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Enoncés 1

Suites et séries de fonctions

Propriétés de la limite d’une suite de fonctions

Exercice 1 [o00s68] [correction]
Etablir que la limite simple d’une suite de fonctions de I vers R convexes est
convexe.

Exercice 2 [00885] [correction]

Soient (f,,) une suite de fonctions convergeant uniformément vers une fonction f
et ¢g une fonction uniformément continue.

Montrer que la suite de fonctions (g o f,,) converge uniformément.

Exercice 3 [00884] [correction]

Soient (f,) et (gn) deux suites de fonctions convergeant uniformément vers des
fonctions f et g supposées bornées.

Montrer que la suite de fonctions (f,gy,) converge uniformément vers fg.

Exercice 4 [00886] [correction]
Montrer que la limite uniforme d’une suite de fonctions uniformément continues
d’un intervalle I de R vers R est elle-méme une fonction uniformément continue.

Exercice 5 [00878] [correction]
Soit (fn) une suite de fonctions réelles continues et définies sur [a,b]. On suppose
que f, converge uniformément vers une fonction f.

Montrer

inf f, — inf
[a,b] f [a,b] f

Exercice 6 [00879] [correction]

On suppose qu’une suite de fonctions (f,,) de [a,b] vers R converge uniformément
vers f : [a,b] — R continue et on considére une suite (z,) d’éléments de [a, b]
convergeant vers x. Montrer

Exercice 7 [00894] [correction]

Soient f : R — R une fonction continue et (P,) une suite de fonctions
polynomiales convergeant uniformément vers f.

a) Justifier qu'il existe un entier naturel N tel que pour tout n supérieur ou égal a
N, on ait pour tout réel z, |P,(x) — Py(z)| < 1.

Que peut-on en déduire quant au degré des fonctions polynémes P, — Py lorsque
n>N?

b) Conclure que f est nécessairement une fonction polynomiale.

Exercice 8 [03461] [correction]

Soit (P,,) une suite de fonctions polynémes de R dans R. On suppose que cette
suite converge uniformément vers une fonction f sur R. Montrer que la fonction f
est polynomiale.

Etude pratique de la convergence d’une suite de
fonctions

Exercice 9 [00871] [correction]
On pose
up(z) = 2" Inz avec z € ]0,1] et u,(0) =0

Etudier la convergence uniforme de la suite de fonctions (u,,) sur [0, 1].

Exercice 10 [o00872] [correction]
Etudier la convergence uniforme de f,, : [0, 400 — R définie par

fn(z) = w42

Exercice 11 [o0s870] [correction]
On pose

n.

up(z) = e " sin(nx) avec z € R

a) Etudier la convergence simple de la suite de fonctions (u,) sur [0, +o00].
b) Etudier la convergence uniforme sur [a, +o00[ avec a > 0.
c) Etudier la convergence uniforme sur [0, +oo].
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Exercice 12 [o00873] [correction]
On pose

2 nx

fu(z) = nae™™ avec z € RT

Etudier la convergence uniforme de (f,) sur RT puis sur [a, +oo[ avec a > 0.

Exercice 13 [o0874 ] [correction]
On pose

1
maVeC.TGR
xT

Etudier la convergence uniforme de (f,,) sur R puis sur |—o0, —a] U [a, +00[ avec
a > 0.

fn(z) =

Exercice 14 [ 00875 ] [correction]

On pose
1
fn(z) = 2?sin (mc) pour x >0 et f,(0) =0

Etudier la convergence uniforme de (f,) sur RT puis sur [—a, a] avec a > 0.

Exercice 15 [o02527] [correction)]
Etudier la convergence simple et uniforme sur R de la suite de fonctions (f,)
donnée par

fn(x) = sin"™(z) cos(x)

Exercice 16 [02518] [correction]
Etudier la suite de fonctions (f,,) définie par

2,—nx
nx‘e
fal@) ===
Exercice 17 [02830] [correction]
On pose, pour x > 0,
1

folz) = m

Etudier la convergence simple puis uniforme de la suite de fonctions (f,)pen+-

Exercice 18 [00876] [correction]

On pose
2"y

fn(l‘) = m pour x € R

Sur quels intervalles y a-t-il convergence uniforme ?

Exercice 19 [oo0s877] [correction)]
On pose
fol(x) = 4" (2% — 22" ) pour z € [0, 1]

Sur quels intervalles y a-t-il convergence uniforme ?

Exercice 20 [ooss1] [correction)]
Soient @ € R et f, : [0,1] — R définie par

fo(x) =n%2(l —2)"

a) Etudier la limite simple de la suite (f,).
b) Pour quels « € R, y a-t-il convergence uniforme ?

Exercice 21 [02972] [correction]
Soit, pour n € N, f,, la fonction définie sur R* par

fulz) = (17 %)n sizel0,n] et fr(z)=0siz>n

Etudier le mode de convergence de (fy,).

Exercice 22 [00890] [correction)]
Soit f,, : RT — R définie par

x —n
fu(@) = (1 + H)
a) Etudier la limite simple de (f,,) et montrer que
Vz € RY, fu(z) > lim f,(z)

b) En partant de ’encadrement suivant valable pour tout ¢ € RT,
2

t
t—5 <l(l+1)<t
justifier que la suite (f,,) converge uniformément sur tout intervalle [0, a] (avec

a > 0).
¢) Etablir qu’en fait, la suite de fonctions (f,,) converge uniformément sur R*.
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Exercice 23 [00892] [correction]
Soit f,, : [0,1] — R définie par

fu(x) = n?x(1 —nzx) siz €[0,1/n] et f,(z) =0 sinon

a) Etudier la limite simple de la suite (fy,).

b) Calculer
1
| fatoya
0

Y a-t-il convergence uniforme de la suite de fonction (f,)?
¢) Etudier la convergence uniforme sur [a, 1] avec a > 0.

Exercice 24 [o00s891 ] [correction]
Pour z € [0,7/2], on pose f,(x) = nsinz cos™ x.
a) Déterminer la limite simple de la suite de fonctions (fy).
b) Calculer
/2

I, = 0 fn (l‘)dl‘
La suite (f,) converge-t-elle uniformément ?
¢) Justifier qu’il y a convergence uniforme sur tout segment inclus dans ]0,7/2].

Exercice 25 [02532] [correction]

a) Montrer que la suite de fonctions f,(x) = z(1 + n% ") définies sur R* pour
a € R et n € N* converge simplement vers une fonction f a déterminer.

b) Déterminer les valeurs de o pour lesquelles il y a convergence uniforme.

c¢) Calculer
1

lim z(1 + /ne "*)dx

n—-+oo 0

Exercice 26 [02860] [correction]
Soit (fy,) la suite de fonction définie sur R par

folz) =z et fnia(2)

- v our n € N
2+ fu(z) ¥

Etudier la convergence simple et uniforme de la suite (f,)n>0 sur RT.

Exercice 27 [02831] [correction]
Soit f:[0,1] — [0,1] donnée par

f(@) =22(1 - x)

Etudier la convergence de (f,,) ou f, est I'itéré n-iéme de f.

Exercice 28 [02970] [correction]
On note E l'ensemble des fonctions f : [0,1] — RT continues.
On pose

(f)(x) = / BV/OL

pour toute f € E.

On pose fo =1 puis f,,+1 = ®(f,) pour tout n € N.

a) Etudier la suite (f,).

b) Soit f = lim(f,).

Trouvez une équation différentielle dont f est solution.
Y a-t-il unicité de la solution nulle en 07

Etude théorique de la convergence d’une suite de
fonctions

Exercice 29 [o0ss83] [correction)]
Soit f, : RT™ — R définie par

falx)=2z+1/n

Montrer que la suite de fonctions (f,,) converge uniformément mais pas (f2).

Exercice 30 [00869] [correction)]
Soit f,, : R — R définie par

fulx) =+/224+1/n

Montrer que chaque f,, est de classe C! et que la suite (f,,) converge
uniformément sur R vers une fonction f qui n’est pas de classe C!.
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Exercice 31 [o00887] [correction]
Soit f : R — R une fonction deux fois dérivable de dérivée seconde bornée.
Montrer que la suite des fonctions

gn 2@ =0 (f(z+1/n) — f(2))

converge uniformément vers f’.

Exercice 32 [ 00888 ] [correction]

Soit f,, : [0,1] — R décroissante et continue telle que (f,,) converge simplement
vers la fonction nulle.

Montrer que cette convergence est uniforme.

Exercice 33 [ 00889 ] [correction]

[Théoréme de Dini]

Soient des fonctions f,, : [a,b] — R continues telles que la suite de fonctions (f,)
converge simplement vers la fonction nulle.

On suppose que pour tout = € [a, b], la suite réelle (f,(x)) est décroissante. On
désire montrer que la convergence de la suite (f,,) est uniforme.

a) Justifier 'existence de

b) Justifier que pour tout n € N, il existe x,, € [a,b] tel que ||fn|l ., = fn(Zn).
¢) En observant que pour tout p < n,

f(@n) < fp(zn)

montrer que || f,| ., — 0 et conclure.

Exercice 34 [ 02969 ] [correction]

Soit I un intervalle ouvert ; soit pour n € N, f,, : I — R une fonction convexe. On
suppose que (f,) converge simplement.

Montrer que (f,,) converge uniformément sur tout segment inclus dans I.

Exercice 35 [02833] [correction]

On note U I’ensemble des complexes de module 1 et on considére w un complexe
de module # 1.

Exprimer une condition nécessaire et suffisante pour que la fonction

Z =

zZ—Ww

soit limite uniforme sur U d’une suite de fonctions polynomiales.

Exercice 36 [03902] [correction]
Soit f : R — R de classe C'. Pour tout n € N*, on pose

un(t) =n(f (t+1/n) = f(t))

Montrer que la suite de fonctions (uy),>1 converge uniformément sur tout
segment de R vers une fonction a préciser.

Fonction solution d’équations fonctionnelles

Exercice 37 [00893] [correction)]
On définit (u,) suite de fonctions de [0, 1] vers R par

w(z)=letVn €N, upp1(z) =1 +/ u, (t — %) dt
0

a) Montrer que pour tout z € [0, 1],

anrl
0 < Un+1(17) — Un(l') é m
b) En déduire la convergence pour tout x € [0,1] de la suite (u,(z)).
c) Etablir que la suite (u,) converge uniformément vers une fonction u non nulle
vérifiant
o (x) = u(z — z?)

Exercice 38 [o03s891] [correction)]
Soit v € [0, 1[. On définit (u,) suite de fonctions de RT vers R par

u(z)=letVneN, upyi1(z) =1 +/ Uy () dt
0

a) Montrer que pour tout z € R,

anrl

0 < upt1(x) — un(z) < (n+1)!

b) En déduire la convergence pour tout x € R de la suite (uy,,(z)).
c¢) Etablir que la suite de fonctions (u,) converge vers une fonction u non nulle
vérifiant

u'(x) = u(yz)
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Exercice 39 [00903] [correction]
Pour z > 0, on pose

S(x):Z n+x

n=0

a) Justifier que S est définie et de classe C! sur RT*.
b) Préciser le sens de variation de S.
c¢) Etablir

Ve >0,S(x+1)+S(x) =1/x

d) Donner un équivalent de S en 0.
e) Donner un équivalent de S en +oc0.

Exercice 40 [03777] [correction]
Pour z > 0, on pose

a) Montrer que F' est bien définie.
b) Montrer que F est de classe C!, de classe C*°.
¢) Simplifier

F(z)+ F(z+1)

d) Montrer que pour z > 0

1 tmfl
F(x)z/ dt
) 1+t

e) Donner un équivalent de F en 0 et en +oo.

Exercice 41 [00913 ] [correction]

Pour z > 0, on pose
4o n

1
=2 iy

n=0 k=0

a) Justifier que S est définie et continue sur ]0, +oo.
b) Former une relation liant S(x) et S(z + 1).
¢) Déterminer un équivalent de S(z) en +oo et en 0.

Exercice 42 [00914] [correction]
Pour tout n € N et tout z € R, on pose

fn(z) = th(z 4+ n) — thn

a) Etablir la convergence de la série de fonctions ) f,.
+oo
b) Justifier que la fonction somme S = Y f,, est continue et strictement

n=0
croissante sur RT.

¢) Montrer que
Vz e RY,S(z+1)— S(z) =1 — thr

d) Etudier la convergence de S en +oo.

Exercice 43 [03754] [correction)]
Soit f : RT — R continue décroissante et intégrable.
Montrer I'existence d'une fonction ¢ : RT™ — R continue vérifiant

Vo € RT g(x+ 1) — g(z) = f(z)

Exercice 44 [00912] [correction]
On rappelle que

+oo s
Ve eR — =¢"
’7;0”!

et on pose pour = > 0,

= (="
S@) = z:% nl(x 4+ n)

a) Justifier que S est définie et de classe C sur RT*.
b) Préciser le sens de variation de S.
c¢) Etablir que

xS(x) = S(z+1) = %

d) Donner un équivalent de S en +oo.
e) Donner un équivalent de S en 0.
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Exercice 45 [00898] [correction]
Justifier 'existence de

pour tout x € R\Z.
Montrer que f est 1-périodique et qu’on a

r(3)+7 () 2@

pour tout z € R\Z.

Exercice 46 [ 02974 ] [correction]
a) Etudier la convergence de la série de fonctions

+oo 1

pour z € R\Z.
b) Soit un réel ¢ > 2. Soit f une fonction continue de R dans R telle que, pour

tout x réel,
T z+1
1(5)+1(57) =ef@
Montrer que f = 0.

¢) Montrer que pour tout z réel non entier,

S (r—n)?2  sin’7z

Exercice 47 [02973] [correction]
Trouver les fonctions f € C ([0,1],R) telles que

f(=")

+oo
Vo e [0,1], f(z) =Y 5

Exercice 48 [03978] [correction]

a) Montrer qu’il existe une unique fonction f :]0,4+o00[ — R de limite nulle en +o00

et vérifiant

Vx>0,f(x)+f(x+1):%

b) Montrer que f est continue et intégrable sur [1, +oo].

c¢) Calculer
—+o0
[ s
1

Etude de la convergence d’une série de fonctions

Exercice 49 [00895] [correction)]
Etudier la convergence simple, uniforme et normale de la série des fonctions

fule) = —

ﬁavecn>letx€R

n?+zx

Exercice 50 [ 00896 ] [correction)]

Etudier la convergence simple, uniforme et normale de la série des fonctions
(="

fn(x):n—i—x? avecn > letx € R

Exercice 51 [00897] [correction]
On note 1; la fonction caractéristique d’un intervalle I :

1 sizel
Li(z) _{ 0 sinon

Etudier la convergence simple, uniforme et normale sur [0, +oo[ de la série des

fonctions )

up(z) = ml[n,n+1[(x)

Exercice 52 [03770] [correction)]
On considere la série des fonctions

falz) = nale V0

définies sur RT.
Etudier sa convergence simple, sa convergence normale et sa convergence
uniforme.
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Exercice 53 [03785] [correction]
On introduit I'application sur [0, +oo|

e "
n!

fnix—

a) Etudier les convergences de la suite de fonctions (f,,).
b) Etudier les convergences de la série de fonctions Y f,.

Exercice 54 [02838] [correction]
Soient a € Ret sin € N,

Up :x €[0,1] = n%2"(1—z) R

Etudier le mode convergence de la suite de fonctions (u,,), puis de la série de
fonctions Y wuy,.

Exercice 55 [o08s2] [correction]
Soient f :[0,1] — R continue et f, : [0,1] — R définie par

a) Former une condition nécessaire et suffisante sur f pour que la suite de
fonction (f,) converge uniformément sur [0, 1].

b) Montrer que la série de fonctions Y f,, converge uniformément sur [0, 1] si, et
seulement si, f(1) = 0 et f dérivable en 1 avec f/(1) = 0.

Exercice 56 [03295 ] [correction]
Soit (an)nen une suite réelle positive et décroissante. Pour tout n € N, on pose

up(z) = apz™ (1 — x) avec x € [0, 1]

a) Montrer la convergence simple de la série de fonctions Y u,.

b) Montrer que cette série converge normalement si, et seulement si, il y a
convergence de la série Y a,, /n.

¢) Montrer que la série de fonctions Y u,, converge uniformément si, et seulement
si, a,, — 0.

Exercice 57 [02839] [correction]
On pose

ug(xz) =1 et upqq1(x) = /033 un (t —t2) dt

pour tout réel & € [0,1] et tout entier naturel n.
Montrer que la série de terme général u,, est normalement convergente.

Exercice 58 [03988] [correction]
Soitun:xER‘*HWavecneN.
Etudier la convergence simple et la convergence uniforme de > u, et Y ul,.

Fonctions zéta

Exercice 59 [ 00907 ] [correction]

On pose
+o0 1
(o) =) —

ne
n=1

a) Montrer que la fonction ¢ est définie et de classe C* sur |1, 4+o0].

b) Etudier monotonie et convexité de la fonction (.

¢) Déterminer la limite de la fonction ¢ en +oo.

d) Déterminer un équivalent de la fonction ¢ en 17.

e) En exploitant I'inégalité de Cauchy-Schwarz établir que x — In({(z)) est
convexe.

Exercice 60 [02834] [correction)]

Six > 1, on pose
+o00 1
() = ne
n=1
a) Quelle est la limite de ((z) quand © — 400 ?

b) Pour quels réels z la série S <™ am converge-t-elle ?

c) Si !
+oo
Fa) = 3 Sy

montrer que F est continue sur [—1,1[ et de classe C! sur |—1,1].
d) Donner une expression plus simple de F'(x)
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Exercice 61 [00908] [correction] Exercice 66 [00911] [correction]
On pose On pose
() =X (~1)m up(z) = (=1)" 22" 2 In g pour x €]0,1] et u,(0) =0
2(x) = p
=1 a) Calculer

Montrer que la fonction (3 est définie et de classe C* sur |0, +oo].

+oo

n=0

Exercice 62 [00909 ] [correction
| ) b) Montrer que la série des u,, converge uniformément sur [0, 1].

On pose P S eis
+o0 (=1)" c) En déduire ’égalité
CQ (x) = Z ne 0o
n=1 /1 Inz Z (—1)n+t
T = —-—
Montrer que (s est définie et de classe C* sur ]0, +o0]. o 1+ a2 = (2n+1)2
Exercice 63 [03853] [correction]
Déterminer la limite quand  — 01 de Exercice 67 [00920] [correction)]
On donne
Ca(z) +§ =i X 2 chra 1
2\t) = T Vo € |0,1 = - =
=1 aelo, ]’nz::laz—i—nz Tshra  «

(prolongée par continuité en 0).

Exercice 64 [00s99 ] [correction] En intégrant sur [0, 1], en déduire la valeur de

Soient
C(:z:):ioiet Cg(x):ioﬂ Foo 1
n=1 n® n=1 n® H (1 + 712)

n=1
a) Déterminer les domaines de définition des fonctions ¢ et (s.

b) Justifier que les fonctions ¢ et (; sont continues. .. .
¢) Etablir la relation ¢y(z) = (1 — 2177)((z) pour tout z > 1. Limite et comportement asymptotique de la somme
de série de fonctions

Intégration de la somme d’une série de fonctions

Exercice 68 [02558] [correction)]
Exercice 65 [00900] [correction] Ensemble de définition et continuité de

Soit n .
W):Z( L ) fla) =3 e

n—x n+x

n=2

Justifier et calculer 1 En trouver la limite en 400 et un équivalent en 0% .
/ P(x)dx
0
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Exercice 69 [00139] [correction]
Pour ¢t > 0, on pose

+o0 n
St =2 fz;i) 1

n=0

Déterminer la limite de S(t) quand ¢t — 0%.

Exercice 70 [ 00910 ] [correction]
Pour n > 1 et x € R, on pose

un(2) = (~1)"In (1 i n(lim)

a) Etudier la convergence uniforme de la série de fonctions ) w,,.
b) Déterminer la limite de sa somme en +00. On pourra exploiter la formule de
Stirling

Exercice 71 [00917] [correction]
Déterminer la limite de

Exercice 72 [00918 ] [correction]
Montrer que pour tout « > 0,

n < k)ﬂ(x o
> (-8 o2
n n—4o0 €% — 1

k=0

On pourra exploiter le théoréme d’ interversion limite/somme infinie.

Exercice 73 [00919] [correction]
Par une interversion série-limite, montrer que pour tout z € C

142 s (2)
- explz
p p——+oc0 p

Etude pratique de fonctions somme de série

Exercice 74 [o00901 ] [correction)]

Pour z > 0, on pose
+oo

1
S(z) = Z n +n2zx
n=1

a) Montrer que S est bien définie sur R**.
b) Montrer que S est continue.
c¢) Etudier la monotonie de S.

d) Déterminer la limite en 400 de S puis un équivalent de S en +o0.

e) Déterminer un équivalent a S en 0.

Exercice 75 [00902 ] [correction]

Sur I =]—1,4o00[, on pose
+o0
1 1
S@) =S~
(@) nzz:ln n+x

a) Montrer que S est définie et continue sur I.
b) Etudier la monotonie de S.
c) Calculer

S(x+1)—S(x)

d) Déterminer un équivalent de S(x) en —17.
e) Etablir

1
Vn eN,S(n) = Z%
k=1

f) En déduire un équivalent de S(x) en +oc.

Exercice 76 [00906] [correction)]
Soit

+oo
fla)=) eovm
n=1

a) Quel est le domaine de définition de f?
Etudier la continuité de f sur celui-ci.

b) Montrer que f est strictement décroissante.
¢) Etudier la limite de f en +oco.

d) Déterminer un équivalent simple de f(z) quand z — 0%.
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Exercice 77 [00915] [correction]

Pour x > 0, on pose
+oo n

xr
S(x) =)
— 1+ 22

Pour quelles valeurs de z dans R*, S(x) est définie ?
Former une relation entre S(z) et S(1/z) pour x # 0.
Etudier la continuité de S sur [0, 1] puis sur |1, +-o0[.
Dresser le tableau de variation de S.

a
b
¢
d

Exercice 78 [02837] [correction]

On pose
+00 "
S —
D=3

Etudier le domaine de définition, la continuité, la dérivabilité de S. Donner un
équivalent de S en O et en 1~

Exercice 79 [03203] [correction]
Définition, continuité et dérivabilité de

S .’E’—)Z 1+n2x2

Exercice 80 [02529] [correction]

Montrer que
+oo

flx) = Z % arctan(nz)

n=1

est continue sur R et de classe C! sur R*.

Exercice 81 [03427] [correction]
Pour n € Net z € RT, on pose

up(z) = arctan v/n + x — arctan /n

a) Etudier I'existence et la continuité de la fonction S définie sur RT par la

relation
+o00
2) =Y un(x)
n=0

b) Déterminer la limite de S en +o0.

Exercice 82 [03797] [correction]

On étudie
+o00 1
f(z) = ; .

a) Montrer que f est définie et de classe C! sur R.

b) Donner, a ’aide d’une comparaison intégrale, un équivalent de f au voisinage
de +o0.

¢) Donner un développement limité & ordre 2 de f en 0. On donne

2 4
= 6 —n 90

Exercice 83 [ 03194 ] [correction]
Définition, continuité et classe C! de

||M8

Exercice 84 [00904] [correction]
Pour ¢t > 0, on pose

—+o0
(*1)"
St =31
n=0
a) Justifier que S est définie et continue sur |0, +oo].
b) Etudier la limite de S en +oo.
¢) Etablir que S est de classe C! sur ]0, +o0].

Exercice 85 [03644] [correction]
Pour z € R, on pose

“+o0
St = X 0"

a) Montrer que la fonction S est bien définie et étudier sa parité.
b) Montrer que la fonction S est continue.
c¢) Déterminer la limite de S en +oc.
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Exercice 86 [00916] [correction] Exercice 89 [02836] [correction]
Pour tout € R\ {—1} et n € N* on pose Soit a un réel. Pour tout entier n > 0 et tout réel x, on pose
e} —nx
(_1)71—1 " () = n-xe
(@) = "= e

N On note I le domaine de définition de
o

a) Justifier que la fonction f:x+— Y wu,(x) est définie sur R\ {—1}. o0
. =1 SxHZun(:c)
b) Etablir que pour tout z # 0, o
+00 (—1)n-1 a) Déterminer I.
flx)+ f(1/x) = Z e b) Montrer que S est continue sur RT*.
n=1 " c¢) A-t-on convergence normale sur R ?
d) On suppose « > 2. Montrer que

¢) Etablir que f est continue sur |—1, 1[ puis que f est continue sur |—oco, —1[ et

11, +oo] . >0
d) Etablir la continuité de f en 1. Z ug(1/n)
k=n-+1
ne tend pas vers 0 quand n tend vers +oc.
Exercice 87 [02835] [correction] La convergence de la série de fonctions Y u,, est-elle uniforme sur I ?
Siz > 0etneN* soit e) Etudier la continuité de S sur I.
n*n!
folr) = 57—
II (z+k) Exercice 90 [02971] [correction)]
k=0 Soit des suites réelles (a,) et (x,) avec a,, > 0 pour tout n.
a) Montrer lexistence de I'(z) = lirJrrl fn(). On suppose que la série de terme général a,, (1 + |x,|) converge.
n—r+00
b) Montrer On pose -
+oo
B x x f:R—>R7x»—>Zan|:v—xn|
lnF(m)——lnx—’yx—Fz:l(n—1n(1—|—n>) vt
n—

Etudier la continuité et la dérivabilité de f.
¢) Montrer que I' est une fonction de classe C*.

Exercice 91 [04070] [correction]

+ :
Exercice 88 [00905 ] [correction] Pour n € N et » € R™, on pose

On fixe o > 0 et on pose u,(x) = arctan (n 4+ x) — arctan (n)

a) Etudier Dexistence et la continuité de la fonction S définie sur R™ par la

fa() =" et f(x) = Z fn(z) relation
n=0 I
S(x) =" un(x)
n=0

a) Domaine de définition de f?
b) Continuité de f?

¢) Etudier liIil ). b) Déterminer la limite de S en +o0.
Tr—r+00
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Exercice 1 : [énoncé]

Supposons que la suite (f,,) converge simplement vers f sur I avec chaque f,

convexe.
Pour tout a,b€ I e A €[0,1] on a

W €N, faha+ (1= \)b) < Afa(a) + (1= N fa(b)

A la limite quand n — 400, on obtient
fAa+ (1 =2)b) <Af(a) + (1= A)f(b)

ce qui fournit la convexité de f.

Exercice 2 : [énoncé]
Par uniforme continuité, on a

Ve>0,3a >0,z —y| <a=|g(x)—gly) <e
Pour n assez grand, on a
Ve el |fu(r) - f(z)] < @

et donc
Ve €1, |g(falz)) — g(f(z)) <€

Ainsi, il y a convergence uniforme de (g o f,,) vers go f.

Exercice 3 : [énoncé]
On peut écrire

[fngn = falloo < 1fnlloo 19n = 9lloe + 19lloo 1fn = flloo

Or || fallo = Il fllo et donc la suite (|| fn||,,) est bornée car convergente. Par

opération sur les limites, on obtient alors

[fngn = f9llee < fnllo lgn = 9lloe + lglloe [1fn = Fllc =0

car [[fo = flloo = 0 et flgn = glloo = 0.

Exercice 4 : [énoncé]

Soit (f,) une suite de fonctions uniformément continue de I vers R convergeant
uniformément vers f: I — R.

Soit € > 0. Il existe n € N vérifiant || f — f| <e.

La fonction f,, étant uniformément continue, il existe o > 0 vérifiant :

Ve,y € Lz —y| <a=|[fulz) — fuly)| <e

Or
lf(@) = FWI < 1f(2) = fu(@)| + [fu(@) = fu()] + [ fa(y) — f(y)]

donc
Ve,y €Lz —yl < a=|f(z) — f(y)| <3¢

Ainsi f est uniformément continue.

Exercice 5 : [énoncé]
Posons

Puisque la fonction f,, est continue sur le segment [a, b], cet infimum est une
valeur prise par f, et donc il existe ¢, € [a,b] tel que

My, = f n(tn)
Montrons que m,, — m avec
m = inf
t€(a,b] !

La fonction f est continue car limite uniforme d’une suite de fonctions continues
et donc il existe to € [a,b] pour lequel

m = f(teo)

Pour tout € > 0, on a pour n assez grand,

[fn—Fllo <€

et donc

mn:fn(tn)>f(tn)_5>m—5
et

m*f(too)>fn(too)_5>mn_5
Ainsi

|m, —m| <e

On peut alors affirmer m,, — m.
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Exercice 6 : [énoncé]
On a

Soit € > 0. Il existe n; € N tel que

vn 2 ni, ||f”1 - f”oo,[a,b] g €

et il existe ny € N tel que
Vn 2= ng, |f(zn) — f(2)| <€

car f(z,) — f(x) en vertu de la continuité de f.
Pour ng = max(ny,ns), on a

vn = no, |fa(n) = f(2)] < 2¢

Exercice 7 : [énoncé]
a) Pour e = 1/2, il existe N € N tel que

Vn = N, [P, — fll, <1/2

et donc ||P,, — Pyl < 1.

Seules les fonctions polynomiales constantes sont bornées sur R donc P,, — Py est
une fonction polynomiale constante. Posons A,, la valeur de celle-ci.

b) On a

et donc (P,) = (Py + P, — Py) converge simplement vers Py + Aoo. Par unicité
de limite f = Py + Ao est une fonction polynomiale.

Exercice 8 : [énoncé]
Pour € = 1, il existe un rang N € N tel que

Vn > N, P, — f est bornée et ||P, — f| <1

Pour tout n > N, on peut alors affirmer que le polynéme
P,— Py =(P,— f)— (Py — f) est borné et donc constant. Puisque la suite (P,)
converge uniformément vers f, la suite (P, — Pn),>n converge uniformément
vers f — Py. Or cette suite étant formée de fonctions constantes, sa convergence
équivaut a la convergence de la suite de ces constantes. En posant C' la limite de
cette suite, on obtient

f=Pn+C

et donc f est une fonction polynome.

Exercice 9 : [énoncé]
Les fonctions u, sont continues sur [0, 1] pour n > 1 et dérivables sur ]0, 1] avec

ul (z) = 2" (1 +nlnx)

Le tableau de variation de u,, donne

1
Sup [tn| = —up(e™ /") = — =0
[0,1] ne

La suite de fonctions converge donc uniformément sur [0, 1] vers la fonction nulle.

Exercice 10 : [énoncé]
Pour z € [0, +00], fn(z) — 0 car |fn(z)| < £.

On a
(@) = n(l+a") —n?z™ 14 (1—n)a"
T p2(T4+a2n)2 n(l+an)?
Posons =, = {/1/(n —1).
T 0 T +00
Jo(z) |0 7 My N\ 0
donc R
¥Y1/(n—1) e wmn—
- n(l+575) =

Il y a donc convergence uniforme vers la fonction nulle.

Exercice 11 : [énoncé]
a) Soit x € [0, +o0].
Si x = 0 alors u,(z) =0 — 0.
Si x > 0 alors up(z) — 0 car e™™* — 0.
La suite de fonctions (u,) converge donc simplement vers la fonction nulle sur R*.
b) On a
sup |up(z)| <e ™™ =0
z€[a,+oo[

donc il y a convergence uniforme sur [a, +oo[ avec a > 0.
c¢) Puisque

[tnlloe 2 un(m/2n) = e/ /50

il n’y a pas convergence uniforme sur RT.
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Exercice 12 : [énoncé]
fr(x) =nx(2 — nx)e™"", le tableau de variation de f,, donne

4
Sllp|fn‘ = fn(2/77) =—e250
R+ n

donc il y a convergence uniforme sur R et donc a fortiori sur [a, +00].

Exercice 13 : [énoncé]
fn(0) = 1L et f(x) — 0 pour x # 0. La fonction limite n’étant pas continue, il n’y
a pas convergence uniforme sur R. En revanche si |z| > |a| alors

1
|fn(z)] < m —0

donc il y a convergence uniforme sur |—oo, —a] U [a, +00[ avec a > 0.

Exercice 14 : [énoncé]
Pour tout « € R, f,(x) — 0 : il y a convergence simple vers la fonction nulle.
fn(n) =n?%sin(1/n?) — 1, il n’y a donc pas convergence uniforme sur R.

Sur [—a,al,
x? x| _a
s 2 =Bl

via |sint| < |¢|. Par suite il y a convergence uniforme sur [—a, a.

Exercice 15 : [énoncé]

Pour  # % [r] on a [sinz| < 1 et donc f,,(x) — 0.

Pour z = §  [n], cosz = 0 et donc fp(z) =0 — 0.

Ainsi (f,,) converge simplement vers la fonction nulle.

Par 27 périodicité et parité on ne poursuit 1’étude qu’avec z € [0, 7]. La fonction
fn est dérivable avec

I (z) = sin" ! (2)((n 4 1) cos?(x) — 1)

On peut dresser le tableau de variation de f,, sur [0, 7] et on obtient

1 1 \"? 1
f"(““"sx/m)':O‘(Hl)) NIES U

La suite de fonction (f,,) converge donc uniformément vers la fonction nulle.

sup | fn| =
R

Les premiéres fonctions de la suite (f,)

Exercice 16 : [énoncé]

fn est définie sur R* et peut étre prolongée par continuité en 0 en posant sur
f,,,,(O) =n.

Pour z <0, fp(r) — +o0.

Pour z > 0, fp(z) — 0.

Ainsi (f,) converge simplement vers la fonction nulle sur R™*.

Il ne peut y avoir converge uniformément sur R** car alors par le théoréme de la
double limite :

m lm f(z)— lm Lm f,
Jlim limf () Jim  lim ()

donne 0 = +o0.
Pour a > 0, sur [a, +00],

nIZefna:

1 —e

et par étude fonctionnelle nz?e™* < 2e? (maximum en z = 2/n) donc

| fn(z)] <

4e?

Hf ||oo,[a,+oo[ Tl(l _ e_az)

qui donne la converge uniformément sur [a, +oo].
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Exercice 17 : [énoncé]
Quand p — 400,

1 1
70 = e~ 1 =@
On a
f@) = fy(a) = LED T 1

(1+x)t+1/p
Or, pour « € ]0,1], la fonction = — (1 + z)* est concave ce qui permet d’affirmer
0<(1+2)*<1+ax

pour tout z > 0 et donc

1 T <1 T 1
p(l+z)*/P “plta " p

[f(z) = fp(2)] <

Puisque [|f = fpll g+ < %, la convergence est uniforme sur R*.

Exercice 18 : [énoncé]
La suite (f,,) converge simplement vers la fonction nulle et

sup | fn(z)| = | fu(£1/vn27)| = vz — 400

z€R " " 2\/ﬁ
il n’y a donc pas convergence uniforme sur R.
Or +£1/v/n2" — 0 et donc d’apres le tableau de variation de f,,, pour tout a > 0,
on a, pour n assez grand,

sup | fn(z)] = fu(a) = 0

r>a

Ainsi, il y a convergence uniforme sur [a, +oo[ et de méme sur |—oo, a.
En revanche, il n’y aura pas convergence uniforme sur les intervalles non singuliers
contenant 0.

Exercice 19 : [énoncé]

On a

sup |fn(2)| = fn (1/ 2\@) =4""1 5 oo
]

z€[0,1

il n’y a donc pas convergence uniforme sur [0, 1].

Or1/ 2V/2 — 1 et donc d’aprés le tableau de variation de f,, pour tout a € [0, 1],
on a, pour n assez grand,

sup | fn(x)| = fu(a) =0
z€[0,a]

Ainsi il y a convergence uniforme sur [0, a]. En revanche il n’y aura pas
convergence uniforme sur les intervalles non singuliers contenant 1.

Exercice 20 : [énoncé]

a) Si z =0 alors f,(z) =0 — 0.

Si z €]0,1] alors f,,(x) — 0 par comparaison des suites de référence.

b) fi(x) =n*(1 —z)" —n*Tlz(l —2)" !t =n*(1 —2)" 11— (n+ 1)x).
Apres étude des variations

1 1 1 "
n = Jn =n" 1-
1fnlleo = £ (n+1> " n+1< n+1>

_1 1
Or T~ w6t

(1 1 ) — onIn(l—7hy) _ —1+40(1) _, ,—1
n+1

nafl

donc |[fnllo ~ "<
Il y a convergence uniforme si, et seulement si, o < 1.

Exercice 21 : [énoncé]
Soit z € R*. Pour n assez grand

fal@)=0Q—2/n)" =exp(nIn(l —z/n)) —— ™~
n—-+oo
La suite (f,) converge simplement vers f : x — e™% avec f, < f.
Etudions 6, = f — f, = 0.
Pour z € [n,4o00[, dp(z) = e * < e ™.
Pour z € [0,n[, 6,(x) =e % — (1 —x/n)" et & (z) = —e~ = + (1 —z/n)" "
Posons
on(r)=(n—1)In(1—2a/n)+=x

On a

n—1 1

!/
= —_— ]_:
#n(2) n Jc/n—1+

rz—1

r—n
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est du signe de 1 — x.
Par étude des variations de ¢, on obtient l'existence de z,, € [0, n[ tel que

on(z) = 0 pour = < z,, et @, (x) <0 pour z > x,. On en déduit que pour x < x,,

8! (z) > 0 et pour = x,, 0, (z) < 0. Ainsi

H(SnHoo,[o,n[ = dn(an) = (1 - wi)n_l - (1 — @)” = m—ne_“

n n n
Puisque la fonction x +— xe™% est bornée par un certain M sur R, on obtient

M
60l o < =

Finalement
M -n
[10n ]l o, [0,4-00 < max gl -0

On peut donc affirmer que la suite (f,,) converge uniformément sur Rt vers f.

Exercice 22 : [énoncé]

a) fu(z) = exp(—nIn(l+ 7)) = exp(—z + o(1)) = e™* = f(z).
On sait In(1 + ¢) < t donc par opérations : f,(z) > e™*

b) On sait
2
t—5 <h(l+8)<t
donc )
E—m—zéhq(lJerE
n n n
puis

(LQ a2
Sur [0,a] on a ezn < ezn — 1.
Pour € > 0, il existe N € N tel que pour tout n > N,

2
e /2"—1’ <e.

On a alors pour tout x € [0, al,
fala) = (@) e (/2 —1) <o/ —1<e

Par suite f, v, f

al
¢) Les fonctions f,, sont décroissantes donc

T 2 a, fo(2) < fula)

Soit € > 0.
Puisque e™% ——— 0, il existe a € RT tel que Vo > a
a—+oo

r<e/3
Puisque f,,(a) — e~ %, il existe N € N tel que
vn = N, |fu(a) — e_“‘ <e/3
Mais alors Va > a
|[fa(@) — ™| < fu(@) + e < fula) + e < (fula) —e ) +e " +e " <e

De plus, f, 5—111> f donc il existe N’ € N tel que
,a

Vn > N’V € [0,d] |fa(z) — 7| <e

Finalement
Vn > max(N, N'),Vz € R, | fo(z) — e7*| <e

. cU
Ainsi f, TRjr_) f.

Exercice 23 : [énoncé]
a) Pour z =0, f,(x) =0 et pour x > 0, on a aussi f,(x) = 0 pour n assez grand.
Par suite (f,,) converge simplement vers la fonction nulle.

b) On a
1 1/n 1 1
_ 2 _ — _ [
/0 fn(t) dt—/0 n“t(l —nt)dt /0 u(l —u)du 5

Il n’y a pas convergence uniforme de la suite (f,,) puisque

/Olfn(t)dt/—>/010dt

¢) Pour n assez grand, sup |f,(x)| = 0 donc (f,,) converge uniformément vers 0 sur
la,1

[a, 1].

Exercice 24 : [énoncé]
a) Pour z =0, f,(x) =0 — 0. Pour z € ]0,7/2], cosz € [0,1] donc f,,(x) — 0.
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b) Directement
/2
os" Mz -
0 n+1

In{ Ly
n+1

donc I, > 1# foﬂ/z 0.dz et il n’y a pas convergence uniforme.
¢) On a
x |0 T, /2
fn 0 7 falzn) N 0

avec T, = arccos /-5 — 0 et

fulan) = — Y7 \/Z% oo

(1+1/n)nt0/2

Soit [a,b] C]0,7/2]. On a a > 0 donc & partir d’un certain rang x,, < a et alors

sup | fn| = fn(a) — 0 donc il y a convergence uniforme sur [a, b].
[a,b]

Exercice 25 : [énoncé]

IT) a) En distinguant le cas x = 0 du cas général, on obtient que la suite de
fonction (f,) converge simplement vers la fonction f donnée par f(z) = z.

b) Par étude des variations de f,,(x) — f(z), on obtient qu’il y a convergence
uniforme si, et seulement si, o < 1.

¢) Par un argument de convergence uniforme, on peut échanger limite et intégrale

1 1

1

lim (1 + ne "*)dz = / xdr = 3
0

n—-+oo 0

Exercice 26 : [énoncé]

Pour z > 0, la suite numérique (f,(x)) est une suite homographique.
L’équation r = 2“’? possede deux solutions 71 =1 +x—1let rg = —y/1+2—1.

Posons fo)
n\T)—T1
gn(x) =
fn(x)*r2
On a - -
2+ fn(z) 247 fo(x) =711 2412
Int1(7) = fz() T = ) 2 = pgn()
T @) T4 fu() =122+ 1
avec
_2+7"2_7"1
_2+’I“1_7“2

Puisque |p| < 1, la suite géométrique (g, (z)) converge vers 0.
Or apres résolution de ’équation

fn(x) -7

gn(z) = Fo(z) — 12

on obtient (@)
1T — gn T)T2
fo(z) = —"—-=

o) = @)

et on en déduit que la suite numérique (f,,(x)) converge vers r1 = /1 +x — 1.
Finalement, la suite de fonctions (f,,) converge simplement vers la fonction

foo x> /14+2z—1.

Puisque les fonctions f,, sont rationnelles de degrés alternativement 0 et 1, la
fonction |f, — fo| ne peut-étre bornée sur R* car de limite +00 en +o0; il n’y a
donc par convergence uniforme sur R,

En revanche, on peut montrer que la suite de fonctions (f,,) converge
uniformément vers fo, sur [0, a] pour tout a > 0.

En effet

Fal@) = foola) = 792 f"g(:()x) 2T+ 2

D’une part, la fonction x +— 24/1 + x est bornée sur [0, a].

D’autre part,
vit+z-—-1

T e

i) = |

Sur [0, al, la fonction
Vi+z—1
T | —F—
Vitz+1

admet un maximum de valeur < 1 et puisque la fonction continue gg est bornée
sur [0, a], on peut montrer que la suite de fonctions (g, ) converge uniformément
vers la fonction nulle sur [0, a].

La relation

Fal@) — foola) = 0209 1

1= gu(x)
permet alors d’établir que la suite de fonctions (f,,) converge uniformément vers
foo sur [0, al.

Exercice 27 : [énoncé]
On remarque que la fonction f est bien définie et méme qu’elle prend ses valeurs
dans [0,1/2] plutét que [0, 1].
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On remarque aussi que f(1 —x) = f(z). Pour étudier le comportement de la suite
(fn(a)) = (f™(a)), on peut se limiter au cas ot a € [0,1/2].
Etudier le comportement de la suite des itérés (f™(a)) équivaut a étudier la suite
récurrente définie par

ug = a et upy1 = f(un)

On observe
Upt1 — Up = Up(1l — 2u,) 20

La suite (uy,) est donc croissante.

Si a = 0, cette suite est en fait constante.

Si a > 0 cette suite converge vers une limite ¢ vérifiant f(¢) = £. Aprés résolution
de cette équation, on obtient que cette limite ne peut qu'étre 1/2.

On peut alors affirmer qu'’il y a convergence simple de la suite de fonctions (f;,)

vers la fonction / 0.1]
1/2 size]0,1
f.x+—>{0 siz=0o0ul

Par non continuité, il y a non convergence uniforme sur [0, 1].
En revanche la croissance de f sur [0,1/2] permet d’assurer que

Va €10,1/2], Vz € [a,1/2], fn(z) = fn(a)

ce qui permet de justifier la convergence uniforme de la suite de fonctions (f,,) sur
[a,1 — a] pour tout a € ]0,1/2].

Exercice 28 : [énoncé]
a) On vérifie sans peine que la suite (f,,) est bien définie.

fi(z) =z, fo(x) = §x3/2,. .

Si f(x) = az” alors

*(/)(w) = va [ gt — ;fgxa/m

Ainsi f,(z) = a,z%" avec

NG 8

an+1:ﬁn+2 Etﬁn%»l:?n'f'l
On a on 1
Bn = on—1 — 2

et, pour n > 1,

—or A g
Or 2" > 271 donne
2 < 2
4— 5 T 4-
donc
Opt2 — Qpyl < 4227111 (Vani1 — vam)

Puisque a1 = ag, on obtient alors par récurrence que la suite (a,) est
décroissante.
Etant aussi minorée par 0, elle converge et en passant la relation de récurrence a
la limite, on obtient

o, — 1/4

On en déduit que la suite de fonctions (f,,) converge simplement vers la fonction

from (3

De plus

Jal@) = f(2) = @ (a7 — ) + (ozn _ i) 22

Puisque 3, < 2, on a pour tout z € [0, 1] et en exploitant e* < 1+ u
0< 2P — 2% =2 (e(ﬂ"ﬁ)h”” - 1) < (B — 2)x2 Inzx

Puisque la fonction x — x Inz est minorée par —1/e sur [0, 1],

2 —
2 ﬁnx<2—6n
e

et ainsi )
) = @) = an(2 = 5.)+ (a0 - 1)

et ce majorant uniforme tend vers 0.
Il y a donc convergence uniforme de la suite de fonctions (f,,) vers f.
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b) La relation
Fry1(z / V fn(t)dt

donne a la limite

2) :/0 VT dt

d’ott on tire f dérivable et f'(z) = /f(x).

Pour I'équation différentielle 4’ = |/, il n’y a pas unicité de la solution nulle en 0,

car outre la fonction nulle, la fonction y :  — (z/ 2)2 est justement solution.

Exercice 29 : [énoncé]
Pour tout x € R, f,(x) — z et

|fn(2) —x[=1/n =0

La suite de fonctions (f,) converge uniformément vers la fonction identité.
Pour tout = € R, f,,(7)? — 22 et

fo(n)> =n?=2+1/n> =2

Il n’y a pas convergence uniforme de la suite (f2).

Exercice 30 : [énoncé]

Par opérations, les fonctions f,, sont de classe C' car /- est de classe C L gur R,

La suite (f,,) converge simplement vers f avec f(x) = |z| qui n’est pas dérivable
en 0.

En multipliant par la quantité conjuguée :

B 1/n
fn(x)_f(x)—\/m_F@
Par suite |f,(z) — f(z)] < \}/L = \f puis || frn — fllo VA 0.

Ainsi la suite (f,,) converge uniformément vers une fonctlon f qui n’est pas de
classe C'.

Exercice 31 : [énoncé]

Par la formule de Taylor Lagrange :

1 M
n?

flat ) = f@) - @) <

avec M = sup|f"].
Par suite

=I5

lgn(z) — f/(z)|

N

et donc
1gn(2) = f'(@)||lsor — O

Exercice 32 : [énoncé]
On a
Vr € [0,1], fn(1) < fu(z) < £,(0)
donc
[0 = Ol = max(fn(0), = fn(1)) < max(|fn(0)|, [fn(D]) < |fn(0)] + [fu(1)] = O
Exercice 33 : [énoncé]

a) fy est positive car

fo(x) = Tim fp(z) =

p—r—+oo

Puisque 0 < fry1(x) < fn(x), en passant a la borne supérieure, on obtient
[frt1lloe < [ fnlloo

La suite || fy||,, est décroissante et minorée donc convergente.

b) |fn| = fn étant continue sur un segment, elle y admet un maximum en un
certain x,,.

c¢) La propriété f,(x,)
(fy(a)hpest

La suite (z,) étant bornée, on peut en extraire une sous-suite convergente (z,(n))
de limite .

< fp(zy,) provient de la décroissance de la suite

Comme
fom) (o)) < Fo(Tom)
on a la limite quand n — 400
i fule < (@)

En passant cette relation a la limite quand p — +o00, on obtient

lim |fall
n—+
d’ou
il
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Exercice 34 : [énoncé]

Notons f la limite simple de la suite (f,). Cette fonction f est évidemment
convexe.

Par 'absurde, supposons la convergence non uniforme sur un segment [a, b] inclus
dans I.

11 existe alors € > 0 et une suite (x,) d’éléments de [a, b] tels que

| frn(xn) — f(x)| = 2e pour tout naturel n.

Par compacité, on peut extraire de (z,,) une suite convergente et, quitte a
supprimer certaines des fonctions f,,, on peut supposer que (x,) converge. Posons
T Sa limite.

Soit o > 0 tel que [ — a, b+ a] C I (ce qui est possible car I'intervalle I est
ouvert).

Pour tout fonction convexe @, la croissance des pentes donne :

o £yelap, AP0 o) —vl) pbra)-elb) |,
o y—x e

Par convergence simple, f,,(Zs) = f(Zoo)-

Pour n assez grand, |fn(Ts) — f(%0)] < € donc

|fr(n) = fr(Too) + f(Too) — fzn)| = €
puis
Tn — Too Too — T Loo — Ty N—+00

Or la suite (%) est bornée en vertu de (%) et la suite (M)

Tn —Too

aussi puis

fn(@) = fula =) _ fn(@n) = fa(Tec) _ fn(b+ @) = fu(b)

« Tp — Too «

et les termes encadrant convergent.
On obtient ainsi une absurdité.

Exercice 35 : [énoncé]

Si |w| > 1 alors
1 1=

ZTL

zZ—w w w™
n=0
et la convergence normale sur U de la série assure la convergence uniforme d’une
suite de polynoémes vers
1

z—Ww

Z

Si |w| < 1, on peut remarquer que pour k € N,

/27r e S " il (k1))0
: o= w"/ e~ i(n+(k+1))0 g9 —
0 __

0 e w "0

2
0

Si z +— P,(z) est une suite de fonctions polynomiales convergeant uniformément
sur U vers z — —— alors

z—Ww

27 2
— 1 de
P (e)——— df / 2o
0 e —w n—+oo 0 |eu9 _ w|

Or par le calcul précédent, on peut affirmer

2 : 1
/0 P”(ew)eie — dgd =0

On conclut a une absurdité.
La condition cherchée est |w| > 1.

Exercice 36 : [énoncé]
Pour t € R, on a

n—-+oo

La suite de fonctions (uy),>1 converge simplement vers f’ sur R.
Soient [a,b] C R et € > 0. La fonction f’ est continue sur le compact [a,b + 1]
dont uniformément continue. Il existe alors o > 0 vérifiant

V(s,t) € [a,b+ 1%, |s —t| S a= |f'(s) — f'(8) <e
Pour n assez grand de sorte que 1/n < « et ¢ € [a,b]. On peut écrire

t+1/n

n(f(t+1/n)—f(t))—f’(t)=n/ f'(s) = f'(t) ds

t

et donc
t+1/n
fun(t) — F(8)] < n / F(s) = /(1) dt < e

Ainsi, la convergence de (uy,)n>1 est uniforme sur tout segment de R.
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Exercice 37 : [énoncé]

a) Par récurrence sur n € N.

Pour n =0 : ug(z) =1 et uy(z) =1+ [ dt =1+ 2 donc 0 <
Supposons la propriété établie au rang n > 0.

Unt2(x) — Upt1(z) = /09” Upy1(t —12) — up (t —t2) dt

O Upy1(t —12) — up(t —t2) = 0 donc up2(x) — ups1(x) =0 et

t_tQ)n"rl tn-'rl
it = 1) un(t — ) < <
U1 (E =) —un(t =) S S5 < G
puis
xn+2
Un2(T) — Unt1(2) < e

Récurrence établie.
b) Pour tout = € R, on sait qu’il y a convergence de la série exponentielle

xn
D

Par comparaison de série & termes positifs, il y a convergence de la série

télescopique
> unn(e

et donc convergence de la suite (u,(x)).
¢) Pour tout z € [0, 1],

_“n( )

+o00
u(@) —up (@) = | D (Uk(x)—ws—l(%‘))|
k=n-+1
donc
X gk X1
o) ~w@ < D0 T < X s
k=n-+1 k=n+1

Ainsi (u,,) converge uniformément vers u. On en déduit que w est continue et,
toujours par convergence uniforme

x

VxE[O,l],/ Up(t —t2)dt ——— [ u(t —t*)dt
0

n—-4o0o 0

Par conséquent '
Vo € [0,1], u(z) = 1—|—/ u(t —t2)dt
0

ur(x) —up(x) = .

La fonction est donc une fonction non nulle (car u(0) = 1) et dérivable avec

o (x) = u(z — z?)

Exercice 38 : [énoncé]

a) Par récurrence sur n € N.
Pour n =0 : ug(z) =1 et uy(x) =1+ [ dt =1+ x donc
0 <up(x) —up(x) ==

Supposons la propriété établic au rang n > 0. Soit x € RT.

(o) i) = [ s (1) — () it

Par hypothese de récurrence, on a pour tout ¢ € [0, ]

(’7t)n+1 < t"+1
(n+1)! = (n+1)!

0< un+1<7t) - un('yt) <

puis en intégrant

xn+2

Un42(2) — Upy1(x) < (n+2)!

Récurrence établie.
b) Pour tout = € R, on sait qu’il y a convergence de la série exponentielle

>
n!
Par comparaison de série a termes positifs, il y a convergence de la série
télescopique

E un+1

et donc convergence de la suite (u,(z)).
¢) Soit a € R*. Pour tout = € [0, a],

*Un( )

+oo
u(z) —un(@)] = | D (ur(z) —ur—1(x))
k=n+1
donc
= SCk = ak
u@) —u@l < Y T Y G0
k=n-+1 k=n-+1
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Ainsi (u,,) converge uniformément vers u sur [0,a]. On en déduit que u est
continue et, toujours par convergence uniforme

x T
Vr € RT, / U (yt) dt ——— u(yt) dt
0 n—-+o00 0
Par conséquent
Vo e [0,1], u(z) =1 —I—/ u(yt) dt
0

La fonction est donc une fonction non nulle (car u(0) = 1) et dérivable avec

u'(z) = u(yx)

Les premiers éléments de la suite quand v = 2/3

Exercice 39 : [énoncé]

a) Les fonctions f, : x — (;_‘1_); sont de classe C! et

(-1

fo(2) = m

Par le critére spécial des séries alternées, > f,(x) converge simplement sur
n=0

10, +o00[ vers S.

Soi a > 0. Sur [a, +o0],

+oo 1

/ <—— et — <
an||oo,[a,+oo[ (n+a)2 € nz::o (n_|_a)2 +0o

donc > f! converge normalement sur [a, +o0o[ puis converge uniformément sur
tout segment de [a, +0o0].
Par théoréme, S est définie et de classe C* sur ]0, +oo[ et

too (_1)n+1

5@ = 2 oy

n=0

b) On peut appliquer le critére spécial des séries alternées a la série de somme
—+oo

> (&2:; . Celle-ci est donc du signe de son premier terme —. Ainsi S'(z) <0

et la fonction S est décroissante.

)

Se+1)+S@)=) ———

n=0 n=0 n=1 n=0

d) Quand z — 0, S(z) = L — S(z + 1) et S(z+ 1) — S(1) donc

e) Quand x — +o0,

S(560) + S +1) < 5(@) <

avec 1 ~ - donne
x x—1

Exercice 40 : [énoncé]
Posons u,, : ]0, +0o[ — R donnée par

(_1)n
n+x

up () =
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a) Par le critére spécial, Y u,(x) converge pour chaque z > 0.
Il y a convergence simple de la série de fonctions définissant F'.
b) Les fonctions u,, sont de classe C* et pour n > 1

/ _ (*1)n+1
On a )
/

Il y a convergence normale Y ul, pour n > 1.

e) Quand x — 0, F(x + 1) — F(1) par continuité et donc
1 1
On vérifie aisément que F est décroissante et puisque
1

“=F@)+Flz+1)<2F(z) < Fz)+ F(z—1) =

xT

on obtient

~ —
z—+00 21

Il y a donc convergence uniforme de Y u!, (pour n > 0) et I'on peut donc conclure

que F est de classe C!.
De la méme maniere, on obtient F' de classe C*°.
¢) Par décalage d’indice

+o0o n +too  1\n
Fean =) ntn s L

et donc
Flz)+ Flxe+1)=—

1 tx—l
Glz) = / at
0

14+t

L’intégrale est bien définie pour > 0 et ’on remarque

d) Posons

Gz)+ Gz +1)=—

xT

Exercice 41 : [énoncé]
a) fonix— H (x+k), fr est continue sur |0, +oo[.

Soit a > 0. Sur [a, +o0],
11

an!

La série de fonctions Y f,, converge normalement sur [a, +oo[ donc converge

uniformément sur tout segment de ]0, +oo[. Par théoréme, la somme S de la série

> fn est continue sur ]0, +oo].

b)
40 n +oo n
=2t S orien
x xn:lk:l n0k0x+1+k

¢) Par converge uniformément sur [a, +00]

lim S(z Z lim fn(x) =0

r—r+00 Tr—r—+00

Posons H = F' — G. La fonction H est 2-périodique, montrons qu’elle tend vers 0

en +oo.
Par application du critere spécial, on a

Ve >0,F(xz) >0

donc )
0< Fa) < F@) + F(z+1) =~ ——0

et par encadrement F' tend vers 0 en +oo.
Le méme raisonnement se transpose a G.

On peut conclure que H tend vers 0 en 400 puis finalement H est nulle.

Quand x — 400,

1
S(:c):x+S(x+1):—|—o<x) ~
Quand z — 0,
S(z+1)— S(1)
par continuité et
foon +00
S<1)_7;)kﬂok+1 _Z(n+1)' =e-1

E+ S(ZE+1)

Diffusion autorisée a titre entiérement gratuit uniquement - dD



[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015

Corrections 24

donc

_1+8S@+1) e
N T x

S(z)

Exercice 42 : [énoncé]
a) Par le théoréme des accroissements finis, on peut écrire f,(x) = z(th)’(c) avec
¢ € In,x + n[.Puisque (th)'(c¢) = Ch%(c), on a

T 4z
ch?(n) e

(@) <

Par suite nf,, (z) e 0 donc Y fn(z) est absolument convergente donc
n—-+0oo

convergente. Ainsi Y f,, converge simplement.
b) Pour a € R, I’étude qui préceéde donne

ch?(n)

1 frlloo, 0,0 <

donc Y f,, converge normalement sur [0, a]. Par convergence uniforme sur tout
segment d’une série de fonction continue, on peut affirmer que S est continue. De
plus, les fonctions sommeées étant toutes strictement croissantes, la somme S 1’est
aussi.

En effet, pour = < y,

n

> fela) <D fly)
k=1

k=1
donne a la limite

+o0 +oo
> fel@) < fly)
k=1 k=1
et puisque fo(x) < fo(y), on parvient a
S(x) < S(y)
c)
+oo +oo +00

et par étude la limite des sommes partielles

—+oo

> (th(n +1) — thn) =1

n=0

On conclut a la relation proposée.

d) S admet une limite en +o0o car ¢’est une fonction monotone. Pour déterminer
celle-ci, étudions la limite de la suite (S(n)). La nature de la suite S(n) est celle
de la série de terme général

S(n+1)—S(n)=1-thn

Or

1 — th chn —shn e 1
—_ n—=-———— = ~ —
chn chn  2e—2n

est terme général d’une série absolument convergente.
On en déduit que la suite (S(n)) converge et donc que la fonction S converge.

Exercice 43 : [énoncé]

Puisque la fonction f est décroissante, elle admet une limite en +o00. Puisque la
fonction f est aussi intégrable cette limite est nécessairement nulle. En particulier,
la fonction f est positive.

Par télescopage, on observe

N

g+ N)—g(x) =Y flz+k)

k=0

[

et s’il 'on s’adjoint la contrainte d’une limite nulle & g en 400, on est tenté de
poser

+oo
g(x) ==>_ fle+Fk)
k=0

Il reste & montrer que cette fonction est bien définie et continue ce qui sera obtenu

S(x+1) = Z (th(z 4+ 14 n) — th(n)) = Z (th(z + 14 n) — th(n + 1))_,_2 (th(n 4 1)Partip preument de convergence normale. Soit z € RT. On a pour k > 1

n=0 n=0 n=0
avec convergence des deux séries introduites.

Par décalage d’indice

+oo
> (th(z +1+mn) — th(n + 1)) = S(z) — tha

n=0

k
0< fla+k) < fk)< [ flt)dt
k—1

donc

k
sup | f(z + k)| < / F(t)dt
rERT k—1
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Par intégrabilité de f, il y a convergence de la série

k
> fha

et donc convergence normale de la série de fonctions

> fx+k)

k>1

L’adjonction du terme d’indice £ = 0 ne change rien et ’on peut conclure.
On vient ainsi de trouver une solution au probléme posé, d’autres solutions s’en
déduisent par ajout d’une constante.

Exercice 44 : [énoncé]
a) fnix— % est définie et de classe C! sur R** et

(_1)n+1

)= ey

> fn(z) converge simplement sur ]0, +oo] vers S.
n>0

1

/ —
Va > 0, an||oo,[a7+oo[ = m et Z m converge
donc > f! converge normalement sur [a, +0o[ puis converge uniformément sur
tout segment de ]0, +o0o[. Par théoréme S est de classe C! sur ]0, +ool.

b) On peut appliquer le critére spécial des séries alternées a la série de somme
too (_1)7L+1

7;) nl(n + x)?

Celle-ci est donc du signe de son premier terme —3. Ainsi S'(z) < 0 et S est
décroissante.

+oo 1) +oo _1\n +oo _1\n
xS(x)—S(x—i—l):Z (=1) +Z( ) :1—1—2( D :%

:On!(x+n) — (n—1Dl(z+n) —~ nl
d) .
1o o X (-1
o= pesernasty =5 -1

Quand z — 01, 2S5(x) — 1 d’ou
1
S(x) ~ z

e) Par le critére spécial des séries alternées,

a=| % T < T
B W k' S (n+D(z+1+n) = (n+1)
donc )
Rl < — =0
IRl < oy

Par converge uniformément sur ]0, +oo],

lim S(z Z lim f,(z) =0

xr——+00 n——+oo

Quand x — +o0,
1
xS(x) = g—l—S(m—&—l) - -

d’out

S(x) ~ —

exr

Exercice 45 : [énoncé]
On a

1 1 1
=0l
r+n r—n n

d’ou l'existence de la somme.

Yoo
f(x):NLH}rloo Z z+k
——N
Or
SRR
k:_Nzc+1+k k:_N+1x+kz

donc & la limite quand N — +o00, on obtient f(x + 1) = f(x).

N N 2N+1

1
I E [
T z+1
h—_ N 2 k=—N 2 +k k:—2N+1x+k
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donne a la limite

r(3)+7 (55 ) 2@

Exercice 46 : [énoncé]

a) La série de fonctions considérée converge uniformément sur tout segment inclus

dans R\Z. Sa somme est donc continue et de plus 1-périodique.
b) Soit @ > 1. Pour tout = € [—a, al, /2 et (x
Posons Mo = || fll s (—a,q)- La relation

f<w>=i[f(;”>+f(x‘£1)]

a]. On en déduit M, <

donne |f(z)| < 2M, pour tout z € [—«
M, = 0 puisque ¢ > 2.

Ainsi f est nulle sur [—a, a] et puisque ceci vaut pour tout o > 1, f est la
fonction nulle.

¢) Posons h: x —

%Ma puis

SmQ(w) définie sur R\Z.
La fonction g = f — h est définie sur R\Z, 1-périodique et continue.
On peut écrire f(z) = & + f(z) avec

fla) = Ji’" ((I_ln)2 + (x+1n)2)

n=1

Par convergence uniforme sur [—1/2,1/2], la fonction f est continue en 0.
On peut aussi écrire h(x) = 45 + h(z) avec h continue en 0.

La fonction g = f — h se prolonge donc par continuité en 0.

Par périodicité, g se prolonge en une fonction continue sur R.

Pour z € R\Z, on remarque que

1(5)+1(55) = s

n (%) +h(“”‘2”) — 4h(z)
g(g) +g(x;rl> = 4g()

pour z € R\Z mais aussi pour x € Z par continuité.
En vertu de b), on peut affirmer g = 0 et donc f = h.

et

On en déduit

+ 1)/2 appartiennent & [—a«, a].

Exercice 47 : [énoncé]

Les fonctions constantes sont solutions et les solutions forment un sous-espace
vectoriel.

Soit f une solution. Quitte & ajouter une fonction constante, on peut supposer

1(0) =0.
On a .

oy = 120 5567
donc

n+1

=316 zf

n=2

Posons h(z) = sup |f].
[0,2]

Pour 2 > 0, on a 2"t € [0, xZ] pour tout n > 1. On en déduit

1
21’L
Ainsi h(z) < h(2?) puis en itérant 0 < h(z) < h(z2") pour tout n € N.

Or pour = € [0,1], 2" — 0 et I(i)rglh =0 (car f(0) =0) donc h(z) = 0 sur [0, 1].

Finalement f est nulle sur [0, 1[ puis en 1 par continuité.

Exercice 48 : [énoncé]
a) Analyse : supposons f solution.
Pour x > 0, on a

1 1

1
f(x):ﬁ*f(ijl):*z*(x_i_l)Q

. + f(z +2)

puis par récurrence

+1
Z x+k (1) f(z+n+1)
k:O
Sachant que f est de limite nulle en +o00, on obtient

+oo n
fo =Y AU

2
n=0 (Z‘ + TL)
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Syntheése : on vérifie aisément la convergence de la série de fonctions définissant f
par application du critere spécial.

De plus
1 1 1

ﬁ_mgf(x)gﬁ

assure que f est de limite nulle a Uinfini.

Enfin
—+oo
((nr 1
+Z x-l-n ;J(x+n+1)2_x2
b) On vérifie la convergence normale de la série de fonctions définie f sur [a, +o00[

par
(1"
(o)

f@)+ fle+1) =

1
" (a+n)?

Les fonctions sommées étant continues, la fonction f est continue sur |0, +oo].
Elle est aussi intégrable en vertu de I’encadrement

1 1 1

2 z\f() 2

x (x+1) x

¢) On ne peut directement appliquer de théorémes d’intégration terme & terme, on

raisonne alors par les sommes partielles
T at
—_1)" " A
I A R M

+oo N n
/ AU -
n=0
+oo +oo N 400 too
B (=n"
/1 f(t)dt /1 Z Hn S dt| = /1 n;ﬂ CEEL dt

et par application du critere spécial

[ a7 5

En passant a la limite quand N — 400, on obtient

/+mf(t)dt:io(_17);_l —In2

n=1

N

/Jroc dt 1
\1 (t+N+1)2 (N+2)

Exercice 49 :
On a

[énoncé]

Vo € R, |fn(z)| < 1/n?

Puisque Y 1/n? converge, il y a convergence normale, donc uniforme, donc simple
sur R.

Exercice 50 : [énoncé]

On a || ful|l.o = 1/n or > 1/n diverge donc il n’y a pas convergence normale sur R.
Pour z € R, la série numérique Y f,,(x) satisfait le critere de Leibniz, il y a donc
convergence simple sur R et

an

n=N+1

1 1
<
N+1+1:2 N+1

donc |Rn ||, < — 0. Il y a donc convergence uniforme sur R.

= N+1

Exercice 51 : [énoncé]
Pour tout z € [0, 400, introduisonsk = |z|. Pour N >

N
1

et donc la série de fonctions converge simplement sur [0, +o0o| vers S avec

k+1,ona

S(x) = %—&-1 pour z € [k, k + 1]

Pour tout z € [0, +o0[, on a
Zu . siz<n+1
n(@) = (x) sizx>2n+1

et donc
1

—0
N+2 No+too

N
— Z un(x)| <
n=0

Il y a donc convergence uniforme sur [0, +00[.
Enfin |ju,| . = 1/(n+ 1) n’est pas sommable, il n’y a pas convergence normale.
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Exercice 52 : [énoncé]

Pour =0, f,(z) = 0 est sommable.

Pour = # 0, n?f,(z) —+> 0 par croissance comparée et donc la série numérique
n—r-+0oo

> fn(x) converge.
On peut donc affirmer que la série de fonctions Y f,, converge simplement sur R*.

L’étude des variations des fonctions f,, donne

falloe = fn (2/Vn) =

Il n’y a donc par convergence normale de la série de fonctions Y f,, sur RT.
En revanche, pour a > 0 et n assez grand de sorte que 2/y/n < a, on a

= fn(a)

[1fll oo, fa, 400

et donc Y f,, converge normalement sur [a, 00| car la série numérique > f,(a)
converge.

A fortiori, il y a aussi convergence uniforme de ) f,, sur chaque [a, +0oo[ avec

a > 0.

Montrons qu’il n’y a cependant pas convergence uniforme sur [0, +o0].

Par labsurde, s’il y avait convergence uniforme sur [0, +o00[, la fonction somme de
la série > f, serait continue car chaque f,, est continue. Soit N € N*. Par
positivité des fonctions sommées

+oo
2 2 4
n|l—]2 — | ==
2 ()27 (%)==
et donc la fonction somme ne tend par vers 0 en 0.
Ceci contredit sa continuité.

Exercice 53 : [énoncé]

a) Par croissance comparée, la suite de fonctions (f,,) converge simplement vers la
fonction nulle.

La fonction f,, est de classe C! et

fl(z) = nixnfl (n—z)e™ ™

On peut alors dresser le tableau de variations de f,, et affirmer

Swp o) = ful) = "o

z€[a,+o00]

Par la formule de Stirling

donc
1

V2t

On en déduit que la suite de fonctions (fy,) converge uniformément sur [0, 4o0].
b) Par référence a la série exponentielle, la série de fonctions Y f,, converge
simplement sur R et sa somme est égale a 1.

Il ne peut y avoir convergence normale sur [a, +0o[ car f,(n) n’est pas sommable.
En revanche sur [0, a], il y a convergence normale car pour n assez grand de sorte
que n = a, on a

fn(n> ~

sup|fa(o)] = fala)
z€[0,al

Il y a aussi a fortiori convergence uniforme sur [0, a].

Par l’absurde, s’il y a convergence uniforme sur une voisinage de +oco, on obtient

par le théoreme de la double limite

“+o0
li 1
Jim Zofn ZIJ&O Il

ce qui donne l'absurdité 1 = 0.
Il n’y a donc pas convergence uniforme sur [0, 4o00].

Exercice 54 : [énoncé]
Si =1 alors up,(z) =0 — 0. Si z € ]0,1] alors u,(x) — 0. La suite (u
simplement vers la fonction nulle.

n) converge

ul, () = n%%" —noTlan (1 — 2) = n%2" (n — (n+ 1)z).
e ! (- LY
u = U =N -
nllco "\n+1 n+1 n+1
Or y~ bt (1- 47)" = 0= — o149 10 done

lun o ~ n" e

Il y a convergence uniforme sur [0, 1] si, et seulement si, a < 1.

Pour tout z € [0,1], > un(x) converge, ||u,|, ~ en®!, il y a donc convergence
normale sur [0, 1] si, et seulement si, a < 0.

Pour o > 0, up(x) = 2™(1 — x) = v, ().
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Or
= < n > f n 1 JFZOO n k 1
You(it)> 2 (7)) - (1) -~
P n—+1 M n—+1 n—+1 it n—+1 e
donc

+oo n +oo
kz:;)”k <n+ 1) /m’k;)”k(l)
La série Y vy, ne converge donc pas uniformément vers [0, 1] et par suite Y uy,
non plus.

Enfin pour @ <1, on a |[up|[ 9. = un(a) et donc (uy,) converge uniformément
sur [0, a] et > u, converge normalement sur [0, a] pour tout « € R.

Exercice 55 : [énoncé]
a) La suite de fonctions (f,,) converge simplement vers la fonction

size|0,1]

0
T ) siz=1

Puisque les fonctions f,, sont continues, pour qu’il y ait convergence uniforme, il
est nécessaire que la fonction limite soit continue et donc que f(1) = 0.
Inversement, supposons f(1) = 0.

Pour tout € > 0, il existe a > 0 tel que

Ve e[0,1],]lz -1 <a=|f(z) <e

Sur [Oa 1- a]a |fn(x)‘ < (1 - a)n ”fHoo et sur [1 -, 1]7 |fn(1')| < |f(l‘)| <e
Puisque (1 — a)™ — 0, il existe N € N tel que

VnzN,(1-a)"|fl. <e

On a alors pour tout n > N et tout = € [0, 1], | fn(x)| < e donc || fn|, <e.
Ainsi f, Y% 0.

b) Supposons que Y f,, converge uniformément sur [0, 1].

Puisqu’il n’y a pas divergence grossiére, on a f,,(1) — 0 et donc f(1) = 0.
Notons S la somme sur [0, 1] de la série de fonctions Y f,.

Pour z € [0, 1],

f(z)

1—=z

+oo
)= a" fw) =
n=0
et

+oo
S1) =Y f(1)=0

n=0

Or la fonction S est continue comme somme uniformément convergente d’une
série de fonctions continues.

Par suite lim S(x) =0 ce qui donne
r—1-

i L@ = (1)

rx—1 x—l

=0

Ainsi f est dérivable en 1 et f'(1) = 0.
Inversement, supposons f(1) =0, f dérivable en 1 et f/(1) = 0.
Posons (S,,) la suite des sommes partielles de la série > fp,.

Pour x # 1,
1—gntt
Sp(z) = ———
(@) = T2 f)
Posons g : z € [0,1] — {(fz; prolongée par continuité en 1 par la valeur g(1) = 0.

La fonction g est continue sur [0, 1] et g(1) = 0 donc la suite (g,,) définie par

gn ¢ — x"g(x) converge uniformément vers 0 sur [0,1]. Or

Sp(x) = g(x) — gny1(x) donc Sy, [’CH? g et la série Y f,, converge uniformément.
0,1

)

Exercice 56 : [énoncé]

a) Pour z = 1, u,(z) = 0 et la série numérique Y u,(x) est convergente.
Pour z € [0, 1], on peut écrire 0 < up(z) < apz™(1 —x) = Az™. Orily a
convergence de la série numérique » 2™ et donc, par comparaison de séries a
termes positifs, la série Y u,(z) converge.

b) Apres étude de fonction, on obtient

_ay 1 1 " oa,
z€[0,1] Cn+1 n+1 en

[unllog = sup |un(z)|

Par équivalence de séries & termes positifs, la convergence normale de 3 u,
équivaut & la convergence de Y a, /n.
¢) Considérons le reste

+oo
R, (z) = Z arz®(1 — )
k=n-+1
Par la décroissance de la suite (a,)
+oo
0 < Ry(z) € anyr z xk(l — )
k=n-+1
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Ainsi, pour z € [0,1] ou x = 1, on obtient
O < Rn(m) g an—i—l

Par cette majoration uniforme, on peut affirmer que, si (a,) tend vers 0, alors la
série de fonctions Y u,, converge uniformément.

Inversement, supposons la série > u, uniformément convergente.

La suite (a,) étant décroissante et positive, elle admet nécessairement une limite
£>0. On a alors

+oo
Ve e [0,1[, Ry(z) > Z (1~ z) = 2" > 0
k=n-+1

On obtient donc
Vo € 0,1], " < |[Rall,

En faisant x — 17,
€< | Bnll

et ceci valant pour tout n € N, on conclut £ =0

Exercice 57 : [énoncé]
Remarquons que pour tout ¢ € [0, 1],

t—t*€[0,1/4]

Pour z € [0,1/4],

1
[unt1(2)| <z Hun||oo,[o,1/4] < 1 ||un||oo,[0,1/4]

Par une récurrence facile

donc aisément 1

lunlloc,o,1/0) < g
Par la remarque initiale, pour tout x € [0, 1],

1
ltn+1(2)] < lnlloo 0,170 < 4

donc
1

[unt1lloc o, < 7w

On peut conclure que la série Y u, est normalement convergente.

Exercice 58 : [énoncé]
La fonction u,, est dérivable avec

, 1—nx

uy, () = m

Les variations de u, sur [0, +oo[ fournissent

1
— 2\ _ _—
oo = (1/7%) = 7
La série de fonctions > u, converge normalement sur [0, 4+o00[, a fortiori
uniformément et simplement.
Soit @ > 0. Pour z > a,

1+ n2z 1 11

!/
< = AN ———
fun ()] (I1+n2z)> (14 n2a)?> a?n?

La série de fonctions Y u!, converge normalement sur [a, +0oo].
En revanche, il n’y a pas convergence en 0, ni convergence uniforme sur ]0, a] car
le théoréme de la double limite ne peut s’appliquer en 0.

Exercice 59 : [énoncé]
a) ( est bien définie sur |1, 4o0[. Les fonctions f, : z — - sont de classe C> sur
]1, +o0[ et

(—Ilnn)?
fP (@) = I
Pour tout a > 1 sur [a, +00],
£ (x)‘ < (Inn)?
n na
donc
’ £®) o (Inn)?
" 00,[a,+o00[ = pe
Pour p €11, 4],
nP ‘ fT(Lp) =0
00,[a,+oo[

donc > H £ converge puis » £ converge normalement sur [a, +o0].
00,[a,+00]
(p)

Il en découle que la série de fonctions > fn"’ converge simplement sur |1, +o0o[ et

> fr(lp ) converge uniformément sur tout segment inclus dans |1, +o0[. Par
théoréme on peut conclure ¢ est de classe C* sur |1, +0o0l.
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b)

na:

+oo
¢y =3 Em o
n=1

donc ¢ est décroissante.

donc ( est convexe.

¢) La série de fonctions ) f,, converge uniformément sur [2, 00| et
lim f,(x) =1sin =1 et 0 sinon. Par le théoréme de la double limite

r——+0o0

@)

d) La fonction ¢ — t% est décroissante donc

/”“dt< 1<</m dt
n tr S opr oy %

+oo —+o0
/ dt<<<x><1+/ &
1

En sommant, on obtient

v Lt
avec
a1
/1 v x—1
On en déduit 1
C(z) ~

z—1t x — 1

e) Le signe de In(¢(x))” est celui de

()¢ (@) = ¢ (x)*
Or

i—lnn_i 1 —lnn
x - x/2 z/2
n=1 n n:ln/ n/

donc par I'inégalité de Cauchy-Schwarz

n=1 n=1 n=1

puis quand N — +oo,

() < (@) (@)

(i_mnﬂili(_w

Exercice 60 : [énoncé]

a) Posons u,(z) = 1/n* définie sur |1, +ool.

La série de fonctions > u, converge simplement sur |1, +o0o[ ce qui assure la
bonne définition de ((x).

Plus précisément, pour a > 1, on a

sup |un(z)| = un(a) avec Zun(a) convergente
z€[a,+oo[

et il y a donc convergence normale (et donc uniforme) de la série de fonctions u,,
sur [a, +ool.
Puisque

() 1 sin=1

" xr——+00 0 Si n > 2

on peut appliquer le théoreme de la double limite et affirmer que ¢ tend en +oo
vers la somme convergente des limites

‘@) o

b) Posons v, (x) = {(n)z™/n. Pour x # 0, on a

Un+1 (.%')
v ()

|z]

n—-+oo

Par le critere de d’Alembert, la série converge pour |z| < 1 et diverge pour |z| > 1
(en fait le rayon de convergence de cette série entiere vaut 1).

Pour x =1, il y a divergence car

) 1

n n

Pour z = —1, il y a convergence en vertu du critere spécial des séries alternées. En
effet, la suite ((—1)"¢(n)/n) est alternée et décroit en valeur absolue vers 0
notamment car {(n + 1) < {(n).

c) En tant que somme de série entiére, la fonction F' est de classe C* sur |—1,1[.
Puisque F' est aussi définie en —1, en filiere PC, on peut affirmer directement que
F est continue en —1 en vertu d’un théoréeme du cours. En filiere MP et PSI, il
faut justifier cette continuité. ..

Les fonctions v,, sont continues sur [—1,0] et Pon vérifie que la série Y v, ()
satisfait le critére spécial des séries alternées pour tout z € [—1,0]. On peut alors
majorer le reste de cette série par son premier terme

—+o0

Z vg ()

k=n-+1

< fonsa@)] < S
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Ce dernier majorant étant uniforme de limite nulle, on peut affirmer qu’il y a
convergence uniforme de la série de fonctions > v, sur [—1,0] et sa somme F est
donc continue.

d) Par dérivation de la somme d’une série entiére, on obtient pour = € |—1,1],

+oo +00 400 "
Fiw) =3 ¢+ =3 >
n=1 n:lp:lp

On peut permuter les deux sommes par le théoreme de Fubini car il y a

convergence des séries
—+oo
D || et 2D

p=1 nz1p=1

"
n+1

J:TL
pn+1
On en déduit apres sommation géométrique

p=1n=1 p=1 p(p p=1 p

et on ne peut faire plus simple.

Exercice 61 : [énoncé]

Chaque f, : z — (;le)n est de classe C! sur |0, +oo[ et

ni1lnn

fulz) = (1)

Par le critére spécial des séries alternées, la série de fonctions . f,, converge
simplement vers (s sur |0, +o00].
La suite (f],(z))nen est alternée. Etudions

nl‘

.tHlnt

P e
On a ) s
;o l—xln
@(t)*w

Pour Int > 1/z, ¢/(t) < 0 donc ¢ décroissante sur [e!/*, +oo[. Ainsi (f},(2))n>1
est décroissante a partir du rang Lel/ "’/’J + 1 et tend vers 0. On peut appliquer le
criteére spécial des séries alternées. Pour a > 0 et pour n > Lel/“J 4+ 1 on a pour
tout x € [a, +oo],

In(n+1)
S+

In(n+1)

R (a)) = T

X

+Z°° (=)t Inn

n(l]’

k=n-+1

donc
In(n + 1)
1Bl oo fa,+00 < CEnG

> f] converge uniformément sur [a, +0o[ donc converge uniformément sur tout
segment de ]0, +oo].
On peut alors conclure que la fonction ¢y est de classe C! sur ]0, +o0.

Exercice 62 : [énoncé]
Par le critére spécial des séries alternées, (s est bien définie sur ]0, +oo.

foniz— (;L—L)n est C* sur )0, o0 et

Inn)P

59 (@) = (-

La suite ( Fi )(m))neN est alternée. Etudions

(Int)P
tiE

p:t—

On a
In(t)P~1(p — zlnt

Pour Int > p/z, ¢'(t) < 0 donc ¢ décroissante sur [P/, +oo[. Ainsi (f,(zp) (2))n>1
est décroissante & partir du rang E(e?/*) + 1 et tend vers 0. On peut donc
appliquer le critere spécial des séries alternées. Pour a > 0 et pour

n > E(eP/*) 4 1 on a pour tout z € [a, +oo],

(In(n 4+ 1))P

+oo
-y (=D)"P(nn)?| _ (In(n+1))"

ne S (n+ 1)

donc
(In(n + 1))

<
||Rn||oo,[a,+oo[ (n+ 1)&

> f,(f’ ) converge uniformément sur [a, +oo[ (pour tout a > 0) donc converge
simplement sur ]0, +oo] et converge uniformément sur tout segment de ]0, +oo.
Par théoréme on peut alors conclure que (3 est C* sur |0, +o0].
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Exercice 63 : [énoncé]

La convergence pour = > 0 de la série définissant (3(z) est acquise par le critére
spécial des séries alternées.

On peut combiner les termes d’indices impairs avec les termes d’indices pairs qui

suivent
= 1 1
@)= (@ @)

p=1

Considérons alors la fonction f : [1, +o0o[ — R définie par

1 1

IO ==~ @e

La fonction f est décroissante et donc

n+1 n
/ () dt < f(n) < / I

puis en sommant ces encadrements

+00 +oo
/1 ) dt < o) < (1) + / F(t)at

Or
+oo

/joo F(t)dt = ﬁ [(215 )t (2t)1—ﬂ

1

avec

(-1 =2 =20 (1 B (1 - 1)) ~ (@ —1)(2t) 7 ———0

2t t—+00
et donc
/+Oo ft)dt = ! (2" -1) —— L
1 21 —x) 20+ 2
De plus
1
HN=1-—-—
f( ) 2T g0+
et donc par encadrement
Gz) —— .
T z
2 z—0+ 2

Exercice 64 : [énoncé]

a) ¢ est définie sur |1, +o00[ et (o est définie sur |0, +o00[ (via le critére spécial des
séries alternées)

b) fn: @+ L est continue.

Pour tout a > 1,

donc
1

Il oot < o
or > -1 converge donc 3 f,, converge normalement sur [a, +o0o[ puis converge
uniformément sur tout segment inclus dans |1, 4o00[. Par théoréme, on obtient que
la fonction ¢ est continue.

Gn ' T (_nilw)" est continue.

Par le critere spécial des séries alternées

S 1
2 <
W ne (N+1)
Pour tout a > 0,
foo n—1
(-1 1 < 1

>

n=N+1

SINELE SN De

donc > g, converge uniformément sur [a, +o0o[ puis converge uniformément sur
tout segment inclus dans ]0, +o00[. Par théoréme on obtient que la fonction (5 est
continue sur |0, +o0l.

¢) Pour z > 1

+oo +oo
1 1
_ ) - _ 21—96
Ca(a) ; — ; @ = @) (=)
Exercice 65 : [énoncé]
On peut écrire
=X o
() = 2222 —

avec convergence normale sur [0, 1] donc

1 =y 1
dz = - d
/Oz/f(x) v 7;2/0 n—xr n+x v
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Or

1
1 1 1
/ - do =1In " —lnn+
o M—T n+zx n—1 n

et en transitant par les sommes partielles

Yot 1 Yoo K n+d
Z/o n—x_n—i—xdxzzlnn—l_zln " =In N—-In(N+1)
n=2 n=2 n=2

Ainsi

1
/ P(z)dzr =1n2
0
Exercice 66 : [énoncé]

a) Pour z € ]0, 1], on obtient par sommation géométrique
Z w 2 Inx
n(@) = 1422
n=0

Cette relation vaut aussi pour x =0 ou z = 1.
b) On peut appliquer le critére spécial des séries alternées et donc

IR, (z)] = io (=1)*+22642 1 2| < 220+ |In g
k=n+1
L’étude de ¢ :  — 22("*2) |In x| donne
2(n+2 e !
va € [0,1], 22+ Inz| < Nt
donc o
[Rnllo < ity 0
¢) On a

1 1 1,2
1 1
/ ne dx—/ lnxdx—/ wdx
o 1+a2 0 o 1+ a?

et on peut calculer la derniere intégrale par intégration terme a terme car

converge uniformément sur [0, 1]. Cela donne

1
Inz
-1
/0 1+ T+ 20 +Z (2n +3

puis le résultat.

Exercice 67 : [énoncé]

20

_ <
a2 +n? =

)
’oo,[o,l] n

est le terme générale d’une série convergente. Par convergence normale sur le

+In2 o ke@ment [0, 1] :

1% = 2ad o = 1
/ZaQ—i—nQ Z/ aZ+n? nzlln<1+nQ>

Or
io 2 _ﬂchwa l
a2+n2  “shra «
n=1
donc

1 +oo 1
shra shr
/ Za2+n2da {1 o Llnw

n=1

On en déduit que

1o 1 shr
I (1 0) =2
n T

n=

[

Exercice 68 : [énoncé]

Pour z < 0, il y a divergence grossiere.

Pour z > 0, n?e~ V" = ¢=#vVH+2Inn () donc 3] e~#V™ est absolument
convergente. Ainsi f est définie sur ]0, +o0[.

Pour a > 0, sur [a, +00], ‘e_”‘\/ﬁ‘ <e V" Cela permet d’établir la convergence
normale de la série de fonctions sur [a, +oo[. Par convergence uniforme sur tout
segment d’une série de fonctions continues, on peut affirmer que f est continue
sur ]0, +oo.
Par convergence uniforme sur [1, +o00[, on peut appliquer le théoréme de la double
limite et affirmer
+oo
limf =" lim e V" =1
igg f Z im e

Tr—+o0

Pour x > 0 fixé, la fonction t — e~ V% est décroissante donc
n+1 n

/ emmVidE < e VT < / e~ "Vl dt

n

n—1
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En sommant (avec n = 0 a part pour la majoration) on obtient Exercice 70 : [énoncé]
oo oo a) Pour tout € R, la série numérique Y u,(z) satisfait le critére spécial des
/ VI qL < flo) <1+ / otV gy séries alternées donc la série de fonctions ) u, converge simplement sur R.
0 0 De plus
avec o oo )
i, 2 x 1 )
foea 2 < (4 ) < () 0
On en déduit
F(z) ~ 2 donc la série de fonctions ) u, converge uniformément sur R.
x? b) up(x) ——— In(1 4+ 1/n). Par converge uniformément
quand z — 0%, T
+oo +oo
> tp(z) —— =) " (-1)"In(1 + 1/n)
Exercice 69 : [énoncé] n=1 Tee n=1

Par le critére spécial des séries alternées, il est immédiate de justifier que S(t) est
définie pour tout ¢ > 0.
On peut réorganiser 'expression de S(t) de la facon suivante :

Pour calculer cette somme, manipulons les sommes partielles et séparons les
termes d’indice pair de ceux d’indice impair

2N N N
o0 C1)\2 _1\2p+1 00 n 1
s =Y (( DT (=D ) = t > (-1)"In <1 + n) => In(@2n+1)—In(2n) + Y In(2n — 1) — In(2n)
= 2pt+1  (2p+1)t+1 = (2pt +1)[(2p+ 1)t + 1] n=1 n=1 n=1
. ;o donc
Ig)a fonction ft T X (2”4_1?((;?“){“) estbd.ecrmls:santz N 1 (2N)! 9
ar comparaison avec une intégrale, on obtient ’encadrement z_:l (=1)"In (1 + n) =1In <(2NN')2> (2N +1)
+o0 400 n=
/ fi(x)dze < S(t) < / fe(x) dz Or
! 0 N~ V2rNNNe N
Puisque par les calculs précédents
donc
t 1 1 2N .
Qut+1)(2z+ 1)t +1) 2wt+1 (2z+1)t+1 > (=D)"In(1+1/n) ~In(2/7)
n=1
On obtient On en déduit
/m : Qoo [Lp Cet+D) 177 (140 t=n(2/m)
o Rat+1)(Rz+1t+1) 7 [2t0 (e+1)t+1)], 2t
et Exercice 71 : [énoncd]
/+oo " o l . (2at + 1) +o00 B In(1 + 3t) — In(1 + QtFn réorganisant la somme
p aet+D)(Re+t+1) 7 [2t (2e+1)t+1)], 2t n P\ T
Uy = 1—— = n

Quand ¢ — 0%, on obtient par encadrement S(t) — 1/2. kZ:O ( Tl) ,;) fi(m)
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avec fr : N — R définie par
fr(n) = (1 —k/n)" sik <net fr(n) =0 sinon

Pour k € N fixé, fr(n) — e~ *.
Pour k < n, |fx(n)| = exp(nIn(l — k/n)) < exp(—k) et cette majoration vaut
aussi pour k > n. Ainsi || fi[| o,y < e~* et donc la série Y fi. converge
normalement sur A = N.
Par interversion limite/somme infinie, on obtient

+oo L 1

Uy — e =
n—-+oo Pt 1-— 1/6

Exercice 72 : [énoncé]
Posons

fe(n) = <1 — fz:) pour k < n et fr(n) =0 sinon

Pour k € N fixé,
fe(n) — exp(—ka)
Pour k < n
[fe(n)] = exp(naln(l — k/n)) <

et cette majoration vaut aussi pour k > n.
Ainsi
—k
[frlloon < €7

et donc la série Y fi converge normalement sur A = N.
Par interversion limite/somme infinie

+oo “+o0 “+o0
. _ . _ —ka
7gk;hW—§$%ﬁW—;e

n no
k a
lim (1 — > -
n—-+oo n e —1
k=0

Ainsi

Exercice 73 : [énoncé]
Par la formule du bindéme

Considérons f, : [0, 4+00[ — C définies par

r(x—1)...(x —k+1)2F
k! ok

fe() siz > ket fr(z) =0 sinon

En tout p € N,

+oo B p p zk_ 2\ P
%fk(p)_’§<k>ﬁ_<l+p)

La série de fonctions Y fj converge simplement vers z — (1 + i)w en tout
keN
k
p € N. De plus, puisque |fi(z)] < |7C|! , la convergence est normale sur R*. Pour k

fixé, quand x — 400,

fk(m):x(m—l)...lgx—k+1)%’;_>%’;

xT

Par le théoréme de la double limite

+oo L

+oo
. V4
Jim > fem) =35
k=0 k=0

ie. an
lim (1 4 f) — e
n

n—+oo

Exercice 74 : [énoncé]

Posons
1

fn(l') = m avec x > 0
a) Soit x € ]0,+00[. On a f,(z) ~ 1/n%z donc Y. f,(z) converge absolument.
On en déduit que la série > f,, converge simplement sur |0, +o00[ et donc la

+oo

fonction S = ) f, est bien définie.
n=0

b) Les f, sont continues sur R**.

Soit a > 0,
1 1
1Felloc fotool < 552 = © (nz)

La série de fonctions Y f,, converge normalement sur [a, +oo[ donc converge
uniformément sur tout segment de ]0, +o0].

On peut donc conclure que S est continue.

c¢) Chaque f, est décroissante donc la fonction S l’est aussi.

Diffusion autorisée a titre entiérement gratuit uniquement - dD



[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015

Corrections 37

d) Par convergence normale sur [1, +00],

+oo
i D (@) szanm () =0

On remarque
1

—> JR—
T—+00 n2

Posons g, :  +— La fonction g, croit de 0 & 1/n? sur Rt donc

-z
n(l+nz) "

1

19001 = 72

La série de fonctions Y g, converge normalement sur R™ donc

+001 2

+oo —+o0
i S =3 im0 = 3 5=
n= n

. 2 .
Par suite 25(z) ——— %~ puis
T—r+0o0

2

™
S ~Y —_
(x) z—+00 6
e) La fonction ¢ — E=m] + ) est décroissante donc par comparaison avec une
intégrale
too gt <= 1 too gt
/1 t(1 + t) ;U”(x) 1tz +/1 t(1 + t)
Or

oo gt teo x t 1t
/1 t(1+ tx) /1 (t 1+tx> dt {n1+mL a(l+2) - In(a)

donc

Exercice 75 : [énoncé]

)f" xHi_niJlrm:n(rH»)

Soient —1 <a<0<1Lhb.

est définie et continue sur |—1, +o00]

b

1l oo, (a5 < m

La série de fonction Y’ f,, converge normalement sur [a, b] et donc converge
uniformément sur tout segment inclus dans |—1, +00[.
b) Chaque f, est croissante donc par sommation de monotonie, S est croissante.

c)

= 1 = 1
S<x+1)_5(m):;n—1_n—&-x_nz::lﬁ_n—i—x
donc
= 1 1 1 1
S(xH)_S(x):T;nA_E_HxH:fﬂ
d) Quand z — —1, S(z + 1) — S(0) = 0 puis
S(x):—xil—l—S(x-i-l)w—%

e) S(0)=0et S(zx+1)— S(z) = :c+1 donc pour tout n € N,

k=1

e

f) On sait > 4 ~
k=1
Puisque S(E(z)) <

~ Inn et on sait In(n + 1) ~ Inn.

S(x) < S(E(z) + 1) on obtient

S(z) ~lnE(z) ~Inx

Exercice 76 : [énoncé]

a) Posons f,(z) = e V7

Pour z < 0, la série Ze*‘”‘/ﬁ diverge grossierement.

Pour = > 0, n?f,(x) — 0 donc 3 e~*V" converge absolument.

La fonction f est donc définie sur ]0, +o0l.

Pour a > 0, || full s (0,400 = fn(a) et 3 fu(a) converge donc 3 f, converge
normalement sur [a, +oo[. Comme somme de série de fonctions continues
convergeant uniformément sur tout segment, on peut affirmer que f est continue
sur ]0, +o0.

b) f est somme de fonction strictement décroissante, elle donc elle-méme
strictement décroissante.

c¢) Par convergence uniforme sur [a, +00[, on peut intervertir limite en +oo et
—+oo

somme infinie. A1n51 hm f(z)= > lim fu(z)=0.

n—=1 xr——+00
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d) Par monotonie de ¢ — e’”‘/z an e"2Viqt L o2V L f:q e~ TVt gt
En sommant f+°° Vit < f(z) < +°° e~V 4t
Or O+<>o —zVE gt = ?2 et f+<>o o—oVE dt ~ % done f(z) ~ %2

Exercice 77 : [énoncé] .
a) Notons : fy, 1 & 355
Pour z =0, f,(z) = 0 donc S(x) est bien définie.
Pour z € ]0,1] : fffi(l(‘;;) x < 1et S(z) est bien définie.
Pour z =1: f,(z) =1/2 et S( ) n’est pas définie.
Pour z € |1, 400 : f:ﬁ(lg) — L1 <1 donc S(z) est bien définie.
Finalement S est définie sur [07 1[U]1, +oo[ par convergence simplement de Y f,
sur ce domaine.
b)
v 1u S(je) =3 S
PO el S0/ = X 4 = 3 g = S

n=1

¢) Soit 0 < a < 1. Sur [0, al,

—+oo
1fnlloo 0,0 < a™et > a" <1
n=1

donc Y f, converge normalement sur [0,a] et donc converge uniformément sur

n>1
tout segment de [0, 1[. Par théoréme S est continue sur [0, 1.
Par composition de fonctions continues S : z — S(1/z) est aussi continue sur
11, 400l
d)

, B TL(En_l(]. + £L.2n) _ 2nx3n—1 B nx"‘l(l _ x2n)
fulz) = (14 z2n)2 - (14 z2n)2

Chaque f, est croissante sur [0, 1] et décroissante sur |1, 4o00].
Par sommation de monotonie, la fonction S est croissante sur [0, 1[ et décroissante
sur |1, 4+o0[.
S(0) =0.
Quand x — 17,

X 2
S(x) 271:17_ - — +00
donc hmi S(x) =
Pulsqglclz S(1 /x) ( ) on obtient par composition de limites, wlinllJf S(x) = 400
et zgmoo S(x) =

Exercice 78 : [énoncé]
Pour |z| > 1, la série est grossiérement divergente.

Pour |z| < 1,

xn

1427

n

~

et donc la série est absolument convergente.
La fonction S est définie sur |—1,1].

Posons u, () =

"
THan

uy, est de classe C!, 3" u,, converge simplement,

donc pour a € [0,1],

, _ ’I’Ll’nil
Uy, () = m
an—l 1
lnlloo a0 < Ny ~ ma”

ce qui assure la convergence normale de ) u/, sur tout segment de |—1,1][.
Par suite la fonction S est de classe C'.

1 1
S(0) = 3 donc S(x) o3
Pour z € [0,1],
1 “+o00 400
hl P n(p+1)
=322
n=1p=0
Puisque 3 |(—1)Pz"+Y)| converge et Z |(=1)P2™®+D)]| aussi, on peut
p=0 nzlp=
permuter les deux sommes et affirmer
an

On a alors

avec uy(x) = zP1

1

(1

1—x
—gp+l1

7+Z 1_xp+1

—+oo

—z)S(x) 1—x+z 1)Puy(z

pour z € [0, 1].

La fonction w, est continue sur [0, 1] et prolonge par continuité en 1 en posant

up(1) = 1/(p +1).
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Le critére spécial des séries alternées s’applique a la série ) (—1)Pu,(z) et donc

oo

Y (Dfup(e)

k=p+1

< upy1()
o

1
p+2°
converge uniformément sur [0, 1] et donc sa somme est continue en 1. Cela permet

d’affirmer

et une étude de variation permet d’affirmer u,41(z) < Ainsi, la série Y uy,

-i:.o (=17 =1In2

(1—2)S(x)
et 4 +1
et finalement |
2
S(xz) ~ I
z—1- 1 —x
Exercice 79 : [énoncé]
Posons
" n(1l+ n2z?)
Sachant
2|nz| < 1+ n’a?
on a
fal@) < =
n x X 4 9
2n?

On en déduit que la série de fonctions Y f,, converge normalement sur R.
Les fonctions f, étant continue, la somme S est définie et continue sur R.
Les fonctions f,, sont de classe C' et

1 — n2z?
/ _
fn(z) - n<1 _|_ 7’L2$2>2
Soit a > 0. Pour |z| > a,
1+ n2a? 1 1

4 < = <
Fn(@)l < n(l+n222)2  n(l+n222) = n(l+n2a?)
On en déduit que la série de fonctions > f) converge normalement sur tout
segment de R*.

La somme S est donc une fonction de classe C! sur R*.

Montrons que la fonction S n’est pas dérivable en 0.

lS S(0 —+Oo !
5( (z) — ())—;m

Par comparaison avec une intégrale

1 teodt
— _ > -
- (S(z) —5(0)) = /1 t(1 + t22?)
Par le changement de variable u = tx
1 e at
= — >
T (8(x) = 5(0) > /x u(l4 u?) z—ot +oo

car la fonction positive u — 1/u(1 + u?) n’est pas intégrable sur ]0, 1].

Exercice 80 : [énoncé]
Posons

fulz) = % arctan(nz)

Chaque f, est continue et || f,[| ., = 55> est terme général d’une série convergente.

Par convergence normale, on peut affirmer que f est définie et continue sur R.
Chaque f,, est de classe C! et

Pour a > 0, sur [a, +00[ ou |—o0, —a],

Ifalloo € 77—y
n(l + (na)?)

ce qui donne la convergence normale de la série des dérivées.

Ainsi, par convergence uniforme sur tout segment, on obtient f de classe C! sur

R*.

Exercice 81 : [énoncé]
a) En vertu du théoréme des accroissements finis

vntaz—n

1+n

lun(2)| < (Vn+2—+/n)  sup
[V vnta]

|(arctan)’| =
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donc

()] < i <2 -0

Up, (X =

T A en)(Vn+ Vit z)  2yn(n+1) n3/2

On en déduit que la série de fonctions > u, converge simplement et donc la
fonction S est bien définie.

Les fonctions u,, sont continue et pour tout a € RT,

a

2y/n(n+1)

On peut donc affirmer la convergence uniforme sur tout segment de la série > u,
ce qui assure la continuité de S.

b) Montrons que S tend vers 4+00 en +o0.

Remarquons que par le théoréeme des accroissements finis

V2n—ymn V2-1
1+2n 2y/n

Va € [0,0], Jun(@)| <

up(n) = arctan v2n — arctan \/n >

et il y a donc divergence vers +oo de la série > u,(n).
Soit A € RT. 1l existe un rang N € N tel que

N
Z up(n) = A
n=0
Pour x > N,
N N N
S(x) =D un(@) =Y un(N) =D un(n) > A
n=0 n=0 n=0

Exercice 82 : [énoncé]
a) Posons
1

Les fonctions u,, sont définies et de classe C! sur R.

La série de fonctions > u,, converge simplement sur R car u, (z) ~ 1/n2.

On a
—2x

(n? 4+ 22)?

Uy, () =

donc sur [—a, al,
2a

Il < 5

et la série de fonctions Y u/ converge normalement et donc uniformément sur
tout segment de R.

On peut conclure que la fonction f est de classe C!.

b) La fonction t + 1/(t? + 22) est décroissante donc

Too gt Too gt
/1 t2 + 22 f(x) /0 t2 + x2

Or
/+°° dt T /+°° dt | . 1
—_— = ——— = — — —arctan —
o 242 2z 1 422 22w x
donc -
1@, N5

¢) On peut écrire

1 - 1 1 -~ 1 1 x? " 1 x*
n2+x2  n2 \1+22/n2) n2 n?2 ndn? 4 x2

et par convergence des sommes introduites

00 1 +00 2 . +o00 1
f(x):Zﬁ_Zﬁ+x Zn4(n2+z2)
n=1 n=1 n=1

Or
< — < 400
4(2 2 6
n:ln (n +$) n=1
donc ) .
_T T 2 4
fl@) =T - a? + 0

Exercice 83 : [énoncé]
Posons

fnixz— (=" sin (E)

n n

Puisque les fonctions f,, sont toutes impaires, on limite I’étude & x € [0, +oo].
A partir d’un certain rang N, on a x/n < 7/2 et alors

sin (z/n) € [0,1]
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La série numérique Y f,,(z) vérifie alors les hypothéses du critére spécial des
séries alternées a partir du rang N, et par conséquent cette série converge.
Ainsi la série de fonctions Y f,, converge simplement sur R et donc sa fonction
somme, que nous noterons S, est définie sur R.

Les fonctions f,, sont de classe C' et

de sorte que
1
illoos = =5

On en déduit que la série de fonctions Y f/ converge normalement sur R et donc
la fonction S est de classe C! sur R, a fortiori cette fonction est continue.

Exercice 84 : [énoncé]

a) Posons f,(t) = 1__:7)1: pour ¢t > 0.

Par application du critére spécial des séries alternées, Y f,, converge simplement
sur ]0, +oo] et

1

R, <ST——
|| ||oo,[a,+oo[ 1+ na

—0

pour tout a > 0.

Par converge uniformément sur tout segment d’une série de fonctions continue, S
est définie et continue sur ]0, +oo].

b) Par converge uniformément sur [a, +00],

lim S(t) = Jf T G
+oo t—+oo 1 + nt

Par application du critére spécial des séries alternées

1
1—-——<S5@{) <1
1+t ®)

c) Les fonctions f,, sont de classe C! et la série de fonctions Y f,, converge
simplement.

(_1)n+1n
) = s
nt)
La série Y f/ (t) est alternée avec |f (t)| = e

Puisque
nin+1)t2 -1
1+nt)2(1+ (n+1)t)2

| (t)] — ‘féﬂ(t)‘ = (

la suite (|f},(t)]) décroit vers 0 & partir d’un certain rang.
Soit @ > 0.
A partir d’'un certain rang ny,

nin+1)a*>-1>0

et alors pour tout ¢ > a, on peut appliquer le critere spécial des séries alternées a
partir du rang ng.

On a alors
n n

<
(I+nt)?2 =~ (14 na)?

| R ()] <

donc
n

||Rn||oo,[a,+oo[ < (1 +na)2 -0

Ainsi la série de fonctions Y f/ converge uniformément sur [a, +oo].
Par théoréme, on peut alors conclure que S est de classe C'.

Exercice 85 : [énoncé]
On pose pour tout z € R et n € N*

un(@) = (=1)"

x
n + x2

a) Pour tout x € R, > u,(z) satisfait le critére spécial des séries alternées et donc
> u, converge simplement. La fonction S est donc bien définie, elle est
évidemment impaire.

b) Soit a > 0. Par le critére spécial des séries alternées

x a
|R,(z)| < T < oo poure € [—a,al
et donc “
HRnHoo[faa] <——=0
J[—a, n

Il y a convergence uniforme sur [—a, a] pour tout a > 0 et donc convergence
uniforme sur tout segment de R.

De plus chaque fonction u,, est continue donc S est continue.

c¢) Par le critére spécial des séries alternées, on peut encadrer S par deux sommes

partielles consécutives
x x x
— - <S@) < —
1+22 2+22 (z) 1+ 22

et on peut donc affirmer S(z) —— 0.
T—r+00
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Exercice 86 : [énoncé]
a) Pour z € |-1,1],

|un ()| = o (|2[")
donc > u,(x) est absolument convergente donc convergente.
Pour x =1,
(=
2n
donc " u,(x) converge en vertu du critére spécial des séries alternées.
Pour z € |—o0, —1[U]1, +o0],

o = E (1 L (1)

donc > un(x) est somme d'une série convergente et d’une série absolument

convergente.
b)

up(z) =

+oo n—1 " " +o0  1\n—1
f@)+f0/z) =3 (_IZL (1 T 141r/1/xn) -2 %

n=1 n=1

c) Soit a € [0, 1].

a a

Hf”oo,[fa,a] <

donc > f,, converge normalement sur [—a, a].

Par convergence uniforme d’une série de fonctions continues sur tout segment de
]—1,1[, on peut affirmer que f est continue sur |—1, 1[. Puisque

f(z) = C%* — f(1/x), f est aussi continue sur |—oo, —1[ et sur ]1, +oo[ par
composition de fonctions continues.

d) Pour x € [0, 1], la série > u,(x) est alternée et la suite (

1—a” 1—a

o
décroit
Tom >n>o

vers 0 (apres étude non détaillée ici) donc le critere spécial des séries alternées
s’applique et

§ e < ]
k X EERER
Wo n+1ll+z n+1
puis
1
||Rn||oo7[071] < m —0

La série de fonctions continues > u, converge uniformément sur [0, 1] donc f est
continue sur [0, 1] et donc continue & gauche en 1. Par la relation du b) on obtient
aussi f continue a droite en 1.

Exercice 87 :

a)

[énoncé]

In fri1(x) —In f(x) = 2ln (1 + i) +In(n+1)—In(z4+n+1)=0 <7112>

La série Y In f,11(z) — In f,(z) converge donc la suite (In f,,(x)) converge puis
(fn(z)) converge vers un réel strictement positif.

b)
InT(z) = nEIJIrloo <x Inn+ ;lnk — ’;)ln(:c + k))

avec zlnn + Z Ink— Z In(z+k)=azlnn—Ilnz — Z In (1+%).

k=1 k=0
Or la série > (f —In (1 + n)) est absolument convergente car de terme général
en O (1/n?) et
n n T

Z(f—ln( E)):xlnn—l—’yaj—l—o(l)—Zln(l—&—E)

k=1 k=1
donc

Xz x
InT(z) =—Inz —’yx%—% (ﬁ —1In (1 + E))

c) Posons f,(z) = £ —In (1 + %) pour >0 et n > 1. f, est Ct, Y f, converge
simplement et f/(z) = ﬁ ce qui permet d’affirmer »_ f! converge
normalement sur tout segment[a, b] C R**.

Exercice 88 : [énoncé]

a) Si z < 0, la série numérique Y f,,(z) diverge grossiérement.

Si > 0 alors n?f,(x) = e2™"=#7" — 0 donc 3 f,(x) est absolument
convergente.

Ainsi ) f,, converge simplement sur |0, +oo[. f est définie sur ]0, +-o0[.

b) Les fonctions f, sont continues.

Pour a > 0, || full oo (0o = fr(a) et 3 fn(a) converge donc 3 f,, converge
normalement sur [a, +o0o[. Par convergence uniforme sur tout segment, on peut
affirmer que f est continue.

c¢) Par convergence uniforme sur [a, +00[, on peut intervertir limite en +oco et

+o0o
lim f,(x)=1.

Jim fa) = 2

n=0%—+

somme infinie. A1n51
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Exercice 89 : [énoncé]
a) Pour z < 0, uy,(x) T T donc > u,(x) diverge grossiérement.
n—-+0o0

Pour =0, u,(z) =0 donc Y u,(0) converge

Pour z > 0, u,(x) = o(1/n?) par croissance comparée et donc > u,(z) converge
absolument.

On conclut I = R*

b) Pour [a,b] C RT*,

n*be™ "¢
= < —
||un||oo,[a,b] le[lali)b] |un(x)| X 2+ 1

donc Y u, est une série de fonctions continues convergeant normalement sur tout
segment de RT. Sa somme est alors continue sur R**.
¢) Apres étude des variations de la fonction,

1
n3—a

[tnlloo ps = sup [un(z)| = un(l/n) ~
z€ERT

Il y a convergence normale si, et seulement si, a < 2.
d) On peut écrire

s I & ke 1 & kK, 1
- - - _ M —k/n - —k/n
dowl/m=0 ) oz X e g e

k=n-+1 k=n-+1 k=n-+1 k=n-+1
Or par sommation géométrique
1 — 1 e~(ntb/n
- Z efk/nziiﬁi
2n 2nl—el/n 2
k=n+1
o0
donc Y wg(1/n) ne peut tendre vers 0 quand n — +oc.
k=n+1

S’il y avait convergence uniforme sur R* alors

o0 o0
0< Y wp(l/n) < sup | Y ug(z)| =0
k=n+1 weR* k=n+1

ce qui vient d’étre exclu.
e) Si S est continue en 0 alors par sommation de terme positif

0< i up(1/n) < S(1/n) = S(0) =0
k=n-+1

ce qui est encore a exclure.

Exercice 90 : [énoncé]

Puisque a,, > 0 et > a,(1 4 |x,|) converge, les séries > a, et > a,z, sont
absolument convergentes.

Posons f,(z) = an | — zp]-

Comme |ay, |2 — xn|| < |an||z| + |anzy], 1la série des fonctions f,, converge
simplement sur R.

Les fonctions f,, sont continues et sur [—M, M], | fnll < Ma, + ay, |25

Par convergence normale sur tout segment d’une série de fonctions continues, on
peut affirmer que la somme f est continue.

Soit [a, A] € R tel que z, ¢ [«, 8] pour tout n € N.

Les fonctions f,, sont de classe C! sur [, 8] et f/(x) = ea,, avec |e| = 1.

Par convergence normale de la série des dérivées sur [«, 3], on peut affirmer que f
est de classe C! sur tout intervalle ouvert ]a, b[ vérifiant Vn € N, z,, ¢ ]a, b|.

Soit a € R tel qu’il existe n € N vérifiant x,, = a.

En considérant A = {n € N/x,, = a}, on peut écrire par absolue convergence

f(:[,’): Zan|x_a|+ Z anlx_xn|:a‘x_a|+g(x)
neA neN\A

avec o > 0.

400
Puisque la série )  a,, converge, pour N assez grand, > a, < §.

kE=N+1
On peut alors écrire
fx)=alx—al+ Z an | — x| + Z ap |z — T
neEN\A,n>N+1 neN\A,n<N

La fonction x — >
neN\A,n<N
Cependant, la fonction

an | — x| est dérivable au voisinage de a.

prx—alr—al+ E an |z — x,
neN\A,n>N+1

n’est quand a elle pas dérivable en a.
En effet, pour h > 0,

1 a o«
- _ S0 = > =
y (plath) —pla) 2a-5 >3
alors que pour h < 0,
1 « «Q
- _ < _ -
, (plath) —p(a) < —at g 5

Ainsi, les éventuels nombres dérivés a droite et a gauche ne peuvent pas coincider.
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Exercice 91 : [énoncé]
a) En vertu du théoréme des accroissements finis

, x
|un ()| < x [::Ex] |(arctan)’| T2

On en déduit que la série de fonctions > u, converge simplement et donc la

fonction S est bien définie.

Les fonctions u,, sont continue et pour tout a € RT,

<4

S 14n2

On peut donc affirmer la convergence uniforme sur tout segment de la série > u,
ce qui assure la continuité de S.

b) Montrons que S tend vers 400 en +o0.

Sachant

Vo € [0,a], |un(z)]

YV > 0,arctan(z) + arctan(1l/z) = g

on peut réécrire

+oo 1
S(x) = arctanx + arctan — — arctan
@ > (artan

Les termes sommés étant tous positifs

N
1 1
S(x) > arctanz + Z <arctan — arctan (n+x)>

n=1
Or, quand x — 400
N

1 1 ™ 1
arctan z + Z <arctan E — arctan (n n m)> R 5 + Z arctan E

n=1

Puisque la série > arctan% est une série & termes positifs divergente, pour A € R
quelconque, il existe NV € N tel que

a 1
Z arctan — > A
n=1 n

et alors, pour = assez grand

N
1
arctanx + g (arctan — — arctan
n

n=1

1
)= A
(nﬂr))
puis

S(z) = A
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