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Suites numériques
Convergence de suites

Exercice 1 [ 02247 ] [correction]
Soient (un) et (vn) deux suites réelles convergeant vers ` et `′ avec ` < `′.
Montrer qu’à partir d’un certain rang : un < vn.

Exercice 2 [ 02248 ] [correction]
Montrer que (un) ∈ ZN converge si, et seulement si, (un) est stationnaire.

Exercice 3 [ 02249 ] [correction]
Soient (a, b) ∈ R2, (un) et (vn) deux suites telles que{

n ∈ N, un 6 a et vn 6 b

un + vn → a+ b

Montrer que un → a et vn → b.

Exercice 4 [ 02250 ] [correction]
Soit (un) et (vn) deux suites réelles telles que (un + vn) et (un − vn) convergent.
Montrer que (un) et (vn) convergent.

Exercice 5 [ 02251 ] [correction]
Soient (un) et (vn) deux suites convergentes. Etudier

lim
n→+∞

max(un, vn)

Exercice 6 [ 02252 ] [correction]
Soient (un) et (vn) deux suites réelles telles que

u2
n + unvn + v2

n → 0

Démontrer que les suites (un) et (vn) convergent vers 0.

Exercice 7 [ 02253 ] [correction]
Soient (un) et (vn) deux suites telles que

0 6 un 6 1, 0 6 vn 6 1 et unvn → 1

Que dire de ces suites ?

Exercice 8 [ 03497 ] [correction]
Soit (un) une suite de réels non nuls vérifiant

un+1

un
→ 0

Déterminer la limite de (un).

Exercice 9 [ 03184 ] [correction]
Soient K un réel strictement supérieur à 1 et (εn) une suite de réels positifs
convergeant vers 0. Soit (un) une suite de réels de [0, 1] vérifiant

∀n ∈ N, 0 6 un+1 6
un + εn
K

La suite (un) converge-t-elle vers 0 ?

Calcul de limites

Exercice 10 [ 02254 ] [correction]
Déterminer la limite, si celle-ci existe, des suites (un) suivantes :

a) un = 3n − (−2)n

3n + (−2)n b) un =
√
n2 + n+ 1−

√
n2 − n+ 1

c) un = n−
√
n2 + 1

n+
√
n2 − 1

d) un = 1
n2

n∑
k=1

k

Exercice 11 [ 02255 ] [correction]
Déterminer les limites des suites dont les termes généraux sont les suivants :

a) un =
(

1 + 1
n

)n
b) un = n

√
n2

c) un =
(

sin 1
n

)1/n
d) un =

(
n− 1
n+ 1

)n
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Exercice 12 [ 02256 ] [correction]
Déterminer par comparaison, la limite des suites (un) suivantes :

a) un = sinn
n+ (−1)n+1 b) un = n!

nn

c) un = n− (−1)n

n+ (−1)n d) un = en

nn

e) un = n
√

2 + (−1)n

Exercice 13 [ 02257 ] [correction]
Déterminer les limites des sommes suivantes :

a) Sn =
n∑
k=1

√
k b) Sn =

n∑
k=1

1√
k

c) Sn =
n∑
k=1

1
n2 + k2 d) Sn =

2n∑
k=n+1

1
k2

e) Sn =
n∑
k=1

n

n2 + k
f) Sn =

n∑
k=1

1√
n2 + k

g) Sn =
n∑
k=0

(−1)n−kk!

Exercice 14 [ 02258 ] [correction]
Comparer

lim
m→+∞

lim
n→+∞

(
1− 1

n

)m
, lim
n→+∞

lim
m→+∞

(
1− 1

n

)m
et lim

n→+∞

(
1− 1

n

)n

Exercice 15 [ 02259 ] [correction]
Soit (un) une suite de réels strictement positifs. On suppose n

√
un → `.

a) Montrer que si ` < 1 alors un → 0.
b) Montrer que si ` > 1 alors un → +∞.
c) Montrer que dans le cas ` = 1 on ne peut rien conclure.

Exercice 16 [ 02260 ] [correction]
Soit (un) une suite de réels strictement positifs. On suppose

un+1

un
→ `

a) Montrer que si ` < 1 alors un → 0.
b) Montrer que si ` > 1 alors un → +∞.
c) Observer que dans le cas ` = 1 on ne peut rien conclure.

Exercice 17 [ 02261 ] [correction]
Pour tout n ∈ N, on pose

Sn =
n∑
k=1

1
n+ k

et S′n =
n∑
k=1

(−1)k−1

k

a) Etablir que pour tout p > 1,∫ p+1

p

dx
x

6
1
p
6
∫ p

p−1

dx
x

En déduire la limite de (Sn).
b) Etablir que S′2n = Sn. En déduire la limite de (S′n).

Exercice 18 [ 02263 ] [correction]
Déterminer la limite de

un =
n∑
k=0

(
n

k

)−1

Exercice 19 [ 02264 ] [correction]
Soit p ∈ N\ {0, 1}. Pour n ∈ N? on pose

un =
(
n+ p

n

)−1

et Sn =
n∑
k=1

uk

a) Montrer que
∀n ∈ N, (n+ p+ 2)un+2 = (n+ 2)un+1

b) Montrer par récurrence

Sn = 1
p− 1(1− (n+ p+ 1)un+1)

c) On pose ∀n ∈ N? vn = (n+ p)un. Montrer que (vn) converge vers 0.
d) En déduire limSn en fonction de p.
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Exercice 20 [ 03039 ] [correction]
Soit z ∈ C avec |z| < 1. Existence et calcul de

lim
n→+∞

n∏
k=0

(
1 + z2k

)

Exercice 21 [ 03196 ] [correction]
Etudier la convergence de deux suites réelles (un) et (vn) vérifiant

lim
n→+∞

(un + vn) = 0 et lim
n→+∞

(eun + evn) = 2

Exercice 22 [ 02262 ] [correction]
Soit a ∈ R et pour n ∈ N,

Pn =
n∏
k=1

cos a

2k

Montrer que
sin
( a

2n
)
Pn = 1

2n sin(a)

et déterminer lim
n→∞

Pn.

Exercice 23 [ 00298 ] [correction]
Déterminer les limites des suites dont les termes généraux sont les suivants :

a) un = n
√
n b) un =

(
1 + x

n

)n
c) un =

(
n− 1
n+ 1

)n+2
d) un = n2

(
cos 1

n
− cos 1

n+ 1

)
e) un =

(
tan

(π
4 + α

n

))n
f) un =

(
ln(n+ 1)

lnn

)n lnn

g) un =
(

n
√

2 + n
√

3 + n
√

4
3

)n
h) un =

(
arctan(n+ 1)

arctann

)n2

Exercice 24 [ 00302 ] [correction]
Nature de la suite de terme général

un = cos(πn2 ln(1− 1/n))

Exercice 25 [ 02781 ] [correction]
Etudier la convergence de la suite

(
banc1/n

)
, où a > 0.

Exercice 26 [ 00304 ] [correction]
Soit (un) une suite d’entiers naturels deux à deux distincts. Montrer que
un → +∞.

Exercice 27 [ 00320 ] [correction]
Soient α > 0 et

un =
n∑
k=1

1
nα + kα

a) Montrer que si α > 1 alors un → 0 tandis que si α < 1, un → +∞.
b) Montrer que si α = 1, la suite est monotone et convergente.
c) Toujours dans le cas α = 1 et en exploitant l’encadrement
ln(1 + x) 6 x 6 − ln(1− x) valable pour tout x ∈ [0, 1[, établir un → ln 2.

Exercice 28 [ 00321 ] [correction]
a) Etablir que pour tout x > 0 on a

x− 1
2x

2 6 ln(1 + x) 6 x

b) En déduire la limite de

un =
n∏
k=1

(
1 + k

n2

)

Exercice 29 [ 00319 ] [correction]
a) Soit

un =
np∑
k=1

1
n+ k

où p ∈ N? est fixé. Montrer que la suite (un) converge. Sa limite sera notée ` (on
ne demande pas ici de la calculer)
b) Soit f : R+ → C de classe C1 et telle que f(0) = 0. Soit

vn =
np∑
k=1

f

(
1

n+ k

)
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Montrer que (vn) converge. Exprimer sa limite en fonction de `.
c) Calculer ` en utilisant f(x) = ln(1 + x).
d) Si f de R+ dans C est continue et vérifie f(0) = 0, montrer qu’il peut y avoir
divergence de la suite (vn).

Limites des suites monotones

Exercice 30 [ 02265 ] [correction]
Soit (un) une suite croissante de limite `. On pose

vn = u1 + · · ·+ un
n

a) Montrer que (vn) est croissante.
b) Etablir que v2n > un+vn

2 .
c) En déduire que vn → `.

Exercice 31 [ 02266 ] [correction]
Soit (un) une suite réelle convergente. Etudier la limite de la suite vn = sup

p>n
up.

Exercice 32 [ 02267 ] [correction]
Soit (un) une suite réelle bornée. On pose

vn = sup
p>n

up et wn = inf
p>n

up

Montrer que les suites (vn) et (wn) possèdent chacune une limite dans R et
comparer celles-ci.

Exercice 33 [ 02268 ] [correction]
[Somme harmonique]
Pour tout n ∈ N, on pose

Hn =
n∑
k=1

1
k

Montrer que
∀n ∈ N?, H2n −Hn >

1
2

En déduire que lim
n→∞

Hn = +∞.

Exercice 34 [ 02269 ] [correction]
Soit (Hn) la suite définie pour n ∈ N? par

Hn =
n∑
k=1

1
k

a) Montrer que Hn → +∞.
b) Soit (un) une suite telle que n(un+1 − un)→ 1. Montrer que un → +∞.

Exercice 35 [ 02270 ] [correction]
On pose

un = 1× 3× 5× · · · × (2n− 1)
2× 4× 6× · · · × (2n)

a) Exprimer un à l’aide de nombres factoriels.
b) Montrer que la suite (un) converge.
c) On pose

vn = (n+ 1)u2
n

Montrer que la suite (vn) converge. En déduire la limite de la suite (un)
d) Simplifier

2n∏
k=2

(
1− 1

k

)
et comparer ce produit à u2

n.
e) En déduire que la limite C de la suite (vn) est strictement positive.

Exercice 36 [ 00300 ] [correction]
Soient a > 0 et

un = (1 + a)(1 + a2) . . . (1 + an)

a) Montrer que si a > 1 alors un → +∞.
b) On suppose 0 < a < 1. Montrer que la suite (un) est convergente. On pourra
exploiter la majoration 1 + x 6 ex valable pour tout x ∈ R.

Suites adjacentes

Exercice 37 [ 02271 ] [correction]
Soient θ ∈ ]0, π/2[ et

un = 2n sin θ

2n , vn = 2n tan θ

2n
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Montrer que les suites (un) et (vn) sont adjacentes. Quelle est leur limite
commune ?

Exercice 38 [ 00325 ] [correction]
On pose

un =
n∑
k=1

1√
k
− 2
√
n et vn =

n∑
k=1

1√
k
− 2
√
n+ 1

Montrer que les suites (un) et (vn) sont adjacentes.
En déduire un équivalent de

n∑
k=1

1√
k

Exercice 39 [ 02272 ] [correction]
Pour tout n ∈ N?, on pose

Sn =
n∑
k=1

1
k2 et S′n = Sn + 1

n

Montrer que les suites (Sn) et (S′n) sont adjacentes.
On peut montrer que leur limite commune est π2/6, mais c’est une autre histoire...

Exercice 40 [ 02273 ] [correction]
[Critère spécial des séries alternées ou critère de Leibniz]
Soit (un) une suite de réels décroissante et de limite nulle.
Pour tout n ∈ N, on pose

Sn =
n∑
k=0

(−1)kuk

Montrer que les suites extraites (S2n) et (S2n+1) sont adjacentes et en déduire que
(Sn) converge.

Exercice 41 [ 02274 ] [correction]
[Irrationalité du nombre de Néper]
Soient

an =
n∑
k=0

1
k! et bn =

n∑
k=0

1
k! + 1

n.n! = an + 1
n.n!

a) Montrer que (an) et (bn) sont strictement monotones et adjacentes.
On admet que leur limite commune est e. On désire montrer que e /∈ Q et pour
cela on raisonne par l’absurde en supposant e = p

q avec p ∈ Z, q ∈ N?.
b) Montrer que aq < e < bq puis obtenir une absurdité.

Exercice 42 [ 02275 ] [correction]
[Moyenne arithmético-géométrique]
a) Pour (a, b) ∈ R+2, établir :

2
√
ab 6 a+ b

b) On considère les suites de réels positifs (un) et (vn) définies par

u0 = a, v0 = b et ∀n ∈ N, un+1 =
√
unvn, vn+1 = un + vn

2

Montrer que, pour tout n > 1, un 6 vn, un 6 un+1 et vn+1 6 vn.
c) Etablir que (un) et (vn) convergent vers une même limite.
Cette limite commune est appelée moyenne arithmético-géométrique de a et b et
est notée M(a, b).
d) Calculer M(a, a) et M(a, 0) pour a ∈ R+.
e) Exprimer M(λa, λb) en fonction de M(a, b) pour λ ∈ R+.

Exercice 43 [ 00324 ] [correction]
[Irrationalité de e]
On pose pour n > 1,

un =
n∑
k=0

1
k! et vn = un + 1

n.n!

a) Montrer que les suites (un) et (vn) sont adjacentes.
b) En exploitant l’inégalité de Taylor-Lagrange appliquée à la fonction x 7→ ex,
montrer que un → e.
c) On suppose que e = p/q avec p, q ∈ N?. En considérant q.q!uq et q.q!vq obtenir
une absurdité.

Suites extraites

Exercice 44 [ 02276 ] [correction]
On suppose que (un) est une suite réelle croissante telle que (u2n) converge.
Montrer que (un) converge.
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Exercice 45 [ 02277 ] [correction]
Soit (un) une suite complexe telle que (u2n), (u2n+1) et (u3n) convergent. Montrer
que (un) converge.

Exercice 46 [ 02278 ] [correction]
Justifier que la suite de terme général cos(n) diverge.

Exercice 47 [ 00327 ] [correction]
Montrer que la suite de terme général sin(n) diverge.

Exercice 48 [ 02279 ] [correction]
Soit (un) une suite réelle telle que

∀n, p ∈ N?, 0 6 un+p 6
n+ p

np

Montrer que (un) tend vers 0.

Exercice 49 [ 03234 ] [correction]
Soit (un) une suite réelle vérifiant

un+1 − un → 0 et un → +∞

Montrer qu’il existe une application ϕ : N→ N strictement croissante vérifiant

uϕ(n) − n→ 0

Limite de suites de solutions d’une équation

Exercice 50 [ 02290 ] [correction]
Soit n un entier naturel et En l’équation x+ tan x = n d’inconnue x ∈ ]−π/2, π/2[.
a) Montrer que l’équation En possède une solution unique notée xn.
b) Montrer que la suite (xn) converge et déterminer sa limite.

Exercice 51 [ 02288 ] [correction]
Montrer que l’équation xex = n possède pour tout n ∈ N, une unique solution xn
dans R+.
Etudier la limite de (xn).

Exercice 52 [ 02291 ] [correction]
Soit n un entier naturel non nul et En l’équation : xn ln x = 1 d’inconnue x ∈ R+?.
a) Montrer que l’équation En admet une unique solution xn, et que xn > 1.
b) Montrer que la suite (xn) est décroissante et converge vers 1.

Exercice 53 [ 02292 ] [correction]
Soient n ∈ N? et

En : xn + xn−1 + · · ·+ x = 1

a) Montrer que l’équation En possède une unique solution xn dans R+ et que
xn ∈ [1/2, 1]
b) Montrer que (xn) converge.
c) Déterminer la limite de (xn).

Exercice 54 [ 00314 ] [correction]
Montrer que pour tout n > 1, l’équation

xn

n! =
n−1∑
k=0

xk

k!

possède une unique racine xn dans ]0,+∞[. Déterminer lim xn.

Exercice 55 [ 00315 ] [correction]
Montrer que la relation nun+1

n − (n+ 1)unn = 1 définit une suite positive (un)
unique.
Etudier sa convergence et préciser sa limite.

Expression du terme général d’une suite récurrente

Exercice 56 [ 02293 ] [correction]
Donner l’expression du terme général et la limite de la suite récurrente réelle
(un)n>0 définie par :
a) u0 = 0 et ∀n ∈ N, un+1 = 2un + 1
b) u0 = 0 et ∀n ∈ N, un+1 = un+1

2 .
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Exercice 57 [ 02294 ] [correction]
Soit (xn) et (yn) deux suites réelles telles que

∀n ∈ N, xn+1 = xn − yn
2 et yn+1 = xn + yn

2
En introduisant la suite complexe de terme général zn = xn + i.yn, montrer que
les suites (xn) et (yn) convergent et déterminer leurs limites.

Exercice 58 [ 02295 ] [correction]
Soit (zn) une suite complexe telle que

∀n ∈ N, zn+1 = 1
3(zn + 2z̄n)

Montrer que (zn) converge et exprimer sa limite en fonction de z0.

Exercice 59 [ 02296 ] [correction]
Soit (un) et (vn) les suites déterminées par u0 = 1, v0 = 2 et pour tout n ∈ N :

un+1 = 3un + 2vn et vn+1 = 2un + 3vn

a) Montrer que la suite (un − vn) est constante.
b) Prouver que (un) est une suite arithmético-géométrique.
c) Exprimer les termes généraux des suites (un) et (vn).

Exercice 60 [ 02297 ] [correction]
Soient ρ > 0 et θ ∈ ]0, π[.
On considère la suite complexe (zn) définie par z0 = ρeiθ et

∀n ∈ N, zn+1 = zn + |zn|
2

a) Exprimer zn sous forme d’un produit.
b) Déterminer lim

n→+∞
zn.

Exercice 61 [ 03048 ] [correction]
Etudier la suite (zn)n>0 définie par z0 ∈ C et

∀n ∈ N, zn+1 = zn + |zn|
2

Exercice 62 [ 02056 ] [correction]
Soit (un) une suite réelle telle que

u0 = 1 et ∀n ∈ N, un+1 =
(

1 + 1
n+ 1

)
un

Donner l’expression du terme général un de cette suite.

Suites récurrentes linéaires d’ordre 2

Exercice 63 [ 02298 ] [correction]
Donner l’expression du terme général de la suite récurrente complexe (un)n>0
définie par : u0 = 0, u1 = 1 + 4i et

∀n ∈ N, un+2 = (3− 2i)un+1 − (5− 5i)un

Exercice 64 [ 02299 ] [correction]
Donner l’expression du terme général des suites récurrentes réelles suivantes :
a) (un)n>0 définie par u0 = 1, u1 = 0 et ∀n ∈ N, un+2 = 4un+1 − 4un
b) (un)n>0 définie par u0 = 1, u1 = −1 et ∀n ∈ N, 2un+2 = 3un+1 − un
c) (un)n>0 définie par u0 = 1, u1 = 2 et ∀n ∈ N, un+2 = un+1 − un.

Exercice 65 [ 02300 ] [correction]
Soit θ ∈ ]0, π[. Déterminer le terme général de la suite réelle (un) définie par :

u0 = u1 = 1 et ∀n ∈ N, un+2 − 2 cos θun+1 + un = 0

Exercice 66 [ 02683 ] [correction]
Déterminer les fonctions f : R+? → R+? vérifiant

∀x > 0, f(f(x)) = 6x− f(x)

Etude de suites récurrentes

Exercice 67 [ 02304 ] [correction]
Etudier la suite (un) définie par

u0 = a ∈ R et ∀n ∈ N, un+1 = u2
n
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Exercice 68 [ 02305 ] [correction]
Etudier la suite (un) définie par

u0 ∈ R et ∀n ∈ N, un+1 = u2
n + 1

Exercice 69 [ 02303 ] [correction]
Etudier la suite (un) définie par

u0 = 1 et ∀n ∈ N, un+1 =
√

1 + un

Exercice 70 [ 02306 ] [correction]
Etudier la suite (un) définie par

u0 > 1 et ∀n ∈ N, un+1 = 1 + ln(un)

Exercice 71 [ 02307 ] [correction]
Etudier la suite (un) définie par

u0 ∈ R et ∀n ∈ N, un+1 = eun − 1

Exercice 72 [ 02308 ] [correction]
Etudier la suite (un) définie par

u0 > 0 et ∀n ∈ N, un+1 = 1
2 + un

Exercice 73 [ 02309 ] [correction]
Soit (un) la suite réelle définie par

u0 = a ∈ [−2, 2] et ∀n ∈ N, un+1 =
√

2− un

a) Justifier que la suite (un) est bien définie et

∀n ∈ N, un ∈ [−2, 2]

b) Quelles sont les limites finies possibles pour (un) ?
c) Montrer que (|un − 1|) converge puis que lim |un − 1| = 0. En déduire lim un.

Exercice 74 [ 02310 ] [correction]
Soit a ∈ C tel que 0 < |a| < 1 et (un) la suite définie par

u0 = a et ∀n ∈ N, un+1 = un
2− un

Montrer que (un) est bien définie et |un| < 1. Etudier la limite de (un).

Exercice 75 [ 02312 ] [correction]
Soit a > 0 et (un) la suite définie par u0 > 0 et

∀n ∈ N, un+1 = 1
2

(
un + a

un

)
a) Etudier la convergence de la suite (un).
b) On pose pour tout n ∈ N

vn = un −
√
a

un +
√
a

Calculer vn+1 en fonction de vn, puis vn en fonction de v0 et n.
c) Montrer que, si u0 >

√
a, on a∣∣un −√a ∣∣ 6 2u0.v

2n
0

Ainsi, un réalise une approximation de
√
a à la précision 2u0.v

2n
0 →

n∞
0.

On peut alors par des calculs élémentaires, déterminer une approximation de
√
a.

Exercice 76 [ 02313 ] [correction]
On considère l’équation ln x+ x = 0 d’inconnue x > 0.
a) Montrer que l’équation possède une unique solution α.
b) Former, par l’algorithme de Newton, une suite récurrente réelle (un)
convergeant vers α.

Exercice 77 [ 02311 ] [correction]
Déterminer le terme général de la suite (un) définie par :

u0 = a > 0, u1 = b > 0 et ∀n ∈ N, un+2un = u2
n+1

A quelle condition (un) converge ?
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Exercice 78 [ 02301 ] [correction]
Soit a ∈ R+?. On définit une suite (un) par

u0 = a et ∀n ∈ N, un+1 =

√√√√ n∑
k=0

uk

a) Déterminer la limite de (un).
b) Déterminer la limite de un+1 − un.

Exercice 79 [ 00094 ] [correction]
Etablir √

1 +
√

1 +
√

1 + · · · = 1 + 1
1 + 1

1+
. . .

Exercice 80 [ 03229 ] [correction]
Soit (un) une suite réelle vérifiant

∀n ∈ N, un ∈ [1/2, 1]

Soit (vn) la suite déterminée par

v0 = u0 et ∀n ∈ N, vn+1 = vn + un+1

1 + un+1vn

Montrer que la suite (vn) converge et déterminer sa limite.

Exercice 81 [ 00328 ] [correction]
Etudier la suite définie par u0 > 0 et pour tout n ∈ N,

un+1 = 1 + 1
4u

2
n

Exercice 82 [ 00330 ] [correction]
Soient a > 0,

u1 =
√
a, u2 =

√
a+
√
a, u3 =

√
a+

√
a+
√
a,

Montrer que (un) est convergente.

Exercice 83 [ 00331 ] [correction]
Soit

f : x 7→ x3 + 1
3

et (un) la suite définie par

u0 ∈ R et ∀n ∈ N un+1 = f(un)

a) Justifier que l’équation f(x) = x possède trois racines réelles (qu’on
n’exprimera pas).
b) Etudier le signe de f(x)− x ainsi que la monotonie de f .
c) Préciser le comportement de (un) en discutant selon la valeur de u0.

Exercice 84 [ 00332 ] [correction]
Soient

f : x 7→ x3 + 3ax
3x2 + a

(avec a > 0) et (un) la suite définie par

u0 > 0 et ∀n ∈ N,un+1 = f(un)

Etudier les variations de f , le signe de f(x)− x et en déduire le comportement de
(un).

Exercice 85 [ 00333 ] [correction]
Soient u0 ∈ ]0, 1[ et pour tout n ∈ N,

un+1 = un − u2
n

Montrer que (un) est monotone de limite nulle. Déterminer les limites des suites
dont les termes généraux sont les suivants

n∑
k=0

u2
k et

n∏
k=0

(1− uk)

Exercice 86 [ 00334 ] [correction]
Soit f : [a, b]→ [a, b] une fonction de classe C1 telle que

∀x ∈ [a, b] , |f ′(x)| < 1

a) Montrer que f admet un point fixe unique α.
b) Montrer, pour tout u ∈ [a, b], la convergence vers α de la suite (un) définie par

u0 = u et ∀n ∈ N, un+1 = f(un)
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Exercice 87 [ 00335 ] [correction]
Soit f : [a, b]→ [a, b] une fonction 1 lipschitzienne et α ∈ [a, b].
On considère la suite définie par

u0 = α et un+1 = un + f(un)
2

Montrer que (un) converge vers un point fixe de f .

Exercice 88 [ 00329 ] [correction]
Soit (un) la suite définie par

u0 ∈ ]0, 4[ et ∀n ∈ N un+1 = 4un − u2
n

a) Montrer que (un) est bornée. Quelles sont les limites possibles de (un) ?
b) Montrer que si (un) converge alors (un) est soit stationnaire égale à 0, soit
stationnaire égale à 3.
c) En posant u0 = 4 sin2 α, déterminer les valeurs de u0 pour lesquelles la suite
(un) est stationnaire.

Exercice 89 [ 00336 ] [correction]
Soient ρ ∈ R+ et θ ∈ ]−π, π].
On considère la suite complexe (zn) définie par

z0 = ρeiθ et ∀n ∈ N, zn+1 = zn + |zn|
2

a) Exprimer (zn) à l’aide d’un produit.
b) Déterminer la limite de (zn).

Exercice 90 [ 00338 ] [correction]
Soit (un) une suite de réels positifs telle que

∀n ∈ N, un+2 6
1
2(un + un+1)

Montrer que (un) converge. On pourra commencer par étudier la monotonie de
vn = max(un+1, un).

Exercice 91 [ 00337 ] [correction]
Soient (un) et (vn) les suites récurrentes réelles définies par :

u0, v0 ∈ R+ et ∀n ∈ N, un+1 =
√
unvn, vn+1 = un + vn

2
Montrer que les suites (un) et (vn) convergent vers une même limite.

Exercice 92 [ 00326 ] [correction]
Pour α ∈ ]0, π/2], on étudie les suites (un) et (vn) définies par{

u0 = cosα
v0 = 1

et ∀n ∈ N,
{
un+1 = (un + vn)/2
vn+1 = √un+1vn

a) Etablir que pour tout n ∈ N,

un = vn cos α2n et vn =
n∏
k=1

cos α2k

b) Etudier sin α
2n vn et en déduire les limites de (un) et (vn).

Exercice 93 [ 02783 ] [correction]
Soit (xn)n∈N? une suite de réels positifs. On pose, pour tout n > 0,

yn =
√
x1 +

√
x2 + · · ·+

√
xn

a) Ici xn = a pour tout n, où a > 0. Etudier la convergence de (yn).
b) Même question dans le cas où xn = ab2n pour tout n, avec b > 0.
c) Montrer que (yn) converge si, et seulement si, la suite (x2−n

n ) est bornée.

Exercice 94 [ 03165 ] [correction]
Soient (an) une suite réelle positive, bornée et (un) la suite récurrente définie par

u0 > 0 et un+1 = 1
un + an + 1 pour tout n ∈ N

Montrer que la suite (un) converge si, et seulement si, la suite (an) converge.

Exercice 95 [ 00844 ] [correction]
Montrer que la suite réelle (xn) définie par x0 ∈ [a, b] et

∀n ∈ N, xn+1 = 1
2 (f(xn) + xn)

où f est 1-lipschitzienne de [a, b] dans [a, b], converge vers un point fixe de f .
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Corrections

Exercice 1 : [énoncé]
Posons m = (`+ `′)/2. On a un → ` < m. Pour ε = m− ` > 0, il existe n0 ∈ N tel
que

∀n > n0, |un − `| < ε

et donc
∀n > n0, un < m

De façon symétrique, il existe n1 ∈ N tel que

∀n > n1, vn > m

et alors pour tout n > max(n0, n1) on a

un < m < vn

Exercice 2 : [énoncé]
Si (un) est stationnaire, il est clair que cette suite converge.
Inversement, supposons que (un) converge et notons ` sa limite.
Montrons ` ∈ Z. Par l’absurde, si ` /∈ Z alors E(`) < ` < E(`) + 1 donc à partir
d’un certain rang E(`) < un < E(`) + 1. Or un ∈ Z. Absurde. Ainsi ` ∈ Z.
Puisque un → ` et `− 1 < ` < `+ 1, à partir d’un certain rang `− 1 < un < `+ 1.
Or un ∈ Z et ` ∈ Z donc un = `. Finalement (un) est stationnaire égale à `.

Exercice 3 : [énoncé]
On a l’encadrement

0 6 a− un 6 (a− un) + (b− vn) = (a+ b)− (un + vn)→ 0

donc un → a puis

vn = (un + vn)− un → (a+ b)− a = b

Exercice 4 : [énoncé]
Supposons un + vn → ` et un − vn → `′.
un = 1

2 (un + vn) + 1
2 (un − vn)→ `+`′

2 et de même vn → `−`′
2 .

Exercice 5 : [énoncé]
On a

max(a, b) = 1
2 ((a+ b) + |a− b|)

donc
max(un, vn) = 1

2 ((un + vn) + |un − vn|)→ max(lim un, lim vn)

Exercice 6 : [énoncé]
On a

0 6 (un + vn)2 = u2
n + 2unvn + v2

n 6 2(u2
n + unvn + v2

n)→ 0

Ainsi un + vn → 0 puis

unvn = (un + vn)2 − (u2
n + unvn + v2

n)→ 0

et donc
u2
n + v2

n = 2(u2
n + unvn + v2

n)− (un + vn)2 → 0

qui permet de conclure un → 0 et vn → 0.

Exercice 7 : [énoncé]
On a

unvn 6 un, vn 6 1

Par le théorème d’encadrement on obtient

lim un = lim vn = 1

Exercice 8 : [énoncé]
Puisque |un+1/un| → 0 < 1/2, il existe un rang N ∈ N vérifiant

∀n > N, |un+1/un| 6 1/2

c’est-à-dire
∀n > N, |un+1| 6

1
2 |un|

On a alors par récurrence

∀n > N, |un| 6
1

2n−N |uN |

et donc par comparaison un → 0.
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Exercice 9 : [énoncé]
Montrons que la suite (un) converge vers 0 par l’epsilontique. . .
Soit ε > 0. Puisque la suite (εn) converge vers 0, il existe un rang N ∈ N pour
lequel

∀n > N, 0 6 εn 6 ε

et alors pour tout n > N

0 6 un+1 6
un + ε

K

On en déduit
0 6 un+2 6

un
K2 + ε

K2 + ε

K

et par récurrence

∀p ∈ N, 0 6 un+p 6
un
Kp

+
p∑
i=1

ε

Ki

La suite (un) est majorée par 1 et on peut encore écrire

∀p ∈ N, 0 6 un+p 6
1
Kp

+ ε

K

1− (1/K)p

1− 1/K 6
1
Kp

+ ε

K − 1

Pour p assez grand, on a 1/Kp 6 ε et alors

0 6 un+p 6 ε+ ε

K − 1 = λε

avec λ une constante strictement positive ce qui permet de conclure.

Exercice 10 : [énoncé]
a)

un = 1− (−2/3)n

1 + (−2/3)n → 1

b)

un = 2n√
n2 + n+ 1 +

√
n2 − n+ 1

= 2√
1 + 1

n + 1
n2 +

√
1− 1

n + 1
n2

→ 1

c)

un =
1−

√
1 + 1/n2

1 +
√

1− 1/n2
→ 0

d)

un = (n+ 1)
2n → 1

2

Exercice 11 : [énoncé]
a) un = en(ln(1+1/n)) or n ln

(
1 + 1

n

)
= 1

1/n ln
(
1 + 1

n

)
→ 1 car ln(1+x)

x −−−→
x→0

1. Par
suite un → e.
b) un = e 2

n lnn → 1 car lnn
n → 0.

c)
(
sin 1

n

)1/n = e 1
n ln(sin 1

n ) or 1
n ln

(
sin 1

n

)
∼ 1

n ln 1
n → 0 donc

(
sin 1

n

)1/n → 1.
d)
(
n−1
n+1

)n
= en ln(1− 2

n+1 ) or n ln
(

1− 2
n+1

)
∼ −2→ −2 donc

(
n−1
n+1

)n
→ e−2.

Exercice 12 : [énoncé]
a) |un| 6 1

n−1 → 0 donc un → 0.
b) 0 6 un 6 1.2...n

n.n...n 6 1
n → 0 donc un → 0.

c) n−1
n+1 6 un 6 n+1

n−1 avec n−1
n+1 ,

n+1
n−1 → 1 donc un → 1.

d) 0 6 un 6 e
1

e
2 × 1× · · · × 1× e

n → 0 donc un → 0.
e) 1 6 un 6 n

√
3 = e 1

n ln 3 → 1 donc un → 1.

Exercice 13 : [énoncé]
a) Sn >

n∑
k=1

1 = n→ +∞

b) Sn >
n∑
k=1

1√
n

=
√
n→ +∞.

c) 0 6 Sn 6
n∑
k=1

1
n2+1 = n

n2+1 → 0 donc un → 0.

d) 0 6 Sn 6
2n∑

k=n+1

1
(n+1)2 6 n

(n+1)2 → 0.

e)
n∑
k=1

n
n2+n 6 Sn 6

n∑
k=1

n
n2+1 donc n

n+1 6 Sn 6 n2

n2+1 puis un → 1.

f) n√
n2+n =

n∑
k=1

1√
n2+n 6 Sn 6

n∑
k=1

1√
n2+1 = n√

n2+1 par le théorème des

gendarmes : Sn → 1.
g) Sn = n!− (n− 1)! + (n− 2)! + · · ·+ (−1)n. Par regroupement de termes.
Si n est pair alors Sn > n!− (n− 1)! et si n est impair Sn > n!− (n− 1)!− 1.
Puisque n!− (n− 1)! = (n− 1).(n− 1)!→ +∞, on a Sn → +∞.

Exercice 14 : [énoncé]
lim

n→+∞

(
1− 1

n

)m = 1m et lim
m→+∞

lim
n→+∞

(
1− 1

n

)m = 1.

lim
m→+∞

(
1− 1

n

)m = 0 et lim
n→+∞

lim
m→+∞

(
1− 1

n

)m = 0.(
1− 1

n

)n = en ln(1− 1
n ) → e−1.
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Exercice 15 : [énoncé]
a) Soit ρ = `+1

2 de sorte que ` < ρ < 1.
Comme n

√
un → ` < ρ, il existe un rang N au delà duquel n

√
un 6 ρ donc

0 < un 6 ρn. On a alors un → 0.
b) Même démarche mais par minoration.
c) un = n, un = 1 et un = 1/n sont des exemples prouvant qu’on ne peut rien dire.

Exercice 16 : [énoncé]
a) Soit ρ = `+1

2 de sorte que ` < ρ < 1.
Comme un+1

un
→ ` < ρ, il existe un rang N au delà duquel

un+1

un
6 ρ

On a alors
0 6 un = un

un−1

un−1

un−2
· · · uN+1

uN
uN 6 ρn−NuN → 0

donc un → 0.
On peut aussi raisonner en observant que la suite (un) est décroissante à partir
d’un certain rang, donc convergente et que sa seule limite possible est nulle.
b) Même démarche mais par minoration ou par croissance.
c) un = n, un = 1 et un = 1/n sont des exemples prouvant qu’on ne peut rien dire.

Exercice 17 : [énoncé]
a) On a ∫ p+1

p

dx
x

6
∫ p+1

p

dx
p

= 1
p

car la fonction décroissante x 7→ 1
x est majorée par 1

p sur [p, p+ 1].
Par un argument semblable ∫ p

p−1

dx
x

>
∫ p

p−1

dx
p

= 1
p

Pour n > 1, ∫ n+k+1

n+k

dx
x

6
1

n+ k
6
∫ n+k

n+k−1

dx
x

donne en sommant ∫ 2n+1

n+1

dx
x

6 Sn 6
∫ 2n

n

dx
x

Or ∫ 2n+1

n+1

dx
x

= ln 2n+ 1
n+ 1 → ln 2

et ∫ 2n

n

dx
x

= ln 2

donc Sn → ln 2.
b) On a

S′2n = 1
1−

1
2+1

3−
1
4+· · ·+ 1

2n− 1−
1

2n =
(

1
1 + 1

2 + · · ·+ 1
2n

)
−2
(

1
2 + 1

4 + · · ·+ 1
2n

)
donc

S′2n =
2n∑
k=1

1
k
−

n∑
k=1

1
k

=
2n∑

k=n+1

1
k

=
n∑
k=1

1
n+ k

= Sn

Par suite S′2n → ln 2. De plus S′2n+1 = S2n + 1
2n+1 → ln 2 donc

S′n → ln 2

Exercice 18 : [énoncé]
On a

un = 1 + 1
n

+
n−2∑
k=2

(
n

k

)−1

+ 1
n

+ 1

Or pour k ∈ {2, . . . , n− 2}, (
n

k

)
>

(
n

2

)
= n(n− 1)

2

donc

0 6
n−2∑
k=2

(
n

k

)−1

6
2(n− 3)
n(n− 1) → 0

puis un → 2.

Exercice 19 : [énoncé]
a) (

n+ p+ 2
n+ 2

)
= n+ p+ 2

n+ 2

(
n+ p+ 1
n+ 1

)
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d’où la relation.
b) Par récurrence sur n ∈ N :
Pour n = 1 :

S1 = 1(
p+ 1

1

) et 1
p− 1(1− (p+ 2) 2

(p+ 2)(p+ 1)) = 1
p+ 1

ok
Supposons la propriété établie au rang n > 1.

Sn+1 = Sn+un+1 =
HR

1
p− 1(1−(n+p+1)un+1)+un+1 = 1

p− 1(1−(n+2)un+1) = 1
p− 1(1−(n+p+2)un+2)

Récurrence établie.
c)

0 6 vn = n+ p(
n+ p

n

) = n!p!
(n+ p− 1)! 6

p!
n+ 1 → 0

d) Par opérations
Sn →

1
p− 1

Exercice 20 : [énoncé]
On a

(1− z)
n∏
k=0

(
1 + z2k

)
= (1− z)(1 + z)(1 + z2) . . . (1 + z2n)

Or (1− z)(1 + z) = 1− z2 donc

(1− z)
n∏
k=0

(
1 + z2k

)
= (1− z2)(1 + z2) . . . (1 + z2n)

En répétant la manipulation

(1− z)
n∏
k=0

(
1 + z2k

)
= (1− z2n+1

)

Or z2n+1 → 0 donc

lim
n→+∞

n∏
k=0

(
1 + z2k

)
= 1

1− z

Exercice 21 : [énoncé]
Exploitons

Sn = eun + evn → 2 et Pn = eun .evn = eun+vn → 1

Les nombres eun et evn sont solutions de l’équation

(X − eun)(X − evn) = 0 i.e. X2 − SnX + Pn = 0

À l’ordre près, on peut exprimer eun et evn à partir du discriminant de cette
équation. Or Sn → 2 et Pn → 1, le discriminant tend alors vers 0 et les deux
suites tendent vers 1. On en déduit un → 0 puis vn → 0.

Exercice 22 : [énoncé]
En exploitant la formule sin(2x) = 2 sin x cosx

sin a

2nPn = 1
2 sin a

2n−1 cos a

2n−1 · · · cos a2 = . . . = 1
2n sin(a)

Si a = 0 alors Pn = 1→ 1.
Si a 6= 0 alors, pour n assez grand, sin(a/2n) 6= 0 et

Pn = sin(a)
2n sin a

2n

Puisque
sin(x)
x

= sin(x)− sin 0
x− 0 −−−→

x→0
cos(0) = 1

on a
sin (a/2n)
a/2n −−−−−→

n→+∞
1

puis

Pn = sin(a)
2n sin a

2n
−−−−−→
n→+∞

sin(a)
a

car
2n sin a

2n
∼

n→+∞
2n a2n = a

Exercice 23 : [énoncé]
a) un = exp (lnn/n)→ 1.
b) un = exp

(
n ln

(
1 + x

n

))
= exp (x+ o(1))→ ex.

c) un = exp
(

(n+ 2) ln
(

1− 2
n+1

))
= exp(−2 + o(1))→ e−2.
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d) un = −2n2 sin
((

1
n + 1

n+1

)
/2
)

sin
((

1
n −

1
n−1

)
/2
)

= O
( 1
n

)
→ 0.

e) tan
(
π
4 + α

n

)
= 1 + 2α

n + o
( 1
n

)
donc

un = exp
(
n ln

(
1 + 2α

n + o
( 1
n

)))
= exp(2α+ o(1))→ e2α.

f) un =
(
1 + 1

n lnn + o
( 1
n lnn

))n lnn → e.
g) n
√

2 = exp
( 1
n ln 2

)
= 1 + 1

n ln 2 + o(1), un =
(
1 + ln 24

3n + o
( 1
n

))n → 3
√

24.
h) Par le théorème des accroissements finis

ln(arctan(n+ 1))− ln(arctann) = 1
1 + c2

1
arctan c

avec n 6 c 6 n+ 1 donc

un = exp
(
n2 1

1 + c2
1

arctan c

)
→ e2/π

Exercice 24 : [énoncé]
En développant ln(1− 1/n)

un = cos
(
πn+ π

2 + o(1)
)

= (−1)n+1 sin(o(1))→ 0

Exercice 25 : [énoncé]
Si a ∈ ]0, 1[, la suite est constante égale à 0.
Si a = 1, la suite est constante égale à 1.
Si a > 1 alors an − 1 < banc 6 an donne (an − 1)1/n

< banc1/n 6 a et donc, par
encadrement, la suite converge vers a.

Exercice 26 : [énoncé]
∀A ∈ R+, l’ensemble E = {n ∈ N/un < A} est fini car il contient au plus
E(A) + 1 éléments.
Par suite il possède un plus grand élément N et alors ∀n > N + 1, un /∈ E donc
un > A. Ainsi un → +∞.

Exercice 27 : [énoncé]
a) Si α > 1 alors 0 6 un 6 n

nα+1 → 0 donc un → 0.
Si α < 1 alors un > n

nα+nα = 1
2n

1−α → +∞ donc un → +∞.
b) un+1 − un = 1

2n+1 + 1
2n+2 −

1
n+1 > 0 donc (un) est croissante. De plus

un 6 n
n+1 6 1 donc (un) est majorée et par conséquent convergente.

c)

un =
n∑
k=1

1
n+ k

6 − ln
(

n∏
k=1

(
1− 1

n+ k

))
= − ln n

2n = ln 2

et

un =
n∑
k=1

1
n+ k

> ln
(

n∏
k=1

(
1 + 1

n+ k

))
= ln 2n+ 1

n+ 1 → ln 2

donc un → ln 2.

Exercice 28 : [énoncé]
a) Il suffit de dresser le tableau de variation des fonctions x 7→ ln(1 + x)− x+ 1

2x
2

et x 7→ x− ln(1 + x).
b)

ln un 6
n∑
k=1

k

n2 = (n+ 1)
2n → 1

2

et

ln un >
n∑
k=1

(
k

n2 −
k2

n4

)
= n+ 1

2n − (n+ 1)(2n+ 1)
6n3 → 1

2

donc
un →

√
e

Exercice 29 : [énoncé]
a) La suite (un) est croissante car

un+1 − un = 1
n(p+ 1) + 1 + · · ·+ 1

(n+ 1)(p+ 1) −
1

n+ 1 > 0

et un 6 np
n+1 6 p donc (un) converge vers une limite `.

b) Commençons par le cas où f ′(0) = 0.
Soit ε > 0, il existe α > 0 tel que pour tout x ∈ [0, α] on ait |f ′(x)| 6 ε et par
l’inégalité des accroissements finis, on obtient

∀x ∈ [0, α] , |f(x)| 6 ε |x|

On a alors

|vn| =
np∑
k=1

ε

n+ k
6 pε

et donc vn → 0.
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Pour le cas général, il suffit d’introduire g(x) = f(x)− xf ′(0). Puisque g′(0) = 0,
on a

np∑
k=1

g

(
1

n+ k

)
−−−−−→
n→+∞

0

et donc
vn − unf ′(0) −−−−−→

n→+∞
0

et finalement vn → `f ′(0).
c) Pour f(x) = ln(1 + x),

vn =
np∑
k=1

ln(n+ k + 1)− ln(n+ k) = ln(n(p+ 1) + 1)− ln(n+ 1)→ ln(p+ 1)

On conclut ` = ln(p+ 1).
d) Pour f(x) =

√
x,

vn =
np∑
k=1

1√
n+ k

>
np√

(n+ 1)p
→ +∞

Exercice 30 : [énoncé]
a)

vn+1 − vn = nun+1 − (u1 + · · ·+ un)
n(n+ 1) > 0

donc (vn) est croissante.
b)

v2n = u1 + · · ·+ un
2n + un+1 + · · ·+ u2n

2n >
vn
2 + un

2
c) On a vn 6 ` pour tout n ∈ N? et (vn) croissante donc (vn) converge vers un réel
`′ 6 `.
La relation précédente, passée à la limite, donne 2`′ > `+ `′ ce qui permet de
conclure vn → `.

Exercice 31 : [énoncé]
(un) converge donc (un) est bornée. La suite (vn) est donc bien définie et
elle-même bornée.
On a vn+1 6 vn donc (vn) est décroissante et donc converge.
Posons ` = lim un et `′ = lim vn.
vn > un donc à la limite `′ > `.
Si `′ > ` alors `′ > `′+`

2 > `.
A partir d’un certain rang vn > `+`′

2 et un < `+`′
2 . Impossible. Il reste `′ = `.

Exercice 32 : [énoncé]
Pour tout n ∈ N

{up/p > n+ 1} ⊂ {up/p > n}
donc vn+1 6 vn et wn+1 > wn.
Les suites (vn) et (wn) sont respectivement décroissante et croissante. De plus
wn 6 vn.
La suite (vn) est décroissante et minorée par w0 donc elle converge vers une limite
`.
De même la suite (wn) converge vers une limite m. Enfin wn 6 vn donne à la
limite

m 6 `

Exercice 33 : [énoncé]
On a

H2n −Hn =
2n∑

k=n+1

1
k
>

2n∑
k=n+1

1
2n = n

2n = 1
2

(Hn) est croissante car Hn+1 −Hn = 1
n+1 > 0.

Si (Hn) converge vers ` alors H2n −Hn → `− ` = 0. Ceci est impossible puisque
H2n −Hn > 1

2 .
Par suite (Hn) diverge, et puisque (Hn) est croissante, (Hn) diverge vers +∞.

Exercice 34 : [énoncé]
a) Sachant ln(1 + x) 6 x, on a

1
k
> ln

(
1 + 1

k

)
= ln(k + 1)− ln k

donc

Hn >
n∑
k=1

ln(k + 1)− ln k = ln(n+ 1)

donc Hn → +∞.
b) Il existe N ∈ N tel que pour tout n > N ,

n(un+1 − un) > 1/2

On a alors

un+1 − uN >
n∑

k=N
uk+1 − uk >

1
2

n∑
k=N

1
k

= 1
2 (Hn −HN−1)→ +∞

puis un → +∞.
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Exercice 35 : [énoncé]
a)

un = (2n)!
22n(n!)2

b) On a
un+1

un
= (2n+ 2)(2n+ 1)

4(n+ 1)2 = 2n+ 1
2n+ 2 6 1

donc (un) est décroissante. Or (un) est minorée par 0 donc (un) converge.
c)

vn+1

vn
= n+ 2
n+ 1

u2
n+1
u2
n

= n+ 2
n+ 1

(
2n+ 1
2n+ 2

)2

or (n+ 2)(2n+ 1)2 − 4(n+ 1)3 = −3n− 2 < 0 donc vn+1 − vn 6 0.
(vn) est décroissante et minorée par 0 donc (vn) converge.
Nécessairement lim un = 0 car sinon vn = (n+ 1)u2

n → +∞.
d) Par télescopage des facteurs

2n∏
k=2

(
1− 1

k

)
= 1

2 ×
2
3 × . . .×

2n− 1
2n = 1

2n

Parallèlement

u2
n =

n∏
k=1

(
1− 1

2k

)2
>

(
1
2

)2 n∏
k=2

(
1− 1

2k

)(
1− 1

2k − 1

)
= 1

2

2n∏
k=2

(
1− 1

k

)
e) On en déduit

(n+ 1)u2
n >

(n+ 1)
4n

et donc C > 1/4.
On peut montrer que C = 1/π en exploitant dès la première question la formule
de Stirling (si celle-ci est connue. . . ).

Exercice 36 : [énoncé]
a) Si a > 1 alors un > 2n → +∞ donc un → +∞.
b) un > 0 et un+1

un
> 1 donc (un) est croissante. De plus

un 6 eaea
2
. . . ea

n

= exp
(
a

1− an

1− a

)
6 exp

(
a

1− a

)
donc (un) est majorée et par suite convergente.

Exercice 37 : [énoncé]
Via sin 2a = 2 sin a cos a, on obtient

un = 2n+1 sin θ

2n+1 cos θ

2n+1 6 un+1

Via tan 2a = 2 tan a
1−tan2 a , on obtient

vn = 2n+1 tan(θ/2n+1)
1− tan2(θ/2n+1)

> vn+1

sin x ∼
x→0

x et tan x ∼
x→0

x donc un → θ et vn → θ d’où vn − un → 0.
Les suites (un) et (vn) sont adjacentes de limite commune égale à θ.

Exercice 38 : [énoncé]

un+1 − un = 1√
n+ 1

− 2
(√
n+ 1−

√
n
)

= 1√
n+ 1

− 2√
n+ 1 +

√
n
6 0

De même vn+1 − vn > 0 et aisément vn − un → 0 d’où l’adjacence de ces deux
suites.
Notons ` leur limite commune, on a

n∑
k=1

1√
k

= 2
√
n+ `+ o(1) = 2

√
n+ o(

√
n) ∼ 2

√
n

Exercice 39 : [énoncé]
On a

Sn+1 − Sn = 1
(n+ 1)2 > 0

S′n+1 − S′n = 1
(n+ 1)2 + 1

n+ 1 −
1
n

= 1
(n+ 1)2 −

1
n(n+ 1) 6 0

et
S′n − Sn = 1

n
→ 0

Exercice 40 : [énoncé]
D’une part

S2(n+1) − S2n = u2n+2 − u2n+1 6 0
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D’autre part
S2(n+1)+1 − S2n+1 = −u2n+3 + u2n+2 > 0

Enfin
S2n+1 − S2n = −u2n+1 → 0

Les suites (S2n+1) et (S2n) étant adjacentes, elles convergent vers une même
limite.
Par conséquent (Sn) converge aussi vers cette limite.

Exercice 41 : [énoncé]
a)

an+1 − an = 1
(n+ 1)! > 0

donc (an) est strictement croissante.

bn+1 − bn = 1
(n+ 1)! + 1

(n+ 1)(n+ 1)! −
1
n.n! = n(n+ 2)− (n+ 1)2

n(n+ 1)(n+ 1)! < 0

donc (bn) est strictement décroissante.
Enfin

bn − an = 1
n.n! → 0

b) On a
aq < aq+1 6 e 6 bq+1 < bq

Par suite
aq <

p

q
< aq + 1

q.q!
puis

q.q!aq < p.q! < q.q!aq + 1

Or p.q! ∈ Z et q.q!.aq = q
q∑

k=0

q!
k! ∈ Z. Absurde.

Exercice 42 : [énoncé]
a)
(√

a−
√
b
)2

> 0 donne l’inégalité demandée.
b) Pour n > 1, un = √un−1vn−1 6 un−1+vn−1

2 = vn en vertu de a.
un+1 = √unvn >

√
u2
n = un et vn+1 = un+vn

2 6 2vn
2 = vn.

c) La suite (un)n>1 est croissante et majorée par v1 donc elle converge vers une
limite notée `.

La suite (vn)n>1 est décroissante est minorée par u1 donc elle converge vers une
limite notée `′.
En passant la relation vn+1 = un+vn

2 à la limite, on obtient `′ = `+`′
2 d’où ` = `′.

d) Si b = a alors les deux suites (un) et (vn) sont constantes égales à a et donc
M(a, a) = a.
Si b = 0 alors la suite (un)n>1 est constante égale à 0 et donc M(a, 0) = 0.
e) Notons (u′n) et (v′n) les suites définies par le procédé précédent à partir de
u′0 = λa et v′0 = λb.
Par récurrence, u′n = λun et v′n = λvn donc M(λa, λb) = λM(a, b).

Exercice 43 : [énoncé]
a) Aisément (un) est croissante (vn) décroissante et vn − un → 0.
b) Par l’inégalité de Taylor-Lagrange, pour tout x ∈ [0, 1],∣∣∣∣∣ex −

n∑
k=0

xk

k!

∣∣∣∣∣ 6 Mn+1x
n+1

(n+ 1)!

avec Mn+1 = sup
x∈[0,1]

∣∣(ex)(n+1)
∣∣ = e. Pour x = 1, on obtient

|e− un| 6
e

(n+ 1)! → 0

donc un → e.
c) Par la stricte monotonie des suites (un) et (vn) on a un < e < vn pour tout
n ∈ N?.
q.q!uq est un entier et q.q!vq est l’entier consécutif. Or q.q!uq < q.q!e < q.q!vq donc
q.q!e ne peut être entier. Or q.q!e = p.q! ∈ N. Absurde.

Exercice 44 : [énoncé]
La suite (un) étant croissante, elle admet une limite (finie ou infinie).
La suite (u2n) qui en est extraite a la même limite.
Or (u2n) converge, il en est donc de même de (un).

Exercice 45 : [énoncé]
u2n → `, u2n+1 → `′ et u3n → `′′.
(u6n) est extraite de (u2n) et (u3n) donc u6n → ` et u6n → `′′. Par suite ` = `′′.
(u6n+3) est extraite de (u2n+1) et (u3n) donc u6n+3 → `′ et u6n+3 → `′′. Par suite
`′ = `′′.
Il en découle ` = `′.
Puisque les suites extraites (u2n) et (u2n+1) convergent vers une même limite, la
suite (un) converge vers celle-ci.
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Exercice 46 : [énoncé]
Par l’absurde, supposons cos(n)→ ` ∈ R.

cos(p) + cos(q) = 2 cos p+ q

2 cos p− q2

donne
cos(n+ 1) + cos(n− 1) = 2 cosn cos(1)

A la limite on obtient 2` = 2` cos(1) d’où ` = 0.
Or cos 2n = 2 cos2 n− 1 donne alors à la limite 0 = −1. Absurde.

Exercice 47 : [énoncé]
Par l’absurde, supposons sin(n)→ ` ∈ R.

sin(p)− sin(q) = 2 sin p− q2 cos p+ q

2

donne
sin(n+ 1)− sin(n− 1) = 2 sin(1) cos(n)

A la limite, on obtient cos(n)→ 0.
Or cos(2n) = 2 cos2(n)− 1 donne alors à la limite 0 = −1. Absurde.

Exercice 48 : [énoncé]
D’une part

0 6 u2n 6
2n
n2 = 2

n
→ 0

D’autre part
0 6 u2n+1 6

2n+ 1
n(n+ 1) → 0

On en déduit un → 0.

Exercice 49 : [énoncé]
On définit les valeurs de ϕ par récurrence en posant

ϕ(0) = 0

et pour tout n ∈ N?,

ϕ(n) = min {k ∈ N/k > ϕ(n− 1) et uk > n}

Puisque un → +∞, ϕ(n) est bien défini en tant que plus petit élément d’une
partie non vide de N.
Il est immédiat par construction que ϕ est une application strictement croissante
de N vers N.
Il reste à vérifier

uϕ(n) − n→ 0

Par construction, on a pour n ∈ N?

uϕ(n) > n

et puisque ϕ(n)− 1 /∈ {k ∈ N/k > ϕ(n− 1) et uk > n}, on a

ϕ(n)− 1 = ϕ(n− 1) ou uϕ(n)−1 < n

Observons qu’il ne peut y avoir qu’un nombre fini de n pour lesquels

ϕ(n− 1) = ϕ(n)− 1

Puisque un+1 − un → 0, à partir d’un rang N , on a

|un+1 − un| < 1/2

Par construction uϕ(N) = N + α avec α > 0.
On a alors

uϕ(N)+k 6 N + α+ k/2

Pour k assez grand, on a
uϕ(N)+k < N + k

Or
uϕ(N+k) > N + k

donc
ϕ(N + k) 6= ϕ(N) + k

Ainsi, il n’est pas possible que pour tout p ∈ {N + 1, . . . , N + k} on ait

ϕ(p)− 1 = ϕ(p− 1)

et donc il existe p > N + 1 vérifiant

uϕ(p)−1 < p et uϕ(p) > p

et puisque
∣∣uϕ(p) − uϕ(p)−1

∣∣ < 1/2, on a

uϕ(p) ∈ [p, p+ 1/2[
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et par récurrence on obtient

∀q > p, uϕ(q) ∈ [q, q + 1/2[

Au-delà du rang p+ 1 on ne peut avoir la propriété

ϕ(n)− 1 = ϕ(n− 1)

car celle-ci entraîne

uϕ(n−1) ∈ [n− 1, n− 1/2[ et uϕ(n) ∈ [n, n+ 1/2[

Finalement, on a obtenu qu’à partir d’un certain rang

uϕ(n)−1 < n et uϕ(n) > n

Cela entraîne
0 6 uϕ(n) − n 6 uϕ(n) − uϕ(n)−1 → 0

et donc
uϕ(n) − n→ 0

Exercice 50 : [énoncé]
a) Le tableau de variation de f : x 7→ x+ tan x permet d’affirmer que cette
fonction réalise une bijection croissante de ]−π/2, π/2[ vers R. L’équation En
possède alors pour solution unique

xn = f−1(n)

b) On a xn + tan xn = n avec xn ∈ ]−π/2, π/2[ donc

xn = arctan(n− xn)

Or n− xn → +∞ car (xn) bornée et donc

xn →
π

2

Exercice 51 : [énoncé]
Soit f : R+ → R définie par f(x) = xex.
f est dérivable et f ′(x) = (x+ 1)ex > 0 donc f est strictement croissante.
f(0) = 0 et lim

+∞
f = +∞ donc l’équation xex = n possède une unique solution xn.

xn = f−1(n)→ +∞.

Exercice 52 : [énoncé]
a) Le tableau de variation de fn : x 7→ xn ln x permet d’affirmer que l’équation
fn(x) = 1 possède une unique solution xn sur R+? et que de plus xn ∈ [1,+∞[.
b) 1 = xn+1

n+1 ln xn+1 = xn+1fn(xn+1) donc fn(xn+1) = 1
xn+1

6 1 = fn(xn) donc
xn+1 6 xn car f est strictement croissante sur [1,+∞[.
La suite (xn) est décroissante et minorée par 1 donc elle converge. Posons ` sa
limite, on a ` > 1
Si ` > 1 alors xnn ln xn > `n ln `→ +∞ ce qui est absurde car xnn ln xn = 1. Il reste
` = 1.

Exercice 53 : [énoncé]
a) Introduisons la fonction

fn : x 7→ xn + · · ·+ x

qui est continue, strictement croissante et vérifie

fn(0) = 0 et lim
x→+∞

fn(x) = +∞

La fonction fn réalise une bijection de [0,+∞[ vers [0,+∞[, par suite l’équation
En possède une unique solution xn ∈ R+.
Puisque

fn(1/2) = 1
2

1− 1/2n

1− 1/2 < 1 et fn(1) = n > 1

on a xn ∈ [1/2, 1].
b) On a

fn+1(xn) = xn+1
n + · · ·+ x2

n + xn = xn(xnn + · · ·+ xn) + xn = 2xn > 1

donc
xn+1 6 xn

La suite (xn) est décroissante et minorée, donc elle converge.
c) Posons ` = lim xn. Puisque x2 < 1, xn 6 x2 donne à la limite ` < 1.

1 = xnn + · · ·+ xn = xn
1− xnn
1− xn

donne à la limite
1 = `

1− `
car 0 6 xnn 6 xn2 → 0 et finalement

` = 1/2
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Exercice 54 : [énoncé]
On pose fn(x) = xn

n! −
n∑
k=0

xk

k! . On observe que fn(0) = −1, lim
x→+∞

fn(x) = +∞ et

f ′n+1 = fn. La propriété est vrai pour n = 1 et si elle est vrai au rang n, le tableau
de signe de fn permet d’assurer que fn+1 est décroissante (et donc strictement
négative) sur [0, xn] puis strictement croissante sur [xn,+∞]. Par le théorème des
valeurs intermédiaires, on peut assurer que f s’annule en un xn+1 > xn et celui-ci
est unique.
La suite (xn) est croissante. Si elle est majorée alors elle converge vers un réel ` et
xnn
n! → 0. Or la suite de terme général est

n∑
k=0

xkn
k! est croissante et strictement

positive. Elle ne peut donc converger vers 0. Par conséquent la suite (xn) n’est pas
majorée et, étant croissante, elle diverge vers +∞.

Exercice 55 : [énoncé]
L’étude des variations de la fonction x 7→ nxn+1 − (n+ 1)xn assure l’existence et
l’unicité de un > 0 vérifiant la relation

nun+1
n − (n+ 1)unn = 1

De plus on peut affirmer un > 1.
Puisque

unn(n(un − 1)− 1) = 1 et unn > 1

on a
n(un − 1)− 1 6 1

puis
0 6 un − 1 6 2/n

permet de conclure un → 1.

Exercice 56 : [énoncé]
a) Posons vn = un + 1. (vn) est géométrique de raison 2 et v0 = 1 donc
un = 2n − 1→ +∞.
b) Posons vn = un − 1. (vn) est géométrique de raison 1/2 et v0 = −1 donc
un = 1− 1

2n → 1.

Exercice 57 : [énoncé]
On a

zn+1 = 1 + i

2 zn

donc

zn =
(

1 + i

2

)n
z0

Or
∣∣ 1+i

2
∣∣ < 1 donc zn → 0 puis xn, yn → 0.

Exercice 58 : [énoncé]
Introduisons xn = Re(zn) et yn = Im(zn). On a

xn+1 = xn et yn+1 = −yn3

xn → x0 et yn → 0 donc zn → Re(z0).

Exercice 59 : [énoncé]
a) un+1− vn+1 = un− vn et u0− v0 = −1 donc (un− vn) est constante égale à −1.
b) vn = un + 1 donc un+1 = 5un + 2. La suite (un) est arithmético-géométrique.
c) un+1 − a = 5(un − a) + 4a+ 2. Pour a = −1/2, (un − a) est géométrique de
raison 5 et de premier terme 3/2. Ainsi

un = 3.5n − 1
2 et vn = 3.5n + 1

2

Exercice 60 : [énoncé]
a) z1 = ρ 1+ eiθ

2 = ρ cos θ2 e
i θ2 , z2 = ρ cos θ2 cos θ4 e

i θ4 ,..., donc

zn = ρ

n∏
k=1

cos θ

2k e
i θ2n

b) eiθ/2n → 1 et
n∏
k=1

cos θ

2k = sin θ
2n sin θ

2n
∼ sin θ

θ

donc
zn → ρ

sin θ
θ
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Exercice 61 : [énoncé]
On peut écrire z0 = ρeiθ avec ρ > 0 et θ ∈ ]−π, π]
On a alors

z1 = ρ
1 + eiθ

2 = ρ cos θ2 ei θ2 , z2 = ρ cos θ2 cos θ4 ei θ4 ,..., zn = ρei θ2n
n∏
k=1

cos θ

2k

Si θ = 0 alors zn = ρ→ ρ.
Sinon, pour tout n ∈ N?, sin θ

2n 6= 0 et

sin θ

2n
n∏
k=1

cos θ

2k = sin θ
2n

par exploitations successives de l’identité sin 2a = 2 sin a cos a.
On en déduit

n∏
k=1

cos θ

2k = sin θ
2n sin θ

2n
→ sin θ

θ

Finalement
zn → ρ

sin θ
θ

Exercice 62 : [énoncé]
u0 = 1, u1 = 2, u2 = 3,...
Par récurrence, on montre aisément

∀n ∈ N, un = n+ 1

Exercice 63 : [énoncé]
(un) est une suite récurrente linéaire d’ordre 2 d’équation caractéristique
r2 − (3− 2i)r + (5− 5i) = 0.
On obtient

un = (2 + i)n − (1− 3i)n

Exercice 64 : [énoncé]
a) un = 2n(1− n) b) un = −3 + 22−n c) un = 2 cos (n−1)π

3 .

Exercice 65 : [énoncé]
(un) est une suite récurrente linéaire d’ordre 2 d’équation caractéristique

r2 − 2 cos θr + 1 = 0

de solutions r = eiθ et r = e−iθ.
Par suite, il existe α, β ∈ R tels que

∀n ∈ N, un = α cosnθ + β sinnθ

n = 0 donne α = 1 et n = 1 donne α cos θ + β sin θ = 1 donc

β = 1− cos θ
sin θ = 2 sin2 θ/2

sin θ = tan θ2
Finalement

∀n ∈ N, un = cosnθ + tan θ2 sinnθ = cos((2n− 1)θ/2)
cos(θ/2)

Exercice 66 : [énoncé]
Soit f une fonction solution.
Pour x > 0, on considère la suite (un) déterminée par

u0 = x et ∀n ∈ N, un+1 = f(un)

La suite (un) est formée de réels strictement positifs et satisfait la relation de
récurrence linéaire

∀n ∈ N, un+2 + un+1 − 6un = 0

Les racines de l’équation caractéristique associée sont 2 et −3 de sorte qu’il existe
λ, µ ∈ R vérifiant

∀n ∈ N, un = λ2n + µ(−3)n

Puisque la suite (un) n’est formée que de réels strictement positifs, il est
nécessaire que µ soit nul.
Après résolution cela donne f(x) = 2x.
Inversement, cette fonction est bien solution.

Exercice 67 : [énoncé]
On a u0 = a, u1 = a2, u2 = a4, par récurrence un = a2n .
Pour |a| < 1 alors un → 0, pour |a| = 1, un → 1 et pour |a| > 1, un → +∞.
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Exercice 68 : [énoncé]
La suite (un) est bien définie et supérieure à 1 à partir du rang 1 car la fonction
itératrice f : x 7→ x2 + 1 est définie sur R et à valeurs dans [1,+∞[.
un+1 − un = u2

n − un + 1 > 0 car le discriminant de x2 − x+ 1 est ∆ = −3 < 0.
La suite (un) est croissante.
Si celle-ci converge vers un réel ` alors en passant à la limite la relation
d’itération : ` = `2 + 1.
Or cette équation ne possède pas de racines réelles. Par suite (un) diverge, or elle
est croissante, donc (un) diverge vers +∞.

Exercice 69 : [énoncé]
Pour tout n > 1

un+1 − un = un − un−1√
1 + un +

√
1 + un−1

Puisque u1 − u0 =
√

2−
√

1 > 0, la suite (un) est croissante.
Si (un) converge vers ` alors un+1 =

√
1 + un donne à la limite ` =

√
1 + ` donc

`2 − `− 1 = 0 et ` > 0.
Par suite

` = 1 +
√

5
2 = α

Par récurrence on montre aisément que ∀n ∈ N, un 6 α et par suite (un) converge
vers α.

Exercice 70 : [énoncé]
La suite (un) est bien définie et à valeurs strictement supérieure à 1 car sa
fonction itératrice f : x 7→ 1 + ln x est définie sur [1,+∞[ à valeurs dans [1,+∞[.
Pour n > 1 : un+1 − un = ln(un)− ln(un−1) est du signe de un − un−1.
La suite (un) est monotone et de monotonie déterminée par le signe de
u1 − u0 = 1 + ln u0 − u0.
Etudions la fonction g(x) = x 7→ 1 + ln x− x définie sur [1,+∞[.
g est dérivable, g′(x) = 1

x − 1 6 0 ne s’annulant qu’en 1, g(1) = 0 donc g est
strictement négative sur ]1,+∞[.
La suite (un) est décroissante. De plus elle est minorée par 1, donc elle converge
vers un réel ` > 1.
En passant la relation d’itération à la limite, on obtient ` = 1 + ln ` i.e. g(`) = 0.
Par l’étude de la fonction g, on conclut ` = 1.
Finalement (un) converge vers 1.

Exercice 71 : [énoncé]
La suite (un) est bien définie car sa fonction itératrice f : x 7→ ex − 1 est définie
sur R.
Pour n > 1, un+1 − un = eun − eun−1 est du signe de un − un−1.
La suite (un) est monotone et de monotonie déterminée par le signe de
u1 − u0 = eu0 − u0 − 1.
Etudions la fonction g(x) = ex − x− 1 définie sur R.
g est dérivable et g′(x) = ex − 1 du signe de x. g(0) = 0 donc g est positive.
Si u0 = 0 alors (un) est constante égale à 0.
Si u0 > 0 alors (un) est croissante. Si (un) converge vers un réel ` alors ` = e` − 1
donc ` = 0.
Or (un) est minorée par u0 > 0 donc ne peut converger vers 0. Par suite (un)
diverge vers +∞.
Si u0 < 0 alors (un) est croissante et majorée par 0 donc (un) converge vers la
seule limite finie possible 0.

Exercice 72 : [énoncé]
La suite (un) est bien définie et strictement positive car de fonction itératrice
f : x 7→ 1

2+x définie sur R+? et à valeurs dans R+?. Si la suite (un) converge, sa
limite ` vérifie ` = 1

2+` et ` > 0 donc ` = −1 +
√

2.

|un+1 − `| =
∣∣∣∣ 1
2 + un

− 1
2 + `

∣∣∣∣ = |un − `|
(2 + un)(2 + `) 6

1
4 |un − `|

Par récurrence, on montre |un − `| = 1
4n |u0 − `| et on conclut un → `.

Exercice 73 : [énoncé]
a) L’application x 7→

√
2− x est définie de [−2, 2] vers [0, 2] ⊂ [−2, 2].

b) Supposons un → `. Puisque ∀n > 1, un ∈ [0, 2], à la limite ` ∈ [0, 2].
La relation un+1 =

√
2− un donne à la limite ` =

√
2− ` donc `2 + `− 2 = 0 d’où

` = 1 ou ` = −2.
Or ` > 0 donc ` = 1.
c)

|un+1 − 1| = |un − 1|
1 +
√

2− un
6 |un − 1|

donc (|un − 1|) est décroissante et par suite converge vers α > 0.
Si α > 0 alors

1 +
√

2− un = |un − 1|
|un+1 − 1| → 1

donc
√

2− un → 0 puis un → 2. C’est impossible.
Nécessairement |un − 1| → 0 et donc un → 1.
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Exercice 74 : [énoncé]
Par récurrence montrons un existe et |un| < 1.
Pour n = 0 : ok
Supposons la propriété établie au rang n > 0.
Par HR, un existe et |un| < 1 donc 2− un 6= 0 d’où un+1 = un

2−un existe et

|un+1| 6
|un|
|2− un|

6
|un|

2− |un|
< 1

Récurrence établie.
|un+1| 6

|un|
2− |un|

6 |un|

donc (|un|) est décroissante d’où |un| 6 |a| puis

|un+1| 6
|un|

2− |a|

puis

|un| 6
(

1
2− |a|

)n
|a| → 0

Par suite un → 0.

Exercice 75 : [énoncé]
La suite (un) est bien définie et à valeurs dans [

√
a,+∞[ à partir du rang 1 car de

fonction itératrice
f : x 7→ 1

2

(
x+ a

x

)
définie sur R+? et à valeurs dans [

√
a,+∞[.

Si (un) converge vers un réel ` alors ` = 1
2
(
`+ a

`

)
et ` > 0 donc ` =

√
a.

∣∣un+1 −
√
a
∣∣ = 1

2

∣∣∣∣un + a

un
−
√
a

∣∣∣∣ = (un −
√
a)2

2 |un|
= |un −

√
a|

2
|un −

√
a|

un

Pour n > 1,
|un −

√
a|

un
= un −

√
a

un
6 1

donc ∣∣un+1 −
√
a
∣∣ 6 1

2
∣∣un −√a∣∣

Par récurrence : ∣∣un −√a∣∣ 6 1
2n−1

∣∣u1 −
√
a
∣∣

donc un →
√
a.

b)

vn+1 = un+1 −
√
a

un+1 +
√
a

= u2
n − 2

√
aun + a

u2
n + 2

√
aun + a

=
(
un −

√
a

un +
√
a

)2

= v2
n

donc vn = v2n
0 .

c) ∣∣un −√a∣∣ 6 vn
∣∣un +

√
a
∣∣ 6 2u0vn = 2u0v

2n
0

Exercice 76 : [énoncé]
a) f : x 7→ ln x+ x réalise une bijection strictement croissante de R+? vers R.
L’équation proposée possède une unique solution α = f−1(0).
b) L’algorithme de Newton, propose de définir la suite (un) par la relation :

un+1 = un −
f(un)
f ′(un) = un −

ln un + un
1/un + 1 = un(1− ln un)

un + 1

La fonction f est de classe C2, f ′(x) = 1
x + 1 et f ′′(x) = − 1

x2 ne s’annulent pas.
Pour u0 > 0 tel que f(u0)f ′′(u0) > 0, la suite converge vers α.

Exercice 77 : [énoncé]
Par récurrence, on montre que un existe et un > 0. La relation de récurrence
donne alors

un+2

un+1
= un+1

un

La suite (un+1/un) est constante égale à u1/u0 = b/a. La suite (un) est donc
géométrique de raison b/a et finalement

un = a

(
b

a

)n
La suite (un) converge si, et seulement si, b 6 a.

Exercice 78 : [énoncé]
a) Pour n > 1 :

un+1 − un =

√√√√ n∑
k=0

uk −

√√√√n−1∑
k=0

uk = un√
n∑
k=0

uk +

√
n−1∑
k=0

uk

> 0

Diffusion autorisée à titre entièrement gratuit uniquement - dD



[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Corrections 25

donc (un)n>1 est croissante.
Supposons un → ` ∈ R. On a ` > u1 =

√
a > 0

En passant la relation précédente à la limite : 0 = `
`+` = 1

2 . C’est absurde.
Par suite un → +∞.
b)

un+1 − un = un
un+1 + un

donc
un+1

un
− 1 = 1

un+1 + un
→ 0

Par suite un+1 ∼ un et

un+1 − un = 1
un+1/un + 1 →

1
2

Exercice 79 : [énoncé]
Posons (un) la suite déterminée par u0 = 1 et pour tout n ∈ N, un+1 =

√
1 + un.

La suite (un) est bien définie et à valeurs positive.
Si celle-ci converge, c’est vers ` > 0 vérifiant ` =

√
1 + ` i.e.

` = 1 +
√

5
2 (nombre d’Or)

On a

|un+1 − `| =
∣∣∣√1 + un −

√
1 + `

∣∣∣ = |un − `|√
1 + un +

√
1 + `

6
|un − `|

2

Par récurrence, on obtient

|un − `| 6
1
2n |u0 − `|

et donc un → `.
Ainsi √

1 +
√

1 +
√

1 + · · · = `

Posons (vn) la suite déterminée par v0 = 1 et pour tout n ∈ N, vn+1 = 1 + 1
vn

.
La suite (vn) est bien définie et à valeurs supérieures à 1.
Si celle-ci converge, c’est vers `′ > 1 vérifiant `′ = 1 + 1

`′ . On retrouve `′ = `.
On a

|vn+1 − `| =
∣∣∣∣ 1
vn
− 1
`

∣∣∣∣ 6 |vn − `||vn| `
6
|vn − `|

`

Par récurrence, on obtient
|vn − `| 6

1
`n
|v0 − `|

et donc vn → ` car ` > 1.
Ainsi

1 + 1
1 + 1

1+
. . .

= `

Exercice 80 : [énoncé]
On vérifie sans difficultés que la suite (vn) est définie et que ses termes sont
positifs.
De plus, on vérifie par récurrence que

∀n ∈ N, vn 6 1

car
(1− un+1)(1− vn) > 0⇒ vn + un+1

1 + un+1vn
6 1

On a alors
vn+1 − vn = un+1(1− v2

n)
1 + un+1vn

> 0

et la suite (vn) est donc croissante et majorée. Par conséquent celle-ci converge
vers une certaine limite ` ∈ R.
Dans le cas où la suite (un) est constante égale à 1, on observe que ` = 1.
Peut-être est-ce encore vrai dans le cas général ? Pour le voir, étudions la suite
(1− vn). On a

0 6 1− vn+1 = (1− un+1)(1− vn)
1 + un+1vn

6
1
2(1− vn)

donc par récurrence
0 6 1− vn 6

1
2n (1− v0)

et on en déduit
vn → 1

Exercice 81 : [énoncé]
Si (un) converge sa limite ` vérifie ` = 1 + `2/4 d’où ` = 2.

un+1 − un = 1
4(un − 2)2 > 0
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(un) est croissante.
Si u0 > 2 alors (un) diverge vers +∞.
Si u0 ∈ [0, 2] alors on vérifie aisément que (un) est majorée par 2 et on conclut
un → 2.

Exercice 82 : [énoncé]
un+1 > un donc (un) est croissante. Par récurrence montrons un 6 a+ 1. La
relation est vraie pour n = 1 et l’hérédité s’obtient par
un+1 =

√
a+ un 6

√
2a+ 1 6 a+ 1.

Exercice 83 : [énoncé]
a) Il suffit de dresser le tableau de variation de f . On note α < β < γ ces trois
racines.
b) f est croissante et x α β γ

f(x)− x − 0 + 0 − 0 +
c) un 6 un+1 ⇒ f(un) 6 f(un+1) donc u0 6 f(u0)⇒ (un) croissante.
De même un > un+1 ⇒ f(un) > f(un+1) donc u0 > f(u0)⇒ (un) décroissante.
Les seules limites finies possibles pour (un) sont α, β, γ.
Enfin si u0 6 α (resp. β, γ) alors pour tout n, un 6 α (resp. β, γ) et de même
pour >.
Au final on peut conclure :
u0 ∈ ]−∞, α[ donne (un) décroissant vers −∞.
u0 = α donne (un) constante égale à α.
u0 ∈ ]α, γ[ donne (un) convergeant vers β.
u0 = γ donne (un) constante égale à γ.
u0 ∈ ]γ,+∞[ donne (un) croissant vers +∞.

Exercice 84 : [énoncé]
f ′(x) est du signe de 3(x2 − a)2 donc f est croissante et par suite (un) est
monotone.
Les racines de l’équation f(x) = x sont 0,

√
a et −

√
a. Ce sont les seules limites

possibles pour (un).
f(x)− x est du signe de ax− x3 = −x(x−

√
a)(x+

√
a).

Si u0 ∈ ]0,
√
a] la suite est croissante est majorée par

√
a donc converge vers

√
a

Si u0 ∈ [
√
a,+∞[ la suite est décroissante et minorée par

√
a donc converge vers√

a.

Exercice 85 : [énoncé]
un+1 − un = −u2

n 6 0 donc (un) est décroissante. Aisément, on montre que
un ∈ ]0, 1[ pour tout n ∈ N et donc on peut conclure que (un) converge. Sa limite
` vérifie

` = `− `2

d’où ` = 0.
n∑
k=0

u2
k =

n∑
k=0

uk − uk+1 = u0 − un+1 → u0

et
n∏
k=0

(1− uk) =
n∏
k=0

uk+1

uk
= un+1

u0
→ 0

Exercice 86 : [énoncé]
a) Soit g : [a, b]→ R définie par g(x) = f(x)− x.
g est continue, g(a) > 0 et g(b) 6 0 donc g s’annule en un point α qui est alors
point fixe de f .
Si α et β sont deux points fixes distincts alors par application du théorème des
accroissements finis, il existe c ∈ [a, b] tel que f ′(c) = 1 ce qui est incompatible
avec les hypothèses.
b) La fonction x 7→ |f ′(x)| est continue sur le segment [a, b], elle y admet donc un
maximum en un point c ∈ [a, b] et en posant k = |f ′(c)| on a

∀x ∈ [a, b] , |f ′(x)| 6 k avec k ∈ [0, 1[

Par l’inégalité des accroissements finis, f est k lipschitzienne et alors par
récurrence :

∀n ∈ N, |un − α| 6 kn |u− α| → 0

d’où le résultat.

Exercice 87 : [énoncé]

un+1 − un = (f(un)− f(un−1)) + (un − un−1)
2

Puisque f est 1 lipschitzienne on a

|f(un)− f(un−1)| 6 |un − un−1|

donc un+1 − un est du signe de un − un−1,
(en fait la fonction itératrice est croissante).
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Par suite (un) est monotone et étant bornée elle converge vers un ` ∈ [a, b].
La relation

un+1 = un + f(un)
2

donne à la limite
` = `+ f(`)

2
donc f(`) = `.

Exercice 88 : [énoncé]
a) On observe que x 7→ 4x− x2 est une application de [0, 4] dans lui-même. Par
suite un ∈ [0, 4] pour tout n ∈ N. Si (un) converge alors, en posant ` sa limite, on
a ` = 4`− `2 d’où ` = 0 ou ` = 3.
b) Supposons que un → 0. S’il existe un rang n tel que un = 0 alors la suite (un)
est stationnaire égale à 0. Sinon on a un > 0 pour tout n ∈ N et donc
un+1 − un ∼ 3un > 0. Ainsi, à partir d’un certain rang, la suite est strictement
croissante. De même si un → 3 sans être stationnaire égale à 3, on observe que la
suite |un − 3| est strictement croissante à partir d’un certain rang.
c) On obtient aisément un = 4 sin2 2nα. La suite est stationnaire si, et seulement
si, il existe n ∈ N tel que un = 0 ou 3 i.e. sin2(2nα) = 0,

√
3/2,−

√
3/2 soit encore

2nα = kπ/3 avec k ∈ Z. Ainsi les u0 pour lesquels la suite est stationnaire sont les
sin(kπ/3.2n) avec k ∈ Z et n ∈ N.

Exercice 89 : [énoncé]
a) z1 = ρeiθ+ρ

2 = ρ cos θ2 e
i θ2 . Par ce principe :

zn = ρ cos θ2 cos θ4 · · · cos θ

2n ei θ2n

b) ei θ2n → 1 et

cos θ2 cos θ4 · · · cos θ

2n = sin θ
2n sin θ

2n
→ sin θ

θ
(ou 1 si θ = 0)

Finalement zn → sin θ
θ .

Exercice 90 : [énoncé]
On a un 6 vn et un+1 6 vn, vn+1 = max(un+2, un+1) avec
un+2 6 1

2 (un + un+1) 6 vn et un+1 6 vn donc (vn) est décroissante.

(vn) est décroissante et minorée par 0 donc (vn) converge.
On a un+1 6 vn.

vn+1 6 max
(

1
2(un+1 + un), un+1

)
= max

(
1
2(un+1 + un), 1

2(un+1 + un+1)
)

= 1
2un+1+1

2vn

donc 2vn+1 − vn 6 un+1 6 vn donc (un) converge vers la même limite que (un).

Exercice 91 : [énoncé]
Les suites (un) et (vn) sont bien définies et à termes positifs.
Sachant

∀a, b ∈ R+,
√
ab 6

a+ b

2
on a

∀n > 1, un 6 vn

puis
un+1 > un et vn+1 6 vn

Les suites (un)n>1 et (vn)n>1 sont respectivement croissante et décroissante et on
a

∀n > 1, u0 6 un 6 vn 6 v0

Par convergence monotone, (un) et (vn) convergent vers des limites ` et `′.
En passant la relation

vn+1 = un + vn
2

à la limite on obtient ` = `′.

Exercice 92 : [énoncé]
a) Exploiter 1 + cosx = 2 cos2 x

2 et raisonner par récurrence.
b)

sin α

2n vn = 1
2n sinα

via sin a cos a = 1
2 sin 2a. Par suite

vn ∼
sinα

2n sin(α/2n) →
sinα
α

et aussi
un →

sinα
α
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Exercice 93 : [énoncé]
Notons que la suite (yn) est croissante, elle est donc convergente si, et seulement
si, elle est majorée.
a) Ici yn+1 =

√
a+ yn. Soit ` la racine positive de l’équation `2 − `− a = 0 i.e.

` = 1 +
√

1 + 4a
2

On remarque que y1 =
√
a 6 ` et on montre par récurrence yn 6 `. La suite (yn)

est croissante et majorée donc convergente.
b) On observe que la nouvelle suite (yn) est désormais égale à b fois la précédente,
elle est donc convergente.
c) Si (yn) converge vers ` alors x2−n

n 6 yn 6 ` donc (x2−n
n ) est bornée.

Si (x2−n
n ) est bornée par une certain M alors xn 6M2n , la suite (yn) définie par

(xn) est alors inférieure à celle obtenue par (M2n), cette dernière étant
convergente, la suite (yn) converge.

Exercice 94 : [énoncé]
Posons

M = sup
n∈N

an

On vérifie aisément que la suite (un) est bien définie et que pour tout n > 2

1
M + 2 6 un 6 1

Supposons la convergence de la suite (un). Sa limite est strictement positive. En
résolvant l’équation définissant un+1 en fonction de un, on obtient

an = 1
un+1

− un − 1

On en déduit que la suite (an) converge.
Inversement, supposons que la suite (an) converge vers une limite `, ` > 0.
Considérons la suite (vn) définie par

v0 = 1 et vn+1 = 1
vn + `+ 1 pour tout n ∈ N

On vérifie que la suite (vn) est bien définie et à termes strictement positifs.
L’équation

x = 1
x+ `+ 1

possède une racine L > 0 et on a

|vn+1 − L| 6
|vn − L|
1 + L

ce qui permet d’établir que la suite (vn) converge vers L. Considérons ensuite la
suite (αn) définie par

αn = un − vn
On a

αn+1 = αn + (`− an)
(un + an + 1)(vn + `+ 1)

et donc
|αn+1| 6 k (|αn|+ |an − `|)

avec
k = 1

m+ 1 ∈ [0, 1[

où m > 0 est un minorant de la suite convergente (vn).
Par récurrence, on obtient

|αn| 6 kn |α0|+
n−1∑
p=0

kn−p |ap − `|

Soit ε > 0.
Puisque la suite (an) converge vers `, il existe p0 tel que

∀p > p0, |ap − `| 6 ε

et alors
n−1∑
p=p0

kn−p |ap − `| 6 ε

+∞∑
k=1

kp = kε

1− k

Pour n assez grand

p0−1∑
p=0

kn−p |ap − `| = Ctekn 6 ε et kn |α0| 6 ε

et on en déduit
|αn| 6 2ε+ kε

1− k
Ainsi αn → 0 et par conséquent

un → L

Diffusion autorisée à titre entièrement gratuit uniquement - dD



[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Corrections 29

Exercice 95 : [énoncé]
La fonction itératrice de cette suite récurrente est

g : x 7→ 1
2 (f(x) + x)

On vérifie aisément que cette fonction est définie sur [a, b] et à valeurs dans [a, b].
On en déduit que la suite (xn) est bien définie et que c’est une suite d’éléments de
[a, b].
On a

xn+1 − xn = (f(xn)− f(xn−1)) + (xn − xn−1)
2

Puisque f est 1-lipschitzienne, on a

|f(xn)− f(xn−1)| 6 |xn − xn−1|

et donc xn+1 − xn est du signe de xn − xn−1. Par conséquent, la suite (xn) est
monotone et sa monotonie découle du signe de x1 − x0. La suite (xn) étant de
plus bornée, elle converge vers une certaine limite ` avec ` ∈ [a, b].
La relation

xn+1 = xn + f(xn)
2

donne à la limite sachant f continue

` = `+ f(`)
2

donc f(`) = `.
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