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Variables aléatoires discrètes
Variables aléatoires

Exercice 1 [ 04093 ] [correction]
Soit (Xn)n∈N une suite de variables aléatoires discrètes à valeurs dans un
ensemble E et N une variable aléatoire à valeurs naturelles toutes définies sur un
même espace probabilisable (Ω, T ). On définit une fonction Y par

∀ω ∈ Ω, Y (ω) = XN(ω)(ω)

Justifier que Y est une variable aléatoire discrète.

Exercice 2 [ 04094 ] [correction]
Soit T une variable aléatoire à valeurs naturelles vérifiant

∀n ∈ N, P (T > n) > 0

On appelle taux de panne associé à T la suite (θn)n∈N déterminée par

θn = P (T = n | T > n)

Typiquement, si T est la variable aléatoire indiquant l’instant où un matériel
tombe à panne, la quantité θn indique la probabilité qu’il tombe en panne à
l’instant présent alors qu’il est actuellement fonctionnel.
a) Justifier

∀n ∈ N, θn ∈ [0, 1[

b) Exprimer en fonction des termes de la suite (θn)n∈N, la probabilité P (T > n).
En déduire la divergence de la série

∑
θn.

c) Inversement, soit (θn)n∈N une suite vérifiant

∀n ∈ N, θn ∈ [0, 1[ et
∑

θn diverge

Montrer que la suite (θn)n∈N est un taux de panne associé à une certaine variable
aléatoire T .

Espérances et variances

Exercice 3 [ 04018 ] [correction]
Soit X une variable aléatoire discrète à valeurs dans [a, b].

a) Montrer que X admet une espérance m et que celle-ci est élément de [a, b].
La variable X admet aussi une variance σ2 que l’on se propose de majorer.
On introduit la variable aléatoire Y = X −m et les quantités

t =
∑
y>0

yP (Y = y), s =
∑
y>0

y2P (Y = y) et u = P (Y > 0)

b) Vérifier
t2 6 su

c) Calculer espérance et variance de Y . En déduire

t2 6 (σ2 − s)(1− u)

d) En exploitant les deux majorations précédentes, obtenir

t2 6 σ2/4

e) Conclure
σ2 6 (b− a)2/4

Exercice 4 [ 04025 ] [correction]
Soit X une variable aléatoire discrète réelle.
On suppose que X admet un moment d’ordre n ∈ N. Montrer que X admet un
moment à tout ordre k 6 n.

Exercice 5 [ 04026 ] [correction]
Soit X une variable aléatoire à valeurs dans N.
Montrer que X admet une espérance finie si, et seulement si, la série

∑
P (X > n)

converge et qu’alors

E (X) =
+∞∑
n=0

P (X > n)

Exercice 6 [ 04028 ] [correction]
On dit qu’une variable aléatoire X suit une loi binomiale négative de paramètres
n et p si

X(Ω) = {n, n+ 1, . . .} et P (X = k) =
(
k − 1
n− 1

)
pn(1− p)k−n
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a) Soit X1, . . . , Xn des variables aléatoires indépendantes suivant toutes une loi
géométrique de paramètre p.
Montrer que X1 + · · ·+Xn suit une loi binomiale négatives de paramètres n et p.
b) En déduire espérance et variance d’un loi binomiale négatives de paramètres n
et p.

Exercice 7 [ 04032 ] [correction]
On suppose qu’à la roulette d’un Casino, on obtient la couleur noire avec la
probabilité 1/2, la couleur rouge sinon (bref, on ne suppose pas de 0 vert. . . ). Un
joueur fortuné joue selon le protocole suivant :
- il mise initialement 1 brouzouf sur la couleur noire ;
- s’il gagne, il arrête de jouer et empoche le double de sa mise.
- s’il perd, il double sa mise et rejoue.
a) On suppose la fortune du joueur infinie.
Montrer que le jeu s’arrête presque sûrement. Déterminer l’espérance de gain du
joueur.
b) On suppose toujours la fortune du joueur infinie.
Que se passe-t-il si au lieu de doubler, il décide de tripler sa mise lorsqu’il rejoue ?
c) Le joueur n’est en fait pas si fortuné qu’il le prétend : il ne possède que 2n − 1
brouzoufs ce qui l’autorise à ne pouvoir jouer que n parties. Que devient son
espérance de gain ?

Exercice 8 [ 04085 ] [correction]
Soit X une variable aléatoire à valeurs dans N telle qu’il existe a ∈ R et p ∈ ]0, 1[
vérifiant

P (X = k) = a

(
n+ k

k

)
pk

Calculer l’espérance et la variance de X.

Exercice 9 [ 04087 ] [correction]
Soit X une variable aléatoires réelle discrète admettant une variance σ2 (avec
σ > 0). Montrer

∀α > 0, P (|X − E(X)| < ασ) > 1− 1
α2

Covariances

Exercice 10 [ 04086 ] [correction]
Soient X et Y deux variables aléatoires réelles admettant chacune une variance.
On suppose V (X) > 0. Déterminer a, b ∈ R minimisant la quantité

E
(

[Y − (aX + b)]2
)

Exercice 11 [ 04048 ] [correction]
Un signal est diffusé via un canal et un bruit vient malheureusement s’ajouter à la
transmission. Le signal est modélisé par une variable aléatoire discrète réelle S
d’espérance mS et de variance σ2

S connues. Le bruit est modélisé par une variable
B indépendante de S d’espérance nulle et de variance σ2

B > 0. Après diffusion, le
signal reçu est X = S +B.
Déterminer a, b ∈ R pour que Y = aX + b soit au plus proche de S i.e. tel que
l’espérance E

(
(Y − S)2) soit minimale.

Lois usuelles

Exercice 12 [ 04020 ] [correction]
Soit X et Y deux variables aléatoires discrètes indépendantes.
On suppose que X et Y suivent des lois de Poisson de paramètres λ et µ.
Quelle est la loi suivie par X + Y ?

Exercice 13 [ 04021 ] [correction]
Soit X et Y deux variables aléatoires discrètes indépendantes.
On suppose que celles-ci suivent une même loi géométrique de paramètre p.
Déterminer la loi de Z = X + Y .

Exercice 14 [ 04022 ] [correction]
Soit X et Y deux variables aléatoires discrètes indépendantes.
On suppose que celles-ci suivent des lois géométriques de paramètres p et q.
a) Déterminer P (X > n) pour n ∈ N.
b) En déduire la loi de Z = min(X,Y ).
c) Observer que la loi de Z est géométrique.
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Exercice 15 [ 04029 ] [correction]
Soit X et Y deux variables aléatoires indépendantes suivant des lois de Poisson de
paramètres λ et µ.
Reconnaître la loi de X sachant X + Y = n.

Exercice 16 [ 04034 ] [correction]
Soit X une variable aléatoire de Poisson de paramètre λ > 0.
a) Pour quelle valeur de n ∈ N, la probabilité de l’évènement (X = n) est-elle
maximale ?
b) Inversement, n étant fixé, pour quelle valeur du paramètre λ, la probabilité de
(X = n) est-elle maximale ?

Exercice 17 [ 04036 ] [correction]
Soit X une variable aléatoire suivant une loi géométrique de paramètre p. Calculer

E

(
1
X

)

Exercice 18 [ 04037 ] [correction]
Soit X une variable aléatoire suivant une loi de Poisson de paramètre λ > 0.
Calculer

E

(
1

X + 1

)

Exercice 19 [ 04038 ] [correction]
Soient X et Y deux variables aléatoires indépendantes géométriques de
paramètres p et q.
Calculer l’espérance de Z = max(X,Y ).

Exercice 20 [ 04045 ] [correction]
Soit X une variable aléatoire suivant une loi de Poisson de paramètre λ > 0.
Déterminer la probabilité que la valeur de X soit pair.

Exercice 21 [ 04088 ] [correction]
Chez un marchand de journaux, on peut acheter des pochettes contenant chacune
une image. La collection complète comporte en tout N images distinctes. On note
Xk le nombre d’achats ayant permis l’obtention de k images distinctes. En
particulier, X1 = 1 et XN est le nombre d’achats nécessaires à l’obtention de la
collection complète.
a) Par quelle loi peut-on modéliser la variable Xk+1 −Xk ?
b) En déduire l’espérance de XN .

Loi conjointes, Loi marginales

Exercice 22 [ 04054 ] [correction]
Soit X et Y deux variables aléatoires à valeurs dans N.
On suppose que X suit une loi de Poisson de paramètre λ > 0 et que la loi de Y
sachant X = n est binomiale de paramètres n et p ∈ ]0, 1[.
a) Déterminer la loi conjointe de (X,Y ).
b) Reconnaître la loi de Y .

Exercice 23 [ 04055 ] [correction]
Soient X et Y deux variables aléatoires à valeurs dans N.
On suppose que la loi conjointe de X et Y vérifie

P (X = j, Y = k) = a

j!k! avec a ∈ R

a) Déterminer la valeur de a.
b) Reconnaître les lois marginales de X et Y .
c) Les variables X et Y sont elles indépendantes ?

Exercice 24 [ 04056 ] [correction]
Soient X et Y deux variables aléatoires à valeurs dans N.
On suppose que la loi conjointe de X et Y vérifie

∀j, k ∈ R, P (X = j, Y = k) = a
j + k

2j+k avec a ∈ R

a) Déterminer la valeur de a.
b) Déterminer les lois marginales de X et Y .
c) Les variables X et Y sont elles indépendantes ?
d) Calculer P (X = Y ).
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Exercice 25 [ 04057 ] [correction]
Soient X et Y deux variables aléatoires à valeurs dans N et p ∈ ]0, 1[.
On suppose que la loi conjointe de X et Y vérifie

P (X = k, Y = n) =


(
n

k

)
anp(1− p)n si k 6 n

0 sinon
avec a ∈ R

a) Déterminer la valeur de a.
b) Déterminer la loi marginale de Y .
c) Sachant

∀x ∈ ]−1, 1[ ,
+∞∑
n=k

(
n

k

)
xn−k = 1

(1− x)k+1

Reconnaître la loi de X
d) Les variables X et Y sont elle indépendantes ?

Fonctions génératrices

Exercice 26 [ 04027 ] [correction]
On considère une expérience aléatoire ayant la probabilité p de réussir et 1− p
d’échouer.
On répète l’expérience indépendamment jusqu’à obtention de m succès et on note
X le nombre d’essais nécessaires à l’obtention de ces m succès.
a) Reconnaître la loi de X lorsque m = 1.
b) Déterminer la loi de X dans le cas général m ∈ N?.
c) Exprimer le développement en série entière de

1
(1− t)m+1

d) Déterminer la fonction génératrice de X et en déduire l’espérance de X.

Exercice 27 [ 04039 ] [correction]
Soit X une variable aléatoire suivant une loi de Poisson de paramètre λ > 0.
a) Calculer

E (X(X − 1) . . . (X − r + 1))

b) Retrouver ce résultat par les fonctions génératrices.

Exercice 28 [ 04040 ] [correction]
Soit X une variable aléatoire suivant une loi géométrique de paramètre p ∈ ]0, 1[.
a) Calculer

Non défin

b) Retrouver ce résultat par les fonctions génératrices.

Exercice 29 [ 04044 ] [correction]
Deux joueurs lancent deux dés équilibrés. On veut déterminer la probabilité que
les sommes des deux jets soient égales. On note X1 et X2 les variables aléatoires
déterminant les valeurs des dés lancés par le premier joueur et Y1 et Y2 celles
associées au deuxième joueur. On étudie donc l’évènement (X1 +X2 = Y1 + Y2).
a) Montrer que

P (X1 +X2 = Y1 + Y2) = P (14 +X1 +X2 − Y1 − Y2 = 14)

b) Déterminer la fonction génératrice de la variable à valeurs naturelles

Z = 14 +X1 +X2 − Y1 − Y2

c) En déduire la valeur de

P (X1 +X2 = Y1 + Y2)

Exercice 30 [ 04046 ] [correction]
Soit N et X1, X2, . . . des variables aléatoires indépendantes à valeurs dans N. On
suppose que les variables X1, X2, . . . suivent toutes une même loi de fonction
génératrice GX et on pose

S =
N∑
k=1

Xk

a) Établir GS(t) = GN (GX(t)) pour |t| 6 1
b) On suppose que les variables admettent une espérance. Établir l’identité de
Wald

E(S) = E(N)E(X1)

Exercice 31 [ 04051 ] [correction]
Soit X1, X2, . . . des variables aléatoires mutuellement indépendantes suivant
toutes une même loi de Bernoulli de paramètre p ∈ ]0, 1[. Soit aussi N une
variable aléatoire à valeurs dans N indépendantes des précédentes.
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On pose

X =
N∑
k=1

Xk et Y =
N∑
k=1

(1−Xk)

a) Pour t, u ∈ [−1, 1], exprimer à l’aide de la fonction génératrice de N

G(t, u) = E
(
tXuY

)
b) On suppose que N suit une loi de Poisson de paramètre λ > 0.
Montrer que les variables X et Y sont indépendantes.
c) Inversement, on suppose que les variables X et Y sont indépendantes.
Montrer que N suit une loi de Poisson.

Exercice 32 [ 04024 ] [correction]
Soit X une variable aléatoire suivant une loi de Poisson de paramètre λ > 0.
a) Rappeler la fonction génératrice de la variable X.
b) Exploiter celle-ci pour calculer le moment centré d’ordre 3 de la variable X.

Exercice 33 [ 04091 ] [correction]
On considère une expérience aléatoire ayant la probabilité p de réussir et q = 1− p
d’échouer définissant une suite de variables de Bernoulli indépendantes (Xn)n>1.
Pour m ∈ N?, on note Sm la variable aléatoire déterminant le nombre d’essais
jusqu’à l’obtention de m succès :

Sm = k ⇔ X1 + · · ·+Xk = m et X1 + · · ·+Xk−1 < m

a) Déterminer la loi et la fonction génératrice de S1.
b) Même question avec Sm − Sm−1 pour m > 2.
c) Déterminer la fonction génératrice de Sm puis la loi de Sm

Applications

Exercice 34 [ 04049 ] [correction]
Soit X une variable aléatoire à valeurs dans un ensemble fini X . Pour chaque
valeur x ∈ X , on pose

p(x) = P (X = x)

On appelle entropie de la variable X le réel

H(X) = −
∑
x∈X

p(x) log (p(x))

où l’on convient 0 log 0 = 0.
a) Vérifier que H(X) est un réel positif. A quelle condition celui-ci est-il nul ?
Soient X et Y deux variables aléatoires à valeurs dans des ensembles finis X et Y.
b) On appelle entropie conjointe de X et Y , l’entropie de la variable Z = (X,Y )
simplement notée H(X,Y ).
On suppose les variables X et Y indépendantes, vérifier

H(X,Y ) = H(X) +H(Y )

c) On appelle entropie de X sachant Y la quantité

H(X | Y ) = H(X,Y )−H(Y )

Vérifier
H(X | Y ) =

∑
y∈Y

P (Y = y)H(X | Y = y)

avec

H(X | Y = y) = −
∑
x∈X

P (X = x | Y = y) log (P (X = x | Y = y))

Indépendance

Exercice 35 [ 04083 ] [correction]
Soient X une variable aléatoire discrète définie sur Ω et f une application définie
sur X(Ω).
À quelle condition les variables aléatoires X et f(X) sont-elles indépendantes ?

Moments

Exercice 36 [ 04084 ] [correction]
Soit X une variable aléatoire discrète réelle. On note IX l’ensemble des t ∈ R pour
lesquels existe

MX(t) = E
(
etX
)

a) Montrer que IX est un intervalle contenant 0.
b) On suppose que 0 est intérieur à l’intervalle IX . Montrer que la variable X
admet des moments à tout ordre et que sur un intervalle centré en 0

MX(t) =
+∞∑
n=0

E(Xn)
n! tn
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Exercice 37 [ 04023 ] [correction]
Soit X une variable aléatoire discrète réelle. Sous réserve d’existence, on appelle
fonction génératrice des moments de X l’application

MX(t) = E
(
etX
)

a) On suppose que X suit une loi de Poisson de paramètre λ. Déterminer MX(t).
b) On suppose que la fonction MX est définie sur un intervalle ]−a, a[.
Montrer qu’elle y est de classe C∞ et qu’on a

E(Xn) = M
(n)
X (0)
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Corrections

Exercice 1 : [énoncé]
Les Xn(Ω) sont des ensembles au plus dénombrables et

Y (Ω) ⊂
⋃
n∈N

Xn(Ω)

On en déduit que l’ensemble Y (Ω) est au plus dénombrable.
De plus, pour tout y ∈ Y (Ω)

Y −1 ({y}) =
⋃
n∈N
{ω ∈ Ω/N(ω) = n et Xn(ω) = y}

et donc
Y −1 ({y}) =

⋃
n∈N
{N(ω) = n} ∩ {Xn(ω) = y}

est bien élément de la tribu T .

Exercice 2 : [énoncé]
a) θn est une probabilité donc θn ∈ [0, 1].
Si θn = 1 alors P (T = n) = P (T > n) et donc P (T > n) = 0 ce qu’exclut les
hypothèses.
b) On a P (T = n) = θnP (T > n) et P (T = n) + P (T > n+ 1) = P (T > n) donc

P (T > n+ 1) = (1− θn)P (T > n)

Sachant P (T > 0) = 1, on obtient

P (T > n) =
n−1∏
k=0

(1− θk)

Puisque P (T > n) −−−−−→
n→+∞

0, on a

n−1∑
k=0

ln (1− θk) = ln
(
n−1∏
k=0

(1− θk)
)
−−−−−→
n→+∞

−∞

Ainsi, il y a divergence de la série
∑

ln(1− θn).
Si la suite (θn)n∈N ne tend pas vers 0, la série

∑
θn est évidemment divergente.

Si la suite (θn)n∈N tend vers 0 alors ln (1− θn) ∼
n→+∞

−θn et, par équivalence de
séries à termes de signe constant, la série

∑
θn diverge.

c) Analyse : Si T est une variable aléatoire solution alors

P (T = n) = P (T > n)− P (T > n+ 1) = θn

n−1∏
k=0

(1− θk)

ce qui détermine entièrement la loi de T .
Synthèse : Posons

∀n ∈ N, un = θn

n−1∏
k=0

(1− θk)

On a
∀n ∈ N, un > 0

Vérifions aussi (un)n∈N de somme égale à 1.

Introduisons Pn =
n−1∏
k=0

(1− θk). On a

lnPn =
n−1∑
k=0

ln(1− θk) −−−−−→
n→+∞

−∞

En effet, ln(1− θn) ∼
n→+∞

−θn et
∑
−θn est une série à termes négatifs divergente.

On a aussi P0 = 1 et Pn − Pn+1 = un, donc

n∑
k=0

uk = P0 − Pn+1 −−−−−→
n→+∞

1

On peut alors définir une variable aléatoire T dont la loi vérifie

P (T = n) = un = θn

n−1∏
k=0

(1− θk)

On a alors

P (T > n) =
+∞∑
k=n

uk = Pn =
n−1∏
k=0

(1− θk)

et
P (T = n | T > n) = θn

La variable aléatoire T est bien solution.
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Exercice 3 : [énoncé]
a) Posons M = max(−a, b). On a |X| 6M et la constante M admet une
espérance. On en déduit que X admet une espérance. De plus

m = E(X) =
∑

x∈X(Ω)

xP (X = x) >
∑

x∈X(Ω)

aP (X = x) = a

et de même m 6 b.
b) Par l’inégalité de Cauchy-Schwarz∑

y>0
yP (Y = y)

2

6
∑
y>0

y2P (Y = y)
∑
y>0

P (Y = y) = su

c) De façon immédiate E(Y ) = 0 et V (Y ) = σ2. On en déduit

t = −
∑
y<0

yP (Y = y) et
∑
y<0

y2P (Y = y) = σ2 − s

En appliquant à nouveau l’inégalité de Cauchy-Schwarz

t2 6 (σ2 − s)(1− u)

d) Ce qui précède fournit

t2 6 min
{
su, (σ2 − s)(1− u)

}
pour u ∈ [0, 1] et s ∈

[
0, σ2]. Sachant
su 6 (σ2 − s)(1− u)⇔ s+ σ2u 6 σ2

Si s+ σ2u 6 σ2 alors

min
{
su, (σ2 − s)(1− u)

}
= su 6 σ2(1− u)u 6 σ2/4

Si s+ σ2u > σ2, c’est analogue et la conclusion demeure.
e) On a

σ2 = E(Y 2) =
∑
y>0

y2P (Y = y) +
∑
y<0

y2P (Y = y)

Puisque Y est à valeurs dans [a−m, b−m], on a∑
y>0

y2P (Y = y) 6
∑
y>0

(b−m)yP (Y = y) = (b−m)t

et ∑
y<0

y2P (Y = y) 6
∑
y<0

(a−m)yP (Y = y) = −(a−m)t

On en déduit
σ2 6 (b− a)t

En élevant au carré
σ4 6 (b− a)2t2 = (b− a)2

4 σ2

Enfin, que σ soit nul ou non, on obtient

σ2 6
(b− a)2

4
Notons que cette inégalité est une égalité lorsque X suit une loi de Bernoulli de
paramètre p = 1/2.

Exercice 4 : [énoncé]
Pour k ∈ [[0, n]] et x ∈ R, on a ∣∣xk∣∣ 6 1 + |x|n

car l’inégalité est vraie que |x| 6 1 ou non. On en déduit∣∣Xk
∣∣ 6 1 + |X|n

Or 1 et |X|n admettent une espérance donc Xk aussi.

Exercice 5 : [énoncé]
On a

P (X > n) =
+∞∑

k=n+1
P (X = k)

donc
+∞∑
n=0

P (X > n) =
+∞∑
n=0

+∞∑
k=n+1

P (X = k)

Puisque les termes sommés sont positifs
+∞∑
n=0

P (X > n) =
+∞∑
k=1

k−1∑
n=0

P (X = k) =
+∞∑
k=0

kP (X = k)

et la convergence d’un membre équivaut à celle de l’autre.
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Exercice 6 : [énoncé]
a) Raisonnons par récurrence sur n ∈ N?.
Cas n = 1. Si X suit une loi binomiale négative de paramètres 1 et p alors

P (X = k) =
(
k − 1

0

)
p(1− p)k−1

On reconnaît une loi géométrique de paramètre p.
Supposons la propriété vraie au rang n > 1.
L’évènement X1 + · · ·+Xn+1 = k peut se décomposer en la réunion des
évènements incompatibles suivants

X1 + · · ·+Xn = ` et Xn+1 = k − ` pour ` ∈ Jn, k − 1K

On en déduit par indépendance

P (X1 + · · ·+Xn+1 = k) =
k−1∑
`=n

(
`− 1
n− 1

)
pn(1− p)`−np(1− p)k−`−1

puis

P (X1 + · · ·+Xn+1 = k) = pn(1− p)k−(n+1)
k−1∑
`=n

(
`− 1
n− 1

)
Or par la formule du triangle de Pascal

k−1∑
`=n

(
`− 1
n− 1

)
=
(
k − 1
n

)

et donc

P (X1 + · · ·+Xn+1 = k) =
(
k − 1
n

)
pn(1− p)k−(n+1)

Récurrence établie.
b) Par linéarité de l’espérance

E(X) = n

p

Par indépendance des variables sommées

V (X) = n
1− p
p2

Exercice 7 : [énoncé]
a) Notons An l’évènement « le jeu dure au moins n parties »

An+1 est la conjonction des évènements indépendants An et « le rouge sort au n+1 -ième tirage ». On en déduit P (An+1) = 1
2P (An)

Par continuité décroissante, on obtient

P

( ⋂
n∈N?

An

)
= lim
n→+∞

P (An) = 0

L’arrêt du jeu est donc presque sûr.
Lorsque la partie s’arrête à la n-ième tentative, le joueur a perdu
1 + 2 + · · ·+ 2n−1 brouzoufs et vient de gagner 2n brouzoufs. Au total, il gagne 1
brouzouf. Son gain étant presque sûrement constant égal à 1 brouzoufs, son
espérance de gain vaut 1 brouzouf.
b) Avec ce nouveau protocole, lorsque la partie s’arrête à la n-ième tentative, le
gain du joueur vaut

3n − (1 + 3 + · · ·+ 3n−1) = 3n + 1
2

L’espérance de gain est

+∞∑
n=1

3n + 1
2 P (An) =

+∞∑
n=1

3n + 1
2n+1 = +∞

c) Puisque le joueur ne peut disputer que n parties, son espérance de gain devient

n∑
k=1

1× P (An)− (2n − 1)P
( +∞⋃
k=n+1

Ak

)
= 1− 1

2n − (2n − 1)× 1
2n = 0

Exercice 8 : [énoncé]
En dérivant successivement

1
1− x =

+∞∑
k=0

xk

on obtient
+∞∑
k=0

(
n+ k

k

)
xk = 1

(1− x)n+1
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La propriété
+∞∑
k=0

P (X = k) = 1

fournit
a = (1− p)n+1

De plus, une nouvelle dérivation donne
+∞∑
k=0

k

(
n+ k

k

)
xk−1 = (n+ 1)

(1− x)n+2

donc

E(X) = a

+∞∑
k=0

k

(
n+ k

k

)
pk = a

(n+ 1)p
(1− p)n+2 = (n+ 1)p

1− p

De même
E(X(X − 1)) = (n+ 2)(n+ 1)p2

(1− p)2

puis
V (X) = E(X(X − 1)) + E(X)− E(X)2 = (n+ 1)p

(1− p)2

Exercice 9 : [énoncé]
Par l’inégalité de Bienaymé-Tchebychev

P (|X − E(X)| > ασ) < σ2

(ασ2) = 1
α2

On conclut par considération d’évènement complémentaire.

Exercice 10 : [énoncé]
On a

E
(

[Y − (aX + b)]2
)

= V (Y − (aX + b)) + E (Y − (aX + b))2

D’une part

V (Y − (aX + b)) = V (Y − aX) = a2V (X)− 2aCov(X,Y ) + V (Y )

et donc

V (Y − (aX + b)) = V (Y−aX) =
(
a− Cov(X,Y )

V (X)

)2
V (X)+V (X)V (Y )− (Cov(X,Y ))2

V (X)

D’autre part
E (Y − (aX + b))2 = 0 pour b = E(Y )− aE(X)

On en déduit que
E
(

[Y − (aX + b)]2
)

est minimale pour

a = Cov(X,Y )
V (X) et b = V (X)E(Y )− Cov(X,Y )E(X)

V (X)

Ces valeurs de a et b réalisent une régression linéaire : elles donnent la meilleure
expression linéaire de Y en fonction de X.

Exercice 11 : [énoncé]
Par la formule de Huygens

E
(
(Y − S)2) = V (Y − S) + [E (Y − S)]2

avec
E (Y − S) = (a− 1)mS + b

et
V (Y − S) = V ((a− 1)S + aB + b) = (a− 1)2σ2

s + a2σ2
B

car la covariance de S et B est nulle.
La quantité V (Y − S) est minimale pour

a = σ2
S

σ2
S + σ2

B

et l’on peut alors rendre le terme [E (Y − S)]2 nul pour

b = (1− a)mS

Au final
Y = σ2

S

σ2
S + σ2

B

X + σ2
B

σ2
S + σ2

B

mS

Exercice 12 : [énoncé]
X + Y est à valeurs dans N.

P (X + Y = k) =
k∑
`=0

P (X = `, Y = k − `)
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Par indépendance

P (X + Y = k) =
k∑
`=0

P (X = `)P (Y = k − `)

puis

P (X + Y = k) =
k∑
`=0

e−λλ
`

`! e−µ µk−`

(k − `)!

On réorganise

P (X + Y = k) = e−(λ+µ)

k!

k∑
`=0

(
k

`

)
λ`µk−`

Par la formule du binôme

P (X + Y = k) = e−(λ+µ) (λ+ µ)k

k!

La variable X + Y suit une loi de Poisson de paramètre λ+ µ.

Exercice 13 : [énoncé]
Les variables X et Y sont à valeurs dans N? donc X + Y est à valeurs N\ {0, 1}.
Pour k ∈ N\ {0, 1}, on a

P (X + Y = k) =
k−1∑
`=1

P (X = `, Y = k − `)

Par indépendance

P (X + Y = k) =
k−1∑
`=1

P (X = `)P (Y = k − `)

Il ne reste plus qu’à dérouler les calculs :

P (X + Y = k) = (k − 1)p2(1− p)k−2

Exercice 14 : [énoncé]
a) Par sommation géométrique ou considération d’une succession de n échecs

P (X > n) = (1− p)n

b) On a
(Z > n) = (X > n) ∩ (Y > n)

et par indépendance
P (Z > n) = (1− p)n(1− q)n

On en déduit

P (Z = n) = P (Z > n− 1)− P (Z > n) = (p+ q − pq) ((1− p)(1− q))n−1

c) On peut encore écrire

P (Z = n) = r(1− r)n−1 avec r = p+ q − pq

Z suit donc une loi géométrique de paramètre p+ q − pq.

Exercice 15 : [énoncé]
Il s’agit de calculer

P (X = k | X + Y = n)

pour une valeur de k qui est nécessairement élément de [[0, n]].

P (X = k | X + Y = n) = P (X = k,X + Y = n)
P (X + Y = n)

donc
P (X = k | X + Y = n) = P (X = k, Y = n− k)

P (X + Y = n)
Puisque X + Y suit une loi de poisson de paramètre λ+ µ, on obtient

P (X = k | X + Y = n) = n!
k!(n− k)!

λkµn−k

(λ+ µ)n

En écrivant
λkµn−k

(λ+ µ)n =
(

λ

λ+ µ

)k (
1− λ

λ+ µ

)n−k
on reconnaît une loi binomiale de paramètres n et λ/(λ+ µ).

Exercice 16 : [énoncé]
a) Posons

un = P (X = n) = e−λλ
n

n!
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On a
un+1

un
= λ

n+ 1

donc si n+ 1 6 λ alors un+1 > un et si n+ 1 > λ alors un+1 < un.
La valeur maximale de un est donc obtenue pour n = bλc.
b) Il suffit d’étudier les variations de la fonction λ 7→ e−λλn. La probabilité sera
maximale si λ = n.

Exercice 17 : [énoncé]
Par la formule de transfert

E

(
1
X

)
=

+∞∑
k=1

1
k

(1− p)k−1p = p

1− p

+∞∑
k=1

(1− p)k

k

Or pour x ∈ ]−1, 1[
+∞∑
k=1

1
k
xk = − ln(1− x)

donc

E

(
1
X

)
= p

p− 1 ln p

Exercice 18 : [énoncé]
Par la formule de Transfert

E

(
1

X + 1

)
=

+∞∑
k=0

1
k + 1e−λλ

k

k! = e−λ
+∞∑
k=0

λk

(k + 1)!

Or
+∞∑
k=0

λk

(k + 1)! = 1
λ

(
eλ − 1

)
donc

E

(
1

X + 1

)
= 1− e−λ

λ

Exercice 19 : [énoncé]
On a

(Z > n) = (X > n) ∪ (Y > n)
donc

P (Z > n) = P (X > n) + P (Y > n)− P (X > n, Y > n)
Par indépendance

P (Z > n) = P (X > n) + P (Y > n)− P (X > n)P (Y > n)

Puisque les lois de X et Y sont géométriques

P (Z > n) = (1− p)n + (1− q)n − (1− p)n(1− q)n

Or

E (Z) =
+∞∑
n=0

P (Z > n)

donc
E (Z) = 1

p
+ 1
q
− 1
p+ q − pq

Exercice 20 : [énoncé]
L’évènement X est pair est la réunion dénombrable des évènements (X = 2k)
pour k ∈ N. Sa probabilité vaut

+∞∑
k=0

P (X = 2k) =
+∞∑
k=0

e−λ λ2k

(2k)! = e−λch(λ) = 1 + e−2λ

2

Exercice 21 : [énoncé]
a) On a Xk+1 −Xk = n si, et seulement si, on tire n− 1 images déjà obtenues
puis une image nouvelle. La proportion en cours du nombre d’images déjà
obtenues est k/N et donc

P (Xk+1 −Xk = n) =
(
k

N

)n−1(
N − k
N

)
= kn−1(N − k)

Nn

On identifie une loi géométrique de paramètre p = (N − k)/N et d’espérance
N/(N − k).
b) Par télescopage

E(XN ) =
N−1∑
k=1

E (Xk+1 −Xk) + E(X1) = N

N∑
k=1

1
k
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Exercice 22 : [énoncé]
a) Pour (n, k) ∈ N2. Si k 6 n alors

P (X = n, Y = k) = P (X = n)P (Y = k | X = n) = e−λλ
n

n!

(
n

k

)
pk(1− p)n−k

Si k > n alors P (X = n, Y = k) = 0.
b) Pour k ∈ N

P (Y = k) =
+∞∑
n=0

P (X = n, Y = k) =
+∞∑
n=k

P (X = n, Y = k)

Après réorganisation et glissement d’indice

P (Y = k) = (λp)k

k! e−λ
+∞∑
n=0

1
n! (1− p)

nλn = e−λp (λp)k

k!

La variable Y suit une loi de Poison de paramètre λp.

Exercice 23 : [énoncé]
a) La loi conjointe de X et Y déterminant une probabilité

+∞∑
j=0

+∞∑
k=0

P (X = j, Y = k) = 1

Or
+∞∑
j=0

+∞∑
k=0

P (X = j, Y = k) = ae2

donc a = e−2.
b) Pour j ∈ N

P (X = j) =
+∞∑
k=0

P (X = j, Y = k) = e−1

j!

et donc X suit une loi de Poisson de paramètre λ = 1. Il en est de même pour Y .
c) Les variables sont indépendantes car l’on vérifie aisément

P (X = j, Y = k) = P (X = j)P (Y = k)

Exercice 24 : [énoncé]
a) La loi conjointe de X et Y déterminant une probabilité

+∞∑
j=0

+∞∑
k=0

P (X = j, Y = k) = 1

Or
+∞∑
j=0

+∞∑
k=0

P (X = j, Y = k) = 8a

car
+∞∑
j=0

+∞∑
k=0

j

2j+k =
+∞∑
j=0

j

2j−1 = 1
(1− 1/2)2 = 4

On en déduit a = 1/8
b) Pour j ∈ N

P (X = j) =
+∞∑
k=0

P (X = j, Y = k) = j + 1
2j+2

et pour k ∈ N

P (Y = k) =
+∞∑
j=0

P (X = j, Y = k) = k + 1
2k+2

c) Les variables ne sont par indépendantes car l’on vérifie aisément

P (X = j, Y = k) 6= P (X = j)P (Y = k)

pour j = k = 0.
d) Par probabilités totales

P (X = Y ) =
+∞∑
n=0

P (X = n, Y = n) =
+∞∑
n=0

2n
22n+3 = 1

9

Exercice 25 : [énoncé]
a) La loi conjointe de X et Y déterminant une probabilité

+∞∑
k=0

+∞∑
k=0

P (X = k, Y = n) = 1

En réordonnant les sommes et en simplifiant les zéros
+∞∑
n=0

n∑
k=0

P (X = k, Y = n) =
+∞∑
n=0

p (2a(1− p))n = p
1

1− (2a(1− p))
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On est donc amené à résoudre l’équation

1− 2a(1− p) = p

ce qui conduit à la solution a = 1/2.
b) Pour n ∈ N,

P (Y = n) =
n∑
k=0

P (X = k, Y = n) = 1
2n

n∑
k=0

(
n

k

)
p(1− p)n = p(1− p)n

c) Pour k ∈ N,

P (X = k) =
+∞∑
n=k

(
n

k

)
p

(
1− p

2

)n
= p

(
1− p

2

)k 1(
1− 1−p

2
)k+1

En simplifiant

P (X = k) =
(

1− 1− p
1 + p

)(
1− p
1 + p

)k
d) Les variables ne sont par indépendantes car l’on vérifie aisément

P (X = k, Y = n) 6= P (X = k)P (Y = n)

pour k = n = 0.

Exercice 26 : [énoncé]
a) X suit une loi géométrique de paramètre p.
b) Notons (Xn)n∈N? la suite des variables de Bernoulli testant la réussite de
chaque expérience.
L’évènement (X = n) est la réunion correspond à l’évènement X1 + · · ·+Xn = m
et Xn = 1 soit encore
X1 + · · ·+Xn−1 = m− 1 et Xn = 1. Par indépendance

P (X = n) = P (X1 + · · ·+Xn−1 = m− 1)P (Xn = 1)

Puisque X1 + · · ·+Xn−1 ∼ B(n− 1, p) et Xn ∼ B(p), on obtient

P (X = n) =
(
n− 1
m− 1

)
pm(1− p)n−m

et écriture vaut aussi quand n 6 m car le coefficient binomial est alors nul.

c) En exploitant le développement connu de (1 + u)α, on obtient

1
(1− t)m =

+∞∑
n=0

(
n+m− 1
m− 1

)
tn pour t ∈ ]−1, 1[

d) Par définition

GX(t) =
+∞∑
n=0

(
n− 1
m− 1

)
pm(1− p)n−mtn

En isolant les premiers termes nuls et en décalant l’indexation

GX(t) =
+∞∑
n=0

(
n+m− 1
m− 1n

)
(pt)m ((1− p) t)n = (pt)m

(1− (1− p)t)m

On en déduit
E(X) = G′X(1) = m

p

Exercice 27 : [énoncé]
a) Par la formule de transfert

E (X(X − 1) . . . (X − r + 1)) =
+∞∑
k=r

k!
(k − r)! e

−λλ
k

k! = λr

b) La fonction génératrice de X est

GX(t) = E(tX) = eλ(t−1)

Celle-ci est indéfiniment dérivable sur R et

G
(r)
X (t) = E

(
X(X − 1) . . . (X − r + 1)tX

)
= λreλ(t−1)

En particulier
G

(r)
X (1) = E (X(X − 1) . . . (X − r + 1)) = λr

Exercice 28 : [énoncé]
a) Par la formule de transfert

E (X(X − 1) . . . (X − r + 1)) =
+∞∑
k=r

k(k − 1) . . . (k − r + 1)(1− p)k−1p
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Or
+∞∑
k=r

k(k − 1) . . . (k − r + 1)xk−r = dr

dxr

(
1

1− x

)
= r!

(1− x)r+1

donc
E (X(X − 1) . . . (X − r + 1)) = (1− p)r−1 r!

pr

b) La fonction génératrice de X est

GX(t) = E(tX) = pt

1− (1− p)t = p

p− 1 +
p

1−p

1− (1− p)t

Celle-ci est indéfiniment dérivable sur R et

G
(r)
X (t) = E

(
X(X − 1) . . . (X − r + 1)tX

)
= p

1− p
r!(1− p)r

(1− (1− p)t)r+1

En particulier

G
(r)
X (1) = E (X(X − 1) . . . (X − r + 1)) = r! (1− p)

r−1

pr

Exercice 29 : [énoncé]
a) Les évènements (X1 +X2 = Y1 + Y2) et (14 +X1 +X2 − Y1 − Y2 = 14) sont
identiques.
b) Puisque X1 est uniformément distribuée sur J1, 6K

GX1(t) = 1
6
(
t+ t2 + · · ·+ t6

)
= t

6
1− t6

1− t = GX2(t)

De même, 7− Yi est uniformément distribuée sur J1, 6K et par somme de variables
aléatoires indépendante

GZ(t) = t4
[

1
6

1− t6

1− t

]4

Il ne reste plus qu’à déterminer le coefficient de t14 dans le développement en série
entière de GZ(t). Pour cela, on écrit

GZ(t) = t4

64

(
1− t6

)4
(1− t)4 = t4

64

(
1− 4t6 + 6t12 − · · ·

) +∞∑
n=0

(
n+ 3

3

)
tn

Le coefficient de t14 est

P (X1 +X2 = Y1 + Y2) = 1
64

((
13
3

)
− 4

(
7
3

))
= 146

64 ' 0, 11

Un calcul direct est aussi possible en évaluant

P (X1 +X2 = i) = min(i− 1, 13− i)
62 pour i ∈ J1, 12K

auquel cas

P (X1 +X2 = Y1 + Y2) = 1
64

12∑
i=2

min (i− 1, 13− i)2

Exercice 30 : [énoncé]
a) Par formule des probabilités totales

P (S = n) =
+∞∑
k=0

P (N = k)P (X1 + · · ·+Xk = n)

donc

GS(t) =
+∞∑
n=0

+∞∑
k=0

P (N = k)P (X1 + · · ·+Xk = n)tn

En réordonnant la somme de cette famille sommable

GS(t) =
+∞∑
k=0

P (N = k)
+∞∑
n=0

P (X1 + · · ·+Xk = n)tn

soit

GS(t) =
+∞∑
k=0

P (N = k)GX1+···+Xk
(t)

Or, par indépendances des variables

GX1+···+Xk
(t) = [GX(t)]k

donc

GS(t) =
+∞∑
k=0

P (N = k) [GX(t)]k = GN (GX(t))

b) Si N et X possède une espérance alors GN et GX sont dérivables en 1 et GS
l’est alors avec

G′S(1) = G′X(1)G′N (GX(1)) = G′X(1)G′N (1)

On en déduit
E(S) = E(N)E(X1)
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Exercice 31 : [énoncé]
a) Par définition

E
(
tXuY

)
=

+∞∑
k=0

+∞∑
`=0

tku`P (X = k, Y = `)

En regroupant par paquets selon la valeur de X + Y

E
(
tXuY

)
=

+∞∑
n=0

n∑
k=0

tkun−kP (X = k, Y = n− k)

Or
(X = k, Y = n− k) = (X1 + · · ·+Xn = k) ∩ (N = n)

donc

E
(
tXuY

)
=

+∞∑
n=0

n∑
k=0

tkun−k

(
n

k

)
pkqn−kP (N = n)

en notant q = 1− p. On obtient ainsi

E
(
tXuY

)
=

+∞∑
n=0

P (N = n)(pt+ qu)n = GN (pt+ qu)

b) Si N suit une loi de Poisson alors GN (t) = eλ(t−1) puis

G(t, u) = eλp(t−1) × eλq(u−1)

En particulier

GX(t) = G(t, 1) = eλp(t−1) et GY (t) = G(1, u) = eλq(u−1)

La variable X suit une loi de Poisson de paramètre λp tandis que Y suit une loi
de Poisson de paramètre λq.
De plus

G(t, u) =
+∞∑
k=0

+∞∑
`=0

e−λp (λp)k

k! e−µq (λq)`

`! tku`

En identifiant les coefficients (ce qui est possible en considérant une série entière
en u dont les coefficients sont des séries entières en t), on obtient

P (X = k, Y = `) = e−λp (λp)k

k! e−λq (λq)k

k! = P (X = k)P (Y = `)

Les variables X et Y apparaissent bien indépendantes.

c) Si les variables X et Y sont indépendantes alors tX et uY aussi donc

G(t, u) = E(tX)E(uY ) = G(t, 1)G(1, u)

puis
GN (pt+ qu) = GN (pt+ q)GN (p+ qu)

Posons f(t) = GN (t+ 1) définie et continue sur [−2, 0] avec f(0) = GN (1) = 1.
On a

f(pt+ qu) = GN (p(t+ 1) + q(u+ 1)) = GN (pt+ 1)GN (1 + qu) = f(pt)f(qu)

ce qui fournit la propriété de morphisme

f(x+ y) = f(x)f(y)

pour x ∈ [−2p, 0] et y ∈ [−2q, 0]. Pour y ∈ [−2p, 0[

f(x+ y)− f(x)
y

= f(x)f(y)− f(0)
y

On choisit x ∈ [−2p, 0[ tel que f(x) 6= 0 (ce qui est possible par continuité car
f(0) = 1). Le premier membre admet une limite finie quand y → 0 car f est
assurément dérivable sur ]−2, 0[. On en déduit que le second membre admet la
même limite et donc f est dérivable en 0 avec la relation

f ′(x) = f ′(0)f(x)

Posons λ = f ′(0) et sachant f(0) = 1, on obtient

f(x) = eλx sur [−2p, 0]

puis
GN (t) = eλ(t−1) sur [1− 2p, 1]

Si p > 1/2, ceci détermine GN au voisinage de 0 et l’on reconnaît la fonction
génératrice d’une loi de Poisson de paramètre λ.
Sinon, q > 1/2 et il suffit de raisonner en la variable y plutôt que x.

Exercice 32 : [énoncé]
a) On a

GX(t) = E
(
tX
)

=
+∞∑
n=0

P (X = k)tk = eλ(t−1)
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b) G′X(1) = E(X) = λ, G′′X(1) = E (X(X − 1)) = λ2 et
G

(3)
X (1) = E (X(X − 1)(X − 2)) = λ3.

On en déduit
E(X2) = λ2 + λ et E(X3) = λ3 + 3λ2 + λ

puis
E
(
(X − λ)3) = E(X3)− 3λE(X2) + 3λ2E(X)− E(X)3 = λ

Exercice 33 : [énoncé]
a) S1 suit une loi géométrique de paramètre p et

GS1(t) = pt

1− qt

b) Sm − Sm−1 suit la même loi géométrique de paramètre p.
c) On peut écrire

Sm =
m∑
k=1

Sk − Sk−1 avec S0 = 0

Or les variables aléatoires de cette somme sont indépendantes car la probabilité de
l’événement

(S1 − S0 = n1, S2 − S1 = n2, . . . , Sm − Sm−1 = nm)

n’est autre que celle de l’événement

Xn1 = Xn1+n2 = . . . = Xn1+···+nm
= 1

et Xk = 0 pour les autres indice k de J1, n1 + · · ·+ nmK

et les variables X1, . . . , Xn1+···+nm
sont indépendantes.

On en déduit
GSm

(t) =
(

pt

1− qt

)m
Puisque

GSm
(t) =

+∞∑
n=0

(
m+ n− 1
m− 1

)
qnpmtn+m

on obtient

P (Sm = n) =
(
n− 1
m− 1

)
qn−mpm pour n > m

Exercice 34 : [énoncé]
a) Pour tout x ∈ X , on a −p(x) log (p(x)) > 0 car p(x) 6 1. On en déduit
H(X) ∈ R+.
Si H(X) = 0 alors, par somme nulle de positifs, on a

∀x ∈ X , p(x) log (p(x)) = 0

et donc
∀x ∈ X , p(x) = 0 ou p(x) = 1

Sachant que ∑
x∈X

p(x) = P (X ∈ X ) = 1

on peut affirmer qu’il existe x ∈ X tel que p(x) = P (X = x) = 1.
La variable X est alors presque sûrement constante.
b) Par définition

H(X,Y ) = −
∑

(x,y)∈X×Y

P (X = x, Y = y) log (P (X = x, Y = y))

Or les variables X et Y étant indépendantes

P (X = x, Y = y) = P (X = x)P (Y = y)

puis

H(X,Y ) = −
∑

(x,y)∈X×Y

P (X = x)P (Y = y) [log (P (X = x)) + log (P (Y = y)]

On sépare la somme en deux et l’on somme tantôt d’abord en x, tantôt d’abord
en y et l’on obtient

H(X,Y ) = H(X) +H(Y )

car ∑
x∈X

P (X = x) =
∑
y∈Y

P (Y = y) = 1

b) On sait
P (X = x | Y = y) = P (X = x, Y = y)P (Y = y)

donc

P (Y = y)H(X | Y = y) = −
∑
x∈X

P (X = x, Y = y) [log (P (X = x, Y = y))− log (P (Y = y))]
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On sépare la somme en deux et l’on somme le résultat sur y ∈ Y pour obtenir∑
y∈Y

P (Y = y)H(X | Y = y) = H(X,Y )+
∑

(x,y)∈X×Y

P (X = x, Y = y) log (P (Y = y))

Or∑
(x,y)∈X×Y

P (X = x, Y = y) log (P (Y = y)) =
∑
y∈Y

∑
x∈X

P (X = x, Y = y) log (P (Y = y))

avec ∑
x∈X

P (X = x, Y = y) = P (Y = y)

donc ∑
y∈Y

P (Y = y)H(X | Y = y) = H(X,Y )−H(Y )

Exercice 35 : [énoncé]
Supposons les variables aléatoires X et f(X) indépendantes.
Soient ω ∈ Ω vérifiant P ({ω}) > 0.
Posons x = X(ω) et y = f(x). On a

P (f(X) = y | X = x) = P (f(X) = y ∩X = x)
P (X = x)

Or {X = x} ⊂ {f(X) = y}, donc

P (f(X) = y | X = x) = 1

Cependant, les variables X et f(X) étant supposées indépendantes

P (f(X) = y | X = x) = P (f(X) = y)

Ainsi f(X) = y presque sûrement.
La réciproque est immédiate et donc X et f(X) sont indépendantes si, et
seulement si, f(X) est presque sûrement constante.

Exercice 36 : [énoncé]
a) Il est entendu 0 ∈ IX et même MX(0) = E (1) = 0.
Soit t > 0 élément de IX et s ∈ [0, t]. Que la valeur de X soit positive ou négative

esX 6 1 + etX

et doncMX(s) est bien définie.
De même pour t < 0 élément de IX , on obtient [t, 0] ∈ IX .
On en déduit que IX est bien un intervalle contenant 0.
b) Soit t > 0 tel que t,−t ∈ IX . Les familles (etxP (X = x))x∈X(Ω) et
(e−txP (X = x))x∈X(Ω) sont sommables et donc la famille

(
et|x|P (X = x)

)
x∈X(Ω)

l’est aussi. Or on a la sommation à termes positifs

et|x| =
+∞∑
n=0

tn |x|n

n!

Par sommation par paquets, la famille
(
tnxn

n! P (X = x)
)

(n,x)∈N×X(Ω) est
sommable.
On peut alors réorganiser la sommation

MX(t) =
∑

x∈X(Ω)

+∞∑
n=0

tnxn

n! P (X = x) =
+∞∑
n=0

∑
x∈X(Ω)

tnxn

n! P (X = x) =
+∞∑
n=0

E(Xn)
n! tn

c) On a alors E(Xn) = M
(n)
X (0).

La fonction MX est appelée fonction génératrice des moments.

Exercice 37 : [énoncé]
a) Soit t ∈ R, on a, avec convergence absolue

MX(t) =
+∞∑
k=0

e−λλ
k

k! ekt = eλ(et−1)

b) Si X ne prend qu’un nombre fini de valeurs {x1, . . . , xn}, l’affaire est
entendue : la fonction génératrice des moments de X est développable en série
entière sur R avec

MX(t) =
n∑
k=1

etxkP (X = xk)

et après permutation des sommes

MX(t) =
+∞∑
`=0

1
`!

n∑
k=1

(xk)`P (X = xk)t` =
+∞∑
`=0

1
`!E(X`)t`

Si X prend une infinité de valeurs, c’est plus technique. . .
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Notons (xn)n∈N une énumération des valeurs de X. Pour t ∈ ]−a, a[

MX(t) =
+∞∑
n=0

P (X = xn)etxn =
+∞∑
n=0

un(t)

avec
un(t) = P (X = xn)etxn

Par hypothèse, la série de fonctions convergence simplement sur ]−a, a[.
Les fonctions un sont toutes de classe C∞ avec

u(k)
n (t) = P (X = xn)xknetxn

Soit α > 0 tel que [−α, α] ⊂ ]−a, a[.
Pour t ∈ [−α, α], on peut écrire∣∣∣u(k)

n (t)
∣∣∣ 6 P (X = xn)

∣∣xkn∣∣ eα|xn|

Introduisons ρ ∈ ]α, a[. On peut écrire

P (X = xn) |xn|k eα|xn| = |xn|k e(α−ρ)|xn| × P (X = xn)eρ|xn|

D’une part, la fonction t 7→ tke(α−ρ)t est définie et continue sur [0,+∞[ et de
limite nulle en +∞, elle est donc bornée ce qui permet d’introduire une constante
Mk vérifiant

∀n ∈ N, |xn|k e(α−ρ)|xn| 6Mk

D’autre part,

P (X = xn)eρ|xn| 6 P (X = xn)eρxn + P (X = xn)e−ρxn

En vertu de la convergence en ±ρ de la série définissant MX(t), on peut assurer la
convergence de la série positive∑

P (X = xn)eρ|xn|

La majoration uniforme ∣∣∣u(k)
n (t)

∣∣∣ 6MkP (X = xn)eρ|xn|

donne la convergence normale de
∑
u

(k)
n sur [−α, α].

Via convergence uniforme sur tout segment, on peut conclure que MX est de
classe C∞ sur ]−a, a[.
De plus, on a pour tout ordre de dérivation k et avec sommabilité la relation

M
(k)
X (0) =

+∞∑
n=0

u(k)
n (0) =

+∞∑
n=0

xknP (X = xn) = E(Xk)
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