy).
Les dérivées partielles de f sont
∂f

∂x
(x, y, z) =

d

dx

(
x2 + z sin(xy)

)
= 2x+ yz cos(xy),

∂f

∂y
(x, y, z) =

d

dy

(
x2 + z sin(xy)

)
= xz cos(xy) et

∂f

∂z
(x, y, z) =

d

dz

(
x2 + z sin(xy)

)
= sin(xy)
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Exemple Soit f : R2 → R définie par

f(x, y) =


x3 − y3

x2 + y2
si (x, y) 6= (0, 0)

0 si (x, y) = (0, 0)

Calcul des dérivées partielles dans la base canonique de f en (0, 0).

∂f

∂x
(0, 0) = lim

t→0

1

t
(f(t, 0)− f(0, 0)) = 1 et

∂f

∂y
(0, 0) = lim

t→0

1

t
(f(0, t)− f(0, 0)) = −1

25.2.4 Dérivées partielles d’une fonction d’une variable vectorielle
Soit f : Ω ⊂ E → F et e = (e1, . . . , en) une base de E.
Pour x ∈ Ω, convenons de noter x1, . . . , xn ∈ R les coordonnées de x dans la base e. On a alors

f(x) = f(x1e1 + · · ·+ xnen)

Il est alors usuel d’identifier la fonction f avec la fonction de n variables réelles donnée par

f(x1, . . . , xn) = f(x)

Exemple Soit f : C→ C. En munissant C de la base canonique (1, i), on identifie f : z 7→ f(z) avec la
fonction

f : (x, y) 7→ f(x+ i.y)

Exemple Soit f :M2(R)→ R. En munissantM2(R) de sa base canonique, on identifie
f : M 7→ f(M) avec l’application

f : (a, b, c, d) 7→ f

(
a b
c d

)

Théorème
Sous réserve d’existence, les dérivées partielles dans la base e = (e1, . . . , en) de f en a sont
alors données par

∂if(a) =
d

dxi
(f(a1, . . . , xi, . . . , an))|xi=ai

dém. :

∂if(a) = lim
t→0

(
1

t
(f(a+ tei)− f(a))

)
= lim
t→0

(
1

t
(f(a1, . . . , ai + t, . . . , an)− f(a1, . . . , an)

)
Ainsi ∂if(a) apparaît comme la dérivée en xi = ai de l’application xi 7→ f(a1, . . . , xi, . . . , an).
�
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Remarque Ainsi

∂if(x) =
d

dxi
(f(x1, . . . , xn))

Définition
Si l’on a convenu de noter x1, . . . , xn les coordonnées de la variable x dans la base e, il est

usuel de noter
∂f

∂x1
, . . . ,

∂f

∂xn
les dérivées partielles de f . Ainsi

∂f

∂xi
(x) =

d

dxi
(f(x1, . . . , xn)) = lim

t→0

1

t
(f(x+ tei)− f(x))

Exemple Soit f : C? → C définie par f(z) = 1/z.
Calculons les dérivées partielles dans la base canonique de f en z = x+ iy.

∂f

∂x
(z) =

d

dx

(
1

z

)
=

d

dx

(
1

x+ iy

)
= − 1

(x+ iy)2
= − 1

z2

et
∂f

∂y
(z) =

d

dy

(
1

x+ iy

)
= − i

z2

Exemple Soit f :M2(R)→M2(R) définie par f(M) = M2.

Calculons les dérivées partielles dans la base canonique de f en M =

(
a b
c d

)
.

∂f

∂a
(M) =

d

da

(
M2
)

=
d

da

(
a2 + bc ab+ bd
ac+ cd bc+ d2

)
=

(
2a b
c 0

)
,
∂f

∂b
(M) =

(
c a+ d
0 c

)
,. . .

25.2.5 Matrice jacobienne
On suppose les espaces E et F munis de bases e = (e1, . . . , en) et e′ = (e′1, . . . , e

′
m).

Soit f : Ω ⊂ E → F différentiable en a ∈ Ω.

Définition
On appelle matrice jacobienne de f en a la matrice de l’application linéaire df(a) relative aux
bases e et e′

Jacf(a) =
déf

Mate,e′(df(a)) ∈Mm,n(R)

Théorème
En notant f1, . . . , fm les fonctions coordonnées de f alors

Jacf(x) = (∂ifk(x))16k6m,16i6n =

 ∂1f1(x) · · · ∂nf1(x)
...

...
∂1fm(x) · · · ∂nfm(x)


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dém. :
Les colonnes de la matrice Jac(f)(x) = Mate,e′(df(x)) sont formées par les coordonnées dans e′ des
images des vecteurs de la base e. Or

df(x)ei = ∂if(x) =
d

dxi
(f1(x).e′1 + · · ·+ fm(x).e′m) =

m∑
k=1

∂ifk(x).e′k

et l’on remplit la matrice jacobienne comme proposé.
�

Remarque Si l’on convient de noter x1, . . . , xn les coordonnées de la variable x

Jacf(x) =

(
∂fk
∂xi

(x)

)
16k6m,16i6n

=


∂f1

∂x1
(x) · · · ∂f1

∂xn
(x)

...
...

∂fm
∂x1

(x) · · · ∂fm
∂xn

(x)



Remarque Pour une fonction f : Ω ⊂ Rn → Rm, l’usage veut que l’on travaille relativement aux bases
canoniques pour définir la matrice jacobienne.

Exemple Soit f : R3 → R2 définie par f(x, y, z) =
(
x2 + y2 + z2, xyz

)
.

Jacf(x, y, z) =

(
2x 2y 2z
yz xz xy

)

Exemple Soit Φ : R2 → R2 définie par Φ(r, θ) = (r cos θ, r sin θ).

JacΦ(r, θ) =

(
cos θ −r sin θ
sin θ r cos θ

)

Remarque Cette matrice jacobienne caractérise la différentielle de f en a et donne ainsi accès au
développement limité à l’ordre 1 de f en a.

Exemple Pour l’application Φ ci-dessus

Φ(r + r′, θ + θ′) =
(r′,θ′)→(0,0)

Φ(r, θ) + (cos(θ)r′ − r sin(θ)θ′, sin(θ)r′ + r cos(θ)θ′) + o(r′, θ′)

et la relation revêt même une certaine élégance en écrivant dr, dθ au lieu de r′, θ′. . .
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25.2.6 Opération sur les dérivées partielles
On munit E d’une base e = (e1, . . . , en).

Théorème
Soit f, g : Ω ⊂ E → F et λ, µ ∈ R.
Si f et g admettent des dérivées partielles alors λf + µg aussi et

∂i(λf + µg) = λ∂if + µ∂ig

dém. :
Soit x ∈ E. On écrit x = x1.e1 + · · ·+xn.en et l’on comprend les fonctions f et g comme des fonctions
de n variables réelles. La dérivée partielle ∂if s’obtient par dérivation d’application partielle

∂if(x) =
d

dxi
(f(x1, . . . , xn))

et alors
∂i(λ.f + µg)(x) =

d

dxi
(λ.f(x1, . . . , xn) + µ.g(x1, . . . , xn))

Par dérivation d’une fonction d’une variable réelle

∂i(λ.f + µg)(x) = λ.∂if(x) + µ.∂ig(x)

�

Remarque Dans le cas où f et g sont différentiables, ce résultat se retrouve aussi par

d(λf + µg)(a) = λ df(a) + µdg(a)

Théorème
Soit f : Ω ⊂ E → F , g : Ω ⊂ E → G et b : F ×G→ H bilinéaire.
Si f et g admettent des dérivées partielles alors b(f, g) aussi et

∂ib(f, g) = b (∂if, g) + b (f, ∂ig)

dém. :
Comme au-dessus par dérivation des applications partielles.
�

Théorème
Soit f : Ω ⊂ E → F .
On a équivalence entre :
(i) f admet des dérivées partielles ;
(ii) les fonctions coordonnées de f admettent des dérivées partielles
De plus, on a alors

(∂if)k = ∂i (fk)

en notant fk et
(
∂f

∂xi

)
k

les fonctions coordonnées de f et
∂fk
∂xi

.
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dém. :
Comme au-dessus par dérivation des applications partielles.
�

25.2.7 Dérivées partielles d’une fonction composée de fonctions différentiables
On suppose E et F munis de bases e = (e1, . . . , en) et e′ = (e′1, . . . , e

′
m).

Théorème
Soit f : Ω ⊂ E → F et g : Ω′ ⊂ F → G telles que f(Ω) ⊂ Ω′.
Si f et g sont différentiables alors les dérivées partielles de g ◦ f sont données par

∂i (g ◦ f) (a) =

m∑
k=1

∂ifk(a).∂kg(f(a))

dém. :
f et g sont différentiables donc g ◦ f l’est aussi et

d(g ◦ f)(a) = [dg(f(a))] ◦ df(a)

Or
∂i(g ◦ f)(a) = d(g ◦ f)(a) · ei

donc
∂i (g ◦ f) (a) = [(dg)(f(a))] · ∂if(a)

avec

∂if(a) =

m∑
k=1

∂ifk(a) · e′k

puis par linéarité

∂i (g ◦ f) (a) =

m∑
k=1

∂ifk(a). [(dg)(f(a))] · e′k

ce qui donne

∂i (g ◦ f) (a) =

m∑
k=1

∂ifk(a).∂kg(f(a))

�

Remarque Si l’on convient de noter x1, . . . , xn les coordonnées d’un vecteur générique x ∈ E et
y1, . . . , ym les coordonnées d’un vecteur générique y ∈ F la formule se réécrit

∂(g ◦ f)

∂xi
(a) =

m∑
k=1

∂fk
∂xi

(a)
∂g

∂yk
(f(a))

Exemple Soit γ : I ⊂ R→ E et f : Ω ⊂ E → F telles que γ(I) ⊂ Ω.
On note x1, . . . , xn les coordonnées d’un vecteur générique x ∈ E et on note encore x1, . . . , xn les
fonctions coordonnées de γ de sorte que

f(x) = f(x1, . . . , xn) et γ(t) = x1(t)e1 + · · ·+ xn(t)en
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et donc
f(γ(t)) = f(x1(t), . . . , xn(t))

Si f est différentiable et γ dérivable alors t 7→ f(γ(t)) est dérivable et

d

dt
(f(x1(t), . . . , xn(t))) = x′1(t)

∂f

∂x1
(γ(t)) + · · ·+ x′n(t)

∂f

∂xn
(γ(t))

Exemple Soit f : (x, y) ∈ R2 7→ f(x, y) ∈ R différentiable
Calculons la dérivée de t ∈ R 7→ f(2t, 1 + t2).

d

dt

(
f(2t, 1 + t2)

)
= 2

∂f

∂x
(2t, 1 + t2) + 2t

∂f

∂y
(2t, 1 + t2)

Attention : Ici, écrire
∂f

∂t
n’aurait pas de sens.

Exemple Soit f : (u, v) ∈ R2 7→ f(u, v) ∈ R différentiable.
Calculons la dérivée de t 7→ f(cos(t), sin(t))

d

dt
(f(cos(t), sin(t))) = − sin t

∂f

∂u
(cos t, sin t) + cos t

∂f

∂v
(cos t, sin t)

Exemple Soit f : (x, y) ∈ R2 7→ f(x, y) ∈ R et Φ : (u, v) ∈ R2 7→ (ϕ(u, v), ψ(u, v)) ∈ R2

différentiables.
Calculons ses dérivées partielles de g = f ◦ Φ : (u, v) 7→ f (ϕ(u, v), ψ(u, v)).

∂g

∂u
(u, v) =

d

du
(f(ϕ(u, v), ψ(u, v))

=
∂ϕ

∂u
(u, v)

∂f

∂x
(ϕ(u, v), ψ(u, v)) +

∂ψ

∂u
(u, v)

∂f

∂y
(ϕ(u, v), ψ(u, v))

∂g

∂v
(u, v) =

d

dv
(f(ϕ(u, v), ψ(u, v))

=
∂ϕ

∂v
(u, v)

∂f

∂x
(ϕ(u, v), ψ(u, v)) +

∂ψ

∂v
(u, v)

∂f

∂y
(ϕ(u, v), ψ(u, v))

Attention : Ici, écrire
∂f

∂u
n’aurait pas de sens.

Exemple Soit f : (a, b) ∈ R2 7→ f(a, b) ∈ R différentiable.
Calculons les dérivées partielles de g : (x, y) ∈ R2 7→ f(x+ y, xy).
∂g

∂x
(x, y) =

∂f

∂a
(x+ y, xy) + y

∂f

∂b
(x+ y, xy),

∂g

∂y
(x, y) =

∂f

∂a
(x+ y, xy) + x

∂f

∂b
(x+ y, xy).
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Exemple Soit f : (x, y) ∈ R2 7→ f(x, y) ∈ R différentiable.
Calculons les dérivées partielles de g : (r, θ) ∈ R2 7→ f(r cos θ, r sin θ).
∂g

∂r
(r, θ) = cos θ

∂f

∂x
(r cos θ, r sin θ) + sin θ

∂f

∂y
(r cos θ, r sin θ),

∂g

∂θ
(r, θ) = −r sin θ

∂f

∂x
(r cos θ, r sin θ) + r cos θ

∂f

∂y
(r cos θ, r sin θ).

Remarque Les résultats qui précèdent se retiennent sous la forme de « la règle de la chaîne » :

∂

∂u
(f(x1, . . . , xn)) =

∂x1

∂u

∂f

∂x1
+ · · ·+ ∂xn

∂u

∂f

∂xn

25.3 Classe d’une fonction

25.3.1 Fonction de classe C1

Théorème
Soit f : Ω ⊂ E → F . On a équivalence entre :
(i) f est différentiable et df est continue ;
(ii) les dérivées partielles de f dans une base de E existent et sont continues.

dém. :
(i)⇒ (ii) Supposons f différentiable et df continue.
Les dérivées partielles de f dans une base e = (e1, . . . , en) existent et sont données par

∂jf(a) = df(a) · ej

Puisque l’application a 7→ df(a) est continue, que l’application constante a 7→ ej est continue et que
l’application b : L(E,F ) × E → F est bilinéaire, on peut affirmer que l’application a 7→ ∂jf(a) est
continue par opérations sur les fonctions continues.
(ii)⇒ (i) Supposons f de classe C1 dans la base e = (e1, . . . , en).
Cas n = 2
On identifie la fonction f avec l’application

f : (x1, x2) 7→ f(x1, x2) = f(x1e1 + x2e2)

En raisonnant moyennant les fonctions coordonnées dans une base de F , on peut supposer F = R.
Soit a = (a1, a2) ∈ Ω.
Quand h = (h1, h2)→ (0, 0), écrivons

f(a+ h) = f(a) + `(h) + o(h)

On a

f(a+ h)− f(a) = f(a1 + h1, a2 + h2)− f(a1, a2 + h2) + f(a1, a2 + h2)− f(a1, a2)

En appliquant le théorème des accroissements finis aux applications x1 7→ f(x1, a2 + h2) et x2 7→
f(a1, x2), il existe, d’une part, ch compris entre a1 et a1 + h1 et, d’autre part, dh compris entre a2 et
a2 + h2 vérifiant :

f(a+ h)− f(a) = h1
∂f

∂x1
(ch, a2 + h2) + h2

∂f

∂x2
(a1, dh)
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Quand h → (0, 0), (ch, a2 + h2) → (a1, a2) et (a1, dh) → (a1, a2) donc par continuité des dérivées
partielles de f , on obtient

f(a+ h)− f(a) = h1
∂f

∂x1
(a1, a2) + h2

∂f

∂x2
(a1, a2) + o(h)

Ainsi
f(a+ h) = f(a) + `(h) + o(h)

avec l’application linéaire

` : (h1, h2) 7→ h1
∂f

∂x1
(a) + h2

∂f

∂x2
(a)

On en déduit que f est différentiable en a et

∀h ∈ E,df(a) · h =
∂f

∂x1
(a)h1 +

∂f

∂x2
(a)h2

Considérons les applications p1 : (h1, h2) 7→ h1 et p2 : (h1, h2) 7→ h2. On peut écrire

df(a) =
∂f

∂x1
(a).p1 +

∂f

∂x2
(a).p2

Par opérations sur les fonctions continues, la différentielle df apparaît continue.

En effet, les applications a 7→ ∂f

∂x1
(a), a 7→ ∂f

∂x2
(a) sont continues, les applications a 7→ p1 et a 7→ p2

sont continues car constantes et enfin l’application produit extérieur est bilinéaire.
�

Définition
On dit qu’une fonction f : Ω ⊂ E → F est de classe C1 si ses dérivées partielles de f dans
une base existent et sont continues.

Remarque La notion ne dépend pas du choix de la base utilisée.

Proposition
Les fonctions de classe C1 sont continues.

dém. :
Car différentiables.
�

Exemple Les fonctions constantes sont de classe C1.
En effet leurs dérivées partielles sont nulles donc continues.

Exemple Les applications linéaires sont de classe C1.
En effet, pour f ∈ L(E,F ), les dérivées partielles de f dans e = (e1, . . . , en) sont les applications
données par

∂if(a) = df(a) · ei = f(ei)

Ce sont des applications constantes donc continues.
En particulier, les applications (x1, . . . , xp) ∈ Rp 7→ xj , z ∈ C 7→ Re(z), Im(z) et
A ∈Mn,p(R) 7→ ai,j sont de classe C1.
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25.3.2 Formule d’intégration

Théorème
Soit f : Ω ⊂ E → F une application de classe C1.
Si γ : [0, 1] → E est un arc de classe C1 inscrit dans Ω d’extrémités a = γ(0) et b = γ(1)
alors

f(b)− f(a) =

∫ 1

0

df(γ(t)) · γ′(t) dt

dém. :
Soit ϕ : [0, 1]→ F définie par ϕ(t) = f(γ(t)).
Par composition la fonction ϕ est dérivable

ϕ′(t) = df(γ(t)) · γ′(t) =

n∑
i=1

x′i(t)
∂f

∂xi
(γ(t))

La fonction ϕ est donc de classe C1 et alors

ϕ(1)− ϕ(0) =

∫ 1

0

ϕ′(t) dt

Or ϕ(1) = f(b), ϕ(0) = f(a) et ϕ′(t) = df(γ(t)) · γ′(t).
�

Exemple Si [a, b] ⊂ Ω alors

f(b)− f(a) =

∫ 1

0

df(a+ t(b− a)) · (b− a) dt

En effet, γ(t) = a+ t.(b− a) définit un paramétrage de classe C1 du segment [a, b].

Corollaire
Si Ω est un ouvert connexe par arcs et si f : Ω ⊂ E → F est de classe C1 alors

f est constante si, et seulement si, df = 0̃

dém. :
Le sens direct est déjà connu. Supposons maintenant df = 0̃.
Cas Ω convexe : Par l’exemple ci-dessus, on obtient

∀a, b ∈ Ω, f(b) = f(a)

Cas général : C’est plus technique, contentons-nous de quelques idées. . . Par l’étude précédente, on peut
affirmer que f est localement constante i.e.

∀a ∈ Ω,∃α > 0,∀x ∈ B(a, α), f(x) = f(a)

Pour a, b ∈ Ω, il existe γ : [0, 1] → E chemin inscrit dans Ω d’extrémités γ(0) = a et γ(1) = b. On
montre alors

sup {t ∈ [0, 1] /∀s ∈ [0, t] , f(γ(t)) = f(a)} = 1

ce qui fournit f(b) = f(a).
�
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25.3.3 Dérivées partielles successives

Définition
Soit f : Ω ⊂ E → F et e une base de E.
La fonction f est appelée dérivée partielle d’ordre 0 de f .
Pour k ∈ N, sous réserve d’existence, on appelle dérivées partielles d’ordre k + 1 de f les
dérivées partielles des dérivées partielles d’ordre k de f .

Remarque Si l’on note x1, . . . , xp les coordonnées dans la base e de la variable x, on note

∂kf

∂xi1 . . . ∂xik
= ∂i1(. . . (∂ikf) . . .)

Exemple Calculons les dérivée partielles d’ordre 1 et 2 de f : R2 → R définie par f(x, y) = x exy .
Les dérivées partielles d’ordre 1 de f sont

∂f

∂x
(x, y) = (1 + xy)exy et

∂f

∂y
(x, y) = x2exy

Les dérivées partielles d’ordre 2 de f sont

∂2f

∂x2
(x, y) = (2y + xy2)exy ,

∂2f

∂y∂x
(x, y) = (2x+ x2y)exy

∂2f

∂x∂y
(x, y) = (2x+ x2y)exy ,

∂2f

∂y2
(x, y) = x3exy

25.3.4 Classe d’une fonction

Définition
On dit que f : Ω ⊂ E → F est de classe Ck si ses dérivées partielles d’ordre k existent et sont
continues.
On dit que f est de classe C∞ si f est de classe Ck pour tout k ∈ N.

Remarque On peut montrer que cette notion de dépend pas du choix de la base utilisée pour définir les
dérivées partielles.

Exemple Les applications de classe C0 correspondent aux applications continues.

Exemple Les applications constantes sont de classe C∞.

Exemple Les application linéaires sont de classe C∞.
Leur dérivées partielles sont constantes puisque pour une application linéaire f ,

∂jf(a) = df(a) · ej = f(ej)
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Remarque En particulier, les fonctions (x1, . . . , xp) 7→ xj , z 7→ Re(z), Im(z) et A 7→ ai,j sont de
classe C∞.

Proposition
Si f : Ω ⊂ E → F est de classe Ck+1 alors f est de classe Ck.

dém. :
Si f est de classe Ck+1 alors les dérivées partielles d’ordre k de f existent et sont de classe C1 donc
continues.
�

25.3.5 Opérations
Soit k ∈ N ∪ {∞}.
Théorème

Soit f, g : Ω ⊂ E → F et λ, µ ∈ R.
Si f et g sont de classe Ck alors λf + µg l’est aussi.

dém. :
Par récurrence pour k ∈ N.
Pour k = 0 : ok
Supposons la propriété établie au rang k > 0.
Soit f et g de classe Ck+1.
f et g sont de classe C1 donc f et g sont différentiables. La fonction λf + µg l’est alors aussi et

∂i(λf + µg) = λ∂if + µ∂ig

Puisque ∂if et ∂ig sont de classe Ck, on obtient ∂i(λf + µg) de classe Ck en vertu de l’hypothèse de
récurrence.
Ainsi, les dérivées partielles de λf + µg existent et sont de classe Ck.
Or les dérivées partielles de d’ordre k des dérivées partielles de λf + µg sont les dérivées partielles
d’ordre k + 1 de λf + µg. On peut alors conclure que λf + µg est de classe Ck+1.
Récurrence établie.
Pour k =∞.
Si f et g sont de classe C∞ alors f et g sont de classe Ck pour tout k ∈ N et donc λf + µg aussi.
�

Corollaire
L’ensemble Ck(Ω, F ) des fonctions de classe Ck de Ω vers F est un sous-espace vectoriel de
F(Ω, F ).

Théorème
Soit f : Ω ⊂ E → F , g : Ω ⊂ E → G et b : F ×G→ H bilinéaire.
Si f et g sont de classe C1 alors b(f, g) l’est aussi.

dém. :
Le protocole démonstratif est similaire au précédent. On y exploite la formule

∂i (b(f, g)) = b (∂if, g) + b (f, ∂ig)

�
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Corollaire
Si F est une algèbre (par ex : F = R,C ouMn(K)) alors Ck(Ω, F ) est une sous-algèbre de
F(Ω, F ).

Exemple Les fonctions polynomiales sur Rp sont de classe C∞.

Exemple L’application det :Mn(K)→ K est de classe C∞ par somme et produit de fonctions C∞.

Théorème
Soit f : Ω ⊂ E → F . On a équivalence entre :
(i) f est de classe Ck ;
(ii) les fonctions coordonnées de f dans une base de F sont de classe Ck.

Exemple L’application f : (x, y) 7→ (x2 + y2, xy) est de classe C∞.

Théorème
Soit f : Ω ⊂ E → F et g : Ω′ ⊂ F → G telles que f(Ω) ⊂ Ω′.
Si f et g sont de classe Ck alors g ◦ f l’est aussi.

dém. :
Via la formule calculant les dérivées partielles d’une fonction composée.
�

Exemple Φ(r, θ) = (r cos θ, r sin θ) définit une fonction C∞ de R2 vers R2.

25.3.6 Théorème de Schwarz

Théorème
Si f : Ω ⊂ E → F est de classe C2 alors pour tout i, j ∈ {1, . . . , n},

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

Exemple Soit f : (x, y) 7→ f(x, y) de classe C2.
Calculons les dérivées partielles d’ordre 2 de g : (u, v) 7→ f(u+ v, uv).
Les dérivées partielles d’ordre 1 de g sont
∂g

∂u
(u, v) =

∂f

∂x
(u+ v, uv) + v

∂f

∂y
(u+ v, uv),

∂g

∂v
(u, v) =

∂f

∂x
(u+ v, uv) + u

∂f

∂y
(u+ v, uv)

Les dérivées partielles d’ordre 2 de g sont
∂2g

∂u2
(u, v) =

∂2f

∂x2
(u+ v, uv) + 2v

∂2f

∂x∂y
(u+ v, uv) + v2 ∂

2f

∂y2
(u+ v, uv),

∂2g

∂u∂v
(u, v) =

∂2f

∂x2
(u+ v, uv) + (u+ v)

∂2f

∂x∂y
(u+ v, uv) + uv

∂2f

∂y2
(u+ v, uv) +

∂f

∂y
(u+ v, uv),

∂2g

∂v2
(u, v) =

∂2f

∂x2
(u+ v, uv) + 2u

∂2f

∂x∂y
(u+ v, uv) + u2 ∂

2f

∂y2
(u+ v, uv).
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Exemple Considérons la fonction

f(x, y) =


xy(x2 − y2)

(x2 + y2)2
si (x, y) 6= (0, 0)

0 sinon

Vérifions que f n’est pas de classe C2.
Pour (x, y) 6= (0, 0)

∂f

∂x
(x, y) =

y(4x2y2 − x4 + y4)

(x2 + y2)2

et

∂f

∂x
(0, 0) = lim

t→0

(
f(t, 0)− f(0, 0)

t

)
= 0

De plus, en passant en polaires, on vérifie que
∂f

∂x
est continue en (0, 0).

On mène une étude semblable pour
∂f

∂y
avec

∂f

∂y
(x, y) = −x(4x2y2 − x4 + y4)

(x2 + y2)2

On en déduit que f est de classe C1.
Cependant

∂2f

∂y∂x
(0, 0) = lim

t→0

1

t

(
∂f

∂x
(0, t)− ∂f

∂x
(0, 0)

)
= 1 et

∂2f

∂x∂y
(0, 0) = −1

La fonction f n’est donc pas de classe C2.

25.4 Fonctions numériques

Ici les fonctions étudiées sont supposées à valeurs réelles.

25.4.1 Surface représentant une fonction de deux variables réelles

Soit f : Ω ⊂ R2 → R vue en les deux variables x et y.
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Définition
On appelle surface représentative de f l’ensemble formé des (x, y, z) ∈ R3 vérifiant l’équation

Σf : z = f(x, y)

Définition
Si f est différentiable en (x0, y0), le plan d’équation cartésienne

z =
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0) + f(x0, y0)

est appelé plan tangent à Σf au point (x0, y0, z0).

Exemple Considérons la surface z = x2 + 2y2.
Une équation du plan tangent en (x0, y0, z0) est

z = 2x0(x− x0) + 4y0(y − y0) + z0

et puisque z0 = x2
0 + 2y2

0 , on peut simplifier

z = 2x0x+ 4y0y − z0

Rappel :
Soit a un élément d’une partie X d’un espace vectoriel réel E.
On dit qu’un vecteur v de E est tangent à X en a, s’il existe ε > 0 et un arc γ défini sur ]−ε, ε[ inscrit
dans a vérifiant

γ(0) = a et γ′(0) = v

Lorsque le vecteur v est non nul, on dit que la droite

a+ Vectv

est tangente à X en a.

Théorème
Si f est différentiable en (x0, y0) alors les tangentes à Σf au point (x0, y0, z0) sont toutes
incluses dans le plan tangent à Σf en (x0, y0, z0).
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dém. :
Soit T une tangente à Σf en (x0, y0, z0). Il existe v ∈ R3 non nul et un arc γ : t 7→ (x(t), y(t), z(t))
défini sur ]−ε, ε[ inscrit dans X vérifiant

γ(0) = (x0, y0, z0) et γ′(0) = v = (x′(0), y′(0), z′(0))

Puisque z(t) = f(x(t), y(t)), on obtient par dérivation en 0

z′(0) = x′(0)
∂f

∂x
(x0, y0) + y′(0)

∂f

∂y
(x0, y0)

Les éléments de la droite T sont alors de coordonnées
x = x0 + λx′(0)

y = y0 + λy′(0)

z = z0 + λz′(0)

vérifiant l’équation du plan proposée.
�

Remarque On peut aussi montrer que le plan tangent est exactement la réunion des droites tangentes à
Σf en (x0, y0, z0).

25.4.2 Gradient
On suppose que E est un espace vectoriel euclidien dont on note ( . | . ) le produit scalaire.
25.4.2.1 Définition

On suppose que E est un espace vectoriel euclidien dont on note ( . | . ) le produit scalaire.
Rappel :
Le théorème de représentation des formes linéaires dans un espace euclidien fournit

∀ϕ ∈ E?,∃!u ∈ E,∀x ∈ E,ϕ(x) = (u | x)

Théorème
Si f : Ω ⊂ E → R est une application différentiable alors pour tout a ∈ Ω, il existe un unique
vecteur de E noté∇f(a) vérifiant

∀v ∈ E,Dvf(a) = (∇f(a) | v)

Ce vecteur est appelé gradient de f en a, il est déterminé par

∇f(a) = ∂1f(a)e1 + · · ·+ ∂nf(a)en

dès que (e1, . . . , en) désigne une base orthonormée de E.

dém. :
Soit a ∈ Ω. f est différentiable en a et

∀h ∈ E,Dhf(a) = df(a) · h
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Puisque l’application df(a) est une forme linéaire sur E, il existe un unique vecteur∇f(a) ∈ E vérifiant

∀h ∈ E,df(a) · h = (∇f(a) | h)

i.e.
∀h ∈ E,Dhf(a) = (∇f(a) | h)

De plus, si (e1, . . . , en) est une base orthonormée

∇f(a) =

n∑
i=1

(∇f(a) | ei) ei =

n∑
i=1

Dif(a).ei

�

Corollaire
Le développement limité à l’ordre 1 de f en a s’écrit alors

f(a+ h) = f(a) + (∇f(a) | h) + o(h) quand h→ 0E

Exemple Soit f : R2 → R définie par f(x, y) = x2 + 2xy. f est différentiable.
En munissant R2 de sa structure euclidienne canonique et en considérant (e1, e2) sa base canonique

∇f(a) =
∂f

∂x
(a)e1 +

∂f

∂x2
(a)e2 =

(
∂f

∂x
(a),

∂f

∂y
(a)

)
Ainsi

∇f(x, y) = (2x+ 2y, 2x)

25.4.2.2 Interprétation

Pour v un vecteur unitaire
Dvf(a) = lim

t→0

1

t
(f(a+ tv)− f(a))

Cette quantité se comprend comme étant la pente de f dans la direction donnée par le vecteur v.
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Puisque
Dvf(a) = (∇f(a) | v) = ‖∇f(a)‖ ‖v‖ cos θ avec θ ∈ [0, π]

cette pente est maximale quand v a le sens et la direction de∇f(a).
Ainsi, lorsqu’il n’est pas nul, le vecteur∇f(a) indique la direction de la plus grande pente, son sens donne
le sens de progression croissante sur cette pente et ‖∇f(a)‖ donne la valeur de cette pente extrême.

25.4.2.3 Ligne de niveau

Définition
Soit λ ∈ R et f : Ω ⊂ E → R. L’ensemble Xλ formé des x ∈ Ω vérifiant

f(x) = λ

est appelé ligne de niveau λ ∈ R de f .

Exemple Pour f(x, y) = e−x
2−y4

On obtient la surface représentative

http://mp.cpgedupuydelome.fr 605 cbna



25.4. FONCTIONS NUMÉRIQUES

et les lignes de niveau suivantes

Exemple En électrostatique, le champ électrique est perpendiculaire aux équipotentielles. . .

Théorème
Les vecteurs tangents au point x d’une ligne de niveau d’une fonction f : Ω ⊂ E → R
différentiable sont orthogonaux au gradient de f en x.

dém. :
On introduit (e1, . . . , en) une base orthonormée de E. On sait

∇f(a) =

n∑
i=1

∂f

∂xi
(a).ei

Soit v un vecteur tangent au point x d’une ligne de niveau X de f . Il existe un arc γ : t 7→ γ(t) défini sur
]−ε, ε[ inscrit dans X vérifiant

γ(0) = x et γ′(0) = v

En notant x1(t), . . . , xn(t) les coordonnées de γ(t), on a

v = γ′(0) = x′1(0).e1 + · · ·+ x′n(0).en
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Puisque γ inscrit dans X , la fonction t 7→ f(γ(t)) = f(x1(t), . . . , xn(t)) est constante. Par dérivation de
fonctions composées en 0, on obtient

0 = x′1(0)
∂f

∂x1
(x) + · · ·+ x′n(0)

∂f

∂xn
(x)

et donc
(∇f(a) | v) = 0

�

25.4.3 Recherche d’extremum
25.4.3.1 Point critique

Définition
Soit f : X ⊂ E → R.
On dit que f admet un minimum (global) en a ∈ A si

∀x ∈ X , f(x) > f(a)

On dit que f admet un minimum local en en a ∈ A si

∃α > 0, ∀x ∈ X ∩B(a, α), f(x) > f(a)

Remarque Les extremums globaux sont a fortiori des extremums locaux.

Définition
On dit qu’une application f : Ω ⊂ E → R différentiable admet un point critique en a ∈ Ω si
df(a) = 0̃.

Proposition
Soit e = (e1, . . . , en) une base de E, f : Ω ⊂ E → R différentiable et a ∈ Ω.
On a équivalence entre :
(i) a est point critique de f ;
(ii) ∀i ∈ {1, . . . , n} , ∂if(a) = 0.

dém. :
(i)⇒ (ii) via ∂if(a) = df(a) · ei.

(ii)⇒ (i) via pour tout h = h1e1 + · · ·+ hnen ∈ E, df(a)h =

n∑
i=1

hi∂if(a).

�

Remarque Les points critiques correspondent aux points où le vecteur gradient est nul.

Théorème
Si f : Ω ⊂ E → R différentiable admet un extremum local en a ∈ Ω alors a est point critique
de f .
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dém. :
Cas a minimum local :
Il existe α > 0 tel que B(a, α) ⊂ U et

∀x ∈ B(a, α), f(x) > f(a)

Pour tout v ∈ E,

df(a) · v = Dvf(a) = lim
t→0

1

t
(f(a+ t.v)− f(a))

Quand t→ 0+,
Pour t suffisamment proche de 0, a + t.v ∈ B(a, α) et (f(a+ t.v)− f(a))/t > 0 donc à la limite
df(a) · v > 0.
Quand t→ 0−,
On obtient de façon semblable df(a) · v 6 0.
Ainsi df(a) · v = 0 pour tout v ∈ E.
�

Attention : La réciproque n’est pas vraie.

Attention : Ce résultat ne s’applique qu’à une fonction différentiable définie sur un ouvert.

25.4.3.2 En pratique

Protocole :
Pour étudier les extremums locaux de f : Ω ⊂ E → R différentiable :
- on recherche les points critiques ;
- on étudie chacun en se ramenant en 0E par translation si besoin.
Exemple Extremums de f : R2 → R définie par f(x, y) = x2 + y2 + xy + 1.
f est différentiable sur l’ouvert R2.
Points critiques :
∂f

∂x
(x, y) = 2x+ y et

∂f

∂y
(x, y) = 2y + x.

{
2x+ y = 0

x+ 2y = 0
⇔

{
x = 0

y = 0

(0, 0) est seul point critique.
Etude de (0, 0).
f(0, 0) = 1, étudions le signe de g(x, y) = f(x, y)− f(0, 0) = x2 + y2 + xy.
En écrivant x = r cos θ et y = r sin θ, g(x, y) = r2(1 + cos θ sin θ) > 0.
(0, 0) est un minimum global.

Exemple Extremums de f : R2 → R définie par f(x, y) = x2 + y2 + 4xy − 1.
f est différentiable sur l’ouvert R2.
Points critiques :
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∂f

∂x
(x, y) = 2x+ 4y,

∂f

∂y
(x, y) = 2y + 4x.{

4x+ y = 0

x+ 4y = 0
⇔

{
x = 0

y = 0

(0, 0) est seul point critique.
Etude de (0, 0).
f(0, 0) = −1. Etudions le signe de g(x, y) = f(x, y)− f(0, 0) = x2 + y2 + 4xy.
En écrivant x = r cos θ et y = r sin θ, g(x, y) = r2(1 + 4 cos θ sin θ) = r2(1 + 2 sin 2θ) qui change de
signe.
Concrètement :

g

(
1

n
, 0

)
=

1

n2
> 0 donc (0, 0) n’est pas un maximum local,

g

(
− 1

n
,

1

n

)
= − 2

n2
< 0 donc (0, 0) n’est pas un maximum local.

Exemple Extremums de f : R2 → R définie par f(x, y) = x3 + y3 − 3xy.
f est différentiable sur l’ouvert R2.
Points critiques :
∂f

∂x
(x, y) = 3x2 − 3y,

∂f

∂y
(x, y) = 3y2 − 3x.{

3x2 − 3y = 0

3y2 − 3x = 0
⇔

{
x2 = y

y2 = x
⇔

{
y = x2

x4 = x
⇔

{
y = x2

x = 0 ou 1

(0, 0), (1, 1) seuls points critiques
Etude en (0, 0) :
g(x, y) = f(x, y)− f(0, 0) = x3 + y3 − 3xy.

g

(
1

n
, 0

)
=

1

n3
> 0 et g

(
− 1

n
, 0

)
= − 1

n3
< 0 donc (0, 0) n’est pas extremum local.

Etude en (1, 1) :
g(x, y) = f(x, y)− f(1, 1) = x3 + y3 − 3xy + 1.{

x = 1 + u

y = 1 + v

g(x, y) = 3u2 + 3v3 − 3uv + u3 + v3. {
u = r cos θ

v = r sin θ

g(x, y) = r2

(
3− 3

2
sin 2θ + r cos3 θ + r sin3 θ

)
.

Quand (x, y)→ (1, 1), on a (u, v)→ (0, 0) donc r → 0 puis

3− 3

2
sin 2θ + r cos3 θ + r sin3 θ = 3− 3

2
sin 2θ + o(1) >

3

2
+ o(1) > 0.

(1, 1) est un minimum local.
Cependant f(t, 0) = t3 −−−−→

t→−∞
−∞ donc f n’est pas minorée et donc (1, 1) n’est pas un minimum

global.
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25.4.3.3 Calcul d’inf et de sup

Soit I, J des intervalles non vides de R.

Remarque Pour ϕ : I → R, le calcul de inf
t∈I

ϕ(t) est facile en dressant un tableau de variation.

Proposition
Si f : I × J → R est minorée alors

inf
(x,y)∈I×J

f(x, y) = inf
x∈I

(
inf
y∈J

f(x, y)

)

dém. :
Posons m = inf

(x,y)∈I×J
f(x, y).

Pour tout x ∈ I et y ∈ J , m 6 f(x, y) donc m 6 inf
y∈J

f(x, y) puis

m 6 inf
x∈I

(
inf
y∈J

f(x, y)

)

Inversement, pour x0 ∈ I et y0 ∈ J ,

inf
y∈J

f(x0, y) 6 f(x0, y0)

or

inf
x∈I

(
inf
y∈J

f(x, y)

)
6 inf
y∈J

f(x0, y)

donc

inf
x∈I

(
inf
y∈J

f(x, y)

)
6 f(x0, y0)

Par suite inf
x∈I

(
inf
y∈J

f(x, y)

)
minore f et donc

inf
x∈I

(
inf
y∈J

f(x, y)

)
6 m

Finalement

inf
x∈I

(
inf
y∈J

f(x, y)

)
= m
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�

Exemple Calculons

M = inf
x,y>0

(
x+ y +

1

xy

)
M = inf

x>0
m(x) avec m(x) = inf

y>0
ϕ(y) où ϕ(y) = x+ y + 1/xy.

Après étude des variations de ϕ m(x) = ϕ
(
1/
√
x
)

= x+ 2/
√
x.

Après étude des variations de m, M = m(1) = 3.

25.4.3.4 Borne d’une fonction continue sur un compact

Exemple Calculons

M = sup
(x,y)∈T

xy(1− x− y) avec T =
{

(x, y) ∈ R2/x, y > 0, x+ y 6 1
}

La partie T est compacte et non vide et la fonction f : (x, y) 7→ xy(1− x− y) est continue sur T donc
f admet un maximum en a ∈ T et M = f(a).
Puisque la fonction f est nulle sur le bord de T strictement positive sur l’intérieur de T on peut affirmer
que a appartient à l’ouvert U = T ◦. Or f est différentiable sur l’ouvert U donc a est point critique de f .
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∂f

∂x
(x, y) = y(1− 2x− y),

∂f

∂y
(x, y) = x(1− 2y − x),

{
y(1− 2x− y) = 0

x(1− 2y − x) = 0
⇔

{
2x+ y = 1

x+ 2y = 1
⇔

{
x = 1/3

y = 1/3

car x, y 6= 0 pour a ∈ U .
Finalement

M = f(1/3, 1/3) =
1

27

Remarque Cette borne supérieure peut aussi être déterminée en exploitant

M = sup
x∈[0,1]

sup
y∈[0,1−x]

xy(1− x− y)

25.4.4 Equations aux dérivées partielles

I et J désignent des intervalles de R ouverts et non vides.
25.4.4.1 Équation aux dérivées partielles d’ordre 1

Définition
Résoudre sur Ω une équation aux dérivées partielles d’ordre 1 en la fonction inconnue f , c’est
déterminer toutes les fonctions f : Ω→ R de classe C1 vérifiant une relation donnée engageant
f et/ou ses dérivées partielles.

Proposition
Les solutions sur I × J de l’équation

∂f

∂x
(x, y) = 0

sont les fonctions
f : (x, y) 7→ C(y) avec C ∈ C1(R,R)

dém. :
Soit f : I × J → R de classe C1 solution de l’équation aux dérivées partielles

∂f

∂x
(x, y) = 0

Soit y ∈ J fixé. L’application partielle x 7→ f(x, y) a pour dérivée
∂f

∂x
(x, y).

L’application partielle x 7→ f(x, y) est donc de dérivée nulle sur l’intervalle I , c’est donc une fonction
constante. Ainsi, il existe Cy ∈ R telle que

∀x ∈ I, f(x, y) = Cy

http://mp.cpgedupuydelome.fr 612 cbna



CHAPITRE 25. CALCUL DIFFÉRENTIEL

Considérons alors C : J → R définie par C(y) = Cy .
On définit ainsi une application C : J → R vérifiant

∀(x, y) ∈ I × J, f(x, y) = C(y)

Soit x0 ∈ I fixé. La composition y 7→ (x0, y) 7→ f(x0, y) est de classe C1, donc C est une fonction C1.
Résumons :
Si f est solution sur I × J de l’équation

∂f

∂x
(x, y) = 0 alors il existe C : J → R de classe C1 vérifiant

∀(x, y) ∈ I × J, f(x, y) = C(y)

Inversement, les fonctions proposées sont évidemment solutions.
�

Exemple Résolvons sur R2 l’équation aux dérivées partielles

∂f

∂x
(x, y) = xy

En intégrant par rapport à x

f(x, y) =
1

2
x2y + C(y) avec C : R C

1

→R

Exemple Résolvons sur R3 l’équation aux dérivées partielles

∂f

∂x
(x, y, z) = xy + z

En intégrant par rapport à x

f(x, y) =
1

2
x2y + C(y) avec C : R2 C

1

→R

Exemple Résolvons sur R2 l’équation aux dérivées partielles
∂f

∂y
(x, y) = xf(x, y)

Soit f : R2 → R de classe C1 solution.

Pour x ∈ R fixé, l’application partielle y 7→ f(x, y) a pour dérivée
∂f

∂y
(x, y).

L’application partielle y 7→ f(x, y) est donc solution de l’équation différentielle

z′(y) = xz(y)

dont la solution générale est de la forme
z(y) = Cexy

Par suite, il existe une constante C(x) ∈ R telle que

∀(x, y) ∈ R2, f(x, y) = C(x)exy

C : x 7→ (x, 0) 7→ f(x, 0) est de classe C1 par composition.
Inversement, de telle fonctions sont solutions.
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Exemple Résolvons sur R2 l’équation

(E) : 2
∂f

∂x
(x, y)− ∂f

∂y
(x, y) = 0

via le changement de variables {
u = x+ y

v = x+ 2y

Commençons par étudier le changement de variables de sorte d’exprimer les anciennes variables en
fonction des nouvelles variables : {

u = x+ y

v = x+ 2y
⇔

{
x = 2u− v
y = v − u

L’application Φ : (u, v) 7→ (2u− v, v − u) traduit le changement de variable.
Φ est une bijection de classe C1 de R2 vers R2.
Soit f : R2 → R de classe C1 et g : R2 → R définie par « g(u, v) = f(x, y) » i.e.

g : (u, v) = f(2u− v, v − u)

g = f ◦ Φ est de classe C1.

∂g

∂u
(u, v) = 2

∂f

∂x
(2u− v, v − u)− ∂f

∂y
(2u− v, v − u) =

[
2
∂f

∂x
(x, y)− ∂f

∂y
(x, y)

]
x=2u−v
y=v−u

f est solution sur R2 de l’équation aux dérivées partielles proposée

⇔ ∀(x, y) ∈ R2, 2
∂f

∂x
(x, y)− ∂f

∂y
(x, y) = 0,

⇔ ∀(u, v) ∈ R2,
∂g

∂u
(u, v) = 0

(⇒) immédiat et (⇐) car Φ est surjective.

⇔ ∃C : R C
1

→R,∀(u, v) ∈ R2, g(u, v) = C(v),

⇔ ∃C : R C
1

→R,∀(x, y) ∈ R2, f(x, y) = C(x+ 2y).
(⇒) car f = g ◦ Φ−1 et (⇐) car g = f ◦ Φ
Finalement la solution générale de (E) est f(x, y) = C(x+ 2y) avec C : R→ R de classe C1.

Exemple Résolvons sur R2\ {(0, 0)} l’équation aux dérivées partielles

(E) : x
∂f

∂y
(x, y)− y ∂f

∂x
(x, y) = 0

en passant en coordonnées polaires. {
x = r cos θ

y = r sin θ

Puisqu’on se limite à (x, y) ∈ R2\ {(0, 0)}, on peut se contenter de r ∈ R+? auquel cas r =
√
x2 + y2.

En revanche on ne peut pas exprimer θ mais au final ce ne sera pas utile.
Soit Φ : R+? × R→ R2\ {(0, 0)} définie par Φ(r, θ) 7→ (r cos θ, r sin θ).
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Φ est une surjection de classe C1 de R+? × R sur R2\ {(0, 0)}.
Soit f : R2\ {(0, 0)} → R de classe C1 et g : R+? × R→ R définie de sorte que « g(r, θ) = f(x, y) »
i.e.

g(r, θ) = f(r cos θ, r sin θ)

g = f ◦ Φ est de classe C1.

∂g

∂θ
(r, θ) = −r sin θ

∂f

∂x
(r cos θ, r sin θ) + r cos θ

∂f

∂y
(r cos θ, r sin θ)

=

[
−y ∂f

∂x
(x, y) + x

∂f

∂y
(x, y)

]
x=r cos θ
y=r sin θ

f est solution sur R2\ {(0, 0)} de l’équation aux dérivées partielles proposée E

⇔ ∀(x, y) ∈ R2\ {(0, 0)} , x∂f
∂y

(x, y)− y ∂f
∂x

(x, y) = 0,

⇔ ∀(r, θ) ∈ R+? × R,
∂g

∂θ
(r, θ) = 0

(⇒) immédiat et (⇐) car Φ est surjective.

⇔ ∃C : R+? C
1

→R,∀(r, θ) ∈ R+? × R, g(r, θ) = C(r),

⇔ ∃C : R+? C
1

→R,∀(x, y) ∈ R2\ {(0, 0)} , f(x, y) = C(
√
x2 + y2),

(⇐) car g = f ◦ Φ et (⇒) car Φ est surjective et Φ(r, θ) = (x, y)⇒ r =
√
x2 + y2.

⇔ ∃C̃ : R+? C
1

→R,∀(x, y) ∈ R2\ {(0, 0)} , f(x, y) = C̃(x2 + y2).
(⇒) via C̃ = C ◦ √ . et (⇐) via C̃ = C ◦ .2.
Finalement, la solution générale sur R2\ {(0, 0)} de l’équation aux dérivées partielles (E) est

f(x, y) = C(x2 + y2) avec C : R C
1

→R.

25.4.4.2 Équations aux dérivées partielles d’ordre 2

Définition
Résoudre sur Ω une équation aux dérivées partielles d’ordre 2 en la fonction inconnue f , c’est
déterminer toutes les fonctions f : Ω→ R de classe C2 vérifiant une relation donnée engageant
f et/ou ses dérivées partielles d’ordre 1 et 2.

Exemple L’équation de la chaleur

∂f

∂t
(x, t) = D

∂2f

∂x2
(x, t) avec D > 0

Lorsque des conditions aux limites sont imposées, on peut avancer dans sa résolution par une
décomposition en séries de fonctions.

Exemple L’équation de propagation des ondes

∂2f

∂x2
(x, t)− 1

c2
∂2f

∂t2
(x, t) = 0

On procède à sa résolution par changement de variables (voir plus bas).
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Proposition
La solution générale sur I × J de l’équation aux dérivées partielles

∂2f

∂x2
(x, y) = 0

est
f : (x, y) 7→ xC(y) +D(y) avec C,D : J

C2→R

Proposition
La solution générale sur R2 de l’équation aux dérivées partielles

∂2f

∂x∂y
(x, y) = 0

est
f : (x, y) 7→ C(x) +D(y) avec C : I

C2→R et D : J
C2→R

Exemple Soit c > 0.
Résolvons sur R2 l’équation

(E) :
∂2f

∂x2
(x, t)− 1

c2
∂2f

∂t2
(x, t) = 0

via le changement de variables : {
u = x+ ct

v = x− ct

On a {
u = x+ ct

v = x− ct
⇔

{
x = (u+ v)/2

t = (u− v)/2c

L’application Φ : (u, v) 7→ ((u+ v)/2, (u− v)/2c) est une bijection de classe C2 de R2 vers R2.
Soit f : R2 → R de classe C2 et g : R2 → R définie par « g(u, v) = f(x, t) » i.e.

g(u, v) = f

(
u+ v

2
,
u− v

2c

)
g = f ◦ Φ est de classe C2.
Après calculs,

∂2g

∂u∂v
(u, v) =

1

4

[
∂2f

∂x2
(x, t)− 1

c2
∂2f

∂t2
(x, t)

]
x=(u+v)/2
y=(u−v)/2c

f est solution sur R2 de l’équation des ondes

⇔ ∀(u, v) ∈ R2,
∂2g

∂u∂v
(u, v) = 0

⇔ ∃C,D : R C
2

→R,∀(u, v) ∈ R2, g(u, v) = C(u) +D(v),

⇔ ∃C,D : R C
2

→R,∀(x, t) ∈ R2, f(x, t) = C(x+ ct) +D(x− ct).
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Exemple Résolvons sur R+? × R l’équation aux dérivées partielles

(E) : x2 ∂
2f

∂x2
+ 2xy

∂2f

∂x∂y
+ y2 ∂

2f

∂y2
= xy

en passant aux coordonnées polaires.{
x = r cos θ

y = r sin θ
,

{
r =

√
x2 + y2

θ = arctan(y/x)

L’application Φ : (r, θ) 7→ (r cos θ, r sin θ) est une bijection de classe C2 de R+? × ]−π/2, π/2[ vers
R+? × R.
Soit f : R+? × R→ R de classe C2 et g : R+? × ]−π/2, π/2[→ R définie de sorte que
« g(r, θ) = f(x, y) » i.e.

g(r, θ) = f(r cos θ, r sin θ)

g = f ◦ Φ est de classe C2.
Après calculs,

r2 ∂
2g

∂r2
(r, θ) =

[
x2 ∂

2f

∂x2
+ 2xy

∂2f

∂x∂y
+ y2 ∂

2f

∂y2

]
x=r cos θ
y=r sin θ

f est solution sur R+? × R de l’équation E

⇔ ∀(r, θ) ∈ R+? × ]−π/2, π/2[ , r2 ∂
2g

∂r2
(r, θ) = r2 cos θ sin θ,

⇔ ∃C,D : ]−π/2, π/2[
C2→R,∀(r, θ) ∈ R+? × ]−π/2, π/2[ , g(r, θ) =

1

2
r2 cos θ sin θ+ rC(θ) +D(θ),

⇔ ∃C,D : ]−π/2, π/2[
C2→R,∀(x, y) ∈ R+? × R, f(x, y) =

1

2
xy +

√
x2 + y2C(arctan(y/x)) +D(arctan(y/x)),

⇔ ∃C̃, D̃ : R C
2

→R,∀(x, y) ∈ R+? × R, f(x, y) =
1

2
xy +

√
x2 + y2C̃(y/x) + D̃(y/x),

⇔ ∃Ĉ, D̃ : R C
2

→R,∀(x, y) ∈ R+? × R, f(x, y) =
1

2
xy + xĈ(y/x) + D̃(y/x)

car
√
x2 + y2 =

x>0
xψ(t) avec ψ(t) =

√
1 + t2, ψ de classe C2 ne s’annulant pas.

25.5 Eléments d’analyse vectorielle

On suppose le plan géométrique muni d’un repère orthonormé directR = (O;~i,~j).
25.5.1 Gradient géométrique

Soit f une fonction réelle définie sur une partie du plan.
Si (x, y) sont les coordonnées cartésiennes de M , on pose fc(x, y) = f(M).

Exemple f(M) = OM2, f(M) = C/OM ,. . .

Définition
fc est appelée représentation cartésienne de f dans le repèreR
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Sous réserve d’existence, on pose

∂f

∂x
(M) =

∂fc
∂x

(x, y) et
∂f

∂y
(M) =

∂fc
∂y

(x, y)

Exemple Si f(M) = OM2 alors fc(x, y) = x2 + y2 et donc

∂f

∂x
(M) = 2x et

∂f

∂y
(M) = 2y

Définition
On appelle vecteur gradient de f en M le vecteur

−−→
grad f(M) =

∂f

∂x
(M).~i+

∂f

∂y
(M).~j

On vérifie
f(M + ~h) = f(M) + (

−−→
grad f(M) | ~h) + o(~h) quand ~h→ ~0

Cette relation caractérise le vecteur
−−→
grad f(M) et assure que celui-ci est indépendant du choix du repère

orthonorméR. Elle peut être mise en résonance avec l’écriture physicienne

df =
−−→
gradf.

−−→
dM

25.5.2 Gradient en coordonnées polaires
Si (r, θ) est un système de coordonnées polaires de M dansR, on pose fp(r, θ) = f(M).

Définition
fp est appelée représentation polaire de f dans le repèreR.

Sous réserve d’existence, on pose

∂f

∂r
(M) =

∂fp
∂r

(r, θ) et
∂f

∂θ
(M) =

∂fp
∂θ

(r, θ)

Exemple Si f(M) = OM2 alors fp(M) = r2 et

∂f

∂r
(M) = 2r et

∂f

∂θ
(M) = 0

Proposition
On a

−−→
grad f(M) =

∂f

∂r
(M)~ur +

1

r

∂f

∂θ
(M)~uθ

en notant ~ur = cos θ~i+ sin θ~j et ~uθ = − sin θ~i+ cos θ~j.
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dém. :
Si (r, θ) est un système de coordonnées polaires deM alors ses coordonnées cartésiennes sont (r cos θ, r sin θ).
Par suite fp(r, θ) = fc(r cos θ, r sin θ).
On en déduit

∂fp
∂r

(r, θ) = cos θ
∂fc
∂x

(r cos θ, r sin θ) + sin θ
∂fc
∂y

(r cos θ, r sin θ)

∂fp
∂θ

(r, θ) = −r sin θ
∂fc
∂x

(r cos θ, r sin θ) + r cos θ
∂fc
∂y

(r cos θ, r sin θ)

ce qui se réécrit
∂f

∂r
(M) = cos θ

∂f

∂x
(M) + sin θ

∂f

∂y
(M) (1)

∂f

∂θ
(M) = −r sin θ

∂f

∂x
(M) + r cos θ

∂f

∂y
(M) (2)

cos θ × (1)− 1

r
sin θ × (2) donne

∂f

∂x
(M) = cos θ

∂f

∂r
(M)− 1

r
sin θ

∂f

∂θ
(M)

sin θ × (1) +
1

r
cos θ × (2) donne

∂f

∂y
(M) = sin θ

∂f

∂r
(M) +

1

r
cos θ

∂f

∂θ
(M)

On en déduit
−−→
grad f(M) =

∂f

∂x
(M)~i+

∂f

∂y
(M)~j =

∂f

∂r
(M)~ur +

1

r

∂f

∂θ
(M)~uθ

�

Remarque Le physicien retrouve les relations (1) et (2) de la démonstration ci-dessus en écrivant

∂f

∂r
=
∂x

∂r

∂f

∂x
+
∂y

∂r

∂f

∂y
et
∂f

∂θ
=
∂x

∂θ

∂f

∂x
+
∂y

∂θ

∂f

∂y

25.5.3 Intégration d’un champ de vecteurs

Soit ~F un champ de vecteurs défini sur une partie du plan. On peut écrire

−→
F (M) = Fx(M).~i+ Fy(M).~j

Soit Γ une courbe inscrite dans le domaine de définition de ~F joignant un point A à un point B. On
suppose que la courbe Γ peut être paramétrée par{

x = x(t)

y = y(t)
avec t ∈ [a, b]
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Définition
On appelle circulation du champ de vecteur ~F le long de l’arc Γ le réel∫

Γ

−−−→
F (M).

−−→
dM =

déf

∫ b

a

(Fx(M(t))x′(t) + Fy(M(t))y′(t)) dt

Remarque On peut montrer que cette valeur est géométrique dans le sens où, si l’on détermine un autre
paramétrage de Γ, le résultat du calcul est inchangé.

Théorème
Si ~F = −−−→gradV alors ∫

Γ

−−−→
F (M).

−−→
dM = V (A)− V (B)

En particulier, si M(a) = M(b) alors∫
Γ

−−−→
F (M).

−−→
dM = 0

dém. :
Par hypothèse

Fx = −∂V
∂x

et Fy = −∂V
∂y

donc ∫
Γ

−−−→
F (M).

−−→
dM = −

∫ b

a

x′(t)
∂V

∂x
(x(t), y(t)) + y′(t)

∂V

∂y
(x(t), y(t)) dt

Or
d

dt
(V (x(t), y(t)) = x′(t)

∂V

∂x
(x(t), y(t)) + y′(t)

∂V

∂y
(x(t), y(t))

donc ∫
Γ

−−−→
F (M).

−−→
dM = − [V (x(t), y(t))]

b
t=a

�

25.5.4 Laplacien
Soit f une fonction réelle définie sur une partie du plan.

Définition
On appelle laplacien d’une fonction f définie sur une partie du plan la quantité

∆f =
∂2f

∂x2
+
∂2f

∂y2

Remarque On peut montrer que cette quantité ne dépend pas du choix du repère orthonormé (c’est la
trace de la matrice Hessienne).
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Exemple L’équation de la chaleur en dimension 2 s’exprimer

∂f

∂t
(x, t) = D.∆f(x, t)

Proposition
En coordonnées polaires

∆f =
∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2

∂2f

∂θ2
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Chapitre 26

Probabilités

26.1 Espace probabilisé

26.1.1 Univers

Définition
L’ensemble des résultats possibles décrivant une expérience aléatoire est appelé univers. Il est
généralement noté Ω. Les éléments ω de Ω sont les issues observées de l’expérience aléatoire,
on les appelle éventualités. La réalisation de l’expérience aléatoire revient au choix d’une éven-
tualité dans l’univers i.e. d’un élément ω à l’intérieur de l’ensemble Ω.

Exemple On lance une pièce pour obtenir Pile ou Face.
Il est naturel de choisir Ω = {P, F} pour modéliser les issues de l’expérience.
On lance la pièce n fois, on choisira Ω = {P, F}n.
On lance la pièce indéfiniment : on choisira Ω = {P, F}N

?

.

Exemple On lance un dé : on choisit Ω = J1, 6K.
On lance deux dés : on choisit Ω = J1, 6K× J1, 6K ou Ω = J2, 12K selon l’ambition de l’étude menée.
Si l’on prend Ω = J1, 6K× J1, 6K, c’est aussi que l’on suppose les deux dés discernables.

Exemple On compte le nombre de jets d’un dé avant d’obtenir un premier 6, on choisira Ω = N?.

Exemple Une urne contient 1 boule blanche et 4 boules rouges.
On tire successivement deux boules avec remise :

Ω = {(B,B), (B,R), (R,B), (R,R)}

On tire successivement deux boules sans remise :

Ω = {(B,R), (R,B), (R,R)}

On tire simultanément deux boules :

Ω = {{B,R} , {R,R}}
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Remarque Le choix de l’univers Ω dépend de la modélisation choisie pour l’expérience aléatoire
- il ne doit pas être trop petit pour pouvoir étudier toutes les issues souhaitées ;
- il ne doit pas être inutilement grand en prenant en compte des phénomènes inutiles.

26.1.2 Tribu
Les sous-ensembles de l’univers Ω serviront pour décrire des événements dont on veut mesurer la proba-
bilité d’occurrence. Contrairement à ce qui a été vu en première année dans le cas où l’ensemble Ω est
fini, toute partie de Ω ne définira pas nécessairement un événement : on se limitera aux parties éléments
d’une tribu.
Définition

On appelle tribu sur un ensemble Ω toute partie A de P(Ω) vérifiant :
1) Ω ∈ A ;
2) ∀A ∈ A, Ā ∈ A ;

3) ∀(An)n∈N ∈ AN,

+∞⋃
n=0

An ∈ A

La dernière propriété s’appelle la stabilité par réunion dénombrable.

Exemple A = P(Ω) est une tribu de Ω.

Exemple A = {∅,Ω} est une tribu de Ω.

Exemple Soit A une partie de Ω. A =
{
∅, A, Ā,Ω

}
est une tribu de Ω.

Théorème
Si A est une tribu sur un ensemble Ω alors
a) ∅ ∈ A ;
b) ∀A,B ∈ A, A ∪B ∈ A, A ∩B ∈ A et A\B ∈ A

c) ∀(An)n∈N ∈ AN,

+∞⋂
n=0

An ∈ A

dém. :
a) Ω ∈ A donc Ω̄ = ∅ ∈ A.

b) Soit A,B ∈ A. En choisissant A0 = A, A1 = B et An = ∅ pour n > 2, A ∪B =

+∞⋃
n=0

An ∈ A.

Aussi A ∩B = A ∪ B̄ ∈ A donc A ∩B ∈ A et A\B = A ∩ B̄ ∈ A.

c)
+∞⋂
n=0

An =

+∞⋃
n=0

An ∈ A donc
⋂
n∈N

An ∈ A.

�

Remarque Une tribu est donc stable :
- par passage au complémentaire ;
- par réunion et intersection finie ou dénombrable.
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Définition
On appelle espace probabilisable tout couple (Ω,A) constitué d’un ensemble Ω et d’une tribu
A sur Ω.

Exemple (Ω,P(Ω)) est un espace probabilisable.

26.1.3 Evénements

Définition
Si (Ω,A) est un espace probabilisable, les parties A de Ω éléments de la tribu A sont appelées
événement de l’univers Ω.

Exemple On lance un dé et l’on considère Ω = J1, 6K et A = P(Ω).
L’événement élémentaire Ω = {6} traduit « on a obtenu un 6 » .
L’événement Ω = {2, 4, 6} traduit « le tirage est un nombre pair » .

Exemple Une famille à deux enfants dont on étudie le genre en fonction du rang de naissance.

Ω = {(F, F ), (F,G), (G,F ), (G,G)} et A = P(Ω)

L’événement l’aîné est un garçon est

A = {(G,G), (G,F )}

Définition
L’événement ∅ est appelé événement impossible.
L’événement Ω est appelé événement certain.
Les événements de la forme {ω} sont appelés événements élémentaires.

Définition
Si A et B sont deux événements de l’espace probabilisable (Ω,A) alors
- Ā est l’événement contraire de A ;
- A ∩B est l’événement conjonction de A et B ;
- A ∪B est l’événement disjonction de A et B.

Définition
Soit A et B deux événements de l’espace probabilisable (Ω,A).
On dit que l’événement A implique B si A ⊂ B.
On dit que les événements A et B sont incompatibles si A ∩B = ∅.

Exemple Soit (An)n∈N une suite d’événements de l’espace probabilisable (Ω,A).

L’événement
+∞⋂
n=0

An correspond à la réalisation de tous les An.

L’événement
+∞⋃
n=0

An correspond à la réalisation d’au moins un An.
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L’événement
+∞⋃
N=0

+∞⋂
n=N

An correspond à la réalisation de tous les An à partir d’un certain rang.

L’événement
+∞⋂
N=0

+∞⋃
n=N

An correspond à la réalisation d’une infinité de An.

Remarque Notons que les ensembles décrits dans l’exemple au dessus sont bien éléments de la tribu A.

26.2 Probabilités

(Ω,A) désigne un espace probabilisable
26.2.1 Définition

Définition
On appelle probabilité sur l’espace probabilisable (Ω,A) toute application P : A → R+ vé-
rifiant :
- P (Ω) = 1 ;
- Pour toute suite (An)n∈N ∈ AN d’événements deux à deux incompatibles

P

(
+∞⋃
n=0

An

)
=

+∞∑
n=0

P (An) [σ-additivité]

Exemple Soit Ω un ensemble fini et A = P(Ω).
On définit la probabilité uniforme sur Ω par

P (A) =
CardA
CardΩ

Exemple Soit ω un élément de Ω. On définit une probabilité sur (Ω,A) par

P (A) =

{
0 si ω /∈ A
1 si ω ∈ A

Définition
On appelle espace probabilisé tout triplet (Ω,A, P ) formé d’un ensemble Ω, d’une tribuA sur
Ω et d’une probabilité P sur (Ω,A).

26.2.2 Propriétés élémentaires

Soit P une probabilité sur (Ω,A).
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Théorème
a) P (∅) = 0
b) Si A0, . . . , An sont des événements deux à deux incompatibles

P

(
n⋃
k=0

Ak

)
=

n∑
k=0

P (Ak)

c) ∀A ∈ A, P (Ā) = 1− P (A)
d) ∀A ∈ A, P (A) ∈ [0, 1]

dém. :
a) En prenant An = ∅ pour tout n ∈ N, on obtient

P (∅) =

+∞∑
n=0

P (∅)

et donc P (∅) = 0.
b) On choisit Ak = ∅ pour k > n et on exploite

P

(
+∞⋃
k=0

Ak

)
=

+∞∑
k=0

P (Ak)

c) Ω est la conjonction des événements incompatibles A et Ā donc

1 = P (Ω) = P (A) + P (Ā)

d) P (A) > 0 et P (Ā) = 1− P (A) > 0.
�

Théorème
Soit A et B deux événements
a) A ⊂ B ⇒ P (A) 6 P (B)
b) P (A ∪B) = P (A) + P (B)− P (A ∩B)

dém. :
a) Si A ⊂ B alors B est la réunion disjointe de A et de B\A. L’égalité P (B) = P (A) +P (B\A) donne
alors P (B) > P (A).
b) A ∪B est la réunion disjointe de A et de B\A. On a donc P (A ∪B) = P (A) + P (B\A).
Or B est la réunion disjointe de B\A et de A∩B donc P (B) = P (B\A) +P (A∩B) ce qui permet de
conclure.
�

Corollaire
Si A0, . . . , An sont des événements alors

P

(
n⋃
k=0

Ak

)
6

n∑
k=0

P (Ak)

dém. :
Par récurrence sur n ∈ N.
�
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Remarque On peut énoncer une égalité connue sous le nom de formule du crible, mais celle-ci est
hors-programme.

Corollaire
Si (An)n∈N est une suite d’événements

P

(
+∞⋃
n=0

An

)
6

+∞∑
n=0

P (An)

26.2.3 Continuité monotone

Théorème
Si (An) est une suite croissante d’événements alors

P (An) −−−−−→
n→+∞

P

(
+∞⋃
n=0

An

)

dém. :
Posons B0 = A0 puis, pour tout n > 1, Bn = An\An−1.
Puisque la suite (An) est croissante pour l’inclusion, les événements de la suite (Bn) sont deux à deux
disjoints. De plus

An =

n⋃
k=0

Bk et
+∞⋃
n=0

An =

+∞⋃
n=0

Bn

Par conséquent

P

(
+∞⋃
n=0

An

)
= P

(
+∞⋃
n=0

Bn

)
=

+∞∑
n=0

P (Bn) = lim
n→+∞

n∑
k=0

P (Bk)

avec
n∑
k=0

P (Bk) = P (An)

�

Remarque Ce résultat est utile pour calculer la probabilité d’une union dénombrable.

Corollaire
On a

P

(
+∞⋃
n=0

An

)
= lim
n→+∞

P

(
n⋃
k=0

Ak

)
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Théorème
Si (An) est une suite décroissante d’événements alors

P (An) −−−−−→
n→+∞

P

(
+∞⋂
n=0

An

)

dém. :
Posons Bn = An. (Bn) est une suite croissante d’événements avec

+∞⋃
n=0

Bn =

+∞⋂
n=0

Bn =

+∞⋂
n=0

An

Par continuité croissante

P (Bn) −−−−−→
n→+∞

P

(
+∞⋃
n=0

Bn

)
et donc

P (An) = 1− P (Bn) −−−−−→
n→+∞

1− P

(
+∞⋃
n=0

Bn

)
= P

(
+∞⋂
n=0

An

)

�

Corollaire
On a

P

(
+∞⋂
n=0

An

)
= lim
n→+∞

P

(
n⋂
k=0

Ak

)

Exemple On lance indéfiniment un dé équilibré. Montrer que l’événement « on n’obtient jamais de 6 »
est de probabilité nulle.
On note A l’événement : « on n’obtient jamais de 6 » On note An l’événement

« on n’a pas obtenu de 6 lors des n premiers lancers »

En supposant les lancers indépendants
P (An) = (5/6)

n

Puisque la suite (An) est décroissante, on a par continuité

P (A) = P

(
+∞⋂
n=1

An

)
= lim
n→+∞

P (An) = 0

26.2.4 Evénements presque sûrs
Soit (Ω,A, P ) un espace probabilisé.

Définition
On dit qu’un événement A est négligeable si P (A) = 0.

Exemple L’événement impossible est négligeable.
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Exemple Ne jamais obtenir de six en lançant indéfiniment un dé équilibré est négligeable.

Proposition
Un événement inclus dans un événement négligeable est négligeable

dém. :
Cas

A ⊂ B ⇒ P (A) 6 P (B)

�

Proposition
Une réunion finie ou dénombrable d’événements négligeables est négligeable.

dém. :
Car

P

(
+∞⋃
n=0

An

)
6

+∞∑
n=0

P (An)

�

Définition
On dit qu’un événement A est presque sûr si P (A) = 1.
Ceci signifie encore que l’événement Ā est négligeable.

Exemple L’événement certain est presque sûr.

Exemple Obtenir un six en lançant indéfiniment un dé équilibré est un événement presque sûr.

Proposition
Un événement contenant un événement presque sûr est presque sûr.

Proposition
Une intersection finie ou dénombrable d’événements presque sûrs est presque sûre.

26.2.5 Probabilité sur un univers au plus dénombrable
Soit Ω un ensemble fini ou dénombrable, A = P(Ω) et P une probabilité sur (Ω,A).

Définition
Pour tout ω ∈ Ω, on introduit les probabilités élémentaires

pω = P ({ω})

Théorème
La famille (pω)ω∈Ω est une famille de réels positifs, sommable et de somme égale à 1.
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dém. :
pω = P ({ω}) ∈ [0, 1] donc pω ∈ R+.
Cas Ω fini : Ω = {ω1, . . . , ωn} avec ω1, . . . , ωn deux à deux distincts

∑
ω∈Ω

pw =

n∑
i=1

P ({ωi}) = P

(
n⋃
i=1

{ωi}

)
= P (Ω) = 1

Cas Ω dénombrable : Ω = {ωn/n ∈ N} avec les ωn deux à deux distincts

∑
ω∈Ω

pω =

+∞∑
n=0

P ({ωn}) = P

(
+∞⋃
n=0

{ωn}

)
= P (Ω) = 1

�

Théorème
Si (pω)ω∈Ω est une famille de réels positifs, sommable et de somme égale à 1 alors il existe
une unique probabilité P sur (Ω,A) vérifiant

∀ω ∈ Ω, P ({ω}) = pω

De plus, celle-ci est déterminée par

∀A ⊂ Ω, P (A) =
∑
ω∈A

pω

dém. :
Analyse : Supposons P probabilité solution.
Pour tout A ⊂ Ω, on a la réunion disjointe

A =
⋃
ω∈A
{ω}

et donc, que A soit fini ou dénombrable

P (A) =
∑
ω∈A

pω

La probabilité P est donc déterminée de façon unique.
Synthèse : Supposons P : P(Ω)→ R+ définie par

∀A ⊂ Ω, P (A) =
∑
ω∈A

pω

L’application P est bien définie à valeurs dans R+.
P (Ω) = 1 car par hypothèse la somme de pω vaut 1.

Soit (An)n∈N une suite d’événements deux à deux incompatibles et A =

+∞⋃
n=0

An. Par sommation par

paquets ∑
ω∈A

pω =

+∞∑
n=0

∑
ω∈An

pω
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et donc

P (A) =

+∞∑
n=0

P (An)

�

Exemple Cas Ω fini : Ω = {ω1, . . . , ωn}
Une probabilité sur Ω est entièrement déterminée par le choix de p1, . . . , pn ∈ R+ avec

p1 + · · ·+ pn = 1

En prenant pk = 1/n, on définit l’équiprobabilité sur J1, nK.

En prenant pk =

(
n

k

)
pk(1− p)n−k avec p ∈ ]0, 1[, on définit une probabilité sur J0, nK

Exemple Cas Ω = N
Une probabilité sur Ω est déterminée par le choix de (pn)n∈N ∈ R+N avec

+∞∑
n=0

pn = 1

L’équiprobabilité sur N est impossible.
Plus généralement, elle est impossible sur Ω infini dénombrable.
En revanche

pn = e−λ
λn

n!
avec λ ∈ R+

définit une probabilité sur N.
Aussi

pn = p(1− p)n−1 avec p ∈ ]0, 1[

définit une probabilité sur N?

26.3 Probabilités conditionnelles
Soit (Ω,A, P ) un espace probabilisé.
26.3.1 Définition

Définition
Soit B un événement de Ω vérifiant P (B) > 0.
Pour tout événement A de Ω, la probabilité conditionnelle de A sachant B est définie par

P (A | B) =
déf

P (A ∩B)

P (B)

Si P (B) = 0, on convient de poser P (A | B) = 0.

Exemple On lance un dé équilibré. Ω = {1, 2, 3, 4, 5, 6}.
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On considère les événements

A = « on obtient 6 » et B = « le tirage est pair »

Déterminons P (A | B) et P (A | B̄)
Par retour à la définition

P (A | B) =
1/6

1/2
=

1

3
et P (A | B̄) =

0

1/3
= 0

Théorème
Si B est événement de Ω vérifiant P (B) > 0 alors l’application PB : P(Ω)→ R+ donnée par

PB(A) = P (A | B)

définit une probabilité sur (Ω,A).

dém. :
D’une part

et d’autre part, pour (An) suites d’événements deux à deux incompatibles

PB

(
+∞⋃
n=0

An

)
=

P

(
+∞⋃
n=0

(An ∩B)

)
P (B)

=

+∞∑
n=0

P (An ∩B)

P (B)
=

+∞∑
n=0

PB(An)

�

Corollaire
Les propriétés calculatoires relatives aux probabilités sont aussi vraies pour les probabilités
conditionnelles.

26.3.2 Formule des probabilités composées

Théorème
Soit A,B deux événements de Ω. On a

P (A ∩B) = P (A | B)P (B)

dém. :
C’est immédiat compte tenu de la définition de P (A | B) quand P (B) > 0. L’identité est aussi vraie
quand P (B) = 0 car A ∩B ⊂ B.
�
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Corollaire
Soit A1, . . . , An des événements de Ω. On a

P (A1 ∩ . . . ∩An) = P (A1)P (A2 | A1) . . . P (An | A1 ∩ . . . ∩An−1)

dém. :
Par récurrence sachant que le théorème ci-dessus avec A = An+1 et B = A1 ∩ . . . ∩An fournit

P (A1 ∩ . . . ∩An+1) = P (A1 ∩ . . . ∩An)P (An+1 | A1 ∩ . . . ∩An)

�

Exemple Une urne contient n boules blanches et n boules rouges.
On tire successivement et sans remise n boules dans cette urne.
Déterminons la probabilité qu’une boule rouge figure dans ce tirage.
Nous allons en fait mesurer l’événement contraire.
Notons Ak l’événement

« la boule obtenue lors du k-ième tirage est blanche »

P (A1) =
n

2n
=

1

2
et P (Ak | A1 ∩ . . . ∩Ak−1) =

n− (k − 1)

2n− (k − 1)

Par probabilités composées

P (A1 ∩ . . . ∩An) =
n

2n
× n− 1

2n− 1
× · · · × 1

n+ 1
=

(n!)2

(2n)!

et la probabilité cherchée est donc

P
(
Ā1 ∪ . . . ∪ Ān

)
= 1− (n!)2

(2n)!

Exemple Une urne contient une boule blanche et une boule rouge.
On tire successivement des boules dans cette urne. A chaque boule tirée, on note la couleur de celle-ci et
on la remet dans l’urne accompagnée d’une boule de la même couleur.
Montrons qu’il est presque sûr que la boule rouge initiale sera tirée.
Notons An l’événement « la boule tirée au -ième tirage est blanche » Par probabilités composées

P (A1 ∩ . . . ∩An) = P (A1)P (A2 | A1) . . . P (An | A1 ∩ . . . ∩An−1)

avec
P (A1) =

1

2
, P (A2 | A1) =

2

3
,. . . , P (An | A1 ∩ . . . ∩An−1) =

n

n+ 1
On a donc

P (A1 ∩ . . . ∩An) =
1

n+ 1
Par continuité décroissante

P

(
+∞⋂
n=1

An

)
= lim
n→+∞

P (A1 ∩ . . . ∩An) = 0

Ainsi, l’événement « toutes les boules tirées sont blanches » est négligeable et l’événement
complémentaire « la boule rouge initiale est tirée » est presque sûr.
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26.3.3 Formule des probabilités totales

Définition
On appelle système complet d’événements toute famille (Ai)i∈I d’événements avec ensemble
fini ou dénombrable vérifiant :
1) ∀i, j ∈ I, i 6= j ⇒ Ai ∩Aj = ∅ ;
2)
⋃
i∈I

Ai = Ω

Autrement dit, la famille (Ai)i∈I est une famille au plus dénombrable d’événements deux à
deux incompatibles et de réunion Ω.

Exemple Si A est un événement de Ω alors (A, Ā) est un système complet d’événements.

Exemple Si Ω est dénombrable avec Ω = {ωn/n ∈ N} (où les ωn sont deux à deux distincts) et si
A = P(Ω) alors les An = {ωn} définissent un système complet d’événements.

Théorème
Si (Ai)i∈I est un système complet d’événements de l’espace probabilisé (Ω,A, P ) alors pour
tout événement B de Ω

P (B) =
∑
i∈I

P (B | Ai)P (Ai)

dém. :
On a

B = B ∩ Ω = B ∩

(⋃
i∈I

Ai

)
=
⋃
i∈I

(B ∩Ai)

Les événements B ∩ Ai étant deux à deux incompatibles, que l’ensemble soit fini ou dénombrable, on
obtient

P (B) =
∑
i∈I

P (B ∩Ai)

Enfin, par probabilités composées

�

Exemple On dispose de six urnes numérotées de 1 à 6.
L’urne numéro k comporte k boules blanches et une boule rouge.
Un joueur lance un dé équilibré puis choisit une boule dans l’urne correspondant au résultat du dé.
Déterminons la probabilité que la boule tirée soit blanche.
On considère le système complet d’événements (A1, . . . , A6) avec Ak = « le dé donne la valeur k »
et on étudie l’événement

B = « la boule tirée est blanche »
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On a
P (Ak) = 1/6 et P (B | Ak) = k/(k + 1)

Par formule des probabilités totales

P (B) =
1

6

6∑
k=1

k

k + 1
=

617

840

Exemple Une urne contient une boule rouge.
Un joueur lance un dé équilibré.
S’il obtient un six, il tire une boule dans l’urne.
Sinon, il rajoute une boule blanche dans l’urne et répète la manipulation.
Sachant qu’il est presque sûr que le joueur fera un six, quelle est la probabilité que la boule tirée soit
rouge ?
Le système complet d’événements choisi est (An)n∈N? avec An = « le joueur fait son premier six lors
du n-ième lancer »
L’événement étudié est B = « la boule tirée est rouge »
On a

P (An) =
1

6
×
(

5

6

)n−1

et P (B | An) =
1

n

Par la formule des probabilités totales

P (B) =

+∞∑
n=1

1

6n

(
5

6

)n−1

=
1

6

+∞∑
n=1

1

n

(
5

6

)n
= −1

6
ln

(
1− 5

6

)
=

1

6
ln 6

26.3.4 Formule de Bayes

Théorème
Si A et B sont deux événements de probabilités non nulles alors

P (A | B) =
P (B | A)P (A)

P (B)

dém. :
C’est immédiat puisque

P (A | B)P (B) = P (A ∩B) = P (B | A)P (A)

�

Corollaire
Si (Ai)i∈I est un système complet d’événements alors pour tout événement B de probabilité
non nulle et tout k ∈ I

P (Ak | B) =
P (B | Ak)P (Ak)∑

i∈I
P (B | Ai)P (Ai)
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dém. :
Il suffit d’employer la formule précédente en exploitant celle des probabilités totales

�

Remarque La formule de Bayes est utile pour les raisonnements « rétroactifs » . Si on sait mesurer la
conséquence B d’un événement A et que l’on sait l’événement B réalisé, la formule de Bayes permet de
savoir si l’événement A l’a été. On parle parfois de la formule de probabilité des causes.

Exemple Une urne contient deux dés : l’un est équilibré et l’autre donne systématiquement un 6.
On choisit un dé dans l’urne et on le lance. On suppose que le dé lancé donne un 6, déterminons la
probabilité que ce dé soit équilibré.
Notons A l’événement « le dé choisi est équilibré » On a P (A) = P (Ā) = 1/2.
Notons B l’événement « le dé lancé donne un 6 » On veut mesurer P (A | B).
Par la formule de Bayes

P (A | B) =
P (B | A)P (A)

P (B)

avec
P (B | A)P (A) = 1/6× 1/2

et
P (B) = P (B | A)P (A) + P (B | Ā)P (Ā) = 1/12 + 1× 1/2

Ainsi
P (A | B) =

1

7

26.4 Indépendance
Soit (Ω,A, P ) un espace probabilisé.
26.4.1 Couple d’événements indépendants

Définition
On dit que deux événements A et B de l’espace probabilisé (Ω, P ) sont indépendants si

P (A ∩B) = P (A)P (B)

Remarque Si P (B) > 0, on a alors
P (A | B) = P (A)

L’indépendance des événements A et B entraîne que la connaissance de la réalisation de B n’apporte
rien pour savoir si A est aussi réalisé.
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Exemple On lance deux fois le même dé (équilibré ou non). Les événements « le premier lancer donne
un six » et « le second lancer donne un six » sont généralement modélisés indépendants.

Exemple On tire successivement et sans remise deux boules dans une urne contenant 5 boules blanches
et 2 boules rouges. Les événements « la première boule tirée est blanche » et « la seconde boule tirée est
blanche » ne sont pas indépendants.
En revanche, si l’on procède à un tirage avec remise, ces événements deviennent indépendants.

Attention : Ne pas confondre indépendance et incompatibilité : deux événements incompatibles sont
rarement indépendants !

Proposition
Si A et B sont des événements indépendants alors A et B̄ le sont aussi

dém. :
Puisque Ω = B ∪ B̄

P (A) = P
(
A ∩ (B ∪ B̄)

)
= P

(
(A ∩B) ∪ (A ∩ B̄)

)
Or A ∩B et A ∩ B̄ sont incompatibles

P (A) = P (A ∩B) + P (A ∩ B̄) = P (A)P (B) + P (A ∩ B̄)

Ainsi
P (A ∩ B̄) = P (A) (1− P (B)) = P (A)P (B̄)

�

Remarque Aussi Ā et B sont indépendants ainsi que Ā et B̄.

26.4.2 Famille d’événements mutuellement indépendants

Définition
On dit que les événements d’une famille quelconque (Ai)i∈I d’événements de l’espace proba-
bilisé (Ω,A, P ) sont mutuellement indépendants si

∀J finie ⊂ I, P

⋂
j∈J

Aj

 =
∏
j∈J

P (Aj)

Exemple On lance indéfiniment une pièce.
Soit Ai l’événement

« on obtient face lors du i-ème lancer »

Les événements de la famille (An)n>1 sont modélisés mutuellement indépendants.
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Si la probabilité d’obtenir face lors de chaque lancer vaut p ∈ ]0, 1[, alors la probabilité que face apparaît
pour la première fois lors du n-ième lancer vaut

P (An ∩An−1 ∩ . . . ∩A1) = p(1− p)n−1

En effet, on peut montrer que les événements A1, . . . , An−1 et An sont mutuellement indépendants (voir
ci-dessous).

Exemple A,B,C sont mutuellement indépendants si

P (A ∩B) = P (A)P (B), P (A ∩ C) = P (A)P (C), P (B ∩ C) = P (B)P (C)

et aussi
P (A ∩B ∩ C) = P (A)P (B)P (C)

Attention : Il ne faut pas confondre l’indépendance mutuelle et l’indépendance deux à deux.

Exemple On lance deux dés discernables et l’on considère les événements

A = « le premier dé lancé donne un résultat pair » B = « le second dé lancé donne un résultat pair »

et
C = « la somme des deux dés est un résultat pair »

Les événements A, B et C sont deux à deux indépendants, mais pas mutuellement indépendants.
En effet

P (A ∩B ∩ C) = P (A ∩B) =
1

4
et P (A)P (B)P (C) =

1

8

Proposition
Si (Ai)i∈I est une famille d’événements mutuellement indépendants alors, pour toute partie
J ⊂ I , la sous-famille (Ai)i∈J est, elle aussi, constituée d’événements mutuellement indépen-
dants.

dém. :
Immédiat par retour à la définition.
�

Proposition
Soit (Ai)i∈I une famille d’événements et (εi)i∈I une famille de réels avec εi = 0 ou 1.
On pose

Aεii =

{
Ai si εi = 0
Ai si εi = 1

Si la famille (Ai)i∈I est constituée d’événements mutuellement indépendant alors la famille
(Aεii )i∈I aussi.

dém. :
Etape 1 : On montre

P (A1 ∩ . . . ∩An) = P (A1) . . . P (An)⇒ P (A1 ∩ . . . ∩An−1 ∩An) = P (A1) . . . P (An−1)P (An)
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Etape 2 : On généralise

P (A1 ∩ . . . ∩An) = P (A1) . . . P (An)⇒ P (Aε11 ∩ . . . ∩Aεnn ) = P (Aε11 ) . . . P (Aεnn )

Etape 3 : On établit le résultat
Soit J finie ⊂ I . Par énumération de l’ensemble J

P

⋂
j∈J

Aj

 =
∏
j∈J

P (Aj)

puis par l’étude qui précède

P

⋂
j∈J

A
εj
j

 =
∏
j∈J

P (A
εj
j )

et l’on peut conclure que la famille (Aεii )i∈I est constituée d’événements mutuellement indépendants.

�
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Chapitre 27

Variables aléatoires discrètes

(Ω,A, P ) désigne un espace probabilisé.

27.1 Variables aléatoires discrètes

27.1.1 Définition

Définition
On appelle variable aléatoire discrète définie sur l’espace probabilisé Ω et à valeurs dans un
ensemble E toute application X : Ω→ E vérifiant
1) l’ensemble des valeurs prises X(Ω) est fini ou dénombrable ;
2) ∀x ∈ X(Ω), X−1 ({x}) = {ω ∈ Ω/X(ω) = x} est élément de la tribu A.
Lorsque E = R, on parle de variable aléatoire réelle.

Remarque L’appellation variable aléatoire est usuelle bien que malheureuse. En effet, X n’est pas une
variable, mais bien une fonction et celle-ci n’est pas aléatoire, mais plutôt parfaitement déterminée. Ce
sont les valeurs de X qui correspondent à des quantités qui vont varier selon le résultat de l’expérience
aléatoire.

Exemple On tire avec remise n boules dans une urne contenant des boules blanches et rouges en
proportion p et q = 1− p. On note X le nombre de boules blanches obtenues dans un tirage, X est une
variable aléatoire discrète.

Exemple On lance indéfiniment un dé et l’on note Xn la valeur obtenue lors du n-ième lancer.
(Xn)n>1 est une suite de variables aléatoires discrètes. On pose

T = min {n ∈ N?/Xn = 6} ou T = +∞ si le min porte sur l’ensemble vide

T est une variable aléatoire discrète (c’est le temps d’attente du premier 6).

Remarque Comme dans les exemples ci-dessus, il est fréquent de manipuler des variables aléatoires
sans même avoir précisé l’espace probabilisé d’étude.

643



27.1. VARIABLES ALÉATOIRES DISCRÈTES

27.1.2 Evénements valeurs

Définition
Soit X : Ω→ E une variable aléatoire discrète.
Pour tout x ∈ E, on note (X = x) ou {X = x} l’événement

X−1 ({x}) = {ω ∈ Ω/X(ω) = x}

Il s’agit bien d’un événement par définition d’une variable aléatoire discrète et l’on peut en
calculer la probabilité

P (X = x)

Exemple On lance deux dés et X désigne la somme de leur valeur.
L’événement (X = 12) correspond au cas où les deux dés valent 6.

Définition
Soit X : Ω→ E une variable aléatoire discrète. Pour toute partie A de E on note (X ∈ A) ou
{X ∈ A} l’événement X−1(A). Autrement dit

(X ∈ A) = {ω ∈ Ω/X(ω) ∈ A}

Remarque (X ∈ A) est bien un événement. En effet, X(Ω) étant au plus dénombrable,

(X ∈ A) =
⋃

x∈X(Ω)∩A

(X = x)

est un événement car réunion au plus dénombrable d’événements.
Cela autorise le calcul de sa probabilité P (X ∈ A)

Remarque La notation (X ∈ A) est compatible avec les opérations ensemblistes

(X ∈ A) ∩ (X ∈ B) = (X ∈ A ∩B)

(X ∈ A) ∪ (X ∈ B) = (X ∈ A ∪B)(
X ∈ Ā

)
= (X ∈ A)

Définition
Si X est une variable aléatoire discrète réelle et si a ∈ R, on introduit l’événement

(X 6 a) = X−1 (]−∞, a]) = {ω ∈ Ω/X(ω) 6 a}

On peut aussi définir (X < a), (X > a),. . . et calculer leur probabilité.
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27.1.3 Loi d’une variable aléatoire discrète
Soit X : Ω→ E une variable aléatoire discrète et X(Ω) son univers valeurs (au plus dénombrable).

Définition
On appelle loi de la variable X : Ω→ E l’application

PX : ℘(X(Ω))→ [0, 1]

définie par
∀A ∈ ℘(X(Ω)), PX(A) = P (X ∈ A)

Théorème
La loi PX définit une probabilité sur l’espace probabilisable (X(Ω), ℘ (X(Ω)))

dém. :
PX(X(Ω)) = P (X ∈ X(Ω)) = 1.
Soit (An)n∈N une suite de parties deux à deux disjointes de X(Ω).
Les événements (X ∈ An) sont deux à deux disjoints et

⋃
n∈N

(X ∈ An) =

(
X ∈

⋃
n∈N

An

)
On en déduit

PX

(⋃
n∈N

An

)
=

+∞∑
n=0

P (X ∈ An) =

+∞∑
n=0

PX(An)

�

Corollaire
La loi PX est entièrement déterminée par les valeurs

px = PX(x) = P (X = x)

pour chaque x ∈ X(Ω).

dém. :
L’espaceX(Ω) étant au plus dénombrable, une probabilité sur celui-ci est entièrement déterminée par ses
probabilités élémentaires

px = P (X = x)

En effet, pour toute partie A de X(Ω), on a alors

PX(A) = P (X = A) =
∑
x∈A

px

la somme portant sur une famille finie ou dénombrable.
�

Remarque Les probabilités élémentaires px déterminent une famille de réels positifs (px)x∈X(Ω)

vérifiant ∑
x∈X(Ω)

px = 1
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Remarque Souvent, on résume la loi de X à la famille des probabilités px pour x ∈ X(Ω) puisque
celles-ci suffisent à déterminer PX(A) pour toute partie A de X(Ω).

Remarque La loi PX détermine la probabilité de chaque événement valeur lié à la variable X .
Cependant, la loi PX ne suffit pas à déterminer la variable aléatoire X

PX = PY n’implique pas X = Y

Exemple Considérons un lancer de deux équilibrés. Si X et Y désignent les valeurs de chaque dé,
celles-ci suivent la même loi sans pour autant être égales !

Définition
Soit X et Y deux variables aléatoires discrètes sur Ω prenant les mêmes valeurs.
Si PX = PY , on dit que X et Y suivent la même loi et l’on note

X ∼ Y

Si la variable Y suit une loi usuellement notée L, on écrit

X ∼ L

27.1.4 Lois finies usuelles
X désigne une variable aléatoire discrète sur (Ω,A, P ).
27.1.4.1 Loi uniforme

Définition
On dit que la variable aléatoire X suit une loi uniforme sur un ensemble fini E si

X(Ω) = E et ∀x ∈ E,P (X = x) = 1/n avec n = CardE

On note U ([[a, b]]) la loi uniforme sur [[a, b]] et en particulier U(n) celle sur [[1, n]].

Exemple Si X est la valeur du lancer d’un dé équilibré alors X ∼ U(6)

27.1.4.2 Loi de Bernoulli

Définition
On dit que la variable aléatoire X suit une loi de Bernoulli de paramètre p (avec p ∈ ]0, 1[ ) si

X(Ω) = {0, 1} , P (X = 0) = 1− p et P (X = 1) = p

On note B(p) cette loi.
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Exemple Une urne contient des boules blanches en proportion p et des boules rouges en proportion
q = 1− p.
On tire une boule de cette urne.
Si X vaut 1 lorsque la boule est blanche et 0 sinon alors X ∼ B(p)

Remarque Les variables de Bernoulli sont utiles pour modéliser les situations à deux issues : succès
(valeur 1) ou échec (valeur 0)

27.1.4.3 Loi binomiale

Définition
On dit que la variable aléatoire X suit une loi binomiale de paramètres n et p (avec n ∈ N? et
p ∈ ]0, 1[ ) si

X(Ω) = [[0, n]] et ∀k ∈ [[0, n]] , P (X = k) =

(
n

k

)
pk(1− p)n−k

On note B(n, p) cette loi

Exemple Une urne contient des boules blanches en proportion p et des boules rouges en proportion
q = 1− p.
On tire n boules avec remise dans cette urne.
Si X désigne le nombre de boules blanches obtenues alors X ∼ B(n, p).

Remarque La loi de Bernoulli est utile pour modéliser ce qui s’apparente à un tirage avec remise, elle
permet aussi de mesurer le nombre de succès lorsqu’on répète indépendamment une expérience dont la
probabilité de réussite égale p.

27.1.5 Variables aléatoires composées
Soit X une variable aléatoire sur l’espace probabilisé (Ω,A, P ) à valeurs dans un ensemble E.

Définition
Si f est une application définie au moins sur X(Ω) ⊂ E à valeurs dans un ensemble E′, on
note f(X) la variable aléatoire Y = f ◦X

Y : Ω→ E′ avec Y (ω) = f (X(ω))

Remarque On vérifie qu’il s’agit bien d’une variable aléatoire car

∀y ∈ Y (Ω), Y −1 ({y}) =
⋃

x∈X(Ω),f(x)=y

X−1 ({x}) ∈ A
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Remarque Si la fonction f est une fonction présentant une notation usuelle particulière, on adapte
celle-ci à la description de la variable aléatoire f(X). C’est ainsi qu’on pourra écrire

X2,
√
X , |X| , aX + b,. . .

Théorème
Si Y = f(X) alors la loi de Y est entièrement déterminée par celle de X :

∀B ∈ Y (Ω), PY (B) = PX
(
f−1(B)

)

dém. :
Par définition

PY (B) = P (Y ∈ B) = P (f(X) ∈ B)

Or

(f(X) ∈ B) =
(
X ∈ f−1(B)

)

�

Remarque En pratique, connaître la loi de X suffira pour déterminer les lois des variables aléatoires
composées déduites de X .

Exemple Si X ∼ B(n, p) alors Y = n−X ∼ B(n, q).
En effet

Y (Ω) = [[0, n]] et P (Y = k) = P (X = n− k) =

(
n

n− k

)
pn−kqk =

(
n

k

)
qkpn−k

Définition
Plus généralement, siX1, . . . , Xm sont des variables aléatoires discrètes sur (Ω,A, P ), on peut
donner un sens à la variable aléatoire discrète Y = f(X1, . . . , Xm) pour peu que f soit définie
sur les valeurs prises par ω 7→ (X1(ω), . . . , Xm(ω)).

Remarque Pour connaître la loi de Y , connaître les lois des Xk ne suffit pas, il faut aussi connaître
leurs comportements conjoints. . .
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27.2 Couples de variables aléatoires discrètes

27.2.1 Loi conjointe

Définition
Soit X et Y deux variables aléatoires discrètes définies sur le même espace probabilisé
(Ω,A, P ) et à valeurs dans des ensembles E et F respectivement. On appelle couple défini
par les variables aléatoires X et Y la variable aléatoire Z = (X,Y ) : Ω→ E × F déterminée
par

∀ω ∈ Ω, Z(ω) = (X(ω), Y (ω))

Remarque Il s’agit d’une variable aléatoire discrète car Z(Ω) ⊂ X(Ω)× Y (Ω) est au plus
dénombrable.

Exemple On choisit une carte à l’intérieur d’un jeu de 32 cartes. On désigne par X la hauteur et Y la
couleur de cette carte. La variable aléatoire Z = (X,Y ) détermine alors parfaitement la carte tirée.

Définition
On appelle loi conjointe de deux variables aléatoires X et Y la loi du couple Z = (X,Y ).

Remarque Celle-ci est entièrement déterminée à partir de la connaissance de

P (X = xi, Y = yj) avec xi ∈ X(Ω) et yj ∈ Y (Ω)

On pourra exploiter un tableau pour visualiser cette loi conjointe.

Exemple Une urne comporte 2 boules blanches, 1 rouge et 1 noire. On tire simultanément deux boules
de cette urne et l’on note X le nombre de boules blanches et Y le nombre de boules noires tirées.

X = 0 X = 1 X = 2
Y = 0 0 1/3 1/6
Y = 1 1/6 1/3 0

Remarque Evidemment la somme des valeurs du tableau donne 1.

27.2.2 Lois marginales
Soit Z une variable aléatoire discrètes sur l’espace probabilisé (Ω,A, P ) à valeurs dans un produit car-
tésien E × F . Pour chaque ω ∈ Ω, Z(ω) désigne un couple élément de E × F . Notons X(ω) ∈ E et
Y (ω) ∈ F les deux éléments de ce couple. La variable Z se comprend alors comme le couple (X,Y ).
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Définition
Les lois des deux variables aléatoires X et Y sont appelées les lois marginales de la variable Z
.

Proposition
La loi de Z détermine entièrement ses lois marginales.

dém. :
Pour x ∈ X(Ω),

(X = x) = Z ∈ {x} × F

et donc
PX(x) = PZ ({x} × F ) =

∑
y∈F∩Y (Ω)

P (Z = (x, y))

�

Remarque Dans un tableau visualisant la loi conjointe, les lois marginales s’obtiennent en sommant sur
les rangées

Exemple On reprend l’urne urne comporte 2 boules blanches, 1 rouge et 1 noire. On tire simultanément
deux boules de cette urne et l’on note X le nombre de boules blanches et Y le nombre de boules noires
tirées.

X = 0 X = 1 X = 2 PY
Y = 0 0 1/3 1/6 1/2
Y = 1 1/6 1/3 0 1/2
PX 1/6 2/3 1/6

Remarque En revanche, les lois marginales ne suffisent pas à déterminer la loi conjointe.
Par exemple, les deux tableaux ci-dessous correspondent à de mêmes lois marginales pour des lois
conjointes différentes

X\Y X = 0 X = 1 PY
Y = 0 1/2 0 1/2
Y = 1 0 1/2 1/2
PX 1/2 1/2

et

X\Y X = 0 X = 1 PY
Y = 0 0 1/2 1/2
Y = 1 1/2 0 1/2
PX 1/2 1/2
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27.2.3 Lois conditionnelles

Soit X et Y deux variables aléatoires discrètes sur un espace probabilisé (Ω,A, P ).

Définition
Soit x ∈ X(Ω). On appelle loi conditionnelle de Y sachantX = x la loi de la variable aléatoire
Y pour la probabilité conditionnelle P (. | X = x).
Autrement dit, pour toute partie B ⊂ Y (Ω)

P (Y ∈ B | X = x) =


P (Y ∈ B,X = x)

P (X = x)
si P (X = x) > 0

0 sinon

Remarque Cette loi est entièrement déterminée par la connaissance de

P (Y = y | X = x) pour tout y ∈ Y (Ω)

Exemple Supposons X et Y variables aléatoires de loi conjointe donnée par

X = 0 X = 1 X = 2
Y = 0 0 1/3 1/6
Y = 1 1/6 1/3 0

La loi de Y sachant X = x est alors

X = 0 X = 1 X = 2
P (Y = 0 | X = x) 0 1/2 1
P (Y = 1 | X = x) 1 1/2 0

Théorème
La connaissance :
- de la loi de X ;
- de la loi de Y sachant X = x pour chaque x ∈ X(Ω)
détermine entièrement la loi conjointe de Z = (X,Y ).

dém. :
Soit (x, y) ∈ Z(Ω). On a x ∈ X(Ω) et y ∈ Y (Ω).
Si P (X = x) = 0 alors P (Z = (x, y)) = 0 car {Z = (x, y)} ⊂ {X = x}.
Si P (X = x) > 0 alors P (Z = (x, y)) = P (X = x, Y = y) = P (Y = y | X = x)P (X = x).
�

Remarque En particulier la loi de Y est alors connue

P (Y = y) =
∑

x∈X(Ω)

P (Y = y | X = x)P (X = x)
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Définition
Plus généralement, si A est une partie de X(Ω), on peut définir la loi de Y sachant X ∈ A

P (Y = y | X ∈ A) =


P (X ∈ A, Y = y)

P (X ∈ A)
si P (X ∈ A) > 0

0 sinon

Exemple Si X est à valeurs réelles, on peut introduire la loi de Y sachant (X > x).

27.2.4 Vecteurs aléatoires
Soit X1, . . . , Xn des variables aléatoires discrètes sur l’espace probabilisé (Ω,A, P ).

Définition
On appelle vecteur aléatoire discret défini à partir des variables aléatoires X1, . . . , Xn la va-
riable aléatoire discrète Z donnée par

∀ω ∈ Ω, Z(ω) = (X1(ω), . . . , Xn(ω))

La loi de la variable Z est appelée loi conjointe des variables X1, . . . , Xn tandis que les lois
de X1, . . . , Xn sont les lois marginales de Z.

Remarque La loi conjointe détermine les lois marginales, mais l’inverse n’est pas vrai.

27.3 Indépendance de variables aléatoires

27.3.1 Couple de variables indépendantes
Soit X et Y deux variables aléatoires discrètes sur l’espace probabilisé (Ω, P ).

Définition
On dit que les deux variablesX et Y sont indépendantes si pour toutA ⊂ X(Ω) etB ⊂ Y (Ω),
les événements (X ∈ A) et (Y ∈ B) sont indépendants.

Exemple On lance deux dés discernables. X détermine la valeur du premier et Y celle du second.
Il est usuel de modéliser X et Y en tant que variables indépendantes.

Exemple Une première urne contient 2 boules blanches et 3 boules noires et une seconde l’inverse.
On jette une pièce et si l’on obtient « face », on pioche une boule dans la première urne, sinon, on
pioche cette boule dans la seconde urne.
On note X la valeur du lancer de la pièce et Y la couleur de la boule tirée.
Les variables X et Y ne sont pas indépendantes !

Remarque Si X et Y sont indépendantes, la loi de Y sachant X ∈ A se résume à la loi de Y .
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Théorème
On a équivalence entre :
(i) les variables aléatoires X et Y sont indépendantes ;
(ii) ∀(x, y) ∈ X(Ω)× Y (Ω), P (X = x, Y = y) = P (X = x)P (Y = y)

dém. :
(i)⇒ (ii) Supposons (i)
Soit (x, y) ∈ X(Ω)× Y (Ω). Les événements (X = x) et (Y = y) sont indépendants donc

P (X = x, Y = y) = P (X = x)P (Y = y)

(ii)⇒ (i) Supposons (ii)
Soit A ⊂ X(Ω) et B ⊂ Y (Ω). Par probabilités totales (avec A×B au plus dénombrable)

P (X ∈ A ∩ Y ∈ B) =
∑

(x,y)∈A×B

P (X = x, Y = y)

donc
P (X ∈ A ∩ Y ∈ B) =

∑
(x,y)∈A×B

P (X = x)P (Y = y)

En sommant par paquets

P (X ∈ A ∩ Y ∈ B) =
∑
x∈A

∑
y∈B

P (X = x)P (Y = y)

puis
P (X ∈ A ∩ Y ∈ B) =

∑
x∈A

P (X = x)
∑
y∈B

P (Y = y) = P (X ∈ A)P (Y ∈ B)

�

Exemple Supposons X et Y variables aléatoires de loi conjointe donnée par

X = 0 X = 1
Y = 0 1/12 2/12
Y = 1 3/12 6/12

La loi de Y sachant X = x est alors

X = 0 X = 1
P (Y = 0 | X = x) 1/4 1/4
P (Y = 1 | X = x) 3/4 3/4

Les variables X et Y sont indépendantes.

Théorème
Si X et Y sont deux variables indépendantes alors pour toutes fonctions f, g définies sur les
domaines de valeurs de X et Y , les variables f(X) et g(Y ) sont indépendantes.

dém. :
Soit x′ ∈ f(X(Ω)) et y′ ∈ g(Y (Ω)). On a

P (f(X) = x′, g(Y ) = y′) = P
(
X ∈ f−1 ({x′}) ∩ Y ∈ g−1 ({y′})

)
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Les variables X et Y étant indépendantes

P (f(X) = x′, g(Y ) = y′) = P
(
X ∈ f−1 ({x′})

)
P
(
Y ∈ g−1 ({y′})

)
ce qui donne

P (f(X) = x′, g(Y ) = y′) = P (f(X) = x′)P (g(Y ) = y′)

�

27.3.2 Famille finie de variables mutuellement indépendantes

Soit (Xi)16i6n une famille de n variables aléatoires discrètes sur l’espace probabilisé (Ω,A, P ).

Définition
On dit que celle-ci sont mutuellement indépendantes si pour toute famille (Ai)16i6n avec
Ai ⊂ Xi(Ω) les événements (Xi = Ai) sont mutuellement indépendants.

Théorème
On a équivalence entre :
(i) les variables aléatoires X1, . . . , Xn sont mutuellement indépendantes ;
(ii) ∀(x1, . . . , xn) ∈ X1(Ω) × · · · × Xn(Ω), P (X1 = x1, . . . , Xn = xn) = P (X1 =
x1) . . . P (X = xn)

dém. :
Il suffit d’adapter la démonstration présentée pour les couples de variables sachant que pour (ii)⇒ (i) on
étudiera l’indépendance en considérant les sous familles finies de la famille des événements (Xi = Ai).
�

Remarque On répète n fois la même expérience aléatoire et l’on note X1, . . . , Xn les résultats
successifs.
En supposant que le résultat d’une expérience est sans incidence sur les autres, il est usuel de modéliser
l’expérience en supposant les variables X1, . . . , Xn mutuellement indépendantes.
C’est le cas lorsqu’on lance plusieurs fois une même pièce de monnaie que celle-ci soit ou non
équilibrée.

Exemple On tire des boules dans une urne contenant des boules blanches et rouges.
On note Xi la couleur obtenue lors du i-ème tirage.
Si l’on suppose que le tirage a lieu avec remise, il est usuel de supposer les variables X1, . . . , Xn

mutuellement indépendantes.
Si l’on ne suppose pas la remise, les variables Xi ne sont plus indépendantes !

Attention : L’indépendance mutuelle ne doit pas être confondues avec l’indépendance deux à deux.
Si on lance deux dés discernables que l’on note X et Y les parités de chaque dé et Z la parité de la
somme alors les variables X,Y, Z sont deux à deux indépendantes, mais pas mutuellement
indépendantes.
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Théorème
Si les variables X1, . . . , Xn sont mutuellement indépendantes alors pour tout m compris entre
1 et n− 1 et toutes fonctions f et g définies sur des domaines convenables, les variables

X = f(X1, . . . , Xm) et Y = g(Xm+1, . . . , Xn)

sont indépendantes.

dém. :
Soit x ∈ X(Ω) et y ∈ Y (Ω).

P (X = x ∩ Y = y) =
∑

(x1,...,xn)∈f−1({x}),(xm+1,...,xn)∈f−1({y})

P (X1 = x1, . . . , Xn = xn)

Par indépendance

P (X1 = x1, . . . , Xn = xn) = P (X1 = x1) . . . P (Xn = xn)

puis

P (X1 = x1, . . . , Xn = xn) = P (X1 = x1, . . . , Xm = xm)P (Xm+1 = xm+1, . . . , Xn = xn)

En réorganisant la somme par paquets

P (X = x∩Y = y) =
∑

(x1,...,xn)∈f−1({x})

P (X1 = x1, . . . , Xm = xm)
∑

(xm+1,...,xn)∈f−1({y})

P (Xm+1 = xm+1, . . . , Xn = xn)

et finalement
P (X = x ∩ Y = y) = P (X = x)P (Y = y)

�

Remarque Si Z est indépendant de X et de Y , il se peut que Z ne soit pas indépendant de X + Y .
C’est le cas lors d’un lancer de dés où X et Y teste la parité de chaque dé et Z la parité de la somme.
Dans l’énoncé qui précède, l’hypothèse d’indépendance mutuelle est donc essentielle.

27.3.3 Famille infinie de variables mutuellement indépendantes
Soit (Xi)i∈I une famille infinie de variables aléatoires discrètes sur l’espace probabilisé (Ω,A, P ).

Définition
On dit que les variables aléatoires de la famille (Xi)i∈I sont mutuellement indépendantes si
toutes ses sous-familles finies sont mutuellement indépendantes.

Exemple On lance indéfiniment une pièce de monnaie et l’on note Xn la variable de Bernoulli égale à 1
lorsqu’on obtient face au n-ième lancer.
Il est usuel de modéliser l’expérience en supposant la famille (Xn)n>1 constituée de variables aléatoires
mutuellement indépendantes.
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27.3.4 Suites infinies d’épreuves
Afin d’assurer l’existence de cadre probabiliste permettant l’étude de la répétition indépendante et infinie
d’une même expérience, nous admettons le résultat (difficile) suivant

Théorème
Soit L la loi d’une certaine variable aléatoire discrète.
Il existe un espace probabilisé (Ω,A, P ) sur lequel existe une suite (Xn)n∈N de variables
aléatoires mutuellement indépendantes et qui sont toutes de loi L.

Exemple Il existe un cadre probabiliste permettant de modéliser un jeu de « pile ou face »infinie où
- chaque Xn suit une même loi de Bernoulli de paramètre p ;
- la famille (Xn)n>1 est constituée de variables mutuellement indépendantes.

27.4 Espérance
Les variables aléatoires introduites seront toutes supposées réelles, discrètes et définies sur un même
espace probabilisé (Ω,A, P ).
27.4.1 Définition

Définition
On dit que la variableX admet une espérance si la famille (xP (X = x))x∈X(Ω) est sommable.
Sa somme définit alors l’espérance de X

E(X) =
déf

∑
x∈X(Ω)

xP (X = x)

Celle-ci ne dépend que la loi de la variable X .

Remarque Si la variable X ne prend qu’un nombre fini de valeurs x1, . . . , xn alors celle-ci est
assurément d’espérance finie et

E(X) =

n∑
k=1

xkP (X = xk)

Exemple Rappelons :
Si X ∼ B(p) alors

E(X) = 0× (1− p) + 1× p = p

Si X ∼ B(n, p) alors

E(X) =

n∑
k=0

k

(
n

k

)
pk(1− p)n−k = np

Exemple Si A ∈ A alors
E(1A) = 0× P (Ā) + 1× P (A) = P (A)
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Remarque Si la variable X prend une infinité (nécessairement dénombrable) de valeurs alors, en
introduisant (xn)n∈N une énumération de celles-ci, la variable X admet une espérance si, et seulement
si, il y a convergence absolue de la série

∑
xnP (X = xn). On a alors

E(X) =

+∞∑
n=0

xnP (X = xn)

La valeur obtenue ne dépend pas de l’énumération choisie.

Remarque Si la variable X ne prend que des valeurs positives

∀ω ∈ Ω, X(ω) ∈ R+

on peut encore définir son espérance dans R+ ∪ {+∞} par la relation

E(X) =
déf

∑
x∈X(Ω)

xP (X = x)

Exemple Soit X une variable aléatoire avec

X(Ω) = N et P (X = n) =
1

2n+1

La variable X est à valeurs positives et

E(X) =

+∞∑
n=0

n

2n+1

Pour calculer cette somme, exploitons la série entière

+∞∑
n=1

nxn−1 =
d

dx

(
+∞∑
n=0

xn

)
=

1

(1− x)2

donnant
+∞∑
n=1

n
1

2n−1
= 4

puis

E(X) =

+∞∑
n=0

n

2n+1
= 1

Exemple Soit X une variable aléatoire avec

X(Ω) = N? et P (X = n) =
1

n
− 1

n+ 1

La variable X est à valeurs positives et

E(X) =

+∞∑
n=1

n

(
1

n
− 1

n+ 1

)
=

+∞∑
n=1

1

n+ 1
= +∞
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Exemple Si la variable X est constante égale à C alors

E(X) =
∑

x∈X(Ω)

xP (X = x) = C × P (X = C) = C

Le résultat est encore vraie si l’égalité X = C est presque sûre (i.e. P (X = C) = 1 )

Définition
Si la variableX admet une espérance et si celle-ci est nulle, on dit que la variableX est centrée.

27.4.2 Propriétés

Théorème
Si les variables X et Y admettent des espérances alors pour tout λ ∈ R les variables λX et
X + Y admettent une espérance et

E (λX) = λE (X) et E (X + Y ) = E(X) + E(Y )

dém. :
Etude de E(λX) = λE(X)
Le cas λ = 0 est immédiat. Pour λ 6= 0,

λE(X) = λ
∑

x∈X(Ω)

xP (X = x) =
∑

x∈X(Ω)

λxP (λX = λx)

puis, sachant que x parcourt X(Ω) si, et seulement si, λx parcourt (λX)(Ω),

λE(X) =
∑

y∈(λX)(Ω)

yP (λX = y) = E(λX)

Etude de E(X + Y ) = E(X) + E(Y )
Par la formule des probabilités totales

P (X = x) =
∑

y∈Y (Ω)

P (X = x, Y = y)

En sommant par paquets

E(X) =
∑

x∈X(Ω)

xP (X = x) =
∑

(x,y)∈X(Ω)×Y (Ω)

xP (X = x, Y = y)

De même
E(Y ) =

∑
(x,y)∈X(Ω)×Y (Ω)

yP (X = x, Y = y)

et donc, avec sommabilité

E(X) + E(Y ) =
∑

(x,y)∈X(Ω)×Y (Ω)

(x+ y)P (X = x, Y = y)
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En sommant par paquets selon la valeur de z = x+ y

E(X) + E(Y ) =
∑

z∈(X+Y )(Ω)

z
∑

(x,y)∈X(Ω)×Y (Ω),x+y=z

P (X = x, Y = y)

soit
E(X) + E(Y ) =

∑
z∈(X+Y )(Ω)

zP (X + Y = z)

�

Corollaire
L’ensemble des variables aléatoires réelles discrètes définies sur (Ω,A, P ) admettant une es-
pérance est un espace vectoriel et l’espérance y définit une forme linéaire.

dém. :
C’est un sous-espace vectoriel de l’espace des variables aléatoires.
�

Exemple Si a et b sont deux réels

E(aX + b) = aE(X) + b

Exemple Si X admet une espérance alors la variable Y = X − E(X) est centrée.

Théorème
Si X est à valeurs positives alors E(X) > 0.
Si de plus E(X) = 0 alors X = 0 presque sûrement.

dém. :
Si X est à valeur positives

E(X) =
∑

x∈X(Ω)

xP (X = x) ∈ R+ ∪ {+∞}

car somme d’une famille de réels tous positifs.
Si de plus E(X) = 0 alors

∀x ∈ X(Ω), xP (X = x) = 0

et donc
∀x ∈ X(Ω)\ {0} , P (X = x) = 0

On en déduit P (X = 0) = 1.
�

Corollaire
Si X et Y admettent une espérance et si X 6 Y alors

E(X) 6 E(Y )

dém. :
Z = Y −X est une variable positive.
�
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Théorème
Si |X| 6 Y et si Y admet une espérance alors X aussi.

dém. :
Par probabilités totales

E (|X|) =
∑

x∈|X|(Ω)

xP (|X| = x) =
∑

x∈|X|(Ω)

∑
y∈Y (Ω)

xP (|X| = x, Y = y)

Or |X| 6 Y donc
xP (|X| = x, Y = y) 6 yP (|X| = x, Y = y)

En effet, si le terme de probabilité est nul, l’inégalité est vraie, sinon il existe ω ∈ Ω tel que
|X(ω)| = x et Y (ω) = y donc x 6 y et l’inégalité est encore vraie.
En réordonnant la somme

E (|X|) 6
∑

y∈Y (Ω)

∑
x∈|X|(Ω)

yP (|X| = x, Y = y)

et par probabilité totales

E (|X|) 6
∑

y∈Y (Ω)

yP (Y = y) = E(Y ) < +∞

�

Exemple Si la variable aléatoire X est bornée, elle admet assurément une espérance.

27.4.3 Formule de transfert

Théorème
Soit X une variable et f une fonction définie au moins sur X(Ω) et à valeurs dans R.
On a équivalence entre :
(i) la variable f(X) admet une espérance ;
(ii) la famille (f(x)P (X = x))x∈X(Ω) est sommable.
De plus, si tel est le cas

E (f(X)) =
∑

x∈X(Ω)

f(x)P (X = x)

dém. :
E (f(X)) =

∑
y∈f(X)(Ω)

yP (f(X) = y)

Par probabilités totales

E (f(X)) =
∑

y∈f(X)(Ω)

∑
x∈X(Ω)

yP (f(X) = y,X = x)

Or
yP (f(X) = y,X = x) = f(x)P (f(X) = y,X = x)
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car l’égalité est vraie quand la probabilité est nulle, mais aussi quand elle est non nulle car il existe un
événement ω vérifiant f(X(ω)) = y et X(ω) = x donc f(x) = y.
En réordonnant les sommes

E (f(X)) =
∑

x∈X(Ω)

∑
y∈f(X)(Ω)

f(x)P (f(X) = y,X = x)

Par probabilités totales
E (f(X)) =

∑
x∈X(Ω)

f(x)P (X = x)

�

Exemple Sous réserve de sommabilité

E
(
Xk
)

=
∑

x∈X(Ω)

xkP (X = x), E
(
eX
)

=
∑

x∈X(Ω)

exP (X = x),. . .

27.4.4 Inégalité de Markov

Théorème
Soit X une variable à valeurs positives admettant une espérance.
Pour tout a > 0, on a

aP (X > a) 6 E(X)

dém. :
Par définition

E(X) =
∑

x∈X(Ω)

xP (X = x)

On sépare la somme en deux

E(X) =
∑

x∈X(Ω),x<a

xP (X = x) +
∑

x∈X(Ω),x>a

xP (X = x)

D’une part ∑
x∈X(Ω),x<a

xP (X = x) > 0

car la variable aléatoire est à valeurs positives.
D’autre part ∑

x∈X(Ω),x>a

xP (X = x) >
∑

x∈X(Ω),x>a

aP (X = x) = aP (X > a)

�

Exemple L’inégalité de Markov possède de nombreuses déclinaisons

P (|X| > ε) 6 E (|X|)
ε
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P (|X − E(X)| > ε) 6 E (|X − E(X)|)
ε

et

P (|X| > ε) 6
E
(
X2
)

ε2

27.4.5 Variables indépendantes

Théorème
Si les variables X et Y sont indépendantes et admettent une espérance alors XY admet une
espérance et

E(XY ) = E(X)E(Y )

dém. :
Avec sommabilité

E(X)E(Y ) =
∑

(x,y)∈X(Ω)×Y (Ω)

xyP (X = x)P (Y = y)

Par indépendance
E(X)E(Y ) =

∑
(x,y)∈X(Ω)×Y (Ω)

xyP (X = x, Y = y)

En regroupant par paquets selon la valeur de z = xy

E(X)E(Y ) =
∑

z∈(XY )(Ω)

z
∑

(x,y)∈X(Ω)×Y (Ω),z=xy

P (X = x, Y = y)

puis
E(X)E(Y ) =

∑
z∈(XY )(Ω)

zP (XY = z) = E(XY )

�

Remarque La réciproque est fausse : on peut avoir E(XY ) = E(X)E(Y ) sans pour autant
indépendance de X et Y .

Corollaire
Si f(X) et g(Y ) admettent des espérances avec X et Y variables indépendantes alors

E (f(X)g(Y )) = E (f(X))E (g(Y ))

27.5 Variance d’une variable aléatoire
Les variables aléatoires introduites seront toutes supposées réelles, discrètes et définies sur un espace
probabilisé (Ω,A, P ).
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27.5.1 Moments

Définition
On dit que la variable X admet un moment d’ordre k ∈ N si la variable Xk admet une espé-
rance. Celle-ci est alors appelée moment d’ordre k de X et on note

mk = E(Xk) =
∑

x∈X(Ω)

xkP (X = x)

Exemple X admet assurément un moment d’ordre 0 et

m0 = 1

X admet un moment d’ordre 1 si, et seulement si, X admet une espérance et alors

m1 = E(X)

27.5.2 Espace des variables possédant un moments d’ordre 2

Théorème
Si la variable X admet un moment d’ordre 2 alors X admet une espérance.

dém. :
Pour tout x ∈ R, on a

2 |x| 6 1 + x2

donc

|X| 6 1

2

(
1 +X2

)
Puisque les variables 1 et X2 admettent une espérance, la variable X aussi.
�

Remarque Ce résultat se généralise : si X admet un moment d’ordre n, X admet un moment d’ordre k
pour tout k 6 n.

Théorème
Si les variablesX et Y admettent chacune un moment d’ordre 2 alorsXY est d’espérance finie
et

E(XY )2 6 E(X2)E(Y 2)

dém. :
Pour tout x, y ∈ R, on a

2 |xy| 6 x2 + y2

donc

|XY | 6 1

2

(
X2 + Y 2

)
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Puisque les variables X2 et Y 2 admettent une espérance, la variable XY aussi.
Soit λ ∈ R. Introduisons la variable Z = (λX +Y )2 = λ2X2 + 2λXY +Y 2. Par combinaison linéaire,
Z admet une espérance et puisque Z est positive

λ2E(X2) + 2λE(XY ) + E(Y 2) > 0

Cette identité vaut pour tout λ ∈ R.
Cas E(X2) 6= 0 : le trinôme associé au premier membre ne peut posséder deux racines réelles et donc

∆ = 4E (XY )
2 − 4E

(
X2
)
E
(
Y 2
)
6 0

Cas E(X2) = 0 : on a nécessairement E(XY ) = 0 car sinon la constance de signe est impossible.
�

Théorème
L’ensemble des variables admettant un moment d’ordre 2 est un sous-espace vectoriel de l’es-
pace des variables admettant un moment d’ordre 1.

dém. :
L’inclusion a déjà été vue.
Si X et Y admettent des moments d’ordre 2 alors Z = λX + µY aussi car

Z2 = λ2X2 + 2λµXY + µ2Y 2

admet une espérance par combinaison linéaire.
�

27.5.3 Variance et écart-type

Définition
Si X admet un moment d’ordre 2, on appelle variance de la variable X le réel

V (X) = E
(

(X − E(X))
2
)

On introduit aussi son écart type
σ(X) =

√
V (X)

Remarque La variance un bien définie car X et la constante E(X) admettent des moments d’ordre 2.

Remarque Variance et écart-type permettent de mesurer la dispersion de la variable X autour de sa
moyenne.
Si la variable X se comprend avec une unité (des mètres, des années, des points,. . . ) espérance et
écart-type s’exprime avec la même unité.

Théorème
Si X admet un moment d’ordre 2 alors

V (X) = E
(
X2
)
− E (X)

2
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dém. :
En développant

(X − E(X))2 = X2 − 2E(X)X + E(X)2

et par linéarité de l’espérance

V (X) = E
(
X2
)
− 2E (X)

2
+ E (X)

2
= E

(
X2
)
− E (X)

2

�

Exemple Si X ∼ B(p) alors V (X) = p(1− p).

Exemple Si X ∼ B(n, p) alors V (X) = np(1− p).

Théorème
Si X est admet un moment d’ordre 2 alors pour tout a, b ∈ R,

V (aX + b) = a2V (X)

dém. :

V (aX + b) = E
(
a2X2 + 2abX + b2

)
− (aE(X) + b)

2
= a2

(
E
(
X2
)
− E(X)2

)
= a2V (X)

�

Remarque Il est naturel que la translation de b ne modifie pas la valeur de la variance car, si cette
translation modifie la moyenne, elle ne modifie pas la dispersion de la variable autour de celle-ci.

Définition
Lorsqu’une variable aléatoire est de variance égale à 1, on la qualifie de réduite.

Exemple Si X est une variable admettant un moment d’ordre 2 alors en introduisant son espérance m et
son écart type σ (supposé non nul), la variable

Y =
X −m
σ

est centrée réduite.
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27.5.4 Covariance

Définition
Si les variables X et Y admettent des moments d’ordre 2, on introduit leur covariance

Cov(X,Y ) = E ((X − E(X)) (Y − E(Y )))

Exemple Cov(X,X) = V (X).

Proposition
La covariance définit une application bilinéaire symétrique sur l’espace des variables admettant
un moment d’ordre 2.

dém. :
La symétrie est évidente.
De plus, on peut simplifier

Cov(X,Y ) = E ((X − E(X)Y )

et la linéarité de Y 7→ Cov(X,Y ) est alors évidente.
�

Théorème
Si X et Y sont deux variables aléatoires réelles sur l’espace probabilisé (Ω, P ) alors

Cov(X,Y ) = E (XY )− E(X)E(Y )

dém. :
En développant

(X − E(X)) (Y − E(Y )) = XY − E(X)Y − E(Y )X + E(X)E(Y )

puis par linéarité de l’espérance

Cov(X,Y ) = E (XY )− 2E(X)E(Y ) + E(X)E(Y ) = E (XY )− E(X)E(Y )

�

Corollaire
Si les variables X et Y sont indépendantes

Cov(X,Y ) = 0

La réciproque est fausse.

Remarque Par l’inégalité de Cauchy-Schwarz, on a

|Cov(XY )| 6 V (X)V (Y )
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Si V (X) > 0 et V (Y ) > 0 on peut introduire

cor(X,Y ) =
Cov(X,Y )√
V (X)V (Y )

∈ [−1, 1]

appelé coefficient de corrélation de X et Y .
Si les variables X et Y sont indépendantes, ce coefficient est nul.
Si les variables X et Y ont des « comportements analogues », ce coefficient est proche de 1.
Si les variables X et Y ont des « comportements opposés », ce coefficient est proche de −1.

27.5.5 Variance d’une somme

Proposition
Si X et Y admettent un moment d’ordre 2 alors

V (X + Y ) = V (X) + 2Cov(X,Y ) + V (Y )

dém. :
Par la formule de Huygens

V (X + Y ) = E
(
(X + Y )2

)
− (E(X + Y ))

2

En développant et par linéarité de l’espérance

V (X + Y ) = E
(
X2
)

+ 2E (XY ) + E
(
Y 2
)
− E (X)

2 − 2E(X)E(Y )− E (Y )
2

puis immédiatement
V (X + Y ) = V (X) + 2Cov(X,Y ) + V (Y )

�

Théorème
Si les variables X1, . . . , Xn admettent des moments d’ordre 2 alors

V

(
n∑
i=1

Xi

)
=

n∑
i=1

V (Xi) + 2
∑
i<j

Cov(Xi, Xj)

dém. :
On a

V

(
n∑
i=1

Xi

)
= Cov

(
n∑
i=1

Xi,

n∑
i=1

Xi

)
Par bilinéarité

V

(
n∑
i=1

Xi

)
=

n∑
i=1

n∑
j=1

Cov(Xi, Xj)

On obtient l’identité voulue en réorganisant via

Cov(Xi, Xi) = V (Xi) et Cov(Xj , Xi) = Cov(Xi, Xj)
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�

Corollaire
Si les variables X1,. . . , Xn sont deux à deux indépendantes

V

(
n∑
i=1

Xi

)
=

n∑
i=1

V (Xi)

Exemple On peut exploiter ce résultat pour retrouver la variance d’une variable X suivant une loi
binomiale de paramètres n et p.
En effet, celle-ci peut être simulée par la somme de X1 + · · ·+Xn de n variables mutuellement
indépendantes suivant une loi de Bernoulli de paramètre p et alors

V (X) = V (X1) + · · ·+ V (Xn) = np(1− p)

27.5.6 Inégalité de Bienaymé-Tchebychev

Théorème
Si la variable X admet un moment d’ordre 2 alors pour tout ε > 0,

P (|X − E(X)| > ε) 6 V (X)

ε2

dém. :
On a

(|X − E(X)| > ε) =
(

(X − E(X))
2 > ε2

)
et par l’inégalité de Markov appliquée à la variable positive Y = (X − E(X))

2

V (X) = E(Y ) > ε2P
(
Y > ε2

)
= ε2P (|X − E(X)| > ε)

�

Remarque Cette inégalité permet de mesurer dans quelle mesure l’expérimentation peut s’écarter de sa
moyenne.
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27.5.7 Loi faible des grands nombres

Théorème
Soit (Xn)n>0 une suite de variables aléatoires deux à deux indépendantes et suivant une même
loi.
Si celles-ci admettent un moment d’ordre 2 alors en introduisant m leur espérance commune
et

Sn =

n∑
k=1

Xk

on a

P

(∣∣∣∣Snn −m
∣∣∣∣ > ε) −−−−−→n→+∞

0

dém. :
Introduisons σ la variance commune aux variables Xn. On a

E(Sn) = nm et V (Sn) = nσ2

Par l’inégalité de Bienaymé-Tchebychev

P (|Sn − nm| > a) 6
V (Sn)

a2

En prenant a = nε

P

(∣∣∣∣Snn −m
∣∣∣∣ > ε) = P (|Sn − nm| > a) 6

V (Sn)

n2ε2
=

σ2

nε2

�

Exemple On veut estimer l’équilibre d’une pièce. On note p la probabilité (inconnue) que la pièce
donne « face »lors d’un lancer.
On lance n fois la pièce et l’on pose S égale au nombre de lancers ayant donné « face ».
En posant Xk la variable de Bernoulli testant si le k-ième lancer donne « face », on

S =

n∑
k=1

Xk

Sachant E(Xk) = p et V (Xk) = p(1− p) 6 1/4, l’inégalité de Bienaymé-Tchebychev donne

P (|S/n− p| > ε) 6 1

4nε2

Pour ε = 0, 01, on obtient que S/n est une valeur approchée de p à ε près avec une probabilité
supérieure à 5 % sous réserve de prendre n > 50 000 !
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27.6 Variables aléatoires à valeurs naturelles

27.6.1 Loi de Poisson

Définition
On dit qu’une variable aléatoire X suit une loi de Poisson de paramètre λ (avec λ > 0 ) si

X(Ω) = N et P (X = k) = e−λ
λk

k!

On note P(λ) cette loi.

Remarque On vérifie
+∞∑
k=0

e−λ
λk

k!
= 1 avec e−λ

λk

k!
> 0

Il est donc possible qu’une telle loi existe. . .

Théorème
Si X ∼ P(λ) alors

E(X) = λ et V (X) = λ

dém. :

E(X) =

+∞∑
n=0

ke−λ
λk

k!
=

+∞∑
k=1

e−λ
λk

(k − 1)!
= λe−λ

+∞∑
k=0

λk

k!
= λ

et
V (X) = E(X2)− E(X)2 = E(X(X − 1)) + E(X)− E(X)2

avec

E(X(X − 1)) =

+∞∑
k=0

k(k − 1)e−λ
λk

k!
= λ2e−λ

+∞∑
k=0

λk

k!
= λ2

et donc
V (X) = λ2 + λ− λ2 = λ

�

Exemple Si durant un laps de temps T un phénomène se produit en moyenne λ fois, il est fréquent de
dire que le nombre d’occurrences de ce phénomène durant ce laps de temps suit une loi de Poisson de
paramètre λ.
Par exemple, le nombre de désintégrations radioactives par seconde, le nombre de passages journalier le
long d’une route, le nombre d’accidents annuel, etc.
Cette interprétation s’explique par un passage à la limite de la loi binomiale dans le cadre des
événements rares.
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Théorème
Soit (Xn)n∈N est une suite de variables aléatoires avec Xn ∼ B(n, pn).
Si npn −−−−−→

n→+∞
λ alors

P (Xn = k) −−−−−→
n→+∞

e−λ
λk

k!

dém. :
Par définition d’une loi binomiale

P (Xn = k) =

(
n

k

)
pkn(1− pn)n−k

Or (
n

k

)
∼

n→+∞

nk

k!
et nkpkn(1− pn)n−k =

(
npn

1− pn

)k
exp (n ln(1− pn))

avec
npn

1− pn
−−−−−→
n→+∞

λ et (1− pn)n = en ln(1−pn) = e−npn+o(1) −−−−−→
n→+∞

e−λ

donc

P (Xn = k) −−−−−→
n→+∞

e−λ
λk

k!

�

Exemple Dans une certaine quantité de matière, il y a une grande quantité n d’atomes radioactifs.
Chacun à une probabilité p très faible de se désintégrer mais l’on sait qu’en moyenne il y a λ
désintégration durant un laps de temps T : np = λ. En supposant l’indépendance des désintégrations
atomiques, il serait rigoureux de modéliser le nombre X de désintégration par une loi de Bernoulli
B(n, p).
En pratique, les calculs numériques seraient difficiles alors que l’approximation avec une loi de Poisson
de paramètre λ est bien plus commode.

Exemple Soit X et Y deux variables aléatoires indépendantes suivant des lois de Poisson de paramètres
λ et µ > 0. Etudions la loi de la variable Z = X + Y .X + Y est à valeurs dans N et

P (X + Y = k) =

k∑
`=0

P (X = `, Y = k − `)

Par indépendance

P (X + Y = k) =

k∑
`=0

P (X = `)P (Y = k − `)

puis

P (X + Y = k) =

k∑
`=0

e−λ
λ`

`!
e−µ

µk−`

(k − `)!
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On réorganise

P (X + Y = k) =
e−(λ+µ)

k!

k∑
`=0

(
k

`

)
λ`µk−`

Par la formule du binôme

P (X + Y = k) = e−(λ+µ) (λ+ µ)k

k!

La variable X + Y suit une loi de Poisson de paramètre λ+ µ.

27.6.2 Loi géométrique

Définition
On dit que la variable aléatoire X suit une loi géométrique de paramètre p (avec p ∈ ]0, 1[ ) si

X(Ω) = N? et P (X = k) = p(1− p)k−1

On note G(p) cette loi.

Remarque On vérifie
+∞∑
k=1

p(1− p)k−1 = 1 avec p(1− p)k−1 > 0

Il est donc possible qu’une telle loi existe.

Exemple On lance successivement un dé équilibré jusqu’à obtention d’un six.
On pose X le nombre de lancers nécessaires. On a

P (X = n) =

(
5

6

)n−1(
1

6

)
et donc X ∼ G(p) avec p = 1/6.

Remarque Plus généralement, la loi géométrique est utile pour évaluer le temps d’attente du premier
succès dans une suite d’épreuves de Bernoulli mutuellement indépendantes de même paramètre p.

Théorème
Si X ∼ G(p) alors

E(X) =
1

p
et V (X) =

1− p
p2

dém. :

E(X) =

+∞∑
k=1

k(1− p)k−1p =
1

p
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et

V (X) = E (X(X − 1)) + E(X)− E(X)2

avec

E (X(X − 1)) =

+∞∑
k=2

k(k − 1)(1− p)k−1p

Or
+∞∑
k=2

k(k − 1)xk−2 =
d2

dx2

(
1

1− x

)
=

2

(1− x)3

donc

E (X(X − 1)) = p(1− p) 2

p3

puis

V (X) = 2
1− p
p2

+
1

p
− 1

p2
=

1− p
p2

�

Théorème
Si X est une variable aléatoire à valeurs dans N? vérifiant la condition d’absence de mémoire

∀n, k ∈ N, P (X > n+ k | X > n) = P (X > k)

alors X suit une loi géométrique.

dém. :
Posons q = P (X > 1). La condition imposée donne

P (X > n+ 1 | X > n) = q

Or

P (X > n+ 1) = P (X > n+ 1 | X > n)P (X > n)

et donc

P (X > n+ 1) = qP (X > n)

Par une récurrence immédiate et sachant P (X > 0) = 1, on obtient

∀n ∈ N, P (X > n) = qn

puis

∀n ∈ N?, P (X = n) = P (X > n− 1)− P (X > n) = (1− q)qn−1

Ainsi, la variable X suit une loi géométrique de paramètre p = 1− q.
�
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27.6.3 Fonctions génératrices

Soit X une variable aléatoire discrète à valeurs dans N.
Définition

On appelle fonction génératrice de la variable X la série entière∑
P (X = n)tn

On note GX(t) sa somme là où elle est définie

GX(t) =

+∞∑
n=0

P (X = n)tn = E
(
tX
)

Théorème
Cette série entière est de rayon de convergenceRX au moins égale à 1 et converge normalement
sur [−1, 1].

dém. :
Pour t = 1, la série numérique

∑
P (X = n)1n =

∑
P (X = n) converge.

Puisque la série entière converge en t = 1, son rayon de convergence est au moins égale à 1.
Posons un(t) = P (X = n)tn définie sur [−1, 1].
Pour tout t ∈ [−1, 1], |un(t)| 6 P (X = n).
C’est une majoration uniforme et

∑
P (X = n) converge donc la série de fonctions

∑
un converge

normalement sur [−1, 1].
�

Corollaire
La fonction génératrice GX est au moins définie et continue sur [−1, 1].

Remarque La fonction génératrice est entièrement déterminée par la loi de X . Inversement, la fonction
génératrice caractérise la loi de X puisque

P (X = n) =
G

(n)
X (0)

n!

Exemple Si X ∼ B(p) alors

GX(t) = (1− p) + pt et RX = +∞

Exemple Si X ∼ B(n, p) alors

GX(t) =

n∑
k=0

(
n

k

)
(pt)k(1− p)n−k = (1− p+ pt)

n et RX = +∞
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Exemple Si X ∼ P(λ) alors

GX(t) =

+∞∑
n=0

e−λ
(λt)n

n!
= eλ(t−1) et RX = +∞

Exemple Si X ∼ G(p) alors

GX(t) =

+∞∑
n=1

(1− p)n−1ptn =
pt

1− (1− p)t
et RX = 1/p

27.6.4 Calcul d’espérances et de variances
Soit X une variable aléatoire discrète à valeurs dans N et GX sa fonction génératrice. On remarque

GX(1) =

+∞∑
n=0

P (X = n) = 1 = E(1)

Par dérivation de série entière sur ]−1, 1[

G
(k)
X (t) =

+∞∑
n=0

n(n− 1) . . . (n− k + 1)P (X = n)tn−k

et donc
G

(k)
X (t) = E

(
X(X − 1) . . . (X − k + 1)tX

)
Sous réserve d’existence

G
(k)
X (1) = E (X(X − 1) . . . (X − k + 1))

ce qui donne accès aux moments de X . . . Approfondissons dans le cadre de l’espérance et de la variance.

Théorème
On a équivalence entre :
(i) la variable X admet une espérance ;
(ii) la fonction génératrice GX est dérivable en 1.
De plus, on a alors

E(X) = G′X(1)

dém. :
Sur [−1, 1], GX est la somme de la série de fonctions

∑
un où

un(t) = P (X = n)tn

Celles-ci sont de classe C1 sur [−1, 1] et

u′n(t) = nP (X = n)tn−1

(i) ⇒ (ii) Si X admet une espérance alors
∑

nP (X = n) converge. Or on a la majoration uniforme

|u′n(t)| 6 nP (X = n) et donc la série
∑

u′n converge normalement sur [−1, 1].
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On en déduit que GX est de classe C1 sur [−1, 1]. En particulier, GX est dérivable en 1.
De plus

G′X(1) =

+∞∑
n=0

u′n(1) =

+∞∑
n=0

nP (X = n) = E(X)

(ii)⇒ (i) Supposons GX dérivable en 1. Le taux d’accroissement

GX(t)−GX(1)

t− 1
=

+∞∑
n=0

P (X = n)
tn − 1

t− 1

admet une limite quand t→ 1−. Exploitons l’écriture

GX(t)−GX(1)

t− 1
=

+∞∑
n=0

P (X = n)(1 + t+ · · ·+ tn−1)

Soit N ∈ N,
N∑
n=0

nP (X = n) = lim
t→1

N∑
n=0

P (X = n)(1 + t+ · · ·+ tn−1)

Par positivité des termes sommés

N∑
n=0

nP (X = n) 6 lim
t→1

GX(t)−GX(1)

t− 1
= G′X(1)

La série
∑

nP (X = n) est donc convergente car c’est une série à termes positifs aux sommes partielles
majorées.
�

Théorème
On a équivalence entre :
(i) la variable X admet un moment d’ordre 2 ;
(ii) la fonction génératrice GX est deux fois dérivable en 1.
De plus, on a alors

V (X) = G′′X(1) +G′X(1)− (G′X(1))
2

dém. :
(i)⇒ (ii) Si la variableX admet un moment d’ordre 2, il y a convergence de

∑
n2P (X = n) mais aussi

de
∑

n(n− 1)P (X = n). On peut alors adapter la démonstration précédente et obtenir GX de classe

C2 sur [−1, 1] avec

G′′X(1) =

+∞∑
n=0

n(n− 1)P (X = n) = E (X(X − 1))

La relation
V (X) = E(X2)− E(X)2 = E (X(X − 1)) + E(X)− E(X)2

fournit alors
V (X) = G′′X(1) +G′X(1)− (G′X(1))

2
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(ii)⇒ (i) Supposons GX deux fois dérivable en 1. La fonction GX est au moins dérivable en 1 et donc
X admet une espérance. On sait alors exprimer G′X(t) sur [−1, 1] par

G′X(t) =

+∞∑
n=1

nP (X = n)tn−1

La poursuite de la démonstration est alors la même que celle précédente afin d’établir la convergence de∑
n(n− 1)P (X = n)

�

Exemple Si X ∼ B(p) alors GX(t) = (1− p) + pt.
E(X) = G′X(1) = p et V (X) = 0 + p− p2 = p(1− p)

Exemple Si X ∼ B(n, p) alors GX(t) = (1− p+ pt)
n.

E(X) = np et V (X) = n(n− 1)p2 + np− (np)2 = np(1− p)

Exemple Si X ∼ P(λ) alors GX(t) = eλ(t−1).
E(X) = λ et V (X) = λ2 + λ− λ2 = λ

Exemple Si X ∼ G(p) alors GX(t) =
pt

1− (1− p)t
=

p

p− 1
+

p
1−p

1− (1− p)t
.

E(X) =
1

p
et V (X) =

2(1− p)
p2

+
1

p
− 1

p2
=

1− p
p2

27.6.5 Fonctions génératrices d’une somme

Théorème
Soit X et Y sont deux variables aléatoires discrètes à valeurs dans N.
Si X et Y sont indépendantes alors

GX+Y = GX ×GY

dém. :
Pour t ∈ [−1, 1],

GX+Y (t) = E
(
tX+Y

)
= E

(
tX × tY

)
Or les variables tX et tY sont indépendantes car X et Y le sont donc

GX+Y (t) = E
(
tX
)
E
(
tY
)

= GX(t)GY (t)

�
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Corollaire
Si X1, . . . , Xn sont des variables mutuellement indépendantes

GX1+···+Xn(t) = GX1
(t)× · · · ×GXn(t)

Exemple Sachant qu’une loi B(n, p) peut être simulée par la somme de n loi B(p) indépendantes, on
retrouve que si X ∼ B(n, p) alors GX(t) = (1− p+ pt)

n.

27.6.6 Musculation : somme aléatoire

Théorème
Soit N une variable aléatoire à valeurs dans N et (Xn)n∈N? une suite de variables aléatoires
suivant toutes une même loi de fonction génératrice GX .
Si ces variables sont mutuellement indépendantes alors la fonction génératrice de la variable

S =

N∑
k=1

Xk est donnée par

GS(t) = GN (GX(t))

dém. :
Par formule des probabilités totales

P (S = n) =

+∞∑
k=0

P (N = k)P (X1 + · · ·+Xk = n)

donc

GS(t) =

+∞∑
n=0

+∞∑
k=0

P (N = k)P (X1 + · · ·+Xk = n)tn

En réordonnant la somme de cette famille sommable

GS(t) =

+∞∑
k=0

P (N = k)

+∞∑
n=0

P (X1 + · · ·+Xk = n)tn

soit

GS(t) =

+∞∑
k=0

P (N = k)GX1+···+Xk(t)

Or GX1+···+Xk(t) = [GX(t)]
k donc

GS(t) =

+∞∑
k=0

P (N = k) [GX(t)]
k

= GN (GX(t))

�
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Corollaire
Si N et X possèdent une espérance

E(S) = E(N)E(X)

dém. :
Car

G′S(1) = G′X(1)G′N (GX(1)) = G′X(1)G′N (1)

�

Exemple On lance une pièce équilibrée. Tant que l’on obtient « face », on jette un dé et on avance le
personnage d’un jeu de plateau du nombre correspondant de cases.
En moyenne, le personnage avance de E(S) = E(N)× E(X) = 3, 5 cases.
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27.6. VARIABLES ALÉATOIRES À VALEURS NATURELLES
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