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Enoncés 1

Topologie des espaces normés

Ouverts et fermés

Exercice 1 [01103] [correction]
Montrer que tout fermé peut s’écrire comme intersection d’une suite décroissante
d’ouverts.

Exercice 2 [01104] [correction]

On désigne par p; et p les applications coordonnées de R? définies par

pi(x1, 22) = ;.

a) Soit O un ouvert de R?, montrer que p;(O) et po(O) sont des ouverts de R.
b) Soit H = {(x,y) € R? | zy = 1}. Montrer que H est un fermé de R? et que
p1(H) et p2(H) ne sont pas des fermés de R.

¢) Montrer que si F' est fermé et que po(F') est borné, alors p; (F') est fermé.

Exercice 3 [01105] [correction]
Montrer que si un sous-espace vectoriel F' d’un espace vectoriel normé F est
ouvert alors F' = F.

Exercice 4 [ 04076 ] [correction]
Soient F' une partie fermée non vide d’un espace normé E et x € E. Montrer

d(z,F) =0z €F

Exercice 5 [o01107] [correction]
Soit E une espace vectoriel normé.
a) Soient F' une partie fermée non vide de E et x € E. Montrer

dlz,F)=0sz€F

b) Soient F' et G deux fermés non vides et disjoints de E.
Montrer qu’il existe deux ouverts U et V tels que

FCUGCVetUNV =0

Exercice 6 [01106] [correction]
Soient A, B deux parties non vides d’un espace vectoriel normé FE telles que

d(A,B)= inf d(z,y)>0

reAyeB

Montrer qu’il existe deux ouverts disjoints U et V tels que A C U et B C V.

Exercice 7 [01108] [correction]
On muni le R-espace vectoriel des suites réelles bornées de la norme

[ull o = sup [un|
neN

Déterminer si les sous-ensembles suivants sont fermés ou non :

A = {suites croissantes}, B = {suites convergeant vers 0},

C = {suites convergentes},

D= {suites admettant 0 pour valeur d'adhérence} et E = {suites périodiques}.

Exercice 8 [01110] [correction]

On note RM D’ensemble des suites réelles nulles & partir d’un certain rang.

a) Montrer que R®™) est un sous-espace vectoriel de Iespace B(N,R) des suites
réelles bornées.

b) B(N,R) étant normé par | .||, . Le sous-espace vectoriel R™ est-il une partie
ouverte 7 une partie fermée 7

Exercice 9 [02415] [correction]
Soit A une partie non vide de R telle que pour tout z réel il existe un et un seul
y € A tel que |z —y| = d(x, A). Montrer que A est un intervalle fermé.

Exercice 10 [ 02770 [correction]

On munit P’espace des suites bornées réelles B(N,R) de la norme

[ull o = supy, (|un)-

a) Montrer que I’ensemble des suites convergentes est un fermé de B(N, R).
b) Montrer que ’ensemble des suites (a,,) qui sont terme général d’une série
absolument convergente n’est pas un fermé de B(N,R).
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Enoncés 2

Exercice 11 [o2771] [correction]
Soit E ’ensemble des suites (a,)n>0 de C telles que la série Y |a,| converge. Si
a = (an)n>0 appartient & E, on pose

+oo
lall = lan]
n=0

a) Montrer que || .|| est une norme sur E.

b) Soit
+oo
F:{aEE/Zanzl}
n=0

L’ensemble I est-il ouvert ? fermé ? borné ?

Exercice 12 [ 03021 ] [correction]
Soient E un espace vectoriel normé, F' un sous-espace fermé de E et G un
sous-espace vectoriel de dimension finie de E. Montrer que F' + G est fermé

Exercice 13 [03037] [correction]
Caractériser dans M,,(C) les matrices dont la classe de similitude est fermée.
Méme question avec R au lieu de C

Exercice 14 [02507 ] [correction]

Soient E = C (]0,1],R) normé par || .|| et la partie

oo

A{feE/f(O)Oet /Olf(t)dt>1}

a) Montrer que A est une partie fermée.
b) Vérifier que
Vi€ A |flle>1

Exercice 15 [03066 ] [correction]
Soient E = C ([0,1],R) normé par ||. ||, et la partie

A:{feE/f(O):Oet /Olf(t)dt>1}

a) Montrer que A est une partie fermée.
b) Vérifier que
Vi€ A |flle>1

¢) Calculer la distance de la fonction nulle a la partie A.

Exercice 16 [03289] [correction)]
a) Montrer que les parties

A= {(z,y) e R*/ay =1} et B={0} xR

sont fermées.
b) Observer que A + B n’est pas fermée.

Exercice 17 [03290] [correction)]

Montrer que Z est une partie fermée de R :

a) en observant que son complémentaire est ouvert ;

b) par la caractérisation séquentielle des parties fermées;

¢) en tant qu’image réciproque d’un fermé par une application continue.

Exercice 18 [03306] [correction]
Dans E = R[X], on considére les normes

Ni(P) = sup |P(t)| et No(P) = sup |P(t)|
te[0,1] te(1,2]

L’ensemble
Q={P e E/P(0) #0}

est-il ouvert pour la norme N; ? pour la norme Ny ?

Intérieur et adhérence

Exercice 19 [o01113] [correction]
Soient E un espace vectoriel normé et F' un sous-espace vectoriel de F.

Montrer que si ja # () alors F = E.

Exercice 20 [o1114 ] [correction]

Soient A et B deux parties d’un espace vectoriel normé (E, N).

a) On suppose A C B. Etablir A° C B° et A C B.

b) Comparer (AN B)° et A° N B° d’une part puis (AU B)°® et A° U B° d’autre
part.

¢) Comparer AU B et AU B d’une part puis AN B et AN B d’autre part.
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Enoncés

Exercice 21 [o1115] [correction]
Montrer que si F' est un sous-espace vectoriel de F alors son adhérence F' est
aussi un sous-espace vectoriel de E.

Exercice 22 [o03279] [correction]
Soit A une partie d’un espace vectoriel normé E. Etablir

Vect(A) C VectA

Exercice 23 [o1116 ] [correction]
Soit A une partie d’un espace vectoriel normé E. Etablir que sa frontiére Fr(A)
est une partie fermée.

Exercice 24 [o1117] [correction]
Soit F' une partie fermée d’un espace vectoriel normé E. Etablir

Fr(Fr(F)) = Fr(F)

Exercice 25 [o1118] [correction)]

Soient A un ouvert et B une partie d’un espace vectoriel normé E.
a) Montrer que ANB C AN DB

b) Montrer que ANB =0 = AN B = .

Exercice 26 [o01119] [correction]

On suppose que A est une partie convexe d’un espace vectoriel normé F.
a) Montrer que A est convexe.

b) La partie A° est-elle convexe ?

Exercice 27 [o1120] [correction)]
Soient A et B deux parties non vides d’un espace vectoriel normé E.
Etablir

d(A,B) = d(A, B)

tant d(A,B) = inf d
(en notant d(4, B) = _inf__ d(r.y))

Exercice 28 [o1121] [correction]
Soient Aq,..., A, des parties d’'un espace vectoriel normé FE.

a) Etablir U 4; = U 4.
= ,

2 i=1

b) Comparer () A; et ) A;.
i=1 =1

1= 1=

Exercice 29 [o1122] [correction]
Soient f: E — F continue bornée et A C E, A non vide. Montrer

Exercice 30 [02043] [correction]
Déterminer I'adhérence et I'intérieur de I’ensemble D,,(C) des matrices
diagonalisables de M,,(C).

Exercice 31 [03026] [correction]

Soit A une partie d’un espace normé E.

a) Montrer que la partie A est fermée si, et seulement si, FrA C A.

b) Montrer que la partie A est ouverte si, et seulement si, ANFrA =

Exercice 32 [03470] [correction]
Dans M3 (C), on introduit

U={M e My(C)/SpM C U} et R = {M € My(C)/In € N*, M"™ = I,}

a) Comparer les ensembles R et U.

b) Montrer que U est une partie fermée de Mz (C).
¢) Montrer que U est inclus dans 'adhérence de R.
d) Qu’en déduire ?

Continuité et topologie

Exercice 33 [o01123] [correction]
Justifier que U = {(x, y) € R?/x? + 9% < 2% + y3} est une partie ouverte de R2.
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Exercice 34 [o1124] [correction]
Montrer que GL,,(R) est une partie ouverte de M, (R).

Exercice 35 [o1125] [correction]
Soit F un espace vectoriel euclidien.
Montrer que I'ensemble {(z,y) € E?/(z,y) libre} est un ouvert de E2.

Exercice 36 [01126] [correction]

Pour p € {0,1,...,n}, on note R, 'ensemble des matrices de M,,(K) de rang
supérieur a p.

Montrer que R,, est un ouvert de M,,(K).

Exercice 37 [o1127] [correction]

Soient E et F' deux espaces vectoriels normés et f : £ — F. Montrer qu’il y a
équivalence entre les assertions suivantes :

(i) f est continue;

(ii) VA € P(E), f(A) C f(A);

(iii) VB € P(F), f~1 - ;

(iv) VB € P(F), f~4(B°) C (f~4(B))".

Exercice 38 [o1128] [correction]

Montrer qu’un endomorphisme u d’un espace vectoriel normé E est continu si, et
seulement si, la partie {x € E/ ||u(x)| = 1} est fermée.

Exercice 39 [o1129] [correction)]
Montrer qu'une forme linéaire est continue si, et seulement si, son noyau est fermé.

Exercice 40 [03393] [correction)]
Soit f : [0,1] — [0, 1] une application continue vérifiant

fof=Ff
a) Montrer que ’ensemble

{z € [0,1]/f(x) = o}

est un intervalle fermé et non vide.

b) Donner ’allure d’une fonction f non triviale vérifiant les conditions
précédentes.

¢) On suppose de plus que f est dérivable. Montrer que f est constante ou égale a
I'identité.

Exercice 41 [o02774] [correction]
a) Chercher les fonctions f : [0,1] — [0, 1] continues vérifiant

fof=Ff

b) Méme question avec les fonctions dérivables.

Exercice 42 [03285] [correction)]
Soient E un espace normé de dimension quelconque et v un endomorphisme de F
vérifiant

Vr € B, |lu()|| < [l

Pour tout n € N, on pose

1 <« &
T +1 kZ:ou
a) Simplifier v, o (u — Id).
b) Montrer que
Im(u — Id) Nker(u — Id) = {0}

¢) On suppose E de dimension finie, établir
Im(u —Id) @ ker(u —Id) = E

d) On suppose de nouveau E de dimension quelconque.
Montrer que si
Im(u —Id) @ ker(u —Id) = FE

alors la suite (v,) converge simplement et I’espace Im(u — Id) est une partie
fermée de E.
e) Etudier la réciproque.

Exercice 43 [o1111] [correction)]
Montrer que ’ensemble des polynoémes réels de degré n scindés a racines simples
est une partie ouverte de R,, [X].

Exercice 44 [o02773] [correction]

Pour n € N*, O,, désigne I’ensemble des polyndmes réels de degré n scindés a
racines simples et F,, ensemble des polynomes de R,, [X] scindés & racines
simples.

Ces ensemble sont-ils ouverts dans R,, [X]?
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Exercice 45 [03726] [correction]

Soit f : R — R vérifiant

1) V[a,b] C R, f ([a,b]) est un segment ;
2) y € R, f~1 ({y}) est une partie fermée.
Montrer que f est continue.

Exercice 46 [03859] [correction]
Soit E un R-espace vectoriel normé de dimension finie.
Montrer que l’ensemble P des projecteurs de E est une partie fermée de L(F).

Densité

Exercice 47 [o01130] [correction]
Montrer que GL,(R) est dense dans M., (R).
On pourra considérer, pour A € M,,(R), les matrices de la forme A — \I,,.

Exercice 48 [o1131] [correction]

Soient E un espace vectoriel normé et F' un sous-espace vectoriel de FE.
a) Montrer que F est un sous-espace vectoriel de F.

b) Montrer qu’un hyperplan est soit fermé, soit dense.

Exercice 49 [o1132] [correction]

Soient U et V deux ouverts denses d’'un espace vectoriel normé F.

a) Etablir que U NV est encore un ouvert dense de E.

b) En déduire que la réunion de deux fermés d’intérieurs vides est aussi d’intérieur
vide.

Exercice 50 [03058] [correction]
Soient (uy)nen €t (vpn)nen deux suites réelles telles que

Uy — 00, U, = +00 €t Upi1 — Uy — 0

a) Soient € > 0 et ng € N tel que pour tout n = ng, |unr1 — un| < e
Montrer que pour tout a = u,,, il existe n > ng tel que |u, —a| < e.
b) En déduire que {u,, —vp/n,p € N} est dense dans R.

¢) Montrer que 'ensemble {cos(Inn)/n € N*} est dense dans [—1,1].

Exercice 51 [03017] [correction]
Montrer que {m —1Inn/(m,n) € Z x N*} est dense dans R.

Exercice 52 [01133] [correction)]
Soit H un sous-groupe de (R, +) non réduit a {0}.
a) Justifier I'existence de

a=inf{z € H/x >0}

b) On suppose a > 0. Etablir a € H puis H = aZ.
¢) On suppose a = 0. Etablir que H est dense dans R.

Exercice 53 [00023] [correction]
a) Montrer que {cos(n)/n € N} est dense dans [—1,1].
b) Montrer que {cos(lnn)/n € N*} est dense dans [—1,1].

Exercice 54 [01135] [correction]
Montrer que l'ensemble des matrices diagonalisables de M,,(C) est dense dans

M, (C).

Exercice 55 [02779] [correction]
Montrer qu’un hyperplan d’un espace vectoriel normé (FE, ||||) est dense ou fermé
dans E.

Exercice 56 [01134] [correction)]

On note RM D’ensemble des suites réelles nulles & partir d’un certain rang.

a) Montrer que R®M) est une partie dense de 1’espace des suites sommables normé
par

—+oo
llly = > lual
n=0

b) RM est-il une partie dense de l'espace des suites bornées normé par

l[ull oo = sup |un| ?
neN
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Exercice 57 [02780] [correction]
On note F 'ensemble des fonctions réelles définies et continues sur [0, 400 et
dont le carré est intégrable. On admet que F est un espace vectoriel réel. On le

munit de la norme
“+oo
Il f \// F2(t)de
0

On note Ejy 'ensemble des f € F telles que f est nulle hors d’un certain segment.

On note F' 'ensemble des fonctions de E du type z — P(e"%)e*gﬂ/2 ou P
parcourt R [X]. Montrer que Fy est dense dans F puis que F est dense dans F.

Exercice 58 [02944 ] [correction]
Soit A une partie convexe et partout dense d’un espace euclidien E.
Montrer que A = E.

Exercice 59 [03018] [correction]
Soit A une partie non vide de R vérifiant

a+b

Va,b € A, 5

€A

Montrer que A est dense dans l'intervalle Jinf A, sup A|.

Exercice 60 [03020] [correction]
Soit A une partie non vide de R™* vérifiant

V(a,b) € A%, Vab e A

Montrer que A N (R\Q) est dense dans |inf A, sup A[.

Exercice 61 [03059] [correction)]
Soient E = C ([0,1],R) et ¢ € E. On note N, : E — R I'application définie par

Ne(f) = lf¢lloo

Montrer que N, est une norme sur E si, et seulement si, ¢! (R*) est dense dans
[0,1].

Exercice 62 [03402] [correction]
Soit (uy,) une suite de réels strictement positifs. On suppose

. . Un+1
(uy) strictement croissante, u, — +o00 et —— — 1

Un

Montrer que ’ensemble

A= {um/m>n}

Unp

est une partie dense dans 'intervalle [1, +00|

Exercice 63 [ 03649 ] [correction]
Soient A et B deux parties denses d’un espace normé E.
On suppose la partie A ouverte, montrer que A N B est une partie dense.

Continuité et densité

Exercice 64 [01136] [correction)]
Soit f : R — R continue vérifiant

Vo,y € R, f(x +y) = f(z) + fy)

Déterminer f.

Exercice 65 [01139] [correction)]
Soit f : R — R une fonction continue telle que

Tty

vy e r S (T5) = 5 U@+ )

a) Montrer que D = {p/2"/p € Z,n € N} est dense dans R.
b) Montrer que si f s’annule en 0 et en 1 alors f = 0.
c¢) Conclure que f est une fonction affine.

Exercice 66 [01137] [correction)]
Montrer que pour tout 4, B € M,,(C), xaB = xBA-
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Exercice 67 [01138] [correction]
Soit n > 2. Calculer det(comA) pour A € M,,(C).

Exercice 68 [o03128] [correction]

Soient n € N avec n > 2.

a) Soient A € M, (C) et P € GL,(C).

Exprimer la comatrice de P~1AP en fonction de P, P! et de la comatrice de A.
b) En déduire que les comatrices de deux matrices semblables sont elle-méme
semblables.

Exercice 69 [o00750] [correction)]

Pour A € M,,(K), on note A la transposée de la comatrice de A.

a) Calculer det A.

b) Etudier le rang de A.

¢) Montrer que si A et B sont semblables alors A et B le sont aussi.

d) Calculer A.

Exercice 70 [03275] [correction]
Montrer
VA, B € M,(R),com(AB) = com(A)com(B)

Approximations uniformes

Exercice 71 [o01140 ] [correction]
Soit f : [a,b] — C continue. Montrer

n—-+oo

b
/ ft)e™ dt ——— 0

On pourra commencer par étudier le cas oil f est une fonction de classe C*.

Exercice 72 [o1141] [correction]
Soit f : [0,1] — R continue. Montrer que si pour tout n € N,

/1t"f(t)dt:0

0

alors f est la fonction nulle.

Exercice 73 [01142] [correction]

Soit f : [a,b] — R continue telle que fab f(t)dt = 0. Montrer qu’il existe une suite
(P,) de polynémes telle que

/an(t)dtzoet sup |f(t) — Po(t)] —— 0

tela,b] n—+oo

Exercice 74 [01143] [correction]
Soit f : [a,b] — R continue telle que f > 0. Montrer qu’il existe une suite (P,) de

polynomes telle que P, > 0 sur [a,b] et sup |f(t) — P,(t)] —— 0.
tela,b] n—+oo

Exercice 75 [o01144] [correction]
Soit f : [a,b] — R de classe C!. Montrer qu'il existe une suite (P,) de polyndomes
telle que

Noo(f — P,) = 0et Noo(f'—P.) =0

Exercice 76 [o01145 ] [correction]
[Théoréme de Weierstrass : par les polyndémes de Bernstein]
Pour n € Net k € {0,...,n}, on pose

By(z) = (:) (1 2)

a) Calculer
> Bui(x), Y kBnk(x)et Y kB ()
k=0 k=0
b) Soient o > 0 et x € [0, 1]. On forme
A={ke]o,n]/|k/n—2z|>a} et B={ke[0,n]/|k/n—z| <}

Montrer que
1

4na?

keA
¢) Soit f:[0,1] — R continue. On pose
@ =3 (5) Boste)
k=0 " 7

Montrer que (f,) converge uniformément vers f sur [0, 1].
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Exercice 77 [o1146] [correction]
[Théoréeme de Weierstrass : par convolution]
n désigne un entier naturel.

On pose
1
an = / (1—¢t3)"dt
~1
et on considere la fonction ¢, : [-1,1] — R définie par
1 2\n
pn(r) = —(1—27)
an

a) Calculer f01 t(1 —t?)" dt. En déduire que

! 2\n 1
an—/_l(l P> ——
b) Soit « € ]0, 1]. Montrer que (g,,) converge uniformément vers la fonction nulle
sur [a, 1].
¢) Soit f une fonction continue de R vers R nulle en dehors de [—1/2,1/2].
Montrer que f est uniformément continue.
On pose

fula /’fz—twn>

pour tout z € R.
d) Montrer que f, est une fonction polynomiale sur [—1/2,1/2]
e) Montrer que

1

ﬂ@—nm:/’wm—

-1

[l =1)pn(t)dt

f) En déduire que f, converge uniformément vers f sur R.

g) Soit f une fonction réelle continue nulle en dehors de [—a, al.
Montrer que f est limite uniforme d’une suite de polynémes.

h) Soit f une fonction réelle continue sur [a, b].

Montrer que f est limite uniforme d’une suite de polyndmes.

Exercice 78 [o02828] [correction)]
Soit f € C([a,b],R). On suppose que pour tout n € N,

b
/ 2" f(x)dz =0

a) Montrer que la fonction f est nulle.

b) Calculer
“+o0
I, :/ 2"e” (1797 g
0

¢) En déduire qu’il existe f dans C([0,+o0o[,R) non nulle, telle que, pour tout n
dans N, on ait

+o00
/ 2" f(x)dz =0
0

Exercice 79 [o02601 ] [correction)]
Soit f : [a,b] — R continue par morceaux.
On désire établir ,

nkrfm </ f(z) |sin(nz)] da:) = / f(zx

a) Vérifier le résultat pour une fonction f constante.
b) Observer le résultat pour une fonction f en escalier.
c¢) Etendre enfin le résultat au cas ou f est une fonction continue par morceaux.
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Corrections

Exercice 1 : [énoncé]
Soient F' un fermé et pour tout n € N*

O, = U B(a,1/n)

acF

Oy, est un ouvert (car réunion d’ouverts) contenant F. Le fermé F' est donc inclus
dans l'intersection des O,, pour n € N*.

Inversement si x appartient a cette intersection, alors, pour tout n € N, il existe
an € F tel que z € B(ay,,1/n). La suite (a,) converge alors vers x et donc z € F
car F est fermé.

Finalement F' est 'intersection des O,, pour n € N*,

Exercice 2 : [énoncé]

a) Soit x € p1(0), il existe y € R tel que a = (x,y) € O. Comme O est ouvert, il
existe € > 0 tel que By (a,e) C O et alors Jx — e,z + [ C p1(O). Ainsi p1(0) et de
méme po(0) est ouvert.

b) Soit ((n, Yn))nen € HY telle que (7, y,) — (z,9). Comme z,y, = 1, 4 la
limite zy = 1.

Par la caractérisation séquentielle des fermés, H est fermé. p; (H) = R*,

p2(H) = R* ne sont pas fermés dans R.

¢) Soit (z)nen € (p1(F))N telle que z,, — x. Pour n € N, il existe y,, tel que
(n,yn) € F.

La suite ((2,,yn)) est alors une suite bornée dont on peut extraire une suite
convergente : ((Ty(n), Yp(n)))-

Notons y = lim y,(,). Comme F' est fermé, (z,y) = im(z,(,), Yp(n)) € F puis
z=p1((z,y)) € p1(F).

Exercice 3 : [énoncé]
Op € F donc il existe & > 0 tel que B(0g, ) C F'.
Pour tout € E, on peut écrire

T=A\y

avec y € B(0g, a) et A bien choisis
On a alors y € F puis ¢ € F' car F est un sous-espace vectoriel.
Ainsi F = E.

Exercice 4 : [énoncé]
Rappelons
d(z, F) = inf {[lz —y[| /y € F'}

(<) Size Falors0€{||lz—yl| /y € F} et donc d(z, F) =0
(=) Sid(x, F) = 0 alors pour tout n € N, il existe y,, € F vérifiant
1

— gi
o= unll € =

En faisant varier n, cela détermine (y,,) € F" telle que y,, — .
Or F est une partie fermée, elle contient les limites de ses suites convergentes et
par conséquent z € F.

Exercice 5 : [énoncé]
a) Rappelons
d(z, F) = inf {[lz — y[| /y € F'}

(<) Siz e Falors 0€{|lz—yl| /y € F} et donc d(z, F) =0
(=) Sid(z, F) = 0 alors pour tout n € N, il existe y,, € F' vérifiant

1

_ < -
2= ynll € —=

En faisant varier n, cela déterminer (y,,) € F telle que y,, — .
Or F est une partie fermée, elle contient les limites de ses suites convergentes et
par conséquent z € F.

b) Soient
Uv=|JB (:c ;d(a:,G)) etV=|JB (:c ;d(x,F))

zEF z€G

Les parties U et V sont ouvertes car réunion de boules ouvertes et il est clair que
U et V contiennent respectivement F' et G.
S’il existe y € U NV alors il existe a € F et b € G tels que

d(a,y) < 3d(a,G) et d(b,y) < 5d(b, F)

Puisque
d(a,G),d(b, F) < d(a,b)

on a donc
d(a,b) < d(a,y) +d(y,b) < d(a,b)

C’est absurde et on peut conclure

Unv=»90
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Exercice 6 :
Les ensembles

[énoncé]

U:U (a,d/2) et V = U

a€A beB

avec d = d(A, B) sont solutions.
En effet U et V sont des ouverts (par réunion d’ouverts) contenant A et B.
U et V sont disjoints car

(b,d/2)

UNV #0= 3(a,b) € Ax B,B(a,d/2) N B(b,d/2) # 0 = d(A,B) < d

Exercice 7 : [énoncé]

A est fermé car si u? = (ul) est une suite d’éléments de A convergeant vers une
suite v = (uy) pour la norme ||. ||, alors pour tout n € N et tout p € N,

ub < quH qui donne a la limite u,, < u,41 et donc u € A.

B est fermé car si uP = (uP) est une suite d’éléments de B convergeant vers une
suite v = (uy) pour la norme ||. ||, alors pour tout € > 0 il existe p € N tel que
lu —uP|| ., <e/2 et puisque uf, njooO, il existe N € N tel que

Vn > N, |ub| < e/2

et donc
[un| < |un —up| +|up| < e

Ainsi u — 0 et donc u € B.

C' est fermé. En effet si u? = (u2) est une suite d’éléments de C' convergeant vers
une suite u = (u,,) pour la norme ||. ||, alors en notant ¢? la limite de u?, la suite
(¢7) est une suite de Cauchy puisque [¢7 — 09| < ||uP — u?|| . Posons / la limite de
la suite (¢7) et considérons vP = uP — ¢P. vP € B et vP - u— £ doncu—{ € B et
ueC.

D est fermé car si uP = (uP) est une suite d’éléments de D convergeant vers une
suite v = (uy) pour la norme |||, alors pour tout € > 0 il existe p € N tel que
|lu — uP|| . < e/2 et puisque 0 est valeur d’adhérence de u?, il existe une infinité
de n tels que |uf| < e/2 et donc tels que

un| < fun —up| + |up| < e

Ainsi 0 est valeur d’adhérence de u et donc u € D.

E n’est pas fermé. Notons 67, la suite déterminée par 02 =1 si p | n et 0 sinon. La
suite 6P est périodique et toute combinaison linéaire de suites 6P ’est encore.
Posons alors

qui est élément de E. La suite uP converge car

. p+q 1 1
H’ll,pq—UpH Z 27k<27p—>0
k=p+1

et la limite u de cette suite n’est pas périodique car

et que u, < 1 pour tout n puisque pour que u,, = 1 il faut &k | n pour tout k € N.

Exercice 8 : [énoncé]

a) Les éléments de R sont bornés donc R™ ¢ B(N, R).

L’appartenance de I’élément nul et la stabilité par combinaison linéaire sont
immédiates.

b) Si R™M) est ouvert alors puisque 0 € RM il existe a > 0 tel que

B (0,0) € RM,

Or la suite constante égale & /2 appartient & B, (0, ) et n’est pas nulle & partir
d’un certain rang donc Buo (0, ) ¢ R® et donc RM n’est pas ouvert.

c¢) Pour N € N, posons u/V définie par Y = 2= si n < N et u)Y = 0 sinon.

n+1
(uN) € R™ et ¥ — u avec u donné par u, = n+1' En effet

1
AR —_—

Mais u ¢ R™ donc R™ n’est pas fermé.

Exercice 9 : [énoncé]

Soit (z,,) € AN convergeant vers x € R. Il existe un unique y € A tel que

|z —y| =d(x,A). Or d(z,A) =0 donc z =y € A. Ainsi A est fermé.

Par I'absurde supposons que A ne soit pas un intervalle. Il existe a < ¢ < b tel que

a,be Aetcég A

Posons a =sup{x € A/x <c}et B=inf{x € A/x >c}. Ona «a,f € A,
a<c<pBetla, B[ C CrA.
Posonsalorsvz“T‘hg.Onad(’y7A):B_Ta:|'y—a|:|7—6| ce qui contredit

I’hypotheése d’unicité. Absurde.
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Exercice 10 : [énoncé]
a) Notons C 'espace des suites convergentes de B(N,R).
Soit (u™) une suite convergente d’éléments de C' de limite u.

Pour chaque n, posons " = limu™ = lim u].
p——+oo

Par le théoreme de la double limite appliquée a la suite des fonctions u”, on peut
affirmer que la suite (£) converge et que la suite u™ converge vers la limite de
(™). En particulier u> € C.

b) Notons A l’espace des suites dont le terme général est terme général d’une série
absolument convergente.

Soit (u") la suite définie par

1

* n __
Vn € N*,Vp € Ny uy; = 7(1)_'_1)1“/”

La suite (u™) est une suite d’éléments de A et une étude en norme ||| permet
d’établir que u™ — u™ avec up® = ﬁ. La suite u® n’étant pas élément de A, la
partie A n’est pas fermée.

Exercice 11 : [énoncé]
a) Par définition de I'ensemble E, I'application ||.| : E — RT est bien définie.
Soient (an)n>0, (bn)n>o €léments de E et A € R.

—+oo —+o0
la+bll = lan +bal <D (lan] + [bal) = llal| + 0]
n=0 n=0
avec convergence des séries écrites, et
+o00 400 +o0
INall =D Aanl =D [Allanl = A lan] = Al [la]
n=0 n=0 n=0

Enfin, si |ja]| = 0 alors
vn € N,|a,| < |la]| =0

donne (an)n>0 = (0)n>0
b) Considérons la forme linéaire

+oo
@ : (an)n>0 — Z Qn
n=0

On vérifie

+oo “+o0
Va = (an)nz0 € B, lp(a)] = |3 an| <Y lan| = |lal]
n=0 n=0

La forme linéaire ¢ est donc continue.

Puisque F' = ¢~ ({1}) avec {1}, la partie F est fermée en tant qu'image
réciproque d’une partie fermée par une application continue..

Posons e = (1,0,0,...) et un élément de F et

Va>0,e+aed Fet |le—(e+ae)||=a

On en déduit que F' n’est pas un voisinage de son élément e et par conséquent la
partie F' n’est pas ouverte.
Posons a? = e+ p.(1,-1,0,0,...).

VpeN,a? € F et ||d?]| —— +x0
p—r—+o0

La partie F' n’est donc pas bornée.

Exercice 12 : [énoncé]

Pour obtenir ce résultat, il suffit de savoir montrer F + Vect(u) fermé pour tout
Soit (x,) une suite convergente d’éléments de F' + Vect(u) de limite x.

Pour tout n € N, on peut écrire x,, = y,, + \pu avec y, € F et \,, € K.
Montrons en raisonnant par I'absurde que la suite (\,,) est bornée.

Si la suite (\,,) n’est pas bornée, quitte a considérer une suite extraite, on peut
supposer |A,| — +o0.

Posons alors z, = %xn = %yn + u.

Puisque ||z,| = ||z]| et |An| = +00, on a ||z,]| — 0 et donc iyn — —u.

Or la suite de terme général ﬁyn est une suite d’éléments de I'espace fermé F,
donc —u € F ce qui exclu.

Ainsi la suite ()\,) est bornée et on peut en extraire une suite convergente (A, (y,))
de limite A € K.

Par opérations, la suite (y,(,)) est alors convergente.

En notant y sa limite, on a y € F' car I’espace I est fermé.

En passant la relation x,, = y,, + A,u a la limite on obtient

z=y+ Au € F + Vect(u).

Ainsi 'espace F' + Vect(u) est fermé.

Exercice 13 : [énoncé]

Cas A € M,,(C) est diagonalisable.

Soit (A,) une suite convergente de matrices semblables & A.
Notons A la limite de (4,).
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Si P est un polynéme annulateur de A, P est annulateur des A, et donc P annule
A. Puisque A est supposée diagonalisable, il existe un polynéme scindé simple
annulant A et donc A, et par suite A, est diagonalisable.

De plus x4 = XA, donc a la limite x4 = xa.,-

On en déduit que A et Ay, ont les mémes valeurs propres et que celles-ci ont
mémes multiplicités. On en conclut que A et A, sont semblables.

Ainsi la classe de similitude de A est fermée.

Cas A € M,,(C) non diagonalisable.

A titre d’exemple, considérons la matrice

A1
=0 3)
Pouer<g

? >, on obtient

—1 A 1/p
P APp:(O [P) 5 an

qui n’est pas semblable a A.
De fagon plus générale, si la matrice A n’est pas diagonalisable, il existe une
valeur propre A pour laquelle

ker(A — \3)? # ker(A — \)

Pour X5 € ker(A — )\IQ)Q\keI‘(A — )\12) et X; = (A — )\IQ)X27 la famille (Xl, Xg)
vérifie AX; = AX; et AXs = AX5 + X;. En complétant la famille libre (X7, X5)
en une base, on obtient que la matrice A est semblable a

A1 (%
T= 0 X (%)
0) (0) B

Pour P, = diag(p, 1,...,1), on obtient

A 1/p (x/p) A0 (0)
PITP,=( 0 X (%) -1 0 X () | =44
0) (0 B ©0) (0) B

Or cette matrice n’est pas semblable & T ni & A car rg(Aoo — Al,) # rg(T — AL,).
Ainsi, il existe une suite de matrices semblables & A qui converge vers une matrice
qui n’est pas semblable & A, la classe de similitude de A n’est pas fermée.

Cas A € M, (R)

Si A est diagonalisable dans C alors toute limite A, d’une suite de la classe de
similitude de A est semblable & A dans M,,(C). Soit P € GL,(C) telle que

P~ 1AP = A.. On a alors AP = PA.. En introduisant les parties réelles et
imaginaires de P, on peut écrire P = Q + iR avec @, R € M, (R).

L’identité AP = PA., avec A et Ay réelles entraine AQ = QA et AR = RA..
Puisque la fonction polynoéme ¢ — det(Q + tR) n’est pas nulle (car non nulle en %),
il existe t € R tel que P = Q + tR € GL,(R) et pour cette matrice AP’ = P'A,.
Ainsi les matrices A et A, sont semblables dans M., (R).

Si A n’est pas diagonalisable dans C.

Il existe une valeur propre complexe A pour laquelle ker(A — \I5)? # ker(A — \I3).
Pour X3 € ker(A — M3)?\ ker(A — A\lp) et X1 = (A — Al3)Xo, la famille (X1, X2)
vérifie AX; = AX1 et AXy =AXs + X;.

Si A € R, il suffit de reprendre la démonstration qui précede.

Si A € C\R, on peut écrire A = a + ib avec b € R*.

Posons X3 = X; et X4 = Xo.

La famille (X1, X5, X3, X4) est libre car A # .

Introduisons ensuite Y7 = Re(X1), Y2 = Re(X3), Y3 = Im(X1) et Yy = Im(X3).
Puisque Vecte(Yr,...,Yy) = Vecte(Xy,. .., X4), la famille (Y7, ...,Ys) est libre et
peut donc étre complétée en une base.

On vérifie par le calcul AY; = aY; — bY3, AYy = aYs — bY, + Y1 AY3 = aY3 + bY] et
AY4 = b}/g + (ZY4 +}/3

et on obtient que la matrice A est semblable dans M,,(R) & la matrice

T %
(O B)avec

a 1 b 0
0 a 0 b
= b 0 a 1
0 —-b 0 a

Pour P, = diag(p,1,p,1,...1), on obtient

—1 Too *
P; TPp—>< S g )= A

avec
a 0 b O

0 a 0 b

T = -b 0 a O

0 -b 0 a

Or dans M,,(C), la matrice Ay, est semblable est & diag(\, A\, A\, A, B) qui n’est pas
semblable & A pour des raisons de dimensions analogues a ce qui a déja été vu.
Les matrices réelles A et A, ne sont pas semblables dans M,,(C) ni a fortiori

dans M, (R).
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On en déduit que la classe de similitude de A n’est pas fermée

Exercice 14 : [énoncé]
a) Soient (f,) une suite convergente d’éléments de A et fo € E sa limite.
Puisque la convergence de la suite (f,,) a lieu pour la norme ||. ||, cette
convergence correspond a la convergence uniforme. En particulier, il y a
convergence simple et

fn(0) = foo(0)
On en déduit f-(0) = 0.

Puisqu’il y a convergence uniforme de cette suite de fonctions continues, on a aussi

/01 fa(t)dt — /Olfoo(t) dt

et donc L
/ Fao(t)dt > 1
0

Ainsi fo, € A et la partie A est donc fermée en vertu de la caractérisation
séquentielle des parties fermées.
b) Par I’absurde, supposons qu’il existe f € A vérifiant || f||, < 1. Puisque

1 1 1
Af@ﬂgALmnw<A|mwm<1

on peut affirmer que

et donc

/Olf(t)dtzl

/‘u—fw>w=o

0

Or la fonction ¢ — 1 — f(¢) est continue et positive, c’est donc la fonction nulle.
Par suite f est la fonction constante égale a 1, or f(0) = 0, c’est absurde.

Exercice 15 : [énoncé]

a) Soient (f,) une suite convergente d’éléments de A et fo € E sa limite.
Puisque la convergence de la suite (f,,) a lieu pour la norme ||. |, il s’agit d’une
convergence uniforme.

Puisqu’il y a convergence uniforme, il y a convergence simple et en particulier

fn(0) = foo(0)

On en déduit f5(0) =0.
Puisqu’il y a convergence uniforme de cette suite de fonctions continues, on a aussi

1 1
/ fa(t)dt — / foolt)dt
0 0
et donc fol foo(t)dt > 1.
Ainsi fo, € A et la partie A est donc fermée en vertu de la caractérisation

séquentielle des parties fermées.
b) Par I'absurde, supposons qu’il existe f € A vérifiant || f|| < 1. Puisque

1 1 1
d B d S d ~
Aﬂ04<Auw|wfwﬂwt<l

/Olf(t)dt_l

/Wl—ﬂwwu=o
0

Or la fonction ¢ — 1 — f(t) est continue et positive, c’est donc la fonction nulle.
Par suite f est la fonction constante égale & 1, or f(0) = 0, c’est absurde.
c) d(0,A) = }ng | fll, et par ce qui précede on a déja d(0,A) > 1.

€

on peut affirmer que

et donc

Considérons maintenant la fonction f, définie pour n € N* par le schéma.

A

1+/n
1

-
—
v

In

La fonction f,

La fonction f,, est continue, f,,(0) =0 et par calcul d’aires

1 2
1 1 1 1 2n —1 1 2 —1
/fn(t)dt*—nJr +<1_>n+ :(n )(n+ ): n®+n 51
0

T 2n n n n 2n? 2n?
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Ainsi la fonction f,, est élément de A. Or

n+1
[falle=———1
n

donc
d(0,A) =1

Exercice 16 : [énoncé]
a) Soit (uy) une suite convergente d’éléments de A de limite too = (Too, Yoo )-
Pour tout n € N, on peut écrire u,, = (2, yn) avec z,y, = 1. A la limite on
obtient Teo¥Yoo = 1 et donc us, = 1.
En vertu de la caractérisation séquentielle des parties fermées, on peut affirmer
que A est fermée.
La partie B, quant a elle, est fermée car produit cartésien de deux fermées.
b) Posons

up = (1/n,0) = (1/n,n) 4+ (0,—n) € A+ B
Quand n — 400, u, — (0,0).
Or (0,0) ¢ A+ B car le premier élément d’un couple appartenant & A + B ne
peut pas étre nul.

Exercice 17 : [énoncé]
a) On a
R\Z = | J In,n+1]|
neZ

Puisque R\Z est une réunion d’ouverts, c’est un ouvert.
b) Soit (x,) une suite convergente d’entiers de limite £.
Pour € = 1/2, il existe un rang N € N tel que

VYn > N, |z, — €] <1/2
et alors
Ym,n = N, |z, —x,] < 1
Puisque les termes de la suite (x,) sont entiers, on en déduit
VYm,n > N,x,, =z,

La suite (z,,) est alors constante a partir du rang N et sa limite est donc un
nombre entier.

¢) Considérons f : R — R définie par f(z) = sin(rz).

La fonction f est continue et

Z=f~"({0})

avec {0} partie fermée de R.

Exercice 18 : [énoncé]

Posons ¢ : E — R D'application définie par ¢(P) = P(0).

L’application ¢ est linéaire et puisque |¢(P)| < N1(P), cette application est
continue. On en déduit que Q = ¢! (R*) est un ouvert relatif & E i.e. un ouvert
de F pour la norme Nj.

Pour la norme Ny, montrons que la partie {2 n’est pas ouverte en observant qu’elle
n’est pas voisinage de son point P = 1. Pour cela considérons la fonction continue
f:[0,2] = R donnée par le graphe suivant :

A

v

0 1 2

Par le théoréme d’approximation de Weierstrass, il existe une suite (P,) de
polynémes vérifiant

sup |P,(t)— f(t)|— 0
t€(0,2]

et en particulier
P,(0) > 0et Ny(P, — P)—0

Considérons alors la suite de polynoémes (Q,,) avec
Q@n = Pn — Pu(0)
Pour tout n € N, @,,(0) = 0 donc Q,, ¢ Q et
Ny (Q.) < No(P,, — P) + |P,(0)] = 0

donc N
Q, =P

Puisque la partie €2 n’est pas voisinage de chacun de ses points, elle n’est pas
ouverte pour la norme Ns.

Exercice 19 : [énoncé]

[¢] [e]
Supposons F # () et introduisons z € F, il existe € > 0 tel que B(z,¢) C F. Pour
tout u € F tel que u # O, considérons

Y=+ 55
2 [|uf
onay € B(z,e)donc y € Fyorxz € F doncu € F. Ainsi E C F puis E =F.
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Exercice 20 : [énoncé]

a) Si a est intérieur & A alors A est voisinage de a et donc B aussi. Par suite

a € B°.

Si a est adhérent & A alors a est limite d’une suite convergente d’éléments de A.
Celle-ci est aussi une suite convergente d’éléments de B donc a € B. On peut
aussi déduire ce résultat du précédent par un passage au complémentaire.

b) ANB C A, B donc (AN B)° est inclus dans A° N B°. Inversement si a un
élément de A° N B°, alors A est voisinage de a et B aussi donc AN B est voisinage
de a et donc a est intérieur & AN B. Ainsi (AN B)° et A° N B° sont égaux.
ACAUB et BC AU B donc A° U B° est inclus dans (A U B)°. L’égalité n’est
pas toujours vraie. Un contre-exemple est obtenu pour A =10,1] et B = [1,2] ol
A° U B° =10,1[U]1,2[ alors que (AU B)° =0, 2].

c¢) Par passage au complémentaire des résultats précédents : AU B et AU B sont
égaux alors que A N B contient A N B sans pouvoir dire mieux. On peut aussi
mener une résolution directe en exploitant a) et la caractérisation séquentielle des
points adhérents pour 'inclusion de AU B dans AU B.

Exercice 21 : [énoncé]

F'CEetOEEF'carOEEF.

Soient \,u € K et z,y € F.

1l existe deux suites (z,,) et (y,) d’éléments de F vérifiant

Ty > xety, =y
On a alors
ATy, + Ly — A+ py
avec Az, + puy, € F pour tout n € N. On en déduit Az + puy € F.

Exercice 22 : [énoncé]

Puisque A C VectA, on a A C VectA.

Puisque VectA est un sous-espace vectoriel, on montrer aisément que VectA 'est
aussi. Puisqu’il contient A, on obtient

Vect(A) C VectA

Exercice 23 : [énoncé]
On a . 5
Fr(A)=A\A=ANCg A=ANCgA

On en déduit que Fr(A) est fermée par intersection de parties fermées

Exercice 24 : [énoncé]
On sait

donc

Fr(Fr(F)) = Fr(F) N CgFr(F)

Or Fr(F) C F = F donc CgF C CgFr(F) puis CgF C CgFrF.
De plus FrF C CgF donc FrF C CgFrF puis

Fr(Fr(F)) = Fr(F)

Exercice 25 : [énoncé]
a) Soit € AN B. 1l existe une suite (b,) € BY telle que b, — 2. Orz € Aet A
est ouvert donc a partir d’un certain rang b, € A. Ainsi pour n assez grand

b, € AN B et puisque b, =z, x € AN DB.

b)SiANB=0alors ANBCANB=0=

0.

Exercice 26 : [énoncd]
a) Soient a,b € A. Il existe (a,) € AN et (b,) € AN telles que a,, — a et b, — b.
Pour tout A € [0, 1],

A+ (1=MNb= lim (Aan+ (1= A)by)

n—-+oo
avec Aa,, + (1 — \)by, € [an,b,] C A donc Aa+ (1 —\)b € A.
b) Soient a,b € A°. 1l existe ag, ap > 0 tel que B(a, ay), B(b, ) C A. Posons
a = min(ag, ap) > 0.
Pour tout A € [0,1] et tout x € B(Aa+ (1 — A)b,a) ona z = (Aa+ (1 — A\)b) + au
avec u € B(0,1).
a =a+au€ Bla,a) CAet b =b+ au e B(b,a) C A donc [d¢/,b'] C A puisque
A est convexe donc A\a’ + (1 — A\ =z € A. Ainsi B(Aa+ (1 — \)b, ) C A et donc
Aa+ (1 — A\)b € A°. Finalement A° est convexe.

Exercice 27 : [énoncé]

AC A, BC Bdoncd(A,B)<d(A,B).

Pour tout z € A et y € B, il existe (a,) € AN et (b,) € BY telles que a,, — x et

bn — .

On a alors d(z,y) = lim d(an,by) or d(an,b,) = d(A, B) donc & la limite
n—+00

d(x,y) > d(A, B) puis d(A, B) > d(A, B) et finalement I'égalité.
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Exercice 28 : [énoncé]

n n
a) |J A; est un fermé qui contient |J A; donc
i=1 i=1 i

=1 =1

n n o n
Pour tout j € {1,...,n}, A; C |J Ai et |J A, est fermé donc A; C |J A, puis
i=1 i=1 =1

7

(2

U4icU A
i=1 i=1

n n n n
b) () A; est un fermé qui contient [\ A4; donc () A; C [ Ai.
i=1 i=1 i=1 i=1

11 ne peut y avoir égalité : pour Ay = Q, Ay = ]Ri\Q on a;ll NAy =0 et
A1 NAy =R.

Exercice 29 : [énoncé]

Pour tout z € A, z € A et donc [f(z)| < ||f||, 1. Alnsi

1 llco,a < W flloo,

Soit z € A, il existe (u,) € AY tel que u,, — = et alors f(u,) — f(z) par
continuité de f. Or |f(un)| < [|f|[ 4 donc a la limite [f(z)| < || f]l 4 Puis

Exercice 30 : [énoncé]

Commencons par montrer que D,,(C) est dense dans M,,(C).

Soit A € M,,(C). La matrice A est trigonalisable, on peut donc écrire

A= PTP ! avec P € GL,(C) et T € T, (C). Posons alors pour p € N*, on pose
A, = P(T + D,)P~! avec D, = diag(1/p,2/p,...,n/p).

Par opérations, A, m A et pour p assez grand les coefficients diagonaux de
la matrice triangulaire 7'+ D,, sont deux a deux distincts, ce qui assure

A, € D,(C). Ainsi A € D,,(C) et donc D, (C) = M, (C).

Montrons maintenant que 'intérieur de D,,(C) est formée des matrices possédant

exactement n valeurs propres distinctes.
Soit A € D, (C).

Cas [SpA| < n.
On peut écrire A = PDP~! avec P € GL,(C) et D = diag(A\, A\, A, ..., \p).
0 1/p
0 0 (0)
Posons alors D, = D + et A, =PD,P7L.
(0) 0

La matrice D, n’est pas diagonalisable car dim Ey(D,) < mx(Dp) donc A, non
plus et puisqueA, — A, on peut affirmer que la matrice A n’est pas intérieure a
D, (C).

Cas |SpA| = n.

Supposons par absurde que A n’est pas intérieur a D,,(C). Il existe donc une suite
(Ap) de matrices non diagonalisables convergeant vers A. Puisque les matrices A,
ne sont pas diagonalisables, leurs valeurs propres ne peuvent étre deux a deux
distinctes. Notons A, une valeur propre au moins double de A,. Puisque A, — A,
par continuité du déterminant x4, — xa. Les coefficients du polynome
caractéristique x 4, sont donc bornés ce qui permet d’affirmer que les racines de
Xa, le sont aussi (car si € est racine de P = X" + An1 X" 1+ +a1 X +ap, on
a |¢| < max (1,]ao| + |a1| + - - + |an—1])). La suite complexe (),) étant bornée, on
peut en extraire une suite convergente (A,(p)) de limite A. On a alors

Ap = Aoy In — A — M, Or les valeurs propres de A étant simples, on a
dimker(A — AI,,) < 1 et donc rg(A — AlI,) > n — 1. La matrice A — AI,, possede
donc un déterminant extrait non nul d’ordre n — 1. Par continuité du
déterminant, on peut affirmer que pour p assez grand rg(A, ) — AppyIn) =n —1
et donc dimker(Ay () — Ap(p)In) < 1 ce qui contredit la multiplicité de la valeur
propre A,(y. C’est absurde et on conclut que la matrice A est intérieure a D,,(C).

Exercice 31 : [énoncé]

a) Si A est fermée alors A = A donc FrA = A\ A° C A.

Inversement, si Fr(A) = A\ A° C A alors puisque A° C Aona A C A.

En effet, pour = € A, si € A° alors « € A et sinon = € FrA et donc x € A.
Puisque de plus A C A, on en déduit A = A et donc A est fermé.

b) A est un ouvert si, et seulement si, CgA est un fermé i.e. si, et seulement si,
Or Fr(CgA) = FrA donc A est un ouvert si, et seulement si, FrA N A = (.

Exercice 32 : [énoncé]
a) Une matrice de R est annulée par un polynéme de la forme X™ — 1 dont les
racines sont de module 1. Puisque les valeurs propres figurent parmi les racines
des polynomes annulateurs

RCU

b) Une matrice M € M5(C) admet deux valeurs propres comptées avec
multiplicité A, u. Celles-ci sont déterminées comme les solutions du systéme

At p=trM
Ap = det M
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Pour alléger les notations, posons p = (trM)/2 et ¢ = det M. Les valeurs propres
A et u sont les deux racines du polyndéme

X2 —pX +gq
et en posant § € C tel que 62 = p? — ¢, ces racines sont
A=p+detu=p—9
de sorte que
I\ = pl® + 18] + 2Re(pd) et |uf* = [p|* +[6]* — 2Re(pd)

On en déduit que la fonction f qui & M € My(C) associe le réel

2 2
(\)\|2 — 1) (|M|2 - 1) s’exprime comme somme, produit et conjuguée des trM et

det M et c¢’est donc une fonction continue.

Puisque U = f~1({0}) avec {0} fermé, U est une partie fermée de My(C).

¢) Soit M € U. La matrice M est trigonalisable et donc il existe P € GLy(C) et
T € T,7(C) telle que

M:PTP_lavecT:<6\ Z) Al =lul =1

On peut écrire A = ¢’ et pu = ¥ avec a, f € R.
Pour n € N*, posons

[na/2m)]

2 1
an = 2r—1" ot B, = ZWM
n n

et considérons la matrice

1y
M, = PT,P™" avec T,, = ( ¢ e >
0 e'Pn

Par construction,
gton 75 ean

au moins pour n assez grand et ce méme lorsque a = 3.
On en déduit que pour ces valeurs de n la matrice T, est diagonalisable.
De plus, puisque
()" = ()" =1
on a alors T} = I5 et donc M,, € R.
Enfin, on a évidemment M,, — M.
d) U est un fermé contenant R donc R C U et par double inclusion R = U.

Exercice 33 : [énoncé]

La fonction f : (z,y) — 2% + 9> — 22 — y? est continue sur R? et U = f~1(]0, +-oc)
est un ouvert relatif de R? car image réciproque d’un ouvert par une fonction
continue. Or un ouvert relatif & R? n’est autre qu'un ouvert de R2.

Exercice 34 : [énoncé]

L’application det : M, (R) — R est polynomiale en les coefficients matriciels, elle
est donc continue. Puisque GL,(R) est I'image réciproque de 'ouvert R* par cette
application continue, GL,,(R) est un ouvert relatif & M,,(R), c’est donc un ouvert

de M, (R).

Exercice 35 : [énoncé]
Par le cas d’égalité dans I'inégalité de Cauchy-Schwarz

(z,y) est libre < [(z | y)| < [l=] Iyl
Considérons I'application f : E? — R définie par

f(@y) = l=llyll = (x [y)

L’ensemble {(z,y) € E?/(z,y) libre} = f~* (]0, +00]) est un ouvert car image
réciproque d’un ouvert par une fonction continue.

Exercice 36 : [énoncé]

Soit A € R,. La matrice A possede un déterminant extrait non nul d’ordre p. Par
continuité du déterminant, au voisinage de A, toute matrice & ce méme
déterminant extrait non nul et est donc de rang supérieur a p. Ainsi la matrice A
est intérieure a R,,.

Exercice 37 : [énoncé]

(i) = (ii) Supposons f continue et introduisons A C E. Tout élément y de f(A)
est I'image par f de la limite 2 d’une suite convergente (x,) d’éléments de A. Or
f étant continue, f(x,) — y et donc y est limite d’une suite d’élément de f(A).
Ainsi f(A) C f(A).

(ii) = (iii) Supposons (ii) et introduisons B C F. Pour A = f~!(B), on a

f(A) C f(A) Cc Bdonc A C f~1(B) c’est a dire

f1(B) c f71(B)
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ili) = (iv) Supposons (iii) et introduisons B C F. On remarque la propriété
f~YCrB) = Cgf~Y(B) et donc
-

(iv) = (i) Supposons (iv). Pour tout a € A et tout € > 0, B(f(a),¢) est un ouvert

de F' dont
U (B(f(a),)) C (£ 1 (B(f(a),)))°

Or a € f~Y(B(f(a),e)) donc a € (f~1(B(f(a),€)))". Par conséquent, il existe
a > 0 tel que

B(a,a) € f71(B(f(a),€))

Ainsi nous obtenons
Va € E,Ve > 0,3a > 0,Vz € E, x € B(a,a) = f(x) € B(f(a),e)

ce qui correspond & la continuité de f.

Exercice 38 : [énoncé]
Si u est continue alors

A={zcE/|lu() =1} = {1}

est 'image réciproque du fermé {1} par I'application continue f = | .|| o u. La
partie A est donc un fermé relatif & E, c’est donc une partie fermée.
Inversement, si u n’est pas continu alors 'application uw n’est par bornée sur

{z € B/ ||z|| = 1}. Cela permet de construire une suite (z,) € EY vérifiant
[znll =1 et [lu(zn)ll > n
En posant
1
Yn = 7
R C]

on obtient une suite (y,,) € AN vérifiant y,, — 0 .
Or 0 ¢ A donc la partie A n’est pas fermée.

Exercice 39 : [énoncé]

Si la forme linéaire est continue assurément son noyau est fermé car image
réciproque du fermé {0}.

Inversement, supposons que ¢ est une forme linéaire discontinue.

Pour tout k € R™, il existe alors z € E tel que

p(2)| > k ||z

1ROy — r=1(v TR — e oI RY -1 ° _ (=1 °
(B°) = f7(Cr(CrB)) = Cpf~(CrB) C Cuf(CrB) = (Cof ' (CrB)) = (f El(in)r)enant k =n €N, on définit ainsi une suite (z,) d’éléments de E vérifiant

pour tout n € N
[o(@n)| > 1]l

Posons alors 1

o(vn)

On a par construction ¢(y,) =1 et ||yn| < 1/n donc y,, — 0.
Considérons enfin

Yn = Tn

Zn = Yo — Yn

On a ¢(z,) =0 et donc z, € kerp. Or
Zn — Yo

avec yo ¢ ker p. Ainsi ker ¢ n’est pas fermé car ne contient pas toutes les limites
de ses suites convergentes.

Exercice 40 : [énoncé]
a) Notons
A={ze[0,1]/f(z) =z}
On a évidemment A C Imf, mais inversement, pour z € Imf, on peut écrire
x = f(a) et alors
f(@) = f(f(a)) = fla) =z
Ainsi Imf C A, puis, par double inclusion, A = Imf.
On en déduit que A est un segment de R de la forme [«, 8] car image d’un
compact par une fonction réelle continue.
b) Une fonction f d’allure suivante convient

A
1
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¢) Soit f solution dérivable.

Si a = [ alors f est constante égale a cette valeur commune.

Si < Balors f'(a) = fi(a) =1 car f(z) =z sur [o, f].

Par suite, si @ > 0, f prend des valeurs strictement inférieur & « ce qui est
contradictoire avec ’étude qui précede. On en déduit a = 0.

De méme on obtient S =1 et on conclut f:z € [0,1] — z.

Exercice 41 : [énoncé]
a) Soit f solution. Formons

A={zel0,1]/f(z) =z}

On a évidemment A C Imf, mais inversement, pour € Imf, on peut écrire
x = f(a) et alors

f(@) = f(f(a)) = fla) ==

Ainsi Imf C A, puis, par double inclusion, A = Imf.

On en déduit que A est un segment de R de la forme [«, 5] car image d'un
compact par une fonction réelle continue.

Pour tout = € [a, 8], f(x) = z et pour tout z € [0,a[U]8,1], f(z) € [, 5].
Inversement, une fonction continue vérifiant les deux conditions précédente est
solution.

Cela peut apparaitre sous la forme d’une fonction ayant ’allure suivante

A
1

b) Soit f solution dérivable.

Si a = [ alors f est constante égale a cette valeur commune.

Si < Balors f'(a) = fi(a) =1 car f(z) =z sur [o, f].

Par suite, si @ > 0, f prend des valeurs strictement inférieur & « ce qui est
contradictoire avec ’étude qui précede. On en déduit o = 0.

De méme on obtient S =1 et on conclut f: x € [0,1] — z.

Exercice 42 : [énoncé]
a) Par télescopage

(Z uk> o(u—1Id)=wu"t —1d
k=0

donc
1

(n+1)

b) Soit # € Im(u — Id) Nker(u — Id). On peut écrire z = u(a) — a et on a u(x) = x.
On en déduit

vp o (u—1d) = (™t —1d)

vp o (u—1d)(a) =z

Or
1

UnO(u—Id)(a):TH_1

(u”“(a) — a) —0

car
[u*(a) — al| < [|u"*(@)|| + [la]l < 2|a]

On en déduit « = 0.
c¢) Par la formule du rang

dim Im(u — Id) + dim ker(u — Id) = dim £

et puisque les deux espaces sont en somme directe, ils sont supplémentaires.

d) Soit z € E. On peut écrire z =z + y avec € Im(u — Id) et y € ker(u —Id).
On a alors v, (2) = v, (x) + y avec, comme dans I’étude du b), v,(z) — 0. On en
déduit v, (2) — y.

Ainsi la suite de fonctions (v,) converge simplement vers la projection p sur
ker(u — Id) parallelement & Im(u — Id).

Puisque pour tout x € E, on a

n

I N 1 7
lon (@)l < 2= kZ:OHu ()] < ] I;)IIIII = [l

on obtient & la limite ||p(z)| < ||z]. On en déduit que la projection p est continue
puis que Im(u — Id) = ker p est une partie fermée.

e) Supposons la convergence simple de la suite de fonctions (v,) et la fermeture de
Im(u — Id).

Soit z € E. Posons y = lim v,(2) et z =2 —y.
n—-+o0o

D’une part, puisque

(u"“(z) — z)

w(on(2) = —— 3" uFH(z) = va(2) + ——

n+1
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on obtient a la limite
uly) =y
car I'application linéaire u est continue et ||u"™(2)| < |/z]|. On en déduit
y € ker(u —Id).
D’autre part

z—wn(z) = %H (Z (Id — uk)(Z))

k=0

et
k—1

Im(Id — «*) = Im <(Id —wu)o Z uz_1> C Im(1d — u) = Im(u — 1Id)
£=0

donc z — v, (2) € Im(u — Id). On en déduit x = lim(z — v,(2)) € Im(u — Id) car

Im(u — Id) est fermé.

Finalement, on a écrit z = x + y avec

z € Im(u —1d) et y € ker(u — Id)

Exercice 43 : [énoncé]
On note U I'ensemble des polynémes considérés.
Soit P € U. En notant x1 < ... < x,, ses racines, on peut écrire

P=XX—-x1)...(X —z,)

avec A # 0. Pour fixer les idées, supposons A > 0 (il est facile d’adapter la
démonstration qui suit au cas A < 0)

Posons y1,...,yn—1 les milieux des segments [z1,x2],. .., [Tn_1,Tn]-

Posons aussi yg € |—o0, 1| et Y, € |2y, +00].

P(yo) est du signe de (—1)", P(y;) est du signe de (—=1)"~1..., P(y,_1) est du
signe de (—1), P(y,) du signe de +1.

Considérons maintenant ’application

fi: QeRy[X] = Qui)

L’application f; est continue et donc fi_l(:tR+*) est une partie ouverte de R,, [X].
Considérons V l'intersection des

fo (DR (D) IR L f (R

Les éléments de V' sont des polynomes réels alternant de signe entre

Yo <y1 < ... < yp. Par application du théoréme des valeurs intermédiaires, un tel
polynome admet n racines distinctes et donc est scindé a racines simples. Ainsi

V CU.Or PeV etV est ouvert donc V est voisinage de P puis U est voisinage
de P.

Au final U est ouvert car voisinage de chacun de ses éléments.

Exercice 44 : [énoncé]
Soit P € O,,. En notant x; < ... < x,, ses racines, on peut écrire

P=oaX —z1)...(X —z,)

avec a # 0.

Posons y1,...,Yn—1 les milieux des segments [z1, 23], ..., [Tn_1, Zp].

Posons aussi yg € |—00, 1] et y, € |z, +00.

P(yp) est du signe de (—1)"a, P(y;) est du signe de (—1)""'a,..., P(y,_1) est
du signe de (—1)a, P(y,) du signe de a. Pour simplifier 'exposé de ce qui suit, on
va supposer « > 0. La résolution se transposera aisément au cas a < 0.
Considérons 'application

fi: QeRy[X] = Qui)

L’application f; est continue et donc fj_l(R**) et fj_l(R’*) sont des parties
ouvertes de R,, [X].
Considérons U l'intersection des ouverts

fo 't ((CD"RY), 2 (G TIRT) L f (R

Les éléments de U sont des polynémes réels alternant de signe entre

Yo <Y1 < ... < yYn. Par application du théoréme des valeurs intermédiaires, un tel
polynéme admet n racines distinctes et donc est scindé a racines simples. Ainsi
UCO,.Or PeU et U est ouvert donc U est voisinage de P puis O,, est
voisinage de P.

Au final O,, est ouvert car voisinage de chacun de ses éléments.

Dansle casn=1: F, = O,, et donc F,, est ouvert.

Dans le cas n = 2 : F,, réunit les polyndémes P = aX? + bX + c avec b — dac > 0
(que a soit égal & 0 ou non). L’application P + b? — 4ac étant continue, on peut
affirmer que F, est encore ouvert car image réciproque d’un ouvert pas une
application continue.

Dans le cas n > 3 : P, = X(1 + X?/n) est une suite de polynémes non scindés
convergeant vers X scindé a racines simples. Par suite F,, n’est pas ouvert.

Exercice 45 : [énoncé]
Par I'absurde, supposons f discontinue en a € R. On peut alors construire une
suite (x,,) vérifiant

Tn = aetVn e N, |f(z,) —

fla)] = ¢

avec € > 0 fixé.
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Soit n € N, puisque f ([a,zy]) est un segment contenant f(a) et f(z,), il contient

aussi 'intermédiaire f(a) £ e (le & étant déterminé par la position relative de
f(x,) par rapport & f(a)). Il existe donc a,, compris entre a et x,, vérifiant

|f(an) = fla)| =€

La suite (a,) évolue dans le fermé f~! ({f(a) +e}) U f~1 ({f(a) — €}) et converge

vers a donc a € f~1 ({f(a) +e}) U f~1 ({f(a) — €}) ce qui est absurde.

Exercice 46 : [énoncé]
Considérons I'application ¢ : L(E) — L(E) déterminée par ¢(f) = f? — f.
L’application ¢ est continue par opérations sur les fonctions continues,

notamment parce que Papplication f — f o f est continue (elle s’obtient & partir

du produit dans l'algebre L(E)).
Puisque {6} est une partie fermée de L(E), I'ensemble P = =1 ({()}) est un
fermé relatif & £(E), donc un fermé de L(E).

Exercice 47 : [énoncé]

L’application A — det(A — AI,,) est polynomiale non nulle en A donc posséde un
nombre fini de racine.

Par suite : VA € M, (R),Va > 0, B(A,a) N GL,(R) # 0.

Exercice 48 : [énoncé]

a) Soient u,v € F et A, u € R. Il existe (uy,), (v,) € FN telles que u, — u et
Up, — .

Comme Ay, + pv, — \u+ pv et Auy, + pv, € F on a M+ pv € F.

b) Soit H un hyperplan de E.

Si H = H alors H est fermé.

Sinon alors H est un sous-espace vectoriel de E, contenant H et distinct de H.
Puisque H est un hyperplan Ja ¢ H tel que H & Vect(a) = E.

Soit & € H\H. On peut écrire = h + Aa avec h € H et X\ # 0. Par opération
a € H et puisque H C H on obtient E C H. Finalement H = E et donc H est
dense.

Exercice 49 : [énoncé]

a) Pour tout a € E et tout € > 0, B(a,e) NU # 0 car U est dense.

Soit « € B(a,e) NU. Puisque B(a,e) N U est ouvert, il existe a > 0 tel que
B(z,a) C B(a,e) NU et puisque V est dense B(z, ) NV # (). Par suite

B(a,e)N({UNV)#£0

b) Soient F' et G deux fermés d’intérieurs vides.

Cg(FUGR) =Cg(FUG)=CgFNCgG
avec CgI' et CgG ouverts denses donc
CegFNCgG=F

puis

(FUG) =0

Exercice 50 : [énoncé]
a) Posons
A={n>ng/a > u,}

A est une partie de N, non vide car ng € A et majorée car u,, — +00.
La partie A admet donc un plus grand élément n > ng et pour celui-ci
Up L0 < Upyl-

Par suite |u, — a| < |upy1 — un| < € car n > ng.

b) Soient x € R et € > 0.

Puisque u,1+1 —u, — 0, il existe ng € N tel que pour tout n > ng, |tnr1 — un| < €.

Puisque v, — +o0, il existe p € N tel que = + v, > uy,.

Par I’étude précédente, il existe n € N tel que |u, — (z + vp)| < € Le.
[t — ) — o] < &

Par suite 'ensemble {u,, — v,/n,p € N} est dense dans R.

c) Remarquons que

A ={cos(lnn)/n € N*} = {cos (In(n + 1) — 2p7) /n,p € N}

Posons u, = In(n + 1) et v, = 2nm. Les hypotheses précédentes sont réunies et
donc

B = {u, —vp/n,p € N} = {In(n + 1) — 2pn/n,p € N}

est dense dans R.

Soient z € [—1,1] et § = arccos .

Par densité, il existe une suite (6,,) d’éléments de B convergeant vers 6 et, par
continuité de la fonction cosinus, la suite (z,) de terme général x,, = cos(f,,)
converge vers x = cos 6.

Or cette suite (zy,) est une suite d’éléments de cos(B) = A et donc A est dense
dans [-1,1].
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Exercice 51 : [énoncé]

Soient x € R et € > 0.

11 existe ng € N* tel que 1/ng < e.

Pour a > Inng et n = E(e”) 2 ng, onalnn < a < In(n+1).
On en déduit

la—Inn| <In(n+1)—lnn=mn(1+1/n)<1/n<1/ng<e

Puisque m — x ———— 400, pour m assez grand, on a a = m — x > Inng et donc
m——+o0

il existe n € N* vérifiant |[a — Inn| < € i.e.
lm —Ilnn—a| <e

Par suite {m —Inn/(m,n) € Z x N*} est dense dans R.

Exercice 52 : [énoncé]

a) Il existe h € H tel que h # 0 car H n’est pas réduit a {0}.
Sih>0alors he{ze€ H/x>0}.Sih<0alors —h € {zx € H/xz > 0}.

Dans les deux cas {z € H/x > 0} # (. De plus {x € H/x > 0} C R et

{x € H/x > 0} est minoré par 0 donc a = inf {x € H/x > 0} existe dans R.

b) On suppose a > 0.

Sia ¢ H alors il existe z,y € H tel que a < z < y < 2a et alors y — x est élément
de H et vérifie 0 < y — x < a ce qui contredit la définition de a. C’est absurde.
a € H donc aZ =< a >C H.

Inversement, soit 2 € H. On peut écrire x = aq + r avec ¢ € Z, r € [0, a[ (en fait
g=E(z/a) et r =z —aq)

Puisque r =2 —aqavecx € Hetag€aZ C Honare H.

Sir > 0alors r € {z € H/x >0} et r < a contredit la définition de a.

Il reste r = 0 et donc = = aq. Ainsi H C aZ puis 'égalité.

¢) Puisque inf {z € H/z > 0} = 0, on peut affirmer que pour tout « > 0, il existe
r € H tel que 0 < x < a.

Soient a € R et o > 0. Montrons H N B(a,a) # 0 ie. HN]a — a,a+ o £ 0

Il existe z € H tel que 0 < x < . Posons n = E(a/x). On a a = nx + r avec
0<r<a.

nr €<z >C H et |a—nz| =r < a donc nz € HN B(a,a) et donc

H N B(a,a) # 0.

Ainsi H est dense dans R.

Exercice 53 : [énoncé]
a) {cos(n)/n € N} = {cos(n)/n € Z} = {cos(n + 2km)/n,k € Z} = cos (Z + 2nZ)

Puisque Z + 27Z est un sous-groupe de (R, +) et c’est un sous-groupe dense car il
n’est pas monogene puisque m n’est pas rationnel ; c’est en effet un résultat
classique bien que en dehors du programme, les sous-groupes de (R, +) sont
monogenes ou denses.

Pour tout x € [—1, 1], il existe 0 € [0, 7] tel que cos@ = x et puisque Z + 27Z est
dense dans R, il existe une suite d’éléments Z + 27wZ convergeant vers 6. L’image
de cette suite par la fonction continue cosinus détermine une suite d’élément de
{cos(n)/n € N} convergeant vers z.

b) En notant que les 2 avec p € N sont des naturels non nuls, on observe

{cos(pln2)/p € N} C {cos(lnn)/n € N*}

Ainsi
cos(ln2.Z + 27Z) C {cos(Inn)/n € N*}

Si 7w et In 2 ne sont pas commensurables, on peut conclure en adaptant la
démarche précédente.

Si en revanche 7 et In 2 sont commensurables (ce qui est douteux. .. ), on reprend
I'idée précédente avec In 3 au lieu de In 2.

Assurément 7 et In 3 ne sont pas commensurables car s’ils I’étaient, In2 et In 3 le
seraient aussi ce qui signifie qu’il existe p, ¢ € N* tels que pln2 = ¢1In 3 soit encore
2P = 39 ce qui est faux!

Exercice 54 : [énoncé]

Soit A € M,,(C). La matrice A est trigonalisable donc il existe P inversible telle
que P'AP =T avec T triangulaire supérieure. Posons alors

T, =T + diag(1/p,2/p,...,n/p) et A, = PT,P~1. 1l est immédiat que T, — T
quand p — +oo et donc A, — A. De plus, pour p assez grand, la matrice T}, est
triangulaire supérieure a coefficients diagonaux deux a deux distincts, cette
matrice admet donc n valeurs propres et est donc diagonalisable. Il en est de
méme pour A, qui lui est semblable. Ainsi toute matrice de M, (C) est limite
d’une suite de matrices diagonalisables.

Exercice 55 : [énoncé]

lére méthode (nécessitant quelques résultats non triviaux mais intuitifs sur la
codimension)

Par définition, un hyperplan H de E est un sous-espace vectoriel de codimension
1. Son adhérence H est aussi un sous-espace vectoriel et, puisque contenant H, sa
codimension vaut 0 ou 1.

Si H est de codimension 0 alors H = F ce qui signifie que H est dense dans F.
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Si H est de codimension 1, puisque H contient I'’hyperplan H, on a H = H et
donc H est fermé.

2¢me méthode (plus élémentaire)

Par définition un hyperplan H de E est un sous-espace vectoriel de codimension
1. Il existe donc un vecteur a € E non nul vérifiant

H @ Vect(a) = FE

Supposons que H ne soit pas fermé. Il existe alors une suite (z,) d’éléments de H
convergeant vers un élément x n’appartenant pas a H. On peut écrire

r=h+Xaavech € Het A#£0

En considérant

on construit une suite (y,) d’éléments de H convergeant vers a.
Il est désormais facile d’établir que H est dense dans E. En effet pour z € E, on
peut écrire

z=k+ pa

avec k € H et u € R de sorte que la suite de terme général

est une suite d’éléments de H convergeant vers z.

Exercice 56 : [énoncé]
a) Soit u une suite sommable. On a

“+oo

Z |t =0

n=N+1
donc pour tout o > 0, il existe N tel que

+oo

Z lun| < a

n=N+1

Considérons alors v définie par v,, = u,, si n < N et v, = 0 sinon.
OnaveR™ et ||v—ul, <adonc B(u,a) "R £ 0.
b) Non, en notant u la suite constante égale a 1, By, (u, 1/2) NRM = ¢

Exercice 57 : [énoncé]
Soit f une fonction élément de E. Pour tout € > 0, il existe un réel A vérifiant

—+oo
/ A dt<e
A

Considérons alors la fonction ¢ : [0, 400 — R définie par ¢(t) = 1 pour ¢ € [0, A],
p(t)=0pourt>A+1let pt)=1—(t—A) pourte [4,A+1]. La fonction fo
est éléments de Ej et

“+ o0
I = fell, < /A P dt < e

Ainsi Ey est dense dans F.

Pour montrer maintenant que F est dense dans F, nous allons établir que F' est
dense dans FEj.

Soit f une fonction élément de Ey. Remarquons

4oo ) 1 2 o~ (Inw)?
/ (7) = Plee/2) ar = / (f(=mu)et™ /2 — Pu))” = —du
0 u=e~t Jq u
—(nw)? —(nw)?
La fonction u +— € (lu " est intégrable sur 10,1] car /u® (lu —

u—0

La fonction g : u — f(—Inu)e(™ u)*/2 peut-étre prolongée par continuité en 0 car
f est nulle en dehors d’un segment. Par le théoréeme de Weierstrass, pour tout

€ > 0, il existe un polynéme P € R [X] vérifiant [|g — P||, o 1) < € et pour

@it Plet)e /2 on a alors

L a—(Inw)?

Ilf —¢lly < Ae avec A = / S
0 u

Cela permet de conclure a la densité proposée.

Exercice 58 : [énoncé]

Par l’absurde supposons A # E.

Il existe un élément a € F tel que a ¢ A. Par translation du probléme, on peut
supposer a = 0.

Posons n = dim F.

Si Vect(A) est de dimension strictement inférieure & n alors A est inclus dans un
hyperplan de E et son adhérence aussi. C’est absurde car cela contredit la densité
de A.
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Si Vect(A) est de dimension n, on peut alors considérer (eq,...,e,) une base de E Pour tout z,y € B, % = w =Invab € B.
formée d’éléments de A. En raisonnant par récurrence, on montre que pour tout x,y € B, on a la propriété
Puisque 0 ¢ A, pour tout z € A, on remarque : YA € R™, —Azx ¢ A (car sinon, par
.y kx+ (2" — k)y
convexité, 0 € A). vn € N,Vk € {0,...,2"}, ———"—€B
Par convexité de A : VA1, ..., 0 =0, A + -+ A =1= Ajeg + -+ Aen € A 2n
et donc: VAERT, VAL, ..., A 20, A1+ -+ An = 1= AAer + -+ Aen) ¢ A Soit x € |inf A, sup A[. 1l existe a,b € A tels que a < z < b.
Ainsi Y, .o ey O, paer + - + ppen & A On a alors Ina < Inxz < Inb avec Ina,Inb € B.
Or la partie {grne1 + - -+ + pnen/p; < 0} est un ouvert non vide de A et donc On peut écrire Inz = Alna + (1 — X\)Inb avec A € ]0, 1].
aucun de ses éléments n’est adhérent a A. Cela contredit la densité de A. Posons alors k,, la partie entitre de A2" et z,, = exp (’;4 Ina+ (1 - ’2%) Inb)

Il est immédiat que x,, — x avec pour tout n € N, z,, € A.
Si, dans cette suite, il existe une infinité d’irrationnels, alors = est limite d’une

Exercice 59 : [énoncé] suite d’éléments de AN (R\Q).

Soient a < b € A. Sinon, & partir d’un certain rang, les termes de la suite x,, sont tous rationnels.

Puisque a,b € A, “T“’ € A, puis 3“4“’ = a+(a;—b)/2 cAet %31’ € A etc. Le rapport 2,11/, est alors aussi rationnel ; mais

Par récurrence sur n € N, montrons Vk € {0,...,2"}, W € A. Frit ke

La propriété est immédiate pour n = 0. Tntl _ (9) T e ki1 kn _ 0 ou 1

Supposons la propriété vraie au rang n > 0. T b 2ntl 2n 2n+1

Soit k € {0,...,2" 1} L o boir ) o o

Cas k pair : S’il existe une infinité de n tels que SHiT — 5% = gasT alors il existe une infinité de

k =2k" avec k' € {0,...,2"} et kaJr(;:iifk)b = k/a+(§:7k/)b € A en vertu de n € N tels que an o

I’hypothese de récurrence. (5) e Q

Cas k impair : ) L ) ) )

k =2k + 1 avec k' € {0,...,2" — 1} et et puisque ’élévation au carré d’un rationnel est un rationnel, le nombre a/b est
lui-méme rationnel. Or les racines carrées itérés d’un rationnel différent de 1 sont

ka+ (2" =Ko 1 (Ka+ 2" —k)b (K +1a+ (2" — (K +1))b irrationnelles a partir d’un certain rang.
on+1 D) ( on + on ) cA Il y a absurdité et donc a parti d’un certain rang k11 = 2k,.

Considérons a la suite (z],) définie par

car par hypothése de récurrence L L

k/a+(2n_k/)b (k,+1)a+(2n_(kl+1))b€A ZU/n:eXp (221na+<122> lnb) avec k;’:kn+1
on ’ on

On obtient une suite d’éléments de A, convergeant vers x et qui, en vertu du
La récurrence est établie. raisonnement précédent, est formée d’irrationnels & partir d’un certain rang.
Soit x € Jinf A, sup A[.
1l existe a,b € A tel que = € [a,b] ce qui permet d’écrire x = Aa + (1 — A\)b.

Soit k, = E(2")) et z,, = M Exercice 61 : [énoncé]
On vérifie aisément que z, — = car 2"k — X et pour tout n € Nz,, € A N, : E — RY est bien définie et on vérifie immédiatement

Ainsi A est dense dans ]inf A, sup A. NoO) = N No(F) et No(F +9) < No(F) + No(g)

Il reste a étudier la véracité de I'implication

Exercice 60 : [énoncé]
Considérons 'ensemble B =1In A = {lna/a € A}. No(f)=0=f=0
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Supposons : ¢! (R*) dense dans [0, 1].

Si Ny (f) =0 alors fi =0 et donc pour tout € ¢~} (R*), on a f(z) =0 car
p(x) # 0.

Puisque la fonction continue f est nulle sur la partie ¢! (R*) dense dans [0, 1],
cette fonction est nulle sur [0, 1].

Supposons : ¢! (R*) non dense dans [0, 1].

Puisque le complémentaire de I’adhérence est I'intérieur du complémentaire, la
partie o~ 1({0}) est d’intérieur non vide et donc il existe a < b € [0, 1] tels que
[a,b] € ™ ({0}).

Considérons la fonction f définie sur [0, 1] par

= {0 e

Cette fonction f est continue sur [0, 1], ce n’est pas la fonction nulle mais en
revanche la fonction fy est la fonction nulle. Ainsi on a formé un élément f non
nul de E tel que N,(f) = 0. On en déduit que N, n’est pas une norme.

Exercice 62 : [énoncé]

Soit [a, b] C [1,+o0[ avec a < b. Pour établir la densité de A, montrons que
AN la,b] est non vide.

Considérons ¢ > 1 tel que ga < b.

Il existe N € N tel que

unJrl
Un,

VneN,n>N = <q
Considérons alors

E:{mEN/m>Netum<b}
uy

E est une partie de N, non vide (car N + 1 € E) et majorée (car u, — +00). La
partie E possede donc un plus grand élément M. Pour celui-ci, on a

U u
“M <bet SMAL Sy
uUN UN

Or

Up4+1 < QUL

donc b

U
7M > — 2 a
un q

Ainsi ups/uy est un élément de AN [a, b].

Exercice 63 : [énoncé]

Soient x € E et r > 0.

Puisque A est une partie dense, B(a,7) N A # (). On peut donc introduire

x € B(a,r) N A. Or par intersection d’ouverts, B(a,r) N A est aussi une partie
ouverte et donc il existe a > 0 tel que B(z, ) C B(a,r) N A. Puisque la partie B
est dense, B(z,a) N B # () et finalement B(a,r) N AN B # (.

On peut donc conclure que A N B est une partie dense de E.

Exercice 64 : [énoncé]

Soit f une fonction solution.

Ona f(04+0)= f(0)+ f(0) donc f(0) =0
Par une récurrence facile

Vn e N,Vz € R, f(nz) = nf(z)

De plus, puisque f(—z + ) = f(~a) + f(x), on a f(—a) = —f(a).
Par suite
Vn € Z,Vz € R, f(nx) = nf(z)

Pour z =p/q € Q, f(z) =pf(1/q) et f(1) = qf(1/q) donc f(x) = ax avec

a= f(1).

Les fonctions = — f(x) et  — ax sont continues et coincident sur Q partie dense
dans R donc ces deux fonctions sont égales sur R.

Au final f est une fonction linéaire.

Inversement, une telle fonction est évidemment solution.

Exercice 65 : [énoncé]
a) Soit z € R. Puisque

2"y
n = L 5 J -
avec u, € D, la partie D est dense dans R.

b) Supposons que f s’annule en 0 et 1.

1

S (f(-a) + §(@) = £(0)
donc la fonctionf est impaire.

Par récurrence double, montrons Vn € N, f(n) = 0.

Pour n=0oun=1:0k

Supposons la propriété établie aux rangsn > let n—1 > 0.

fn+ 1)+ fn-1)
2

= f(n)
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donne en vertu de '’hypotheése de récurrence : f(n+ 1) = 0.
Récurrence établie.
Par I'imparité

Vp€Z, f(p) =0

Par récurrence sur n € N, montrons
Py _
VpEZ,f(Qn) =0

Pour n =0 : ok
Supposons la propriété établie au rang n € Z.

Soit p € Z,
() =1 (3(0050)) =5 (r0+ 1 (30)) 0

Récurrence établie.
Puisque f est continue et nulle sur une partie

DZ{Q%/])EZ,TLEN}

dense dans R, f est nulle sur R.

¢) Posons = f(0) et = f(1) — 5.

La fonction g : ¢ — f(x) — ax + [ est continue et vérifie la propriété

7(%52) = 5 0o + o)

donc g est nulle puis f affine.

Exercice 66 : [énoncé]
Soit A € C. Si A est inversible

xan(A) = det(ALL, — AB) = det(A) det(AA~! — B)
donc
XAB()‘) = det()\Afl — B) det A = det()\In - BA) = XBA(/\)

Ainsi les applications continues A € M,,(C) — xap(A) et A € M, (C) = xpa(N)
coincident sur la partie GL,(C) dense dans M,,(C), elles sont donc égales sur
M, (C).

Ainsi pour tout A € C, xap(\) = xBa(\) et donc xap = XBa.

Exercice 67 : [énoncé]

On sait
f(comA)A = det A.I,

donc
det(comA) det A = (det A)"

Si A est inversible on obtient
det(comA) = det(A4)"*

Puisque l'application A — det(comA) est continue et qu’elle coincide avec
'application elle aussi continue A — (det A)"~! sur GL,(C) qui est dense dans
M,,(C), on peut affirmer det(comA) = (det A)"~! pour tout A € M,,(C).

Exercice 68 : [énoncé]
a) Si A est inversible alors

et donc
comA = det(A4)" (A7)

De méme
com(P~'AP) = det(A)(P~tA™'P)
ce qui donne
com(P~'AP) = *PcomA'(P~!)

Les fonctions A + com(P~1AP) et A — !PcomA!(P~1) sont continues sur
M, (C) et coincident sur GL, (C) partie dense dans M, (C), c’est deux fonctions
sont donc égales. Ainsi la relation

com(P *AP) = 'PcomA' (P~ 1)

est valable pour tout A € M,,(C)
b) C’est immédiat sachant que (P~!) est I'inverse de ! P.

Exercice 69 : [énoncé]
a) On sait 3 ~
AA =AA=det AL,

Si A est inversible alors )
det A.det A = (det A)™
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donne

det A = (det A)"~!

L’application A — det A étant continue et coincidant avec I'application elle aussi
continue A+ (det A)"~1 sur GL,,(K) qui est dense dans M,,(K), on peut assurer
que det A = (det A)"~! pour tout A € M, (K).

b) Si A est inversible alors A aussi donc

rg(A) =n =rg(Ad) =n

Si rg(A) < n — 2 alors A ne possede pas de déterminant extrait non nul d’ordre
n — 1 et donc A = 0. Ainsi

rg(A) <n—2=rg(A) =0

Sirg(A) =n — 1 alors dimker A =1 or AA =det A.I,, = 0 donne TmA C ker A et
donc rg(A) < 1. Or puisque rg(A) =n — 1, A posséde un déterminant extrait
d’ordre n — 1 non nul et donc A # O. Ainsi

rg(A) =n—1=rg(Ad) =1
¢) Soit P une matrice inversible. Pour tout A € GL,,(K),

(P7YAP)(P'AP) = det AT,
et P~YAP inversible donc o
P'AP = P-1AP
Ainsi o
A=pp-1APp™!
Les applications A — A et A +— PP~1APP~! sont continues et coincident sur la
partie dense GL,,(K) elles sont donc égales sur M,, (K).
Si A et B sont semblables alors il existe P inversible vérifiant P~ AP = B et par

la relation ci-dessus P‘1/~1P~: P-1AP = B donc A et B sont semblables.
d) Si A est inversible alors A = det(A)A~! et

A= det(A) A" = det(4)" %A

Par coincidence d’applications continues sur une partie dense, pour tout

A e M, (K), B
A =det(A)" 24

Exercice 70 : [énoncé]
Cas A, B € GL,(R)

On sait ) .
-1 _ t -1 _ t
A7 = ot A (comA), B~ = B (comB)
et )
-1 _ t _ p-1y-1
(AB)"" = det(AD) (comAB) =B A
donc . .
-1 L t
(B = qoapy ©OmAP) = o aqe g (comB) (comd)
puis
“(com(AB)) = *(com(A)com(B))
et enfin

com(AB) = com(A)com(B)

Cas général
Posons ) )
A, =A+-I,et B,=B+ -1,
p p

Pour p assez grand A, B, € GL,(R) et donc
com(A,Bp) = com(Ap)com(B,)
Or la fonction M — comM est continue donc par passage a la limite
com(AB) = com(A)com(B)
Exercice 71 : [énoncé]
Cas f de classe C! :

/ |f/(t)| dt — 0
Cas f continue :

Pour tout € > 0, il existe g : [a,b] — C de classe C! tel que ||f — g <e.

On a alors
b .
/ g(t)e™ dt
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donc pour n assez grand

b
/ FO)e™ dt]| < (b a)e + &

Par suite

b
/ ft)e™tdt — 0

n——+oo

Exercice 72 : [énoncé]

Par le théoréme de Weierstrass, il existe une suite (P,,) de fonction polynomiale
telles Noo (P, — f) — 0.

On a alors

| roa= [ roco-royas [ rorwa= [ oo -raoa

0

or

/0 FO(F() — Pa(t)) dt‘ < Na(f)Na(f — Pa) 0

donc )
/ fAt)dt =0
0

puis f = 0 par nullité de I'intégrale d’une fonction continue et positive.

Exercice 73 : [énoncé]

Par le théoreme de Weierstrass, il existe une suite (Q,,) de fonctions polynomiales
telles Noo (Qn — f) — 0.

On a alors

/aan(t)dt——»/abf(t)dt()

n—-+o0o

Posons b
= Qu0) - = [ Qu

On vérifie alors sans peine que

P,(t)

b
/ Po(t)dt = 0 et Noo(f — Po) — 0

Exercice 74 : [énoncé]
Par le théoréme de Weierstrass, il existe une suite (@) de fonctions polynomiales
telles Noo(Qr — f) — 0. Posons m,, = iFfb] Qn(t) = Qn(t,) pour un certain

tela,

t, € [a,b]. Montrons que m,, = m = inf f. Notons que inb] f = f(ts) pour un
tela,

tela,b]

certain too € [a,b]. Pour tout € > 0, pour n assez grand, Noo (@, — f) < € donc
Mp = Qn(tn) 2 fn(tn) —ez2m—cetm= f(too) P Qn(too) —&2my, — ¢ donc
|m, —m| < e. Ainsi m,, — m. Il suffit ensuite de considérer P,, = Q, — m,, + m

pour obtenir une solution au probleme posé.

Exercice 75 : [énoncé]

Par le théoréme de Weierstrass, il existe une suite (@) de fonctions polynomiales
telle Noo(Qrn — f') — 0.

Posons alors P, (z) = f(a) + [ Q,(t)dt. L’inégalité

|Po(z) — f(2)] < [T 1f'(t) — @, (t)| dt permet d’établir que Noo(f — Pn) — 0 et
puisque P! = Qp, la suite (P,) est solution du probléme posé.

Exercice 76 : [énoncé]

a) On a
> Bui@) =@+ (1-2)" =1
k=0
On a
n
Z kB, i (z) = nx
k=0
n n—1
via k =n et la relation précédente
k k—1

De maniere semblable

Z k*By i (z) = Z k(k —1)By, k(x) + Z kB k() = nz(l+ (n — 1))
k=0 k=0 k=0
b) On a
n?a? " Bui(z) <Y (k—nz)? Bur(z) < Y (k—nz)” By(a)
keA k€A kelo,n]

car les B, ; sont positifs sur [0, 1].
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Par suite
202 Z B, k(x) < nz(l —x)
keA
d’ou )
Z By 2
poy 4na

¢) Pour tout € > 0, par 'uniforme continuité de f, il existe o > 0 tel que

Yo,y € [0,1], [z —y| S a=[f(z) - fy)| <e

On a alors

/(=) <Y 1f@) = f(k/n)| Bug(x)+ > | f(x)

z€A r€B

f(k/n)| B ()

donc

)+Z€Bn,k( ||f||

= 2na?

/(@) = fu@)] <2[|fllo D Burla

TEA r€EB

Pour n assez grand, on a

1£lloc/2n0” < €

2¢ uniformément en x.

et donc |f(x) — fu(x)] <

Exercice 77 : [énoncé]
a) On a

On en déduit

1
n+1

1 1
an:2/ (1—t2)”dt>2/ t(1— )" dt =
0 0

b) Sur [a, 1],
(1—a?)"

a'll

|on(2)] < <(n+1)(1-a’)" =0
c) Sur le compact [—1,
V8>O,HO[>0,VI‘,yE [_151]’|$_y| Sa= |f($>_f(y)| Se€

Pour o = min(a, 1/2), on a pour tous z,y € R tels que |z —y| < o/

1], f est uniformément continue car f est continue. Ainsi :

Siz,y € [-1,1] alors
|f(z) = fly)l <e

Sinon z,y € [1/2, 400 ou z,y € |—00, —1/2] et alors

d) On a
x+1
fua) = [ oo — ) du
Or ,
on(x —u) = Z ag(u)z”
k=0
donc
/ <t>§j(/wﬂf< Jaw(u) ) a*
! k=0 /o1
Mais

z+1 1/2
/ fwag(u)du = / fwag(u) du

-1 —1/2

pour x € [-1/2,1/2] car x — 1 < —=1/2 et x + 1 > 1/2 alors que f est nulle en
dehors que [—1/2,1/2]. Tl s’ensuit que f,, est polynomiale.

e) On observe que
1
/ en(t)dt =1

-1

et la relation proposée est alors immédiate sur [—1/2,1/2].
f) On a
Ve > 0,3a>0,Vz,y e R, |z —y| <a=|f(z) — fly)| <e

et alors

[

£0) = F@ = Ol ea) dt+41 7l [ on(®)dt < e4alfl [ ot

1
/ on(t)dt — 0

1
4||f||oc/ on(t)dt < ¢

(@) — fulz)] < /

—

Or

donc pour n assez grand
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et alors On a o
_ < o=
[f(@) = ful@)] < 2 / jsin(na)| de| <
g) Il suffit de commencer par approcher la fonction z — f(2ax) qui vérifie les a n
conditions de la question précédente. donc
h) Soit A > 0 tel que [a,b] C [—A, A]. 1l suffit de prolonger f par continuité de =
sorte qu’elle soit nulle en dehors de [—A, A]. [sin(nz)| dz — 0
a
et aussi .
Exercice 78 : [énoncé] / lsin(nz)| dz — 0
a) Par le théoréme de Weierstrass, pour tout £ > 0, il existe P € R[X] tel que an
[f=Pllo<e De plus
b, b b b
< = — = - < (b— T 2(q — 2(b—
o< [ 7= [ru-p+ [ sp= [ fu-Pr<o-alfl.e Z/ i as = 00 [T =208 200
(k 1) n ™
b k=p+1 0
En faisant ¢ — 0, on obtient [’ f? =0 et donc f = 0.
b) L’intégrale étudiée est bien définie. Par intégration par parties, Ainsi b 5
(n+1)Tp = (1 — i) Tppa /a |sin(nz)| doz — ;(b —a)
Or Iy = % donc puis
14 Z‘)nJrl b . 2 b
I = ( s ol / f (@) |sin(nzx)| dz = ;/ f(z)dx

¢) Iypys € R donc
+oo
/ 2P sin(z)e™ " da = 0
0
puis

+oo 1/4
/ uP sin(u'/*)e™ " du = 0
0

pour tout p € N.

Exercice 79 : [énoncé]
a) Supposons f constante égale a C.

/ab f(z) |sin(nz)| do = C/ab [sin(nx)| dz

Posons p = L%J +1letqg= L?”J

b b
/ |sin(nz)| da :/ |sin(nz)| dz + Z / |sin(nz)| dx—i—/ |sin(nz)| dz

b) Supposons f en escalier.
Soit ag, - .., a, une subdivision adaptée a f.
Par I’étude qui précede,

/ fla) in(ro)] dz 2 /

Puis en sommant par la relation de Chasles

/abf(x) isin(na)| dz — i/abf

c¢) Supposons enfin f continue par morceaux.
Pour € > 0, il existe ¢ en escalier vérifiant

3

1 = lloo oy <

/ o) sin(ro)] do > 2 / "

Puisque
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pour n assez grand, on a

/ " () sin(na)] dz — -/ "

<e

Or
b b
/ o(z) |sin(nz)| dx —/ f(z)|sin(nz)| dz| < e
et
b b
/ @ */ fl<e
donc
’ 2 [° 2
/ f(z) |sin(nx)| dox — f/ fl<2e+ =¢
a ’n— a ™
Ainsi

[ sy a2 [
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