[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015

Enoncés 1

Polynoémes

L’anneau des polynomes

Exercice 1 [o02127] [correction]
Résoudre les équations suivantes :

a) Q% = X P? d’inconnues P,Q € K [X]
b) Po P = P d’inconnue P € K[X].

Exercice 2 [02674] [correction]
Trouver les P € R [X] tels que P(X?) = (X? + 1)P(X).

Exercice 3 [02377] [correction]
a) Pour n € N, développer le polynéme

1+X)1+X>)A+XY...01+Xx?)

b) En déduire que tout entier p > 0 s’écrit de fagon unique comme somme de
puissance de 2 : 1,2,4,8, ...

Exercice 4 [02553] [correction]
Soit (P )nen+ la suite de polyndémes définie par

P=X-2etVneN* P, , =P

n

-2

Calculer le coefficient de X? dans P,,.

Polyn6mes réels

Exercice 5 [00399] [correction]

Soit P € R[X]. Montrer qu’il y a équivalence entre
(i) Vz € R, P(x) > 0;

(ii) 3(A, B) e R[X]*, P = A2 + B2,

Polynomes complexes

Exercice 6 [o00271] [correction]
Soit P € C[X] non constant et tel que P(0) = 1. Montrer que :

Ve > 0,32 € C,|z] <eet |P(2) <1

Exercice 7 [03342] [correction]
Soit P=ag+ a1 X + -+ a, X" € C[X]. On pose

M = sup |P(2)]
[2|=1

Montrer
Vk:e{O,...,n},|ak| <M

(indice : employer des racines de 1'unité)

Exercice 8 [02165] [correction]
Soit
PX)=X"4ap, 1 X" '+ 4+ a1 X +ap € C[X]

Montrer que si & est racine de P alors

<1+ max
0<k<n—1

Exercice 9 [03683] [correction]

Soit P € C[X] un polynéme non constant dont les racines complexes sont de
parties imaginaires positives ou nulles. Montrer que le polynéme P + P est scindé
dans R [X].

Polynomes réels scindés

Exercice 10 [ 03581 ] [correction]

Soit P € R[X] scindé de degré > 2; on veut montrer que le polynéme P’ est lui
aussi scindé.

a) Enoncer le théoréme de Rolle.

b) Si xg est racine de P de multiplicité m > 1, quelle en est la multiplicité dans
P'?

c¢) Prouver le résultat énoncé.
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Enoncés 2

Exercice 11 [o0261 ] [correction]

a) Soit f : R — R une fonction dérivable. On suppose que f s’annule au moins n
fois. Montrer que f’ s’annule au moins n — 1 fois.

b) Soit P € R[X] un polyndme scindé a racines simples avec n = deg P > 2.
Montrer que le polynome P’ est lui aussi scindé.

¢) Montrer que le résultat perdure méme si les racines de P ne sont pas simples.

Exercice 12 [o02160] [correction]

Soit P un polynéme de degré n + 1 € N* a coefficients réels possédant n + 1
racines réelles distinctes.

a) Montrer que son polyndéme dérivé P’ posséde exactement n racines réelles
distinctes.

b) En déduire que les racines du polynéme P? + 1 sont toutes simples dans C.

Exercice 13 [o02163] [correction]
Soit P € R[X] un polynome scindé de degré supérieur a 2.
Montrer que P’ est scindé.

Exercice 14 [02669 ] [correction]

a) Si P € R[X] est scindé sur R , montrer que P’ est scindé ou constant sur R.

b) Si (a,b,c) € R, montrer que X'° + aX® +bX® + cX7 + X + 1 n’est pas scindé
sur R.

Exercice 15 [03339] [correction]
Soit P € R[X] scindé a racines simples dans R. Montrer que pour tout o € R* les
racines de P2 4+ o dans C sont toutes simples.

Exercice 16 [03696] [correction]
Soit P € R[X] scindé sur R. Montrer que pour tout réel «, le polynéme P’ + aP
est lui aussi scindé sur R.

Exercice 17 [o0274] [correction)]
Soit P € R[X] simplement scindé sur R. Montrer que P ne peut avoir deux
coefficients consécutifs nuls.

Exercice 18 [03340] [correction]

Soit P € R[X] scindé a racines simples.

Montrer qu’aucun coefficient nul de P ne peut étre encadré par deux coefficients
non nuls et de méme signe.

Dérivation

Exercice 19 [02129] [correction)]

Résoudre les équations suivantes :

a) P'? = 4P d’inconnue P € K [X]

b) (X2 +1)P” — 6P = 0 d’inconnue P € K[X].

Exercice 20 [02130] [correction]
Montrer que pour tout entier naturel n, il existe un unique polynéme P, € R [X]
tel que

pP,—- P, =X"

Exprimer les coefficients de P, a I’aide de nombres factoriels.

Exercice 21 [02131] [correction]
Déterminer dans K [X] tous les polynémes divisibles par leur polynéme dérivé.

Exercice 22 [02132] [correction]
Soit P € K[X]. Montrer

+oo 1
P(X+1)=) EP(") (X)

n=0

Exercice 23 [03338] [correction)]
Trouver tous les polynémes P € R [X] tels que

k+1
VkeZ,/ Plydt =k + 1
k

Exercice 24 [ 03341 ] [correction]
Soit P € R[X]. On suppose que a € R vérifie

P(a) >0 et Yk e N*, P®)(a) > 0

Montrer que le polynéme P ne posséde pas de racines dans [a, +00[.
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Enoncés

Division euclidienne

Exercice 25 [o02141 ] [correction)]
Soit (a,b) € K? tel que a # b et P € K [X]. Exprimer le reste de la division
euclidienne de P par (X — a)(X — b) en fonction de P(a) et P(b).

Exercice 26 [o02142] [correction]

Soient a € K et P € K [X].

Exprimer le reste de la division euclidienne de P par (X — a)? en fonction de
P (a) et P'(a).

Exercice 27 [02143] [correction]

Soient t € R et n € N*.

Déterminer le reste de la division euclidienne dans R [X] de (X cost + sint)™ par
X2+ 1.

Exercice 28 [o02144 ] [correction]
Soit k,n € N* et r le reste de la division euclidienne de k par n.
Montrer que le reste de la division euclidienne de X* par X™ — 1 est X".

Exercice 29 [o02145] [correction]
Soient n,m € N*.
a) De la division euclidienne de n par m, déduire celle de X™ — 1 par X™ — 1.
b) Etablir que
pged(X™" —1,X™ —1) = Xxpeed(mm) _q

Divisibilité

Exercice 30 [02133] [correction]

Montrer les divisibilités suivantes et déterminer les quotients correspondant :
a) X —1 | X3-2X2+3X—-2b) X -2 | X3 -3X2+3X —-2¢)

X+1 | X343X2-2.

Exercice 31 [o02140] [correction]
En réalisant une division euclidienne, former une condition nécessaire et suffisante
sur (A, ) € K2 pour que X2 + 2 divise X* + X3 + AX? + puX + 2.

Exercice 32 [02134] [correction]

Soit P € K [X].

a) Montrer que P(X) — X divise P(P(X)) — P(X).

b) En déduire que P(X) — X divise P(P(X)) — X.

¢) On note P = Po...o P (composition & n > 1 facteurs).
Etablir que P(X) — X divise PM(X) — X

Exercice 33 [03407] [correction)]
Soit P € K [X]. Montrer que P(X) — X divise P(P(X)) — X.

Exercice 34 [03632] [correction]
Montrer que pour tout a,b € N

albe X —1]Xxb -1

Arithmétique

Exercice 35 [02135] [correction)]
Soit A, B € K[X] tels que A% | B2. Montrer que A | B.

Exercice 36 [02136] [correction)]
Soit A, B € K[X] non constants et premiers entre eux.
Montrer qu'il existe un unique couple (U, V) € K[X ]2 tel que

degU < deg B

AU + BV =1 et
* ¢ {degV<degA

Exercice 37 [02137] [correction)]

Soit (4, B) € K [X]? non nuls. Montrer que les assertions suivantes sont
équivalentes :

(i) A et B ne sont pas premiers entre eux.

(ii) il existe (U, V) € ( K [X] — {0})? tel que

AU+ BV =0, degU < deg B et degV < deg A
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Exercice 38 [02138] [correction]
Soit A, B € K [X] non nuls.
Montrer : A et B sont premiers entre eux si, et seulement si, A+ B et AB le sont.

Exercice 39 [02139] [correction]
Soient A, B,C € K[X] tels que A et B soient premiers entre eux.
Montrer

pged(A, BC) = pged(4, C)

Exercice 40 [02580] [correction]
On cherche les polynomes

P(X) = (X —a)(X —b) € C[X]

tels que P(X) divise P(X?3).

Montrer que, si a = b, P € R[X] et que si a # b et a® # b?, il existe 6 polyndmes
dont 4 dans R[X].

Trouver les polynémes P si a # b et a® = b3 et en déduire que 13 polynémes en
tout conviennent, dont 7 dans R [X].

Racines

Exercice 41 [o02157] [correction]
a) Soit
P=a, X"+ a1 X" 1+ .+ X +ao

un polynoéme a coeflicients entiers tel que a, # 0 et ag # 0.
On suppose que P admet une racine rationnelle r = p/q exprimée sous forme
irréductible.
Montrer que p | ag et g | ap.
b) Factoriser
P=2X%-X?-13X+5

¢) Le polynome
P=X+3X-1

est-il irréductible dans Q [X]?

Exercice 42 [02158] [correction)]

Soient a, b, ¢ trois éléments, non nuls et distincts, du corps K.

Démontrer que le polynéme

XX-b)(X-¢ XX-¢oX-a) XX-a(X-0)
ala —b)(a—c) b(b—c)(b—a) c(c—a)(c—D)

peut s’écrire sous la forme P = A(X —a)(X —b)(X —c¢)+ 1 ol A est une

constante que I'on déterminera.

P =

Exercice 43 [02371] [correction]
a) Soit n € N. Exprimer sin ((2n + 1)a) en fonction de sin « et cos a.
b) En déduire que les racines du polynome :

PUX) = " 1y <2n+1> -

=0 2p+1

sont de la forme xz;, = cot? B;. Déterminer les f3y,.

Exercice 44 [02663] [correction)]

a) Montrer que a = cos(7/9) est racine d’un polynéme de degré trois & coefficients
dans Z.

b) Justifier que le nombre a est irrationnel.

Exercice 45 [ 02941 ] [correction]
Soient A, B € C[X] non constants vérifiant

{z€ C/A(z) =0} ={2€C/B(2) =0} et {z€C/A(z) =1} ={2€C/B(z) =1}
Montrer que A = B.

Exercice 46 [01352] [correction)]
Soient K un corps et aj,as,...,a, € K deux a deux distincts.

a) Calculer
S

i=1j%#i

b) On pose A(X) = ]_n[ (X — a;). Calculer
j=1

1
— A'(a;)

K2
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Racines et arithmétique Exercice 54 [03406] [correction]
[Equation de Fermat polynomiale]

Exercice 47 [02166] [correction] a) Soient P, @, R € C[X] premiers entre eux deux & deux, non constants, et tels

Soient p et g deux entiers supérieurs a 2 et premiers entre eux. que
Montrer P+Q+R=0
(X7 =X =1) | (X = 1)(X" = 1) Soient p, g, le nombre de racines distinctes des polynoémes P, @, R
respectivement.
Prouver que le degré de P est strictement inférieur & p + g + r.
Exercice 48 02167 ] [correction] (indice : introduite P'Q — Q'P)

Justifier les divisibilités suivantes :
a)VneN, X2 | (X +1)" —nX —1
b) Vn € N*, (X —1)? | nX""2 — (n +2).X""' + (n+2)X —n P+ Q" = R

b) Trouver tous les triplets de polynémes complexes (P, Q, R) tels que

pour n > 3 donné.
Exercice 49 [o02168] [correction] c) Le résultat s’étend-il a n =27
Montrer qu’il existe un unique polynéme P de degré inférieur ou égal a 3 tel que :

(X =1 [P—Tlet (X+1)*|P+1 Racines et équations polynomiales

Déterminer celui-ci.
Exercice 55 [02159] [correction)]

Soit P € C[X] un polynéme non nul tel que
Exercice 50 [ 02169 ] [correction] )
Justifier P(X7)+P(X)P(X +1)=0

Y(n,p,q) € N3, 14+ X + X? | X3 4 X3+l 4 x3a+2
(n,p,q) | a) Montrer que si a est racine de P alors a? 'est aussi

b) En déduire que a = 0 ou bien a est racine de I'unité.

Exercice 51 [o02170] [correction]
Déterminer une condition nécessaire et suffisante sur n € N pour que
Exercice 56 [02164] [correction]
X2+ X +1[ X+ X" +1 Montrer que si P € R[X]\ {0} vérifie

P(X?) =P(X)P(X +1)
Exercice 52 [02668] [correction]
Déterminer les P de R [X] tels que ses racines sont parmi 0,1, —j, —j2. En déduire tous les polynomes solutions.
(X+4)P(X)=XP(X+1)

Exercice 57 [02375] [correction)]

Exercice 53 [03041] [correction] Trouver les P € C[X] vérifiant

Trouver les P € C[X] tels que P(X?) = P(X)P(X +1)
P(1)=1,P(2)=2,P'(1)=3, P'(2) =4,P"(1) =5 et P"(2) =6
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Enoncés 6

Exercice 58 [02673] [correction]
On cherche les polyndémes P non nuls tels que

P(X?)=P(X —1)P(X)

a) Montrer que toute racine d’un tel P est de module 1.
b) Déterminer les polynémes P.

Exercice 59 [o02672] [correction]
Déterminer les polynémes P de R [X]\ {0} vérifiant

P(X?) = P(X —1)P(X)

Exercice 60 [01329] [correction]
Trouver les P € C [X] vérifiant

P(X?)=P(X)P(X —1)

Factorisation

Exercice 61 [o02171] [correction]
Factoriser dans C [X] puis dans R [X] les polynomes suivants :

a) X*'—1 b)X°—1 o) (X?-X+1)2+1.
Exercice 62 [o02172] [correction]
Factoriser dans R [X] les polyndmes suivants :

a) X'+ X241 b)) X'+ X?2-6 o) XP4H X410

Exercice 63 [o02173] [correction]
Factoriser le polynéme (X +4)™ — (X — )™ pour n € N*.

Exercice 64 [02174] [correction]

Former la décomposition primaire dans R [X] de P = X?"*1 — 1 (avec n € N).

Exercice 65 [02175] [correction]
Soient a € ]0, [ et n € N*. Factoriser dans C [X] puis dans R [X] le polynéme

X2 —2cos(na)X™ +1

Relations entre coefficients et racines d’un poly-
nome scindé

Exercice 66 [02176] [correction]
Trouver les racines dans C du polynéme X* 4 12X — 5 sachant qu’il posséde deux
racines dont la somme est 2.

Exercice 67 [02177] [correction)]
Donner une condition nécessaire et suffisante sur A € C pour que X3 — 7X + A
admette une racine qui soit le double d’'une autre. Résoudre alors ’équation.

Exercice 68 [02178] [correction)]
Résoudre 3 — 822 + 232 — 28 = 0 sachant que la somme de deux des racines est
égale a la troisiéme.

Exercice 69 [02179] [correction]

On considére 'équation : 2% — (2 4+ v/2)z? + 2(v/2 + 1)z — 2¢/2 = 0 de racines
T1,T2 et 3.

a) Former une équation dont 2%, 23 et % seraient racines.

b) En déduire les valeurs de 1, z2, 3.

Exercice 70 [02180] [correction]
Déterminer les triplets (x,vy,z) € C? tels que

r+y+z=1 zly+z2)=1 r+y+z=2
a) lz+1/y+1/z=1 b){ylz+z)=1 c) 2*+y*+2°=14
Tyz = —4 2x+y) =1 234+ + 23 =20

Exercice 71 [02181] [correction]
Soient x,y, z € C* tels que = 4+ y + z = 0. Montrer

Lol 1 1+1+12
22 y?2 22 \z oy oz
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Exercice 72 [o02182] [correction] Exercice 77 [03336] [correction]
n ’ 3 N

Pour n € N* on pose Py = 3 Xk Résoudre dans C° le systeme
k=0

a) Former la décomposition en facteurs premiers de P, dans C [X]. P +y*4+22=0
n 4
b) En déduire la valeur de [] sin n’“—L 'yt +z2t=0
k=1

P +yP°+2°=0

Exercice 73 [02183] [correction]

Exercice 78 [03345] |[correction
Soit a € R et n € N*. Résoudre dans C I’équation [ ) }

On considere le polynéme

(1 + Z)n = Cos(2na) —+ iSin(anL) P(X) _ aOX’rL 4 aanfl I an c (C [X]
En déduire la valeur de - de racines x4, ..., x, comptées avec multiplicité.
k
H sin <a T W) Pour toutp € N, on pose ., ,
k=0 n Sp:x1+...+xn
Etablir
a051 +a = 0
Exercice 74 [o02184] [correction] agSs + a1S1 4+ 2a2 =0
Soit P € C[X] non nul et n = deg P.
Montrer que les sommes des zéros de P, P’, ..., P(" 1) sont en progression
arithmétique. a0Sp +a1Sp—1 4+ ap_151 +pa, =0 (0<p<n)
agSp + 1541+ +apS1 =0
Exercice 75 [02373] [correction] .
Soit P = X3 + aX? + bX + c un polynéme complexe de racines a, 3,v. Calculer aoSnik +a1Snik-1+ -+ a, S, =0 (k>0)

a
L B
B+y ~v+a a+f

Exercice 79 [o03812] [correction]
a) Déterminer trois éléments a, b, ¢ de C, non tous réels, tels que a + b + ¢,
a® + b2 + 2 et a3 + b3 + 3 soient trois réels.

Exercic}e. 76 | 03333 ] [correction] . b) Montrer que, si a, b, ¢ sont trois éléments de C de modules différents et si
z,y, z désignent trois complexes vérifiant a+b+ceR a®?+b2+c2cReta’+b3+ 3 €R, alors a,b et ¢ sont trois réels.
Enoncé fourni par le concours CENTRALE-SUPELEC (CC)-BY-NC-SA
r+y+2=0
Etablir Familles de polyndémes classiques
x5+y5+z5_<x2+y2+z2> <x3+y3+z3> poly q
5 - 2 3

Exercice 80 [02185] [correction]
Polynémes de Tchebychev (1821-1894) :
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Soit n € N. On pose f, : [-1,1] — R Papplication définie par
fn(x) = cos(narccos )

a) Calculer fo,f1, f2 et fs.

b) Exprimer f,41(z) + fn—1(z) en fonction de f,(x).

¢) Etablir qu’il existe un unique polynéme T;, de R [X] dont la fonction
polynomiale associée coincide avec f,, sur [—1,1].

d) Donner le degré de T,, ainsi que son coefficient dominant.

e) Observer que T;, posseéde exactement n racines distinctes, que ’on exprimera,
toutes dans |—1,1].

Exercice 81 [02186] [correction]
Polynomes d’interpolation de Lagrange (1736-1813) :
Soit (ag, a1, .. .,a,) une famille d’éléments de K deux & deux distincts.
Pour tout i € {0,1,...,n} on pose
[I (X—a
| 0<j<n gt
' [1

0<i<n,j#i

(ai — aj)

a) Observer que, pour tout j € {0,1,...,n}, on a L;(a;) = d;;

(ou 9; ; est le symbole de Kronecker (1823-1891) qui est égal a 1 lorsque i = j et 0
sinon).

b) Montrer que

VP e K, [X], P(X) = P(a;)Li(X)

Exercice 82 [o02187] [correction]
Polynémes de Legendre (1752-1833) :
Pour tout entier naturel n on pose

n!
(2n)!

Ln _ ((X2 _ 1)n)(”)

a) Montrer que L, est un polynéme unitaire de degré n.

b) Montrer que
1

VQ € Ry [X] | / Lo(H)Q()dt =0

-1

¢) En déduire que L,, posséde n racines simples toutes dans |—1,1].

Exercice 83 [02188] [correction]
Soit (Py)n>0 la suite de K [X] définie par

POZO,PliletVTLGN,Pn_;.Q:XPnJ'_l*Pn

a) Montrer
VneN, P2, =1+ P,Pyys

b) En déduire
Vn € N, P, et P,y1 sont premiers entre eux

c¢) Etablir pour que pour tout m € N et pour tout n € N* on a
Prin =PoPpy1 — Poo1 P
d) Montrer que pour tout m € N et pour tout n € N* on a
pgcd(Prmn, Pr) = pged(Pn, Prn)

En déduire que pged(Py,, P,,) = pged(P,, P,.) ou r est le reste de la division
euclidienne de m par n.
e) Conclure

ngd(Pna Pm) = Ppgcd(m,n)

Exercice 84 [02189] [correction)]
Polynomes de Laguerre (1834-1886) :
Pour n € N, on définit L,, : R — R par

- 4"

Ln(z) =
(@) ="

(e7"a")
Observer que L,, est une fonction polynomiale dont on déterminera le degré et le
coefficient dominant.

Exercice 85 [02670] [correction)]

Soit n € N. Montrer qu’il existe un unique polynoéme P € C[X] tel que
P(cos ) = cosnf pour tout 0 réel. On le note T5,.

a) Lier T),—1, T}, et Thqq.

b) Donner une équation différentielle vérifiée par T,.

c¢) Calculer T,(Lk)(l) et T,gk)(—l).
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Exercice 86 [02671 ] [correction]

Quels sont les couples (P,Q) € R [X]? vérifiant P2 + (1 — X2)Q2 =17

Exercice 87 [o02128] [correction]
On définit une suite de polynéme (P,,) par

P0:2,P1:XetVneN,PnJrQ:XPnH—Pn

a) Calculer P et Ps.
Déterminer degré et coefficient dominant de P,.
b) Montrer que, pour tout n € N et pour tout z € C* on a

P(z4+1/2)=2"4+1/2"

¢) En déduire une expression simple de P, (2 cosf) pour 6 € R.
d) Déterminer les racines de P,.

Exercice 88 [03269] [correction]
On pose
1

COoS T

fx) =

Démontrer I'existence d’un polynéme P, de degré n et a coefficients positifs ou

nul vérifiant

P, (sinx)

vn =1, [ (z) = (cos )+l

Préciser Py, Pa, Ps et calculer P,(1).
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Exercice 1 : [énoncé]

a) Si (P, Q) est un couple solution de polyndomes non nuls alors @ = X P? donne
2deg @ =1+ 2deg P avec deg P,deg @ € N ce qui est impossible. Il reste le cas ou
I'un des polynomes P ou @ est nul et 'autre, alors, I’est aussi. Inversement, le
couple nul est effectivement solution.

b) Si deg P > 2 alors deg P o P = (deg P)? > deg P et donc P n’est pas solution.
Si deg P < 1 alors on peut écrire P = aX + b et alors

2

PoP:P@a(aX—Fb)—i—b:aX—!—b(:){ab_
ao =

Apres résolution on obtient
(a = let b=0) ou (a = 0 et b quelconque)

Finalement les solutions sont le polynéme X et les polynémes constants.

Exercice 2 : [énoncé]

Parmi les polynémes constants, seuls le polynéme nul est solution.

Si deg P > 1 alors, pour vérifier ’équation, il est nécessaire que deg P = 2. On
peut alors écrire P sous la forme aX? + bX + c. Parmi, les polynémes de cette
forme, ceux solutions sont ceux obtenus pour b = 0 et ¢ = —a. Conclusion, les
polynémes solutions sont les a(X? — 1) avec a € R.

Exercice 3 : [énoncé]
a) Posons

PX)=(1+X)1+X)1+XYH...14+X%)
En exploitant successivement (a — b)(a + b) = a® — b2, on obtient

2n+1

1-X)PX)=1-X
On en déduit

1—x2"

A X L X2 ... x2
T X+ X2+

P(X) =
b) Lorsqu’on développe directement le polynéme P, le coefficient de X* obtenu
correspond au nombre de fois qu’il est possible d’écrire k comme la somme des
puissances de 2 suivantes : 1,2,4,...,2". Ce nombre vaut 1 compte tenu de
P’exercice précédent.

Exercice 4 : [énoncé]

Notons ay,, by, et ¢, les coefficients de 1, X et X2 dans P,,.

Puisque P, =X —2,onaa; =—-2,by =1et ¢y =0.

Puisque P11 = P2 —2,0na a,y1 = a2 — 2, byy1 = 2a,b, et cpr1 = b2 + 2a,0,,.
On en déduit ay =2, by = —4d et co =1 puis pour n = 3 : a, = 2, b, = —4""1,

!

Cp = 41’L—2 + 4n—1 + .. +42n—4 — 4n—2 3

Exercice 5 : [énoncé]

L’implication (ii)=(i) est immédiate.

Supposons (i).

Puisque P est de signe constant, la décomposition en facteurs irréductibles de P
s’écrit avec des facteurs de la forme

(X = N2 =(X-N2+0?

et
2
X2 422X 4+qg=(X+p/2)*+q2—4p

Ainsi P est, & un facteur multiplicatif positif pres, le produit de polyndémes

s’écrivant comme la somme des carrés de deux polyndémes réels.
Or
(A% + B*)(C? + D?*) = (AC — BD)? + (AD + BC)?

donc P peut s’écrire comme la somme des carrés de deux polynomes réels

Exercice 6 : [énoncé]
Puisque le polynéme P est non constant, on peut écrire

P(2) = 1+ a 29+ 277 Q(2)

avec ag # 0 et Q € C[X].
Posons # un argument du complexe a, et considérons la suite (z,) de terme
général
o = Leitr-0)/4
n

Onaz, —0et
p(zn):1,M+

()
ol —
nd nd
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Exercice 7 : [énoncé]
Soit w = %™/ (n*+1) yne racine néme de unité. On a

P(1) 4 Pw) + -+ P(&") = (n + L)ao

Z“’M {n+1 sit=0 [n+1]

On en déduit (n + 1) |ag] < (n+ 1)M puis |ag| < M
De facon plus générale, on a

P(l) +w " P(w)+ - +w ™ PW") = (n+ 1)ay

et on en déduit |ag| < M.

Exercice 8 : [énoncé]

Un complexe z est racine du polynéme P + P si, et seulement si,

=

(z—zp) = =\

=

A (= = %)

k

Il
N

k

Il
—

Si Imz > 0 alors
Vke{l,....,n},|z —zi| < |z — Zx|

et donc

A (z—z)

=

n
T e-m

Ainsi z ne peut étre racine de P 4+ P et Z non plus par le méme raisonnement ou
parce que P + P est un polynome réel.

On en déduit que les racines de P sont toutes réelles et donc P est scindé dans
R[X].

Ainsi le polynéme ReP est scindé dans R [X] et, par une argumentation analogue,
il en est de méme de ImP.

La propriété est immédiate si |{] < 1. On suppose désormais |£| > 1 et on note

m= max |ak]
0<k<n—1

L’égalité
—5” = an_lfn_l 4+ +a1&+ag

donne
Z\akua mZm
done e "
4" < mig g <M
puis
€| <14+m

Exercice 9 : [énoncé]
On peut écrire P sous forme factorisée

n
=A==

avec n = deg P € N* et z, € C vérifiant Imz, > 0.

Exercice 10 : [énoncé]

a) Si f:[a,b] = R (avec a < b) est continue, dérivable sur ]a,b[ et si f(a) = f(b)
alors il existe ¢ € ]a, b tel que f'(c) = 0.

b) Si zg est racine de multiplicité m de P alors xq est racine de multiplicité m — 1
de P’ (en convenant qu’une racine de multiplicité 0 n’est en fait pas racine).

c) Notons z1 < ... < x, les racines de P et mq, ..., m, leurs multiplicités
respectives. Puisque le polynéme P est supposé scindé, on a

my + -+ mpy =deg P

Les éléments x4, ..., x, sont racines de multiplicités mq —1,...,m, — 1 de P".
En appliquant le théoreme de Rolle & P entre zj et 241, on détermine

Yk € |z, Tp41] racine de P’. Ces yy sont distincts entre eux et distincts des
Z1,...,Zp. On a ainsi obtenu au moins

p—-1+(m —1)4+---+(mp—1)=degP —1
racines de P’. Or deg P’ = deg P — 1 donc P’ est scindé.

Exercice 11 : [énoncé]
a) Soient a1 < ... < ay, les zéros de f. En appliquant le théoréme Rolle sur chaque
intervalle [a;, a;y1], on obtient b; € |a;, a;41] annulant f’. Puisque

ar<bi<ay < <b,_1<ay
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les by,...,b,_1 sont des annulations distinctes de f’.

b) Si P est scindé a racines simples, il posséde n racines. Le polynéme P’ posséde
alors au moins n — 1 racines. Or deg P/ = n — 1 donc le polynéome P’ est scindé.
c) Soient a; < ... < ap les racines de P et oy, ..., o, leurs multiplicités avec

ar+---tap,=n
Les a; < ... < a, sont racines de P’ de multiplicités respectives
al—l,...,ap—l

Comme ci-dessus, par Rolle, on peut aussi assurer I'existence de p — 1 autres
racines a P’.
La somme des multiplicités des racines est donc au moins égales a

P
Zai—l—i—p—l:n—l:degP'
i1

et donc le polynome P’ est scindé.

Exercice 12 : [énoncé]

a) Notons ag < a1 < ... < ay, les racines de P.

En appliquant le théoréeme de Rolle a la fonction = — P(x) sur U'intervalle
[a;—1,a;], on justifie Pexistence d’un réel b; € Ja;_1, ;] tels que P’'(b;) = 0. Puisque

ag < by <ar<by<...<b, <ap

les réels by, ... ,b, sont deux a deux distincts ce qui fournit n racines réelles au
polyndéme P’.
Puisque deg P/ = deg P — 1 = n, il ne peut y en avoir d’autres.

b) Une racine multiple de P? + 1 est aussi racine du polynome dérivé
(P2 +1) =2PP

Or les racines de P ne sont pas racines de P? + 1 et les racines de P’ sont réelles
et ne peuvent donc étre racines de P? + 1. Par suite P? + 1 et (P%2 + 1)’ n’ont
aucunes racines communes : les racines de P? 4 1 sont simples.

Exercice 13 : [énoncé]

Posons n =deg P > 2, a1 < az <... < ap les racines réelles distinctes de P et
o, (g, ..., 0y leurs ordres respectifs. On a a3 +og + -+ +ap, = n car P est
supposé scindé.

En appliquant le théoreme de Rolle & x — ]5(;10) sur chaque [a;,a;41] on justifie
I'existence de racines distinctes by, ba, ..., b,_;1 disposée de sorte que
a1<b1<a2<b2<...<bp_1<ap.

Comme les ai,as,...,a, sont des racines d’ordres a1 — 1,0 — 1,...,, — 1 de P’
et que by, ba,...,b,_1 sont des racines au moins simples de P’, on vient de
déterminer (n — 1) = deg P’ racines de P’ comptées avec leur multiplicité.
Finalement P’ est scindé.

Exercice 14 : [énoncé]

a) Si P est degré 1 alors P’ est constant. Si P est de degré n > 2, par application
du théoréme de Rolle, il figure une racine de P’ entre deux racines consécutives de
P. De surcroit, si a est racine de multiplicité o € N* de P, a est aussi racine de
multiplicité o — 1 de P’. Par suite, P’ en admet n — 1 racines comptées avec
multiplicité et est donc scindé.

b) 0 est racine multiple du polynéme dérivé a 'ordre 2. Si le polynéme était
scindé, 1’étude qui précede permet d’observer que 0 est racine du polynéme. Ce
n’est pas le cas.

Exercice 15 : [énoncé]

Notons que par application du théoréme de Rolle, les racines de P’ sont réelles (et
simples)

Les racines multiples de P? + o2 sont aussi racines de (P? + o2)' = 2PP’.

Or les racines de P? 4 o2 ne peuvent étre réelles et les racines de PP’ sont toutes
réelles.

Il n’y a donc pas de racines multiples au polynéme P? + 2.

Exercice 16 : [énoncé]

Rappelons qu'un polynéme est scindé sur un corps si, et seulement si, la somme
des multiplicités des racines de ce polyndéme sur ce corps égale son degré.
Notons ag < a1 < ... < a.,, les racines réelles de P et ag, aq, ..., a,, leurs
multiplicités respectives. Le polynome P étant scindé, on peut écrire

deg P = Zm: g
k=0

On convient de dire qu'une racine de multiplicité 0 n’est en fait pas racine d’un
polyndéme. Avec ses termes, si ay est racine de multiplicité o > 1 de P alors ag
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est racine de multiplicité a, — 1 du polynéme P’ et donc racine de multiplicité au
moins (et méme exactement) o — 1 du polynéme P’ + aP. Ainsi les ay, fournissent

m

Z(ak—l):degP—(rrH—l)

k=0

racines comptées avec multiplicité au polynéme P’ + aP.

Considérons ensuite la fonction réelle f : x — P(z)e*®.

Cette fonction est indéfiniment dérivable et prend la valeur 0 en chaque ay.

En appliquant le théoréeme de Rolle a celle-ci sur chaque intervalle [a_1, ag], on
produit des réels by, € |ag—_1,ax[ vérifiant f’'(by) = 0. Or

f'(z) = (P'(z) + aP(z)) ™

et donc by, est racine du polynéme P’ + aP.
Ajoutons a cela que les by sont deux a deux distincts et différents des précédents
ay car, par construction

ag < by <ar <by<...<bp <an,

On vient donc de déterminer m nouvelles racines au polyndéme P’ + P et ce
dernier possede donc au moins
degP —1

racines comptées avec multiplicité.

Dans le cas a = 0, cela suffit pour conclure car deg P’ = deg P — 1.

Dans le cas a # 0, il nous faut encore une racine. ..

Si a > 0, la fonction f tend vers 0 en —oo par argument de croissance comparée.
On peut alors appliquer un théoréme de Rolle généralisé a la fonction f sur
I'intervalle ]—o0, ag] et cela fournit la racine manquante.

Si a < 0, on exploite comme au dessus la nullité de la limite de f en 4oco cette
fois pour trouver une racine dans Uintervalle |a,,, +0ool.

Exercice 17 : [énoncé]

Remarquons que puisque P est simplement scindé sur R, I’application du
théoreme de Rolle entre deux racines consécutives de P donne une annulation de
P’ et permet de justifier que P’ est simplement scindé sur R. Il est en de méme de
P". P ...

Or, si le polynéme P admet deux coefficients consécutifs nuls alors I'un de ses
polynémes dérivées admet 0 pour racine double. C’est impossible en vertu de la
remarque qui précede.

Exercice 18 : [énoncé]
Ecrivons

+oo
P(X)=> a,X"
n=0
et, quitte a considérer — P, supposons par ’absurde qu’il existe p > 1 tel que
a, = 0 avec ap_1,ap41 >0

Considérons alors

+ !
(p >a/p+1X2+"'

QUX) = P I(X) = (p = Dlaps + L

Puisque le polynéme P est scindé a racines simples, par application du théoréme
de Rolle, les racines P*+1) sont séparées par les racines des P(*). En particulier
les racines de Q' sont séparées par les racines de Q.

Or 0 est minimum local de @ avec Q(0) > 0.

Si le polynéme @ admet des racines strictement positives et si a est la plus petite
de celles-ci alors " admet une racine dans ]0, a[ par application du théoréme des
valeurs intermédiaires et du théoréme de Rolle. Or 0 est aussi racine de Q’ et donc
les racines de Q' ne sont pas séparées par les racines de Q. C’est absurde.

Il en est de méme si la polynéome admet des racines strictement négatives.

Exercice 19 : [énoncé]

a) Parmi les polynémes constants, seul le polynéme nul est solution.

Parmi les polyndmes non constants, si P est solution alors 2(deg P — 1) = deg P
et donc deg P = 2. On peut alors écrire P = aX? + bX + c avec a # 0.

a=1

c=1b%/4

Les solutions de I’équation sont P =0 et P = X? + bX + b*/4 avec b € K.

b) Parmi les polyndme de degré inférieur a 1, seul le polynéme nul est solution.
Pour P polynéme tel que deg P > 2 alors la relation (X2 +1)P" — 6P =0
implique, en raisonnant sur 'annulation des coefficients dominants,

deg P(deg P — 1) = 6 donc deg P = 3.

En cherchant P sous la forme P = aX3 + bX? + ¢X + d avec a € K*, on obtient
que seuls les polynomes P = a(X3 + X) avec a € K* sont solutions.

Finalement les polynomes solutions sont les a(X? + X) avec a € K.

P? = 4P & 4a?X? 4 4abX + b = 4aX? + 4bX + 4c & {

Exercice 20 : [énoncé]
Les polynomes solutions de P, — P/ = X™ sont nécessairement de degré n.
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Cherchons ceux-ci de la forme :
P,=a, X"+ ap 1 X" 1+ + a1 X +ao
P, — P} = X™ équivaut a
an =1,ap-1 =nay,an—o=(n—Dap_1,...,a0 = L.ag

= X" posséde une et une seule solution qui est :

n
n!
.. | — T xk
-l—n.—zk!X
k=0

Par suite ’équation P, — P/,

P=X"4+nX""t4+nn-1)X""2+

Exercice 21 : [énoncé]
Parmi les polyndémes constants, seul le polynéme nul est divisible par son
polyndme dérivé.

Soit P un polynoéme non constant et n son degré.

Si P’ | P alors on peut écrire nP = (X — a)P’ avec a € K car deg P’
En dérivant nP’ = (X —a)P” + P’ donc (n — 1)P' = (X —a)P".
Ainsi de suite jusqu’a P~ = (X — a) P,

Or, si on pose A le coefficient dominant de P, on a P(™ = n!\ donc en remontant
les précédents calculs on obtient n!P = n!(X — a)™A. Ainsi P = A\(X — a)™.
Inversement, un tel polynéme est solution.
Finalement les solutions sont les P = A(X

=degP — 1.

—a)" avec A € K.

Exercice 22 : [énoncé]
Par la formule de Taylor

+9%0 p(n)

n=0
donc
400
p(n)(o)
P(1) = Z nl
n=0 '

et plus généralement
“+o0
p(ntk)
PR (1) = Z P (0)

n!
n=0

Par la formule de Taylor

P(k) Too 2y P n+l~c

=22

kOnO

k

+oo
PX+1)=>"
k=0

puis en permutant les sommes (qui se limitent & un nombre fini de termes non
nuls)

+o0 +o0 +oo
P(n+k 0) k 1
— (n)
P(X+1)=) > =~ =2 PX)
n=0 k=0 n=0

Autre méthode : On exploite les ingrédients suivants :
+oo

- lapplication qui a P associe Y. %P(”) (X)) est linéaire;
n=0

- par la formule du binome, cette application envoie chaque X* sur (X + 1)¥;
- deux applications linéaires égales sur une base sont égales sur ’espace.

Exercice 23 : [énoncé]
Soit P un polynéme et () un polynéme primitif de P. P est solution du probléme
posé si, et seulement si,

VEeZ,Qk+1)— Qk) =k +1

En raisonnant par coefficients inconnus, on observe que Q(X) = 1 X (X + 1) est
solution.

Si Q(X) est aussi solution alors
(Q - Q)(k)

et on en déduit que le polynome Q — Q est constant.
On en déduit que

Vk € Z,(Q—Q)(k+1) =

est 'unique solution du probleme posé.

Exercice 24 : [énoncé]
Par la formule de Taylor, on a pour tout x > 0

deg P

P(k)(a) ok

Pla+z) = i

> P(a) >0
k=0
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Exercice 25 : [énoncé]
Cette division euclidienne s’écrit P = Q(X —a)(X — b) + R avec deg R < 2.
On peut écrire R = aX + (. En évaluant en a et b, on obtient un systeme dont la

résolution donne

P(b) — P(a) ot f = bP(a) — aP(b)

- b—a b—a

Exercice 26 : [énoncé]
Cette division euclidienne s’écrit

P=Q(X —a)®>+ R avec degR < 2

On peut écrire R = aX + 5.
En évaluant en a, puis en dérivant avant d’évaluer & nouveau en a, on obtient un
systeme dont la résolution donne

a= P'(a) et = P(a) —aP'(a)

Exercice 27 : [énoncé]

(X cost +sint)" = (X? +1)Q + R avec deg R < 2 ce qui permet d’écrire
R=aX +baveca,beR.

Cette relation doit étre aussi vraie dans C[X] et peut donc étre évaluée en i :
(icost +sint)” = R(i) = ai + b or (icost +sint)” = ¢»™/2=74) donc

a =sinn(r/2 —t) et b = cosn(nw/2 —t).

Exercice 28 : [énoncé]
Onak=ng+ravec0<r<n.
Or X¥ — X" = X"(X™ —1) et X™ — 1| X™ — 1. On peut donc écrire

X" -1 =(X"-1)Q(X)

puis
XF = (X" - 1D)X"Q(X) + X" avec deg X" < deg(X™ — 1)

ce qui permet de reconnaitre le reste de division euclidienne cherchée.

Exercice 29 : [énoncé]
a)n=mq+ravec 0 <r < m.
Xt —1=Xmat" —1=X"t" - X" 4 X" —1=X"(X"-1)+ X" -1

or XM —1=(X"-1)(1+X™+---+ X" D)donc X" —1=(X"-1)Q+R
avec Q = X"(1+X™ 4.+ X™a D) et R= X" —1.

Puisque deg R < deg X™ — 1, R est le reste de la division euclidienne de X™ — 1
par X™ — 1.

b) Suivons l'algorithme d’Euclide calculant le pged de n et m.

ag = n, a; = m puis tant que ay # 0, on pose a1 le reste de la division
euclidienne de ax_1 par ag.

Cet algorithme donne pged(m,n) = a, avec a, le dernier reste non nul.

Par la question ci-dessus on observe que si on pose Ay = X% — 1 alors
Ag=X"—1, Ay = X™ — 1 et pour tout k tel que ap, # 0, Ax # 0 et Ap41 est le
reste de la division euclidienne de Aj_1 par Ay.

Par suite pged(X™ — 1, X™ — 1) = pged(Ag, A1) = pged(Ag, Ag) = -+ =
pgced(Ap, Apy1) = Ap = Xpged(m.n) _ 1 car Apt1 = 0 puisque ap4q1 = 0.

Exercice 30 : [énoncé]

a) X3 —2X2+3X -2=(X-1)(X?- X +2).
b) X3 —3X2 43X —2= (X - 2)(X2— X +1).
c) X3+3X? -2=(X+1)(X?+2X —2).

Exercice 31 : [énoncé]

X4+ X3+ AX2 4+ puX +2=(X2+2)(X2+ X +(A—=2))+ (1 —2)X +6 — 2.
Le polynéme X2 + 2 divise X% + X3 4+ AX? + uX + 2 si, et seulement si,
A=3,u=2

Exercice 32 : [énoncé]
On écrit P = zp; apX* € K [X]
a) On a =

P(P(X)) = P(X) = " ax ([P(X)] = x*)

k=0

avec P(X) — X divisant [P(X)]" — X* car
k—1
ak _ bk — (a _ b) Zalbk—l—f
=0

b) P(X) — X divise le polynéme P(P(X)) — P(X) et le polynéme P(X) — X. Il
divise donc leur somme P(P(X)) — X.
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¢) Par récurrence sur n € N*.
La propriété est immédiate pour n = 1 et vient d’étre établie pour n = 2.
Supposons la propriété vraie au rang n > 1.

P
PMHHX)}%X)—E:ak(PMNXﬂkxﬁ)
k=0
ﬂ“@ﬁfdemﬂﬂMMﬂkka%mﬂWNX%mX&W%PW“%ng%X)
Par hypothése de récurrence, P(X) — X divise alors P"t1(X) — P(X) et enfin on
en déduit que P(X) — X divise PI"1(X) — X.
Récurrence établie.

Exercice 33 : [énoncé]
Puisque
P(P(X)) = X = (P(P(X)) - P(X)) + (P(X) — X)
le probléme revient & montrer que P(X) — X divise P(P(X)) — P(X).
P
On écrit P = Y ap X* € K[X] et on a
k=0

avec P(X) — X divisant [P(X)]" — X* car
k—1
U,k _ bk _ (CL _ b) Zafbk—l—l
=0

On en déduit que P(X) — X divise le polynéme P(P(X)) — P(X) et donc le
polynéme P(P(X)) — X.

Exercice 34 : [énoncé]
(=) Si a divise b, on peut écrire b = ac et alors

XP—1= (X9 —1°= (X" = 1)(1+ X" + - + Xl D)

donc X — 1 divise X° — 1.
(<) Si X — 1 divise X° — 1, réalisons la division euclidienne de b par a

b=aqg+ravec0<r<a

On peut écrire
Xl 1=X"(X" - 1)+ X" —1

et puisque X® — 1 divise X® — 1 et aussi X% — 1, on peut affirmer que X® — 1
divise X" — 1.
Or r < a donc nécessairement r = 0 et donc a divise b.

Exercice 35 : [énoncé]

Posons D = pged(4, B). On a D? = pged(A?, B?) associé a A? donc
deg D? = deg A2 puis deg D = deg A.

Or D | A donc D et A sont associés. Puisque D | B, on obtient A | B.

Exercice 36 : [énoncé]

Unicité : Soit (U, V) et (U, V) deux couples solutions. On a A(U —U) = B(V = V).
A|B(V-V)et ANB=1donc A|V —V.Or deg(V — V) < deg A donc
V-V=0.

Par suite V =V et de méme U = U.

Existence : Puisque A A B = 1, il existe U,V € K[X] tels que AU + BV = 1.
Réalisons la division euclidienne de U par B : U = BQ + U avec deg U < deg B.
Posons ensuite V =V + AQ. On a AU + BV = AU + BV = 1 avec deg U < deg B.
Comme deg AU + BV < max(deg AU, deg BV) on a deg AU = deg BV

d’ott degV = deg A + deg U — deg B < deg A.

Exercice 37 : [énoncé]

(i) = (ii) Posons D = pgcd(A, B) qui est non constant.

Puisque D | A et D | B on peut écrire A = DV et —B = DU avec degV < deg A
et degU < deg B.

de sorte que AU + BV = DUV — DUV = 0.

(ii) = (i) Supposons (ii)

Si par 'absurde A A B =1 alors, puisque A| —BV ona A|V.

Or V # 0 donc deg A < degV ce qui est exclu. Absurde.

Exercice 38 : [énoncé]

Si AN B =1 alors il existe U,V € K[X] tels que AU + BV = 1.

On a alors A(U —V)+ (A+ B)V =1donc AN (A+ B) =1. De méme
BAN(A+B)=1.

Par suite ABA(A+ B) = 1.

Si AB A (A+ B) =1 alors puisque pged(A, B) | AB et pged(A,B) | A+ B on a
pged(A,B) =1 puis AANB = 1.
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Exercice 39 : [énoncé]

pged(A4,C) | A et pged(A, C) | C donce pged(A, C) | BC puis

pged(A4, C) | pged(A, BC).

Inversement. Posons D = pged(A,BC). Ona D | Aet AANB =1donc DAB = 1.
De plus D | BC donc par le théoréme de Gauss, D | C et finalement

D | pged(4, O).

Exercice 40 : [énoncé]

Si a =balors (X — a)? divise (X — a)? si, et seulement si, a est racine au moins
double de (X3 — a)?. Ceci équivaut & a® = a ce qui donne a € {—1,0,1}.

Les polyndmes solutions correspondant sont alors X2, (X — 1)? et (X + 1), tous
réels.

Sia # balors (X —a)(X —b) divise (X3 — a)(X? -
sont racines de (X2 — a)(X? —b).

b) si, et seulement si, a et et b
ad=a
b3 _

Si a® # b alors a et b sont racines (X2 — a)(X3 — b) si, et seulement si, {

a®=b
ou .
¥ =a

Dans le premier cas, sachant a # b, on parvient aux polyndémes
X(X-1),XX+1et (X-1)(X+1).

a®=b b=a?

Puisque & , dans le second cas, on parvient a
{ ¥ =a { a=a

(X — e”/‘l)(X _ e:Sz‘Tr/4)7 X241 1et (X — e—z‘w/4)(X _ e—3z’7r/4)_

Ainsi quand a # b et a® # b3, on parvient & 6 polynomes dont 4 réels.

Enfin, si a # b et a® = b® alors (X — a)(X — b) divise (X3 — a)(X3 —b) si, et

seulement si, a® = a ou a® = b. Quitte & échanger a et b, on peut supposer a® = a

et on parvient alors aux polynomes (X — 1)(X — 7), (X — 1)(X — j2),

(X +1)(X +7) et (X +1)(X +32) selon que a=1o0ua=—1 (le cas a = 0 étant

a exclure car entrainant b = a).

Au final on obtient 3 + 6 + 4 = 13 polyndmes solutions dont 3 + 4 + 0 = 7 réels.

Exercice 41 : [énoncé]
a) P(p/q) = 0 donne

anp™ + an_1p" g+ +aipg"t +apg" =0

n—1

Puisque p | app™ + -+ 4+ a1pg™ ', onap|agg™ or pAg=1donc p|ap. De méme

q| an.

b) Si P admet un racine rationnelle r = £ alors p € {—5,—1,1,5} et ¢ € {1,2}.

f% est racine de P.

P=2X3-X213X+5 = (2X+5)(X?>-3X +1) = (2X+5) (X -

¢) Si P est composé dans Q[X] alors P posséde une racine rationnelle, or ce n’est
pas le cas.
Donc P est irréductible dans Q [X].

Exercice 42 : [énoncé]
P(a) = P(b) = P(c) =1 et a, b, c deux & deux distincts donc

(X —a)(X-b)(X—-¢)|P—-1
De plus deg P < 3 donc il existe A € K tel que
P=XX—-a)(X-0b)(X—-0¢)+1

Puisque P(0) =0,ona A\ = —-.

abe

Exercice 43 : [énoncé]

a) sin ((2n + 1)a) = Im (e?@" D) = Im ((cos o + i sin a)?"+1) donne en
2n+1
2p+1
b) On observe sin ((2n + 1)a) = sin?" ! aP(cot? ).

Posons [, = 2511 pour 1 < k < n. Les x, = cot? 35, sont n racines distinctes de
P, or deg P = n, ce sont donc exactement les racines de P.

2rtl g,

développant sin ((2n + 1)a) = > (—1)? cos?("~P) o sin
p=0

Exercice 44 : [énoncé]
a) On a
cos3z = 4cos®x — 3cosz

donc
4a® — 3a = cos(n/3) = 1/2

Ainsi a est racine du polynéme 8X3 — 6X — 1.
b) Soit & une racine rationnelle de ce polynéme. On peut écrire x = p/q avec
pAgqg=1.On a alors

8p* —6pg® —¢* =0
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On en déduit p | 8p* — 6pg? = ¢3. Or p et ¢ sont premiers entre eux et donc par le
théoréme de Gauss p = £1. De plus ¢* | 6pg® + ¢> = 8p? et, par un argument
analogue au précédent, ¢* | 8. Ainsi ¢ = +1 ou ¢ = £2.

Or 1,—1,1/2 et —1/2 ne sont pas les valeurs de cos(7/9). On peut donc conclure
que a est irrationnel.

Exercice 45 : [énoncé]

Soient P = A — B et n = max(deg A,deg B) € N* de sorte que P € C, [X].

Les solutions des équations A(z) =0 et A(z) = 1 sont racines de P.

Soit p est le nombre de racines distinctes de 1’équation A(z) = 0.

Puisque la somme des multiplicité des racines de A vaut n, ces racines sont
susceptibles d’étre racines de I’équation A’(z) = 0 avec une somme de
multiplicités égale & n — p (en convenant qu’une racine de multiplicité 0 n’est en
fait pas racine. ..)

Si ¢ est le nombre de racines distinctes de 'équation A(z) = 1 alors de méme
celles-ci sont racines de ’équation A’(z) = 0 et la somme de leurs multiplicités
vaut n — gq.

Or ces derniéres se distinguent des précédentes et puisque deg A’ =n — 1, on peut
affirmer n —p4+n—qg<n—1cequidonne p+qg=>n-+1.

Le polynéme P posséde donc au moins n + 1 racines donc P = 0 puis A = B.

Exercice 46 : [énoncé]
a) Posons

n b '
SEIED | s
i=1j#i ¢ Y
OnadegP <n—1et
V1< k<n, Plag) =1
Le polynéme P — 1 possede donc n racines et étant de degré strictement inférieur
a n, c’est le polynéme nul. On conclut P = 1.

b) On a
A(x) =3 T - ay)
i=1 j#i
donc
Al(as) =] (ai = a5)
i#£j

La quantité

apparait alors comme le coefficient de X"~ ! dans le polynéme P.
On conclut que pour n > 2

n
1=

LI 0
< Al(a;)

Exercice 47 : [énoncé]

Les racines de X? — 1 sont simples et toutes racines de XP? — 1.
Les racines de X7 — 1 sont simples et toutes racines de XP? — 1.
En dehors de 1, les racines de X? — 1 et X9 — 1 sont distinctes.
Comme 1 racine double de (X — 1)(XP? — 1), on peut conclure

(XP—-1)(X7-1) | (X =1)(XP1-1).

Exercice 48 : [énoncé]

a) Posons P= (X +1)" —nX —1.Ona P(0)=0et P =n(X +1)""! —n donc
P'(0) =0.

0 est au moins racine double de P donc X? | P.

b) Posons P = nX"*2 — (n+2). X" + (n + 2)X — n. On observe
P(1)=P/(1)=P'(1) =0.

1 est au moins racine triple de P donc (X —1)3 | P.

Exercice 49 : [énoncé]

1 est au moins racine double de P — 1 donc 1 est au moins racine simple de
(P-1)=P.

De méme —1 est au moins racine simple de P’. Par suite X? — 1| P'.

Puisque deg P’ < 2, on peut écrire P/ = \(X? — 1) avec A € K.

Par suite P = %X?’ —AX 4+ pu. P(1) =1et P(—1) = —1 permettent de déterminer
Aet .

On obtient : A = —% et p=0.

Exercice 50 : [énoncé]

L+ X + X2 = (X —j)(X —5°).

j et j2 sont racines de X3" + X3P+1 + X34+2 donc
1+X+X2 | X3n+X3p+1 +X3(J+2.
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Exercice 51 : [énoncé] est solution du probleme transformé et
On peut factoriser 99 655
X2+ X4+1=(X-HX -5 P(X) = —7)(5 +111X* — 7X3 +464X2 — 314X + 82

On en déduit R s
est solution du probleme initial.

X2+ X +1| X+ X"+ 16 jet ;2 sont racines de X2" + X" + 1 Les a.utres soh\1tions s’en déduisent en ob.servant que la différence de deux
solutions posseéde 1 et 2 comme racine triple.

Puisque X2" + X™ + 1 est un polyndme réel j en est racine si, et seulement si, ;2 Finalement, la solution générale est

1’eSt. 29 655
, , 3sin=0 [3] — XS 111X - X3 4 464X7 - 314X 482+ (X — 1)3(X —2)3Q(X)
(X + X"+ 1)) ="+ + 1= 2 2

0 sinon
avec Q € C[X].
Finalement
X244 X+1 [ X"+ X" +1en£0 [3
Exercice 54 : [énoncé]
a) Puisque les racines communes & P et P’ permettent de dénombrer les

Exercice 52 : [énoncé] multiplicités des racines de P, on a

Soit P solution. X | (X +4)P(X) donc X | P puis (X +1) | P(X + 1) donc
(X+1)| (X+4)P(X) puis X + 1] P etc...

AH;‘,] onl okitleng(qus P(X) = Xt(Xt+ DX +2)(X +3)Q(X) avec et des relations analogues pour ¢ et r.
Q(X +1) = Q(X) donc Q constant. De plus, on a

La réciproque est immédiate. PQ-QP=QR-RQ=RP-PR

p = deg P — deg(pgcd(P, P'))

et ce polynome est non nul car les polyndémes P, ), R sont non constants. En effet,
si P'Q — Q'P = 0, alors une racine de P est nécessairement racine de @ ce qui est
exclu.

Puisque les polynéme pged(P, P’), pged(Q, Q') et pged(R, R’) divisent chacun le
polyndéme Q'R — R'Q et puisqu’ils sont deux & deux premiers entre eux (car

P,Q, R le sont), on a

Exercice 53 : [énoncé]

Dans un premier temps cherchons P vérifiant P(0) =1, P(1) = 2,P’(0) = 3,
P'(1) =4,P”(0) =5 et P”(1) = 6 puis on considérera P(X — 1) au terme des
calculs.

Un polynoéme vérifiant P(0) = 1 et P(1) = 2 est de la forme

P(X)=X+1+X(X -1)Q(X) pged (P, Pl)ngd(Qa Q,)ngd(Ra R/) | QR—-RQ

Pour que le polynéme P vérifie P'(0) = 3,P’(1) = 4,P"(0) =5 et P’(1) =6 Par considérations des degrés

on veut que @ vérifie Q(0) = -2, Q(1) =3, Q'(0) = —9/2 et Q'(1) = 0. deg P —p+degQ — g+ deg R—r < degQ + deg R — 1
Le polynéme Q(X) =5X — 2+ X (X — 1)R(X) vérifie les deux premieres
conditions et vérifie les deux suivantes si R(0) = 19/2 et R(1) = —5. et donc
Le polynome R = —£ X + £ convient. degP<p+q+r—1
Finalement
b) Soient n > 3 et P,Q, R vérifiant
29 19
PX)=X+1+X(X-1) (5X—2+X(X—1) (—2X+2>) P" 4+ Q" = R"
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Si a est racine commune aux polyndémes P et @) alors a est racine de R. En
suivant ce raisonnement et en simplifiant les racines communes, on peut se
ramener a une situation ou les polynémes P, @, R sont deux a deux premiers entre
eux. Il en est alors de méme de P", Q™ et R™. L’étude qui précede donne alors

ndegP <p+q-+r
mais aussi, de facon analogue
ndegQ <p+qg+retndegR<p+gq+r
En sommant ces trois relations, on obtient
n(degP+deg@Q+degR) <3(p+q+7)

ce qui est absurde car n > 3, deg P > p etc.
On en déduit que les polynémes P, Q, R sont constants.
Les solutions de I’équation

apparaissent alors comme des triplets
P=aT,Q=0Tet R=~T
avec a, 3,7 € C et T € C[X] vérifiant
Q"B ="
¢) Pour .
P:%(X2+1), Q= %(X271) et R=X

on a
P2+Q2:R2

ce qui produit un triplet solution d’une forme différente des précédents obtenus
pour n > 3.

Exercice 55 : [énoncé]

a) Si P(a) = 0 alors P(a?) = —P(a)P(a+ 1) = 0 donc a? est racine de P.

b) Si a # 0 et a non racine de 'unité alors la suite des a®” est une suite de
complexe deux a deux distincts, or tous les termes de cette suite sont racines de P
or P # 0 donc ce polyndme ne peut avoir une infinité de racines. Absurde.

Exercice 56 : [énoncé]
2,a*,... le sont aussi. Comme un polyndme non nul n’a

Si a est racine de P alors a

qu'un nombre fini de racines, on peut affirmer que les a, a2, a?, ... sont redondants
ce qui implique a =0 ou |a| = 1.

Si a est racine de P alors (a — 1)? I'est aussi donc a —1=0ou |a — 1| = 1.
Sia#0eta##1onanécessairement |a| = |a — 1| = 1. Via parties réelle et
imaginaire, on obtient a = —j ou —j52.

Si P est solution, non nulle, alors son coefficient dominant vaut 1 et on peut
écrire :

P=X%X —1)?(X? - X +1)7. En injectant une telle expression dans 1’équation,
on observe que celle-ci est solution si, et seulement si, « = 5 et v = 0.

Exercice 57 : [énoncé]

Le polynéme nul est solution. Soit P une solution non nulle.

Si @ est racine de P alors a? l'est aussi puis a?,a®, .. ..

Or les racines de P sont en nombre fini donc les éléments a?” (n € N) sont
redondants. On en déduit que a = 0 ou a est une racine de 'unité.

De plus, si a est racine de P alors (a — 1) est aussi racine de P(X + 1) donc

(a —1)? est racine de P. On en déduit que a — 1 = 0 ou a — 1 est racine de I'unité.
Sia#0,1 alors |a] = |a — 1| =1 d’ott I'on tire a = —j ou —j2.

Au final, les racines possibles de P sont 0,1, —j et —j2.

Le polynéme P s’écrit donc

P(X) = AX*(X — 1)P(X +j)(X +52)°

avec A # 0, a, 8,7,0 € N.
En injectant cette expression dans I’équation

P(X?) =P(X)P(X +1)
on obtient
MN=\Na=fety=6=0

On conclut
P(X) = [X(X - 1)]°

Exercice 58 : [énoncé]

a) Si a est une racine de P non nulle alors a?, a?, ... sont racines de P. Or P # 0
donc P n’admet qu’un nombre fini de racines. La série précédente est donc
redondante et par suite a est une racine de l'unité et donc |a| = 1.
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Si a = 0 est racine de P alors 1 = (0+ 1)? aussi puis 4 = (1+1)? I'est encore,. . . et
finalement P admet une infinité de racines ce qui est exclu.

Finalement les racines de P sont toutes de module 1.

b) Soit a € C une racine de P. a + 1 est racine de P(X — 1) donc (a + 1)? est
aussi racine de P. Il s’ensuit que |a| = |a + 1| = 1. En résolvant cette double
équation on obtient a = j ou j2 et donc P est de la forme

P(X) = MX = j)*(X = j%)°

Le nombre j est racine de multiplicité a de P donc j est racine de multiplicité au
moins « de

P(X?) = (X = j)*(X* - »)°
et par suite 8 > «. Un raisonnement symétrique permet de conclure 8 = « et le

polynoémeP est de la forme
AMXZ+ X +1)°

Un tel P est solution du probleme posé si, et seulement si,
MXP+ X2+ D)= M(X - 1)+ (X - D)+ D*XP+ X + 1)~

égalité qui est vérifiée si, et seulement si, A = 1.
Finalement les solutions du probléme posé sont les polynomes P = (X2 + X 4 1)®
avec a € N.

Exercice 59 : [énoncé]

Supposons P solution.

Le coefficient dominant A de P vérifie A\ = A\? et donc est égal & 1.

Si a est racine de P alors a? et (a + 1)? le sont aussi.

Si a # 0 est une racine de P alors a?,a%, ... sont racines de P. Or P # 0 et donc
P n’admet qu’un nombre fini de racines. La suite précédente est donc redondante
et par conséquent a est une racine de l'unité. En particulier |a| = 1.

Si a = 0 est racine de P alors 1 = (0 + 1)? aussi puis 4 = (1 +1)? Pest encore,. . . et
finalement P admet une infinité de racines ce qui est exclu.

Finalement les racines de P sont toutes de module 1.

Or si a est racine de P, (a + 1)? Pétant encore et donc

ol =la+1] =1

Les seuls complexes vérifiant cette identité sont j et j2 (ce sont les points
intersection du cercle unité et du cercle de centre —1 et de rayon 1 du plan
complexe). On en déduit

P=(X?+X+1)"

car P est un polynoéme réel et que donc ses racines complexes conjuguées sont
d’égales multiplicités.
Inversement, on vérifie par le calcul qu'un tel polynéme est bien solution.

Exercice 60 : [énoncé]
Le polynéme nul est solution. Soit P une solution non nulle.
Si a est racine de P alors a? est aussi puis a?, a8, .. ..
Or les racines de P sont en nombre fini donc les éléments a®" (n € N) sont
redondants. On en déduit que a = 0 ou a est une racine de 'unité.
De plus, si a est racine de P alors (a + 1) est aussi racine de P(X — 1) donc
(a + 1)? est racine de P. On en déduit que a +1 = 0 ou a + 1 est racine de I'unité.
Si a#0,—1 alors |a| = |a+ 1| = 1 d’ott 'on tire a = j ou j2.
Au final, les racines possibles de P sont 0, —1,j et j2.
Le polynoéme P s’écrit donc P(X) = AX*(X + 1)#(X — 7)7(X — j2)° avec A # 0,
a,B,7v,6 € N.
En injectant cette expression dans 1’équation P(X?) = P(X)P(X — 1) on obtient
MN=\Na=p=0etv=24.
On conclut
P(X)=[X*+X+1]"

Exercice 61 : [énoncé]

a) Dans C [X]
X' 1= (X = 1)(X +1)(X —i)(X +1)
et dans R [X]
X' 1=(X-1D(X+1)(X2+1)

b) Dans C[X]

4

X?—1=[[ (X -

k=0

et dans R [X]

X5 1= (X-1)(X?-2cos QgX +1)(X? —2cos %X +1)
¢) Dans C[X]
(X2 X41)2 41 = (X=X +14+4) (X 2= X +1—1) = (X —4) (X —144) (X +4) (X —1—4)

et dans R [X]
(X2 =X +1)+1=(X>+1)(X?-2X +2)
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Exercice 62 : [énoncé] Ainsi
a) X'+ X?+1=(X?+1)?-X?’=(X’+ X+ 1)(X2 - X +1) ) )
b) 2n n _ ks ia+2ikT/n T —ia—i2k7/n
X44X2-6=(X241/2)2-25/4 = (X2—2)(X2+3) = (X —v2)(X +v2)(X2+3) X = 2cos(na)X “*kl:IO(X’e )kHO(X’e )
) X8+ X4 41=(X*+1)2 - (X2 =(X* - X2+ 1)(X*+ X2 +1) puis - -
X84 X4+ 1==(X2+ X+ 1)(X2 - X + 1)(X%+V3X +1)(X? - V/3X +1). dans C [X] puis
n—1 n—1 2%k
Exercice 63 : [énoncé] X2”72cos(na)X”+1 _ H (X _ eza+2zk7r/n)(X _ efza72zk7r/n) _ H (XQ — 9cos (a + -
Les racines de (X +14)" — (X — )" sont les z; = cot % avec k € {1,2,...,n— 1}. k=0 k=0
Par suite i . dans R [X]
11 (X — cot —) | (X +i)" — (X — i)™
k=1 "
et il existe A € K tel que Exercice 66 : [énoncé]
Notons x1, Ts, T3, x4 les racines du polynéme considéré avec 1 + xo = 2.
n—1
o o km
(X+7’) _(X_Z) :AH(X_COt?) 01:x1+x2+x3+x4:0
k=1 09 = X1To + X123 + 124 + Tox3 + Toxg + T34 =0
Le coefficient dominant de (X + )™ — (X — )™ étant 2ni, on obtient 03 = X1XoT3 + T1LoXy + T123L4 + Toxzwy = —12
04 = T1T2X3T4 = —D
AN _ — _ ne
(X +0)" — (X —i)" = 2ni H COt o1 donne z3 + x4 = —2, 05 donne x129 + 324 = 4 et 03 donne x1xy — x3T4 = 6.
On obtient x1z9 = 5 et x314 = —1.
21 et x4 sont les racines de X2 —2X + 5i.e. 1+ 2i.
. ) i x3 et x4 sont les racines de X2 +2X —1ie. —1++/2.
Exercice 64 : [énoncé] _
Les racines complexes de P sont les wy, = eI avec k € {0,...,2n}.
On observe Wy, = way,— pour k € {1,...,n} donc
Exercice 67 : [énoncé]
n n e Notons 1, Z2, 23 les racines de X3 — 7X + . On peut supposer o = 2z;.
H (X —wi) (X — ) H ( — 2cos o+ 1X + 1) Les relations entre coefficients et racines donnent :
k=1 k=1
1 +x2+23=0
T1To + Toxz + X301 = —7
Exercice 65 : [énoncé] _ _ 22Ty = —\
Les racines de X2 — 2cos(na)X + 1 sont e™® et e~"* donc
2n n n ina n —ina d’ou
X" —2cos(na) X" 4+ 1= (X" —e")(X" —e™ ") €3 = —321
Les racines de X™ — ¢ sont les e!*+2#7/™ avec k € {0,...,n — 1} et celles de 2z} — 627 — 327 = 7
X" — e g’en déduisent par conjugaison. _635‘;’ = -\
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puis Par suite z,y, z sont les racines de :
T3 = —31
21 X3 X? 409X —03=X> - X? 4X +4=(X - 1)(X —2)(X +2)
? =
\ = 623 Donc {z,y,z} = {1,-2,2}.

Pour que X2 — 7X + X admette une racine double d'une autre il est nécessaire que Invers.ement de tels t?lplets Son.t solutions.
N=6ou —6 b) Soit (x,y, z) un triplet solution de

Pour A =6, X% —7X + 6 admet 1,2 et — 3 pour racines. sly+2)=1 (1)
Pour A = —6, X2 — 7X — 6 admet —1, —2 et 3 pour racines. y -
yzt+a) =1 (2)

zZx+y)=1 (3
Exercice 68 : [énoncé] ( ) 3)

Notons x1,xa, z3 les racines de X? — 8X? + 23X — 28. On peut supposer (1) — (2) donne zz = yz, (3) donne z # 0 donc = = y.
T1 4 T2 = X3. De méme on obtient x = z.
Les relations entre coeflicients et racines donnent : Ainsiz =y =2z=1/v2 ou —1/V2.
T1+ 22+ 23 =8 z3 =4 Inversement de tels triplets sont solutions.
T172 + Tox3 + 371 = 23 d'olt § T172 +4(72 + 71) = 23. c) Soit (z,y, z) un triplet solution.
T1T0xs = 28 4o xy = 28 Posons Sy =z +y+2=2,8 =22 +y>+22 =14 et S3 = 2% + 3 + 253
Pour déterminer z; et xo il reste a résoudre 2% — 4x + 7 = 0. Déterminons o1 = 2 +y + 2,02 = 2y + yz + 2 et 03 = TYz.
Finalement x; :2+i\/§,x2 =92 —4iv/3et T3 = 4. Onaoy =2.
S? — Sy = 205. Par suite o9 = —5.
Posons t = x2y + yxz + y2z + zy2 + 22z + 22
Exercice 69 : [énoncé] Ona S18 =83+t dott =55 —S3 =8
o1 =21+ X0+ a3 =2+V2 On a S} = S3 + 3t + 603 d’otl 03 = %(S%—Sg—?)t) = —6.
a) { 0y = w120 + Tows + wawy = 23242, Par suite z,y, z sont les racines de
03 = T1Tox3 = 2V/2 X301 X2 409X —03=X>-2X? -5X+6=(X—-1)(X+2)(X —3)
On en déduit 22 + 22 + 23 = 0?2 — 209 = 2, 2323 + 2323 + 2323 = 03 — 20301 =4
et 222222 = 8. Donc {z,y,z} = {1,—-2,3}.
Donc 22,22 et 22 sont racines de 2% — 222 + 4z — 8 = 0. Inversement de tels triplets sont solutions.

b) 2 est racine de I’équation ci-dessus :

23— 222 + 42 — 8= (z—2)(2* +4) = (z — 2)(z + 2i)(z — 2i).

Quitte & réindexer : 2?2 = 2,23 = 2i et 22 = —2i d'ott x; = /2,29 = + (1 +14) et Exercice 71 : [énoncé]
x3 ==+ (1 —1). En développant
Puisque 1 + x5 + 3 :2+\@, on a ri :\/§,z2:1+iet r3=1—1.

1 1 1\ 1 1 1 2 2 2
-+ =SSttt —+—
r Yy =z T Y z Ty Yz 2T

Exercice 70 : [énoncé]

a) Soit (z,y, z) un triplet solution avec ) ) ) )
Onaocy=z4+y+z=103=xyz=—4et . ST S (Z+33+3/):
111 Ty Yz 2T 2xyz
oo =ay+yzt+zex=ayz(—+—-—+-)=—-4
x oy oz
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g
Exercice 72 : [énoncé] puis
2) Ona n l_Isin(a—i—k—W)—i1_6%7“1 _ ! sin na
(X o 1)P'n, — xntl = H (X _ e2ik7r/(n+1)) n’ 2n  eina ~oon—l
k=0
donc

k

27,k7r/ n+1))

n

1

n
Pn(l) — H (1 21krr/(n+1)

—2i)" H sin (

mais
n

H IR = exp(inmw/2) =

k=1

donc

N n—+1
Hsm =
Pl n+1 n

Exercice 73 : [énoncé]

. 2na+2km

(142)" = cos(2na)+isin(2na) = ¥ & 14z =" =

Cette équation possede donc n solutions distinctes qui sont

2k = (20 55) 1 avec k € {0,1,...,n—1}

On observe alors
n—1

[1 2 = (~m = e

k=0
Or
o 12(a+k—7‘) z(a+ ) km n;n 'Lna+z
szf H n He 225111((1—1——)—2
k=0 k=0
donc

n—1 n—1 kn

__on;—1 n ina :
sz—Qz (=1)"e Hsm(a—i——n)
k=0 k=0

n
1) [] e
k=1

avec k € {0,1,...

,’I‘L*l}

n—1
H sin(a
k=0

Exercice 74 : [énoncé]

On écrit
n

P = Zaka avec a, # 0
k=0

Notons ay, la somme des zéros de P(¥). Par les relations coefficients racines d’un
polynoéme scindé

 ap  (n—1)ap_y . (n—2)ap_1
ag = — Jap = — T =
an na, nany
_ (n—k)an—1 _ Gp1
A = —————— ...y, Qp_1 = —
nan nany

Les ag,aq, ..., a,—1 sont donc en progression arithmétique de raison a,,—1/na,,.

Exercice 75 : [énoncé]
Puisque a+ f+ v = —a, on a

a+6+v:_(a+ﬁ+v>
B+y vt+ta a+f at+a a+pB a+vy

et réduisant au méme dénominateur

@ I3 vy a® — 2ab + 3¢
+ + =
B+y ~v+a a+p ab—c
car aff + By +ya=bet afy = —c.
Exercice 76 : [énoncé]
Pgpspns p = xy + yz + 2w et ¢ = —xy=2.
‘|‘Leﬁ dombres z , Y, z sont racines du polynémes
X?+pX +¢q

On en déduit
x3+y3+z3 =-—-plz+y+2z)—3¢=-3¢q
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De plus
(x+y+2)2=a?+y2+22+2p
donc
2yttt =2
Aussi 23 = —px — ¢ donne 2° = —pz3 — qz? = p?z + pg — qx? et donc

x5+y5+z5:3pq+2pq:5pq

et la relation proposée est des lors immediate.

Exercice 77 : [énoncé]
Soit (z,y,z) un triplet de complexes et
P(X)=(X —2)(X —y)(X —2) = X% — pX? +¢X — 1 avec

p=z+y+z
q=rYy+yz+zx
T =2xYz

On a
(x+y+2)? =22 +y?+ 22+ 2y +yz + 22)

Posonst=x3+y3+z?’ et szxy2+ym2—|—y22+zy2—|—zx2+x22
On a
(x+y+2)(a?+y?+2%) =t+setpg=s+3r

donc t = 3r — pq.
Puisque z,y, 2z sont racines de XP(X) = X* —pX3 +¢X?—rX,ona

syttt =pt g x (P P2 +rp
Puisque z,y, 2 sont racine de X2P(X) = X% —pX?+¢X3 —rX?% on a
x5+y5+z5=p(m4+y4+z4)—q($3+y3+z3)—|—r(m‘2+y2+22)

On en déduit que (x,y, z) est solution du systéme posé si, et seulement si,

P =2q
pt+rp=0
—qt =20

c’est-a-dire, sachant t = 3r — pq,

p*=2q
p(4r —pgq) =0
q(3r —pgq) =0
Ce systeme équivaut encore a
P’ =2
2pr =¢°
3¢r = pg’
et aussi a )
p°=2q
2pr = ¢*
qr =20

Que r soit nul ou non, le systeme entraine ¢ = 0 et est donc équivalent au systeme

p=0
q=0

Ainsi, un triplet (z,y, z) est solution du systéme proposé si, et seulement si, z, y
et z sont les trois racines du polynome P,.(X) = X3 —r (pour r € C quelconque).
En introduisant a € C tel que a® = r, les racines de P,.(X) sont a,aj et aj>.
Finalement les solutions du systéme, sont les triplets (z,y, z) avec

r=a,y=ajet z=aj’

pour a € C quelconque.

Exercice 78 : [énoncé]

On a
P(X) < 1
P(X) — X —
donc
zP(z) O 1
P(z) P 1— 2k
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puis
N
Sy 1
zP'(z) = Z —P(x)+o <xN_n>
=0
Or
P () = nagz™ + (n — Dayz" + -+ ap_1
et
N g,
Z 7P($) = boz" + blx"_1 + -+ bN+2an—n
=0 "
avec

bo = apSgp, b1 = apSy + a1S,. ..

min(k,n)
by = Z arSk—e
=0

Par unicité des coefficients de ™, 2!

généralisé, on obtient

,...,1 de notre développement limité

k
V0 <k < n,ZagSk,g =(n-— k‘)ak
£=0

Pour k = 0, on obtient Sy = n (ce qui était immédiat) et on en déduit

k—1
V0 < k < n,Zagsk_e +kar =0
£=0
Par unicité des coefficients de 1/x,1/22,... de notre développement limité

généralisé, on obtient
n

vk > n, Zagsk_g =0

£=0

Exercice 79 : [énoncé]

a) 1, 4,42 conviennent.

b) Introduisons le polynéme P(X) = (X — a)(X — b)(X — ¢). Les coefficients de ce
polyndme s’expriment & partir de Sy =a+b+c, So =aZ+b%+c% et

Sz = a® + b3 4 3, le polynéme P est donc a coefficients réels. S’il n’admet pas
trois racines, il posséde deux racines complexes conjuguées. Celles-ci sont alors de
méme module ce qui est exclu.

Exercice 80 : [énoncé]

a) forx— 1L, fitaza, foraor 222 —1et f3:2— 423 — 3z

b) frt1(x) + fno1(z) = cos((n+1)0) + cos((n — 1)0) = 2cos O cosnf = 2z f,(x) en
posant 6 = arccos x.

c¢) Existence : Par récurrence double sur n € N.

Pourn=0etn=1:Ty=1et T} = X conviennent.

Supposons le résultat établi aux rangs n — 1 et n > 1.

Soit T},41 le polynéme défini par T), 41 = 2XT,, — Th—1.

On a Ty41(7) = 22T () — Th-1(z) = 22f0(2) — fr-1(2) = fri1(z).

Le polynéme T}, 11 convient. Récurrence établie.

Unicité : Si T, et R, conviennent, alors ceux-ci prennent mémes valeurs en un
infinité de points, ils sont donc égaux.

d) Comme T,,41 = 2XT,, — T,,—1, on montre par récurrence double sur n € N que
Vn € N,degT,, = n.

Il est alors aisé de montrer, par récurrence simple, que le coefficient dominant de
T, est 2"~ ! pour n € N*. Notons que le coefficient dominant de Ty est 1.

e) Résolvons 1'équation T,,(z) = 0 sur [—1,1] :

cos(narccosz) = 0 < narccosz = 3 [r] < arccosz = &~ [Z]
Posons xg,x1,...,2,_1 définis par x; = cos W

Xo, X1, ..,Tn—1 forment n racines distinctes appartenant a |—1, 1] du polynéme
Ty.

Or degT,, = n donc il ne peut y avoir d’autres racines et celles-ci sont
nécessairement simples.

Exercice 81 : [énoncé]

a) ag, ..., 0i—1,a+1,- - -, ay sont racines de L; donc Vj # i, L;(a;) = 0.
De plus
0< g 'sé'(ai ~ %)
Li(a;) = ISIN, ] 7 -1
+(a) IT  (ai—aj)
0<j<n,jti
Donc

Vj e {07 1, ...,n}, Li(aj) = §i,j
b) Posons Q = Y P(a;)L;(X), on a
=0

n n

Q(a;) = P(ai)Li(a;) = »_ P(a:)di ; = P(a;)

i=0 =0

P et @ sont deux polynoémes de degré inférieur a n et prenant mémes valeurs aux
n + 1 points ag, a1, ..., a, ils sont donc égaux.
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Exercice 82 : [énoncé] b) La relation ci-dessus peut se relire : UP,, + V P,,41 = 1. Donc P, et P, sont
a) L, est le polynome dérivé d’ordre n d’un polynéme de degré 2n donc premiers entre eux.

deg L,, = n. ¢) Par récurrence sur m € N, établissons la propriété :

De plus sont coefficient dominant est le méme que celui de (2’;!)! (X)) 3 savoir

1, VHEN*, Pern :PanJrl _Pnflpm

b) 1 et —1 sont racines d’ordre n de (X2 — 1)". Par intégration par parties :
Pour m =0 : ok

! 1 1 1 1 osons la propriété établie au rang m > 0. Pour tout n € N*
o [ maar= [ @ =y = [ - ne-e]” - [ - e TR ’
n)! J_ _ -1 ).
' ' ' Prini1 = Pos1 Poi1—PoPoy = (X Py =Py 1) Prj1 = Po Py = (X Py 1= Pry) Pa— Py P
donc
n! ' ' 2 (n—1) donc
(2n)! /,1 Ln(®)Q)dt = — [1 #-1) @()dt Prtnt1 = PmioPy — Pro1 P
puis en reprenant le processus Récurrence établie.
) . d) Posons D = pged(Py,, Phim) et E = pged(P,,, Pr).
_ 1\ 2 \(0)H(n) _ Comme Py ym = PyPpy1 — Poo1Ppona E | D.
/_1 La(t)Q(t)dt = (=1) /_1 (t DTQ™(8)dt =0 Comme P,_1P,, = P,Pyi1 — Pogn €t Py AP,_1 =1ona D | E. Finalement
D=F.
c) Soit a1, as,...,a, les racines d’ordres impairs de L,, appartenant & |—1,1[. En notant r le reste de la division euclidienne de m par n on a m = ng + r avec
Soit Q = (X —a1)(X —az)...(X — ap). La fonction ¢t — L, (¢t)Q(t) est continue, geNet
de signe constant sur [—1, 1] sans étre la fonction nulle donc fil L,(t)Q(t)dt # 0.
Compte tenu de b) on a nécessairement p > n puis p = n car le nombre de racines pged(Pp, Pr) = pged(Pp, Pr—m) = pged(Pp, Po—2m) = ... = pged(Fy, Pr)
ne peut excéder n.. De plus les racines aq, as, . .., a, sont simples car la somme de

leurs multiplicités ne peut excéder n. e) En suivant 'algorithme d’Euclide menant le calcul de pged(m,n)
simultanément avec celui menant le calcul de pged(P,,, P,,), on observe que

pegcd(Py, Pr) = Poscd(m.n
Exercice 83 : [énoncé] ged( ) pged(m,n)

a) Par récurrence sur n € N
Pour n =0 : ok avec P, = X.

Supposons la propriété établie au rang n — 1 € N. Exercice 84 : [énoncé]

Par la formule de dérivation de Leibniz
1+ PyoP,=1+XP, 1P, —P>=1+X(XP, - P, )P, — P?

" ar " [n = n! n!
= (e—zxn) — Z <k> (wn)(n—k)(e—fc)(k) — z:: (_1)kk‘(n - k)' kae—m

Par I’hypothese de récurrence dz™ k=0 0

1+ PyoP, = X?P? = XP, 1P, — Py_1Popy donc
- (”!)2 k

donc Ln = Z <_1)ka

k=0
1+P, 2P, = X*P>-XP, 1P,—P, (XP,—P,_1) = X?P>-2XP, P, +P> ,=P?

+est un polyndéme de degré n et de coefficient dominant (—1)".

Récurrence établie.
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Exercice 85 : [énoncé]

On a
cosnf = Re(e™?) = Re (Z <Z> i* cos™* @ sin® 9)

k=0

donc

E(n/2) "
0 = 712 n72€017 204
cosn Kz:% (-1) <2€> cos (1 —cos*0)

est un polynoéme en cos 6. Cela assure I'existence de T,, 'unicité provenant de ce
que deux polynoémes coincidant en un nombre infini de points sont nécessairement
égaux.

a)
cos(n + 1)0 + cos(n — 1)0 = 2 cos 0 cos nf

donne
Tn+1 - 2XTn + Tn,1 = 0

b) On a
T, (cos ) = cosnf

donc en dérivant
—sin 0T, (cos @) = —nsinnf

et
sin? 0T (cos @) — cos OT! (cos §) = —n? cos nb

On en déduit par coincidence de polynémes sur [—1, 1] que
(1-XT) — XTI, +n*T, =0
c¢) En dérivant cette relation a lordre k :
(1= X1 — 2k XTHFD — f(k — )TH — XTH — kT30 + 0?70 =0 (1)
En évaluant (1) en 1 :
2k + )T (1) = (n? — KH TP (1)
Comme T}f”(l) = 1, on obtient

(22" k!

sik<n

Comme T,(LO)(—l) = (—1)", on obtient

TP (-1) = (=" T (1)

Exercice 86 : [énoncé]

Soit (P, Q) un couple solution.

Si le polynéme P est constant alors nécessairement () = 0 et P = 1. Vérification
immédiate.

Sinon, posons n = deg P € N*. La relation P? + (1 — X?)Q? = 1 impose que P et
() sont premiers entre eux et en dérivant on obtient

PP — XQ? + (1 - X*)QQ' = 0. Par suite Q | PP’ puis Q | P’. Par des
considérations de degré et de coefficient dominant on peut affirmer P’ = +n(Q).
Quitte & considérer —Q, supposons P’ = n(Q et la relation

PP — XQ*+ (1 - X?)QQ' =0 donne (1 - X*)P" — XP' +n?P =0.

Résolvons Péquation différentielle (1 — t2)y” — ty’ + n?y = 0 sur [—1,1].

Par le changement de variable t = cosf, on obtient pour solution générale

y(t) = Acos(narccost) 4+ psin(narccost).

La fonction ¢ +— cos(narccost) est polynémiale (cf. polynéme de Tchebychev),
cela définit le polynoéme T,.

La fonction ¢ + sin(narccost) ne l'est pas car de dérivée \/1_117 cos(n arccost) non
polynomiale.

Par suite P = AT, et Q = £177.

La relation P? + (1 — X?)Q? = 1 évaluée en 1 impose A\? = 1 et finalement

(P,Q) = (£T,, £1T}).

Vérification : pour le couple (P,Q) = (£T,,,£177), le polynome P? + (1 — X?)Q?
est constant car de polynéme dérivé nul et puisqu’il prend la valeur 1 en 1, on
peut affirmer P? + (1 — X2)Q? = 1.

Exercice 87 : [énoncé]

a) P2:X2—2’ P3:X3—3X.

Par récurrence double sur n € N, on montre deg P,, = n et coeff(P,) = 1.
b) Par récurrence double sur n € N :

Pourn=0et n=1:0k

Supposons la propriété établie aux rangs n et n + 1 (avec n >
1

sinon

T,E’“)(l) — { (()n—k)!(n+k)!(2k+1)!

HR Ak

0)
Poi2(2) = (241/2)Pry1(2)—Pa(z) = z—l—1 24 — 2"+ R z"“—l——l
n+2 - n+1 n P Zn+1 mn - )
En évaluant (1) en —1 :

(2k + DTEV (1) = —(n® = k)T (1)

Récurrence établie.
c) Py(2cosf) = P,(e? +e70) = e 4+ 70 = 2cosnd.
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d) Soit x € [—2,2]. Il existe 0 € [0, 7] unique tel que x = 2cosb.

2k
P,(z)=0&cosnd=0<3ke{0,....,n—1},0 = 7r—;77r
n
Par suite les z; = 2 cos (%) avec k € {0,...,n — 1} constituent n racines

distinctes de a,, # 0 et ag # 0. Puisque le polynéme P,, est de degré n, il n’y en a
pas d’autres.

Exercice 88 : [énoncé]

Montrons la propriété par récurrence sur n > 1.
Pour n =1, P;(X) = X convient.

Supposons la propriété vraie au rang n > 1.

En dérivant la relation

P, (sinx)
(cos )Tl

F0 () =

on obtient
(n+ 1) sinx P, (sinz) + cos® 2 P! (sin )

(cos z)nt2

fr() =

Posons alors
Poii(X)=n+1)XP,(X)+ (1 - X*)P(X)
de sorte que
P, y1(sinz)
(n+1) () — Zntl\>2 %)
f (=) (cos z)nt2

On peut écrire
n

P,(X) = Zaka avec ag = 0,a, #0
k=0

et alors
n

n
Popi(X) =Y (n+1-k)ap X" 4+ kap X*
k=0 k=1
est un polynéme de degré n + 1 a coefficients positif ou nul.
Récurrence établie.
Par la relation de récurrence obtenue ci-dessus

Pi(X)=X,Py(X)=1+X%et P3(X)=5X + X3
et
Poi(1) = (n+1)P,(1)

donc
P,(1)=n!
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