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Topologie des espaces normés
Ouverts et fermés

Exercice 1 [ 01103 ] [correction]
Montrer que tout fermé peut s’écrire comme intersection d’une suite décroissante
d’ouverts.

Exercice 2 [ 01104 ] [correction]
On désigne par p1 et p2 les applications coordonnées de R2 définies par
pi(x1, x2) = xi.
a) Soit O un ouvert de R2, montrer que p1(O) et p2(O) sont des ouverts de R.
b) Soit H =

{
(x, y) ∈ R2 | xy = 1

}
. Montrer que H est un fermé de R2 et que

p1(H) et p2(H) ne sont pas des fermés de R.
c) Montrer que si F est fermé et que p2(F ) est borné, alors p1(F ) est fermé.

Exercice 3 [ 01105 ] [correction]
Montrer que si un sous-espace vectoriel F d’un espace vectoriel normé E est
ouvert alors F = E.

Exercice 4 [ 04076 ] [correction]
Soient F une partie fermée non vide d’un espace normé E et x ∈ E. Montrer

d(x, F ) = 0⇔ x ∈ F

Exercice 5 [ 01107 ] [correction]
Soit E une espace vectoriel normé.
a) Soient F une partie fermée non vide de E et x ∈ E. Montrer

d(x, F ) = 0⇔ x ∈ F

b) Soient F et G deux fermés non vides et disjoints de E.
Montrer qu’il existe deux ouverts U et V tels que

F ⊂ U,G ⊂ V et U ∩ V = ∅

Exercice 6 [ 01106 ] [correction]
Soient A,B deux parties non vides d’un espace vectoriel normé E telles que

d(A,B) = inf
x∈A,y∈B

d(x, y) > 0

Montrer qu’il existe deux ouverts disjoints U et V tels que A ⊂ U et B ⊂ V .

Exercice 7 [ 01108 ] [correction]
On muni le R-espace vectoriel des suites réelles bornées de la norme

‖u‖∞ = sup
n∈N
|un|

Déterminer si les sous-ensembles suivants sont fermés ou non :
A = {suites croissantes}, B = {suites convergeant vers 0},
C = {suites convergentes},
D =

{
suites admettant 0 pour valeur d′adhérence

}
et E = {suites périodiques}.

Exercice 8 [ 01110 ] [correction]
On note R(N) l’ensemble des suites réelles nulles à partir d’un certain rang.
a) Montrer que R(N) est un sous-espace vectoriel de l’espace B(N,R) des suites
réelles bornées.
b) B(N,R) étant normé par ‖ . ‖∞. Le sous-espace vectoriel R(N) est-il une partie
ouverte ? une partie fermée ?

Exercice 9 [ 02415 ] [correction]
Soit A une partie non vide de R telle que pour tout x réel il existe un et un seul
y ∈ A tel que |x− y| = d(x,A). Montrer que A est un intervalle fermé.

Exercice 10 [ 02770 ] [correction]
On munit l’espace des suites bornées réelles B(N,R) de la norme
‖u‖∞ = supn(|un|).
a) Montrer que l’ensemble des suites convergentes est un fermé de B(N,R).
b) Montrer que l’ensemble des suites (an) qui sont terme général d’une série
absolument convergente n’est pas un fermé de B(N,R).
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Exercice 11 [ 02771 ] [correction]
Soit E l’ensemble des suites (an)n>0 de C telles que la série

∑
|an| converge. Si

a = (an)n>0 appartient à E, on pose

‖a‖ =
+∞∑
n=0
|an|

a) Montrer que ‖ . ‖ est une norme sur E.
b) Soit

F =
{
a ∈ E/

+∞∑
n=0

an = 1
}

L’ensemble F est-il ouvert ? fermé ? borné ?

Exercice 12 [ 03021 ] [correction]
Soient E un espace vectoriel normé, F un sous-espace fermé de E et G un
sous-espace vectoriel de dimension finie de E. Montrer que F +G est fermé

Exercice 13 [ 03037 ] [correction]
Caractériser dansMn(C) les matrices dont la classe de similitude est fermée.
Même question avec R au lieu de C

Exercice 14 [ 02507 ] [correction]
Soient E = C ([0, 1] ,R) normé par ‖ . ‖∞ et la partie

A =
{
f ∈ E/f(0) = 0 et

∫ 1

0
f(t) dt > 1

}
a) Montrer que A est une partie fermée.
b) Vérifier que

∀f ∈ A, ‖f‖∞ > 1

Exercice 15 [ 03066 ] [correction]
Soient E = C ([0, 1] ,R) normé par ‖ . ‖∞ et la partie

A =
{
f ∈ E/f(0) = 0 et

∫ 1

0
f(t) dt > 1

}
a) Montrer que A est une partie fermée.
b) Vérifier que

∀f ∈ A, ‖f‖∞ > 1
c) Calculer la distance de la fonction nulle à la partie A.

Exercice 16 [ 03289 ] [correction]
a) Montrer que les parties

A =
{

(x, y) ∈ R2/xy = 1
}

et B = {0} × R

sont fermées.
b) Observer que A+B n’est pas fermée.

Exercice 17 [ 03290 ] [correction]
Montrer que Z est une partie fermée de R :
a) en observant que son complémentaire est ouvert ;
b) par la caractérisation séquentielle des parties fermées ;
c) en tant qu’image réciproque d’un fermé par une application continue.

Exercice 18 [ 03306 ] [correction]
Dans E = R [X], on considère les normes

N1(P ) = sup
t∈[0,1]

|P (t)| et N2(P ) = sup
t∈[1,2]

|P (t)|

L’ensemble
Ω = {P ∈ E/P (0) 6= 0}

est-il ouvert pour la norme N1 ? pour la norme N2 ?

Intérieur et adhérence

Exercice 19 [ 01113 ] [correction]
Soient E un espace vectoriel normé et F un sous-espace vectoriel de E.
Montrer que si

◦
F 6= ∅ alors F = E.

Exercice 20 [ 01114 ] [correction]
Soient A et B deux parties d’un espace vectoriel normé (E,N).
a) On suppose A ⊂ B. Etablir A◦ ⊂ B◦ et Ā ⊂ B̄.
b) Comparer (A ∩B)◦ et A◦ ∩B◦ d’une part puis (A ∪B)◦ et A◦ ∪B◦ d’autre
part.
c) Comparer A ∪B et Ā ∪ B̄ d’une part puis A ∩B et Ā ∩ B̄ d’autre part.
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Exercice 21 [ 01115 ] [correction]
Montrer que si F est un sous-espace vectoriel de E alors son adhérence F̄ est
aussi un sous-espace vectoriel de E.

Exercice 22 [ 03279 ] [correction]
Soit A une partie d’un espace vectoriel normé E. Etablir

Vect(Ā) ⊂ VectA

Exercice 23 [ 01116 ] [correction]
Soit A une partie d’un espace vectoriel normé E. Etablir que sa frontière Fr(A)
est une partie fermée.

Exercice 24 [ 01117 ] [correction]
Soit F une partie fermée d’un espace vectoriel normé E. Etablir

Fr(Fr(F )) = Fr(F )

Exercice 25 [ 01118 ] [correction]
Soient A un ouvert et B une partie d’un espace vectoriel normé E.
a) Montrer que A ∩ B̄ ⊂ A ∩B
b) Montrer que A ∩B = ∅ ⇒ A ∩ B̄ = ∅.

Exercice 26 [ 01119 ] [correction]
On suppose que A est une partie convexe d’un espace vectoriel normé E.
a) Montrer que Ā est convexe.
b) La partie A◦ est-elle convexe ?

Exercice 27 [ 01120 ] [correction]
Soient A et B deux parties non vides d’un espace vectoriel normé E.
Etablir

d(Ā, B̄) = d(A,B)

(en notant d(A,B) = inf
x∈A,y∈B

d(x, y))

Exercice 28 [ 01121 ] [correction]
Soient A1, . . . , An des parties d’un espace vectoriel normé E.

a) Etablir
n⋃
i=1

Ai =
n⋃
i=1

Ai.

b) Comparer
n⋂
i=1

Ai et
n⋂
i=1

Ai.

Exercice 29 [ 01122 ] [correction]
Soient f : E → F continue bornée et A ⊂ E, A non vide. Montrer

‖f‖∞,A = ‖f‖∞,Ā

Exercice 30 [ 02943 ] [correction]
Déterminer l’adhérence et l’intérieur de l’ensemble Dn(C) des matrices
diagonalisables deMn(C).

Exercice 31 [ 03026 ] [correction]
Soit A une partie d’un espace normé E.
a) Montrer que la partie A est fermée si, et seulement si, FrA ⊂ A.
b) Montrer que la partie A est ouverte si, et seulement si, A ∩ FrA = ∅

Exercice 32 [ 03470 ] [correction]
DansM2(C), on introduit

U = {M ∈M2(C)/SpM ⊂ U} et R = {M ∈M2(C)/∃n ∈ N?,Mn = I2}

a) Comparer les ensembles R et U .
b) Montrer que U est une partie fermée deM2(C).
c) Montrer que U est inclus dans l’adhérence de R.
d) Qu’en déduire ?

Continuité et topologie

Exercice 33 [ 01123 ] [correction]
Justifier que U =

{
(x, y) ∈ R2/x2 + y2 < x3 + y3} est une partie ouverte de R2.
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Exercice 34 [ 01124 ] [correction]
Montrer que GLn(R) est une partie ouverte deMn(R).

Exercice 35 [ 01125 ] [correction]
Soit E un espace vectoriel euclidien.
Montrer que l’ensemble

{
(x, y) ∈ E2/(x, y) libre

}
est un ouvert de E2.

Exercice 36 [ 01126 ] [correction]
Pour p ∈ {0, 1, . . . , n}, on note Rp l’ensemble des matrices deMn(K) de rang
supérieur à p.
Montrer que Rp est un ouvert deMn(K).

Exercice 37 [ 01127 ] [correction]
Soient E et F deux espaces vectoriels normés et f : E → F . Montrer qu’il y a
équivalence entre les assertions suivantes :
(i) f est continue ;
(ii) ∀A ∈ P(E), f(Ā) ⊂ f(A) ;
(iii) ∀B ∈ P(F ), f−1(B) ⊂ f−1(B̄) ;
(iv) ∀B ∈ P(F ), f−1(B◦) ⊂

(
f−1(B)

)◦.
Exercice 38 [ 01128 ] [correction]
Montrer qu’un endomorphisme u d’un espace vectoriel normé E est continu si, et
seulement si, la partie {x ∈ E/ ‖u(x)‖ = 1} est fermée.

Exercice 39 [ 01129 ] [correction]
Montrer qu’une forme linéaire est continue si, et seulement si, son noyau est fermé.

Exercice 40 [ 03393 ] [correction]
Soit f : [0, 1]→ [0, 1] une application continue vérifiant

f ◦ f = f

a) Montrer que l’ensemble

{x ∈ [0, 1] /f(x) = x}

est un intervalle fermé et non vide.
b) Donner l’allure d’une fonction f non triviale vérifiant les conditions
précédentes.
c) On suppose de plus que f est dérivable. Montrer que f est constante ou égale à
l’identité.

Exercice 41 [ 02774 ] [correction]
a) Chercher les fonctions f : [0, 1]→ [0, 1] continues vérifiant

f ◦ f = f

b) Même question avec les fonctions dérivables.

Exercice 42 [ 03285 ] [correction]
Soient E un espace normé de dimension quelconque et u un endomorphisme de E
vérifiant

∀x ∈ E, ‖u(x)‖ 6 ‖x‖

Pour tout n ∈ N, on pose

vn = 1
n+ 1

n∑
k=0

uk

a) Simplifier vn ◦ (u− Id).
b) Montrer que

Im(u− Id) ∩ ker(u− Id) = {0}

c) On suppose E de dimension finie, établir

Im(u− Id)⊕ ker(u− Id) = E

d) On suppose de nouveau E de dimension quelconque.
Montrer que si

Im(u− Id)⊕ ker(u− Id) = E

alors la suite (vn) converge simplement et l’espace Im(u− Id) est une partie
fermée de E.
e) Etudier la réciproque.

Exercice 43 [ 01111 ] [correction]
Montrer que l’ensemble des polynômes réels de degré n scindés à racines simples
est une partie ouverte de Rn [X].

Exercice 44 [ 02773 ] [correction]
Pour n ∈ N?, On désigne l’ensemble des polynômes réels de degré n scindés à
racines simples et Fn l’ensemble des polynômes de Rn [X] scindés à racines
simples.
Ces ensemble sont-ils ouverts dans Rn [X] ?
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Exercice 45 [ 03726 ] [correction]
Soit f : R→ R vérifiant
1) ∀ [a, b] ⊂ R, f ([a, b]) est un segment ;
2) y ∈ R, f−1 ({y}) est une partie fermée.
Montrer que f est continue.

Exercice 46 [ 03859 ] [correction]
Soit E un R-espace vectoriel normé de dimension finie.
Montrer que l’ensemble P des projecteurs de E est une partie fermée de L(E).

Densité

Exercice 47 [ 01130 ] [correction]
Montrer que GLn(R) est dense dansMn(R).
On pourra considérer, pour A ∈Mn(R), les matrices de la forme A− λIn.

Exercice 48 [ 01131 ] [correction]
Soient E un espace vectoriel normé et F un sous-espace vectoriel de E.
a) Montrer que F̄ est un sous-espace vectoriel de E.
b) Montrer qu’un hyperplan est soit fermé, soit dense.

Exercice 49 [ 01132 ] [correction]
Soient U et V deux ouverts denses d’un espace vectoriel normé E.
a) Etablir que U ∩ V est encore un ouvert dense de E.
b) En déduire que la réunion de deux fermés d’intérieurs vides est aussi d’intérieur
vide.

Exercice 50 [ 03058 ] [correction]
Soient (un)n∈N et (vn)n∈N deux suites réelles telles que

un → +∞, vn → +∞ et un+1 − un → 0

a) Soient ε > 0 et n0 ∈ N tel que pour tout n > n0, |un+1 − un| 6 ε.
Montrer que pour tout a > un0 , il existe n > n0 tel que |un − a| 6 ε.
b) En déduire que {un − vp/n, p ∈ N} est dense dans R.
c) Montrer que l’ensemble {cos(lnn)/n ∈ N?} est dense dans [−1, 1].

Exercice 51 [ 03017 ] [correction]
Montrer que {m− lnn/(m,n) ∈ Z× N?} est dense dans R.

Exercice 52 [ 01133 ] [correction]
Soit H un sous-groupe de (R,+) non réduit à {0}.
a) Justifier l’existence de

a = inf {x ∈ H/x > 0}

b) On suppose a > 0. Etablir a ∈ H puis H = aZ.
c) On suppose a = 0. Etablir que H est dense dans R.

Exercice 53 [ 00023 ] [correction]
a) Montrer que {cos(n)/n ∈ N} est dense dans [−1, 1].
b) Montrer que {cos(lnn)/n ∈ N?} est dense dans [−1, 1].

Exercice 54 [ 01135 ] [correction]
Montrer que l’ensemble des matrices diagonalisables deMn(C) est dense dans
Mn(C).

Exercice 55 [ 02779 ] [correction]
Montrer qu’un hyperplan d’un espace vectoriel normé (E, ‖‖) est dense ou fermé
dans E.

Exercice 56 [ 01134 ] [correction]
On note R(N) l’ensemble des suites réelles nulles à partir d’un certain rang.
a) Montrer que R(N) est une partie dense de l’espace des suites sommables normé
par

‖u‖1 =
+∞∑
n=0
|un|

b) R(N) est-il une partie dense de l’espace des suites bornées normé par

‖u‖∞ = sup
n∈N
|un| ?
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Exercice 57 [ 02780 ] [correction]
On note E l’ensemble des fonctions réelles définies et continues sur [0,+∞[ et
dont le carré est intégrable. On admet que E est un espace vectoriel réel. On le
munit de la norme

‖ . ‖2 : f 7→

√∫ +∞

0
f2(t) dt

On note E0 l’ensemble des f ∈ E telles que f est nulle hors d’un certain segment.
On note F l’ensemble des fonctions de E du type x 7→ P (e−x)e−x2/2 où P
parcourt R [X]. Montrer que E0 est dense dans E puis que F est dense dans E.

Exercice 58 [ 02944 ] [correction]
Soit A une partie convexe et partout dense d’un espace euclidien E.
Montrer que A = E.

Exercice 59 [ 03018 ] [correction]
Soit A une partie non vide de R vérifiant

∀a, b ∈ A, a+ b

2 ∈ A

Montrer que A est dense dans l’intervalle ]inf A, supA[.

Exercice 60 [ 03020 ] [correction]
Soit A une partie non vide de R+? vérifiant

∀(a, b) ∈ A2,
√
ab ∈ A

Montrer que A ∩ (R\Q) est dense dans ]inf A, supA[.

Exercice 61 [ 03059 ] [correction]
Soient E = C ([0, 1] ,R) et ϕ ∈ E. On note Nϕ : E → R l’application définie par

Nϕ(f) = ‖fϕ‖∞

Montrer que Nϕ est une norme sur E si, et seulement si, ϕ−1 (R?) est dense dans
[0, 1].

Exercice 62 [ 03402 ] [correction]
Soit (un) une suite de réels strictement positifs. On suppose

(un) strictement croissante, un → +∞ et un+1

un
→ 1

Montrer que l’ensemble

A =
{
um
un

/m > n

}
est une partie dense dans l’intervalle [1,+∞[

Exercice 63 [ 03649 ] [correction]
Soient A et B deux parties denses d’un espace normé E.
On suppose la partie A ouverte, montrer que A ∩B est une partie dense.

Continuité et densité

Exercice 64 [ 01136 ] [correction]
Soit f : R→ R continue vérifiant

∀x, y ∈ R, f(x+ y) = f(x) + f(y)

Déterminer f .

Exercice 65 [ 01139 ] [correction]
Soit f : R→ R une fonction continue telle que

∀x, y ∈ R, f
(
x+ y

2

)
= 1

2 (f(x) + f(y))

a) Montrer que D = {p/2n/p ∈ Z, n ∈ N} est dense dans R.
b) Montrer que si f s’annule en 0 et en 1 alors f = 0.
c) Conclure que f est une fonction affine.

Exercice 66 [ 01137 ] [correction]
Montrer que pour tout A,B ∈Mn(C), χAB = χBA.
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Exercice 67 [ 01138 ] [correction]
Soit n > 2. Calculer det(comA) pour A ∈Mn(C).

Exercice 68 [ 03128 ] [correction]
Soient n ∈ N avec n > 2.
a) Soient A ∈Mn(C) et P ∈ GLn(C).
Exprimer la comatrice de P−1AP en fonction de P , P−1 et de la comatrice de A.
b) En déduire que les comatrices de deux matrices semblables sont elle-même
semblables.

Exercice 69 [ 00750 ] [correction]
Pour A ∈Mn(K), on note Ã la transposée de la comatrice de A.
a) Calculer det Ã.
b) Etudier le rang de Ã.
c) Montrer que si A et B sont semblables alors Ã et B̃ le sont aussi.
d) Calculer ˜̃A.
Exercice 70 [ 03275 ] [correction]
Montrer

∀A,B ∈Mn(R), com(AB) = com(A)com(B)

Approximations uniformes

Exercice 71 [ 01140 ] [correction]
Soit f : [a, b]→ C continue. Montrer∫ b

a

f(t)eint dt −−−−−→
n→+∞

0

On pourra commencer par étudier le cas où f est une fonction de classe C1.

Exercice 72 [ 01141 ] [correction]
Soit f : [0, 1]→ R continue. Montrer que si pour tout n ∈ N,∫ 1

0
tnf(t) dt = 0

alors f est la fonction nulle.

Exercice 73 [ 01142 ] [correction]
Soit f : [a, b]→ R continue telle que

∫ b
a
f(t) dt = 0. Montrer qu’il existe une suite

(Pn) de polynômes telle que∫ b

a

Pn(t) dt = 0 et sup
t∈[a,b]

|f(t)− Pn(t)| −−−−−→
n→+∞

0

Exercice 74 [ 01143 ] [correction]
Soit f : [a, b]→ R continue telle que f > 0. Montrer qu’il existe une suite (Pn) de
polynômes telle que Pn > 0 sur [a, b] et sup

t∈[a,b]
|f(t)− Pn(t)| −−−−−→

n→+∞
0.

Exercice 75 [ 01144 ] [correction]
Soit f : [a, b]→ R de classe C1. Montrer qu’il existe une suite (Pn) de polynômes
telle que

N∞(f − Pn)→ 0 et N∞(f ′ − P ′n)→ 0

Exercice 76 [ 01145 ] [correction]
[Théorème de Weierstrass : par les polynômes de Bernstein]
Pour n ∈ N et k ∈ {0, . . . , n}, on pose

Bn,k(x) =
(
n

k

)
xk(1− x)n−k

a) Calculer
n∑
k=0

Bn,k(x),
n∑
k=0

kBn,k(x) et
n∑
k=0

k2Bn,k(x)

b) Soient α > 0 et x ∈ [0, 1]. On forme

A = {k ∈ [[0, n]] / |k/n− x| > α} et B = {k ∈ [[0, n]] / |k/n− x| < α}

Montrer que ∑
k∈A

Bn,k(x) 6 1
4nα2

c) Soit f : [0, 1]→ R continue. On pose

fn(x) =
n∑
k=0

f

(
k

n

)
Bn,k(x)

Montrer que (fn) converge uniformément vers f sur [0, 1].
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Exercice 77 [ 01146 ] [correction]
[Théorème de Weierstrass : par convolution]
n désigne un entier naturel.
On pose

an =
∫ 1

−1
(1− t2)n dt

et on considère la fonction ϕn : [−1, 1]→ R définie par

ϕn(x) = 1
an

(1− x2)n

a) Calculer
∫ 1

0 t(1− t
2)n dt. En déduire que

an =
∫ 1

−1
(1− t2)n dt > 1

n+ 1

b) Soit α ∈ ]0, 1]. Montrer que (ϕn) converge uniformément vers la fonction nulle
sur [α, 1].
c) Soit f une fonction continue de R vers R nulle en dehors de [−1/2, 1/2].
Montrer que f est uniformément continue.
On pose

fn(x) =
∫ 1

−1
f(x− t)ϕn(t) dt

pour tout x ∈ R.
d) Montrer que fn est une fonction polynomiale sur [−1/2, 1/2]
e) Montrer que

f(x)− fn(x) =
∫ 1

−1
(f(x)− f(x− t))ϕn(t) dt

f) En déduire que fn converge uniformément vers f sur R.
g) Soit f une fonction réelle continue nulle en dehors de [−a, a].
Montrer que f est limite uniforme d’une suite de polynômes.
h) Soit f une fonction réelle continue sur [a, b].
Montrer que f est limite uniforme d’une suite de polynômes.

Exercice 78 [ 02828 ] [correction]
Soit f ∈ C([a, b] ,R). On suppose que pour tout n ∈ N,∫ b

a

xnf(x) dx = 0

a) Montrer que la fonction f est nulle.
b) Calculer

In =
∫ +∞

0
xne−(1−i)x dx

c) En déduire qu’il existe f dans C([0,+∞[ ,R) non nulle, telle que, pour tout n
dans N, on ait ∫ +∞

0
xnf(x) dx = 0

Exercice 79 [ 02601 ] [correction]
Soit f : [a, b]→ R continue par morceaux.
On désire établir ,

lim
n→+∞

(∫ b

a

f(x) |sin(nx)| dx
)

= 2
π

∫ b

a

f(x) dx

a) Vérifier le résultat pour une fonction f constante.
b) Observer le résultat pour une fonction f en escalier.
c) Etendre enfin le résultat au cas où f est une fonction continue par morceaux.
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Corrections

Exercice 1 : [énoncé]
Soient F un fermé et pour tout n ∈ N?,

On =
⋃
a∈F

B(a, 1/n)

On est un ouvert (car réunion d’ouverts) contenant F . Le fermé F est donc inclus
dans l’intersection des On pour n ∈ N?.
Inversement si x appartient à cette intersection, alors, pour tout n ∈ N, il existe
an ∈ F tel que x ∈ B(an, 1/n). La suite (an) converge alors vers x et donc x ∈ F
car F est fermé.
Finalement F est l’intersection des On pour n ∈ N?.

Exercice 2 : [énoncé]
a) Soit x ∈ p1(O), il existe y ∈ R tel que a = (x, y) ∈ O. Comme O est ouvert, il
existe ε > 0 tel que B∞(a, ε) ⊂ O et alors ]x− ε, x+ ε[ ⊂ p1(O). Ainsi p1(O) et de
même p2(O) est ouvert.
b) Soit ((xn, yn))n∈N ∈ HN telle que (xn, yn)→ (x, y). Comme xnyn = 1, à la
limite xy = 1.
Par la caractérisation séquentielle des fermés, H est fermé. p1(H) = R?,
p2(H) = R? ne sont pas fermés dans R.
c) Soit (xn)n∈N ∈ (p1(F ))N telle que xn → x. Pour n ∈ N, il existe yn tel que
(xn, yn) ∈ F .
La suite ((xn, yn)) est alors une suite bornée dont on peut extraire une suite
convergente : ((xϕ(n), yϕ(n))).
Notons y = lim yϕ(n). Comme F est fermé, (x, y) = lim(xϕ(n), yϕ(n)) ∈ F puis
x = p1((x, y)) ∈ p1(F ).

Exercice 3 : [énoncé]
0E ∈ F donc il existe α > 0 tel que B(0E , α) ⊂ F .
Pour tout x ∈ E, on peut écrire

x = λy

avec y ∈ B(0E , α) et λ bien choisis
On a alors y ∈ F puis x ∈ F car F est un sous-espace vectoriel.
Ainsi F = E.

Exercice 4 : [énoncé]
Rappelons

d(x, F ) = inf {‖x− y‖ /y ∈ F}
(⇐) Si x ∈ F alors 0 ∈ {‖x− y‖ /y ∈ F} et donc d(x, F ) = 0
(⇒) Si d(x, F ) = 0 alors pour tout n ∈ N, il existe yn ∈ F vérifiant

‖x− yn‖ 6
1

n+ 1

En faisant varier n, cela détermine (yn) ∈ FN telle que yn → x.
Or F est une partie fermée, elle contient les limites de ses suites convergentes et
par conséquent x ∈ F .

Exercice 5 : [énoncé]
a) Rappelons

d(x, F ) = inf {‖x− y‖ /y ∈ F}
(⇐) Si x ∈ F alors 0 ∈ {‖x− y‖ /y ∈ F} et donc d(x, F ) = 0
(⇒) Si d(x, F ) = 0 alors pour tout n ∈ N, il existe yn ∈ F vérifiant

‖x− yn‖ 6
1

n+ 1

En faisant varier n, cela déterminer (yn) ∈ FN telle que yn → x.
Or F est une partie fermée, elle contient les limites de ses suites convergentes et
par conséquent x ∈ F .
b) Soient

U =
⋃
x∈F

B

(
x,

1
2d(x,G)

)
et V =

⋃
x∈G

B

(
x,

1
2d(x, F )

)
Les parties U et V sont ouvertes car réunion de boules ouvertes et il est clair que
U et V contiennent respectivement F et G.
S’il existe y ∈ U ∩ V alors il existe a ∈ F et b ∈ G tels que

d(a, y) < 1
2d(a,G) et d(b, y) < 1

2d(b, F )

Puisque
d(a,G), d(b, F ) 6 d(a, b)

on a donc
d(a, b) 6 d(a, y) + d(y, b) < d(a, b)

C’est absurde et on peut conclure

U ∩ V = ∅
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Exercice 6 : [énoncé]
Les ensembles

U =
⋃
a∈A

B(a, d/2) et V =
⋃
b∈B

B(b, d/2)

avec d = d(A,B) sont solutions.
En effet U et V sont des ouverts (par réunion d’ouverts) contenant A et B.
U et V sont disjoints car

U ∩ V 6= ∅ ⇒ ∃(a, b) ∈ A×B,B(a, d/2) ∩B(b, d/2) 6= ∅ ⇒ d(A,B) < d

Exercice 7 : [énoncé]
A est fermé car si up = (upn) est une suite d’éléments de A convergeant vers une
suite u = (un) pour la norme ‖ . ‖∞ alors pour tout n ∈ N et tout p ∈ N,
upn 6 upn+1 qui donne à la limite un 6 un+1 et donc u ∈ A.
B est fermé car si up = (upn) est une suite d’éléments de B convergeant vers une
suite u = (un) pour la norme ‖ . ‖∞ alors pour tout ε > 0 il existe p ∈ N tel que
‖u− up‖∞ 6 ε/2 et puisque upn →

n→∞
0, il existe N ∈ N tel que

∀n > N, |upn| 6 ε/2

et donc
|un| 6 |un − upn|+ |upn| 6 ε

Ainsi u→ 0 et donc u ∈ B.
C est fermé. En effet si up = (upn) est une suite d’éléments de C convergeant vers
une suite u = (un) pour la norme ‖ . ‖∞ alors en notant `p la limite de up, la suite
(`p) est une suite de Cauchy puisque |`p − `q| 6 ‖up − uq‖∞. Posons ` la limite de
la suite (`p) et considérons vp = up − `p. vp ∈ B et vp → u− ` donc u− ` ∈ B et
u ∈ C.
D est fermé car si up = (upn) est une suite d’éléments de D convergeant vers une
suite u = (un) pour la norme ‖ . ‖∞ alors pour tout ε > 0 il existe p ∈ N tel que
‖u− up‖∞ 6 ε/2 et puisque 0 est valeur d’adhérence de up, il existe une infinité
de n tels que |upn| 6 ε/2 et donc tels que

|un| 6 |un − upn|+ |upn| 6 ε

Ainsi 0 est valeur d’adhérence de u et donc u ∈ D.
E n’est pas fermé. Notons δp, la suite déterminée par δpn = 1 si p | n et 0 sinon. La
suite δp est périodique et toute combinaison linéaire de suites δp l’est encore.
Posons alors

up =
p∑
k=1

1
2k δ

k

qui est élément de E. La suite up converge car

∥∥up+q − up∥∥∞ 6
p+q∑

k=p+1

1
2k 6

1
2p → 0

et la limite u de cette suite n’est pas périodique car

u0 = lim
p→+∞

p∑
k=1

1
2k = 1

et que un < 1 pour tout n puisque pour que un = 1 il faut k | n pour tout k ∈ N.

Exercice 8 : [énoncé]
a) Les éléments de R(N) sont bornés donc R(N) ⊂ B(N,R).
L’appartenance de l’élément nul et la stabilité par combinaison linéaire sont
immédiates.
b) Si R(N) est ouvert alors puisque 0 ∈ R(N) il existe α > 0 tel que
B∞(0, α) ⊂ R(N).
Or la suite constante égale à α/2 appartient à B∞(0, α) et n’est pas nulle à partir
d’un certain rang donc B∞(0, α) 6⊂ R(N) et donc R(N) n’est pas ouvert.
c) Pour N ∈ N, posons uN définie par uNn = 1

n+1 si n 6 N et uNn = 0 sinon.
(uN ) ∈ R(N) et uN → u avec u donné par un = 1

n+1 . En effet

∥∥uN − u∥∥∞ = 1
N + 2 → 0

Mais u /∈ R(N) donc R(N) n’est pas fermé.

Exercice 9 : [énoncé]
Soit (xn) ∈ AN convergeant vers x ∈ R. Il existe un unique y ∈ A tel que
|x− y| = d(x,A). Or d(x,A) = 0 donc x = y ∈ A. Ainsi A est fermé.
Par l’absurde supposons que A ne soit pas un intervalle. Il existe a < c < b tel que
a, b ∈ A et c /∈ A.
Posons α = sup {x ∈ A/x 6 c} et β = inf {x ∈ A/x > c}. On a α, β ∈ A,
α < c < β et ]α, β[ ⊂ CRA.
Posons alors γ = α+β

2 . On a d(γ,A) = β−α
2 = |γ − α| = |γ − β| ce qui contredit

l’hypothèse d’unicité. Absurde.

Diffusion autorisée à titre entièrement gratuit uniquement - dD



[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Corrections 11

Exercice 10 : [énoncé]
a) Notons C l’espace des suites convergentes de B(N,R).
Soit (un) une suite convergente d’éléments de C de limite u∞.
Pour chaque n, posons `n = lim un = lim

p→+∞
unp .

Par le théorème de la double limite appliquée à la suite des fonctions un, on peut
affirmer que la suite (`n) converge et que la suite u∞ converge vers la limite de
(`n). En particulier u∞ ∈ C.
b) Notons A l’espace des suites dont le terme général est terme général d’une série
absolument convergente.
Soit (un) la suite définie par

∀n ∈ N?,∀p ∈ N, unp = 1
(p+ 1)1+1/n

La suite (un) est une suite d’éléments de A et une étude en norme ‖‖∞ permet
d’établir que un → u∞ avec u∞p = 1

p+1 . La suite u∞ n’étant pas élément de A, la
partie A n’est pas fermée.

Exercice 11 : [énoncé]
a) Par définition de l’ensemble E, l’application ‖ . ‖ : E → R+ est bien définie.
Soient (an)n>0, (bn)n>0 éléments de E et λ ∈ R.

‖a+ b‖ =
+∞∑
n=0
|an + bn| 6

+∞∑
n=0

(|an|+ |bn|) = ‖a‖+ ‖b‖

avec convergence des séries écrites, et

‖λ.a‖ =
+∞∑
n=0
|λan| =

+∞∑
n=0
|λ| |an| = |λ|

+∞∑
n=0
|an| = |λ| ‖a‖

Enfin, si ‖a‖ = 0 alors
∀n ∈ N, |an| 6 ‖a‖ = 0

donne (an)n>0 = (0)n>0
b) Considérons la forme linéaire

ϕ : (an)n>0 7→
+∞∑
n=0

an

On vérifie

∀a = (an)n>0 ∈ E, |ϕ(a)| =

∣∣∣∣∣
+∞∑
n=0

an

∣∣∣∣∣ 6
+∞∑
n=0
|an| = ‖a‖

La forme linéaire ϕ est donc continue.
Puisque F = ϕ−1 ({1}) avec {1}, la partie F est fermée en tant qu’image
réciproque d’une partie fermée par une application continue..
Posons e = (1, 0, 0, . . .) et un élément de F et

∀α > 0, e+ αe /∈ F et ‖e− (e+ αe)‖ = α

On en déduit que F n’est pas un voisinage de son élément e et par conséquent la
partie F n’est pas ouverte.
Posons αp = e+ p.(1,−1, 0, 0, . . .).

∀p ∈ N, αp ∈ F et ‖αp‖ −−−−−→
p→+∞

+∞

La partie F n’est donc pas bornée.

Exercice 12 : [énoncé]
Pour obtenir ce résultat, il suffit de savoir montrer F + Vect(u) fermé pour tout
u /∈ F .
Soit (xn) une suite convergente d’éléments de F + Vect(u) de limite x.
Pour tout n ∈ N, on peut écrire xn = yn + λnu avec yn ∈ F et λn ∈ K.
Montrons en raisonnant par l’absurde que la suite (λn) est bornée.
Si la suite (λn) n’est pas bornée, quitte à considérer une suite extraite, on peut
supposer |λn| → +∞.
Posons alors zn = 1

λn
xn = 1

λn
yn + u.

Puisque ‖xn‖ → ‖x‖ et |λn| → +∞, on a ‖zn‖ → 0 et donc 1
λn
yn → −u.

Or la suite de terme général 1
λn
yn est une suite d’éléments de l’espace fermé F ,

donc −u ∈ F ce qui exclu.
Ainsi la suite (λn) est bornée et on peut en extraire une suite convergente (λϕ(n))
de limite λ ∈ K.
Par opérations, la suite (yϕ(n)) est alors convergente.
En notant y sa limite, on a y ∈ F car l’espace F est fermé.
En passant la relation xn = yn + λnu à la limite on obtient
x = y + λu ∈ F + Vect(u).
Ainsi l’espace F + Vect(u) est fermé.

Exercice 13 : [énoncé]
Cas A ∈Mn(C) est diagonalisable.
Soit (Ap) une suite convergente de matrices semblables à A.
Notons A∞ la limite de (Ap).
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Si P est un polynôme annulateur de A, P est annulateur des Ap et donc P annule
A∞. Puisque A est supposée diagonalisable, il existe un polynôme scindé simple
annulant A et donc A∞ et par suite A∞ est diagonalisable.
De plus χA = χAp donc à la limite χA = χA∞ .
On en déduit que A et A∞ ont les mêmes valeurs propres et que celles-ci ont
mêmes multiplicités. On en conclut que A et A∞ sont semblables.
Ainsi la classe de similitude de A est fermée.
Cas A ∈Mn(C) non diagonalisable.
A titre d’exemple, considérons la matrice

A =
(
λ 1
0 λ

)

Pour Pp =
(
p 0
0 1

)
, on obtient

P−1
p APp =

(
λ 1/p
0 λ

)
→ λI2

qui n’est pas semblable à A.
De façon plus générale, si la matrice A n’est pas diagonalisable, il existe une
valeur propre λ pour laquelle

ker(A− λI2)2 6= ker(A− λI2)

Pour X2 ∈ ker(A− λI2)2\ ker(A− λI2) et X1 = (A− λI2)X2, la famille (X1, X2)
vérifie AX1 = λX1 et AX2 = λX2 +X1. En complétant la famille libre (X1, X2)
en une base, on obtient que la matrice A est semblable à

T =

 λ 1 (?)
0 λ (?)

(0) (0) B


Pour Pp = diag(p, 1, . . . , 1), on obtient

P−1
p TPp =

 λ 1/p (?/p)
0 λ (?)

(0) (0) B

→
 λ 0 (0)

0 λ (?)
(0) (0) B

 = A∞

Or cette matrice n’est pas semblable à T ni à A car rg(A∞ − λIn) 6= rg(T − λIn).
Ainsi, il existe une suite de matrices semblables à A qui converge vers une matrice
qui n’est pas semblable à A, la classe de similitude de A n’est pas fermée.
Cas A ∈Mn(R)

Si A est diagonalisable dans C alors toute limite A∞ d’une suite de la classe de
similitude de A est semblable à A dansMn(C). Soit P ∈ GLn(C) telle que
P−1AP = A∞. On a alors AP = PA∞. En introduisant les parties réelles et
imaginaires de P , on peut écrire P = Q+ iR avec Q,R ∈Mn(R).
L’identité AP = PA∞ avec A et A∞ réelles entraîne AQ = QA∞ et AR = RA∞.
Puisque la fonction polynôme t 7→ det(Q+ tR) n’est pas nulle (car non nulle en i),
il existe t ∈ R tel que P ′ = Q+ tR ∈ GLn(R) et pour cette matrice AP ′ = P ′A∞.
Ainsi les matrices A et A∞ sont semblables dansMn(R).
Si A n’est pas diagonalisable dans C.
Il existe une valeur propre complexe λ pour laquelle ker(A− λI2)2 6= ker(A− λI2).
Pour X2 ∈ ker(A− λI2)2\ ker(A− λI2) et X1 = (A− λI2)X2, la famille (X1, X2)
vérifie AX1 = λX1 et AX2 = λX2 +X1.
Si λ ∈ R, il suffit de reprendre la démonstration qui précède.
Si λ ∈ C\R, on peut écrire λ = a+ ib avec b ∈ R?.
Posons X3 = X̄1 et X4 = X̄2.
La famille (X1, X2, X3, X4) est libre car λ 6= λ̄.
Introduisons ensuite Y1 = Re(X1), Y2 = Re(X2), Y3 = Im(X1) et Y4 = Im(X2).
Puisque VectC(Y1, . . . , Y4) = VectC(X1, . . . , X4), la famille (Y1, . . . , Y4) est libre et
peut donc être complétée en une base.
On vérifie par le calcul AY1 = aY1 − bY3, AY2 = aY2 − bY4 + Y1AY3 = aY3 + bY1 et
AY4 = bY2 + aY4 + Y3.
et on obtient que la matrice A est semblable dansMn(R) à la matrice(
T ?
O B

)
avec

T =


a 1 b 0
0 a 0 b
−b 0 a 1
0 −b 0 a


Pour Pp = diag(p, 1, p, 1, . . . 1), on obtient

P−1
p TPp →

(
T∞ ?′

O B

)
= A∞

avec

T∞ =


a 0 b 0
0 a 0 b
−b 0 a 0
0 −b 0 a


Or dansMn(C), la matrice A∞ est semblable est à diag(λ, λ, λ̄, λ̄, B) qui n’est pas
semblable à A pour des raisons de dimensions analogues à ce qui a déjà été vu.
Les matrices réelles A et A∞ ne sont pas semblables dansMn(C) ni a fortiori
dansMn(R).
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On en déduit que la classe de similitude de A n’est pas fermée

Exercice 14 : [énoncé]
a) Soient (fn) une suite convergente d’éléments de A et f∞ ∈ E sa limite.
Puisque la convergence de la suite (fn) a lieu pour la norme ‖ . ‖∞, cette
convergence correspond à la convergence uniforme. En particulier, il y a
convergence simple et

fn(0)→ f∞(0)
On en déduit f∞(0) = 0.
Puisqu’il y a convergence uniforme de cette suite de fonctions continues, on a aussi∫ 1

0
fn(t) dt→

∫ 1

0
f∞(t) dt

et donc ∫ 1

0
f∞(t) dt > 1

Ainsi f∞ ∈ A et la partie A est donc fermée en vertu de la caractérisation
séquentielle des parties fermées.
b) Par l’absurde, supposons qu’il existe f ∈ A vérifiant ‖f‖∞ 6 1. Puisque∣∣∣∣∫ 1

0
f(t) dt

∣∣∣∣ 6 ∫ 1

0
|f(t)| dt 6

∫ 1

0
‖f‖∞ dt 6 1

on peut affirmer que ∫ 1

0
f(t) dt = 1

et donc ∫ 1

0
(1− f(t)) dt = 0

Or la fonction t 7→ 1− f(t) est continue et positive, c’est donc la fonction nulle.
Par suite f est la fonction constante égale à 1, or f(0) = 0, c’est absurde.

Exercice 15 : [énoncé]
a) Soient (fn) une suite convergente d’éléments de A et f∞ ∈ E sa limite.
Puisque la convergence de la suite (fn) a lieu pour la norme ‖ . ‖∞, il s’agit d’une
convergence uniforme.
Puisqu’il y a convergence uniforme, il y a convergence simple et en particulier

fn(0)→ f∞(0)

On en déduit f∞(0) = 0.
Puisqu’il y a convergence uniforme de cette suite de fonctions continues, on a aussi∫ 1

0
fn(t) dt→

∫ 1

0
f∞(t) dt

et donc
∫ 1

0 f∞(t) dt > 1.
Ainsi f∞ ∈ A et la partie A est donc fermée en vertu de la caractérisation
séquentielle des parties fermées.
b) Par l’absurde, supposons qu’il existe f ∈ A vérifiant ‖f‖∞ 6 1. Puisque∣∣∣∣∫ 1

0
f(t) dt

∣∣∣∣ 6 ∫ 1

0
|f(t)| dt 6

∫ 1

0
‖f‖∞ dt 6 1

on peut affirmer que ∫ 1

0
f(t) dt = 1

et donc ∫ 1

0
(1− f(t)) dt = 0

Or la fonction t 7→ 1− f(t) est continue et positive, c’est donc la fonction nulle.
Par suite f est la fonction constante égale à 1, or f(0) = 0, c’est absurde.
c) d(0̃, A) = inf

f∈A
‖f‖∞ et par ce qui précède on a déjà d(0̃, A) > 1.

Considérons maintenant la fonction fn définie pour n ∈ N? par le schéma.

La fonction fn
La fonction fn est continue, fn(0) = 0 et par calcul d’aires∫ 1

0
fn(t) dt = 1

2n
n+ 1
n

+
(

1− 1
n

)
n+ 1
n

= (2n− 1)(n+ 1)
2n2 = 2n2 + n− 1

2n2 > 1
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Ainsi la fonction fn est élément de A. Or

‖fn‖∞ = n+ 1
n
→ 1

donc
d(0̃, A) = 1

Exercice 16 : [énoncé]
a) Soit (un) une suite convergente d’éléments de A de limite u∞ = (x∞, y∞).
Pour tout n ∈ N, on peut écrire un = (xn, yn) avec xnyn = 1. À la limite on
obtient x∞y∞ = 1 et donc u∞ = 1.
En vertu de la caractérisation séquentielle des parties fermées, on peut affirmer
que A est fermée.
La partie B, quant à elle, est fermée car produit cartésien de deux fermées.
b) Posons

un = (1/n, 0) = (1/n, n) + (0,−n) ∈ A+B

Quand n→ +∞, un → (0, 0).
Or (0, 0) /∈ A+B car le premier élément d’un couple appartenant à A+B ne
peut pas être nul.

Exercice 17 : [énoncé]
a) On a

R\Z =
⋃
n∈Z

]n, n+ 1[

Puisque R\Z est une réunion d’ouverts, c’est un ouvert.
b) Soit (xn) une suite convergente d’entiers de limite `.
Pour ε = 1/2, il existe un rang N ∈ N tel que

∀n > N, |xn − `| < 1/2

et alors
∀m,n > N, |xm − xn| < 1

Puisque les termes de la suite (xn) sont entiers, on en déduit

∀m,n > N, xm = xn

La suite (xn) est alors constante à partir du rang N et sa limite est donc un
nombre entier.
c) Considérons f : R→ R définie par f(x) = sin(πx).
La fonction f est continue et

Z = f−1 ({0})
avec {0} partie fermée de R.

Exercice 18 : [énoncé]
Posons ϕ : E → R l’application définie par ϕ(P ) = P (0).
L’application ϕ est linéaire et puisque |ϕ(P )| 6 N1(P ), cette application est
continue. On en déduit que Ω = ϕ−1 (R?) est un ouvert relatif à E i.e. un ouvert
de E pour la norme N1.
Pour la norme N2, montrons que la partie Ω n’est pas ouverte en observant qu’elle
n’est pas voisinage de son point P = 1. Pour cela considérons la fonction continue
f : [0, 2]→ R donnée par le graphe suivant :

Par le théorème d’approximation de Weierstrass, il existe une suite (Pn) de
polynômes vérifiant

sup
t∈[0,2]

|Pn(t)− f(t)| → 0

et en particulier
Pn(0)→ 0 et N2(Pn − P )→ 0

Considérons alors la suite de polynômes (Qn) avec

Qn = Pn − Pn(0)

Pour tout n ∈ N, Qn(0) = 0 donc Qn /∈ Ω et

N2(Qn) 6 N2(Pn − P ) + |Pn(0)| → 0

donc
Qn

N2−−→ P

Puisque la partie Ω n’est pas voisinage de chacun de ses points, elle n’est pas
ouverte pour la norme N2.

Exercice 19 : [énoncé]
Supposons

◦
F 6= ∅ et introduisons x ∈

◦
F , il existe ε > 0 tel que B(x, ε) ⊂ F . Pour

tout u ∈ E tel que u 6= 0E , considérons

y = x+ ε

2
u

‖u‖

on a y ∈ B(x, ε) donc y ∈ F , or x ∈ F donc u ∈ F . Ainsi E ⊂ F puis E = F .
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Exercice 20 : [énoncé]
a) Si a est intérieur à A alors A est voisinage de a et donc B aussi. Par suite
a ∈ B◦.
Si a est adhérent à A alors a est limite d’une suite convergente d’éléments de A.
Celle-ci est aussi une suite convergente d’éléments de B donc a ∈ B̄. On peut
aussi déduire ce résultat du précédent par un passage au complémentaire.
b) A ∩B ⊂ A,B donc (A ∩B)◦ est inclus dans A◦ ∩B◦. Inversement si a un
élément de A◦ ∩B◦, alors A est voisinage de a et B aussi donc A∩B est voisinage
de a et donc a est intérieur à A ∩B. Ainsi (A ∩B)◦ et A◦ ∩B◦ sont égaux.
A ⊂ A ∪B et B ⊂ A ∪B donc A◦ ∪B◦ est inclus dans (A ∪B)◦. L’égalité n’est
pas toujours vraie. Un contre-exemple est obtenu pour A = ]0, 1] et B = [1, 2[ où
A◦ ∪B◦ = ]0, 1[ ∪ ]1, 2[ alors que (A ∪B)◦ = ]0, 2[.
c) Par passage au complémentaire des résultats précédents : A ∪B et Ā ∪ B̄ sont
égaux alors que Ā ∩ B̄ contient A ∩B sans pouvoir dire mieux. On peut aussi
mener une résolution directe en exploitant a) et la caractérisation séquentielle des
points adhérents pour l’inclusion de A ∪B dans Ā ∪ B̄.

Exercice 21 : [énoncé]
F̄ ⊂ E et 0E ∈ F̄ car 0E ∈ F .
Soient λ, µ ∈ K et x, y ∈ F̄ .
Il existe deux suites (xn) et (yn) d’éléments de F vérifiant

xn → x et yn → y

On a alors
λxn + µyn → λx+ µy

avec λxn + µyn ∈ F pour tout n ∈ N. On en déduit λx+ µy ∈ F̄ .

Exercice 22 : [énoncé]
Puisque A ⊂ VectA, on a Ā ⊂ VectA.
Puisque VectA est un sous-espace vectoriel, on montrer aisément que VectA l’est
aussi. Puisqu’il contient Ā, on obtient

Vect(Ā) ⊂ VectA

Exercice 23 : [énoncé]
On a

Fr(A) = Ā\
◦
A = Ā ∩ CE

◦
A = A ∩ CEA

On en déduit que Fr(A) est fermée par intersection de parties fermées

Exercice 24 : [énoncé]
On sait

Fr(F ) = F̄ ∩ CEF

donc
Fr(Fr(F )) = Fr(F ) ∩ CEFr(F )

Or Fr(F ) ⊂ F̄ = F donc CEF ⊂ CEFr(F ) puis CEF ⊂ CEFrF .
De plus FrF ⊂ CEF donc FrF ⊂ CEFrF puis

Fr(Fr(F )) = Fr(F )

Exercice 25 : [énoncé]
a) Soit x ∈ A ∩ B̄. Il existe une suite (bn) ∈ BN telle que bn → x. Or x ∈ A et A
est ouvert donc à partir d’un certain rang bn ∈ A. Ainsi pour n assez grand
bn ∈ A ∩B et puisque bn → x, x ∈ A ∩B.
b) Si A ∩B = ∅ alors A ∩ B̄ ⊂ A ∩B = ∅ = ∅.

Exercice 26 : [énoncé]
a) Soient a, b ∈ Ā. Il existe (an) ∈ AN et (bn) ∈ AN telles que an → a et bn → b.
Pour tout λ ∈ [0, 1],

λa+ (1− λ)b = lim
n→+∞

(λan + (1− λ)bn)

avec λan + (1− λ)bn ∈ [an, bn] ⊂ A donc λa+ (1− λ)b ∈ Ā.
b) Soient a, b ∈ A◦. Il existe αa, αb > 0 tel que B(a, αa), B(b, αb) ⊂ A. Posons
α = min(αa, αb) > 0.
Pour tout λ ∈ [0, 1] et tout x ∈ B(λa+ (1− λ)b, α) on a x = (λa+ (1− λ)b) + αu
avec u ∈ B(0, 1).
a′ = a+ αu ∈ B(a, α) ⊂ A et b′ = b+ αu ∈ B(b, α) ⊂ A donc [a′, b′] ⊂ A puisque
A est convexe donc λa′ + (1− λ)b′ = x ∈ A. Ainsi B(λa+ (1− λ)b, α) ⊂ A et donc
λa+ (1− λ)b ∈ A◦. Finalement A◦ est convexe.

Exercice 27 : [énoncé]
A ⊂ Ā, B ⊂ B̄ donc d(Ā, B̄) 6 d(A,B).
Pour tout x ∈ Ā et y ∈ B̄, il existe (an) ∈ AN et (bn) ∈ BN telles que an → x et
bn → y.
On a alors d(x, y) = lim

n→+∞
d(an, bn) or d(an, bn) > d(A,B) donc à la limite

d(x, y) > d(A,B) puis d(Ā, B̄) > d(A,B) et finalement l’égalité.
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Exercice 28 : [énoncé]

a)
n⋃
i=1

Ai est un fermé qui contient
n⋃
i=1

Ai donc
n⋃
i=1

Ai ⊂
n⋃
i=1

Ai.

Pour tout j ∈ {1, . . . , n}, Aj ⊂
n⋃
i=1

Ai et
n⋃
i=1

Ai est fermé donc Aj ⊂
n⋃
i=1

Ai puis
n⋃
i=1

Ai ⊂
n⋃
i=1

Ai.

b)
n⋂
i=1

Ai est un fermé qui contient
n⋂
i=1

Ai donc
n⋂
i=1

Ai ⊂
n⋂
i=1

Ai.

Il ne peut y avoir égalité : pour A1 = Q, A2 = R\Q on a A1 ∩A2 = ∅ et
A1 ∩A2 = R.

Exercice 29 : [énoncé]
Pour tout x ∈ A, x ∈ Ā et donc |f(x)| 6 ‖f‖∞,Ā. Ainsi

‖f‖∞,A 6 ‖f‖∞,Ā

Soit x ∈ Ā, il existe (un) ∈ AN tel que un → x et alors f(un)→ f(x) par
continuité de f . Or |f(un)| 6 ‖f‖∞,A donc à la limite |f(x)| 6 ‖f‖∞,A puis

‖f‖∞,Ā 6 ‖f‖∞,A

Exercice 30 : [énoncé]
Commençons par montrer que Dn(C) est dense dansMn(C).
Soit A ∈Mn(C). La matrice A est trigonalisable, on peut donc écrire
A = PTP−1 avec P ∈ GLn(C) et T ∈ T +

n (C). Posons alors pour p ∈ N?, on pose
Ap = P (T +Dp)P−1 avec Dp = diag(1/p, 2/p, . . . , n/p).
Par opérations, Ap −−−−−→

p→+∞
A et pour p assez grand les coefficients diagonaux de

la matrice triangulaire T +Dp sont deux à deux distincts, ce qui assure
Ap ∈ Dn(C). Ainsi A ∈ Dn(C) et donc Dn(C) =Mn(C).
Montrons maintenant que l’intérieur de Dn(C) est formée des matrices possédant
exactement n valeurs propres distinctes.
Soit A ∈ Dn(C).
Cas |SpA| < n.
On peut écrire A = PDP−1 avec P ∈ GLn(C) et D = diag(λ, λ, λ2, . . . , λn).

Posons alors Dp = D +


0 1/p
0 0 (0)

. . .
(0) 0

 et Ap = PDpP
−1.

La matrice Dp n’est pas diagonalisable car dimEλ(Dp) < mλ(Dp) donc Ap non
plus et puisqueAp → A, on peut affirmer que la matrice A n’est pas intérieure à
Dn(C).
Cas |SpA| = n.
Supposons par l’absurde que A n’est pas intérieur à Dn(C). Il existe donc une suite
(Ap) de matrices non diagonalisables convergeant vers A. Puisque les matrices Ap
ne sont pas diagonalisables, leurs valeurs propres ne peuvent être deux à deux
distinctes. Notons λp une valeur propre au moins double de Ap. Puisque Ap → A,
par continuité du déterminant χAp → χA. Les coefficients du polynôme
caractéristique χAp sont donc bornés ce qui permet d’affirmer que les racines de
χAp le sont aussi (car si ξ est racine de P = Xn + an−1X

n−1 + · · ·+ a1X + a0, on
a |ξ| 6 max (1, |a0|+ |a1|+ · · ·+ |an−1|)). La suite complexe (λp) étant bornée, on
peut en extraire une suite convergente (λϕ(p)) de limite λ. On a alors
Ap − λϕ(p)In → A− λIn. Or les valeurs propres de A étant simples, on a
dim ker(A− λIn) 6 1 et donc rg(A− λIn) > n− 1. La matrice A− λIn possède
donc un déterminant extrait non nul d’ordre n− 1. Par continuité du
déterminant, on peut affirmer que pour p assez grand rg(Aϕ(p) − λϕ(p)In) > n− 1
et donc dim ker(Aϕ(p) − λϕ(p)In) 6 1 ce qui contredit la multiplicité de la valeur
propre λϕ(p). C’est absurde et on conclut que la matrice A est intérieure à Dn(C).

Exercice 31 : [énoncé]
a) Si A est fermée alors Ā = A donc FrA = A\A◦ ⊂ A.
Inversement, si Fr(A) = Ā\A◦ ⊂ A alors puisque A◦ ⊂ A on a Ā ⊂ A.
En effet, pour x ∈ Ā, si x ∈ A◦ alors x ∈ A et sinon x ∈ FrA et donc x ∈ A.
Puisque de plus A ⊂ Ā, on en déduit A = Ā et donc Ā est fermé.
b) A est un ouvert si, et seulement si, CEA est un fermé i.e. si, et seulement si,
Fr(CEA) ⊂ CEA.
Or Fr(CEA) = FrA donc A est un ouvert si, et seulement si, FrA ∩A = ∅.

Exercice 32 : [énoncé]
a) Une matrice de R est annulée par un polynôme de la forme Xn − 1 dont les
racines sont de module 1. Puisque les valeurs propres figurent parmi les racines
des polynômes annulateurs

R ⊂ U

b) Une matrice M ∈M2(C) admet deux valeurs propres comptées avec
multiplicité λ, µ. Celles-ci sont déterminées comme les solutions du système{

λ+ µ = trM
λµ = detM
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Pour alléger les notations, posons p = (trM)/2 et q = detM . Les valeurs propres
λ et µ sont les deux racines du polynôme

X2 − pX + q

et en posant δ ∈ C tel que δ2 = p2 − q, ces racines sont

λ = p+ δ et µ = p− δ

de sorte que

|λ|2 = |p|2 + |δ|2 + 2Re(p̄δ) et |µ|2 = |p|2 + |δ|2 − 2Re(p̄δ)

On en déduit que la fonction f qui à M ∈M2(C) associe le réel(
|λ|2 − 1

)2 (
|µ|2 − 1

)2
s’exprime comme somme, produit et conjuguée des trM et

detM et c’est donc une fonction continue.
Puisque U = f−1({0}) avec {0} fermé, U est une partie fermée deM2(C).
c) Soit M ∈ U . La matrice M est trigonalisable et donc il existe P ∈ GL2(C) et
T ∈ T +

2 (C) telle que

M = PTP−1 avec T =
(
λ ν
0 µ

)
, |λ| = |µ| = 1

On peut écrire λ = eiα et µ = eiβ avec α, β ∈ R.
Pour n ∈ N?, posons

αn = 2π [nα/2π]
n

et βn = 2π [nβ/2π] + 1
n

et considérons la matrice

Mn = PTnP
−1 avec Tn =

(
eiαn ν

0 eiβn

)
Par construction,

eiαn 6= eiβn

au moins pour n assez grand et ce même lorsque α = β.
On en déduit que pour ces valeurs de n la matrice Tn est diagonalisable.
De plus, puisque (

eiαn
)n =

(
eiβn

)n = 1

on a alors Tnn = I2 et donc Mn ∈ R.
Enfin, on a évidemment Mn →M .
d) U est un fermé contenant R donc R̄ ⊂ U et par double inclusion R̄ = U .

Exercice 33 : [énoncé]
La fonction f : (x, y) 7→ x3 + y3 − x2 − y2 est continue sur R2 et U = f−1(]0,+∞[)
est un ouvert relatif de R2 car image réciproque d’un ouvert par une fonction
continue. Or un ouvert relatif à R2 n’est autre qu’un ouvert de R2.

Exercice 34 : [énoncé]
L’application det :Mn(R)→ R est polynomiale en les coefficients matriciels, elle
est donc continue. Puisque GLn(R) est l’image réciproque de l’ouvert R? par cette
application continue, GLn(R) est un ouvert relatif àMn(R), c’est donc un ouvert
deMn(R).

Exercice 35 : [énoncé]
Par le cas d’égalité dans l’inégalité de Cauchy-Schwarz

(x, y) est libre ⇔ |(x | y)| < ‖x‖ ‖y‖

Considérons l’application f : E2 → R définie par

f(x, y) = ‖x‖ ‖y‖ − (x | y)

L’ensemble
{

(x, y) ∈ E2/(x, y) libre
}

= f−1 (]0,+∞[) est un ouvert car image
réciproque d’un ouvert par une fonction continue.

Exercice 36 : [énoncé]
Soit A ∈ Rp. La matrice A possède un déterminant extrait non nul d’ordre p. Par
continuité du déterminant, au voisinage de A, toute matrice à ce même
déterminant extrait non nul et est donc de rang supérieur à p. Ainsi la matrice A
est intérieure à Rp.

Exercice 37 : [énoncé]
(i) ⇒ (ii) Supposons f continue et introduisons A ⊂ E. Tout élément y de f(Ā)
est l’image par f de la limite x d’une suite convergente (xn) d’éléments de A. Or
f étant continue, f(xn)→ y et donc y est limite d’une suite d’élément de f(A).
Ainsi f(Ā) ⊂ f(A).
(ii) ⇒ (iii) Supposons (ii) et introduisons B ⊂ F . Pour A = f−1(B), on a
f(Ā) ⊂ f(A) ⊂ B̄ donc Ā ⊂ f−1(B̄) c’est à dire

f−1(B) ⊂ f−1(B̄)
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(iii) ⇒ (iv) Supposons (iii) et introduisons B ⊂ F . On remarque la propriété
f−1(CFB) = CEf

−1(B) et donc

f−1(B◦) = f−1(CF (CFB)) = CEf
−1(CFB) ⊂ CEf−1(CFB) =

(
CEf

−1(CFB)
)◦ =

(
f−1(B)

)◦
(iv) ⇒ (i) Supposons (iv). Pour tout a ∈ A et tout ε > 0, B(f(a), ε) est un ouvert
de F dont

f−1(B(f(a), ε)) ⊂
(
f−1(B(f(a), ε))

)◦
Or a ∈ f−1(B(f(a), ε)) donc a ∈

(
f−1(B(f(a), ε))

)◦. Par conséquent, il existe
α > 0 tel que

B(a, α) ⊂ f−1(B(f(a), ε))

Ainsi nous obtenons

∀a ∈ E,∀ε > 0,∃α > 0,∀x ∈ E, x ∈ B(a, α)⇒ f(x) ∈ B(f(a), ε)

ce qui correspond à la continuité de f .

Exercice 38 : [énoncé]
Si u est continue alors

A = {x ∈ E/ ‖u(x)‖ = 1} = f−1({1})

est l’image réciproque du fermé {1} par l’application continue f = ‖ . ‖ ◦ u. La
partie A est donc un fermé relatif à E, c’est donc une partie fermée.
Inversement, si u n’est pas continu alors l’application u n’est par bornée sur
{x ∈ E/ ‖x‖ = 1}. Cela permet de construire une suite (xn) ∈ EN vérifiant

‖xn‖ = 1 et ‖u(xn)‖ > n

En posant
yn = 1

‖u(xn)‖xn

on obtient une suite (yn) ∈ AN vérifiant yn → 0 .
Or 0 /∈ A donc la partie A n’est pas fermée.

Exercice 39 : [énoncé]
Si la forme linéaire est continue assurément son noyau est fermé car image
réciproque du fermé {0}.
Inversement, supposons que ϕ est une forme linéaire discontinue.

Pour tout k ∈ R+, il existe alors x ∈ E tel que

|ϕ(x)| > k ‖x‖

En prenant k = n ∈ N, on définit ainsi une suite (xn) d’éléments de E vérifiant
pour tout n ∈ N

|ϕ(xn)| > n ‖xn‖
Posons alors

yn = 1
ϕ(xn)xn

On a par construction ϕ(yn) = 1 et ‖yn‖ 6 1/n donc yn → 0E .
Considérons enfin

zn = y0 − yn
On a ϕ(zn) = 0 et donc zn ∈ kerϕ. Or

zn → y0

avec y0 /∈ kerϕ. Ainsi kerϕ n’est pas fermé car ne contient pas toutes les limites
de ses suites convergentes.

Exercice 40 : [énoncé]
a) Notons

A = {x ∈ [0, 1] /f(x) = x}
On a évidemment A ⊂ Imf , mais inversement, pour x ∈ Imf , on peut écrire
x = f(a) et alors

f(x) = f(f(a)) = f(a) = x

Ainsi Imf ⊂ A, puis, par double inclusion, A = Imf .
On en déduit que A est un segment de R de la forme [α, β] car image d’un
compact par une fonction réelle continue.
b) Une fonction f d’allure suivante convient
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c) Soit f solution dérivable.
Si α = β alors f est constante égale à cette valeur commune.
Si α < β alors f ′(α) = f ′d(α) = 1 car f(x) = x sur [α, β].
Par suite, si α > 0, f prend des valeurs strictement inférieur à α ce qui est
contradictoire avec l’étude qui précède. On en déduit α = 0.
De même on obtient β = 1 et on conclut f : x ∈ [0, 1] 7→ x.

Exercice 41 : [énoncé]
a) Soit f solution. Formons

A = {x ∈ [0, 1] /f(x) = x}

On a évidemment A ⊂ Imf , mais inversement, pour x ∈ Imf , on peut écrire
x = f(a) et alors

f(x) = f(f(a)) = f(a) = x

Ainsi Imf ⊂ A, puis, par double inclusion, A = Imf .
On en déduit que A est un segment de R de la forme [α, β] car image d’un
compact par une fonction réelle continue.
Pour tout x ∈ [α, β], f(x) = x et pour tout x ∈ [0, α[ ∪ ]β, 1], f(x) ∈ [α, β].
Inversement, une fonction continue vérifiant les deux conditions précédente est
solution.
Cela peut apparaître sous la forme d’une fonction ayant l’allure suivante

b) Soit f solution dérivable.
Si α = β alors f est constante égale à cette valeur commune.
Si α < β alors f ′(α) = f ′d(α) = 1 car f(x) = x sur [α, β].
Par suite, si α > 0, f prend des valeurs strictement inférieur à α ce qui est
contradictoire avec l’étude qui précède. On en déduit α = 0.
De même on obtient β = 1 et on conclut f : x ∈ [0, 1] 7→ x.

Exercice 42 : [énoncé]
a) Par télescopage (

n∑
k=0

uk

)
◦ (u− Id) = un+1 − Id

donc
vn ◦ (u− Id) = 1

(n+ 1)
(
un+1 − Id

)
b) Soit x ∈ Im(u− Id)∩ ker(u− Id). On peut écrire x = u(a)− a et on a u(x) = x.
On en déduit

vn ◦ (u− Id)(a) = x

Or
vn ◦ (u− Id)(a) = 1

n+ 1
(
un+1(a)− a

)
→ 0

car ∥∥un+1(a)− a
∥∥ 6

∥∥un+1(a)
∥∥+ ‖a‖ 6 2 ‖a‖

On en déduit x = 0.
c) Par la formule du rang

dim Im(u− Id) + dim ker(u− Id) = dimE

et puisque les deux espaces sont en somme directe, ils sont supplémentaires.
d) Soit z ∈ E. On peut écrire z = x+ y avec x ∈ Im(u− Id) et y ∈ ker(u− Id).
On a alors vn(z) = vn(x) + y avec, comme dans l’étude du b), vn(x)→ 0. On en
déduit vn(z)→ y.
Ainsi la suite de fonctions (vn) converge simplement vers la projection p sur
ker(u− Id) parallèlement à Im(u− Id).
Puisque pour tout x ∈ E, on a

‖vn(x)‖ 6 1
n+ 1

n∑
k=0

∥∥uk(x)
∥∥ 6

1
n+ 1

n∑
k=0
‖x‖ = ‖x‖

on obtient à la limite ‖p(x)‖ 6 ‖x‖. On en déduit que la projection p est continue
puis que Im(u− Id) = ker p est une partie fermée.
e) Supposons la convergence simple de la suite de fonctions (vn) et la fermeture de
Im(u− Id).
Soit z ∈ E. Posons y = lim

n→+∞
vn(z) et x = z − y.

D’une part, puisque

u(vn(z)) = 1
n+ 1

n∑
k=0

uk+1(z) = vn(z) + 1
n+ 1

(
un+1(z)− z

)
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on obtient à la limite
u(y) = y

car l’application linéaire u est continue et
∥∥un+1(z)

∥∥ 6 ‖z‖. On en déduit
y ∈ ker(u− Id).
D’autre part

z − vn(z) = 1
n+ 1

(
n∑
k=0

(Id− uk)(z)
)

et

Im(Id− uk) = Im
(

(Id− u) ◦
k−1∑
`=0

u`−1

)
⊂ Im(Id− u) = Im(u− Id)

donc z − vn(z) ∈ Im(u− Id). On en déduit x = lim(z − vn(z)) ∈ Im(u− Id) car
Im(u− Id) est fermé.
Finalement, on a écrit z = x+ y avec

x ∈ Im(u− Id) et y ∈ ker(u− Id)

Exercice 43 : [énoncé]
On note U l’ensemble des polynômes considérés.
Soit P ∈ U . En notant x1 < . . . < xn ses racines, on peut écrire

P = λ(X − x1) . . . (X − xn)

avec λ 6= 0. Pour fixer les idées, supposons λ > 0 (il est facile d’adapter la
démonstration qui suit au cas λ < 0)
Posons y1, . . . , yn−1 les milieux des segments [x1, x2] , . . . , [xn−1, xn].
Posons aussi y0 ∈ ]−∞, x1[ et yn ∈ ]xn,+∞[.
P (y0) est du signe de (−1)n, P (y1) est du signe de (−1)n−1,. . . , P (yn−1) est du
signe de (−1), P (yn) du signe de +1.
Considérons maintenant l’application

fi : Q ∈ Rn [X] 7→ Q(yi)

L’application fi est continue et donc f−1
i (±R+?) est une partie ouverte de Rn [X].

Considérons V l’intersection des

f−1
0
(
(−1)nR+?) , f−1

1
(
(−1)n−1R+?) ,. . . ,f−1

n (R+?)

Les éléments de V sont des polynômes réels alternant de signe entre
y0 < y1 < . . . < yn. Par application du théorème des valeurs intermédiaires, un tel
polynôme admet n racines distinctes et donc est scindé à racines simples. Ainsi
V ⊂ U . Or P ∈ V et V est ouvert donc V est voisinage de P puis U est voisinage
de P .
Au final U est ouvert car voisinage de chacun de ses éléments.

Exercice 44 : [énoncé]
Soit P ∈ On. En notant x1 < . . . < xn ses racines, on peut écrire

P = α(X − x1) . . . (X − xn)

avec α 6= 0.
Posons y1, . . . , yn−1 les milieux des segments [x1, x2] , . . . , [xn−1, xn].
Posons aussi y0 ∈ ]−∞, x1[ et yn ∈ ]xn,+∞[.
P (y0) est du signe de (−1)nα, P (y1) est du signe de (−1)n−1α,. . . , P (yn−1) est
du signe de (−1)α, P (yn) du signe de α. Pour simplifier l’exposé de ce qui suit, on
va supposer α > 0. La résolution se transposera aisément au cas α < 0.
Considérons l’application

fi : Q ∈ Rn [X] 7→ Q(yi)

L’application fi est continue et donc f−1
j (R+?) et f−1

j (R−?) sont des parties
ouvertes de Rn [X].
Considérons U l’intersection des ouverts

f−1
0
(
(−1)nR+?) , f−2

1
(
(−1)n−1R+?) ,. . . ,f−1

n (R+?)

Les éléments de U sont des polynômes réels alternant de signe entre
y0 < y1 < . . . < yn. Par application du théorème des valeurs intermédiaires, un tel
polynôme admet n racines distinctes et donc est scindé à racines simples. Ainsi
U ⊂ On. Or P ∈ U et U est ouvert donc U est voisinage de P puis On est
voisinage de P .
Au final On est ouvert car voisinage de chacun de ses éléments.
Dans le cas n = 1 : Fn = On et donc Fn est ouvert.
Dans le cas n = 2 : Fn réunit les polynômes P = aX2 + bX + c avec b2 − 4ac > 0
(que a soit égal à 0 ou non). L’application P 7→ b2 − 4ac étant continue, on peut
affirmer que Fn est encore ouvert car image réciproque d’un ouvert pas une
application continue.
Dans le cas n > 3 : Pn = X(1 +X2/n) est une suite de polynômes non scindés
convergeant vers X scindé à racines simples. Par suite Fn n’est pas ouvert.

Exercice 45 : [énoncé]
Par l’absurde, supposons f discontinue en a ∈ R. On peut alors construire une
suite (xn) vérifiant

xn → a et ∀n ∈ N, |f(xn)− f(a)| > ε

avec ε > 0 fixé.
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Soit n ∈ N, puisque f ([a, xn]) est un segment contenant f(a) et f(xn), il contient
aussi l’intermédiaire f(a)± ε (le ± étant déterminé par la position relative de
f(xn) par rapport à f(a)). Il existe donc an compris entre a et xn vérifiant

|f(an)− f(a)| = ε

La suite (an) évolue dans le fermé f−1 ({f(a) + ε}) ∪ f−1 ({f(a)− ε}) et converge
vers a donc a ∈ f−1 ({f(a) + ε}) ∪ f−1 ({f(a)− ε}) ce qui est absurde.

Exercice 46 : [énoncé]
Considérons l’application ϕ : L(E)→ L(E) déterminée par ϕ(f) = f2 − f .
L’application ϕ est continue par opérations sur les fonctions continues,
notamment parce que l’application f 7→ f ◦ f est continue (elle s’obtient à partir
du produit dans l’algèbre L(E)).
Puisque

{
0̃
}
est une partie fermée de L(E), l’ensemble P = ϕ−1 ({0̃

})
est un

fermé relatif à L(E), donc un fermé de L(E).

Exercice 47 : [énoncé]
L’application λ 7→ det(A− λIn) est polynomiale non nulle en λ donc possède un
nombre fini de racine.
Par suite : ∀A ∈Mn(R),∀α > 0, B(A,α) ∩GLn(R) 6= ∅.

Exercice 48 : [énoncé]
a) Soient u, v ∈ F̄ et λ, µ ∈ R. Il existe (un), (vn) ∈ FN telles que un → u et
vn → v.
Comme λun + µvn → λu+ µv et λun + µvn ∈ F on a λu+ µv ∈ F̄ .
b) Soit H un hyperplan de E.
Si H̄ = H alors H est fermé.
Sinon alors H̄ est un sous-espace vectoriel de E, contenant H et distinct de H.
Puisque H est un hyperplan ∃a /∈ H tel que H ⊕Vect(a) = E.
Soit x ∈ H̄\H. On peut écrire x = h+ λa avec h ∈ H et λ 6= 0. Par opération
a ∈ H̄ et puisque H ⊂ H̄ on obtient E ⊂ H̄. Finalement H̄ = E et donc H est
dense.

Exercice 49 : [énoncé]
a) Pour tout a ∈ E et tout ε > 0, B(a, ε) ∩ U 6= ∅ car U est dense.
Soit x ∈ B(a, ε) ∩ U . Puisque B(a, ε) ∩ U est ouvert, il existe α > 0 tel que
B(x, α) ⊂ B(a, ε) ∩ U et puisque V est dense B(x, α) ∩ V 6= ∅. Par suite

B(a, ε) ∩ (U ∩ V ) 6= ∅

b) Soient F et G deux fermés d’intérieurs vides.

CE(F ∪G)◦ = CE(F ∪G) = CEF ∩ CEG

avec CEF et CEG ouverts denses donc

CEF ∩ CEG = E

puis
(F ∪G)◦ = ∅

Exercice 50 : [énoncé]
a) Posons

A = {n > n0/a > un}

A est une partie de N, non vide car n0 ∈ A et majorée car un → +∞.
La partie A admet donc un plus grand élément n > n0 et pour celui-ci
un 6 a < un+1.
Par suite |un − a| 6 |un+1 − un| 6 ε car n > n0.
b) Soient x ∈ R et ε > 0.
Puisque un+1−un → 0, il existe n0 ∈ N tel que pour tout n > n0, |un+1 − un| 6 ε.
Puisque vn → +∞, il existe p ∈ N tel que x+ vp > un0 .
Par l’étude précédente, il existe n ∈ N tel que |un − (x+ vp)| 6 ε i.e.
|(un − vp)− x| 6 ε.
Par suite l’ensemble {un − vp/n, p ∈ N} est dense dans R.
c) Remarquons que

A = {cos(lnn)/n ∈ N?} = {cos (ln(n+ 1)− 2pπ) /n, p ∈ N}

Posons un = ln(n+ 1) et vn = 2nπ. Les hypothèses précédentes sont réunies et
donc

B = {un − vp/n, p ∈ N} = {ln(n+ 1)− 2pπ/n, p ∈ N}

est dense dans R.
Soient x ∈ [−1, 1] et θ = arccosx.
Par densité, il existe une suite (θn) d’éléments de B convergeant vers θ et, par
continuité de la fonction cosinus, la suite (xn) de terme général xn = cos(θn)
converge vers x = cos θ.
Or cette suite (xn) est une suite d’éléments de cos(B) = A et donc A est dense
dans [−1, 1].
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Exercice 51 : [énoncé]
Soient x ∈ R et ε > 0.
Il existe n0 ∈ N? tel que 1/n0 6 ε.
Pour a > lnn0 et n = E(ea) > n0, on a lnn 6 a 6 ln(n+ 1).
On en déduit

|a− lnn| 6 ln(n+ 1)− lnn = ln(1 + 1/n) 6 1/n 6 1/n0 6 ε

Puisque m− x −−−−−→
m→+∞

+∞, pour m assez grand, on a a = m− x > lnn0 et donc
il existe n ∈ N? vérifiant |a− lnn| 6 ε i.e.

|m− lnn− x| 6 ε

Par suite {m− lnn/(m,n) ∈ Z× N?} est dense dans R.

Exercice 52 : [énoncé]
a) Il existe h ∈ H tel que h 6= 0 car H n’est pas réduit à {0}.
Si h > 0 alors h ∈ {x ∈ H/x > 0}. Si h < 0 alors −h ∈ {x ∈ H/x > 0}.
Dans les deux cas {x ∈ H/x > 0} 6= ∅. De plus {x ∈ H/x > 0} ⊂ R et
{x ∈ H/x > 0} est minoré par 0 donc a = inf {x ∈ H/x > 0} existe dans R.
b) On suppose a > 0.
Si a /∈ H alors il existe x, y ∈ H tel que a < x < y < 2a et alors y − x est élément
de H et vérifie 0 < y − x < a ce qui contredit la définition de a. C’est absurde.
a ∈ H donc aZ =< a >⊂ H.
Inversement, soit x ∈ H. On peut écrire x = aq + r avec q ∈ Z, r ∈ [0, a[ (en fait
q = E(x/a) et r = x− aq)
Puisque r = x− aq avec x ∈ H et aq ∈ aZ ⊂ H on a r ∈ H.
Si r > 0 alors r ∈ {x ∈ H/x > 0} et r < a contredit la définition de a.
Il reste r = 0 et donc x = aq. Ainsi H ⊂ aZ puis l’égalité.
c) Puisque inf {x ∈ H/x > 0} = 0, on peut affirmer que pour tout α > 0, il existe
x ∈ H tel que 0 < x < α.
Soient a ∈ R et α > 0. Montrons H ∩B(a, α) 6= ∅ i.e. H ∩ ]a− α, a+ α[ 6= ∅
Il existe x ∈ H tel que 0 < x < α. Posons n = E(a/x). On a a = nx+ r avec
0 6 r < α.
nx ∈< x >⊂ H et |a− nx| = r < α donc nx ∈ H ∩B(a, α) et donc
H ∩B(a, α) 6= ∅.
Ainsi H est dense dans R.

Exercice 53 : [énoncé]
a) {cos(n)/n ∈ N} = {cos(n)/n ∈ Z} = {cos(n+ 2kπ)/n, k ∈ Z} = cos (Z + 2πZ)

Puisque Z + 2πZ est un sous-groupe de (R,+) et c’est un sous-groupe dense car il
n’est pas monogène puisque π n’est pas rationnel ; c’est en effet un résultat
classique bien que en dehors du programme, les sous-groupes de (R,+) sont
monogènes ou denses.
Pour tout x ∈ [−1, 1], il existe θ ∈ [0, π] tel que cos θ = x et puisque Z + 2πZ est
dense dans R, il existe une suite d’éléments Z + 2πZ convergeant vers θ. L’image
de cette suite par la fonction continue cosinus détermine une suite d’élément de
{cos(n)/n ∈ N} convergeant vers x.
b) En notant que les 2p avec p ∈ N sont des naturels non nuls, on observe

{cos(p ln 2)/p ∈ N} ⊂ {cos(lnn)/n ∈ N?}

Ainsi
cos(ln 2.Z + 2πZ) ⊂ {cos(lnn)/n ∈ N?}

Si π et ln 2 ne sont pas commensurables, on peut conclure en adaptant la
démarche précédente.
Si en revanche π et ln 2 sont commensurables (ce qui est douteux. . . ), on reprend
l’idée précédente avec ln 3 au lieu de ln 2.
Assurément π et ln 3 ne sont pas commensurables car s’ils l’étaient, ln 2 et ln 3 le
seraient aussi ce qui signifie qu’il existe p, q ∈ N? tels que p ln 2 = q ln 3 soit encore
2p = 3q ce qui est faux !

Exercice 54 : [énoncé]
Soit A ∈Mn(C). La matrice A est trigonalisable donc il existe P inversible telle
que P−1AP = T avec T triangulaire supérieure. Posons alors
Tp = T + diag(1/p, 2/p, . . . , n/p) et Ap = PTpP

−1. Il est immédiat que Tp → T
quand p→ +∞ et donc Ap → A. De plus, pour p assez grand, la matrice Tp est
triangulaire supérieure à coefficients diagonaux deux à deux distincts, cette
matrice admet donc n valeurs propres et est donc diagonalisable. Il en est de
même pour Ap qui lui est semblable. Ainsi toute matrice de Mn(C) est limite
d’une suite de matrices diagonalisables.

Exercice 55 : [énoncé]
1ère méthode (nécessitant quelques résultats non triviaux mais intuitifs sur la
codimension)
Par définition, un hyperplan H de E est un sous-espace vectoriel de codimension
1. Son adhérence H̄ est aussi un sous-espace vectoriel et, puisque contenant H, sa
codimension vaut 0 ou 1.
Si H̄ est de codimension 0 alors H̄ = E ce qui signifie que H est dense dans E.
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Si H̄ est de codimension 1, puisque H̄ contient l’hyperplan H, on a H̄ = H et
donc H̄ est fermé.
2ème méthode (plus élémentaire)
Par définition un hyperplan H de E est un sous-espace vectoriel de codimension
1. Il existe donc un vecteur a ∈ E non nul vérifiant

H ⊕Vect(a) = E

Supposons que H ne soit pas fermé. Il existe alors une suite (xn) d’éléments de H
convergeant vers un élément x n’appartenant pas à H. On peut écrire

x = h+ λa avec h ∈ H et λ 6= 0

En considérant
yn = 1

λ
(xn − h)

on construit une suite (yn) d’éléments de H convergeant vers a.
Il est désormais facile d’établir que H est dense dans E. En effet pour z ∈ E, on
peut écrire

z = k + µa

avec k ∈ H et µ ∈ R de sorte que la suite de terme général

zn = k + µyn

est une suite d’éléments de H convergeant vers z.

Exercice 56 : [énoncé]
a) Soit u une suite sommable. On a

+∞∑
n=N+1

|un| → 0

donc pour tout α > 0, il existe N tel que

+∞∑
n=N+1

|un| < α

Considérons alors v définie par vn = un si n 6 N et vn = 0 sinon.
On a v ∈ R(N) et ‖v − u‖1 < α donc B(u, α) ∩ R(N) 6= ∅.
b) Non, en notant u la suite constante égale à 1, B∞(u, 1/2) ∩ R(N) = ∅.

Exercice 57 : [énoncé]
Soit f une fonction élément de E. Pour tout ε > 0, il existe un réel A vérifiant∫ +∞

A

f2(t) dt 6 ε

Considérons alors la fonction ϕ : [0,+∞[→ R définie par ϕ(t) = 1 pour t ∈ [0, A],
ϕ(t) = 0 pour t > A+ 1 et ϕ(t) = 1− (t−A) pour t ∈ [A,A+ 1]. La fonction fϕ
est éléments de E0 et

‖f − fϕ‖2 6

√∫ +∞

A

f2(t) dt 6 ε

Ainsi E0 est dense dans E.
Pour montrer maintenant que F est dense dans E, nous allons établir que F est
dense dans E0.
Soit f une fonction élément de E0. Remarquons∫ +∞

0

(
f(t)− P (e−t)e−t

2/2
)2

dt =
u=e−t

∫ 1

0

(
f(− ln u)e(lnu)2/2 − P (u)

)2 e−(lnu)2

u
du

La fonction u 7→ e−(lnu)2

u est intégrable sur ]0, 1] car
√
u e−(lnu)2

u −−−→
u→0

0.

La fonction g : u 7→ f(− ln u)e(lnu)2/2 peut-être prolongée par continuité en 0 car
f est nulle en dehors d’un segment. Par le théorème de Weierstrass, pour tout
ε > 0, il existe un polynôme P ∈ R [X] vérifiant ‖g − P‖∞,[0,1] 6 ε et pour
ϕ : t 7→ P (e−t)e−t2/2 on a alors

‖f − ϕ‖2 6 λε avec λ =

√∫ 1

0

e−(lnu)2

u
du

Cela permet de conclure à la densité proposée.

Exercice 58 : [énoncé]
Par l’absurde supposons A 6= E.
Il existe un élément a ∈ E tel que a /∈ A. Par translation du problème, on peut
supposer a = 0.
Posons n = dimE.
Si Vect(A) est de dimension strictement inférieure à n alors A est inclus dans un
hyperplan de E et son adhérence aussi. C’est absurde car cela contredit la densité
de A.
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Si Vect(A) est de dimension n, on peut alors considérer (e1, . . . , en) une base de E
formée d’éléments de A.
Puisque 0 /∈ A, pour tout x ∈ A, on remarque : ∀λ ∈ R−,−λx /∈ A (car sinon, par
convexité, 0 ∈ A).
Par convexité de A : ∀λ1, . . . , λn > 0, λ1 + · · ·+ λn = 1⇒ λ1e1 + · · ·+ λnen ∈ A
et donc : ∀λ ∈ R−,∀λ1, . . . , λn > 0, λ1 + · · ·+ λn = 1⇒ λ(λ1e1 + · · ·+ λnen) /∈ A.
Ainsi ∀µ1, . . . , µn 6 0, µ1e1 + · · ·+ µnen /∈ A.
Or la partie {µ1e1 + · · ·+ µnen/µi < 0} est un ouvert non vide de A et donc
aucun de ses éléments n’est adhérent à A. Cela contredit la densité de A.

Exercice 59 : [énoncé]
Soient a < b ∈ A.
Puisque a, b ∈ A, a+b

2 ∈ A, puis
3a+b

4 = a+(a+b)/2
2 ∈ A et a+3b

4 ∈ A etc.
Par récurrence sur n ∈ N, montrons ∀k ∈ {0, . . . , 2n} , ka+(2n−k)b

2n ∈ A.
La propriété est immédiate pour n = 0.
Supposons la propriété vraie au rang n > 0.
Soit k ∈

{
0, . . . , 2n+1}.

Cas k pair :
k = 2k′ avec k′ ∈ {0, . . . , 2n} et ka+(2n+1−k)b

2n+1 = k′a+(2n−k′)b
2n ∈ A en vertu de

l’hypothèse de récurrence.
Cas k impair :
k = 2k′ + 1 avec k′ ∈ {0, . . . , 2n − 1} et

ka+ (2n+1 − k)b
2n+1 = 1

2

(
k′a+ (2n − k′)b

2n + (k′ + 1)a+ (2n − (k′ + 1))b
2n

)
∈ A

car par hypothèse de récurrence

k′a+ (2n − k′)b
2n ,

(k′ + 1)a+ (2n − (k′ + 1))b
2n ∈ A

La récurrence est établie.
Soit x ∈ ]inf A, supA[.
Il existe a, b ∈ A tel que x ∈ [a, b] ce qui permet d’écrire x = λa+ (1− λ)b.
Soit kn = E(2nλ) et xn = kna+(2n−kn)b

2n .
On vérifie aisément que xn → x car 2nk → λ et pour tout n ∈ N xn ∈ A
Ainsi A est dense dans ]inf A, supA[.

Exercice 60 : [énoncé]
Considérons l’ensemble B = lnA = {ln a/a ∈ A}.

Pour tout x, y ∈ B, x+y
2 = ln a+ln b

2 = ln
√
ab ∈ B.

En raisonnant par récurrence, on montre que pour tout x, y ∈ B, on a la propriété

∀n ∈ N,∀k ∈ {0, . . . , 2n} , kx+ (2n − k)y
2n ∈ B

Soit x ∈ ]inf A, supA[. Il existe a, b ∈ A tels que a < x < b.
On a alors ln a < ln x < ln b avec ln a, ln b ∈ B.
On peut écrire ln x = λ ln a+ (1− λ) ln b avec λ ∈ ]0, 1[.
Posons alors kn la partie entière de λ2n et xn = exp

(
kn
2n ln a+

(
1− kn

2n
)

ln b
)

Il est immédiat que xn → x avec pour tout n ∈ N, xn ∈ A.
Si, dans cette suite, il existe une infinité d’irrationnels, alors x est limite d’une
suite d’éléments de A ∩ (R\Q).
Sinon, à partir d’un certain rang, les termes de la suite xn sont tous rationnels.
Le rapport xn+1/xn est alors aussi rationnel ; mais

xn+1

xn
=
(a
b

) kn+1
2n+1 −

kn
2n avec kn+1

2n+1 −
kn
2n = 0 ou 1

2n+1

S’il existe une infinité de n tels que kn+1
2n+1 − kn

2n = 1
2n+1 alors il existe une infinité de

n ∈ N tels que (a
b

) 1
2n ∈ Q

et puisque l’élévation au carré d’un rationnel est un rationnel, le nombre a/b est
lui-même rationnel. Or les racines carrées itérés d’un rationnel différent de 1 sont
irrationnelles à partir d’un certain rang.
Il y a absurdité et donc à parti d’un certain rang kn+1 = 2kn.
Considérons à la suite (x′n) définie par

x′n = exp
(
k′n
2n ln a+

(
1− k′n

2n

)
ln b
)

avec k′n = kn + 1

On obtient une suite d’éléments de A, convergeant vers x et qui, en vertu du
raisonnement précédent, est formée d’irrationnels à partir d’un certain rang.

Exercice 61 : [énoncé]
Nϕ : E → R+ est bien définie et on vérifie immédiatement

Nϕ(λf) = |λ|Nϕ(f) et Nϕ(f + g) 6 Nϕ(f) +Nϕ(g)

Il reste à étudier la véracité de l’implication

Nϕ(f) = 0⇒ f = 0
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Supposons : ϕ−1 (R?) dense dans [0, 1].
Si Nϕ(f) = 0 alors fϕ = 0 et donc pour tout x ∈ ϕ−1(R?), on a f(x) = 0 car
ϕ(x) 6= 0.
Puisque la fonction continue f est nulle sur la partie ϕ−1 (R?) dense dans [0, 1],
cette fonction est nulle sur [0, 1].
Supposons : ϕ−1 (R?) non dense dans [0, 1].
Puisque le complémentaire de l’adhérence est l’intérieur du complémentaire, la
partie ϕ−1({0}) est d’intérieur non vide et donc il existe a < b ∈ [0, 1] tels que
[a, b] ⊂ ϕ−1({0}).
Considérons la fonction f définie sur [0, 1] par

f(x) =
{

(x− a)(b− x) si x ∈ [a, b]
0 sinon

Cette fonction f est continue sur [0, 1], ce n’est pas la fonction nulle mais en
revanche la fonction fϕ est la fonction nulle. Ainsi on a formé un élément f non
nul de E tel que Nϕ(f) = 0. On en déduit que Nϕ n’est pas une norme.

Exercice 62 : [énoncé]
Soit [a, b] ⊂ [1,+∞[ avec a < b. Pour établir la densité de A, montrons que
A ∩ [a, b] est non vide.
Considérons q > 1 tel que qa 6 b.
Il existe N ∈ N tel que

∀n ∈ N, n > N ⇒ un+1

un
6 q

Considérons alors
E =

{
m ∈ N/m > N et um

uN
6 b

}
E est une partie de N, non vide (car N + 1 ∈ E) et majorée (car un → +∞). La
partie E possède donc un plus grand élément M . Pour celui-ci, on a

uM
uN

6 b et uM+1

uN
> b

Or
uM+1 6 quM

donc
uM
uN

>
b

q
> a

Ainsi uM/uN est un élément de A ∩ [a, b].

Exercice 63 : [énoncé]
Soient x ∈ E et r > 0.
Puisque A est une partie dense, B(a, r) ∩A 6= ∅. On peut donc introduire
x ∈ B(a, r) ∩A. Or par intersection d’ouverts, B(a, r) ∩A est aussi une partie
ouverte et donc il existe α > 0 tel que B(x, α) ⊂ B(a, r) ∩A. Puisque la partie B
est dense, B(x, α) ∩B 6= ∅ et finalement B(a, r) ∩A ∩B 6= ∅.
On peut donc conclure que A ∩B est une partie dense de E.

Exercice 64 : [énoncé]
Soit f une fonction solution.
On a f(0 + 0) = f(0) + f(0) donc f(0) = 0
Par une récurrence facile

∀n ∈ N,∀x ∈ R, f(nx) = nf(x)

De plus, puisque f(−x+ x) = f(−x) + f(x), on a f(−x) = −f(x).
Par suite

∀n ∈ Z,∀x ∈ R, f(nx) = nf(x)
Pour x = p/q ∈ Q, f(x) = pf(1/q) et f(1) = qf(1/q) donc f(x) = ax avec
a = f(1).
Les fonctions x 7→ f(x) et x 7→ ax sont continues et coïncident sur Q partie dense
dans R donc ces deux fonctions sont égales sur R.
Au final f est une fonction linéaire.
Inversement, une telle fonction est évidemment solution.

Exercice 65 : [énoncé]
a) Soit x ∈ R. Puisque

un = b2
nxc
2n → x

avec un ∈ D, la partie D est dense dans R.
b) Supposons que f s’annule en 0 et 1.

1
2 (f(−x) + f(x)) = f(0)

donc la fonctionf est impaire.
Par récurrence double, montrons ∀n ∈ N, f(n) = 0.
Pour n = 0 ou n = 1 : ok
Supposons la propriété établie aux rangs n > 1 et n− 1 > 0.

f(n+ 1) + f(n− 1)
2 = f(n)
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donne en vertu de l’hypothèse de récurrence : f(n+ 1) = 0.
Récurrence établie.
Par l’imparité

∀p ∈ Z, f(p) = 0

Par récurrence sur n ∈ N, montrons

∀p ∈ Z, f
( p

2n
)

= 0

Pour n = 0 : ok
Supposons la propriété établie au rang n ∈ Z.
Soit p ∈ Z,

f
( p

2n+1

)
= f

(
1
2

(
0 + p

2n
))

= 1
2

(
f(0) + f

( p
2n
))

=
HR

0

Récurrence établie.
Puisque f est continue et nulle sur une partie

D =
{ p

2n /p ∈ Z, n ∈ N
}

dense dans R, f est nulle sur R.
c) Posons β = f(0) et α = f(1)− β.
La fonction g : x 7→ f(x)− αx+ β est continue et vérifie la propriété

g

(
x+ y

2

)
= 1

2 (g(x) + g(y))

donc g est nulle puis f affine.

Exercice 66 : [énoncé]
Soit λ ∈ C. Si A est inversible

χAB(λ) = det(λIn −AB) = det(A) det(λA−1 −B)

donc
χAB(λ) = det(λA−1 −B) detA = det(λIn −BA) = χBA(λ)

Ainsi les applications continues A ∈Mn(C) 7→ χAB(λ) et A ∈Mn(C) 7→ χBA(λ)
coïncident sur la partie GLn(C) dense dansMn(C), elles sont donc égales sur
Mn(C).
Ainsi pour tout λ ∈ C, χAB(λ) = χBA(λ) et donc χAB = χBA.

Exercice 67 : [énoncé]
On sait

t(comA)A = detA.In
donc

det(comA) detA = (detA)n

Si A est inversible on obtient

det(comA) = det(A)n−1

Puisque l’application A 7→ det(comA) est continue et qu’elle coïncide avec
l’application elle aussi continue A 7→ (detA)n−1 sur GLn(C) qui est dense dans
Mn(C), on peut affirmer det(comA) = (detA)n−1 pour tout A ∈Mn(C).

Exercice 68 : [énoncé]
a) Si A est inversible alors

A−1 = 1
detA

t(comA)

et donc
comA = det(A)t

(
A−1)

De même
com(P−1AP ) = det(A)t(P−1A−1P )

ce qui donne
com(P−1AP ) = tP comAt(P−1)

Les fonctions A 7→ com(P−1AP ) et A 7→ tP comAt(P−1) sont continues sur
Mn(C) et coïncident sur GLn(C) partie dense dansMn(C), c’est deux fonctions
sont donc égales. Ainsi la relation

com(P−1AP ) = tP comAt(P−1)

est valable pour tout A ∈Mn(C)
b) C’est immédiat sachant que t(P−1) est l’inverse de tP .

Exercice 69 : [énoncé]
a) On sait

ÃA = AÃ = detA.In
Si A est inversible alors

det Ã.detA = (detA)n
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donne
det Ã = (detA)n−1

L’application A 7→ det Ã étant continue et coïncidant avec l’application elle aussi
continue A 7→ (detA)n−1 sur GLn(K) qui est dense dansMn(K), on peut assurer
que det Ã = (detA)n−1 pour tout A ∈Mn(K).
b) Si A est inversible alors Ã aussi donc

rg(A) = n⇒ rg(Ã) = n

Si rg(A) 6 n− 2 alors A ne possède pas de déterminant extrait non nul d’ordre
n− 1 et donc Ã = 0. Ainsi

rg(A) 6 n− 2⇒ rg(Ã) = 0

Si rg(A) = n− 1 alors dim kerA = 1 or AÃ = detA.In = 0 donne ImÃ ⊂ kerA et
donc rg(Ã) 6 1. Or puisque rg(A) = n− 1, A possède un déterminant extrait
d’ordre n− 1 non nul et donc Ã 6= O. Ainsi

rg(A) = n− 1⇒ rg(Ã) = 1

c) Soit P une matrice inversible. Pour tout A ∈ GLn(K),

(P−1ÃP )(P−1AP ) = detA.In

et P−1AP inversible donc
P−1ÃP = P̃−1AP

Ainsi
Ã = PP̃−1APP−1

Les applications A 7→ Ã et A 7→ PP̃−1APP−1 sont continues et coïncident sur la
partie dense GLn(K) elles sont donc égales surMn(K).
Si A et B sont semblables alors il existe P inversible vérifiant P−1AP = B et par
la relation ci-dessus P−1ÃP = P̃−1AP = B̃ donc Ã et B̃ sont semblables.
d) Si A est inversible alors Ã = det(A)A−1 et

˜̃
A = det(Ã)Ã−1 = det(A)n−2A

Par coïncidence d’applications continues sur une partie dense, pour tout
A ∈Mn(K), ˜̃

A = det(A)n−2A

Exercice 70 : [énoncé]
Cas A,B ∈ GLn(R)
On sait

A−1 = 1
detA

t(comA), B−1 = 1
detB

t(comB)

et
(AB)−1 = 1

det(AB)
t(comAB) = B−1A−1

donc
(AB)−1 = 1

det(AB)
t(comAB) = 1

detAdetB
t(comB)t(comA)

puis
t(com(AB)) = t(com(A)com(B))

et enfin
com(AB) = com(A)com(B)

Cas général
Posons

Ap = A+ 1
p
In et Bp = B + 1

p
In

Pour p assez grand Ap, Bp ∈ GLn(R) et donc

com(ApBp) = com(Ap)com(Bp)

Or la fonction M → comM est continue donc par passage à la limite

com(AB) = com(A)com(B)

Exercice 71 : [énoncé]
Cas f de classe C1 :∣∣∣∣∣

∫ b

a

f(t)eint dt

∣∣∣∣∣ 6 |f(a)|+ |f(b)|
n

+ 1
n

∫ b

a

|f ′(t)| dt→ 0

Cas f continue :
Pour tout ε > 0, il existe g : [a, b]→ C de classe C1 tel que ‖f − g‖∞ 6 ε.
On a alors ∣∣∣∣∣

∫ b

a

f(t)eint dt

∣∣∣∣∣ 6 (b− a) ‖f − g‖∞ +

∣∣∣∣∣
∫ b

a

g(t)eint dt

∣∣∣∣∣
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donc pour n assez grand ∣∣∣∣∣
∫ b

a

f(t)eint dt

∣∣∣∣∣ 6 (b− a)ε+ ε

Par suite ∫ b

a

f(t)eint dt −−−−−→
n→+∞

0

Exercice 72 : [énoncé]
Par le théorème de Weierstrass, il existe une suite (Pn) de fonction polynomiale
telles N∞(Pn − f)→ 0.
On a alors∫ 1

0
f2(t) dt =

∫ 1

0
f(t)(f(t)− Pn(t)) dt+

∫ 1

0
f(t)Pn(t) dt =

∫ 1

0
f(t)(f(t)− Pn(t)) dt

or ∣∣∣∣∫ 1

0
f(t)(f(t)− Pn(t)) dt

∣∣∣∣ 6 N∞(f)N∞(f − Pn)→ 0

donc ∫ 1

0
f2(t) dt = 0

puis f = 0 par nullité de l’intégrale d’une fonction continue et positive.

Exercice 73 : [énoncé]
Par le théorème de Weierstrass, il existe une suite (Qn) de fonctions polynomiales
telles N∞(Qn − f)→ 0.
On a alors ∫ b

a

Qn(t) dt −−−−−→
n→+∞

∫ b

a

f(t) dt = 0

Posons
Pn(t) = Qn(t)− 1

b− a

∫ b

a

Qn(t) dt

On vérifie alors sans peine que∫ b

a

Pn(t) dt = 0 et N∞(f − Pn)→ 0

Exercice 74 : [énoncé]
Par le théorème de Weierstrass, il existe une suite (Qn) de fonctions polynomiales
telles N∞(Qn − f)→ 0. Posons mn = inf

t∈[a,b]
Qn(t) = Qn(tn) pour un certain

tn ∈ [a, b]. Montrons que mn → m = inf
t∈[a,b]

f . Notons que inf
t∈[a,b]

f = f(t∞) pour un

certain t∞ ∈ [a, b]. Pour tout ε > 0, pour n assez grand, N∞(Qn − f) 6 ε donc
mn = Qn(tn) > fn(tn)− ε > m− ε et m = f(t∞) > Qn(t∞)− ε > mn − ε donc
|mn −m| 6 ε. Ainsi mn → m. Il suffit ensuite de considérer Pn = Qn −mn +m
pour obtenir une solution au problème posé.

Exercice 75 : [énoncé]
Par le théorème de Weierstrass, il existe une suite (Qn) de fonctions polynomiales
telle N∞(Qn − f ′)→ 0.
Posons alors Pn(x) = f(a) +

∫ x
a
Qn(t)dt. L’inégalité

|Pn(x)− f(x)| 6
∫ x
a
|f ′(t)−Q′n(t)|dt permet d’établir que N∞(f − Pn)→ 0 et

puisque P ′n = Qn, la suite (Pn) est solution du problème posé.

Exercice 76 : [énoncé]
a) On a

n∑
k=0

Bn,k(x) = (x+ (1− x))n = 1

On a
n∑
k=0

kBn,k(x) = nx

via k
(
n

k

)
= n

(
n− 1
k − 1

)
et la relation précédente

De manière semblable
n∑
k=0

k2Bn,k(x) =
n∑
k=0

k(k − 1)Bn,k(x) +
n∑
k=0

kBn,k(x) = nx(1 + (n− 1)x)

b) On a

n2α2
∑
k∈A

Bn,k(x) 6
∑
k∈A

(k − nx)2
Bn,k(x) 6

∑
k∈[[0,n]]

(k − nx)2
Bn,k(x)

car les Bn,k sont positifs sur [0, 1].
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Par suite
n2α2

∑
k∈A

Bn,k(x) 6 nx(1− x)

d’où ∑
k∈A

Bn,k(x) 6 1
4nα2

c) Pour tout ε > 0, par l’uniforme continuité de f , il existe α > 0 tel que

∀x, y ∈ [0, 1] , |x− y| 6 α⇒ |f(x)− f(y)| 6 ε

On a alors

|f(x)− fn(x)| 6
∑
x∈A
|f(x)− f(k/n)|Bn,k(x) +

∑
x∈B
|f(x)− f(k/n)|Bn,k(x)

donc

|f(x)− fn(x)| 6 2 ‖f‖∞
∑
x∈A

Bn,k(x) +
∑
x∈B

εBn,k(x) 6
‖f‖∞
2nα2 + ε

Pour n assez grand, on a
‖f‖∞/2nα

2 6 ε

et donc |f(x)− fn(x)| 6 2ε uniformément en x.

Exercice 77 : [énoncé]
a) On a ∫ 1

0
t(1− t2)n dt = 1

2(n+ 1)
On en déduit

an = 2
∫ 1

0
(1− t2)n dt > 2

∫ 1

0
t(1− t2)n dt = 1

n+ 1

b) Sur [α, 1],

|ϕn(x)| 6 (1− α2)n

an
6 (n+ 1)(1− α2)n → 0

c) Sur le compact [−1, 1], f est uniformément continue car f est continue. Ainsi :

∀ε > 0,∃α > 0,∀x, y ∈ [−1, 1] , |x− y| 6 α⇒ |f(x)− f(y)| 6 ε

Pour α′ = min(α, 1/2), on a pour tous x, y ∈ R tels que |x− y| 6 α′

Si x, y ∈ [−1, 1] alors
|f(x)− f(y)| 6 ε

Sinon x, y ∈ [1/2,+∞[ ou x, y ∈ ]−∞,−1/2] et alors

|f(x)− f(y)| = 0 6 ε

d) On a

fn(x) =
∫ x+1

x−1
f(u)ϕn(x− u) du

Or

ϕn(x− u) =
2n∑
k=0

ak(u)xk

donc

fn(t) =
2n∑
k=0

(∫ x+1

x−1
f(u)ak(u) du

)
xk

Mais ∫ x+1

x−1
f(u)ak(u) du =

∫ 1/2

−1/2
f(u)ak(u) du

pour x ∈ [−1/2, 1/2] car x− 1 6 −1/2 et x+ 1 > 1/2 alors que f est nulle en
dehors que [−1/2, 1/2]. Il s’ensuit que fn est polynomiale.
e) On observe que ∫ 1

−1
ϕn(t) dt = 1

et la relation proposée est alors immédiate sur [−1/2, 1/2].
f) On a

∀ε > 0,∃α > 0,∀x, y ∈ R, |x− y| 6 α⇒ |f(x)− f(y)| 6 ε

et alors

|f(x)− fn(x)| 6
∫ α

−α
|f(x)− f(x− t)|ϕn(t) dt+4 ‖f‖∞

∫ 1

α

ϕn(t) dt 6 ε+4 ‖f‖∞
∫ 1

α

ϕn(t) dt

Or ∫ 1

α

ϕn(t) dt→ 0

donc pour n assez grand

4 ‖f‖∞
∫ 1

α

ϕn(t) dt 6 ε
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et alors
|f(x)− fn(x)| 6 2ε

g) Il suffit de commencer par approcher la fonction x 7→ f(2ax) qui vérifie les
conditions de la question précédente.
h) Soit A > 0 tel que [a, b] ⊂ [−A,A]. Il suffit de prolonger f par continuité de
sorte qu’elle soit nulle en dehors de [−A,A].

Exercice 78 : [énoncé]
a) Par le théorème de Weierstrass, pour tout ε > 0, il existe P ∈ R [X] tel que
‖f − P‖∞ 6 ε.

0 6
∫ b

a

f2 =
∫ b

a

f(f − P ) +
∫ b

a

fP =
∫ b

a

f(f − P ) 6 (b− a) ‖f‖∞ ε

En faisant ε→ 0, on obtient
∫ b
a
f2 = 0 et donc f = 0.

b) L’intégrale étudiée est bien définie. Par intégration par parties,

(n+ 1)In = (1− i)In+1

Or I0 = 1+i
2 donc

In = (1 + i)n+1

2n+1 n!

c) I4p+3 ∈ R donc ∫ +∞

0
x4p+3 sin(x)e−x dx = 0

puis ∫ +∞

0
up sin(u1/4)e−u

1/4
du = 0

pour tout p ∈ N.

Exercice 79 : [énoncé]
a) Supposons f constante égale à C.∫ b

a

f(x) |sin(nx)| dx = C

∫ b

a

|sin(nx)| dx

Posons p =
⌊
an
π

⌋
+ 1 et q =

⌊
bn
π

⌋
.∫ b

a

|sin(nx)| dx =
∫ pπ

n

a

|sin(nx)| dx+
q∑

k=p+1

∫ kπ
n

(k−1)π
n

|sin(nx)| dx+
∫ b

qπ
n

|sin(nx)| dx

On a ∣∣∣∣∣
∫ pπ

n

a

|sin(nx)| dx

∣∣∣∣∣ 6 π

n

donc ∫ pπ
n

a

|sin(nx)| dx→ 0

et aussi ∫ b

qπ
n

|sin(nx)| dx→ 0

De plus
q∑

k=p+1

∫ kπ
n

(k−1)π
n

|sin(nx)| dx = (q − p)
n

∫ π

0
sin tdt = 2(q − p)

n
→ 2(b− a)

π

Ainsi ∫ b

a

|sin(nx)| dx→ 2
π

(b− a)

puis ∫ b

a

f(x) |sin(nx)| dx = 2
π

∫ b

a

f(x) dx

b) Supposons f en escalier.
Soit a0, . . . , an une subdivision adaptée à f .
Par l’étude qui précède,∫ ak

ak−1

f(x) |sin(nx)| dx→ 2
π

∫ ak

ak−1

f

Puis en sommant par la relation de Chasles∫ b

a

f(x) |sin(nx)| dx→ 2
π

∫ b

a

f

c) Supposons enfin f continue par morceaux.
Pour ε > 0, il existe ϕ en escalier vérifiant

‖f − ϕ‖∞,[a,b] 6
ε

b− a

Puisque ∫ b

a

ϕ(x) |sin(nx)| dx→ 2
π

∫ b

a

ϕ
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pour n assez grand, on a∣∣∣∣∣
∫ b

a

ϕ(x) |sin(nx)| dx− 2
π

∫ b

a

ϕ

∣∣∣∣∣ 6 ε

Or ∣∣∣∣∣
∫ b

a

ϕ(x) |sin(nx)| dx−
∫ b

a

f(x) |sin(nx)| dx

∣∣∣∣∣ 6 ε

et ∣∣∣∣∣
∫ b

a

ϕ−
∫ b

a

f

∣∣∣∣∣ 6 ε

donc ∣∣∣∣∣
∫ b

a

f(x) |sin(nx)| dx− 2
π

∫ b

a

f

∣∣∣∣∣ 6 2ε+ 2
π
ε

Ainsi ∫ b

a

f(x) |sin(nx)| dx→ 2
π

∫ b

a

f
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