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Suites et séries de fonctions
Propriétés de la limite d’une suite de fonctions

Exercice 1 [ 00868 ] [correction]
Etablir que la limite simple d’une suite de fonctions de I vers R convexes est
convexe.

Exercice 2 [ 00885 ] [correction]
Soient (fn) une suite de fonctions convergeant uniformément vers une fonction f
et g une fonction uniformément continue.
Montrer que la suite de fonctions (g ◦ fn) converge uniformément.

Exercice 3 [ 00884 ] [correction]
Soient (fn) et (gn) deux suites de fonctions convergeant uniformément vers des
fonctions f et g supposées bornées.
Montrer que la suite de fonctions (fngn) converge uniformément vers fg.

Exercice 4 [ 00886 ] [correction]
Montrer que la limite uniforme d’une suite de fonctions uniformément continues
d’un intervalle I de R vers R est elle-même une fonction uniformément continue.

Exercice 5 [ 00878 ] [correction]
Soit (fn) une suite de fonctions réelles continues et définies sur [a, b]. On suppose
que fn converge uniformément vers une fonction f .
Montrer

inf
[a,b]

fn → inf
[a,b]

f

Exercice 6 [ 00879 ] [correction]
On suppose qu’une suite de fonctions (fn) de [a, b] vers R converge uniformément
vers f : [a, b]→ R continue et on considère une suite (xn) d’éléments de [a, b]
convergeant vers x. Montrer

fn(xn)→ f(x)

Exercice 7 [ 00894 ] [correction]
Soient f : R→ R une fonction continue et (Pn) une suite de fonctions
polynomiales convergeant uniformément vers f .
a) Justifier qu’il existe un entier naturel N tel que pour tout n supérieur ou égal à
N , on ait pour tout réel x, |Pn(x)− PN (x)| 6 1.
Que peut-on en déduire quant au degré des fonctions polynômes Pn − PN lorsque
n > N ?
b) Conclure que f est nécessairement une fonction polynomiale.

Exercice 8 [ 03461 ] [correction]
Soit (Pn) une suite de fonctions polynômes de R dans R. On suppose que cette
suite converge uniformément vers une fonction f sur R. Montrer que la fonction f
est polynomiale.

Etude pratique de la convergence d’une suite de
fonctions

Exercice 9 [ 00871 ] [correction]
On pose

un(x) = xn ln x avec x ∈ ]0, 1] et un(0) = 0

Etudier la convergence uniforme de la suite de fonctions (un) sur [0, 1].

Exercice 10 [ 00872 ] [correction]
Etudier la convergence uniforme de fn : [0,+∞[→ R définie par

fn(x) = x

n(1 + xn)

Exercice 11 [ 00870 ] [correction]
On pose

un(x) = e−nx sin(nx) avec x ∈ R+

a) Etudier la convergence simple de la suite de fonctions (un) sur [0,+∞[.
b) Etudier la convergence uniforme sur [a,+∞[ avec a > 0.
c) Etudier la convergence uniforme sur [0,+∞[.
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Exercice 12 [ 00873 ] [correction]
On pose

fn(x) = nx2e−nx avec x ∈ R+

Etudier la convergence uniforme de (fn) sur R+ puis sur [a,+∞[ avec a > 0.

Exercice 13 [ 00874 ] [correction]
On pose

fn(x) = 1
(1 + x2)n avec x ∈ R

Etudier la convergence uniforme de (fn) sur R puis sur ]−∞,−a] ∪ [a,+∞[ avec
a > 0.

Exercice 14 [ 00875 ] [correction]
On pose

fn(x) = x2 sin
(

1
nx

)
pour x > 0 et fn(0) = 0

Etudier la convergence uniforme de (fn) sur R+ puis sur [−a, a] avec a > 0.

Exercice 15 [ 02527 ] [correction]
Etudier la convergence simple et uniforme sur R de la suite de fonctions (fn)
donnée par

fn(x) = sinn(x) cos(x)

Exercice 16 [ 02518 ] [correction]
Etudier la suite de fonctions (fn) définie par

fn(x) = nx2e−nx

1− e−x2

Exercice 17 [ 02830 ] [correction]
On pose, pour x > 0,

fp(x) = 1
(1 + x)1+1/p

Etudier la convergence simple puis uniforme de la suite de fonctions (fp)p∈N? .

Exercice 18 [ 00876 ] [correction]
On pose

fn(x) = 2nx
1 + n2nx2 pour x ∈ R

Sur quels intervalles y a-t-il convergence uniforme ?

Exercice 19 [ 00877 ] [correction]
On pose

fn(x) = 4n(x2n − x2n+1
) pour x ∈ [0, 1]

Sur quels intervalles y a-t-il convergence uniforme ?

Exercice 20 [ 00881 ] [correction]
Soient α ∈ R et fn : [0, 1]→ R définie par

fn(x) = nαx(1− x)n

a) Etudier la limite simple de la suite (fn).
b) Pour quels α ∈ R, y a-t-il convergence uniforme ?

Exercice 21 [ 02972 ] [correction]
Soit, pour n ∈ N, fn la fonction définie sur R+ par

fn(x) =
(

1− x

n

)n
si x ∈ [0, n[ et fn(x) = 0 si x > n

Etudier le mode de convergence de (fn).

Exercice 22 [ 00890 ] [correction]
Soit fn : R+ → R définie par

fn(x) =
(

1 + x

n

)−n
a) Etudier la limite simple de (fn) et montrer que

∀x ∈ R+, fn(x) > lim fn(x)

b) En partant de l’encadrement suivant valable pour tout t ∈ R+,

t− t2

2 6 ln(1 + t) 6 t

justifier que la suite (fn) converge uniformément sur tout intervalle [0, a] (avec
a > 0).
c) Etablir qu’en fait, la suite de fonctions (fn) converge uniformément sur R+.
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Exercice 23 [ 00892 ] [correction]
Soit fn : [0, 1]→ R définie par

fn(x) = n2x(1− nx) si x ∈ [0, 1/n] et fn(x) = 0 sinon

a) Etudier la limite simple de la suite (fn).
b) Calculer ∫ 1

0
fn(t) dt

Y a-t-il convergence uniforme de la suite de fonction (fn) ?
c) Etudier la convergence uniforme sur [a, 1] avec a > 0.

Exercice 24 [ 00891 ] [correction]
Pour x ∈ [0, π/2], on pose fn(x) = n sin x cosn x.
a) Déterminer la limite simple de la suite de fonctions (fn).
b) Calculer

In =
∫ π/2

0
fn(x)dx

La suite (fn) converge-t-elle uniformément ?
c) Justifier qu’il y a convergence uniforme sur tout segment inclus dans ]0, π/2].

Exercice 25 [ 02532 ] [correction]
a) Montrer que la suite de fonctions fn(x) = x(1 + nαe−nx) définies sur R+ pour
α ∈ R et n ∈ N? converge simplement vers une fonction f à déterminer.
b) Déterminer les valeurs de α pour lesquelles il y a convergence uniforme.
c) Calculer

lim
n→+∞

∫ 1

0
x(1 +

√
ne−nx)dx

Exercice 26 [ 02860 ] [correction]
Soit (fn) la suite de fonction définie sur R+ par

f0(x) = x et fn+1(x) = x

2 + fn(x) pour n ∈ N

Etudier la convergence simple et uniforme de la suite (fn)n>0 sur R+.

Exercice 27 [ 02831 ] [correction]
Soit f : [0, 1]→ [0, 1] donnée par

f(x) = 2x(1− x)

Etudier la convergence de (fn) où fn est l’itéré n-ième de f .

Exercice 28 [ 02970 ] [correction]
On note E l’ensemble des fonctions f : [0, 1]→ R+ continues.
On pose

Φ(f)(x) =
∫ x

0

√
f(t) dt

pour toute f ∈ E.
On pose f0 = 1 puis fn+1 = Φ(fn) pour tout n ∈ N.
a) Etudier la suite (fn).
b) Soit f = lim(fn).
Trouvez une équation différentielle dont f est solution.
Y a-t-il unicité de la solution nulle en 0 ?

Etude théorique de la convergence d’une suite de
fonctions

Exercice 29 [ 00883 ] [correction]
Soit fn : R+ → R définie par

fn(x) = x+ 1/n

Montrer que la suite de fonctions (fn) converge uniformément mais pas (f2
n).

Exercice 30 [ 00869 ] [correction]
Soit fn : R→ R définie par

fn(x) =
√
x2 + 1/n

Montrer que chaque fn est de classe C1 et que la suite (fn) converge
uniformément sur R vers une fonction f qui n’est pas de classe C1.
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Exercice 31 [ 00887 ] [correction]
Soit f : R→ R une fonction deux fois dérivable de dérivée seconde bornée.
Montrer que la suite des fonctions

gn : x 7→ n (f(x+ 1/n)− f(x))

converge uniformément vers f ′.

Exercice 32 [ 00888 ] [correction]
Soit fn : [0, 1]→ R décroissante et continue telle que (fn) converge simplement
vers la fonction nulle.
Montrer que cette convergence est uniforme.

Exercice 33 [ 00889 ] [correction]
[Théorème de Dini]
Soient des fonctions fn : [a, b]→ R continues telles que la suite de fonctions (fn)
converge simplement vers la fonction nulle.
On suppose que pour tout x ∈ [a, b], la suite réelle (fn(x)) est décroissante. On
désire montrer que la convergence de la suite (fn) est uniforme.
a) Justifier l’existence de

lim
n→+∞

‖fn‖∞

b) Justifier que pour tout n ∈ N, il existe xn ∈ [a, b] tel que ‖fn‖∞ = fn(xn).
c) En observant que pour tout p 6 n,

fn(xn) 6 fp(xn)

montrer que ‖fn‖∞ → 0 et conclure.

Exercice 34 [ 02969 ] [correction]
Soit I un intervalle ouvert ; soit pour n ∈ N, fn : I → R une fonction convexe. On
suppose que (fn) converge simplement.
Montrer que (fn) converge uniformément sur tout segment inclus dans I.

Exercice 35 [ 02833 ] [correction]
On note U l’ensemble des complexes de module 1 et on considère ω un complexe
de module 6= 1.
Exprimer une condition nécessaire et suffisante pour que la fonction

z 7→ 1
z − ω

soit limite uniforme sur U d’une suite de fonctions polynomiales.

Exercice 36 [ 03902 ] [correction]
Soit f : R→ R de classe C1. Pour tout n ∈ N?, on pose

un(t) = n (f (t+ 1/n)− f(t))

Montrer que la suite de fonctions (un)n>1 converge uniformément sur tout
segment de R vers une fonction à préciser.

Fonction solution d’équations fonctionnelles

Exercice 37 [ 00893 ] [correction]
On définit (un) suite de fonctions de [0, 1] vers R par

u0(x) = 1 et ∀n ∈ N, un+1(x) = 1 +
∫ x

0
un(t− t2) dt

a) Montrer que pour tout x ∈ [0, 1],

0 6 un+1(x)− un(x) 6 xn+1

(n+ 1)!

b) En déduire la convergence pour tout x ∈ [0, 1] de la suite (un(x)).
c) Etablir que la suite (un) converge uniformément vers une fonction u non nulle
vérifiant

u′(x) = u(x− x2)

Exercice 38 [ 03891 ] [correction]
Soit γ ∈ [0, 1[. On définit (un) suite de fonctions de R+ vers R par

u0(x) = 1 et ∀n ∈ N, un+1(x) = 1 +
∫ x

0
un(γt) dt

a) Montrer que pour tout x ∈ R+,

0 6 un+1(x)− un(x) 6 xn+1

(n+ 1)!

b) En déduire la convergence pour tout x ∈ R+ de la suite (un(x)).
c) Etablir que la suite de fonctions (un) converge vers une fonction u non nulle
vérifiant

u′(x) = u(γx)
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Exercice 39 [ 00903 ] [correction]
Pour x > 0, on pose

S(x) =
+∞∑
n=0

(−1)n

n+ x

a) Justifier que S est définie et de classe C1 sur R+?.
b) Préciser le sens de variation de S.
c) Etablir

∀x > 0, S(x+ 1) + S(x) = 1/x

d) Donner un équivalent de S en 0.
e) Donner un équivalent de S en +∞.

Exercice 40 [ 03777 ] [correction]
Pour x > 0, on pose

F (x) =
+∞∑
n=0

(−1)n

n+ x

a) Montrer que F est bien définie.
b) Montrer que F est de classe C1, de classe C∞.
c) Simplifier

F (x) + F (x+ 1)

d) Montrer que pour x > 0

F (x) =
∫ 1

0

tx−1

1 + t
dt

e) Donner un équivalent de F en 0 et en +∞.

Exercice 41 [ 00913 ] [correction]
Pour x > 0, on pose

S(x) =
+∞∑
n=0

n∏
k=0

1
(x+ k)

a) Justifier que S est définie et continue sur ]0,+∞[.
b) Former une relation liant S(x) et S(x+ 1).
c) Déterminer un équivalent de S(x) en +∞ et en 0.

Exercice 42 [ 00914 ] [correction]
Pour tout n ∈ N et tout x ∈ R+, on pose

fn(x) = th(x+ n)− thn

a) Etablir la convergence de la série de fonctions
∑
fn.

b) Justifier que la fonction somme S =
+∞∑
n=0

fn est continue et strictement

croissante sur R+.
c) Montrer que

∀x ∈ R+, S(x+ 1)− S(x) = 1− thx

d) Etudier la convergence de S en +∞.

Exercice 43 [ 03754 ] [correction]
Soit f : R+ → R continue décroissante et intégrable.
Montrer l’existence d’une fonction g : R+ → R continue vérifiant

∀x ∈ R+, g(x+ 1)− g(x) = f(x)

Exercice 44 [ 00912 ] [correction]
On rappelle que

∀x ∈ R,
+∞∑
n=0

xn

n! = ex

et on pose pour x > 0,

S(x) =
+∞∑
n=0

(−1)n

n!(x+ n)

a) Justifier que S est définie et de classe C1 sur R+?.
b) Préciser le sens de variation de S.
c) Etablir que

xS(x)− S(x+ 1) = 1
e

d) Donner un équivalent de S en +∞.
e) Donner un équivalent de S en 0.
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Exercice 45 [ 00898 ] [correction]
Justifier l’existence de

f(x) = 1
x

+
+∞∑
n=1

1
x+ n

+ 1
x− n

pour tout x ∈ R\Z.
Montrer que f est 1-périodique et qu’on a

f
(x

2

)
+ f

(
x+ 1

2

)
= 2f(x)

pour tout x ∈ R\Z.

Exercice 46 [ 02974 ] [correction]
a) Etudier la convergence de la série de fonctions

+∞∑
n=−∞

1
(x− n)2

pour x ∈ R\Z.
b) Soit un réel c > 2. Soit f une fonction continue de R dans R telle que, pour
tout x réel,

f
(x

2

)
+ f

(
x+ 1

2

)
= cf(x)

Montrer que f = 0.
c) Montrer que pour tout x réel non entier,

+∞∑
n=−∞

1
(x− n)2 = π2

sin2 πx

Exercice 47 [ 02973 ] [correction]
Trouver les fonctions f ∈ C ([0, 1] ,R) telles que

∀x ∈ [0, 1] , f(x) =
+∞∑
n=1

f(xn)
2n

Exercice 48 [ 03978 ] [correction]
a) Montrer qu’il existe une unique fonction f : ]0,+∞[→ R de limite nulle en +∞
et vérifiant

∀x > 0, f(x) + f(x+ 1) = 1
x2

b) Montrer que f est continue et intégrable sur [1,+∞[.
c) Calculer ∫ +∞

1
f(t) dt

Etude de la convergence d’une série de fonctions

Exercice 49 [ 00895 ] [correction]
Etudier la convergence simple, uniforme et normale de la série des fonctions

fn(x) = 1
n2 + x2 avec n > 1 et x ∈ R

Exercice 50 [ 00896 ] [correction]
Etudier la convergence simple, uniforme et normale de la série des fonctions

fn(x) = (−1)n

n+ x2 avec n > 1 et x ∈ R

Exercice 51 [ 00897 ] [correction]
On note 1I la fonction caractéristique d’un intervalle I :

1I(x) =
{

1 si x ∈ I
0 sinon

Etudier la convergence simple, uniforme et normale sur [0,+∞[ de la série des
fonctions

un(x) = 1
n+ 11[n,n+1[(x)

Exercice 52 [ 03770 ] [correction]
On considère la série des fonctions

fn(x) = nx2e−x
√
n

définies sur R+.
Etudier sa convergence simple, sa convergence normale et sa convergence
uniforme.
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Exercice 53 [ 03785 ] [correction]
On introduit l’application sur [0,+∞[

fn : x 7→ xne−x

n!

a) Etudier les convergences de la suite de fonctions (fn).
b) Etudier les convergences de la série de fonctions

∑
fn.

Exercice 54 [ 02838 ] [correction]
Soient α ∈ R et si n ∈ N,

un : x ∈ [0, 1] 7→ nαxn(1− x) ∈ R

Etudier le mode convergence de la suite de fonctions (un), puis de la série de
fonctions

∑
un.

Exercice 55 [ 00882 ] [correction]
Soient f : [0, 1]→ R continue et fn : [0, 1]→ R définie par

fn(x) = xnf(x)

a) Former une condition nécessaire et suffisante sur f pour que la suite de
fonction (fn) converge uniformément sur [0, 1].
b) Montrer que la série de fonctions

∑
fn converge uniformément sur [0, 1] si, et

seulement si, f(1) = 0 et f dérivable en 1 avec f ′(1) = 0.

Exercice 56 [ 03295 ] [correction]
Soit (an)n∈N une suite réelle positive et décroissante. Pour tout n ∈ N, on pose

un(x) = anx
n(1− x) avec x ∈ [0, 1]

a) Montrer la convergence simple de la série de fonctions
∑
un.

b) Montrer que cette série converge normalement si, et seulement si, il y a
convergence de la série

∑
an/n.

c) Montrer que la série de fonctions
∑
un converge uniformément si, et seulement

si, an → 0.

Exercice 57 [ 02839 ] [correction]
On pose

u0(x) = 1 et un+1(x) =
∫ x

0
un(t− t2) dt

pour tout réel x ∈ [0, 1] et tout entier naturel n.
Montrer que la série de terme général un est normalement convergente.

Exercice 58 [ 03988 ] [correction]
Soit un : x ∈ R+ 7→ x

(1+n2x)2 avec n ∈ N.
Etudier la convergence simple et la convergence uniforme de

∑
un et

∑
u′n.

Fonctions zêta

Exercice 59 [ 00907 ] [correction]
On pose

ζ(x) =
+∞∑
n=1

1
nx

a) Montrer que la fonction ζ est définie et de classe C∞ sur ]1,+∞[.
b) Etudier monotonie et convexité de la fonction ζ.
c) Déterminer la limite de la fonction ζ en +∞.
d) Déterminer un équivalent de la fonction ζ en 1+.
e) En exploitant l’inégalité de Cauchy-Schwarz établir que x 7→ ln(ζ(x)) est
convexe.

Exercice 60 [ 02834 ] [correction]
Si x > 1, on pose

ζ(x) =
+∞∑
n=1

1
nx

a) Quelle est la limite de ζ(x) quand x→ +∞ ?
b) Pour quels réels x la série

∑ ζ(n)
n xn converge-t-elle ?

c) Si

F (x) =
+∞∑
n=2

ζ(n)
n

xn

montrer que F est continue sur [−1, 1[ et de classe C1 sur ]−1, 1[.
d) Donner une expression plus simple de F (x)
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Exercice 61 [ 00908 ] [correction]
On pose

ζ2(x) =
+∞∑
n=1

(−1)n

nx

Montrer que la fonction ζ2 est définie et de classe C1 sur ]0,+∞[.

Exercice 62 [ 00909 ] [correction]
On pose

ζ2(x) =
+∞∑
n=1

(−1)n

nx

Montrer que ζ2 est définie et de classe C∞ sur ]0,+∞[.

Exercice 63 [ 03853 ] [correction]
Déterminer la limite quand x→ 0+ de

ζ2(x) =
+∞∑
n=1

(−1)n+1

nx

Exercice 64 [ 00899 ] [correction]
Soient

ζ(x) =
+∞∑
n=1

1
nx

et ζ2(x) =
+∞∑
n=1

(−1)n−1

nx

a) Déterminer les domaines de définition des fonctions ζ et ζ2.
b) Justifier que les fonctions ζ et ζ2 sont continues.
c) Etablir la relation ζ2(x) = (1− 21−x)ζ(x) pour tout x > 1.

Intégration de la somme d’une série de fonctions

Exercice 65 [ 00900 ] [correction]
Soit

ψ(x) =
+∞∑
n=2

(
1

n− x
− 1
n+ x

)
Justifier et calculer ∫ 1

0
ψ(x) dx

Exercice 66 [ 00911 ] [correction]
On pose

un(x) = (−1)n+1x2n+2 ln x pour x ∈ ]0, 1] et un(0) = 0

a) Calculer
+∞∑
n=0

un(x)

b) Montrer que la série des un converge uniformément sur [0, 1].
c) En déduire l’égalité ∫ 1

0

ln x
1 + x2 dx =

∞∑
n=0

(−1)n+1

(2n+ 1)2

Exercice 67 [ 00920 ] [correction]
On donne

∀α ∈ [0, 1] ,
+∞∑
n=1

2α
α2 + n2 = π

chπα
shπα −

1
α

(prolongée par continuité en 0).
En intégrant sur [0, 1], en déduire la valeur de

+∞∏
n=1

(
1 + 1

n2

)

Limite et comportement asymptotique de la somme
de série de fonctions

Exercice 68 [ 02558 ] [correction]
Ensemble de définition et continuité de

f(x) =
+∞∑
n=0

e−x
√
n

En trouver la limite en +∞ et un équivalent en 0+ .
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Exercice 69 [ 00139 ] [correction]
Pour t > 0, on pose

S(t) =
+∞∑
n=0

(−1)n

nt+ 1

Déterminer la limite de S(t) quand t→ 0+.

Exercice 70 [ 00910 ] [correction]
Pour n > 1 et x ∈ R, on pose

un(x) = (−1)n ln
(

1 + x2

n(1 + x2)

)
a) Etudier la convergence uniforme de la série de fonctions

∑
un.

b) Déterminer la limite de sa somme en +∞. On pourra exploiter la formule de
Stirling

Exercice 71 [ 00917 ] [correction]
Déterminer la limite de

un =
n∑
k=0

(
k

n

)n

Exercice 72 [ 00918 ] [correction]
Montrer que pour tout α > 0,

n∑
k=0

(
1− k

n

)nα
−−−−−→
n→+∞

eα

eα − 1

On pourra exploiter le théorème d’ interversion limite/somme infinie.

Exercice 73 [ 00919 ] [correction]
Par une interversion série-limite, montrer que pour tout z ∈ C(

1 + z

p

)p
−−−−−→
p→+∞

exp(z)

Etude pratique de fonctions somme de série

Exercice 74 [ 00901 ] [correction]
Pour x > 0, on pose

S(x) =
+∞∑
n=1

1
n+ n2x

a) Montrer que S est bien définie sur R+?.
b) Montrer que S est continue.
c) Etudier la monotonie de S.
d) Déterminer la limite en +∞ de S puis un équivalent de S en +∞.
e) Déterminer un équivalent à S en 0.

Exercice 75 [ 00902 ] [correction]
Sur I = ]−1,+∞[, on pose

S(x) =
+∞∑
n=1

1
n
− 1
n+ x

a) Montrer que S est définie et continue sur I.
b) Etudier la monotonie de S.
c) Calculer

S(x+ 1)− S(x)
d) Déterminer un équivalent de S(x) en −1+.
e) Etablir

∀n ∈ N, S(n) =
n∑
k=1

1
k

f) En déduire un équivalent de S(x) en +∞.

Exercice 76 [ 00906 ] [correction]
Soit

f(x) =
+∞∑
n=1

e−x
√
n

a) Quel est le domaine de définition de f ?
Etudier la continuité de f sur celui-ci.
b) Montrer que f est strictement décroissante.
c) Etudier la limite de f en +∞.
d) Déterminer un équivalent simple de f(x) quand x→ 0+.
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Exercice 77 [ 00915 ] [correction]
Pour x > 0, on pose

S(x) =
+∞∑
n=1

xn

1 + x2n

a) Pour quelles valeurs de x dans R+, S(x) est définie ?
b) Former une relation entre S(x) et S(1/x) pour x 6= 0.
c) Etudier la continuité de S sur [0, 1[ puis sur ]1,+∞[.
d) Dresser le tableau de variation de S.

Exercice 78 [ 02837 ] [correction]
On pose

S(x) =
+∞∑
n=0

xn

1 + xn

Etudier le domaine de définition, la continuité, la dérivabilité de S. Donner un
équivalent de S en 0 et en 1−.

Exercice 79 [ 03203 ] [correction]
Définition, continuité et dérivabilité de

S : x 7→
+∞∑
n=1

x

n(1 + n2x2)

Exercice 80 [ 02529 ] [correction]
Montrer que

f(x) =
+∞∑
n=1

1
n2 arctan(nx)

est continue sur R et de classe C1 sur R?.

Exercice 81 [ 03427 ] [correction]
Pour n ∈ N et x ∈ R+, on pose

un(x) = arctan
√
n+ x− arctan

√
n

a) Etudier l’existence et la continuité de la fonction S définie sur R+ par la
relation

S(x) =
+∞∑
n=0

un(x)

b) Déterminer la limite de S en +∞.

Exercice 82 [ 03797 ] [correction]
On étudie

f(x) =
+∞∑
n=1

1
n2 + x2

a) Montrer que f est définie et de classe C1 sur R.
b) Donner, à l’aide d’une comparaison intégrale, un équivalent de f au voisinage
de +∞.
c) Donner un développement limité à l’ordre 2 de f en 0. On donne

+∞∑
n=1

1
n2 = π2

6 et
+∞∑
n=1

1
n4 = π4

90

Exercice 83 [ 03194 ] [correction]
Définition, continuité et classe C1 de

x 7→
∞∑
n=1

(−1)n

n
sin
(x
n

)

Exercice 84 [ 00904 ] [correction]
Pour t > 0, on pose

S(t) =
+∞∑
n=0

(−1)n

1 + nt

a) Justifier que S est définie et continue sur ]0,+∞[.
b) Etudier la limite de S en +∞.
c) Etablir que S est de classe C1 sur ]0,+∞[.

Exercice 85 [ 03644 ] [correction]
Pour x ∈ R, on pose

S(x) =
+∞∑
n=1

(−1)n−1 x

n+ x2

a) Montrer que la fonction S est bien définie et étudier sa parité.
b) Montrer que la fonction S est continue.
c) Déterminer la limite de S en +∞.
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Exercice 86 [ 00916 ] [correction]
Pour tout x ∈ R\ {−1} et n ∈ N? on pose

un(x) = (−1)n−1

n

xn

1 + xn

a) Justifier que la fonction f : x 7→
+∞∑
n=1

un(x) est définie sur R\ {−1}.

b) Etablir que pour tout x 6= 0,

f(x) + f(1/x) =
+∞∑
n=1

(−1)n−1

n

c) Etablir que f est continue sur ]−1, 1[ puis que f est continue sur ]−∞,−1[ et
]1,+∞[ .
d) Etablir la continuité de f en 1.

Exercice 87 [ 02835 ] [correction]
Si x > 0 et n ∈ N?, soit

fn(x) = nxn!
n∏
k=0

(x+ k)

a) Montrer l’existence de Γ(x) = lim
n→+∞

fn(x).
b) Montrer

ln Γ(x) = − ln x− γx+
+∞∑
n=1

(x
n
− ln

(
1 + x

n

))
c) Montrer que Γ est une fonction de classe C1.

Exercice 88 [ 00905 ] [correction]
On fixe α > 0 et on pose

fn(x) = e−n
αx et f(x) =

∞∑
n=0

fn(x)

a) Domaine de définition de f ?
b) Continuité de f ?
c) Etudier lim

x→+∞
f(x).

Exercice 89 [ 02836 ] [correction]
Soit α un réel. Pour tout entier n > 0 et tout réel x, on pose

un(x) = nαx e−nx

n2 + 1
On note I le domaine de définition de

S : x 7→
∞∑
n=0

un(x)

a) Déterminer I.
b) Montrer que S est continue sur R+?.
c) A-t-on convergence normale sur R+ ?
d) On suppose α > 2. Montrer que

∞∑
k=n+1

uk(1/n)

ne tend pas vers 0 quand n tend vers +∞.
La convergence de la série de fonctions

∑
un est-elle uniforme sur I ?

e) Etudier la continuité de S sur I.

Exercice 90 [ 02971 ] [correction]
Soit des suites réelles (an) et (xn) avec an > 0 pour tout n.
On suppose que la série de terme général an (1 + |xn|) converge.
On pose

f : R→ R, x 7→
∞∑
n=0

an |x− xn|

Etudier la continuité et la dérivabilité de f .

Exercice 91 [ 04070 ] [correction]
Pour n ∈ N et x ∈ R+, on pose

un(x) = arctan (n+ x)− arctan (n)

a) Etudier l’existence et la continuité de la fonction S définie sur R+ par la
relation

S(x) =
+∞∑
n=0

un(x)

b) Déterminer la limite de S en +∞.
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Corrections

Exercice 1 : [énoncé]
Supposons que la suite (fn) converge simplement vers f sur I avec chaque fn
convexe.
Pour tout a, b ∈ I e λ ∈ [0, 1] on a

∀n ∈ N, fn(λa+ (1− λ)b) 6 λfn(a) + (1− λ)fn(b)

A la limite quand n→ +∞, on obtient

f(λa+ (1− λ)b) 6 λf(a) + (1− λ)f(b)

ce qui fournit la convexité de f .

Exercice 2 : [énoncé]
Par uniforme continuité, on a

∀ε > 0,∃α > 0, |x− y| 6 α⇒ |g(x)− g(y)| 6 ε

Pour n assez grand, on a

∀x ∈ I, |fn(x)− f(x)| 6 α

et donc
∀x ∈ I, |g(fn(x))− g(f(x))| 6 ε

Ainsi, il y a convergence uniforme de (g ◦ fn) vers g ◦ f .

Exercice 3 : [énoncé]
On peut écrire

‖fngn − fg‖∞ 6 ‖fn‖∞ ‖gn − g‖∞ + ‖g‖∞ ‖fn − f‖∞

Or ‖fn‖∞ → ‖f‖∞ et donc la suite (‖fn‖∞) est bornée car convergente. Par
opération sur les limites, on obtient alors

‖fngn − fg‖∞ 6 ‖fn‖∞ ‖gn − g‖∞ + ‖g‖∞ ‖fn − f‖∞ → 0

car ‖fn − f‖∞ → 0 et ‖gn − g‖∞ → 0.

Exercice 4 : [énoncé]
Soit (fn) une suite de fonctions uniformément continue de I vers R convergeant
uniformément vers f : I → R.
Soit ε > 0. Il existe n ∈ N vérifiant ‖f − fn‖∞ 6 ε.
La fonction fn étant uniformément continue, il existe α > 0 vérifiant :

∀x, y ∈ I, |x− y| 6 α⇒ |fn(x)− fn(y)| 6 ε

Or
|f(x)− f(y)| 6 |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|

donc
∀x, y ∈ I, |x− y| 6 α⇒ |f(x)− f(y)| 6 3ε

Ainsi f est uniformément continue.

Exercice 5 : [énoncé]
Posons

mn = inf
t∈[a,b]

fn(t)

Puisque la fonction fn est continue sur le segment [a, b], cet infimum est une
valeur prise par fn et donc il existe tn ∈ [a, b] tel que

mn = fn(tn)

Montrons que mn → m avec
m = inf

t∈[a,b]
f

La fonction f est continue car limite uniforme d’une suite de fonctions continues
et donc il existe t∞ ∈ [a, b] pour lequel

m = f(t∞)

Pour tout ε > 0, on a pour n assez grand,

‖fn − f‖∞ 6 ε

et donc
mn = fn(tn) > f(tn)− ε > m− ε

et
m = f(t∞) > fn(t∞)− ε > mn − ε

Ainsi
|mn −m| 6 ε

On peut alors affirmer mn → m.
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Exercice 6 : [énoncé]
On a

|fn(xn)− f(x)| 6 |fn(xn)− f(xn)|+ |f(xn)− f(x)|
Soit ε > 0. Il existe n1 ∈ N tel que

∀n > n1, ‖fn − f‖∞,[a,b] 6 ε

et il existe n2 ∈ N tel que

∀n > n2, |f(xn)− f(x)| 6 ε

car f(xn)→ f(x) en vertu de la continuité de f .
Pour n0 = max(n1, n2), on a

∀n > n0, |fn(xn)− f(x)| 6 2ε

Exercice 7 : [énoncé]
a) Pour ε = 1/2, il existe N ∈ N tel que

∀n > N, ‖Pn − f‖∞ 6 1/2

et donc ‖Pn − PN‖∞ 6 1.
Seules les fonctions polynomiales constantes sont bornées sur R donc Pn − PN est
une fonction polynomiale constante. Posons λn la valeur de celle-ci.
b) On a

λn = Pn(0)− PN (0)→ f(0)− PN (0) = λ∞

et donc (Pn) = (PN + Pn − PN ) converge simplement vers PN + λ∞. Par unicité
de limite f = PN + λ∞ est une fonction polynomiale.

Exercice 8 : [énoncé]
Pour ε = 1, il existe un rang N ∈ N tel que

∀n > N,Pn − f est bornée et ‖Pn − f‖∞ 6 1

Pour tout n > N , on peut alors affirmer que le polynôme
Pn − PN = (Pn − f)− (PN − f) est borné et donc constant. Puisque la suite (Pn)
converge uniformément vers f , la suite (Pn − PN )n>N converge uniformément
vers f − PN . Or cette suite étant formée de fonctions constantes, sa convergence
équivaut à la convergence de la suite de ces constantes. En posant C la limite de
cette suite, on obtient

f = PN + C

et donc f est une fonction polynôme.

Exercice 9 : [énoncé]
Les fonctions un sont continues sur [0, 1] pour n > 1 et dérivables sur ]0, 1] avec

u′n(x) = xn−1(1 + n ln x)

Le tableau de variation de un donne

sup
[0,1]
|un| = −un(e−1/n) = 1

ne → 0

La suite de fonctions converge donc uniformément sur [0, 1] vers la fonction nulle.

Exercice 10 : [énoncé]
Pour x ∈ [0,+∞[, fn(x)→ 0 car |fn(x)| 6 x

n .
On a

f ′n(x) = n(1 + xn)− n2xn

n2(1 + xn)2 = 1 + (1− n)xn

n(1 + xn)2

Posons xn = n
√

1/(n− 1).

x 0 xn +∞
fn(x) 0 ↗ Mn ↘ 0

donc

‖fn‖∞ = Mn = fn(xn) =
n
√

1/(n− 1)
n(1 + 1

n−1 )
= e− 1

n ln(n−1)

n2

n−1
→ 0

Il y a donc convergence uniforme vers la fonction nulle.

Exercice 11 : [énoncé]
a) Soit x ∈ [0,+∞[.
Si x = 0 alors un(x) = 0→ 0.
Si x > 0 alors un(x)→ 0 car e−nx → 0.
La suite de fonctions (un) converge donc simplement vers la fonction nulle sur R+.
b) On a

sup
x∈[a,+∞[

|un(x)| 6 e−na → 0

donc il y a convergence uniforme sur [a,+∞[ avec a > 0.
c) Puisque

‖un‖∞ > un(π/2n) = e−π/2 6 →0

il n’y a pas convergence uniforme sur R+.
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Exercice 12 : [énoncé]
f ′n(x) = nx(2− nx)e−nx, le tableau de variation de fn donne

sup
R+
|fn| = fn(2/n) = 4

n
e−2 → 0

donc il y a convergence uniforme sur R et donc a fortiori sur [a,+∞[.

Exercice 13 : [énoncé]
fn(0)→ 1 et fn(x)→ 0 pour x 6= 0. La fonction limite n’étant pas continue, il n’y
a pas convergence uniforme sur R. En revanche si |x| > |a| alors

|fn(x)| 6 1
(1 + a2)n → 0

donc il y a convergence uniforme sur ]−∞,−a] ∪ [a,+∞[ avec a > 0.

Exercice 14 : [énoncé]
Pour tout x ∈ R, fn(x)→ 0 : il y a convergence simple vers la fonction nulle.
fn(n) = n2 sin(1/n2)→ 1, il n’y a donc pas convergence uniforme sur R.
Sur [−a, a],

|fn(x)| 6 x2

n |x|
= |x|

n
6
a

n
→ 0

via |sin t| 6 |t|. Par suite il y a convergence uniforme sur [−a, a].

Exercice 15 : [énoncé]
Pour x 6= π

2 [π] on a |sin x| < 1 et donc fn(x)→ 0.
Pour x = π

2 [π], cosx = 0 et donc fn(x) = 0→ 0.
Ainsi (fn) converge simplement vers la fonction nulle.
Par 2π périodicité et parité on ne poursuit l’étude qu’avec x ∈ [0, π]. La fonction
fn est dérivable avec

f ′n(x) = sinn−1(x)((n+ 1) cos2(x)− 1)

On peut dresser le tableau de variation de fn sur [0, π] et on obtient

sup
R
|fn| =

∣∣∣∣fn(arccos 1√
n+ 1

)∣∣∣∣ =
(

1− 1
(n+ 1)

)n/2 1√
n+ 1

→ 0

La suite de fonction (fn) converge donc uniformément vers la fonction nulle.

Les premières fonctions de la suite (fn)

Exercice 16 : [énoncé]
fn est définie sur R? et peut être prolongée par continuité en 0 en posant sur
fn(0) = n.
Pour x 6 0, fn(x)→ +∞.
Pour x > 0, fn(x)→ 0.
Ainsi (fn) converge simplement vers la fonction nulle sur R+?.
Il ne peut y avoir converge uniformément sur R+? car alors par le théorème de la
double limite :

lim
x→0+

lim
n→+∞

fn(x) = lim
n→+∞

lim
x→0+

fn(x)

donne 0 = +∞.
Pour a > 0, sur [a,+∞[,

|fn(x)| 6 nx2e−nx

1− e−a2

et par étude fonctionnelle nx2e−nx 6 4
ne2 (maximum en x = 2/n) donc

‖fn‖∞,[a,+∞[ 6
4e2

n(1− e−a2)
→ 0

qui donne la converge uniformément sur [a,+∞[.
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Exercice 17 : [énoncé]
Quand p→ +∞,

fp(x) = 1
(1 + x)1+1/p →

1
1 + x

= f(x)

On a
f(x)− fp(x) = (1 + x)1/p − 1

(1 + x)1+1/p

Or, pour α ∈ ]0, 1], la fonction x 7→ (1 + x)α est concave ce qui permet d’affirmer

0 6 (1 + x)α 6 1 + αx

pour tout x > 0 et donc

|f(x)− fp(x)| 6 1
p

x

(1 + x)1+1/p 6
1
p

x

1 + x
6

1
p

Puisque ‖f − fp‖∞,R+ 6 1
p , la convergence est uniforme sur R+.

Exercice 18 : [énoncé]
La suite (fn) converge simplement vers la fonction nulle et

sup
x∈R
|fn(x)| =

∣∣∣fn(±1/
√
n2n)

∣∣∣ =
√

2n
2
√
n
→ +∞

il n’y a donc pas convergence uniforme sur R.
Or ±1/

√
n2n → 0 et donc d’après le tableau de variation de fn, pour tout a > 0,

on a, pour n assez grand,

sup
x>a
|fn(x)| = fn(a)→ 0

Ainsi, il y a convergence uniforme sur [a,+∞[ et de même sur ]−∞, a].
En revanche, il n’y aura pas convergence uniforme sur les intervalles non singuliers
contenant 0.

Exercice 19 : [énoncé]
On a

sup
x∈[0,1]

|fn(x)| = fn

(
1/ 2n
√

2
)

= 4n−1 → +∞

il n’y a donc pas convergence uniforme sur [0, 1].

Or 1/ 2n
√

2→ 1 et donc d’après le tableau de variation de fn, pour tout a ∈ [0, 1[,
on a, pour n assez grand,

sup
x∈[0,a]

|fn(x)| = fn(a)→ 0

Ainsi il y a convergence uniforme sur [0, a]. En revanche il n’y aura pas
convergence uniforme sur les intervalles non singuliers contenant 1.

Exercice 20 : [énoncé]
a) Si x = 0 alors fn(x) = 0→ 0.
Si x ∈ ]0, 1] alors fn(x)→ 0 par comparaison des suites de référence.
b) f ′n(x) = nα(1− x)n − nα+1x(1− x)n−1 = nα(1− x)n−1(1− (n+ 1)x).
Après étude des variations

‖fn‖∞ = fn

(
1

n+ 1

)
= nα

1
n+ 1

(
1− 1

n+ 1

)n
Or 1

n+1 ∼
1
n et (

1− 1
n+ 1

)n
= en ln(1− 1

n+1 ) = e−1+o(1) → e−1

donc ‖fn‖∞ ∼
nα−1

e .
Il y a convergence uniforme si, et seulement si, α < 1.

Exercice 21 : [énoncé]
Soit x ∈ R+. Pour n assez grand

fn(x) = (1− x/n)n = exp (n ln(1− x/n)) −−−−−→
n→+∞

e−x

La suite (fn) converge simplement vers f : x 7→ e−x avec fn 6 f .
Etudions δn = f − fn > 0.
Pour x ∈ [n,+∞[, δn(x) = e−x 6 e−n.
Pour x ∈ [0, n[, δn(x) = e−x − (1− x/n)n et δ′n(x) = −e−x + (1− x/n)n−1.
Posons

ϕn(x) = (n− 1) ln (1− x/n) + x

On a
ϕ′n(x) = n− 1

n

1
x/n− 1 + 1 = x− 1

x− n

Diffusion autorisée à titre entièrement gratuit uniquement - dD



[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Corrections 16

est du signe de 1− x.
Par étude des variations de ϕn, on obtient l’existence de xn ∈ [0, n[ tel que
ϕn(x) > 0 pour x 6 xn et ϕn(x) 6 0 pour x > xn. On en déduit que pour x 6 xn,
δ′n(x) > 0 et pour x > xn, δ′n(x) 6 0. Ainsi

‖δn‖∞,[0,n[ = δn(xn) =
(

1− xn
n

)n−1
−
(

1− xn
n

)n
= xn

n
e−xn

Puisque la fonction x 7→ xe−x est bornée par un certain M sur R+, on obtient

‖δn‖∞,[0,n[ 6
M

n

Finalement
‖δn‖∞,[0,+∞[ 6 max

(
M

n
, e−n

)
→ 0

On peut donc affirmer que la suite (fn) converge uniformément sur R+ vers f .

Exercice 22 : [énoncé]
a) fn(x) = exp(−n ln(1 + x

n )) = exp(−x+ o(1))→ e−x = f(x).
On sait ln(1 + t) 6 t donc par opérations : fn(x) > e−x
b) On sait

t− t2

2 6 ln(1 + t) 6 t

donc
x

n
− x2

2n2 6 ln(1 + x

n
) 6 x

n

puis
e−x 6 fn(x) 6 e−x+ x2

2n = e−xe x
2

2n

Sur [0, a] on a e x
2

2n 6 e a
2

2n → 1.
Pour ε > 0, il existe N ∈ N tel que pour tout n > N ,

∣∣∣ea2/2n − 1
∣∣∣ 6 ε.

On a alors pour tout x ∈ [0, a],

|fn(x)− f(x)| 6 e−x
(
ex

2/2n − 1
)
6 ea

2/2n − 1 6 ε

Par suite fn
CU−−−→
[0,a]

f .

c) Les fonctions fn sont décroissantes donc

∀x > a, fn(x) 6 fn(a)

Soit ε > 0.
Puisque e−a −−−−−→

a→+∞
0, il existe a ∈ R+ tel que ∀x > a,

e−x 6 ε/3

Puisque fn(a)→ e−a, il existe N ∈ N tel que

∀n > N,
∣∣fn(a)− e−a

∣∣ 6 ε/3

Mais alors ∀x > a,∣∣fn(x)− e−x
∣∣ 6 fn(x) + e−x 6 fn(a) + e−x 6

(
fn(a)− e−a

)
+ e−a + e−x 6 ε

De plus, fn
CU−−−→
[0,a]

f donc il existe N ′ ∈ N tel que

∀n > N ′,∀x ∈ [0, a]
∣∣fn(x)− e−x

∣∣ 6 ε

Finalement
∀n > max(N,N ′),∀x ∈ R+,

∣∣fn(x)− e−x
∣∣ 6 ε

Ainsi fn
CU−−→
R+

f .

Exercice 23 : [énoncé]
a) Pour x = 0, fn(x) = 0 et pour x > 0, on a aussi fn(x) = 0 pour n assez grand.
Par suite (fn) converge simplement vers la fonction nulle.
b) On a ∫ 1

0
fn(t) dt =

∫ 1/n

0
n2t(1− nt) dt =

∫ 1

0
u(1− u) du = 1

6
Il n’y a pas convergence uniforme de la suite (fn) puisque∫ 1

0
fn(t) dt 6 →

∫ 1

0
0 dt

c) Pour n assez grand, sup
[a,1]
|fn(x)| = 0 donc (fn) converge uniformément vers 0 sur

[a, 1].

Exercice 24 : [énoncé]
a) Pour x = 0, fn(x) = 0→ 0. Pour x ∈ ]0, π/2], cosx ∈ [0, 1[ donc fn(x)→ 0.
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b) Directement

In =
[
− n

n+ 1 cosn+1 x

]π/2

0
= n

n+ 1

donc In → 1 6=
∫ π/2

0 0.dx et il n’y a pas convergence uniforme.
c) On a

x 0 xn π/2
fn 0 ↗ fn(xn) ↘ 0

avec xn = arccos
√

n
n+1 → 0 et

fn(xn) =
√
n

(1 + 1/n)(n+1)/2 ∼
√
n

e → +∞

Soit [a, b] ⊂ ]0, π/2]. On a a > 0 donc à partir d’un certain rang xn < a et alors
sup
[a,b]
|fn| = fn(a)→ 0 donc il y a convergence uniforme sur [a, b].

Exercice 25 : [énoncé]
II) a) En distinguant le cas x = 0 du cas général, on obtient que la suite de
fonction (fn) converge simplement vers la fonction f donnée par f(x) = x.
b) Par étude des variations de fn(x)− f(x), on obtient qu’il y a convergence
uniforme si, et seulement si, α < 1.
c) Par un argument de convergence uniforme, on peut échanger limite et intégrale

lim
n→+∞

∫ 1

0
x(1 +

√
ne−nx)dx =

∫ 1

0
xdx = 1

2

Exercice 26 : [énoncé]

Pour x > 0, la suite numérique (fn(x)) est une suite homographique.
L’équation r = x

2+r possède deux solutions r1 =
√

1 + x− 1 et r2 = −
√

1 + x− 1.
Posons

gn(x) = fn(x)− r1

fn(x)− r2

On a
gn+1(x) =

x
2+fn(x) −

x
2+r1

x
2+fn(x) −

x
2+r2

= fn(x)− r1

fn(x)− r2

2 + r2

2 + r1
= ρgn(x)

avec
ρ = 2 + r2

2 + r1
= r1

r2

Puisque |ρ| < 1, la suite géométrique (gn(x)) converge vers 0.
Or après résolution de l’équation

gn(x) = fn(x)− r1

fn(x)− r2

on obtient
fn(x) = r1 − gn(x)r2

1− gn(x)

et on en déduit que la suite numérique (fn(x)) converge vers r1 =
√

1 + x− 1.
Finalement, la suite de fonctions (fn) converge simplement vers la fonction
f∞ : x 7→

√
1 + x− 1.

Puisque les fonctions fn sont rationnelles de degrés alternativement 0 et 1, la
fonction |fn − f∞| ne peut-être bornée sur R+ car de limite +∞ en +∞ ; il n’y a
donc par convergence uniforme sur R+.
En revanche, on peut montrer que la suite de fonctions (fn) converge
uniformément vers f∞ sur [0, a] pour tout a > 0.
En effet

fn(x)− f∞(x) = gn(x)
1− gn(x)2

√
1 + x

D’une part, la fonction x 7→ 2
√

1 + x est bornée sur [0, a].
D’autre part,

gn(x) =
[√

1 + x− 1√
1 + x+ 1

]n
g0(x)

Sur [0, a], la fonction

x 7→
∣∣∣∣√1 + x− 1√

1 + x+ 1

∣∣∣∣
admet un maximum de valeur < 1 et puisque la fonction continue g0 est bornée
sur [0, a], on peut montrer que la suite de fonctions (gn) converge uniformément
vers la fonction nulle sur [0, a].
La relation

fn(x)− f∞(x) = gn(x)
1− gn(x)2

√
1 + x

permet alors d’établir que la suite de fonctions (fn) converge uniformément vers
f∞ sur [0, a].

Exercice 27 : [énoncé]
On remarque que la fonction f est bien définie et même qu’elle prend ses valeurs
dans [0, 1/2] plutôt que [0, 1].
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On remarque aussi que f(1− x) = f(x). Pour étudier le comportement de la suite
(fn(a)) = (fn(a)), on peut se limiter au cas où a ∈ [0, 1/2].
Etudier le comportement de la suite des itérés (fn(a)) équivaut à étudier la suite
récurrente définie par

u0 = a et un+1 = f(un)

On observe
un+1 − un = un(1− 2un) > 0

La suite (un) est donc croissante.
Si a = 0, cette suite est en fait constante.
Si a > 0 cette suite converge vers une limite ` vérifiant f(`) = `. Après résolution
de cette équation, on obtient que cette limite ne peut qu’être 1/2.
On peut alors affirmer qu’il y a convergence simple de la suite de fonctions (fn)
vers la fonction

f : x 7→
{

1/2 si x ∈ ]0, 1[
0 si x = 0 ou 1

Par non continuité, il y a non convergence uniforme sur [0, 1].
En revanche la croissance de f sur [0, 1/2] permet d’assurer que

∀a ∈ ]0, 1/2] , ∀x ∈ [a, 1/2] , fn(x) > fn(a)

ce qui permet de justifier la convergence uniforme de la suite de fonctions (fn) sur
[a, 1− a] pour tout a ∈ ]0, 1/2].

Exercice 28 : [énoncé]
a) On vérifie sans peine que la suite (fn) est bien définie.

f1(x) = x, f2(x) = 2
3x

3/2,. . .

Si f(x) = αxβ alors

Φ(f)(x) =
√
α

∫ x

0
tβ/2 dt = 2

√
α

β + 2x
β/2+1

Ainsi fn(x) = αnx
βn avec

αn+1 =
2√αn
βn + 2 et βn+1 = βn

2 + 1

On a
βn = 2n − 1

2n−1 → 2

et, pour n > 1,

αn+1 =
2√αn

4− 1
2n−1

On a
αn+2 − αn+1 =

2√αn+1

4− 1
2n
−

2√αn
4− 1

2n−1

Or 2n > 2n−1 donne
2

4− 1
2n

6
2

4− 1
2n−1

donc
αn+2 − αn+1 6

2
4− 1

2n−1

(√
αn+1 −

√
αn
)

Puisque α1 = α0, on obtient alors par récurrence que la suite (αn) est
décroissante.
Etant aussi minorée par 0, elle converge et en passant la relation de récurrence à
la limite, on obtient

αn → 1/4

On en déduit que la suite de fonctions (fn) converge simplement vers la fonction

f : x 7→
(x

2

)2

De plus

fn(x)− f(x) = αn
(
xβn − x2)+

(
αn −

1
4

)
x2

Puisque βn 6 2, on a pour tout x ∈ [0, 1] et en exploitant eu 6 1 + u

0 6 xβn − x2 = x2
(

e(βn−2) ln x − 1
)
6 (βn − 2)x2 ln x

Puisque la fonction x 7→ x ln x est minorée par −1/e sur [0, 1],

0 6 xβn − x2 = 2− βn
e x 6 2− βn

et ainsi
|fn(x)− f(x)| = αn(2− βn) +

(
αn −

1
4

)
et ce majorant uniforme tend vers 0.
Il y a donc convergence uniforme de la suite de fonctions (fn) vers f .
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b) La relation

fn+1(x) =
∫ x

0

√
fn(t) dt

donne à la limite
f(x) =

∫ x

0

√
f(t) dt

d’où l’on tire f dérivable et f ′(x) =
√
f(x).

Pour l’équation différentielle y′ = √y, il n’y a pas unicité de la solution nulle en 0,
car outre la fonction nulle, la fonction y : x 7→ (x/2)2 est justement solution.

Exercice 29 : [énoncé]
Pour tout x ∈ R, fn(x)→ x et

|fn(x)− x| = 1/n→ 0

La suite de fonctions (fn) converge uniformément vers la fonction identité.
Pour tout x ∈ R, fn(x)2 → x2 et

fn(n)2 − n2 = 2 + 1/n2 → 2

Il n’y a pas convergence uniforme de la suite (f2
n).

Exercice 30 : [énoncé]
Par opérations, les fonctions fn sont de classe C1 car √ . est de classe C1 sur R+?.
La suite (fn) converge simplement vers f avec f(x) = |x| qui n’est pas dérivable
en 0.
En multipliant par la quantité conjuguée :

fn(x)− f(x) = 1/n√
x2 + 1/n+

√
x2

Par suite |fn(x)− f(x)| 6 1/n√
1/n

= 1√
n
puis ‖fn − f‖∞ 6 1√

n
→ 0.

Ainsi la suite (fn) converge uniformément vers une fonction f qui n’est pas de
classe C1.

Exercice 31 : [énoncé]
Par la formule de Taylor Lagrange :∣∣∣∣f(x+ 1

n
)− f(x)− 1

n
f ′(x)

∣∣∣∣ 6 M

n2

avec M = sup |f ′′|.
Par suite

|gn(x)− f ′(x)| 6 M

n

et donc
‖gn(x)− f ′(x)‖∞,R → 0

Exercice 32 : [énoncé]
On a

∀x ∈ [0, 1] , fn(1) 6 fn(x) 6 fn(0)

donc

‖fn − 0‖∞ = max(fn(0),−fn(1)) 6 max(|fn(0)| , |fn(1)|) 6 |fn(0)|+ |fn(1)| → 0

Exercice 33 : [énoncé]
a) fn est positive car

fn(x) > lim
p→+∞

fp(x) = 0

Puisque 0 6 fn+1(x) 6 fn(x), en passant à la borne supérieure, on obtient
‖fn+1‖∞ 6 ‖fn‖∞.
La suite ‖fn‖∞ est décroissante et minorée donc convergente.
b) |fn| = fn étant continue sur un segment, elle y admet un maximum en un
certain xn.
c) La propriété fn(xn) 6 fp(xn) provient de la décroissance de la suite
(fp(xn))p∈N.
La suite (xn) étant bornée, on peut en extraire une sous-suite convergente (xϕ(n))
de limite x.
Comme

fϕ(n)(xϕ(n)) 6 fp(xϕ(n))

on a la limite quand n→ +∞

lim
n→+∞

‖fn‖∞ 6 fp(x)

En passant cette relation à la limite quand p→ +∞, on obtient

lim
n→+∞

‖fn‖∞ 6 0

d’où
lim

n→+∞
‖fn‖∞ = 0
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Exercice 34 : [énoncé]
Notons f la limite simple de la suite (fn). Cette fonction f est évidemment
convexe.
Par l’absurde, supposons la convergence non uniforme sur un segment [a, b] inclus
dans I.
Il existe alors ε > 0 et une suite (xn) d’éléments de [a, b] tels que
|fn(xn)− f(x)| > 2ε pour tout naturel n.
Par compacité, on peut extraire de (xn) une suite convergente et, quitte à
supprimer certaines des fonctions fn, on peut supposer que (xn) converge. Posons
x∞ sa limite.
Soit α > 0 tel que [a− α, b+ α] ⊂ I (ce qui est possible car l’intervalle I est
ouvert).
Pour tout fonction convexe ϕ, la croissance des pentes donne :

∀x 6= y ∈ [a, b] , ϕ(a)− ϕ(a− α)
α

6
ϕ(y)− ϕ(x)

y − x
6
ϕ(b+ α)− ϕ(b)

α
( ? )

Par convergence simple, fn(x∞)→ f(x∞).
Pour n assez grand, |fn(x∞)− f(x∞)| 6 ε donc

|fn(xn)− fn(x∞) + f(x∞)− f(xn)| > ε

puis ∣∣∣∣fn(xn)− fn(x∞)
xn − x∞

+ f(x∞)− f(xn)
x∞ − xn

∣∣∣∣ > ε

x∞ − xn
−−−−−→
n→+∞

+∞

Or la suite
(
f(x∞)−f(xn)

x∞−xn

)
est bornée en vertu de (?) et la suite

(
fn(xn)−fn(x∞)

xn−x∞

)
aussi puis

fn(a)− fn(a− α)
α

6
fn(xn)− fn(x∞)

xn − x∞
6
fn(b+ α)− fn(b)

α

et les termes encadrant convergent.
On obtient ainsi une absurdité.

Exercice 35 : [énoncé]
Si |ω| > 1 alors

1
z − ω

= − 1
ω

+∞∑
n=0

zn

ωn

et la convergence normale sur U de la série assure la convergence uniforme d’une
suite de polynômes vers

z 7→ 1
z − ω

Si |ω| < 1, on peut remarquer que pour k ∈ N,∫ 2π

0

e−ikθ

eiθ − ω dθ =
+∞∑
n=0

ωn
∫ 2π

0
e−i(n+(k+1))θ dθ = 0

Si z 7→ Pn(z) est une suite de fonctions polynomiales convergeant uniformément
sur U vers z 7→ 1

z−ω alors∫ 2π

0
Pn(eiθ) 1

eiθ − ω dθ −−−−−→
n→+∞

∫ 2π

0

dθ
|eiθ − ω|2

6= 0

Or par le calcul précédent, on peut affirmer∫ 2π

0
Pn(eiθ) 1

eiθ − ω dθ = 0

On conclut à une absurdité.
La condition cherchée est |ω| > 1.

Exercice 36 : [énoncé]
Pour t ∈ R, on a

un(t) = f (t+ 1/n)− f(t)
1/n −−−−−→

n→+∞
f ′(t)

La suite de fonctions (un)n>1 converge simplement vers f ′ sur R.
Soient [a, b] ⊂ R et ε > 0. La fonction f ′ est continue sur le compact [a, b+ 1]
dont uniformément continue. Il existe alors α > 0 vérifiant

∀(s, t) ∈ [a, b+ 1]2 , |s− t| 6 α⇒ |f ′(s)− f ′(t)| 6 ε

Pour n assez grand de sorte que 1/n 6 α et t ∈ [a, b]. On peut écrire

n (f(t+ 1/n)− f(t))− f ′(t) = n

∫ t+1/n

t

f ′(s)− f ′(t) ds

et donc

|un(t)− f ′(t)| 6 n

∫ t+1/n

t

|f ′(s)− f ′(t)| dt 6 ε

Ainsi, la convergence de (un)n>1 est uniforme sur tout segment de R.
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Exercice 37 : [énoncé]
a) Par récurrence sur n ∈ N.
Pour n = 0 : u0(x) = 1 et u1(x) = 1 +

∫ x
0 dt = 1 + x donc 0 6 u1(x)− u0(x) = x.

Supposons la propriété établie au rang n > 0.

un+2(x)− un+1(x) =
∫ x

0
un+1(t− t2)− un(t− t2) dt

or un+1(t− t2)− un(t− t2) > 0 donc un+2(x)− un+1(x) > 0 et

un+1(t− t2)− un(t− t2) 6 (t− t2)n+1

(n+ 1)! 6
tn+1

(n+ 1)!

puis

un+2(x)− un+1(x) 6 xn+2

(n+ 2)!
Récurrence établie.
b) Pour tout x ∈ R, on sait qu’il y a convergence de la série exponentielle∑ xn

n!
Par comparaison de série à termes positifs, il y a convergence de la série
télescopique ∑

un+1(x)− un(x)

et donc convergence de la suite (un(x)).
c) Pour tout x ∈ [0, 1],

|u(x)− un(x)| =

∣∣∣∣∣
+∞∑

k=n+1
(uk(x)− uk−1(x))

∣∣∣∣∣
donc

|u(x)− un(x)| 6
+∞∑

k=n+1

xk

k! 6
+∞∑

k=n+1

1
k! −−−−−→n→+∞

0

Ainsi (un) converge uniformément vers u. On en déduit que u est continue et,
toujours par convergence uniforme

∀x ∈ [0, 1] ,
∫ x

0
un(t− t2) dt −−−−−→

n→+∞

∫ x

0
u(t− t2) dt

Par conséquent
∀x ∈ [0, 1] , u(x) = 1 +

∫ x

0
u(t− t2) dt

La fonction est donc une fonction non nulle (car u(0) = 1) et dérivable avec

u′(x) = u(x− x2)

Exercice 38 : [énoncé]
a) Par récurrence sur n ∈ N.
Pour n = 0 : u0(x) = 1 et u1(x) = 1 +

∫ x
0 dt = 1 + x donc

0 6 u1(x)− u0(x) = x

Supposons la propriété établie au rang n > 0. Soit x ∈ R+.

un+2(x)− un+1(x) =
∫ x

0
un+1(γt)− un(γt) dt

Par hypothèse de récurrence, on a pour tout t ∈ [0, x]

0 6 un+1(γt)− un(γt) 6 (γt)n+1

(n+ 1)! 6
tn+1

(n+ 1)!

puis en intégrant

un+2(x)− un+1(x) 6 xn+2

(n+ 2)!
Récurrence établie.
b) Pour tout x ∈ R, on sait qu’il y a convergence de la série exponentielle∑ xn

n!

Par comparaison de série à termes positifs, il y a convergence de la série
télescopique ∑

un+1(x)− un(x)

et donc convergence de la suite (un(x)).
c) Soit a ∈ R+. Pour tout x ∈ [0, a],

|u(x)− un(x)| =

∣∣∣∣∣
+∞∑

k=n+1
(uk(x)− uk−1(x))

∣∣∣∣∣
donc

|u(x)− un(x)| 6
+∞∑

k=n+1

xk

k! 6
+∞∑

k=n+1

ak

k! −−−−−→n→+∞
0
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Ainsi (un) converge uniformément vers u sur [0, a]. On en déduit que u est
continue et, toujours par convergence uniforme

∀x ∈ R+,
∫ x

0
un(γt) dt −−−−−→

n→+∞

∫ x

0
u(γt) dt

Par conséquent

∀x ∈ [0, 1] , u(x) = 1 +
∫ x

0
u(γt) dt

La fonction est donc une fonction non nulle (car u(0) = 1) et dérivable avec

u′(x) = u(γx)

Les premiers éléments de la suite quand γ = 2/3

Exercice 39 : [énoncé]
a) Les fonctions fn : x 7→ (−1)n

n+x sont de classe C1 et

f ′n(x) = (−1)n+1

(n+ x)2

Par le critère spécial des séries alternées,
∑
n>0

fn(x) converge simplement sur

]0,+∞[ vers S.
Soi a > 0. Sur [a,+∞[,

‖f ′n‖∞,[a,+∞[ 6
1

(n+ a)2 et
+∞∑
n=0

1
(n+ a)2 < +∞

donc
∑
f ′n converge normalement sur [a,+∞[ puis converge uniformément sur

tout segment de [a,+∞[.
Par théorème, S est définie et de classe C1 sur ]0,+∞[ et

S′(x) =
+∞∑
n=0

(−1)n+1

(n+ x)2

b) On peut appliquer le critère spécial des séries alternées à la série de somme
+∞∑
n=0

(−1)n+1

(n+x)2 . Celle-ci est donc du signe de son premier terme −1
x2 . Ainsi S′(x) 6 0

et la fonction S est décroissante.
c)

S(x+ 1) + S(x) =
+∞∑
n=0

(−1)n

n+ x+ 1 +
+∞∑
n=0

(−1)n

n+ x
= −

+∞∑
n=1

(−1)n

n+ x
+

+∞∑
n=0

(−1)n

n+ x
= 1
x

d) Quand x→ 0, S(x) = 1
x − S(x+ 1) et S(x+ 1)→ S(1) donc

S(x) ∼ 1
x

e) Quand x→ +∞,

1
2(S(x) + S(x+ 1)) 6 S(x) 6 1

2(S(x) + S(x− 1))

avec 1
x ∼

1
x−1 donne

S(x) ∼ 1
2x

Exercice 40 : [énoncé]
Posons un : ]0,+∞[→ R donnée par

un(x) = (−1)n

n+ x
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a) Par le critère spécial,
∑
un(x) converge pour chaque x > 0.

Il y a convergence simple de la série de fonctions définissant F .
b) Les fonctions un sont de classe C1 et pour n > 1

u′n(x) = (−1)n+1

(n+ x)2

On a
‖u′n‖∞ = 1

n2

Il y a convergence normale
∑
u′n pour n > 1.

Il y a donc convergence uniforme de
∑
u′n (pour n > 0) et l’on peut donc conclure

que F est de classe C1.
De la même manière, on obtient F de classe C∞.
c) Par décalage d’indice

F (x+ 1) =
+∞∑
n=1

(−1)n

n+ 1 + x
= −

+∞∑
n=2

(−1)n

n+ x

et donc
F (x) + F (x+ 1) = 1

x

d) Posons

G(x) =
∫ 1

0

tx−1

1 + t
dt

L’intégrale est bien définie pour x > 0 et l’on remarque

G(x) +G(x+ 1) = 1
x

Posons H = F −G. La fonction H est 2-périodique, montrons qu’elle tend vers 0
en +∞.
Par application du critère spécial, on a

∀x > 0, F (x) > 0

donc
0 6 F (x) 6 F (x) + F (x+ 1) = 1

x
−−−−−→
x→+∞

0

et par encadrement F tend vers 0 en +∞.
Le même raisonnement se transpose à G.
On peut conclure que H tend vers 0 en +∞ puis finalement H est nulle.

e) Quand x→ 0, F (x+ 1)→ F (1) par continuité et donc

F (x) = 1
x
− F (x+ 1) ∼

x→0

1
x

On vérifie aisément que F est décroissante et puisque

1
x

= F (x) + F (x+ 1) 6 2F (x) 6 F (x) + F (x− 1) = 1
x− 1

on obtient
F (x) ∼

x→+∞

1
2x

Exercice 41 : [énoncé]
a) fn : x 7→

n∏
k=0

1
(x+k) , fn est continue sur ]0,+∞[.

Soit a > 0. Sur [a,+∞[,
‖fn‖∞ 6

1
a

1
n!

La série de fonctions
∑
fn converge normalement sur [a,+∞[ donc converge

uniformément sur tout segment de ]0,+∞[. Par théorème, la somme S de la série∑
fn est continue sur ]0,+∞[.

b)

S(x) = 1
x

+ 1
x

+∞∑
n=1

n∏
k=1

1
(x+ k) = 1

x
+ 1
x

+∞∑
n=0

n∏
k=0

1
(x+ 1 + k) = 1

x
+ 1
x
S(x+ 1)

c) Par converge uniformément sur [a,+∞[

lim
x→+∞

S(x) =
+∞∑
n=0

lim
x→+∞

fn(x) = 0

Quand x→ +∞,

S(x) = 1
x

+ 1
x
S(x+ 1) = 1

x
+ o

(
1
x

)
∼ 1
x

Quand x→ 0,
S(x+ 1)→ S(1)

par continuité et

S(1) =
+∞∑
n=0

n∏
k=0

1
k + 1 =

+∞∑
n=0

1
(n+ 1)! = e− 1
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donc
S(x) = 1 + S(x+ 1)

x
∼ e
x

Exercice 42 : [énoncé]
a) Par le théorème des accroissements finis, on peut écrire fn(x) = x(th)′(c) avec
c ∈ ]n, x+ n[.Puisque (th)′(c) = 1

ch2(c) , on a

|fn(x)| 6 x

ch2(n)
∼ 4x

e2n

Par suite n2fn(x) −−−−−→
n→+∞

0 donc
∑
fn(x) est absolument convergente donc

convergente. Ainsi
∑
fn converge simplement.

b) Pour a ∈ R+, l’étude qui précède donne

‖fn‖∞,[0,a] 6
a

ch2(n)

donc
∑
fn converge normalement sur [0, a]. Par convergence uniforme sur tout

segment d’une série de fonction continue, on peut affirmer que S est continue. De
plus, les fonctions sommées étant toutes strictement croissantes, la somme S l’est
aussi.
En effet, pour x < y,

n∑
k=1

fk(x) <
n∑
k=1

fk(y)

donne à la limite
+∞∑
k=1

fk(x) 6
+∞∑
k=1

fk(y)

et puisque f0(x) < f0(y), on parvient à

S(x) < S(y)

c)

S(x+1) =
+∞∑
n=0

(th(x+ 1 + n)− th(n)) =
+∞∑
n=0

(th(x+ 1 + n)− th(n+ 1))+
+∞∑
n=0

(th(n+ 1)− thn)

avec convergence des deux séries introduites.
Par décalage d’indice

+∞∑
n=0

(th(x+ 1 + n)− th(n+ 1)) = S(x)− thx

et par étude la limite des sommes partielles

+∞∑
n=0

(th(n+ 1)− thn) = 1

On conclut à la relation proposée.
d) S admet une limite en +∞ car c’est une fonction monotone. Pour déterminer
celle-ci, étudions la limite de la suite (S(n)). La nature de la suite S(n) est celle
de la série de terme général

S(n+ 1)− S(n) = 1− thn

Or
1− thn = chn− shn

chn = e−n

chn ∼
1

2e−2n

est terme général d’une série absolument convergente.
On en déduit que la suite (S(n)) converge et donc que la fonction S converge.

Exercice 43 : [énoncé]
Puisque la fonction f est décroissante, elle admet une limite en +∞. Puisque la
fonction f est aussi intégrable cette limite est nécessairement nulle. En particulier,
la fonction f est positive.
Par télescopage, on observe

g(x+N)− g(x) =
N−1∑
k=0

f(x+ k)

et s’il l’on s’adjoint la contrainte d’une limite nulle à g en +∞, on est tenté de
poser

g(x) = −
+∞∑
k=0

f(x+ k)

Il reste à montrer que cette fonction est bien définie et continue ce qui sera obtenu
par un argument de convergence normale. Soit x ∈ R+. On a pour k > 1

0 6 f(x+ k) 6 f(k) 6
∫ k

k−1
f(t) dt

donc
sup
x∈R+

|f(x+ k)| 6
∫ k

k−1
f(t) dt
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Par intégrabilité de f , il y a convergence de la série∑∫ k

k−1
f(t) dt

et donc convergence normale de la série de fonctions∑
k>1

f(x+ k)

L’adjonction du terme d’indice k = 0 ne change rien et l’on peut conclure.
On vient ainsi de trouver une solution au problème posé, d’autres solutions s’en
déduisent par ajout d’une constante.

Exercice 44 : [énoncé]
a) fn : x 7→ (−1)n

n!(x+n) est définie et de classe C1 sur R+? et

f ′n(x) = (−1)n+1

n!(x+ n)2∑
n>0

fn(x) converge simplement sur ]0,+∞[ vers S.

∀a > 0, ‖f ′n‖∞,[a,+∞[ = 1
n!(n+ a)2 et

∑ 1
n!(n+ a)2 converge

donc
∑
f ′n converge normalement sur [a,+∞[ puis converge uniformément sur

tout segment de ]0,+∞[. Par théorème S est de classe C1 sur ]0,+∞[.
b) On peut appliquer le critère spécial des séries alternées à la série de somme

+∞∑
n=0

(−1)n+1

n!(n+ x)2

Celle-ci est donc du signe de son premier terme −1
x2 . Ainsi S′(x) 6 0 et S est

décroissante.
c)

xS(x)− S(x+ 1) =
+∞∑
n=0

(−1)nx
n!(x+ n) +

+∞∑
n=1

(−1)n

(n− 1)!(x+ n) = 1 +
+∞∑
n=1

(−1)n

n! = 1
e

d)

xS(x) = 1
e + S(x+ 1) et S(1) =

+∞∑
n=0

(−1)n

(n+ 1)! = 1− 1
e

Quand x→ 0+, xS(x)→ 1 d’où

S(x) ∼ 1
x

e) Par le critère spécial des séries alternées,

|Rn(x)| =

∣∣∣∣∣
+∞∑

k=n+1

(−1)k

k!(x+ k)

∣∣∣∣∣ 6 1
(n+ 1)!(x+ 1 + n) 6

1
(n+ 1)!

donc
‖Rn‖∞ 6

1
(n+ 1)! → 0

Par converge uniformément sur ]0,+∞[,

lim
x→+∞

S(x) =
+∞∑
n=0

lim
n→+∞

fn(x) = 0

Quand x→ +∞,
xS(x) = 1

e + S(x+ 1)→ 1
e

d’où
S(x) ∼ 1

ex

Exercice 45 : [énoncé]
On a

1
x+ n

+ 1
x− n

= O

(
1
n2

)
d’où l’existence de la somme.

f(x) = lim
N→+∞

N∑
k=−N

1
x+ k

Or
N∑

k=−N

1
x+ 1 + k

=
N+1∑

k=−N+1

1
x+ k

donc à la limite quand N → +∞, on obtient f(x+ 1) = f(x).

N∑
k=−N

1
x
2 + k

+
N∑

k=−N

1
x+1

2 + k
= 2

2N+1∑
k=−2N+1

1
x+ k
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donne à la limite
f
(x

2

)
+ f

(
x+ 1

2

)
= 2f(x)

Exercice 46 : [énoncé]
a) La série de fonctions considérée converge uniformément sur tout segment inclus
dans R\Z. Sa somme est donc continue et de plus 1-périodique.
b) Soit α > 1. Pour tout x ∈ [−α, α], x/2 et (x+ 1)/2 appartiennent à [−α, α].
Posons Mα = ‖f‖∞,[−α,α]. La relation

f(x) = 1
c

[
f
(x

2

)
+ f

(
x+ 1

2

)]
donne |f(x)| 6 2

cMα pour tout x ∈ [−α, α]. On en déduit Mα 6 2
cMα puis

Mα = 0 puisque c > 2.
Ainsi f est nulle sur [−α, α] et puisque ceci vaut pour tout α > 1, f est la
fonction nulle.
c) Posons h : x 7→ π2

sin2(πx) définie sur R\Z.
La fonction g = f − h est définie sur R\Z, 1-périodique et continue.
On peut écrire f(x) = 1

x2 + f̃(x) avec

f̃(x) =
+∞∑
n=1

(
1

(x− n)2 + 1
(x+ n)2

)
Par convergence uniforme sur [−1/2, 1/2], la fonction f̃ est continue en 0.
On peut aussi écrire h(x) = 1

x2 + h̃(x) avec h̃ continue en 0.
La fonction g = f − h se prolonge donc par continuité en 0.
Par périodicité, g se prolonge en une fonction continue sur R.
Pour x ∈ R\Z, on remarque que

f
(x

2

)
+ f

(
x+ 1

2

)
= 4f(x)

et
h
(x

2

)
+ h

(
x+ 1

2

)
= 4h(x)

On en déduit
g
(x

2

)
+ g

(
x+ 1

2

)
= 4g(x)

pour x ∈ R\Z mais aussi pour x ∈ Z par continuité.
En vertu de b), on peut affirmer g = 0 et donc f = h.

Exercice 47 : [énoncé]
Les fonctions constantes sont solutions et les solutions forment un sous-espace
vectoriel.
Soit f une solution. Quitte à ajouter une fonction constante, on peut supposer
f(0) = 0.
On a

f(x) = f(x)
2 +

+∞∑
n=2

f(xn)
2n

donc

f(x) =
+∞∑
n=2

f(xn)
2n−1 =

+∞∑
n=1

f(xn+1)
2n

Posons h(x) = sup
[0,x]
|f |.

Pour x > 0, on a xn+1 ∈
[
0, x2] pour tout n > 1. On en déduit

|f(x)| 6
+∞∑
n=1

1
2nh(x2) = h(x2)

Ainsi h(x) 6 h(x2) puis en itérant 0 6 h(x) 6 h(x2n) pour tout n ∈ N.
Or pour x ∈ [0, 1[, x2n → 0 et lim

0+
h = 0 (car f(0) = 0) donc h(x) = 0 sur [0, 1[.

Finalement f est nulle sur [0, 1[ puis en 1 par continuité.

Exercice 48 : [énoncé]
a) Analyse : supposons f solution.
Pour x > 0, on a

f(x) = 1
x2 − f(x+ 1) = 1

x2 −
1

(x+ 1)2 + f(x+ 2)

puis par récurrence

f(x) =
n∑
k=0

(−1)k

(x+ k)2 + (−1)n+1f(x+ n+ 1)

Sachant que f est de limite nulle en +∞, on obtient

f(x) =
+∞∑
n=0

(−1)n

(x+ n)2
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Synthèse : on vérifie aisément la convergence de la série de fonctions définissant f
par application du critère spécial.
De plus

1
x2 −

1
(x+ 1)2 6 f(x) 6 1

x2

assure que f est de limite nulle à l’infini.
Enfin

f(x) + f(x+ 1) = 1
x2 +

+∞∑
n=1

(−1)n

(x+ n)2 +
+∞∑
n=0

(−1)n

(x+ n+ 1)2 = 1
x2

b) On vérifie la convergence normale de la série de fonctions définie f sur [a,+∞[
par ∣∣∣∣ (−1)n

(x+ n)2

∣∣∣∣ 6 1
(a+ n)2

Les fonctions sommées étant continues, la fonction f est continue sur ]0,+∞[.
Elle est aussi intégrable en vertu de l’encadrement

1
x2 −

1
(x+ 1)2 6 f(x) 6 1

x2

c) On ne peut directement appliquer de théorèmes d’intégration terme à terme, on
raisonne alors par les sommes partielles∫ +∞

1

N∑
n=0

(−1)n

(t+ n)2 dt =
N∑
n=0

(−1)n
∫ +∞

1

dt
(t+ n)2 =

N+1∑
n=1

(−1)n−1

n

Or ∣∣∣∣∣
∫ +∞

1
f(t) dt−

∫ +∞

1

N∑
n=0

(−1)n

(t+ n)2 dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ +∞

1

+∞∑
n=N+1

(−1)n

(t+ n)2 dt

∣∣∣∣∣
et par application du critère spécial∣∣∣∣∣

∫ +∞

1
f(t) dt−

∫ +∞

1

N∑
n=0

(−1)n

(t+ n)2 dt

∣∣∣∣∣ 6
∫ +∞

1

dt
(t+N + 1)2 = 1

(N + 2)

En passant à la limite quand N → +∞, on obtient∫ +∞

1
f(t) dt =

+∞∑
n=1

(−1)n−1

n
= ln 2

Exercice 49 : [énoncé]
On a

∀x ∈ R, |fn(x)| 6 1/n2

Puisque
∑

1/n2 converge, il y a convergence normale, donc uniforme, donc simple
sur R.

Exercice 50 : [énoncé]
On a ‖fn‖∞ = 1/n or

∑
1/n diverge donc il n’y a pas convergence normale sur R.

Pour x ∈ R, la série numérique
∑
fn(x) satisfait le critère de Leibniz, il y a donc

convergence simple sur R et∣∣∣∣∣
+∞∑

n=N+1
fn(x)

∣∣∣∣∣ 6 1
N + 1 + x2 6

1
N + 1

donc ‖RN‖∞ 6 1
N+1 → 0. Il y a donc convergence uniforme sur R.

Exercice 51 : [énoncé]
Pour tout x ∈ [0,+∞[, introduisonsk = bxc. Pour N > k + 1, on a

N∑
n=0

un(x) = 1
k + 1

et donc la série de fonctions converge simplement sur [0,+∞[ vers S avec

S(x) = 1
k + 1 pour x ∈ [k, k + 1[

Pour tout x ∈ [0,+∞[, on a

S(x)−
N∑
n=0

un(x) =
{

0 si x < n+ 1
S(x) si x > n+ 1

et donc ∣∣∣∣∣S(x)−
N∑
n=0

un(x)

∣∣∣∣∣ 6 1
N + 2 −−−−−→N→+∞

0

Il y a donc convergence uniforme sur [0,+∞[.
Enfin ‖un‖∞ = 1/(n+ 1) n’est pas sommable, il n’y a pas convergence normale.
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Exercice 52 : [énoncé]
Pour x = 0, fn(x) = 0 est sommable.
Pour x 6= 0, n2fn(x) −−−−−→

n→+∞
0 par croissance comparée et donc la série numérique∑

fn(x) converge.
On peut donc affirmer que la série de fonctions

∑
fn converge simplement sur R+.

L’étude des variations des fonctions fn donne

‖fn‖∞ = fn
(
2/
√
n
)

= 4
e2

Il n’y a donc par convergence normale de la série de fonctions
∑
fn sur R+.

En revanche, pour a > 0 et n assez grand de sorte que 2/
√
n 6 a, on a

‖fn‖∞,[a,+∞[ = fn(a)

et donc
∑
fn converge normalement sur [a,+∞[ car la série numérique

∑
fn(a)

converge.
A fortiori, il y a aussi convergence uniforme de

∑
fn sur chaque [a,+∞[ avec

a > 0.
Montrons qu’il n’y a cependant pas convergence uniforme sur [0,+∞[.
Par l’absurde, s’il y avait convergence uniforme sur [0,+∞[, la fonction somme de
la série

∑
fn serait continue car chaque fn est continue. Soit N ∈ N?. Par

positivité des fonctions sommées

+∞∑
n=0

fn

(
2√
N

)
> fN

(
2√
N

)
= 4

e2

et donc la fonction somme ne tend par vers 0 en 0.
Ceci contredit sa continuité.

Exercice 53 : [énoncé]
a) Par croissance comparée, la suite de fonctions (fn) converge simplement vers la
fonction nulle.
La fonction fn est de classe C1 et

f ′n(x) = 1
n!x

n−1 (n− x) e−x

On peut alors dresser le tableau de variations de fn et affirmer

sup
x∈[a,+∞[

|fn(x)| = fn(n) = nn

n! e−n

Par la formule de Stirling
n! ∼

√
2πn

(n
e

)n
donc

fn(n) ∼ 1√
2πn

On en déduit que la suite de fonctions (fn) converge uniformément sur [0,+∞[.
b) Par référence à la série exponentielle, la série de fonctions

∑
fn converge

simplement sur R et sa somme est égale à 1.
Il ne peut y avoir convergence normale sur [a,+∞[ car fn(n) n’est pas sommable.
En revanche sur [0, a], il y a convergence normale car pour n assez grand de sorte
que n > a, on a

sup
x∈[0,a]

|fn(x)| = fn(a)

Il y a aussi a fortiori convergence uniforme sur [0, a].
Par l’absurde, s’il y a convergence uniforme sur une voisinage de +∞, on obtient
par le théorème de la double limite

lim
x→+∞

+∞∑
n=0

fn(x) =
+∞∑
n=0

lim
x→+∞

fn(x)

ce qui donne l’absurdité 1 = 0.
Il n’y a donc pas convergence uniforme sur [0,+∞[.

Exercice 54 : [énoncé]
Si x = 1 alors un(x) = 0→ 0. Si x ∈ ]0, 1] alors un(x)→ 0. La suite (un) converge
simplement vers la fonction nulle.
u′n(x) = nαxn − nα+1xn−1(1− x) = nαxn−1(n− (n+ 1)x).

‖un‖∞ = un

(
n

n+ 1

)
= nα

1
n+ 1

(
1− 1

n+ 1

)n
Or 1

n+1 ∼
1
n et

(
1− 1

n+1

)n
= en ln(1− 1

n+1 ) = e−1+o(1) → 1/e donc

‖un‖∞ ∼ nα−1/e

Il y a convergence uniforme sur [0, 1] si, et seulement si, α < 1.
Pour tout x ∈ [0, 1],

∑
un(x) converge, ‖un‖∞ ∼ enα−1, il y a donc convergence

normale sur [0, 1] si, et seulement si, α < 0.
Pour α > 0, un(x) > xn(1− x) = vn(x).
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Or
+∞∑
k=0

vk

(
n

n+ 1

)
>

+∞∑
k=n+1

vk

(
n

n+ 1

)
= 1
n+ 1

+∞∑
k=n+1

(
n

n+ 1

)k
→ 1

e

donc
+∞∑
k=0

vk

(
n

n+ 1

)
6 −−−−−→
n→+∞

+∞∑
k=0

vk(1)

La série
∑
vn ne converge donc pas uniformément vers [0, 1] et par suite

∑
un

non plus.
Enfin pour a < 1, on a ‖un‖∞,[0,a] = un(a) et donc (un) converge uniformément
sur [0, a] et

∑
un converge normalement sur [0, a] pour tout α ∈ R.

Exercice 55 : [énoncé]
a) La suite de fonctions (fn) converge simplement vers la fonction

x 7→
{

0 si x ∈ [0, 1[
f(1) si x = 1

Puisque les fonctions fn sont continues, pour qu’il y ait convergence uniforme, il
est nécessaire que la fonction limite soit continue et donc que f(1) = 0.
Inversement, supposons f(1) = 0.
Pour tout ε > 0, il existe α > 0 tel que

∀x ∈ [0, 1] , |x− 1| 6 α⇒ |f(x)| 6 ε

Sur [0, 1− α], |fn(x)| 6 (1− α)n ‖f‖∞ et sur [1− α, 1], |fn(x)| 6 |f(x)| 6 ε
Puisque (1− α)n → 0, il existe N ∈ N tel que

∀n > N, (1− α)n ‖f‖∞ 6 ε

On a alors pour tout n > N et tout x ∈ [0, 1], |fn(x)| 6 ε donc ‖fn‖∞ 6 ε.
Ainsi fn

CU−−→ 0̃.
b) Supposons que

∑
fn converge uniformément sur [0, 1].

Puisqu’il n’y a pas divergence grossière, on a fn(1)→ 0 et donc f(1) = 0.
Notons S la somme sur [0, 1] de la série de fonctions

∑
fn.

Pour x ∈ [0, 1[,

S(x) =
+∞∑
n=0

xnf(x) = f(x)
1− x

et

S(1) =
+∞∑
n=0

f(1) = 0

Or la fonction S est continue comme somme uniformément convergente d’une
série de fonctions continues.
Par suite lim

x→1−
S(x) = 0 ce qui donne

lim
x→1

f(x)− f(1)
x− 1 = 0

Ainsi f est dérivable en 1 et f ′(1) = 0.
Inversement, supposons f(1) = 0, f dérivable en 1 et f ′(1) = 0.
Posons (Sn) la suite des sommes partielles de la série

∑
fn.

Pour x 6= 1,

Sn(x) = 1− xn+1

1− x f(x)

Posons g : x ∈ [0, 1[ 7→ f(x)
1−x prolongée par continuité en 1 par la valeur g(1) = 0.

La fonction g est continue sur [0, 1] et g(1) = 0 donc la suite (gn) définie par
gn : x 7→ xng(x) converge uniformément vers 0̃ sur [0, 1]. Or
Sn(x) = g(x)− gn+1(x) donc Sn

CU−−−→
[0,1]

g et la série
∑
fn converge uniformément.

Exercice 56 : [énoncé]
a) Pour x = 1, un(x) = 0 et la série numérique

∑
un(x) est convergente.

Pour x ∈ [0, 1[, on peut écrire 0 6 un(x) 6 a0x
n(1− x) = λxn. Or il y a

convergence de la série numérique
∑
xn et donc, par comparaison de séries à

termes positifs, la série
∑
un(x) converge.

b) Après étude de fonction, on obtient

‖un‖∞ = sup
x∈[0,1]

|un(x)| = an
n+ 1

(
1− 1

n+ 1

)n
∼ an

en

Par équivalence de séries à termes positifs, la convergence normale de
∑
un

équivaut à la convergence de
∑
an/n.

c) Considérons le reste

Rn(x) =
+∞∑

k=n+1
akx

k(1− x)

Par la décroissance de la suite (an)

0 6 Rn(x) 6 an+1

+∞∑
k=n+1

xk(1− x)
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Ainsi, pour x ∈ [0, 1[ ou x = 1, on obtient

0 6 Rn(x) 6 an+1

Par cette majoration uniforme, on peut affirmer que, si (an) tend vers 0, alors la
série de fonctions

∑
un converge uniformément.

Inversement, supposons la série
∑
un uniformément convergente.

La suite (an) étant décroissante et positive, elle admet nécessairement une limite
` > 0. On a alors

∀x ∈ [0, 1[ , Rn(x) >
+∞∑

k=n+1
`xk(1− x) = `xn+1 > 0

On obtient donc
∀x ∈ [0, 1[ , `xn+1 6 ‖Rn‖∞

En faisant x→ 1−,
` 6 ‖Rn‖∞

et ceci valant pour tout n ∈ N, on conclut ` = 0

Exercice 57 : [énoncé]
Remarquons que pour tout t ∈ [0, 1],

t− t2 ∈ [0, 1/4]

Pour x ∈ [0, 1/4],

|un+1(x)| 6 x ‖un‖∞,[0,1/4] 6
1
4 ‖un‖∞,[0,1/4]

Par une récurrence facile
donc aisément

‖un‖∞,[0,1/4] 6
1
4n

Par la remarque initiale, pour tout x ∈ [0, 1],

|un+1(x)| 6 ‖un‖∞,[0,1/4] 6
1
4n

donc
‖un+1‖∞,[0,1] 6

1
4n

On peut conclure que la série
∑
un est normalement convergente.

Exercice 58 : [énoncé]
La fonction un est dérivable avec

u′n(x) = 1− n2x

(1 + n2x)3

Les variations de un sur [0,+∞[ fournissent

‖un‖∞ = un
(
1/n2) = 1

4n2

La série de fonctions
∑
un converge normalement sur [0,+∞[, a fortiori

uniformément et simplement.
Soit a > 0. Pour x > a,

|u′n(x)| 6 1 + n2x

(1 + n2x)3 = 1
(1 + n2a)2 ∼

1
a2

1
n4

La série de fonctions
∑
u′n converge normalement sur [a,+∞[.

En revanche, il n’y a pas convergence en 0, ni convergence uniforme sur ]0, a] car
le théorème de la double limite ne peut s’appliquer en 0.

Exercice 59 : [énoncé]
a) ζ est bien définie sur ]1,+∞[. Les fonctions fn : x 7→ 1

nx sont de classe C∞ sur
]1,+∞[ et

f (p)
n (x) = (− lnn)p

nx

Pour tout a > 1 sur [a,+∞[, ∣∣∣f (p)
n (x)

∣∣∣ 6 (lnn)p

na

donc ∥∥∥f (p)
n

∥∥∥
∞,[a,+∞[

6
(lnn)p

na

Pour ρ ∈ ]1, a[,
nρ
∥∥∥f (p)
n

∥∥∥
∞,[a,+∞[

→ 0

donc
∑∥∥∥f (p)

n

∥∥∥
∞,[a,+∞[

converge puis
∑
f

(p)
n converge normalement sur [a,+∞[.

Il en découle que la série de fonctions
∑
f

(p)
n converge simplement sur ]1,+∞[ et∑

f
(p)
n converge uniformément sur tout segment inclus dans ]1,+∞[. Par

théorème on peut conclure ζ est de classe C∞ sur ]1,+∞[.
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b)

ζ ′(x) =
+∞∑
n=1

(− lnn)
nx

6 0

donc ζ est décroissante.

ζ ′′(x) =
+∞∑
n=1

(lnn)2

nx
> 0

donc ζ est convexe.
c) La série de fonctions

∑
fn converge uniformément sur [2,+∞[ et

lim
x→+∞

fn(x) = 1 si n = 1 et 0 sinon. Par le théorème de la double limite

ζ(x) −−−−−→
x→+∞

1

d) La fonction t 7→ 1
tx est décroissante donc∫ n+1

n

dt
tx

6
1
nx

6
∫ n

n−1

dt
tx

En sommant, on obtient ∫ +∞

1

dt
tx

6 ζ(x) 6 1 +
∫ +∞

1

dt
tx

avec ∫ +∞

1

dt
tx

= 1
x− 1

On en déduit
ζ(x) ∼

x→1+

1
x− 1

e) Le signe de ln(ζ(x))′′ est celui de

ζ(x)ζ ′′(x)− ζ ′(x)2

Or
N∑
n=1

− lnn
nx

=
N∑
n=1

1
nx/2

− lnn
nx/2

donc par l’inégalité de Cauchy-Schwarz(
N∑
n=1

− lnn
nx

)2

6
N∑
n=1

1
nx

N∑
n=1

(− lnn)2

nx

puis quand N → +∞,
ζ ′(x)2 6 ζ(x)ζ ′′(x)

Exercice 60 : [énoncé]
a) Posons un(x) = 1/nx définie sur ]1,+∞[.
La série de fonctions

∑
un converge simplement sur ]1,+∞[ ce qui assure la

bonne définition de ζ(x).
Plus précisément, pour a > 1, on a

sup
x∈[a,+∞[

|un(x)| = un(a) avec
∑

un(a) convergente

et il y a donc convergence normale (et donc uniforme) de la série de fonctions un
sur [a,+∞[.
Puisque

un(x) −−−−−→
x→+∞

{
1 si n = 1
0 si n > 2

on peut appliquer le théorème de la double limite et affirmer que ζ tend en +∞
vers la somme convergente des limites

ζ(x) −−−−−→
x→+∞

1

b) Posons vn(x) = ζ(n)xn/n. Pour x 6= 0, on a∣∣∣∣vn+1(x)
vn(x)

∣∣∣∣ −−−−−→n→+∞
|x|

Par le critère de d’Alembert, la série converge pour |x| < 1 et diverge pour |x| > 1
(en fait le rayon de convergence de cette série entière vaut 1).
Pour x = 1, il y a divergence car

ζ(n)
n
∼ 1
n

Pour x = −1, il y a convergence en vertu du critère spécial des séries alternées. En
effet, la suite ((−1)nζ(n)/n) est alternée et décroît en valeur absolue vers 0
notamment car ζ(n+ 1) 6 ζ(n).
c) En tant que somme de série entière, la fonction F est de classe C∞ sur ]−1, 1[.
Puisque F est aussi définie en −1, en filière PC, on peut affirmer directement que
F est continue en −1 en vertu d’un théorème du cours. En filière MP et PSI, il
faut justifier cette continuité. . .
Les fonctions vn sont continues sur [−1, 0] et l’on vérifie que la série

∑
vn(x)

satisfait le critère spécial des séries alternées pour tout x ∈ [−1, 0]. On peut alors
majorer le reste de cette série par son premier terme∣∣∣∣∣

+∞∑
k=n+1

vk(x)

∣∣∣∣∣ 6 |vn+1(x)| 6 ζ(n)
n
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Ce dernier majorant étant uniforme de limite nulle, on peut affirmer qu’il y a
convergence uniforme de la série de fonctions

∑
vn sur [−1, 0] et sa somme F est

donc continue.
d) Par dérivation de la somme d’une série entière, on obtient pour x ∈ ]−1, 1[,

F ′(x) =
+∞∑
n=1

ζ(n+ 1)xn =
+∞∑
n=1

+∞∑
p=1

xn

pn+1

On peut permuter les deux sommes par le théorème de Fubini car il y a
convergence des séries ∑

p>1

∣∣∣∣ xnpn+1

∣∣∣∣ et ∑
n>1

+∞∑
p=1

∣∣∣∣ xnpn+1

∣∣∣∣
On en déduit après sommation géométrique

F ′(x) =
+∞∑
p=1

+∞∑
n=1

xn

pn+1 =
+∞∑
p=1

x

p(p− x) =
+∞∑
p=1

(
1

p− x
− 1
p

)
et on ne peut faire plus simple.

Exercice 61 : [énoncé]
Chaque fn : x 7→ (−1)n

nx est de classe C1 sur ]0,+∞[ et

f ′n(x) = (−1)n+1 lnn
nx

Par le critère spécial des séries alternées, la série de fonctions
∑
fn converge

simplement vers ζ2 sur ]0,+∞[.
La suite (f ′n(x))n∈N est alternée. Etudions

ϕ : t 7→ ln t
tx

On a
ϕ′(t) = 1− x ln t

tx+1

Pour ln t > 1/x, ϕ′(t) 6 0 donc ϕ décroissante sur
[
e1/x,+∞

[
. Ainsi (f ′n(x))n>1

est décroissante à partir du rang
⌊
e1/x⌋+ 1 et tend vers 0. On peut appliquer le

critère spécial des séries alternées. Pour a > 0 et pour n >
⌊
e1/a⌋+ 1 on a pour

tout x ∈ [a,+∞[,

|Rn(x)| =

∣∣∣∣∣
+∞∑

k=n+1

(−1)n+1 lnn
nx

∣∣∣∣∣ 6 ln(n+ 1)
(n+ 1)x 6

ln(n+ 1)
(n+ 1)a

donc

‖Rn‖∞,[a,+∞[ 6
ln(n+ 1)
(n+ 1)a → 0∑

f ′n converge uniformément sur [a,+∞[ donc converge uniformément sur tout
segment de ]0,+∞[.
On peut alors conclure que la fonction ζ2 est de classe C1 sur ]0,+∞[.

Exercice 62 : [énoncé]
Par le critère spécial des séries alternées, ζ2 est bien définie sur ]0,+∞[.
fn : x 7→ (−1)n

nx est C∞ sur ]0,+∞[ et

f (p)
n (x) = (−1)n+p (lnn)p

nx

La suite (f (p)
n (x))n∈N est alternée. Etudions

ϕ : t 7→ (ln t)p

tx

On a

ϕ′(t) = ln(t)p−1(p− x ln t)
tx+1

Pour ln t > p/x, ϕ′(t) 6 0 donc ϕ décroissante sur
[
ep/x,+∞

[
. Ainsi (f (p)

n (x))n>1
est décroissante à partir du rang E(ep/x) + 1 et tend vers 0. On peut donc
appliquer le critère spécial des séries alternées. Pour a > 0 et pour
n > E(ep/a) + 1 on a pour tout x ∈ [a,+∞[,

|Rn(x)| =

∣∣∣∣∣
+∞∑

k=n+1

(−1)n+p(lnn)p

nx

∣∣∣∣∣ 6 (ln(n+ 1))p

(n+ 1)x 6
(ln(n+ 1))p

(n+ 1)a

donc

‖Rn‖∞,[a,+∞[ 6
(ln(n+ 1))p

(n+ 1)a → 0

∑
f

(p)
n converge uniformément sur [a,+∞[ (pour tout a > 0) donc converge

simplement sur ]0,+∞[ et converge uniformément sur tout segment de ]0,+∞[.
Par théorème on peut alors conclure que ζ2 est C∞ sur ]0,+∞[.
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Exercice 63 : [énoncé]
La convergence pour x > 0 de la série définissant ζ2(x) est acquise par le critère
spécial des séries alternées.
On peut combiner les termes d’indices impairs avec les termes d’indices pairs qui
suivent

ζ2(x) =
+∞∑
p=1

(
1

(2p− 1)x −
1

(2p)x

)
Considérons alors la fonction f : [1,+∞[→ R définie par

f(t) = 1
(2t− 1)x −

1
(2t)x

La fonction f est décroissante et donc∫ n+1

n

f(t) dt 6 f(n) 6
∫ n

n−1
f(t) dt

puis en sommant ces encadrements∫ +∞

1
f(t) dt 6 ζ2(x) 6 f(1) +

∫ +∞

1
f(t) dt

Or ∫ +∞

1
f(t) dt = 1

2(1− x)

[
(2t− 1)1−x − (2t)1−x

]+∞

1

avec

(2t− 1)1−x − (2t)1−x = − (2t)1−x

(
1−

(
1− 1

2t

)1−x
)
∼ (x− 1)(2t)−x −−−−→

t→+∞
0

et donc ∫ +∞

1
f(t) dt = 1

2(1− x)
(
21−x − 1

)
−−−−→
x→0+

1
2

De plus
f(1) = 1− 1

2x −−−−→x→0+
0

et donc par encadrement
ζ2(x) −−−−→

x→0+

1
2

Exercice 64 : [énoncé]
a) ζ est définie sur ]1,+∞[ et ζ2 est définie sur ]0,+∞[ (via le critère spécial des
séries alternées)
b) fn : x 7→ 1

nx est continue.
Pour tout a > 1, ∣∣∣∣ 1

nx

∣∣∣∣ 6 1
na

donc
‖fn‖∞,[a,+∞[ 6

1
na

or
∑ 1

na converge donc
∑
fn converge normalement sur [a,+∞[ puis converge

uniformément sur tout segment inclus dans ]1,+∞[. Par théorème, on obtient que
la fonction ζ est continue.
gn : x 7→ (−1)n

nx est continue.
Par le critère spécial des séries alternées∣∣∣∣∣

+∞∑
n=N+1

(−1)n−1

nx

∣∣∣∣∣ 6 1
(N + 1)x

Pour tout a > 0, ∣∣∣∣∣
+∞∑

n=N+1

(−1)n−1

nx

∣∣∣∣∣ 6 1
(N + 1)x 6

1
(N + 1)a

donc
∑
gn converge uniformément sur [a,+∞[ puis converge uniformément sur

tout segment inclus dans ]0,+∞[. Par théorème on obtient que la fonction ζ2 est
continue sur ]0,+∞[.
c) Pour x > 1

ζ2(x) =
+∞∑
n=1

1
nx
− 2

+∞∑
k=1

1
(2k)x = ζ(x)− 21−xζ(x)

Exercice 65 : [énoncé]
On peut écrire

ψ(x) =
+∞∑
n=2

2x
n2 − x2

avec convergence normale sur [0, 1] donc∫ 1

0
ψ(x) dx =

+∞∑
n=2

∫ 1

0

1
n− x

− 1
n+ x

dx
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Or ∫ 1

0

1
n− x

− 1
n+ x

dx = ln n

n− 1 − ln n+ 1
n

et en transitant par les sommes partielles
N∑
n=2

∫ 1

0

1
n− x

− 1
n+ x

dx =
N∑
n=2

ln n

n− 1−
N∑
n=2

ln n+ 1
n

= lnN−ln(N+1)+ln 2 −−−−−→
N→+∞

ln 2

Ainsi ∫ 1

0
ψ(x) dx = ln 2

Exercice 66 : [énoncé]
a) Pour x ∈ ]0, 1[, on obtient par sommation géométrique

+∞∑
n=0

un(x) = −x
2 ln x

1 + x2

Cette relation vaut aussi pour x = 0 ou x = 1.
b) On peut appliquer le critère spécial des séries alternées et donc

|Rn(x)| =

∣∣∣∣∣
+∞∑

k=n+1
(−1)k+2x2k+2 ln x

∣∣∣∣∣ 6 x2(n+2) |ln x|

L’étude de ϕ : x 7→ x2(n+2) |ln x| donne

∀x ∈ [0, 1] , x2(n+2) |ln x| 6 e−1

2(n+ 2)

donc
‖Rn‖∞ 6

e−1

2(n+ 2) → 0

c) On a ∫ 1

0

ln x
1 + x2 dx =

∫ 1

0
ln xdx−

∫ 1

0

x2 ln x
1 + x2 dx

et on peut calculer la dernière intégrale par intégration terme à terme car
converge uniformément sur [0, 1]. Cela donne∫ 1

0

ln x
1 + x2 dx = −1 +

∞∑
n=0

(−1)n

(2n+ 3)2

puis le résultat.

Exercice 67 : [énoncé] ∥∥∥∥ 2α
α2 + n2

∥∥∥∥
∞,[0,1]

6
1
n2

est le terme générale d’une série convergente. Par convergence normale sur le
segment [0, 1] :∫ 1

0

+∞∑
n=1

2α
α2 + n2 dα =

+∞∑
n=1

∫ 1

0

2αdα
α2 + n2 =

+∞∑
n=1

ln
(

1 + 1
n2

)
Or

+∞∑
n=1

2α
α2 + n2 = π

chπα
shπα −

1
α

donc ∫ 1

0

+∞∑
n=1

2α
α2 + n2 dα =

[
ln shπα

α

]1

0
= ln shπ

π

On en déduit que
+∞∏
n=1

(
1 + 1

n2

)
= shπ

π

Exercice 68 : [énoncé]
Pour x 6 0, il y a divergence grossière.
Pour x > 0, n2e−x

√
n = e−x

√
n+2 lnn → 0 donc

∑
e−x
√
n est absolument

convergente. Ainsi f est définie sur ]0,+∞[.
Pour a > 0, sur [a,+∞[,

∣∣∣e−x√n∣∣∣ 6 e−a
√
n. Cela permet d’établir la convergence

normale de la série de fonctions sur [a,+∞[. Par convergence uniforme sur tout
segment d’une série de fonctions continues, on peut affirmer que f est continue
sur ]0,+∞[.
Par convergence uniforme sur [1,+∞[, on peut appliquer le théorème de la double
limite et affirmer

lim
+∞

f =
+∞∑
n=0

lim
x→+∞

e−x
√
n = 1

Pour x > 0 fixé, la fonction t 7→ e−x
√
t est décroissante donc∫ n+1

n

e−x
√
t dt 6 e−x

√
n 6

∫ n

n−1
e−x
√
t dt
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En sommant (avec n = 0 à part pour la majoration) on obtient∫ +∞

0
e−x
√
t dt 6 f(x) 6 1 +

∫ +∞

0
e−x
√
t dt

avec ∫ +∞

0
e−x
√
t dt = 2

x2

On en déduit
f(x) ∼ 2

x2

quand x→ 0+.

Exercice 69 : [énoncé]
Par le critère spécial des séries alternées, il est immédiate de justifier que S(t) est
définie pour tout t > 0.
On peut réorganiser l’expression de S(t) de la façon suivante :

S(t) =
+∞∑
p=0

(
(−1)2p

2pt+ 1 + (−1)2p+1

(2p+ 1)t+ 1

)
=

+∞∑
p=0

t

(2pt+ 1) [(2p+ 1)t+ 1]

La fonction ft : x 7→ t
(2xt+1)((2x+1)t+1) est décroissante.

Par comparaison avec une intégrale, on obtient l’encadrement∫ +∞

1
ft(x) dx 6 S(t) 6

∫ +∞

0
ft(x) dx

Puisque par les calculs précédents

t

(2xt+ 1) ((2x+ 1)t+ 1) = 1
2xt+ 1 −

1
(2x+ 1)t+ 1

On obtient∫ +∞

0

t

(2xt+ 1)((2x+ 1)t+ 1) dx =
[

1
2t ln (2xt+ 1)

((2x+ 1)t+ 1)

]+∞

0
= ln(1 + t)

2t

et∫ +∞

1

t

(2xt+ 1)((2x+ 1)t+ 1) dx =
[

1
2t ln (2xt+ 1)

((2x+ 1)t+ 1)

]+∞

1
= ln(1 + 3t)− ln(1 + 2t)

2t

Quand t→ 0+, on obtient par encadrement S(t)→ 1/2.

Exercice 70 : [énoncé]
a) Pour tout x ∈ R, la série numérique

∑
un(x) satisfait le critère spécial des

séries alternées donc la série de fonctions
∑
un converge simplement sur R.

De plus∥∥∥∥∥
+∞∑

n=N+1
un

∥∥∥∥∥
∞

6 ln
(

1 + x2

(N + 1)(1 + x2)

)
6 ln

(
1 + 1

N + 1

)
→ 0

donc la série de fonctions
∑
un converge uniformément sur R.

b) un(x) −−−−−→
x→+∞

ln(1 + 1/n). Par converge uniformément

+∞∑
n=1

un(x) −−−−−→
x→+∞

` =
+∞∑
n=1

(−1)n ln(1 + 1/n)

Pour calculer cette somme, manipulons les sommes partielles et séparons les
termes d’indice pair de ceux d’indice impair

2N∑
n=1

(−1)n ln
(

1 + 1
n

)
=

N∑
n=1

ln(2n+ 1)− ln(2n) +
N∑
n=1

ln(2n− 1)− ln(2n)

donc
2N∑
n=1

(−1)n ln
(

1 + 1
n

)
= ln

((
(2N)!

(2NN !)2

)2
(2N + 1)

)
Or

N ! ∼
√

2πNNNe−N

donc
2N∑
n=1

(−1)n ln(1 + 1/n) ∼ ln (2/π)

On en déduit
` = ln (2/π)

Exercice 71 : [énoncé]
En réorganisant la somme

un =
n∑
k=0

(
1− k

n

)n
=

+∞∑
k=0

fk(n)
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avec fk : N→ R définie par

fk(n) = (1− k/n)n si k 6 n et fk(n) = 0 sinon

Pour k ∈ N fixé, fk(n)→ e−k.
Pour k 6 n, |fk(n)| = exp(n ln(1− k/n)) 6 exp(−k) et cette majoration vaut
aussi pour k > n. Ainsi ‖fk‖∞,N 6 e−k et donc la série

∑
fk converge

normalement sur A = N.
Par interversion limite/somme infinie, on obtient

un −−−−−→
n→+∞

+∞∑
k=0

e−k = 1
1− 1/e

Exercice 72 : [énoncé]
Posons

fk(n) =
(

1− k

n

)nα
pour k 6 n et fk(n) = 0 sinon

Pour k ∈ N fixé,
fk(n)→ exp(−kα)

Pour k 6 n
|fk(n)| = exp(nα ln(1− k/n)) 6 e−kα

et cette majoration vaut aussi pour k > n.
Ainsi

‖fk‖∞,N 6 e−kα

et donc la série
∑
fk converge normalement sur A = N.

Par interversion limite/somme infinie

lim
n→+∞

+∞∑
k=0

fk(n) =
+∞∑
k=0

lim
n→+∞

fk(n) =
+∞∑
k=0

e−kα

Ainsi

lim
n→+∞

n∑
k=0

(
1− k

n

)nα
= eα

eα − 1

Exercice 73 : [énoncé]
Par la formule du binôme (

1 + z

p

)p
=

p∑
k=0

(
p

k

)
zk

pk

Considérons fk : [0,+∞[→ C définies par

fk(x) = x(x− 1) . . . (x− k + 1)
k!

zk

xk
si x > k et fk(x) = 0 sinon

En tout p ∈ N,
+∞∑
k=0

fk(p) =
p∑
k=0

(
p

k

)
zk

pk
=
(

1 + z

p

)p
La série de fonctions

∑
k∈N

fk converge simplement vers x→
(
1 + z

x

)x en tout

p ∈ N. De plus, puisque |fk(x)| 6 |z|k
k! , la convergence est normale sur R+. Pour k

fixé, quand x→ +∞,

fk(x) = x(x− 1) . . . (x− k + 1)
xk

zk

k! →
zk

k!

Par le théorème de la double limite

lim
n→+∞

+∞∑
k=0

fk(n) =
+∞∑
k=0

zk

k!

i.e.
lim

n→+∞

(
1 + z

n

)n
= ez

Exercice 74 : [énoncé]
Posons

fn(x) = 1
n+ n2x

avec x > 0

a) Soit x ∈ ]0,+∞[. On a fn(x) ∼ 1/n2x donc
∑
fn(x) converge absolument.

On en déduit que la série
∑
fn converge simplement sur ]0,+∞[ et donc la

fonction S =
+∞∑
n=0

fn est bien définie.

b) Les fn sont continues sur R+?.
Soit a > 0,

‖fn‖∞,[a,+∞[ 6
1

n+ n2a
= O

(
1
n2

)
La série de fonctions

∑
fn converge normalement sur [a,+∞[ donc converge

uniformément sur tout segment de ]0,+∞[.
On peut donc conclure que S est continue.
c) Chaque fn est décroissante donc la fonction S l’est aussi.
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d) Par convergence normale sur [1,+∞[,

lim
x→+∞

+∞∑
n=1

fn(x) =
+∞∑
n=1

lim
x→+∞

fn(x) = 0

On remarque
xfn(x) −−−−−→

x→+∞

1
n2

Posons gn : x 7→ x
n(1+nx) . La fonction gn croît de 0 à 1/n2 sur R+ donc

‖gn‖∞,[0,+∞[ = 1
n2

La série de fonctions
∑
gn converge normalement sur R+ donc

lim
x→+∞

+∞∑
n=1

gn(x) =
+∞∑
n=1

lim
x→+∞

gn(x) =
+∞∑
n=1

1
n2 = π2

6

Par suite xS(x) −−−−−→
x→+∞

π2

6 puis

S(x) ∼
x→+∞

π2

6x

e) La fonction t 7→ 1
t(1+tx) est décroissante donc par comparaison avec une

intégrale ∫ +∞

1

dt
t(1 + tx) 6

+∞∑
n=1

un(x) 6 1
1 + x

+
∫ +∞

1

dt
t(1 + tx)

Or∫ +∞

1

dt
t(1 + tx) =

∫ +∞

1

(
1
t
− x

1 + tx

)
dt =

[
ln t

1 + tx

]+∞

1
= ln(1 + x)− ln(x)

donc
S(x) ∼

x→0
− ln(x)

Exercice 75 : [énoncé]
a) fn : x 7→ 1

n −
1

n+x = x
n(n+x) est définie et continue sur ]−1,+∞[

Soient −1 < a 6 0 6 1 6 b.

‖fn‖∞,[a,b] 6
b

n(n+ a)

La série de fonction
∑
fn converge normalement sur [a, b] et donc converge

uniformément sur tout segment inclus dans ]−1,+∞[.
b) Chaque fn est croissante donc par sommation de monotonie, S est croissante.
c)

S(x+ 1)− S(x) =
+∞∑
n=2

1
n− 1 −

1
n+ x

−
+∞∑
n=1

1
n
− 1
n+ x

donc

S(x+ 1)− S(x) =
+∞∑
n=2

1
n− 1 −

1
n
− 1 + 1

x+ 1 = 1
x+ 1

d) Quand x→ −1, S(x+ 1)→ S(0) = 0 puis

S(x) = − 1
x+ 1 + S(x+ 1) ∼ − 1

x+ 1

e) S(0) = 0 et S(x+ 1)− S(x) = 1
x+1 donc pour tout n ∈ N,

S(n) =
n∑
k=1

1
k

f) On sait
n∑
k=1

1
k ∼ lnn et on sait ln(n+ 1) ∼ lnn.

Puisque S(E(x)) 6 S(x) 6 S(E(x) + 1) on obtient

S(x) ∼ lnE(x) ∼ ln x

Exercice 76 : [énoncé]
a) Posons fn(x) = e−x

√
n

Pour x 6 0, la série
∑

e−x
√
n diverge grossièrement.

Pour x > 0, n2fn(x)→ 0 donc
∑

e−x
√
n converge absolument.

La fonction f est donc définie sur ]0,+∞[.
Pour a > 0, ‖fn‖∞,[a,+∞[ = fn(a) et

∑
fn(a) converge donc

∑
fn converge

normalement sur [a,+∞[. Comme somme de série de fonctions continues
convergeant uniformément sur tout segment, on peut affirmer que f est continue
sur ]0,+∞[.
b) f est somme de fonction strictement décroissante, elle donc elle-même
strictement décroissante.
c) Par convergence uniforme sur [a,+∞[, on peut intervertir limite en +∞ et

somme infinie. Ainsi lim
x→+∞

f(x) =
+∞∑
n=1

lim
x→+∞

fn(x) = 0.
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d) Par monotonie de t 7→ e−x
√
t,
∫ n+1
n

e−x
√
t dt 6 e−x

√
n 6

∫ n
n−1 e−x

√
t dt

En sommant
∫ +∞

1 e−x
√
t dt 6 f(x) 6

∫ +∞
0 e−x

√
t dt.

Or
∫ +∞

0 e−x
√
t dt = 2

x2 et
∫ +∞

1 e−x
√
t dt ∼ 2

x2 donc f(x) ∼ 2
x2 .

Exercice 77 : [énoncé]
a) Notons : fn : x 7→ xn

1+x2n .
Pour x = 0, fn(x) = 0 donc S(x) est bien définie.
Pour x ∈ ]0, 1[ : fn+1(x)

fn(x) ∼ x < 1 et S(x) est bien définie.
Pour x = 1 : fn(x) = 1/2 et S(x) n’est pas définie.
Pour x ∈ ]1,+∞[ : fn+1(x)

fn(x) →
1
x < 1 donc S(x) est bien définie.

Finalement S est définie sur [0, 1[ ∪ ]1,+∞[ par convergence simplement de
∑
fn

sur ce domaine.
b)

∀x ∈ ]0, 1[ ∪ ]1,+∞[ , S(1/x) =
+∞∑
n=1

1/xn

1 + 1/x2n =
+∞∑
n=1

xn

1 + x2n = S(x)

c) Soit 0 < a < 1. Sur [0, a],

‖fn‖∞,[0,a] 6 anet
+∞∑
n=1

an < 1

donc
∑
n>1

fn converge normalement sur [0, a] et donc converge uniformément sur

tout segment de [0, 1[. Par théorème S est continue sur [0, 1[.
Par composition de fonctions continues S : x 7→ S(1/x) est aussi continue sur
]1,+∞[.
d)

f ′n(x) = nxn−1(1 + x2n)− 2nx3n−1

(1 + x2n)2 = nxn−1(1− x2n)
(1 + x2n)2

Chaque fn est croissante sur [0, 1[ et décroissante sur ]1,+∞[.
Par sommation de monotonie, la fonction S est croissante sur [0, 1[ et décroissante
sur ]1,+∞[.
S(0) = 0.
Quand x→ 1−,

S(x) >
+∞∑
n=1

xn

2 = 2x
1− x → +∞

donc lim
x→1−

S(x) = +∞.
Puisque S(1/x) = S(x), on obtient par composition de limites, lim

x→1+
S(x) = +∞

et lim
x→+∞

S(x) = 0.

Exercice 78 : [énoncé]
Pour |x| > 1, la série est grossièrement divergente.
Pour |x| < 1,

xn

1 + xn
∼ xn

et donc la série est absolument convergente.
La fonction S est définie sur ]−1, 1[.
Posons un(x) = xn

1+xn .
un est de classe C1,

∑
un converge simplement,

u′n(x) = nxn−1

(1 + xn)2

donc pour a ∈ [0, 1[,

‖u′n‖∞,[−a,a] 6 n
an−1

1− an ∼ na
n−1

ce qui assure la convergence normale de
∑
u′n sur tout segment de ]−1, 1[.

Par suite la fonction S est de classe C1.

S(0) = 1
2 donc S(x) ∼

x→0

1
2

Pour x ∈ [0, 1[,

S(x) = 1
2 +

+∞∑
n=1

+∞∑
p=0

(−1)pxn(p+1)

Puisque
∑
p>0

∣∣(−1)pxn(p+1)
∣∣ converge et

∑
n>1

+∞∑
p=0

∣∣(−1)pxn(p+1)
∣∣ aussi, on peut

permuter les deux sommes et affirmer

S(x) = 1
2 +

+∞∑
p=0

(−1)p xp+1

1− xp+1

On a alors

(1− x)S(x) = 1− x
2 +

+∞∑
p=0

(−1)pup(x)

avec up(x) = xp+1 1−x
1−xp+1 pour x ∈ [0, 1[.

La fonction up est continue sur [0, 1[ et prolonge par continuité en 1 en posant
up(1) = 1/(p+ 1).
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Le critère spécial des séries alternées s’applique à la série
∑

(−1)pup(x) et donc∥∥∥∥∥∥
∞∑

k=p+1
(−1)kuk(x)

∥∥∥∥∥∥
∞

6 up+1(x)

et une étude de variation permet d’affirmer up+1(x) 6 1
p+2 . Ainsi, la série

∑
un

converge uniformément sur [0, 1] et donc sa somme est continue en 1. Cela permet
d’affirmer

(1− x)S(x) −−−−→
x→1−

+∞∑
p=0

(−1)p

p+ 1 = ln 2

et finalement
S(x) ∼

x→1−
ln 2

1− x

Exercice 79 : [énoncé]
Posons

fn : x 7→ x

n(1 + n2x2)

Sachant
2 |nx| 6 1 + n2x2

on a
|fn(x)| 6 1

2n2

On en déduit que la série de fonctions
∑
fn converge normalement sur R.

Les fonctions fn étant continue, la somme S est définie et continue sur R.
Les fonctions fn sont de classe C1 et

f ′n(x) = 1− n2x2

n(1 + n2x2)2

Soit a > 0. Pour |x| > a,

|f ′n(x)| 6 1 + n2x2

n(1 + n2x2)2 = 1
n(1 + n2x2) 6

1
n(1 + n2a2)

On en déduit que la série de fonctions
∑
f ′n converge normalement sur tout

segment de R?.
La somme S est donc une fonction de classe C1 sur R?.

Montrons que la fonction S n’est pas dérivable en 0.

1
x

(S(x)− S(0)) =
+∞∑
n=1

1
n(1 + n2x2)

Par comparaison avec une intégrale

1
x

(S(x)− S(0)) >
∫ +∞

1

dt
t(1 + t2x2)

Par le changement de variable u = tx

1
x

(S(x)− S(0)) >
∫ +∞

x

dt
u(1 + u2) −−−−→x→0+

+∞

car la fonction positive u 7→ 1/u(1 + u2) n’est pas intégrable sur ]0, 1].

Exercice 80 : [énoncé]
Posons

fn(x) = 1
n2 arctan(nx)

Chaque fn est continue et ‖fn‖∞ = π
2n2 est terme général d’une série convergente.

Par convergence normale, on peut affirmer que f est définie et continue sur R.
Chaque fn est de classe C1 et

f ′n(x) = 1
n(1 + (nx)2)

Pour a > 0, sur [a,+∞[ ou ]−∞,−a],

‖f ′n‖∞ 6
1

n(1 + (na)2)

ce qui donne la convergence normale de la série des dérivées.
Ainsi, par convergence uniforme sur tout segment, on obtient f de classe C1 sur
R?.

Exercice 81 : [énoncé]
a) En vertu du théorème des accroissements finis

|un(x)| 6
(√
n+ x−

√
n
)

sup
[√n,√n+x]

|(arctan)′| =
√
n+ x−

√
n

1 + n
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donc
|un(x)| 6 x

(1 + n)(
√
n+
√
n+ x)

6
x

2
√
n(n+ 1)

= O

(
1

n3/2

)
On en déduit que la série de fonctions

∑
un converge simplement et donc la

fonction S est bien définie.
Les fonctions un sont continue et pour tout a ∈ R+,

∀x ∈ [0, a] , |un(x)| 6 a

2
√
n(n+ 1)

On peut donc affirmer la convergence uniforme sur tout segment de la série
∑
un

ce qui assure la continuité de S.
b) Montrons que S tend vers +∞ en +∞.
Remarquons que par le théorème des accroissements finis

un(n) = arctan
√

2n− arctan
√
n >

√
2n−

√
n

1 + 2n ∼
√

2− 1
2
√
n

et il y a donc divergence vers +∞ de la série
∑
un(n).

Soit A ∈ R+. Il existe un rang N ∈ N tel que

N∑
n=0

un(n) > A

Pour x > N ,

S(x) >
N∑
n=0

un(x) >
N∑
n=0

un(N) >
N∑
n=0

un(n) > A

On peut donc affirmer
S(x) −−−−−→

x→+∞
+∞

Exercice 82 : [énoncé]
a) Posons

un(x) = 1
n2 + x2

Les fonctions un sont définies et de classe C1 sur R.
La série de fonctions

∑
un converge simplement sur R car un(x) ∼ 1/n2.

On a
u′n(x) = −2x

(n2 + x2)2

donc sur [−a, a],
‖u′n‖∞ 6

2a
n4

et la série de fonctions
∑
u′n converge normalement et donc uniformément sur

tout segment de R.
On peut conclure que la fonction f est de classe C1.
b) La fonction t 7→ 1/(t2 + x2) est décroissante donc∫ +∞

1

dt
t2 + x2 6 f(x) 6

∫ +∞

0

dt
t2 + x2

Or ∫ +∞

0

dt
t2 + x2 = π

2x et
∫ +∞

1

dt
t2 + x2 = π

2x −
1
x

arctan 1
x

donc
f(x) ∼

x→+∞

π

2x
c) On peut écrire

1
n2 + x2 = 1

n2

(
1

1 + x2/n2

)
= 1
n2

(
1− x2

n2

)
+ 1
n4

x4

n2 + x2

et par convergence des sommes introduites

f(x) =
+∞∑
n=1

1
n2 −

+∞∑
n=1

x2

n4 + x4
+∞∑
n=1

1
n4(n2 + x2)

Or ∣∣∣∣∣
+∞∑
n=1

1
n4(n2 + x2)

∣∣∣∣∣ 6
+∞∑
n=1

1
n6 < +∞

donc
f(x) = π2

6 −
π4

90x
2 +O(x4)

Exercice 83 : [énoncé]
Posons

fn : x 7→ (−1)n

n
sin
(x
n

)
Puisque les fonctions fn sont toutes impaires, on limite l’étude à x ∈ [0,+∞[.
A partir d’un certain rang Nx, on a x/n 6 π/2 et alors

sin (x/n) ∈ [0, 1]
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La série numérique
∑
fn(x) vérifie alors les hypothèses du critère spécial des

séries alternées à partir du rang Nx et par conséquent cette série converge.
Ainsi la série de fonctions

∑
fn converge simplement sur R et donc sa fonction

somme, que nous noterons S, est définie sur R.
Les fonctions fn sont de classe C1 et

f ′n(x) = (−1)n

n2 cos
(x
n

)
de sorte que

‖f ′n‖∞,R = 1
n2

On en déduit que la série de fonctions
∑
f ′n converge normalement sur R et donc

la fonction S est de classe C1 sur R, a fortiori cette fonction est continue.

Exercice 84 : [énoncé]
a) Posons fn(t) = (−1)n

1+nt pour t > 0.
Par application du critère spécial des séries alternées,

∑
fn converge simplement

sur ]0,+∞[ et
‖Rn‖∞,[a,+∞[ 6

1
1 + na

→ 0

pour tout a > 0.
Par converge uniformément sur tout segment d’une série de fonctions continue, S
est définie et continue sur ]0,+∞[.
b) Par converge uniformément sur [a,+∞[,

lim
+∞

S(t) =
+∞∑
n=0

lim
t→+∞

(−1)n

1 + nt
= 1

Par application du critère spécial des séries alternées

1− 1
1 + t

6 S(t) 6 1

c) Les fonctions fn sont de classe C1 et la série de fonctions
∑
fn converge

simplement.

f ′n(t) = (−1)n+1n

(1 + nt)2

La série
∑
f ′n(t) est alternée avec |f ′n(t)| = n

(1+nt)2 .
Puisque

|f ′n(t)| −
∣∣f ′n+1(t)

∣∣ = n(n+ 1)t2 − 1
(1 + nt)2(1 + (n+ 1)t)2

la suite (|f ′n(t)|) décroît vers 0 à partir d’un certain rang.
Soit a > 0.
A partir d’un certain rang n0,

n(n+ 1)a2 − 1 > 0

et alors pour tout t > a, on peut appliquer le critère spécial des séries alternées à
partir du rang n0.
On a alors

|Rn(t)| 6 n

(1 + nt)2 6
n

(1 + na)2

donc
‖Rn‖∞,[a,+∞[ 6

n

(1 + na)2 → 0

Ainsi la série de fonctions
∑
f ′n converge uniformément sur [a,+∞[.

Par théorème, on peut alors conclure que S est de classe C1.

Exercice 85 : [énoncé]
On pose pour tout x ∈ R et n ∈ N?

un(x) = (−1)n−1 x

n+ x2

a) Pour tout x ∈ R,
∑
un(x) satisfait le critère spécial des séries alternées et donc∑

un converge simplement. La fonction S est donc bien définie, elle est
évidemment impaire.
b) Soit a > 0. Par le critère spécial des séries alternées

|Rn(x)| 6 x

(n+ 1) + x2 6
a

n+ 1 pour x ∈ [−a, a]

et donc
‖Rn‖∞,[−a,a] 6

a

n
→ 0

Il y a convergence uniforme sur [−a, a] pour tout a > 0 et donc convergence
uniforme sur tout segment de R.
De plus chaque fonction un est continue donc S est continue.
c) Par le critère spécial des séries alternées, on peut encadrer S par deux sommes
partielles consécutives

x

1 + x2 −
x

2 + x2 6 S(x) 6 x

1 + x2

et on peut donc affirmer S(x) −−−−−→
x→+∞

0.
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Exercice 86 : [énoncé]
a) Pour x ∈ ]−1, 1[,

|un(x)| = o (|x|n)

donc
∑
un(x) est absolument convergente donc convergente.

Pour x = 1,

un(x) = (−1)n−1

2n
donc

∑
un(x) converge en vertu du critère spécial des séries alternées.

Pour x ∈ ]−∞,−1[ ∪ ]1,+∞[,

un(x) = (−1)n−1

n

(
1− 1

1 + xn

)
= (−1)n−1

n
+ o

(
1
|x|n

)
donc

∑
un(x) est somme d’une série convergente et d’une série absolument

convergente.
b)

f(x) + f(1/x) =
+∞∑
n=1

(−1)n−1

n

(
xn

1 + xn
+ 1/xn

1 + 1/xn

)
=

+∞∑
n=1

(−1)n−1

n

c) Soit a ∈ [0, 1[.
‖f‖∞,[−a,a] 6

an

1− an 6
an

1− a
donc

∑
fn converge normalement sur [−a, a].

Par convergence uniforme d’une série de fonctions continues sur tout segment de
]−1, 1[, on peut affirmer que f est continue sur ]−1, 1[. Puisque
f(x) = Cte − f(1/x), f est aussi continue sur ]−∞,−1[ et sur ]1,+∞[ par
composition de fonctions continues.
d) Pour x ∈ [0, 1], la série

∑
un(x) est alternée et la suite

(
1
n

xn

1+xn

)
n>0

décroît
vers 0 (après étude non détaillée ici) donc le critère spécial des séries alternées
s’applique et ∣∣∣∣∣

+∞∑
k=n+1

uk(x)

∣∣∣∣∣ 6 1
n+ 1

xn+1

1 + xn+1 6
1

n+ 1

puis
‖Rn‖∞,[0,1] 6

1
n+ 1 → 0

La série de fonctions continues
∑
un converge uniformément sur [0, 1] donc f est

continue sur [0, 1] et donc continue à gauche en 1. Par la relation du b) on obtient
aussi f continue à droite en 1.

Exercice 87 : [énoncé]
a)

ln fn+1(x)− ln fn(x) = x ln
(

1 + 1
n

)
+ ln(n+ 1)− ln(x+ n+ 1) = O

(
1
n2

)
La série

∑
ln fn+1(x)− ln fn(x) converge donc la suite (ln fn(x)) converge puis

(fn(x)) converge vers un réel strictement positif.
b)

ln Γ(x) = lim
n→+∞

(
x lnn+

n∑
k=1

ln k −
n∑
k=0

ln(x+ k)
)

avec x lnn+
n∑
k=1

ln k −
n∑
k=0

ln(x+ k) = x lnn− ln x−
n∑
k=1

ln
(
1 + x

k

)
.

Or la série
∑(

x
n − ln

(
1 + x

n

))
est absolument convergente car de terme général

en O
(
1/n2) et

n∑
k=1

(x
k
− ln

(
1 + x

k

))
= x lnn+ γx+ o(1)−

n∑
k=1

ln
(

1 + x

k

)
donc

ln Γ(x) = − ln x− γx+
+∞∑
n=1

(x
n
− ln

(
1 + x

n

))
c) Posons fn(x) = x

n − ln
(
1 + x

n

)
pour x > 0 et n > 1. fn est C1,

∑
fn converge

simplement et f ′n(x) = x
n(n+x) ce qui permet d’affirmer

∑
f ′n converge

normalement sur tout segment[a, b] ⊂ R+?.

Exercice 88 : [énoncé]
a) Si x 6 0, la série numérique

∑
fn(x) diverge grossièrement.

Si x > 0 alors n2fn(x) = e2 lnn−xnα → 0 donc
∑
fn(x) est absolument

convergente.
Ainsi

∑
fn converge simplement sur ]0,+∞[. f est définie sur ]0,+∞[.

b) Les fonctions fn sont continues.
Pour a > 0, ‖fn‖∞,[a,+∞[ = fn(a) et

∑
fn(a) converge donc

∑
fn converge

normalement sur [a,+∞[. Par convergence uniforme sur tout segment, on peut
affirmer que f est continue.
c) Par convergence uniforme sur [a,+∞[, on peut intervertir limite en +∞ et

somme infinie. Ainsi lim
x→+∞

f(x) =
+∞∑
n=0

lim
x→+∞

fn(x) = 1.
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Exercice 89 : [énoncé]
a) Pour x < 0, un(x) −−−−−→

n→+∞
−∞ donc

∑
un(x) diverge grossièrement.

Pour x = 0, un(x) = 0 donc
∑
un(0) converge

Pour x > 0, un(x) = o(1/n2) par croissance comparée et donc
∑
un(x) converge

absolument.
On conclut I = R+

b) Pour [a, b] ⊂ R+?,

‖un‖∞,[a,b] = sup
x∈[a,b]

|un(x)| 6 nαbe−na

n2 + 1

donc
∑
un est une série de fonctions continues convergeant normalement sur tout

segment de R+?. Sa somme est alors continue sur R+?.
c) Après étude des variations de la fonction,

‖un‖∞,R+ = sup
x∈R+

|un(x)| = un(1/n) ∼ 1
n3−α

Il y a convergence normale si, et seulement si, α < 2.
d) On peut écrire

∞∑
k=n+1

uk(1/n) = 1
n

∞∑
k=n+1

kαe−k/n

k2 + 1 >
1
n

∞∑
k=n+1

k2

k2 + 1e−k/n >
1

2n

∞∑
k=n+1

e−k/n

Or par sommation géométrique

1
2n

∞∑
k=n+1

e−k/n = 1
2n

e−(n+1)/n

1− e−1/n →
1
2e

donc
∞∑

k=n+1
uk(1/n) ne peut tendre vers 0 quand n→ +∞.

S’il y avait convergence uniforme sur R+ alors

0 6
∞∑

k=n+1
uk(1/n) 6 sup

x∈R+

∣∣∣∣∣
∞∑

k=n+1
uk(x)

∣∣∣∣∣→ 0

ce qui vient d’être exclu.
e) Si S est continue en 0 alors par sommation de terme positif

0 6
∞∑

k=n+1
uk(1/n) 6 S(1/n)→ S(0) = 0

ce qui est encore à exclure.

Exercice 90 : [énoncé]
Puisque an > 0 et

∑
an(1 + |xn|) converge, les séries

∑
an et

∑
anxn sont

absolument convergentes.
Posons fn(x) = an |x− xn|.
Comme |an |x− xn|| 6 |an| |x|+ |anxn|, la série des fonctions fn converge
simplement sur R.
Les fonctions fn sont continues et sur [−M,M ], ‖fn‖∞ 6Man + an |xn|.
Par convergence normale sur tout segment d’une série de fonctions continues, on
peut affirmer que la somme f est continue.
Soit [α, β] ∈ R tel que xn /∈ [α, β] pour tout n ∈ N.
Les fonctions fn sont de classe C1 sur [α, β] et f ′n(x) = εan avec |ε| = 1.
Par convergence normale de la série des dérivées sur [α, β], on peut affirmer que f
est de classe C1 sur tout intervalle ouvert ]a, b[ vérifiant ∀n ∈ N, xn /∈ ]a, b[.
Soit a ∈ R tel qu’il existe n ∈ N vérifiant xn = a.
En considérant A = {n ∈ N/xn = a}, on peut écrire par absolue convergence

f(x) =
∑
n∈A

an |x− a|+
∑

n∈N\A

an |x− xn| = α |x− a|+ g(x)

avec α > 0.
Puisque la série

∑
an converge, pour N assez grand,

+∞∑
k=N+1

an 6 α
2 .

On peut alors écrire

f(x) = α |x− a|+
∑

n∈N\A,n>N+1

an |x− xn|+
∑

n∈N\A,n6N

an |x− xn|

La fonction x 7→
∑

n∈N\A,n6N
an |x− xn| est dérivable au voisinage de a.

Cependant, la fonction

ϕ : x 7→ α |x− a|+
∑

n∈N\A,n>N+1

an |x− xn|

n’est quand à elle pas dérivable en a.
En effet, pour h > 0,

1
h

(ϕ(a+ h)− ϕ(a)) > α− α

2 >
α

2
alors que pour h < 0,

1
h

(ϕ(a+ h)− ϕ(a)) 6 −α+ α

2 = −α2
Ainsi, les éventuels nombres dérivés à droite et à gauche ne peuvent pas coïncider.
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Exercice 91 : [énoncé]
a) En vertu du théorème des accroissements finis

|un(x)| 6 x sup
[n,n+x]

|(arctan)′| = x

1 + n2

On en déduit que la série de fonctions
∑
un converge simplement et donc la

fonction S est bien définie.
Les fonctions un sont continue et pour tout a ∈ R+,

∀x ∈ [0, a] , |un(x)| 6 a

1 + n2

On peut donc affirmer la convergence uniforme sur tout segment de la série
∑
un

ce qui assure la continuité de S.
b) Montrons que S tend vers +∞ en +∞.
Sachant

∀x > 0, arctan(x) + arctan(1/x) = π

2
on peut réécrire

S(x) = arctan x+
+∞∑
n=1

(
arctan 1

n
− arctan 1

(n+ x)

)
Les termes sommés étant tous positifs

S(x) > arctan x+
N∑
n=1

(
arctan 1

n
− arctan 1

(n+ x)

)
Or, quand x→ +∞

arctan x+
N∑
n=1

(
arctan 1

n
− arctan 1

(n+ x)

)
−−−−−→
x→+∞

π

2 +
N∑
n=1

arctan 1
n

Puisque la série
∑

arctan 1
n est une série à termes positifs divergente, pour A ∈ R

quelconque, il existe N ∈ N tel que
N∑
n=1

arctan 1
n
> A

et alors, pour x assez grand

arctan x+
N∑
n=1

(
arctan 1

n
− arctan 1

(n+ x)

)
> A

puis
S(x) > A
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