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Polynômes
L’anneau des polynômes

Exercice 1 [ 02127 ] [correction]
Résoudre les équations suivantes :
a) Q2 = XP 2 d’inconnues P,Q ∈ K [X]
b) P ◦ P = P d’inconnue P ∈ K [X].

Exercice 2 [ 02674 ] [correction]
Trouver les P ∈ R [X] tels que P (X2) = (X2 + 1)P (X).

Exercice 3 [ 02377 ] [correction]
a) Pour n ∈ N, développer le polynôme

(1 +X)(1 +X2)(1 +X4) . . . (1 +X2n)

b) En déduire que tout entier p > 0 s’écrit de façon unique comme somme de
puissance de 2 : 1, 2, 4, 8, . . .

Exercice 4 [ 02553 ] [correction]
Soit (Pn)n∈N? la suite de polynômes définie par

P1 = X − 2 et ∀n ∈ N?, Pn+1 = P 2
n − 2

Calculer le coefficient de X2 dans Pn.

Polynômes réels

Exercice 5 [ 00399 ] [correction]
Soit P ∈ R [X]. Montrer qu’il y a équivalence entre
(i) ∀x ∈ R, P (x) > 0 ;
(ii) ∃(A,B) ∈ R [X]2 , P = A2 +B2.

Polynômes complexes

Exercice 6 [ 00271 ] [correction]
Soit P ∈ C [X] non constant et tel que P (0) = 1. Montrer que :

∀ε > 0,∃z ∈ C, |z| < ε et |P (z)| < 1

Exercice 7 [ 03342 ] [correction]
Soit P = a0 + a1X + · · ·+ anX

n ∈ C [X]. On pose

M = sup
|z|=1

|P (z)|

Montrer
∀k ∈ {0, . . . , n} , |ak| 6M

(indice : employer des racines de l’unité)

Exercice 8 [ 02165 ] [correction]
Soit

P (X) = Xn + an−1X
n−1 + · · ·+ a1X + a0 ∈ C [X]

Montrer que si ξ est racine de P alors

|ξ| 6 1 + max
06k6n−1

|ak|

Exercice 9 [ 03683 ] [correction]
Soit P ∈ C [X] un polynôme non constant dont les racines complexes sont de
parties imaginaires positives ou nulles. Montrer que le polynôme P + P̄ est scindé
dans R [X].

Polynômes réels scindés

Exercice 10 [ 03581 ] [correction]
Soit P ∈ R [X] scindé de degré > 2 ; on veut montrer que le polynôme P ′ est lui
aussi scindé.
a) Enoncer le théorème de Rolle.
b) Si x0 est racine de P de multiplicité m > 1, quelle en est la multiplicité dans
P ′ ?
c) Prouver le résultat énoncé.
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Exercice 11 [ 00261 ] [correction]
a) Soit f : R→ R une fonction dérivable. On suppose que f s’annule au moins n
fois. Montrer que f ′ s’annule au moins n− 1 fois.
b) Soit P ∈ R [X] un polynôme scindé à racines simples avec n = degP > 2.
Montrer que le polynôme P ′ est lui aussi scindé.
c) Montrer que le résultat perdure même si les racines de P ne sont pas simples.

Exercice 12 [ 02160 ] [correction]
Soit P un polynôme de degré n+ 1 ∈ N? à coefficients réels possédant n+ 1
racines réelles distinctes.
a) Montrer que son polynôme dérivé P ′ possède exactement n racines réelles
distinctes.
b) En déduire que les racines du polynôme P 2 + 1 sont toutes simples dans C.

Exercice 13 [ 02163 ] [correction]
Soit P ∈ R [X] un polynôme scindé de degré supérieur à 2.
Montrer que P ′ est scindé.

Exercice 14 [ 02669 ] [correction]
a) Si P ∈ R [X] est scindé sur R , montrer que P ′ est scindé ou constant sur R.
b) Si (a, b, c) ∈ R3, montrer que X10 + aX9 + bX8 + cX7 +X + 1 n’est pas scindé
sur R.

Exercice 15 [ 03339 ] [correction]
Soit P ∈ R [X] scindé à racines simples dans R. Montrer que pour tout α ∈ R? les
racines de P 2 + α2 dans C sont toutes simples.

Exercice 16 [ 03696 ] [correction]
Soit P ∈ R [X] scindé sur R. Montrer que pour tout réel α, le polynôme P ′ + αP
est lui aussi scindé sur R.

Exercice 17 [ 00274 ] [correction]
Soit P ∈ R [X] simplement scindé sur R. Montrer que P ne peut avoir deux
coefficients consécutifs nuls.

Exercice 18 [ 03340 ] [correction]
Soit P ∈ R [X] scindé à racines simples.
Montrer qu’aucun coefficient nul de P ne peut être encadré par deux coefficients
non nuls et de même signe.

Dérivation

Exercice 19 [ 02129 ] [correction]
Résoudre les équations suivantes :
a) P ′2 = 4P d’inconnue P ∈ K [X]
b) (X2 + 1)P ′′ − 6P = 0 d’inconnue P ∈ K [X].

Exercice 20 [ 02130 ] [correction]
Montrer que pour tout entier naturel n, il existe un unique polynôme Pn ∈ R [X]
tel que

Pn − P ′n = Xn

Exprimer les coefficients de Pn à l’aide de nombres factoriels.

Exercice 21 [ 02131 ] [correction]
Déterminer dans K [X] tous les polynômes divisibles par leur polynôme dérivé.

Exercice 22 [ 02132 ] [correction]
Soit P ∈ K [X]. Montrer

P (X + 1) =
+∞∑
n=0

1
n!P

(n)(X)

Exercice 23 [ 03338 ] [correction]
Trouver tous les polynômes P ∈ R [X] tels que

∀k ∈ Z,
∫ k+1

k

P (t) dt = k + 1

Exercice 24 [ 03341 ] [correction]
Soit P ∈ R [X]. On suppose que a ∈ R vérifie

P (a) > 0 et ∀k ∈ N?, P (k)(a) > 0

Montrer que le polynôme P ne possède pas de racines dans [a,+∞[.
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Division euclidienne

Exercice 25 [ 02141 ] [correction]
Soit (a, b) ∈ K2 tel que a 6= b et P ∈ K [X]. Exprimer le reste de la division
euclidienne de P par (X − a)(X − b) en fonction de P (a) et P (b).

Exercice 26 [ 02142 ] [correction]
Soient a ∈ K et P ∈ K [X].
Exprimer le reste de la division euclidienne de P par (X − a)2 en fonction de
P (a) et P ′ (a).

Exercice 27 [ 02143 ] [correction]
Soient t ∈ R et n ∈ N?.
Déterminer le reste de la division euclidienne dans R [X] de (X cos t+ sin t)n par
X2 + 1.

Exercice 28 [ 02144 ] [correction]
Soit k, n ∈ N? et r le reste de la division euclidienne de k par n.
Montrer que le reste de la division euclidienne de Xk par Xn − 1 est Xr.

Exercice 29 [ 02145 ] [correction]
Soient n,m ∈ N?.
a) De la division euclidienne de n par m, déduire celle de Xn − 1 par Xm − 1.
b) Etablir que

pgcd(Xn − 1, Xm − 1) = Xpgcd(n,m) − 1

Divisibilité

Exercice 30 [ 02133 ] [correction]
Montrer les divisibilités suivantes et déterminer les quotients correspondant :
a) X − 1 | X3 − 2X2 + 3X − 2 b) X − 2 | X3 − 3X2 + 3X − 2 c)
X + 1 | X3 + 3X2 − 2.

Exercice 31 [ 02140 ] [correction]
En réalisant une division euclidienne, former une condition nécessaire et suffisante
sur (λ, µ) ∈ K2 pour que X2 + 2 divise X4 +X3 + λX2 + µX + 2.

Exercice 32 [ 02134 ] [correction]
Soit P ∈ K [X].
a) Montrer que P (X)−X divise P (P (X))− P (X).
b) En déduire que P (X)−X divise P (P (X))−X.
c) On note P [n] = P ◦ . . . ◦ P (composition à n > 1 facteurs).
Etablir que P (X)−X divise P [n](X)−X

Exercice 33 [ 03407 ] [correction]
Soit P ∈ K [X]. Montrer que P (X)−X divise P (P (X))−X.

Exercice 34 [ 03632 ] [correction]
Montrer que pour tout a, b ∈ N

a | b⇔ Xa − 1 | Xb − 1

Arithmétique

Exercice 35 [ 02135 ] [correction]
Soit A,B ∈ K [X] tels que A2 | B2. Montrer que A | B.

Exercice 36 [ 02136 ] [correction]
Soit A,B ∈ K [X] non constants et premiers entre eux.
Montrer qu’il existe un unique couple (U, V ) ∈ K [X]2 tel que

AU +BV = 1 et
{

degU < degB
deg V < degA

Exercice 37 [ 02137 ] [correction]
Soit (A,B) ∈ K [X]2 non nuls. Montrer que les assertions suivantes sont
équivalentes :
(i) A et B ne sont pas premiers entre eux.
(ii) il existe (U, V ) ∈ ( K [X]− {0})2 tel que

AU +BV = 0, degU < degB et deg V < degA
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Exercice 38 [ 02138 ] [correction]
Soit A,B ∈ K [X] non nuls.
Montrer : A et B sont premiers entre eux si, et seulement si, A+B et AB le sont.

Exercice 39 [ 02139 ] [correction]
Soient A,B,C ∈ K [X] tels que A et B soient premiers entre eux.
Montrer

pgcd(A,BC) = pgcd(A,C)

Exercice 40 [ 02580 ] [correction]
On cherche les polynômes

P (X) = (X − a)(X − b) ∈ C [X]

tels que P (X) divise P (X3).
Montrer que, si a = b, P ∈ R [X] et que si a 6= b et a3 6= b3, il existe 6 polynômes
dont 4 dans R [X].
Trouver les polynômes P si a 6= b et a3 = b3 et en déduire que 13 polynômes en
tout conviennent, dont 7 dans R [X].

Racines

Exercice 41 [ 02157 ] [correction]
a) Soit

P = anX
n + an−1X

n−1 + ...+ a1X + a0

un polynôme à coefficients entiers tel que an 6= 0 et a0 6= 0.
On suppose que P admet une racine rationnelle r = p/q exprimée sous forme
irréductible.
Montrer que p | a0 et q | an.
b) Factoriser

P = 2X3 −X2 − 13X + 5

c) Le polynôme
P = X3 + 3X − 1

est-il irréductible dans Q [X] ?

Exercice 42 [ 02158 ] [correction]
Soient a, b, c trois éléments, non nuls et distincts, du corps K.
Démontrer que le polynôme

P = X(X − b)(X − c)
a(a− b)(a− c) + X(X − c)(X − a)

b(b− c)(b− a) + X(X − a)(X − b)
c(c− a)(c− b)

peut s’écrire sous la forme P = λ(X − a)(X − b)(X − c) + 1 où λ est une
constante que l’on déterminera.

Exercice 43 [ 02371 ] [correction]
a) Soit n ∈ N. Exprimer sin ((2n+ 1)α) en fonction de sinα et cosα.
b) En déduire que les racines du polynôme :

P (X) =
n∑
p=0

(−1)p
(

2n+ 1
2p+ 1

)
Xn−p

sont de la forme xk = cot2 βk. Déterminer les βk.

Exercice 44 [ 02663 ] [correction]
a) Montrer que a = cos(π/9) est racine d’un polynôme de degré trois à coefficients
dans Z.
b) Justifier que le nombre a est irrationnel.

Exercice 45 [ 02941 ] [correction]
Soient A,B ∈ C [X] non constants vérifiant

{z ∈ C/A(z) = 0} = {z ∈ C/B(z) = 0} et {z ∈ C/A(z) = 1} = {z ∈ C/B(z) = 1}

Montrer que A = B.

Exercice 46 [ 01352 ] [correction]
Soient K un corps et a1, a2, . . . , an ∈ K deux à deux distincts.
a) Calculer

n∑
i=1

∏
j 6=i

X − aj
ai − aj

b) On pose A(X) =
n∏
j=1

(X − aj). Calculer

n∑
i=1

1
A′(ai)
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Racines et arithmétique

Exercice 47 [ 02166 ] [correction]
Soient p et q deux entiers supérieurs à 2 et premiers entre eux.
Montrer

(Xp − 1)(Xq − 1) | (X − 1)(Xpq − 1)

Exercice 48 [ 02167 ] [correction]
Justifier les divisibilités suivantes :
a) ∀n ∈ N, X2 | (X + 1)n − nX − 1
b) ∀n ∈ N?, (X − 1)3 | nXn+2 − (n+ 2).Xn+1 + (n+ 2)X − n

Exercice 49 [ 02168 ] [correction]
Montrer qu’il existe un unique polynôme P de degré inférieur ou égal à 3 tel que :

(X − 1)2 | P − 1 et (X + 1)2 | P + 1

Déterminer celui-ci.

Exercice 50 [ 02169 ] [correction]
Justifier

∀(n, p, q) ∈ N3, 1 +X +X2 | X3n +X3p+1 +X3q+2

Exercice 51 [ 02170 ] [correction]
Déterminer une condition nécessaire et suffisante sur n ∈ N pour que

X2 +X + 1 | X2n +Xn + 1

Exercice 52 [ 02668 ] [correction]
Déterminer les P de R [X] tels que

(X + 4)P (X) = XP (X + 1)

Exercice 53 [ 03041 ] [correction]
Trouver les P ∈ C [X] tels que

P (1) = 1, P (2) = 2, P ′(1) = 3, P ′(2) = 4,P ′′(1) = 5 et P ′′(2) = 6

Exercice 54 [ 03406 ] [correction]
[Equation de Fermat polynomiale]
a) Soient P,Q,R ∈ C [X] premiers entre eux deux à deux, non constants, et tels
que

P +Q+R = 0

Soient p, q, r le nombre de racines distinctes des polynômes P,Q,R
respectivement.
Prouver que le degré de P est strictement inférieur à p+ q + r.
(indice : introduite P ′Q−Q′P )
b) Trouver tous les triplets de polynômes complexes (P,Q,R) tels que

Pn +Qn = Rn

pour n > 3 donné.
c) Le résultat s’étend-il à n = 2?

Racines et équations polynomiales

Exercice 55 [ 02159 ] [correction]
Soit P ∈ C [X] un polynôme non nul tel que

P (X2) + P (X)P (X + 1) = 0

a) Montrer que si a est racine de P alors a2 l’est aussi
b) En déduire que a = 0 ou bien a est racine de l’unité.

Exercice 56 [ 02164 ] [correction]
Montrer que si P ∈ R [X] \ {0} vérifie

P (X2) = P (X)P (X + 1)

ses racines sont parmi 0, 1,−j,−j2. En déduire tous les polynômes solutions.

Exercice 57 [ 02375 ] [correction]
Trouver les P ∈ C [X] vérifiant

P (X2) = P (X)P (X + 1)
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Exercice 58 [ 02673 ] [correction]
On cherche les polynômes P non nuls tels que

P (X2) = P (X − 1)P (X)

a) Montrer que toute racine d’un tel P est de module 1.
b) Déterminer les polynômes P .

Exercice 59 [ 02672 ] [correction]
Déterminer les polynômes P de R [X] \ {0} vérifiant

P (X2) = P (X − 1)P (X)

Exercice 60 [ 01329 ] [correction]
Trouver les P ∈ C [X] vérifiant

P (X2) = P (X)P (X − 1)

Factorisation

Exercice 61 [ 02171 ] [correction]
Factoriser dans C [X] puis dans R [X] les polynômes suivants :

a) X4 − 1 b) X5 − 1 c) (X2 −X + 1)2 + 1.

Exercice 62 [ 02172 ] [correction]
Factoriser dans R [X] les polynômes suivants :

a) X4 +X2 + 1 b) X4 +X2 − 6 c) X8 +X4 + 1.

Exercice 63 [ 02173 ] [correction]
Factoriser le polynôme (X + i)n − (X − i)n pour n ∈ N?.

Exercice 64 [ 02174 ] [correction]
Former la décomposition primaire dans R [X] de P = X2n+1 − 1 (avec n ∈ N).

Exercice 65 [ 02175 ] [correction]
Soient a ∈ ]0, π[ et n ∈ N?. Factoriser dans C [X] puis dans R [X] le polynôme

X2n − 2 cos(na)Xn + 1

Relations entre coefficients et racines d’un poly-
nôme scindé

Exercice 66 [ 02176 ] [correction]
Trouver les racines dans C du polynôme X4 + 12X − 5 sachant qu’il possède deux
racines dont la somme est 2.

Exercice 67 [ 02177 ] [correction]
Donner une condition nécessaire et suffisante sur λ ∈ C pour que X3 − 7X + λ
admette une racine qui soit le double d’une autre. Résoudre alors l’équation.

Exercice 68 [ 02178 ] [correction]
Résoudre x3 − 8x2 + 23x− 28 = 0 sachant que la somme de deux des racines est
égale à la troisième.

Exercice 69 [ 02179 ] [correction]
On considère l’équation : x3 − (2 +

√
2)x2 + 2(

√
2 + 1)x− 2

√
2 = 0 de racines

x1, x2 et x3.
a) Former une équation dont x2

1, x
2
2 et x2

3 seraient racines.
b) En déduire les valeurs de x1, x2, x3.

Exercice 70 [ 02180 ] [correction]
Déterminer les triplets (x, y, z) ∈ C3 tels que

a)


x+ y + z = 1
1/x+ 1/y + 1/z = 1
xyz = −4

b)


x(y + z) = 1
y(z + x) = 1
z(x+ y) = 1

c)


x+ y + z = 2
x2 + y2 + z2 = 14
x3 + y3 + z3 = 20

Exercice 71 [ 02181 ] [correction]
Soient x, y, z ∈ C? tels que x+ y + z = 0. Montrer

1
x2 + 1

y2 + 1
z2 =

(
1
x

+ 1
y

+ 1
z

)2
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Exercice 72 [ 02182 ] [correction]
Pour n ∈ N? on pose Pn =

n∑
k=0

Xk.

a) Former la décomposition en facteurs premiers de Pn dans C [X].
b) En déduire la valeur de

n∏
k=1

sin kπ
n+1 .

Exercice 73 [ 02183 ] [correction]
Soit a ∈ R et n ∈ N?. Résoudre dans C l’équation

(1 + z)n = cos(2na) + i sin(2na)

En déduire la valeur de
n−1∏
k=0

sin
(
a+ kπ

n

)

Exercice 74 [ 02184 ] [correction]
Soit P ∈ C [X] non nul et n = degP .
Montrer que les sommes des zéros de P, P ′, . . . , P (n−1) sont en progression
arithmétique.

Exercice 75 [ 02373 ] [correction]
Soit P = X3 + aX2 + bX + c un polynôme complexe de racines α, β, γ. Calculer

α

β + γ
+ β

γ + α
+ γ

α+ β

Exercice 76 [ 03333 ] [correction]
x, y, z désignent trois complexes vérifiant

x+ y + z = 0

Etablir
x5 + y5 + z5

5 =
(
x2 + y2 + z2

2

)(
x3 + y3 + z3

3

)

Exercice 77 [ 03336 ] [correction]
Résoudre dans C3 le système 

x2 + y2 + z2 = 0
x4 + y4 + z4 = 0
x5 + y5 + z5 = 0

Exercice 78 [ 03345 ] [correction]
On considère le polynôme

P (X) = a0X
n + a1X

n−1 + · · ·+ an ∈ C [X]

de racines x1, . . . , xn comptées avec multiplicité.
Pour toutp ∈ N, on pose

Sp = xp1 + · · ·+ xpn

Etablir 

a0S1 + a1 = 0
a0S2 + a1S1 + 2a2 = 0
. . .

a0Sp + a1Sp−1 + · · ·+ ap−1S1 + pap = 0 (0 < p 6 n)
. . .

a0Sn + a1Sn+1 + · · ·+ anS1 = 0
. . .

a0Sn+k + a1Sn+k−1 + · · ·+ anSk = 0 (k > 0)

Exercice 79 [ 03812 ] [correction]
a) Déterminer trois éléments a, b, c de C, non tous réels, tels que a+ b+ c,
a2 + b2 + c2 et a3 + b3 + c3 soient trois réels.
b) Montrer que, si a, b, c sont trois éléments de C de modules différents et si
a+ b+ c ∈ R, a2 + b2 + c2 ∈ R et a3 + b3 + c3 ∈ R, alors a,b et c sont trois réels.
Enoncé fourni par le concours CENTRALE-SUPELEC (CC)-BY-NC-SA

Familles de polynômes classiques

Exercice 80 [ 02185 ] [correction]
Polynômes de Tchebychev (1821-1894) :
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Soit n ∈ N. On pose fn : [−1, 1]→ R l’application définie par

fn(x) = cos(n arccosx)

a) Calculer f0,f1, f2 et f3.
b) Exprimer fn+1(x) + fn−1(x) en fonction de fn(x).
c) Etablir qu’il existe un unique polynôme Tn de R [X] dont la fonction
polynomiale associée coïncide avec fn sur [−1, 1].
d) Donner le degré de Tn ainsi que son coefficient dominant.
e) Observer que Tn possède exactement n racines distinctes, que l’on exprimera,
toutes dans ]−1, 1[.

Exercice 81 [ 02186 ] [correction]
Polynômes d’interpolation de Lagrange (1736-1813) :
Soit (a0, a1, . . . , an) une famille d’éléments de K deux à deux distincts.
Pour tout i ∈ {0, 1, . . . , n} on pose

Li =

∏
06j6n,j 6=i

(X − aj)∏
06j6n,j 6=i

(ai − aj)

a) Observer que, pour tout j ∈ {0, 1, ..., n}, on a Li(aj) = δi,j
(où δi,j est le symbole de Kronecker (1823-1891) qui est égal à 1 lorsque i = j et 0
sinon).
b) Montrer que

∀P ∈ Kn [X] , P (X) =
n∑
i=0

P (ai)Li(X)

Exercice 82 [ 02187 ] [correction]
Polynômes de Legendre (1752-1833) :
Pour tout entier naturel n on pose

Ln = n!
(2n)!

(
(X2 − 1)n

)(n)

a) Montrer que Ln est un polynôme unitaire de degré n.
b) Montrer que

∀Q ∈ Rn−1 [X] ,
∫ 1

−1
Ln(t)Q(t)dt = 0

c) En déduire que Ln possède n racines simples toutes dans ]−1, 1[.

Exercice 83 [ 02188 ] [correction]
Soit (Pn)n>0 la suite de K [X] définie par

P0 = 0, P1 = 1 et ∀n ∈ N, Pn+2 = XPn+1 − Pn

a) Montrer
∀n ∈ N, P 2

n+1 = 1 + PnPn+2

b) En déduire
∀n ∈ N, Pn et Pn+1 sont premiers entre eux

c) Etablir pour que pour tout m ∈ N et pour tout n ∈ N? on a

Pm+n = PnPm+1 − Pn−1Pm

d) Montrer que pour tout m ∈ N et pour tout n ∈ N? on a

pgcd(Pm+n, Pn) = pgcd(Pn, Pm)

En déduire que pgcd(Pm, Pn) = pgcd(Pn, Pr) où r est le reste de la division
euclidienne de m par n.
e) Conclure

pgcd(Pn, Pm) = Ppgcd(m,n)

Exercice 84 [ 02189 ] [correction]
Polynômes de Laguerre (1834-1886) :
Pour n ∈ N, on définit Ln : R→ R par

Ln(x) = ex dn

dxn (e−xxn)

Observer que Ln est une fonction polynomiale dont on déterminera le degré et le
coefficient dominant.

Exercice 85 [ 02670 ] [correction]
Soit n ∈ N. Montrer qu’il existe un unique polynôme P ∈ C [X] tel que
P (cos θ) = cosnθ pour tout θ réel. On le note Tn.
a) Lier Tn−1, Tn et Tn+1.
b) Donner une équation différentielle vérifiée par Tn.
c) Calculer T (k)

n (1) et T (k)
n (−1).
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Exercice 86 [ 02671 ] [correction]
Quels sont les couples (P,Q) ∈ R [X]2 vérifiant P 2 + (1−X2)Q2 = 1?

Exercice 87 [ 02128 ] [correction]
On définit une suite de polynôme (Pn) par

P0 = 2, P1 = X et ∀n ∈ N, Pn+2 = XPn+1 − Pn

a) Calculer P2 et P3.
Déterminer degré et coefficient dominant de Pn.
b) Montrer que, pour tout n ∈ N et pour tout z ∈ C? on a

Pn(z + 1/z) = zn + 1/zn

c) En déduire une expression simple de Pn(2 cos θ) pour θ ∈ R.
d) Déterminer les racines de Pn.

Exercice 88 [ 03269 ] [correction]
On pose

f(x) = 1
cosx

Démontrer l’existence d’un polynôme Pn de degré n et à coefficients positifs ou
nul vérifiant

∀n > 1, f (n)(x) = Pn(sin x)
(cosx)n+1

Préciser P1, P2, P3 et calculer Pn(1).
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Corrections

Exercice 1 : [énoncé]
a) Si (P,Q) est un couple solution de polynômes non nuls alors Q2 = XP 2 donne
2 degQ = 1 + 2 degP avec degP,degQ ∈ N ce qui est impossible. Il reste le cas où
l’un des polynômes P ou Q est nul et l’autre, alors, l’est aussi. Inversement, le
couple nul est effectivement solution.
b) Si degP > 2 alors degP ◦ P = (degP )2 > degP et donc P n’est pas solution.
Si degP 6 1 alors on peut écrire P = aX + b et alors

P ◦ P = P ⇔ a(aX + b) + b = aX + b⇔

{
a2 = a

ab = 0

Après résolution on obtient

(a = 1et b = 0) ou (a = 0 et b quelconque)

Finalement les solutions sont le polynôme X et les polynômes constants.

Exercice 2 : [énoncé]
Parmi les polynômes constants, seuls le polynôme nul est solution.
Si degP > 1 alors, pour vérifier l’équation, il est nécessaire que degP = 2. On
peut alors écrire P sous la forme aX2 + bX + c. Parmi, les polynômes de cette
forme, ceux solutions sont ceux obtenus pour b = 0 et c = −a. Conclusion, les
polynômes solutions sont les a(X2 − 1) avec a ∈ R.

Exercice 3 : [énoncé]
a) Posons

P (X) = (1 +X)(1 +X2)(1 +X4) . . . (1 +X2n)
En exploitant successivement (a− b)(a+ b) = a2 − b2, on obtient

(1−X)P (X) = 1−X2n+1

On en déduit

P (X) = 1−X2n+1

1−X = 1 +X +X2 + · · ·+X2n+1−1

b) Lorsqu’on développe directement le polynôme P , le coefficient de Xk obtenu
correspond au nombre de fois qu’il est possible d’écrire k comme la somme des
puissances de 2 suivantes : 1, 2, 4, . . . , 2n. Ce nombre vaut 1 compte tenu de
l’exercice précédent.

Exercice 4 : [énoncé]
Notons an, bn et cn les coefficients de 1, X et X2 dans Pn.
Puisque P1 = X − 2, on a a1 = −2, b1 = 1 et c1 = 0.
Puisque Pn+1 = P 2

n − 2, on a an+1 = a2
n − 2, bn+1 = 2anbn et cn+1 = b2

n + 2ancn.
On en déduit a2 = 2, b2 = −4 et c2 = 1 puis pour n > 3 : an = 2, bn = −4n−1,

cn = 4n−2 + 4n−1 + · · ·+ 42n−4 = 4n−2 4n−1 − 1
3

Exercice 5 : [énoncé]
L’implication (ii)⇒(i) est immédiate.
Supposons (i).
Puisque P est de signe constant, la décomposition en facteurs irréductibles de P
s’écrit avec des facteurs de la forme

(X − λ)2 = (X − λ)2 + 02

et
X2 + 2pX + q = (X + p/2)2 +

√
q2 − 4p

2

Ainsi P est, à un facteur multiplicatif positif près, le produit de polynômes
s’écrivant comme la somme des carrés de deux polynômes réels.
Or

(A2 +B2)(C2 +D2) = (AC −BD)2 + (AD +BC)2

donc P peut s’écrire comme la somme des carrés de deux polynômes réels

Exercice 6 : [énoncé]
Puisque le polynôme P est non constant, on peut écrire

P (z) = 1 + aqz
q + zq+1Q(z)

avec aq 6= 0 et Q ∈ C [X].
Posons θ un argument du complexe aq et considérons la suite (zn) de terme
général

zn = 1
n

ei(π−θ)/q

On a zn → 0 et
P (zn) = 1− |aq|

nq
+ o

(
1
nq

)
donc |P (zn)| < 1 pour n assez grand.
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Exercice 7 : [énoncé]
Soit ω = e2iπ/(n+1) une racine nème de l’unité. On a

P (1) + P (ω) + · · ·+ P (ωn) = (n+ 1)a0

car
n∑
k=0

ωk` =
{
n+ 1 si ` = 0 [n+ 1]
0 sinon

On en déduit (n+ 1) |a0| 6 (n+ 1)M puis |a0| 6M .
De façon plus générale, on a

P (1) + ω−kP (ω) + · · ·+ ω−nkP (ωn) = (n+ 1)ak

et on en déduit |ak| 6M .

Exercice 8 : [énoncé]
La propriété est immédiate si |ξ| 6 1. On suppose désormais |ξ| > 1 et on note

m = max
06k6n−1

|ak|

L’égalité
−ξn = an−1ξ

n−1 + · · ·+ a1ξ + a0

donne

|ξ|n 6
n−1∑
k=0
|ak| |ξ|k 6 m

n−1∑
k=0
|ξ|k

donc
|ξ|n 6 m

|ξ|n − 1
|ξ| − 1 6 m

|ξ|n

|ξ| − 1
puis

|ξ| 6 1 +m

Exercice 9 : [énoncé]
On peut écrire P sous forme factorisée

P (X) = λ

n∏
k=1

(X − zk)

avec n = degP ∈ N? et zk ∈ C vérifiant Imzk > 0.

Un complexe z est racine du polynôme P + P̄ si, et seulement si,

λ

n∏
k=1

(z − zk) = −λ̄
n∏
k=1

(z − zk)

Si Imz > 0 alors
∀k ∈ {1, . . . , n} , |z − zk| < |z − zk|

et donc ∣∣∣∣∣λ
n∏
k=1

(z − zk)

∣∣∣∣∣ < λ̄

∣∣∣∣∣
n∏
k=1

(z − zk)

∣∣∣∣∣
Ainsi z ne peut être racine de P + P̄ et z̄ non plus par le même raisonnement ou
parce que P + P̄ est un polynôme réel.
On en déduit que les racines de P sont toutes réelles et donc P est scindé dans
R [X].
Ainsi le polynôme ReP est scindé dans R [X] et, par une argumentation analogue,
il en est de même de ImP .

Exercice 10 : [énoncé]
a) Si f : [a, b]→ R (avec a < b) est continue, dérivable sur ]a, b[ et si f(a) = f(b)
alors il existe c ∈ ]a, b[ tel que f ′(c) = 0.
b) Si x0 est racine de multiplicité m de P alors x0 est racine de multiplicité m− 1
de P ′ (en convenant qu’une racine de multiplicité 0 n’est en fait pas racine).
c) Notons x1 < . . . < xp les racines de P et m1, . . . ,mp leurs multiplicités
respectives. Puisque le polynôme P est supposé scindé, on a

m1 + · · ·+mp = degP

Les éléments x1, . . . , xp sont racines de multiplicités m1 − 1, . . . ,mp − 1 de P ′.
En appliquant le théorème de Rolle à P entre xk et xk+1, on détermine
yk ∈ ]xk, xk+1[ racine de P ′. Ces yk sont distincts entre eux et distincts des
x1, . . . , xp. On a ainsi obtenu au moins

(p− 1) + (m1 − 1) + · · ·+ (mp − 1) = degP − 1

racines de P ′. Or degP ′ = degP − 1 donc P ′ est scindé.

Exercice 11 : [énoncé]
a) Soient a1 < . . . < an les zéros de f . En appliquant le théorème Rolle sur chaque
intervalle [ai, ai+1], on obtient bi ∈ ]ai, ai+1[ annulant f ′. Puisque

a1 < b1 < a2 < · · · < bn−1 < an
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les b1, . . . , bn−1 sont des annulations distinctes de f ′.
b) Si P est scindé à racines simples, il possède n racines. Le polynôme P ′ possède
alors au moins n− 1 racines. Or degP ′ = n− 1 donc le polynôme P ′ est scindé.
c) Soient a1 < . . . < ap les racines de P et α1, . . . , αp leurs multiplicités avec

α1 + · · ·+ αp = n

Les a1 < . . . < ap sont racines de P ′ de multiplicités respectives

α1 − 1, . . . , αp − 1

Comme ci-dessus, par Rolle, on peut aussi assurer l’existence de p− 1 autres
racines à P ′.
La somme des multiplicités des racines est donc au moins égales à

p∑
i=1

αi − 1 + p− 1 = n− 1 = degP ′

et donc le polynôme P ′ est scindé.

Exercice 12 : [énoncé]
a) Notons a0 < a1 < . . . < an les racines de P .
En appliquant le théorème de Rolle à la fonction x 7→ P (x) sur l’intervalle
[ai−1, ai], on justifie l’existence d’un réel bi ∈ ]ai−1, ai[ tels que P ′(bi) = 0. Puisque

a0 < b1 < a1 < b2 < . . . < bn < an

les réels b1, . . . , bn sont deux à deux distincts ce qui fournit n racines réelles au
polynôme P ′.
Puisque degP ′ = degP − 1 = n, il ne peut y en avoir d’autres.
b) Une racine multiple de P 2 + 1 est aussi racine du polynôme dérivé

(P 2 + 1)′ = 2PP ′

Or les racines de P ne sont pas racines de P 2 + 1 et les racines de P ′ sont réelles
et ne peuvent donc être racines de P 2 + 1. Par suite P 2 + 1 et (P 2 + 1)′ n’ont
aucunes racines communes : les racines de P 2 + 1 sont simples.

Exercice 13 : [énoncé]
Posons n = degP > 2, a1 < a2 < . . . < ap les racines réelles distinctes de P et
α1, α2, ..., αp leurs ordres respectifs. On a α1 + α2 + · · ·+ αp = n car P est
supposé scindé.

En appliquant le théorème de Rolle à x 7→ P̃ (x) sur chaque [ai, ai+1] on justifie
l’existence de racines distinctes b1, b2, . . . , bp−1 disposée de sorte que
a1 < b1 < a2 < b2 < . . . < bp−1 < ap.
Comme les a1, a2, . . . , ap sont des racines d’ordres α1 − 1, α2 − 1, . . . , αp − 1 de P ′
et que b1, b2, . . . , bp−1 sont des racines au moins simples de P ′, on vient de
déterminer (n− 1) = degP ′ racines de P ′ comptées avec leur multiplicité.
Finalement P ′ est scindé.

Exercice 14 : [énoncé]
a) Si P est degré 1 alors P ′ est constant. Si P est de degré n > 2, par application
du théorème de Rolle, il figure une racine de P ′ entre deux racines consécutives de
P . De surcroît, si a est racine de multiplicité α ∈ N? de P , a est aussi racine de
multiplicité α− 1 de P ′. Par suite, P ′ en admet n− 1 racines comptées avec
multiplicité et est donc scindé.
b) 0 est racine multiple du polynôme dérivé à l’ordre 2. Si le polynôme était
scindé, l’étude qui précède permet d’observer que 0 est racine du polynôme. Ce
n’est pas le cas.

Exercice 15 : [énoncé]
Notons que par application du théorème de Rolle, les racines de P ′ sont réelles (et
simples)
Les racines multiples de P 2 + α2 sont aussi racines de (P 2 + α2)′ = 2PP ′.
Or les racines de P 2 + α2 ne peuvent être réelles et les racines de PP ′ sont toutes
réelles.
Il n’y a donc pas de racines multiples au polynôme P 2 + α2.

Exercice 16 : [énoncé]
Rappelons qu’un polynôme est scindé sur un corps si, et seulement si, la somme
des multiplicités des racines de ce polynôme sur ce corps égale son degré.
Notons a0 < a1 < . . . < am les racines réelles de P et α0, α1, . . . , αm leurs
multiplicités respectives. Le polynôme P étant scindé, on peut écrire

degP =
m∑
k=0

αk

On convient de dire qu’une racine de multiplicité 0 n’est en fait pas racine d’un
polynôme. Avec ses termes, si ak est racine de multiplicité αk > 1 de P alors ak
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est racine de multiplicité αk − 1 du polynôme P ′ et donc racine de multiplicité au
moins (et même exactement) αk− 1 du polynôme P ′+αP . Ainsi les ak fournissent

m∑
k=0

(αk − 1) = degP − (m+ 1)

racines comptées avec multiplicité au polynôme P ′ + αP .
Considérons ensuite la fonction réelle f : x 7→ P (x)eαx.
Cette fonction est indéfiniment dérivable et prend la valeur 0 en chaque ak.
En appliquant le théorème de Rolle à celle-ci sur chaque intervalle [ak−1, ak], on
produit des réels bk ∈ ]ak−1, ak[ vérifiant f ′(bk) = 0. Or

f ′(x) = (P ′(x) + αP (x)) eαx

et donc bk est racine du polynôme P ′ + αP .
Ajoutons à cela que les bk sont deux à deux distincts et différents des précédents
ak car, par construction

a0 < b1 < a1 < b2 < . . . < bm < am

On vient donc de déterminer m nouvelles racines au polynôme P ′ + αP et ce
dernier possède donc au moins

degP − 1

racines comptées avec multiplicité.
Dans le cas α = 0, cela suffit pour conclure car degP ′ = degP − 1.
Dans le cas α 6= 0, il nous faut encore une racine. . .
Si α > 0, la fonction f tend vers 0 en −∞ par argument de croissance comparée.
On peut alors appliquer un théorème de Rolle généralisé à la fonction f sur
l’intervalle ]−∞, a0] et cela fournit la racine manquante.
Si α < 0, on exploite comme au dessus la nullité de la limite de f en +∞ cette
fois pour trouver une racine dans l’intervalle ]am,+∞[.

Exercice 17 : [énoncé]
Remarquons que puisque P est simplement scindé sur R, l’application du
théorème de Rolle entre deux racines consécutives de P donne une annulation de
P ′ et permet de justifier que P ′ est simplement scindé sur R. Il est en de même de
P ′′, P ′′′, . . .
Or, si le polynôme P admet deux coefficients consécutifs nuls alors l’un de ses
polynômes dérivées admet 0 pour racine double. C’est impossible en vertu de la
remarque qui précède.

Exercice 18 : [énoncé]
Ecrivons

P (X) =
+∞∑
n=0

anX
n

et, quitte à considérer −P , supposons par l’absurde qu’il existe p > 1 tel que

ap = 0 avec ap−1, ap+1 > 0

Considérons alors

Q(X) = P (p−1)(X) = (p− 1)!ap−1 + (p+ 1)!
2 ap+1X

2 + · · ·

Puisque le polynôme P est scindé à racines simples, par application du théorème
de Rolle, les racines P (k+1) sont séparées par les racines des P (k). En particulier
les racines de Q′ sont séparées par les racines de Q.
Or 0 est minimum local de Q avec Q(0) > 0.
Si le polynôme Q admet des racines strictement positives et si a est la plus petite
de celles-ci alors Q′ admet une racine dans ]0, a[ par application du théorème des
valeurs intermédiaires et du théorème de Rolle. Or 0 est aussi racine de Q′ et donc
les racines de Q′ ne sont pas séparées par les racines de Q. C’est absurde.
Il en est de même si la polynôme admet des racines strictement négatives.

Exercice 19 : [énoncé]
a) Parmi les polynômes constants, seul le polynôme nul est solution.
Parmi les polynômes non constants, si P est solution alors 2(degP − 1) = degP
et donc degP = 2. On peut alors écrire P = aX2 + bX + c avec a 6= 0.

P ′2 = 4P ⇔ 4a2X2 + 4abX + b2 = 4aX2 + 4bX + 4c⇔
{
a = 1
c = b2/4

Les solutions de l’équation sont P = 0 et P = X2 + bX + b2/4 avec b ∈ K.
b) Parmi les polynôme de degré inférieur à 1, seul le polynôme nul est solution.
Pour P polynôme tel que degP > 2 alors la relation (X2 + 1)P ′′ − 6P = 0
implique, en raisonnant sur l’annulation des coefficients dominants,
degP (degP − 1) = 6 donc degP = 3.
En cherchant P sous la forme P = aX3 + bX2 + cX + d avec a ∈ K?, on obtient
que seuls les polynômes P = a(X3 +X) avec a ∈ K? sont solutions.
Finalement les polynômes solutions sont les a(X3 +X) avec a ∈ K .

Exercice 20 : [énoncé]
Les polynômes solutions de Pn − P ′n = Xn sont nécessairement de degré n.
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Cherchons ceux-ci de la forme :

Pn = anX
n + an−1X

n−1 + · · ·+ a1X + a0

Pn − P ′n = Xn équivaut à

an = 1, an−1 = nan, an−2 = (n− 1)an−1, . . . , a0 = 1.a1

Par suite l’équation Pn − P ′n = Xn possède une et une seule solution qui est :

P = Xn + nXn−1 + n(n− 1)Xn−2 + · · ·+ n! =
n∑
k=0

n!
k!X

k

Exercice 21 : [énoncé]
Parmi les polynômes constants, seul le polynôme nul est divisible par son
polynôme dérivé.
Soit P un polynôme non constant et n son degré.
Si P ′ | P alors on peut écrire nP = (X − a)P ′ avec a ∈ K car degP ′ = degP − 1.
En dérivant nP ′ = (X − a)P ′′ + P ′ donc (n− 1)P ′ = (X − a)P ′′.
Ainsi de suite jusqu’à P (n−1) = (X − a)P (n).
Or, si on pose λ le coefficient dominant de P , on a P (n) = n!λ donc en remontant
les précédents calculs on obtient n!P = n!(X − a)nλ. Ainsi P = λ(X − a)n.
Inversement, un tel polynôme est solution.
Finalement les solutions sont les P = λ(X − a)n avec λ ∈ K.

Exercice 22 : [énoncé]
Par la formule de Taylor

P (X) =
+∞∑
n=0

P (n)(0)
n! Xn

donc

P (1) =
+∞∑
n=0

P (n)(0)
n!

et plus généralement

P (k)(1) =
+∞∑
n=0

P (n+k)(0)
n!

Par la formule de Taylor

P (X + 1) =
+∞∑
k=0

P (k)(1)
k! Xk =

+∞∑
k=0

+∞∑
n=0

1
k!
P (n+k)(0)

n! Xk

puis en permutant les sommes (qui se limitent à un nombre fini de termes non
nuls)

P (X + 1) =
+∞∑
n=0

+∞∑
k=0

1
k!
P (n+k)(0)

n! Xk =
+∞∑
n=0

1
n!P

(n)(X)

Autre méthode : On exploite les ingrédients suivants :

- l’application qui à P associe
+∞∑
n=0

1
n!P

(n)(X) est linéaire ;

- par la formule du binôme, cette application envoie chaque Xk sur (X + 1)k ;
- deux applications linéaires égales sur une base sont égales sur l’espace.

Exercice 23 : [énoncé]
Soit P un polynôme et Q un polynôme primitif de P . P est solution du problème
posé si, et seulement si,

∀k ∈ Z, Q(k + 1)−Q(k) = k + 1

En raisonnant par coefficients inconnus, on observe que Q(X) = 1
2X(X + 1) est

solution.
Si Q̃(X) est aussi solution alors

∀k ∈ Z, (Q− Q̃)(k + 1) = (Q− Q̃)(k)

et on en déduit que le polynôme Q− Q̃ est constant.
On en déduit que

P (X) = X + 1
2

est l’unique solution du problème posé.

Exercice 24 : [énoncé]
Par la formule de Taylor, on a pour tout x > 0

P (a+ x) =
degP∑
k=0

P (k)(a)
k! xk > P (a) > 0
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Exercice 25 : [énoncé]
Cette division euclidienne s’écrit P = Q(X − a)(X − b) +R avec degR < 2.
On peut écrire R = αX + β. En évaluant en a et b, on obtient un système dont la
résolution donne

α = P (b)− P (a)
b− a

et β = bP (a)− aP (b)
b− a

Exercice 26 : [énoncé]
Cette division euclidienne s’écrit

P = Q(X − a)2 +R avec degR < 2

On peut écrire R = αX + β.
En évaluant en a, puis en dérivant avant d’évaluer à nouveau en a, on obtient un
système dont la résolution donne

α = P ′(a) et β = P (a)− aP ′(a)

Exercice 27 : [énoncé]
(X cos t+ sin t)n = (X2 + 1)Q+R avec degR < 2 ce qui permet d’écrire
R = aX + b avec a, b ∈ R.
Cette relation doit être aussi vraie dans C [X] et peut donc être évaluée en i :
(i cos t+ sin t)n = R(i) = ai+ b or (i cos t+ sin t)n = ei(nπ/2−nt) donc
a = sinn(π/2− t) et b = cosn(π/2− t).

Exercice 28 : [énoncé]
On a k = nq + r avec 0 6 r < n.
Or Xk −Xr = Xr(Xnq − 1) et Xn − 1 | Xnq − 1. On peut donc écrire

Xnq − 1 = (Xn − 1)Q(X)

puis
Xk = (Xn − 1)XrQ(X) +Xr avec degXr < deg(Xn − 1)

ce qui permet de reconnaître le reste de division euclidienne cherchée.

Exercice 29 : [énoncé]
a) n = mq + r avec 0 6 r < m.
Xn − 1 = Xmq+r − 1 = Xmq+r −Xr +Xr − 1 = Xr(Xmq − 1) +Xr − 1

or Xmq − 1 = (Xm − 1)(1 +Xm + · · ·+Xm(q−1)) donc Xn − 1 = (Xm − 1)Q+R
avec Q = Xr(1 +Xm + · · ·+Xm(q−1)) et R = Xr − 1.
Puisque degR < degXm − 1, R est le reste de la division euclidienne de Xn − 1
par Xm − 1.
b) Suivons l’algorithme d’Euclide calculant le pgcd de n et m.
a0 = n, a1 = m puis tant que ak 6= 0, on pose ak+1 le reste de la division
euclidienne de ak−1 par ak.
Cet algorithme donne pgcd(m,n) = ap avec ap le dernier reste non nul.
Par la question ci-dessus on observe que si on pose Ak = Xak − 1 alors
A0 = Xn − 1, A1 = Xm − 1 et pour tout k tel que ak 6= 0, Ak 6= 0 et Ak+1 est le
reste de la division euclidienne de Ak−1 par Ak.
Par suite pgcd(Xn − 1, Xm − 1) = pgcd(A0, A1) = pgcd(A1, A2) = · · · =
pgcd(Ap, Ap+1) = Ap = Xpgcd(m,n) − 1 car Ap+1 = 0 puisque ap+1 = 0.

Exercice 30 : [énoncé]
a) X3 − 2X2 + 3X − 2 = (X − 1)(X2 −X + 2).
b) X3 − 3X2 + 3X − 2 = (X − 2)(X2 −X + 1).
c) X3 + 3X2 − 2 = (X + 1)(X2 + 2X − 2).

Exercice 31 : [énoncé]
X4 +X3 + λX2 + µX + 2 = (X2 + 2)(X2 +X + (λ− 2)) + (µ− 2)X + 6− 2λ.
Le polynôme X2 + 2 divise X4 +X3 + λX2 + µX + 2 si, et seulement si,
λ = 3, µ = 2.

Exercice 32 : [énoncé]

On écrit P =
p∑
k=0

akX
k ∈ K [X]

a) On a

P (P (X))− P (X) =
n∑
k=0

ak

(
[P (X)]k −Xk

)
avec P (X)−X divisant [P (X)]k −Xk car

ak − bk = (a− b)
k−1∑
`=0

a`bk−1−`

b) P (X)−X divise le polynôme P (P (X))− P (X) et le polynôme P (X)−X. Il
divise donc leur somme P (P (X))−X.
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c) Par récurrence sur n ∈ N?.
La propriété est immédiate pour n = 1 et vient d’être établie pour n = 2.
Supposons la propriété vraie au rang n > 1.

P [n+1](X)− P (X) =
p∑
k=0

ak

([
P [n](X)

]k
−Xk

)

P [n](X)−X divise
[
P [n](X)

]k −Xk donc P [n](X)−X divise P [n+1](X)− P (X).
Par hypothèse de récurrence, P (X)−X divise alors P [n+1](X)−P (X) et enfin on
en déduit que P (X)−X divise P [n+1](X)−X.
Récurrence établie.

Exercice 33 : [énoncé]
Puisque

P (P (X))−X = (P (P (X))− P (X)) + (P (X)−X)

le problème revient à montrer que P (X)−X divise P (P (X))− P (X).

On écrit P =
p∑
k=0

akX
k ∈ K [X] et on a

P (P (X))− P (X) =
n∑
k=0

ak

(
[P (X)]k −Xk

)
avec P (X)−X divisant [P (X)]k −Xk car

ak − bk = (a− b)
k−1∑
`=0

a`bk−1−`

On en déduit que P (X)−X divise le polynôme P (P (X))− P (X) et donc le
polynôme P (P (X))−X.

Exercice 34 : [énoncé]
(⇒) Si a divise b, on peut écrire b = ac et alors

Xb − 1 = (Xa)c − 1c = (Xa − 1)(1 +Xa + · · ·+Xa(c−1))

donc Xa − 1 divise Xb − 1.
(⇐) Si Xa − 1 divise Xb − 1, réalisons la division euclidienne de b par a

b = aq + r avec 0 6 r < a

On peut écrire
Xb − 1 = Xr(Xaq − 1) +Xr − 1

et puisque Xa − 1 divise Xb − 1 et aussi Xaq − 1, on peut affirmer que Xa − 1
divise Xr − 1.
Or r < a donc nécessairement r = 0 et donc a divise b.

Exercice 35 : [énoncé]
Posons D = pgcd(A,B). On a D2 = pgcd(A2, B2) associé à A2 donc
degD2 = degA2 puis degD = degA.
Or D | A donc D et A sont associés. Puisque D | B, on obtient A | B.

Exercice 36 : [énoncé]
Unicité : Soit (U, V ) et (Û , V̂ ) deux couples solutions. On a A(U − Û) = B(V̂ −V ).
A | B(V̂ − V ) et A ∧B = 1 donc A | V̂ − V . Or deg(V̂ − V ) < degA donc
V̂ − V = 0.
Par suite V̂ = V et de même Û = U .
Existence : Puisque A ∧B = 1, il existe U, V ∈ K [X] tels que AU +BV = 1.
Réalisons la division euclidienne de U par B : U = BQ+ Û avec deg Û < degB.
Posons ensuite V̂ = V +AQ. On a AÛ +BV̂ = AU +BV = 1 avec deg Û < degB.
Comme degAÛ +BV̂ < max(degAÛ,degBV̂ ) on a degAÛ = degBV̂
d’où deg V̂ = degA+ deg Û − degB < degA.

Exercice 37 : [énoncé]
(i) ⇒ (ii) Posons D = pgcd(A,B) qui est non constant.
Puisque D | A et D | B on peut écrire A = DV et −B = DU avec deg V < degA
et degU < degB.
de sorte que AU +BV = DUV −DUV = 0.
(ii) ⇒ (i) Supposons (ii)
Si par l’absurde A ∧B = 1 alors, puisque A | −BV on a A | V .
Or V 6= 0 donc degA 6 deg V ce qui est exclu. Absurde.

Exercice 38 : [énoncé]
Si A ∧B = 1 alors il existe U, V ∈ K [X] tels que AU +BV = 1.
On a alors A(U − V ) + (A+B)V = 1 donc A ∧ (A+B) = 1. De même
B ∧ (A+B) = 1.
Par suite AB ∧ (A+B) = 1.
Si AB ∧ (A+B) = 1 alors puisque pgcd(A,B) | AB et pgcd(A,B) | A+B on a
pgcd(A,B) = 1 puis A ∧B = 1.
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Exercice 39 : [énoncé]
pgcd(A,C) | A et pgcd(A,C) | C donc pgcd(A,C) | BC puis
pgcd(A,C) | pgcd(A,BC).
Inversement. Posons D = pgcd(A,BC). On a D | A et A ∧B = 1 donc D ∧B = 1.
De plus D | BC donc par le théorème de Gauss, D | C et finalement
D | pgcd(A,C).

Exercice 40 : [énoncé]
Si a = b alors (X − a)2 divise (X3 − a)2 si, et seulement si, a est racine au moins
double de (X3 − a)2. Ceci équivaut à a3 = a ce qui donne a ∈ {−1, 0, 1}.
Les polynômes solutions correspondant sont alors X2, (X − 1)2 et (X + 1)2, tous
réels.
Si a 6= b alors (X − a)(X − b) divise (X3 − a)(X3 − b) si, et seulement si, a et et b
sont racines de (X3 − a)(X3 − b).

Si a3 6= b3 alors a et b sont racines (X3 − a)(X3 − b) si, et seulement si,
{
a3 = a

b3 = b

ou
{
a3 = b

b3 = a
.

Dans le premier cas, sachant a 6= b, on parvient aux polynômes
X(X − 1), X(X + 1) et (X − 1)(X + 1).

Puisque
{
a3 = b

b3 = a
⇔

{
b = a3

a9 = a
, dans le second cas, on parvient à

(X − eiπ/4)(X − e3iπ/4), X2 + 1 et (X − e−iπ/4)(X − e−3iπ/4).
Ainsi quand a 6= b et a3 6= b3, on parvient à 6 polynômes dont 4 réels.
Enfin, si a 6= b et a3 = b3 alors (X − a)(X − b) divise (X3 − a)(X3 − b) si, et
seulement si, a3 = a ou a3 = b. Quitte à échanger a et b, on peut supposer a3 = a
et on parvient alors aux polynômes (X − 1)(X − j), (X − 1)(X − j2),
(X + 1)(X + j) et (X + 1)(X + j2) selon que a = 1 ou a = −1 (le cas a = 0 étant
à exclure car entraînant b = a).
Au final on obtient 3 + 6 + 4 = 13 polynômes solutions dont 3 + 4 + 0 = 7 réels.

Exercice 41 : [énoncé]
a) P (p/q) = 0 donne

anp
n + an−1p

n−1q + · · ·+ a1pq
n−1 + a0q

n = 0

Puisque p | anpn + · · ·+ a1pq
n−1, on a p | a0q

n or p ∧ q = 1 donc p | a0. De même
q | an.

b) Si P admet un racine rationnelle r = p
q alors p ∈ {−5,−1, 1, 5} et q ∈ {1, 2}.

− 5
2 est racine de P .

P = 2X3−X2−13X+5 = (2X+5)(X2−3X+1) = (2X+5)
(
X − 3 +

√
5

2

)(
X − 3−

√
5

2

)
c) Si P est composé dans Q [X] alors P possède une racine rationnelle, or ce n’est
pas le cas.
Donc P est irréductible dans Q [X].

Exercice 42 : [énoncé]
P (a) = P (b) = P (c) = 1 et a, b, c deux à deux distincts donc

(X − a)(X − b)(X − c) | P − 1

De plus degP 6 3 donc il existe λ ∈ K tel que

P = λ(X − a)(X − b)(X − c) + 1

Puisque P (0) = 0, on a λ = 1
abc .

Exercice 43 : [énoncé]
a) sin ((2n+ 1)α) = Im

(
ei(2n+1)α) = Im

(
(cosα+ i sinα)2n+1) donne en

développant sin ((2n+ 1)α) =
n∑
p=0

(−1)p
(

2n+ 1
2p+ 1

)
cos2(n−p) α. sin2p+1 α.

b) On observe sin ((2n+ 1)α) = sin2n+1 αP (cot2 α).
Posons βk = kπ

2n+1 pour 1 6 k 6 n. Les xk = cot2 βk sont n racines distinctes de
P , or degP = n, ce sont donc exactement les racines de P .

Exercice 44 : [énoncé]
a) On a

cos 3x = 4 cos3 x− 3 cosx

donc
4a3 − 3a = cos(π/3) = 1/2

Ainsi a est racine du polynôme 8X3 − 6X − 1.
b) Soit x une racine rationnelle de ce polynôme. On peut écrire x = p/q avec
p ∧ q = 1. On a alors

8p3 − 6pq2 − q3 = 0
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On en déduit p | 8p3 − 6pq2 = q3. Or p et q sont premiers entre eux et donc par le
théorème de Gauss p = ±1. De plus q2 | 6pq2 + q3 = 8p3 et, par un argument
analogue au précédent, q2 | 8. Ainsi q = ±1 ou q = ±2.
Or 1,−1, 1/2 et −1/2 ne sont pas les valeurs de cos(π/9). On peut donc conclure
que a est irrationnel.

Exercice 45 : [énoncé]
Soient P = A−B et n = max(degA,degB) ∈ N? de sorte que P ∈ Cn [X].
Les solutions des équations A(z) = 0 et A(z) = 1 sont racines de P .
Soit p est le nombre de racines distinctes de l’équation A(z) = 0.
Puisque la somme des multiplicité des racines de A vaut n, ces racines sont
susceptibles d’être racines de l’équation A′(z) = 0 avec une somme de
multiplicités égale à n− p (en convenant qu’une racine de multiplicité 0 n’est en
fait pas racine. . . )
Si q est le nombre de racines distinctes de l’équation A(z) = 1 alors de même
celles-ci sont racines de l’équation A′(z) = 0 et la somme de leurs multiplicités
vaut n− q.
Or ces dernières se distinguent des précédentes et puisque degA′ = n− 1, on peut
affirmer n− p+ n− q 6 n− 1 ce qui donne p+ q > n+ 1.
Le polynôme P possède donc au moins n+ 1 racines donc P = 0 puis A = B.

Exercice 46 : [énoncé]
a) Posons

P (X) =
n∑
i=1

∏
j 6=i

X − aj
ai − aj

On a degP 6 n− 1 et
∀1 6 k 6 n, P (ak) = 1

Le polynôme P − 1 possède donc n racines et étant de degré strictement inférieur
à n, c’est le polynôme nul. On conclut P = 1.
b) On a

A′(X) =
n∑
i=1

∏
j 6=i

(X − aj)

donc
A′(ai) =

∏
i 6=j

(ai − aj)

La quantité
n∑
i=1

1
A′(ai)

apparaît alors comme le coefficient de Xn−1 dans le polynôme P .
On conclut que pour n > 2

n∑
i=1

1
A′(ai)

= 0

Exercice 47 : [énoncé]
Les racines de Xp − 1 sont simples et toutes racines de Xpq − 1.
Les racines de Xq − 1 sont simples et toutes racines de Xpq − 1.
En dehors de 1, les racines de Xp − 1 et Xq − 1 sont distinctes.
Comme 1 racine double de (X − 1)(Xpq − 1), on peut conclure
(Xp − 1)(Xq − 1) | (X − 1)(Xpq − 1).

Exercice 48 : [énoncé]
a) Posons P = (X + 1)n − nX − 1. On a P (0) = 0 et P ′ = n(X + 1)n−1 − n donc
P ′(0) = 0.
0 est au moins racine double de P donc X2 | P .
b) Posons P = nXn+2 − (n+ 2).Xn+1 + (n+ 2)X − n. On observe
P (1) = P ′(1) = P ′′(1) = 0.
1 est au moins racine triple de P donc (X − 1)3 | P .

Exercice 49 : [énoncé]
1 est au moins racine double de P − 1 donc 1 est au moins racine simple de
(P − 1)′ = P ′.
De même −1 est au moins racine simple de P ′. Par suite X2 − 1 | P ′.
Puisque degP ′ 6 2, on peut écrire P ′ = λ(X2 − 1) avec λ ∈ K.
Par suite P = λ

3X
3 − λX + µ. P (1) = 1 et P (−1) = −1 permettent de déterminer

λ et µ.
On obtient : λ = − 3

2 et µ = 0.

Exercice 50 : [énoncé]
1 +X +X2 = (X − j)(X − j2).
j et j2 sont racines de X3n +X3p+1 +X3q+2 donc
1 +X +X2 | X3n +X3p+1 +X3q+2.
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Exercice 51 : [énoncé]
On peut factoriser

X2 +X + 1 = (X − j)(X − j2)

On en déduit

X2 +X + 1 | X2n +Xn + 1⇔ j et j2 sont racines de X2n +Xn + 1

Puisque X2n +Xn + 1 est un polynôme réel j en est racine si, et seulement si, j2

l’est.

(X2n +Xn + 1)(j) = j2n + jn + 1 =
{

3 si n = 0 [3]
0 sinon

Finalement
X2 +X + 1 | X2n +Xn + 1⇔ n 6= 0 [3]

Exercice 52 : [énoncé]
Soit P solution. X | (X + 4)P (X) donc X | P puis (X + 1) | P (X + 1) donc
(X + 1) | (X + 4)P (X) puis X + 1 | P etc. . .
Ainsi on obtient que P (X) = X(X + 1)(X + 2)(X + 3)Q(X) avec
Q(X + 1) = Q(X) donc Q constant.
La réciproque est immédiate.

Exercice 53 : [énoncé]
Dans un premier temps cherchons P vérifiant P (0) = 1, P (1) = 2,P ′(0) = 3,
P ′(1) = 4,P ′′(0) = 5 et P ′′(1) = 6 puis on considèrera P (X − 1) au terme des
calculs.
Un polynôme vérifiant P (0) = 1 et P (1) = 2 est de la forme

P (X) = X + 1 +X(X − 1)Q(X)

Pour que le polynôme P vérifie P ′(0) = 3,P ′(1) = 4,P ′′(0) = 5 et P ′′(1) = 6
on veut que Q vérifie Q(0) = −2, Q(1) = 3, Q′(0) = −9/2 et Q′(1) = 0.
Le polynôme Q(X) = 5X − 2 +X(X − 1)R(X) vérifie les deux premières
conditions et vérifie les deux suivantes si R(0) = 19/2 et R(1) = −5.
Le polynôme R = − 29

2 X + 19
2 convient.

Finalement

P (X) = X + 1 +X(X − 1)
(

5X − 2 +X(X − 1)
(
−29

2 X + 19
2

))

est solution du problème transformé et

P (X) = −29
2 X

5 + 111X4 − 655
2 X3 + 464X2 − 314X + 82

est solution du problème initial.
Les autres solutions s’en déduisent en observant que la différence de deux
solutions possède 1 et 2 comme racine triple.
Finalement, la solution générale est

−29
2 X

5 + 111X4 − 655
2 X3 + 464X2 − 314X + 82 + (X − 1)3(X − 2)3Q(X)

avec Q ∈ C [X].

Exercice 54 : [énoncé]
a) Puisque les racines communes à P et P ′ permettent de dénombrer les
multiplicités des racines de P , on a

p = degP − deg(pgcd(P, P ′))

et des relations analogues pour q et r.
De plus, on a

P ′Q−Q′P = Q′R−R′Q = R′P − P ′R

et ce polynôme est non nul car les polynômes P,Q,R sont non constants. En effet,
si P ′Q−Q′P = 0, alors une racine de P est nécessairement racine de Q ce qui est
exclu.
Puisque les polynôme pgcd(P, P ′), pgcd(Q,Q′) et pgcd(R,R′) divisent chacun le
polynôme Q′R−R′Q et puisqu’ils sont deux à deux premiers entre eux (car
P,Q,R le sont), on a

pgcd(P, P ′)pgcd(Q,Q′)pgcd(R,R′) | Q′R−R′Q

Par considérations des degrés

degP − p+ degQ− q + degR− r 6 degQ+ degR− 1

et donc
degP 6 p+ q + r − 1

b) Soient n > 3 et P,Q,R vérifiant

Pn +Qn = Rn
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Si a est racine commune aux polynômes P et Q alors a est racine de R. En
suivant ce raisonnement et en simplifiant les racines communes, on peut se
ramener à une situation où les polynômes P,Q,R sont deux à deux premiers entre
eux. Il en est alors de même de Pn, Qn et Rn. L’étude qui précède donne alors

ndegP < p+ q + r

mais aussi, de façon analogue

n degQ < p+ q + r et ndegR < p+ q + r

En sommant ces trois relations, on obtient

n(degP + degQ+ degR) < 3(p+ q + r)

ce qui est absurde car n > 3, degP > p etc.
On en déduit que les polynômes P,Q,R sont constants.
Les solutions de l’équation

Pn +Qn = Rn

apparaissent alors comme des triplets

P = αT , Q = βT et R = γT

avec α, β, γ ∈ C et T ∈ C [X] vérifiant

αn + βn = γn

c) Pour
P = 1

2(X2 + 1), Q = i

2(X2 − 1) et R = X

on a
P 2 +Q2 = R2

ce qui produit un triplet solution d’une forme différente des précédents obtenus
pour n > 3.

Exercice 55 : [énoncé]
a) Si P (a) = 0 alors P (a2) = −P (a)P (a+ 1) = 0 donc a2 est racine de P .
b) Si a 6= 0 et a non racine de l’unité alors la suite des a2n est une suite de
complexe deux à deux distincts, or tous les termes de cette suite sont racines de P
or P 6= 0 donc ce polynôme ne peut avoir une infinité de racines. Absurde.

Exercice 56 : [énoncé]
Si a est racine de P alors a2, a4, . . . le sont aussi. Comme un polynôme non nul n’a
qu’un nombre fini de racines, on peut affirmer que les a, a2, a4, . . . sont redondants
ce qui implique a = 0 ou |a| = 1.
Si a est racine de P alors (a− 1)2 l’est aussi donc a− 1 = 0 ou |a− 1| = 1.
Si a 6= 0 et a 6= 1 on a nécessairement |a| = |a− 1| = 1. Via parties réelle et
imaginaire, on obtient a = −j ou −j2.
Si P est solution, non nulle, alors son coefficient dominant vaut 1 et on peut
écrire :
P = Xα(X − 1)β(X2 −X + 1)γ . En injectant une telle expression dans l’équation,
on observe que celle-ci est solution si, et seulement si, α = β et γ = 0.

Exercice 57 : [énoncé]
Le polynôme nul est solution. Soit P une solution non nulle.
Si a est racine de P alors a2 l’est aussi puis a4, a8, . . ..
Or les racines de P sont en nombre fini donc les éléments a2n (n ∈ N) sont
redondants. On en déduit que a = 0 ou a est une racine de l’unité.
De plus, si a est racine de P alors (a− 1) est aussi racine de P (X + 1) donc
(a− 1)2 est racine de P . On en déduit que a− 1 = 0 ou a− 1 est racine de l’unité.
Si a 6= 0, 1 alors |a| = |a− 1| = 1 d’où l’on tire a = −j ou −j2.
Au final, les racines possibles de P sont 0, 1,−j et −j2.
Le polynôme P s’écrit donc

P (X) = λXα(X − 1)β(X + j)γ(X + j2)δ

avec λ 6= 0, α, β, γ, δ ∈ N.
En injectant cette expression dans l’équation

P (X2) = P (X)P (X + 1)

on obtient
λ2 = λ, α = β et γ = δ = 0

On conclut
P (X) = [X(X − 1)]α

Exercice 58 : [énoncé]
a) Si a est une racine de P non nulle alors a2, a4, . . . sont racines de P . Or P 6= 0
donc P n’admet qu’un nombre fini de racines. La série précédente est donc
redondante et par suite a est une racine de l’unité et donc |a| = 1.
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Si a = 0 est racine de P alors 1 = (0 + 1)2 aussi puis 4 = (1 + 1)2 l’est encore,. . . et
finalement P admet une infinité de racines ce qui est exclu.
Finalement les racines de P sont toutes de module 1.
b) Soit a ∈ C une racine de P . a+ 1 est racine de P (X − 1) donc (a+ 1)2 est
aussi racine de P . Il s’ensuit que |a| = |a+ 1| = 1. En résolvant cette double
équation on obtient a = j ou j2 et donc P est de la forme

P (X) = λ(X − j)α(X − j2)β

Le nombre j est racine de multiplicité α de P donc j est racine de multiplicité au
moins α de

P (X2) = (X2 − j)α(X2 − j2)β

et par suite β > α. Un raisonnement symétrique permet de conclure β = α et le
polynômeP est de la forme

λ(X2 +X + 1)α

Un tel P est solution du problème posé si, et seulement si,

λ2(X4 +X2 + 1)α = λ((X − 1)2 + (X − 1) + 1)α(X2 +X + 1)α

égalité qui est vérifiée si, et seulement si, λ = 1.
Finalement les solutions du problème posé sont les polynômes P = (X2 +X + 1)α
avec α ∈ N.

Exercice 59 : [énoncé]
Supposons P solution.
Le coefficient dominant λ de P vérifie λ = λ2 et donc est égal à 1.
Si a est racine de P alors a2 et (a+ 1)2 le sont aussi.
Si a 6= 0 est une racine de P alors a2, a4, . . . sont racines de P . Or P 6= 0 et donc
P n’admet qu’un nombre fini de racines. La suite précédente est donc redondante
et par conséquent a est une racine de l’unité. En particulier |a| = 1.
Si a = 0 est racine de P alors 1 = (0 + 1)2 aussi puis 4 = (1 + 1)2 l’est encore,. . . et
finalement P admet une infinité de racines ce qui est exclu.
Finalement les racines de P sont toutes de module 1.
Or si a est racine de P , (a+ 1)2 l’étant encore et donc

|a| = |a+ 1| = 1

Les seuls complexes vérifiant cette identité sont j et j2 (ce sont les points
intersection du cercle unité et du cercle de centre −1 et de rayon 1 du plan
complexe). On en déduit

P = (X2 +X + 1)n

car P est un polynôme réel et que donc ses racines complexes conjuguées sont
d’égales multiplicités.
Inversement, on vérifie par le calcul qu’un tel polynôme est bien solution.

Exercice 60 : [énoncé]
Le polynôme nul est solution. Soit P une solution non nulle.
Si a est racine de P alors a2 l’est aussi puis a4, a8, . . ..
Or les racines de P sont en nombre fini donc les éléments a2n (n ∈ N) sont
redondants. On en déduit que a = 0 ou a est une racine de l’unité.
De plus, si a est racine de P alors (a+ 1) est aussi racine de P (X − 1) donc
(a+ 1)2 est racine de P . On en déduit que a+ 1 = 0 ou a+ 1 est racine de l’unité.
Si a 6= 0,−1 alors |a| = |a+ 1| = 1 d’où l’on tire a = j ou j2.
Au final, les racines possibles de P sont 0,−1, j et j2.
Le polynôme P s’écrit donc P (X) = λXα(X + 1)β(X − j)γ(X − j2)δ avec λ 6= 0,
α, β, γ, δ ∈ N.
En injectant cette expression dans l’équation P (X2) = P (X)P (X − 1) on obtient
λ2 = λ, α = β = 0 et γ = δ.
On conclut

P (X) =
[
X2 +X + 1

]γ
Exercice 61 : [énoncé]
a) Dans C [X]

X4 − 1 = (X − 1)(X + 1)(X − i)(X + i)
et dans R [X]

X4 − 1 = (X − 1)(X + 1)(X2 + 1)
b) Dans C [X]

X5 − 1 =
4∏
k=0

(X − e 2ikπ
5 )

et dans R [X]

X5 − 1 = (X − 1)(X2 − 2 cos 2π
5 X + 1)(X2 − 2 cos 4π

5 X + 1)

c) Dans C [X]

(X2−X+1)2+1 = (X2−X+1+i)(X2−X+1−i) = (X−i)(X−1+i)(X+i)(X−1−i)

et dans R [X]
(X2 −X + 1)2 + 1 = (X2 + 1)(X2 − 2X + 2)
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Exercice 62 : [énoncé]
a) X4 +X2 + 1 = (X2 + 1)2 −X2 = (X2 +X + 1)(X2 −X + 1)
b)
X4 +X2−6 = (X2 +1/2)2−25/4 = (X2−2)(X2 +3) = (X−

√
2)(X+

√
2)(X2 +3)

c) X8 +X4 + 1 = (X4 + 1)2 − (X2)2 = (X4 −X2 + 1)(X4 +X2 + 1) puis
X8 +X4 + 1 == (X2 +X + 1)(X2 −X + 1)(X2 +

√
3X + 1)(X2 −

√
3X + 1).

Exercice 63 : [énoncé]
Les racines de (X + i)n − (X − i)n sont les zk = cot kπn avec k ∈ {1, 2, . . . , n− 1}.
Par suite

n−1∏
k=1

(X − cot kπ
n

) | (X + i)n − (X − i)n

et il existe λ ∈ K tel que

(X + i)n − (X − i)n = λ

n−1∏
k=1

(X − cot kπ
n

)

Le coefficient dominant de (X + i)n − (X − i)n étant 2ni, on obtient

(X + i)n − (X − i)n = 2ni
n−1∏
k=1

(X − cot kπ
n

)

Exercice 64 : [énoncé]
Les racines complexes de P sont les ωk = e

2ikπ
2n+1 avec k ∈ {0, . . . , 2n}.

On observe ωk = ω2n−k pour k ∈ {1, . . . , n} donc

P = (X − 1)
n∏
k=1

(X − ωk)(X − ωk) = (X − 1)
n∏
k=1

(
X2 − 2 cos 2kπ

2n+ 1X + 1
)

Exercice 65 : [énoncé]
Les racines de X2 − 2 cos(na)X + 1 sont eina et e−ina donc

X2n − 2 cos(na)Xn + 1 = (Xn − eina)(Xn − e−ina)

Les racines de Xn − eina sont les eia+2ikπ/n avec k ∈ {0, . . . , n− 1} et celles de
Xn − e−ia s’en déduisent par conjugaison.

Ainsi

X2n − 2 cos(na)Xn + 1 =
n−1∏
k=0

(X − eia+2ikπ/n)
n−1∏
k=0

(X − e−ia−i2kπ/n)

dans C [X] puis

X2n−2 cos(na)Xn+1 =
n−1∏
k=0

(X − eia+2ikπ/n)(X − e−ia−2ikπ/n) =
n−1∏
k=0

(X2 − 2 cos
(
a+ 2kπ

n

)
X+1)

dans R [X].

Exercice 66 : [énoncé]
Notons x1, x2, x3, x4 les racines du polynôme considéré avec x1 + x2 = 2.

σ1 = x1 + x2 + x3 + x4 = 0
σ2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 = 0
σ3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 = −12
σ4 = x1x2x3x4 = −5

σ1 donne x3 + x4 = −2, σ2 donne x1x2 + x3x4 = 4 et σ3 donne x1x2 − x3x4 = 6.
On obtient x1x2 = 5 et x3x4 = −1.
x1 et x2 sont les racines de X2 − 2X + 5 i.e. 1± 2i.
x3 et x4 sont les racines de X2 + 2X − 1 i.e. −1±

√
2.

Exercice 67 : [énoncé]
Notons x1, x2, x3 les racines de X3 − 7X + λ. On peut supposer x2 = 2x1.
Les relations entre coefficients et racines donnent :

x1 + x2 + x3 = 0
x1x2 + x2x3 + x3x1 = −7
x1x2x3 = −λ

d’où 
x3 = −3x1

2x2
1 − 6x2

1 − 3x2
1 = −7

−6x3
1 = −λ
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puis 
x3 = −3x1

x2
1 = 1
λ = 6x3

1

Pour que X3 − 7X + λ admette une racine double d’une autre il est nécessaire que
λ = 6 ou − 6.
Pour λ = 6, X3 − 7X + 6 admet 1, 2 et − 3 pour racines.
Pour λ = −6, X3 − 7X − 6 admet −1,−2 et 3 pour racines.

Exercice 68 : [énoncé]
Notons x1, x2, x3 les racines de X3 − 8X2 + 23X − 28. On peut supposer
x1 + x2 = x3.
Les relations entre coefficients et racines donnent :
x1 + x2 + x3 = 8
x1x2 + x2x3 + x3x1 = 23
x1x2x3 = 28

d’où


x3 = 4
x1x2 + 4(x2 + x1) = 23
4x1x2 = 28

.

Pour déterminer x1 et x2 il reste à résoudre x2 − 4x+ 7 = 0.
Finalement x1 = 2 + i

√
3, x2 = 2− i

√
3 et x3 = 4.

Exercice 69 : [énoncé]

a)


σ1 = x1 + x2 + x3 = 2 +

√
2

σ2 = x1x2 + x2x3 + x3x1 = 2
√

2 + 2
σ3 = x1x2x3 = 2

√
2

,

On en déduit x2
1 + x2

2 + x2
3 = σ2

1 − 2σ2 = 2, x2
1x

2
2 + x2

2x
2
3 + x2

3x
2
1 = σ2

2 − 2σ3σ1 = 4
et x2

1x
2
2x

2
3 = 8.

Donc x2
1, x

2
2 et x2

3 sont racines de x3 − 2x2 + 4x− 8 = 0.
b) 2 est racine de l’équation ci-dessus :
x3 − 2x2 + 4x− 8 = (x− 2)(x2 + 4) = (x− 2)(x+ 2i)(x− 2i).
Quitte à réindexer : x2

1 = 2, x2
2 = 2i et x2

3 = −2i d’où x1 = ±
√

2, x2 = ± (1 + i) et
x3 = ± (1− i).
Puisque x1 + x2 + x3 = 2 +

√
2, on a x1 =

√
2, x2 = 1 + i et x3 = 1− i.

Exercice 70 : [énoncé]
a) Soit (x, y, z) un triplet solution
On a σ1 = x+ y + z = 1, σ3 = xyz = −4 et

σ2 = xy + yz + zx = xyz( 1
x

+ 1
y

+ 1
z

) = −4

Par suite x, y, z sont les racines de :

X3 − σ1X
2 + σ2X − σ3 = X3 −X2 − 4X + 4 = (X − 1)(X − 2)(X + 2)

Donc {x, y, z} = {1,−2, 2}.
Inversement de tels triplets sont solutions.
b) Soit (x, y, z) un triplet solution de

x(y + z) = 1 (1)
y(z + x) = 1 (2)
z(x+ y) = 1 (3)

(1)− (2) donne xz = yz, (3) donne z 6= 0 donc x = y.
De même on obtient x = z.
Ainsi x = y = z = 1/

√
2 ou −1/

√
2.

Inversement de tels triplets sont solutions.
c) Soit (x, y, z) un triplet solution.
Posons S1 = x+ y + z = 2, S2 = x2 + y2 + z2 = 14 et S3 = x3 + y3 + z3.
Déterminons σ1 = x+ y + z, σ2 = xy + yz + zx et σ3 = xyz.
On a σ1 = 2.
S2

1 − S2 = 2σ2. Par suite σ2 = −5.
Posons t = x2y + yx2 + y2z + zy2 + z2x+ xz2.
On a S1S2 = S3 + t d’où t = S1S2 − S3 = 8
On a S3

1 = S3 + 3t+ 6σ3 d’où σ3 = 1
6 (S3

1 − S3 − 3t) = −6.
Par suite x, y, z sont les racines de

X3 − σ1X
2 + σ2X − σ3 = X3 − 2X2 − 5X + 6 = (X − 1)(X + 2)(X − 3)

Donc {x, y, z} = {1,−2, 3}.
Inversement de tels triplets sont solutions.

Exercice 71 : [énoncé]
En développant (

1
x

+ 1
y

+ 1
z

)2
= 1
x2 + 1

y2 + 1
z2 + 2

xy
+ 2
yz

+ 2
zx

avec
2
xy

+ 2
yz

+ 2
zx

= 2(z + x+ y)
2xyz = 0
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Exercice 72 : [énoncé]
a) On a

(X − 1)Pn = Xn+1 − 1 =
n∏
k=0

(X − e2ikπ/(n+1))

donc

Pn =
n∏
k=1

(X − e2ikπ/(n+1))

b) Pn(1) = n+ 1 et

Pn(1) =
n∏
k=1

(1− e2ikπ/(n+1)) = (−2i)n
n∏
k=1

sin
(

kπ

n+ 1

) n∏
k=1

ei
kπ
n+1

mais
n∏
k=1

ei
kπ
n+1 = exp(inπ/2) = in

donc
n∏
k=1

sin kπ

n+ 1 = n+ 1
2n

Exercice 73 : [énoncé]

(1+z)n = cos(2na)+i sin(2na) = e2ina ⇔ 1+z = ei
2na+2kπ

n avec k ∈ {0, 1, . . . , n− 1}

Cette équation possède donc n solutions distinctes qui sont

zk = ei(2a+ 2kπ
n ) − 1 avec k ∈ {0, 1, . . . , n− 1}

On observe alors
n−1∏
k=0

zk = (−1)n(1− e2ina)

Or
n−1∏
k=0

zk =
n−1∏
k=0

(ei2(a+ kπ
n ) − 1) =

n−1∏
k=0

ei(a+ kπ
n )2i sin(a+ kπ

n
) = 2nineina+i (n−1)π

2

n−1∏
k=0

sin(a+ kπ

n
)

donc
n−1∏
k=0

zk = 2ni−1(−1)neina
n−1∏
k=0

sin(a+ kπ

n
)

puis
n−1∏
k=0

sin(a+ kπ

n
) = i

2n
1− e2ina

eina = 1
2n−1 sinna

Exercice 74 : [énoncé]
On écrit

P =
n∑
k=0

akX
k avec an 6= 0

Notons αk la somme des zéros de P (k). Par les relations coefficients racines d’un
polynôme scindé

α0 = −an−1

an
, α1 = − (n− 1)an−1

nan
, α2 = − (n− 2)an−1

nan
,..

αk = − (n− k)an−1

nan
,..., αn−1 = −an−1

nan

Les α0, α1, . . . , αn−1 sont donc en progression arithmétique de raison an−1/nan.

Exercice 75 : [énoncé]
Puisque α+ β + γ = −a, on a

α

β + γ
+ β

γ + α
+ γ

α+ β
= −

(
α

a+ α
+ β

a+ β
+ γ

a+ γ

)
et réduisant au même dénominateur

α

β + γ
+ β

γ + α
+ γ

α+ β
= a3 − 2ab+ 3c

ab− c

car αβ + βγ + γα = b et αβγ = −c.

Exercice 76 : [énoncé]
Posons p = xy + yz + zx et q = −xyz.
Les nombres x, y, z sont racines du polynômes

X3 + pX + q

On en déduit
x3 + y3 + z3 = −p(x+ y + z)− 3q = −3q
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De plus
(x+ y + z)2 = x2 + y2 + z2 + 2p

donc
x2 + y2 + z2 = −2p

Aussi x3 = −px− q donne x5 = −px3 − qx2 = p2x+ pq − qx2 et donc

x5 + y5 + z5 = 3pq + 2pq = 5pq

et la relation proposée est dès lors immediate.

Exercice 77 : [énoncé]
Soit (x, y, z) un triplet de complexes et
P (X) = (X − x)(X − y)(X − z) = X3 − pX2 + qX − r avec

p = x+ y + z

q = xy + yz + zx

r = xyz

On a
(x+ y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx)

Posons t = x3 + y3 + z3 et s = xy2 + yx2 + yz2 + zy2 + zx2 + xz2

On a
(x+ y + z)(x2 + y2 + z2) = t+ s et pq = s+ 3r

donc t = 3r − pq.
Puisque x, y, z sont racines de XP (X) = X4 − pX3 + qX2 − rX, on a

x4 + y4 + z4 = pt− q × (x2 + y2 + z2) + rp

Puisque x, y, z sont racine de X2P (X) = X5 − pX4 + qX3 − rX2, on a

x5 + y5 + z5 = p(x4 + y4 + z4)− q(x3 + y3 + z3) + r(x2 + y2 + z2)

On en déduit que (x, y, z) est solution du système posé si, et seulement si,
p2 = 2q

pt+ rp = 0
−qt = 0

c’est-à-dire, sachant t = 3r − pq,
p2 = 2q

p(4r − pq) = 0
q(3r − pq) = 0

Ce système équivaut encore à 
p2 = 2q
2pr = q2

3qr = pq2

et aussi à 
p2 = 2q
2pr = q2

qr = 0
Que r soit nul ou non, le système entraîne q = 0 et est donc équivalent au système{

p = 0
q = 0

Ainsi, un triplet (x, y, z) est solution du système proposé si, et seulement si, x, y
et z sont les trois racines du polynôme Pr(X) = X3 − r (pour r ∈ C quelconque).
En introduisant a ∈ C tel que a3 = r, les racines de Pr(X) sont a, aj et aj2.
Finalement les solutions du système, sont les triplets (x, y, z) avec

x = a, y = aj et z = aj2

pour a ∈ C quelconque.

Exercice 78 : [énoncé]
On a

P ′(X)
P (X) =

n∑
k=1

1
X − xk

donc
xP ′(x)
P (x) =

n∑
k=1

1
1− xk

x

Par développement limité à un ordre N , on a quand x→ +∞

xP ′(x)
P (x) =

n∑
k=1

1
1− xk

x

=
N∑
`=0

S`
x`

+ o

(
1
xN

)
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puis

xP ′(x) =
N∑
`=0

S`
x`
P (x) + o

(
1

xN−n

)
Or

xP ′(x) = na0x
n + (n− 1)a1x

n−1 + · · ·+ an−1

et
N∑
`=0

S`
x`
P (x) = b0x

n + b1x
n−1 + · · ·+ bN+2nx

N−n

avec
b0 = a0S0, b1 = a0S1 + a1S0,. . .

bk =
min(k,n)∑
`=0

a`Sk−`

Par unicité des coefficients de xn, xn−1, . . . , 1 de notre développement limité
généralisé, on obtient

∀0 6 k 6 n,

k∑
`=0

a`Sk−` = (n− k)ak

Pour k = 0, on obtient S0 = n (ce qui était immédiat) et on en déduit

∀0 < k 6 n,

k−1∑
`=0

a`Sk−` + kak = 0

Par unicité des coefficients de 1/x, 1/x2, . . . de notre développement limité
généralisé, on obtient

∀k > n,
n∑
`=0

a`Sk−` = 0

Exercice 79 : [énoncé]
a) 1, j, j2 conviennent.
b) Introduisons le polynôme P (X) = (X − a)(X − b)(X − c). Les coefficients de ce
polynôme s’expriment à partir de S1 = a+ b+ c, S2 = a2 + b2 + c2 et
S3 = a3 + b3 + c3, le polynôme P est donc à coefficients réels. S’il n’admet pas
trois racines, il possède deux racines complexes conjuguées. Celles-ci sont alors de
même module ce qui est exclu.

Exercice 80 : [énoncé]
a) f0 : x 7→ 1, f1 : x 7→ x, f2 : x 7→ 2x2 − 1 et f3 : x 7→ 4x3 − 3x
b) fn+1(x) + fn−1(x) = cos((n+ 1)θ) + cos((n− 1)θ) = 2 cos θ cosnθ = 2xfn(x) en
posant θ = arccosx.
c) Existence : Par récurrence double sur n ∈ N.
Pour n = 0 et n = 1 : T0 = 1 et T1 = X conviennent.
Supposons le résultat établi aux rangs n− 1 et n > 1.
Soit Tn+1 le polynôme défini par Tn+1 = 2XTn − Tn−1.
On a Tn+1(x) = 2xTn(x)− Tn−1(x) = 2xfn(x)− fn−1(x) = fn+1(x).
Le polynôme Tn+1 convient. Récurrence établie.
Unicité : Si Tn et Rn conviennent, alors ceux-ci prennent mêmes valeurs en un
infinité de points, ils sont donc égaux.
d) Comme Tn+1 = 2XTn − Tn−1, on montre par récurrence double sur n ∈ N que
∀n ∈ N,deg Tn = n.
Il est alors aisé de montrer, par récurrence simple, que le coefficient dominant de
Tn est 2n−1 pour n ∈ N?. Notons que le coefficient dominant de T0 est 1.
e) Résolvons l’équation Tn(x) = 0 sur [−1, 1] :
cos(n arccosx) = 0⇔ n arccosx = π

2 [π]⇔ arccosx = π
2n

[
π
n

]
Posons x0, x1, . . . , xn−1 définis par xk = cos (2k+1)π

2n .
x0, x1, . . . , xn−1 forment n racines distinctes appartenant à ]−1, 1[ du polynôme
Tn.
Or deg Tn = n donc il ne peut y avoir d’autres racines et celles-ci sont
nécessairement simples.

Exercice 81 : [énoncé]
a) a0, . . . , ai−1, ai+1, . . . , an sont racines de Li donc ∀j 6= i, Li(aj) = 0.
De plus

Li(ai) =

∏
06j6n,j 6=i

(ai − aj)∏
06j6n,j 6=i

(ai − aj)
= 1

Donc
∀j ∈ {0, 1, ..., n} , Li(aj) = δi,j

b) Posons Q =
n∑
i=0

P (ai)Li(X), on a

Q(aj) =
n∑
i=0

P (ai)Li(aj) =
n∑
i=0

P (ai)δi,j = P (aj)

P et Q sont deux polynômes de degré inférieur à n et prenant mêmes valeurs aux
n+ 1 points a0, a1, ..., an ils sont donc égaux.
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Exercice 82 : [énoncé]
a) Ln est le polynôme dérivé d’ordre n d’un polynôme de degré 2n donc
degLn = n.
De plus sont coefficient dominant est le même que celui de n!

(2n)! (X
2n)(n) à savoir

1.
b) 1 et −1 sont racines d’ordre n de (X2 − 1)n. Par intégration par parties :

n!
(2n)!

∫ 1

−1
Ln(t)Q(t)dt =

∫ 1

−1
(t2 − 1)(n)Q(t)dt =

[
(t2 − 1)(n−1)Q(t)

]1

−1
−
∫ 1

−1
(t2 − 1)(n−1)Q′(t)dt

donc
n!

(2n)!

∫ 1

−1
Ln(t)Q(t)dt = −

∫ 1

−1
(t2 − 1)(n−1)Q′(t)dt

puis en reprenant le processus∫ 1

−1
Ln(t)Q(t)dt = (−1)n

∫ 1

−1
(t2 − 1)(0)Q(n)(t)dt = 0

c) Soit a1, a2, . . . , ap les racines d’ordres impairs de Ln appartenant à ]−1, 1[.
Soit Q = (X − a1)(X − a2) . . . (X − ap). La fonction t 7→ Ln(t)Q(t) est continue,
de signe constant sur [−1, 1] sans être la fonction nulle donc

∫ 1
−1 Ln(t)Q(t)dt 6= 0.

Compte tenu de b) on a nécessairement p > n puis p = n car le nombre de racines
ne peut excéder n.. De plus les racines a1, a2, . . . , an sont simples car la somme de
leurs multiplicités ne peut excéder n.

Exercice 83 : [énoncé]
a) Par récurrence sur n ∈ N
Pour n = 0 : ok avec P2 = X.
Supposons la propriété établie au rang n− 1 ∈ N.

1 + Pn+2Pn = 1 +XPn+1Pn − P 2
n = 1 +X(XPn − Pn−1)Pn − P 2

n

Par l’hypothèse de récurrence

1 + Pn+2Pn = X2P 2
n −XPn−1Pn − Pn−1Pn+1

donc

1+Pn+2Pn = X2P 2
n−XPn−1Pn−Pn−1(XPn−Pn−1) = X2P 2

n−2XPn−1Pn+P 2
n−1 = P 2

n+1

Récurrence établie.

b) La relation ci-dessus peut se relire : UPn + V Pn+1 = 1. Donc Pn et Pn+1 sont
premiers entre eux.
c) Par récurrence sur m ∈ N, établissons la propriété :

∀n ∈ N?, Pm+n = PnPm+1 − Pn−1Pm

Pour m = 0 : ok
Supposons la propriété établie au rang m > 0. Pour tout n ∈ N?

Pm+n+1 = Pn+1Pm+1−PnPm = (XPn−Pn−1)Pm+1−PnPm = (XPm+1−Pm)Pn−Pn−1Pm+1

donc
Pm+n+1 = Pm+2Pn − Pn−1Pm+1

Récurrence établie.
d) Posons D = pgcd(Pn, Pn+m) et E = pgcd(Pn, Pm).
Comme Pn+m = PnPm+1 − Pn−1Pm on a E | D.
Comme Pn−1Pm = PnPm+1 − Pm+n et Pn ∧ Pn−1 = 1 on a D | E. Finalement
D = E.
En notant r le reste de la division euclidienne de m par n on a m = nq + r avec
q ∈ N et

pgcd(Pn, Pm) = pgcd(Pn, Pn−m) = pgcd(Pn, Pn−2m) = . . . = pgcd(Pn, Pr)

e) En suivant l’algorithme d’Euclide menant le calcul de pgcd(m,n)
simultanément avec celui menant le calcul de pgcd(Pm, Pn), on observe que

pgcd(Pn, Pm) = Ppgcd(m,n)

Exercice 84 : [énoncé]
Par la formule de dérivation de Leibniz

dn

dxn
(
e−xxn

)
=

n∑
k=0

(
n

k

)
(xn)(n−k)(e−x)(k) =

n∑
k=0

(−1)k n!
k!(n− k)!

n!
k!x

ke−x

donc

Ln =
n∑
k=0

(−1)k (n!)2

(k!)2(n− k)!X
k

est un polynôme de degré n et de coefficient dominant (−1)n.
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Exercice 85 : [énoncé]
On a

cosnθ = Re(einθ) = Re
(

n∑
k=0

(
n

k

)
ik cosn−k θ sink θ

)
donc

cosnθ =
E(n/2)∑
`=0

(−1)`
(
n

2`

)
cosn−2` θ(1− cos2 θ)`

est un polynôme en cos θ. Cela assure l’existence de Tn, l’unicité provenant de ce
que deux polynômes coïncidant en un nombre infini de points sont nécessairement
égaux.
a)

cos(n+ 1)θ + cos(n− 1)θ = 2 cos θ cosnθ
donne

Tn+1 − 2XTn + Tn−1 = 0
b) On a

Tn(cos θ) = cosnθ
donc en dérivant

− sin θT ′n(cos θ) = −n sinnθ
et

sin2 θT ′′n (cos θ)− cos θT ′n(cos θ) = −n2 cosnθ
On en déduit par coïncidence de polynômes sur [−1, 1] que

(1−X2)T ′′n −XT ′n + n2Tn = 0

c) En dérivant cette relation à l’ordre k :

(1−X2)T (k+2)
n − 2kXT (k+1)

n − k(k − 1)T (k)
n −XT (k+1)

n − kT (k)
n + n2T (k)

n = 0 (1)

En évaluant (1) en 1 :

(2k + 1)T (k+1)
n (1) = (n2 − k2)T (k)

n (1)

Comme T (0)
n (1) = 1, on obtient

T (k)
n (1) =

{
(n!)22kk!

(n−k)!(n+k)!(2k+1)! si k 6 n

0 sinon

En évaluant (1) en −1 :

(2k + 1)T (k+1)
n (1) = −(n2 − k2)T (k)

n (1)

Comme T (0)
n (−1) = (−1)n, on obtient

T (k)
n (−1) = (−1)n−kT (k)

n (1)

Exercice 86 : [énoncé]
Soit (P,Q) un couple solution.
Si le polynôme P est constant alors nécessairement Q = 0 et P = ±1. Vérification
immédiate.
Sinon, posons n = degP ∈ N?. La relation P 2 + (1−X2)Q2 = 1 impose que P et
Q sont premiers entre eux et en dérivant on obtient
PP ′ −XQ2 + (1−X2)QQ′ = 0. Par suite Q | PP ′ puis Q | P ′. Par des
considérations de degré et de coefficient dominant on peut affirmer P ′ = ±nQ.
Quitte à considérer −Q, supposons P ′ = nQ et la relation
PP ′ −XQ2 + (1−X2)QQ′ = 0 donne (1−X2)P ′′ −XP ′ + n2P = 0.
Résolvons l’équation différentielle (1− t2)y′′ − ty′ + n2y = 0 sur [−1, 1].
Par le changement de variable t = cos θ, on obtient pour solution générale
y(t) = λ cos(n arccos t) + µ sin(n arccos t).
La fonction t 7→ cos(n arccos t) est polynômiale (cf. polynôme de Tchebychev),
cela définit le polynôme Tn.
La fonction t 7→ sin(n arccos t) ne l’est pas car de dérivée −n√

1−t2 cos(n arccos t) non
polynômiale.
Par suite P = λTn et Q = ± 1

nT
′
n.

La relation P 2 + (1−X2)Q2 = 1 évaluée en 1 impose λ2 = 1 et finalement
(P,Q) = (±Tn,± 1

nT
′
n).

Vérification : pour le couple (P,Q) = (±Tn,± 1
nT
′
n), le polynôme P 2 + (1−X2)Q2

est constant car de polynôme dérivé nul et puisqu’il prend la valeur 1 en 1, on
peut affirmer P 2 + (1−X2)Q2 = 1.

Exercice 87 : [énoncé]
a) P2 = X2 − 2, P3 = X3 − 3X.
Par récurrence double sur n ∈ N, on montre degPn = n et coeff(Pn) = 1.
b) Par récurrence double sur n ∈ N :
Pour n = 0 et n = 1 : ok
Supposons la propriété établie aux rangs n et n+ 1 (avec n > 0)

Pn+2(z) = (z+1/z)Pn+1(z)−Pn(z) =
HR

(
z + 1

z

)(
zn+1 + 1

zn+1

)
−
(
zn + 1

zn

)
= zn+2+ 1

zn+2

Récurrence établie.
c) Pn(2 cos θ) = Pn(eiθ + e−iθ) = einθ + e−inθ = 2 cosnθ.
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d) Soit x ∈ [−2, 2]. Il existe θ ∈ [0, π] unique tel que x = 2 cos θ.

Pn(x) = 0⇔ cosnθ = 0⇔ ∃k ∈ {0, . . . , n− 1} , θ = π + 2kπ
2n

Par suite les xk = 2 cos
(
π+2kπ

2n
)
avec k ∈ {0, . . . , n− 1} constituent n racines

distinctes de an 6= 0 et a0 6= 0. Puisque le polynôme Pn est de degré n, il n’y en a
pas d’autres.

Exercice 88 : [énoncé]
Montrons la propriété par récurrence sur n > 1.
Pour n = 1, P1(X) = X convient.
Supposons la propriété vraie au rang n > 1.
En dérivant la relation

f (n)(x) = Pn(sin x)
(cosx)n+1

on obtient
f (n+1)(x) = (n+ 1) sin xPn(sin x) + cos2 xP ′n(sin x)

(cosx)n+2

Posons alors
Pn+1(X) = (n+ 1)XPn(X) + (1−X2)P ′n(X)

de sorte que
f (n+1)(x) = Pn+1(sin x)

(cosx)n+2

On peut écrire

Pn(X) =
n∑
k=0

akX
k avec ak > 0, an 6= 0

et alors

Pn+1(X) =
n∑
k=0

(n+ 1− k)akXk+1 +
n∑
k=1

kakX
k

est un polynôme de degré n+ 1 à coefficients positif ou nul.
Récurrence établie.
Par la relation de récurrence obtenue ci-dessus

P1(X) = X, P2(X) = 1 +X2 et P3(X) = 5X +X3

et
Pn+1(1) = (n+ 1)Pn(1)

donc
Pn(1) = n!
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