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Intégrales dépendant d’un
paramètre
Convergence dominée

Exercice 1 [ 00921 ] [correction]
Calculer les limites des suites dont les termes généraux sont les suivants :

a) un =
∫ π/4

0
tann x dx b) vn =

∫ +∞

0

dx
xn + ex

Exercice 2 [ 03800 ] [correction]
Etudier la limite éventuelle, quand n tend vers +∞, de la suite

In =
∫ +∞

0

xn

1 + xn+2 dx

Exercice 3 [ 00746 ] [correction]
Calculer les limites des suites dont les termes généraux sont les suivants :

a) un =
∫ +∞

0

sinn x
x2 dx b) un =

∫ +∞

0

xn dx
xn+2 + 1 c) un =

∫ +∞

0

xn dx
x2n + 1

Exercice 4 [ 01771 ] [correction]
Vérifier que la suite de terme général

un =
∫ +∞

0

sin(nt)
nt+ t2

dt

est bien définie et étudier sa convergence.

Exercice 5 [ 00926 ] [correction]
Calculer

lim
n→∞

∫ +∞

0
e−t sinn(t) dt

Exercice 6 [ 00927 ] [correction]
Etablir que ∫ +∞

−∞

(
1 + t2

n

)−n
dt −−−−−→

n→+∞

∫ +∞

−∞
e−t

2
dt

Exercice 7 [ 02568 ] [correction]
Montrer que

un = (−1)n
∫ +∞

0

dt
(1 + t3)n

est définie pour n > 1.
Calculer

lim
n→+∞

∫ +∞

0

dt
(1 + t3)n

En déduire la nature de la série de terme général un.

Exercice 8 [ 03294 ] [correction]
Montrer

lim
n→+∞

n

∫ +∞

1
e−x

n

dx =
∫ +∞

1

e−x

x
dx

Exercice 9 [ 03807 ] [correction]
Montrer que la fonction fn donnée par

fn(x) = ln(1 + x/n)
x(1 + x2)

est intégrable sur R?+.
Montrer que la suite de terme général un = n

∫ +∞
0 fn(x) dx converge vers une

limite à préciser.

Exercice 10 [ 02567 ] [correction]
Soit f : [0,+∞[→ C continue.
On suppose que la fonction f converge en +∞ vers une limite finie `.
Déterminer la limite quand n→ +∞ de

µn = 1
n

∫ n

0
f(t) dt
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Exercice 11 [ 02435 ] [correction]
Etudier la limite de ∫ 1

0
f(tn) dt

où f : [0, 1]→ R est continue.

Exercice 12 [ 00150 ] [correction]
Soit f ∈ C0(R+,R+) bornée. On pose, pour n ∈ N,

In =
∫ +∞

0
nf(t)e−nt dt

Déterminer la limite de In quand n→ +∞.

Exercice 13 [ 00924 ] [correction]
Soit f : R+ → R continue et bornée.
Déterminer la limite quand n→ +∞ de∫ +∞

0

nf(x)
1 + n2x2 dx

Exercice 14 [ 03650 ] [correction]
Soit f : R+ → R de classe C1 intégrable ainsi que sa dérivée.
a) Déterminer pour x > 0

lim
n→+∞

∫ +∞

0
n cos t(sin t)nf(xt) dt

b) Préciser le mode de convergence.

Exercice 15 [ 04079 ] [correction]
Etudier

lim
n→+∞

∫ n

0

(
1− t2

n

)n
dt

Exercice 16 [ 00922 ] [correction]
Etudier

lim
n→+∞

∫ n

0

(
1 + x

n

)n
e−2x dx

Exercice 17 [ 00923 ] [correction]
Déterminer un équivalent de ∫ n

0

√
1 +

(
1− x

n

)n
dx

Exercice 18 [ 02982 ] [correction]
Déterminer

lim
n→+∞

∫ n

0

(
cos x

n

)n2

dx

Exercice 19 [ 00925 ] [correction]
Soit f : R+ → R+ continue et intégrable.
Déterminer la limite quand n→ +∞ de

n

∫ 1

0

f(nt)
1 + t

dt

Exercice 20 [ 02862 ] [correction]
Calculer

lim
n→+∞

∫ +∞

0

n!
n∏
k=1

(k + x)
dx

Exercice 21 [ 03159 ] [correction]
Soit F une application continue décroissante de R dans R, tendant vers 1 en −∞
et vers 0 en +∞. Soient deux réels h et δ vérifiant 0 < h < δ.
a) Déterminer la limite éventuelle de

In =
∫ 1

0
F
(√
n(δt− h)

)
dt

b) On pose

Sn =
n−1∑
k=0

F

(√
n

(
δ
k + 1
n
− h
))

Déterminer un équivalent de Sn lorsque n tend vers +∞.
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Exercice 22 [ 03362 ] [correction]
Pour n ∈ N et x ∈ ]0, 1[, on pose

fn(x) = x2n+1 ln x
x2 − 1

a) Montrer que fn est intégrable sur ]0, 1[. On pose

Jn =
∫ 1

0
fn(x) dx

b) Montrer que la suite (Jn)n∈N est convergente et déterminer sa limite.
c) Montrer que

Jn = 1
4

+∞∑
k=n+1

1
k2

Exercice 23 [ 02392 ] [correction]
Soit f une application réelle de classe C1 sur [a, b] avec 0 < a < 1 < b et f(1) 6= 0.
Soit (fn) la suite de fonctions telle que

fn(x) = f(x)
1 + xn

a) Déterminer la limite simple de (fn).
b) Etablir l’égalité suivante :

lim
n→+∞

∫ b

a

fn(t) dt =
∫ 1

a

f(t) dt

c) Montrer que ∫ 1

a

tn−1fn(t) dt ∼ ln 2
n
f(1)

Exercice 24 [ 02517 ] [correction]
Pour n ∈ N? et x ∈ R, on pose

fn(x) = n√
π

(
1− x2

2n2

)2n4

Soit g une fonction continue sur R et nulle en dehors d’un segment [a, b].
Montrer que

lim
n→+∞

∫
R
fn(x)g(x)dx = g(0)

Exercice 25 [ 03013 ] [correction]
Existence et calcul de ∫ +∞

0

ln t
et dt

Indice : utiliser une suite de fonctions judicieuse.

Intégration terme à terme

Exercice 26 [ 00928 ] [correction]
Montrer ∫ +∞

0

t

et − 1 dt =
+∞∑
n=1

1
n2

Exercice 27 [ 03781 ] [correction]
Prouver l’égalité ∫ 1

0

(ln x)2

1 + x2 dx = 2
+∞∑
n=0

(−1)n

(2n+ 1)3

Exercice 28 [ 00929 ] [correction]
Etablir que ∫ 1

0

ln t
1 + t2

dt =
+∞∑
n=0

(−1)n−1

(2n+ 1)2

Exercice 29 [ 02864 ] [correction]
Existence et calcul de ∫ 1

0

ln t
1− t2 dt

Le résultat est à exprimer à l’aide de ζ(2).

Exercice 30 [ 00931 ] [correction]
a) Etablir ∫ 1

0

ln(1 + t)
t

dt = −
∫ 1

0

ln t
1 + t

dt
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a) En déduire ∫ 1

0

ln(1 + t)
t

dt =
+∞∑
n=1

(−1)n−1

n2

b) Calculer cette somme sachant

+∞∑
n=1

1
n2 = π2

6

Exercice 31 [ 00930 ] [correction]
a) Etablir ∫ 1

0

arctan t
t

dt = −
∫ 1

0

ln t
1 + t2

dt

b) En déduire ∫ 1

0

arctan t
t

dt =
+∞∑
n=0

(−1)n

(2n+ 1)2

Cette valeur est appelée constante de Catalan, elle vaut approximativement 0, 916.

Exercice 32 [ 00940 ] [correction]
Etablir que ∫ +∞

0

sin t
et − 1 dt =

+∞∑
n=1

1
n2 + 1

Exercice 33 [ 02615 ] [correction]
Pour n,m ∈ N, on pose

In(m) =
∫ 1

0
xn(ln x)m dx

a) Calculer In(n).
b) En déduire ∫ 1

0
x−x dx =

+∞∑
n=1

n−n

Exercice 34 [ 00932 ] [correction]
Etablir ∫ 1

0

dx
xx

=
+∞∑
n=1

1
nn

Exercice 35 [ 02869 ] [correction]
Montrer

+∞∑
n=1

n−n =
∫ 1

0
t−t dt

Exercice 36 [ 02570 ] [correction]
Soient p et k 2 entiers naturels, non nul. Soit fp,k : x 7→ xp(ln x)k.
a) Montrer que fp,k est intégrable sur ]0, 1]. Soit

Kp,k =
∫ 1

0
xp(ln x)k dx

b) Exprimer Kp,k en fonction de Kp,k−1.
c) Exprimer Jn =

∫ 1
0 (x ln x)n dx en fonction de n.

d) On pose I =
∫ 1

0 x
x dx. Montrer

I =
+∞∑
n=0

(−1)n

(n+ 1)n+1

Exercice 37 [ 00934 ] [correction]
Etablir que pour p > 2, ∫ 1

0

(ln x)p

1− x dx = (−1)pp!
+∞∑
n=1

1
np+1

Exercice 38 [ 00933 ] [correction]
Etablir ∫ 1

0
xx dx =

+∞∑
n=1

(−1)n−1

nn

Diffusion autorisée à titre entièrement gratuit uniquement - dD



[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Enoncés 5

Exercice 39 [ 03790 ] [correction]
Pour tout n ∈ N et tout x ∈ R+, on pose

fn(x) = xn(1−
√
x)

a) Montrer que
+∞∑
n=1

∫ 1

0
fn(x) dx =

∫ 1

0

x

1 +
√
x

dx

b) En déduire la valeur de
+∞∑
n=1

1
(n+ 1)(2n+ 3)

Exercice 40 [ 03268 ] [correction]
Montrer ∫ 2π

0
e2 cos x dx =

+∞∑
n=0

2π
(n!)2

Exercice 41 [ 00943 ] [correction]
Calculer, pour n ∈ Z,

In =
∫ 2π

0

einθ

2 + eiθ dθ

Exercice 42 [ 02439 ] [correction]
Soient a ∈ C, |a| 6= 1 et n ∈ Z. Calculer∫ 2π

0

eint

eit − a dt

Exercice 43 [ 03214 ] [correction]
Montrer que

∀a, b > 0,
∫ +∞

0

te−at

1− e−bt dt =
+∞∑
n=0

1
(a+ bn)2

Exercice 44 [ 00935 ] [correction]
Déterminer la limite quand n→ +∞ de

1
n

∫ +∞

0

e−x/n

1 + cos2 x
dx

Exercice 45 [ 00939 ] [correction]
Soient α > 0, n ∈ N. On pose

un(α) =
∫ π/2

0
(sin t)α(cos t)n dt

a) Nature de la série de terme général un(1).
b) Plus généralement, nature de la série de terme général un(α).
c) Calculer

∞∑
n=1

un(α) pour α = 2, 3.

Exercice 46 [ 02807 ] [correction]
a) Pour (m,n) ∈ N2, calculer ∫ 1

0
xn(1− x)m dx

Pour p ∈ Z, montrer l’existence de

Sp =
+∞∑
n=1

np(
2n
n

)

b) Calculer S0 et S−1.
c) Si p ∈ N, proposer une méthode de calcul de Sp.

Exercice 47 [ 02641 ] [correction]
n désigne un entier naturel non nul.
a) Justifier que l’intégrale ∫ +∞

0

n2 − x2

(n2 + x2)2 dx

est définie.
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b) Soit a > 0. Calculer ∫ a

0

n2 − x2

(n2 + x2)2 dx

En déduire la valeur de ∫ +∞

0

n2 − x2

(n2 + x2)2 dx

puis de
+∞∑
n=1

∫ +∞

0

n2 − x2

(n2 + x2)2 dx

c) Soit a > 0. Montrer que la série
+∞∑
n=1

n2 − x2

(n2 + x2)2

converge uniformément sur [0, a], puis que∫ a

0

+∞∑
n=1

n2 − x2

(n2 + x2)2 dx =
+∞∑
n=1

a

n2 + a2

d) En exploitant une comparaison série-intégrale, déterminer

lim
a→+∞

+∞∑
n=1

a

n2 + a2

e) En déduire que l’intégrale ∫ +∞

0

+∞∑
n=1

n2 − x2

(n2 + x2)2 dx

est convergente et donner sa valeur.
Comparer avec le résultat obtenu en b). Qu’en conclure ?

Exercice 48 [ 02438 ] [correction]
a) Démontrer la convergence de la série de terme général

an = n!
nn

b) Comparer

an et n
∫ +∞

0
tne−nt dt

c) En déduire :
+∞∑
n=1

an =
∫ +∞

0

te−t

(1− te−t)2 dt

Exercice 49 [ 02445 ] [correction]
On pose

In =
∫ 1

0

1
1 + tn

dt

pour tout entier n > 0.
a) Trouver la limite ` de (In).
b) Donner un équivalent de (`− In).
c) Justifier ∫ 1

0

ln(1 + y)
y

dy =
+∞∑
k=0

(−1)k

(k + 1)2

d) Donner un développement asymptotique à trois termes de (In).

Exercice 50 [ 02612 ] [correction]
a) Déterminer la limite ` quand n→ +∞ de

In =
∫ 1

0

1
1 + tn

dt

b) Donner un équivalent de
In − `

c) Justifier ∫ 1

0
ln(1 + tn) dt =

+∞∑
k=1

(−1)k−1

k(nk + 1)

d) En déduire un équivalent de ∫ 1

0
ln(1 + tn) dt

et donner un développement asymptotique à trois termes de In.
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Exercice 51 [ 02840 ] [correction]
a) Si (s, λ) ∈ R+? × C, quelle est la nature de la série de terme général

λn

s(s+ 1) . . . (s+ n)

pour n > 0 ? A λ fixé, on note ∆λ l’ensemble des s > 0 tels que la série converge,
et on note Fλ(s) la somme de cette série.
b) Calculer lim

s→sup ∆λ

Fλ(s).

c) Donner un équivalent de Fλ(s) quand s→ inf ∆λ.
d) Si n > 1, calculer : ∫ 1

0
(1− y)s−1yn dy

e) En déduire une expression intégrale de Fλ(s).

Exercice 52 [ 02866 ] [correction]
Soit (an)n>0 une suite bornée. Calculer

lim
n→+∞

∫ +∞

0
e−2t

(+∞∑
p=n

ap
tp

p!

)
dt

Exercice 53 [ 02870 ] [correction]

Si x > 1, on pose ζ(x) =
+∞∑
n=1

1
nx . Montrer

∫ +∞

2
(ζ(x)− 1) dx =

+∞∑
n=2

1
n2 lnn

Exercice 54 [ 00118 ] [correction]
Soit, pour n ∈ N,

un =
∫ π/2

0

[
cos
(π

2 sin x
)]n

dx

a) Etudier la convergence de la suite (un)n>0.
b) Quelle est la nature de la série de terme général un ?

Exercice 55 [ 03287 ] [correction]
Donner la nature de la série de terme général

un =
∫ +∞

0
e−t cos2n tdt

Exercice 56 [ 02583 ] [correction]
Soit n ∈ N?.
a) Ensemble de définition de

In(x) =
∫ +∞

0

dt
(1 + tx)n

b) Montrer que si x > 1,
∑
In(x) diverge.

c) Calculer In(2) pour n > 1.

Exercice 57 [ 03844 ] [correction]
Donner la limite la suite (un) de terme général

un =
∫ 1

0

dt
(1 + t3)n

Quelle est la nature de la série
∑
un ?

Exercice 58 [ 01102 ] [correction]
a) Donner les limites éventuelles en +∞ des suites de termes généraux

Un =
∫ 1

0

dt
(1 + t3)n et Vn =

∫ +∞

1

dt
(1 + t3)n

b) Quelle est la nature des séries∑
n>1

Un et
∑
n>1

Vn ?

Exercice 59 [ 02360 ] [correction]
Pour n ∈ N?, soit fn l’application définie par

fn(x) =
{ 2sh(x)

enx−1 si x ∈ ]0,+∞[
α si x = 0
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a) Pour quelle valeurs de α la fonction fn est-elle continue ?
Dans la suite, on prendra cette valeur de α.
b) Montrer que fn est bornée.
c) Montrer que

∫ +∞
0 fn(x) dx existe pour n > 2.

d) Exprimer
∫ +∞

0 fn(x) dx comme la somme d’une série.

Exercice 60 [ 02609 ] [correction]
Pour n > 1, on pose

In =
∫ +∞

0

dt
(1 + t3)n

a) Déterminer la limite de la suite (In).
b) Etablir que pour tout entier n > 1,

In+1 = 3n− 1
3n In

c) Déterminer α ∈ R tel qu’il y ait convergence de la suite de terme général

un = ln(nαIn)

d) En déduire la convergence de la série∑
n>1

1
n
In

et exprimer sa somme à l’aide d’une intégrale.

Intégration terme à terme par les sommes partielles

Exercice 61 [ 00936 ] [correction]
Montrer que, pour a > 0 ∫ 1

0

dt
1 + ta

=
+∞∑
n=0

(−1)n

na+ 1

Exercice 62 [ 00942 ] [correction]
Pour tout α > 0, établir que∫ 1

0

xα−1

1 + x
dx =

+∞∑
n=0

(−1)n

n+ α

Exercice 63 [ 02863 ] [correction]
a) Etablir pour a, b > 0 l’égalité∫ 1

0

ta−1

1 + tb
dt =

+∞∑
n=0

(−1)n

a+ nb

b) Calculer
+∞∑
n=0

(−1)n

3n+ 1

Exercice 64 [ 02437 ] [correction]
Montrer ∫ +∞

0

+∞∑
n=1

(−1)n−1

n2 + t2
dt = π

2

+∞∑
n=1

(−1)n−1

n

Exercice 65 [ 02867 ] [correction]
Soit (an) une suite croissante de réels > 0 telle que an → +∞.
Justifier ∫ +∞

0

+∞∑
n=0

(−1)ne−anx dx =
+∞∑
n=0

(−1)n

an

Etude de fonctions concrètes

Exercice 66 [ 00534 ] [correction]
a) Justifier que l’intégrale suivante est définie pour tout x > 0

f(x) =
∫ 1

0

tx−1

1 + t
dt

b) Justifier la continuité de f sur son domaine de définition.
c) Calculer f(x) + f(x+ 1) pour x > 0.
d) Donner un équivalent de f(x) quand x→ 0+ et la limite de f en +∞.

Exercice 67 [ 03658 ] [correction]
On pose

F (x) =
∫ +∞

0

e−t

1 + tx
dt
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a) Montrer que F (x) est bien définie pour tout x > 0.
b) Montrer que F est de classe C∞ sur [0,+∞[.
c) Calculer F (n)(0) pour tout n ∈ N.

Exercice 68 [ 00538 ] [correction]
Soit

F : x 7→
∫ +∞

0

e−xt

1 + t2
dt

Montrer que F est solution sur R+? de limite nulle en +∞ de l’équation
différentielle

y′′ + y = 1
x

Exercice 69 [ 00537 ] [correction]
Soit

f : x 7→
∫ +∞

0

e−xt2

1 + t2
dt

a) Montrer que f est définie et continue sur R+.
b) Montrer que f est dérivable sur R+? et solution de l’équation différentielle

y − y′ =
√
π

2
√
x

Exercice 70 [ 00532 ] [correction]
Soit

g(x) =
∫ +∞

0

e−tx2 dt
1 + t3

a) Calculer g(0) en réalisant le changement de variable t = 1/u.
b) Etudier les variations de g sur son domaine de définition.
c) Etudier la limite de g en +∞.

Exercice 71 [ 00531 ] [correction]
Soit

f : x 7→
∫ +∞

0

dt
1 + x3 + t3

a) Montrer que f est définie sur R+.
b) A l’aide du changement de variable u = 1/t, calculer f(0).
c) Montrer que f est continue et décroissante.
d) Déterminer lim

+∞
f .

Exercice 72 [ 03313 ] [correction]
Soit

f : x 7→ 1
π

∫ π

0
cos(x sin θ) dθ

a) Montrer que f est définie et de classe C2 sur R.
b) Déterminer une équation différentielle linéaire d’ordre 2 dont f est solution.
c) Montrer que f est développable en série entière sur R.
d) Exploiter l’équation différentielle précédente pour former ce développement.

Exercice 73 [ 00533 ] [correction]
Soit

f : x 7→
∫ π/2

0

cos t
t+ x

dt

a) Montrer que f est définie, continue sur R+?. Etudier les variations de f .
b) Déterminer les limites de f en 0+ et +∞.
c) Déterminer un équivalent de f en 0+ et +∞.

Exercice 74 [ 00536 ] [correction]
Soit f la fonction donnée par

f(x) =
∫ π/2

0
sinx(t)dt

a) Montrer que f est définie et positive sur ]−1,+∞[.
b) Montrer que f est de classe C1 et préciser sa monotonie.
c) Former une relation entre f(x+ 2) et f(x) pour tout x > −1.
d) On pose pour x > 0,

ϕ(x) = xf(x)f(x− 1)

Montrer que
∀x > 0, ϕ(x+ 1) = ϕ(x)

Calculer ϕ(n) pour n ∈ N?.
e) Déterminer un équivalent à f en −1+.

Exercice 75 [ 02878 ] [correction]
a) Pour quels x de R l’intégrale ∫ π/2

0
(sin t)x dt
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existe-t-elle ? Dans ce cas, soit f(x) sa valeur.
b) Montrer que f est de classe C1 sur son intervalle de définition.
c) Que dire de la fonction

x 7→ (x+ 1)f(x)f(x+ 1) ?

Exercice 76 [ 02880 ] [correction]
Montrer que, pour tout x réel positif,∫ +∞

0

arctan(x/t)
1 + t2

dt =
∫ x

0

ln t
t2 − 1 dt

Exercice 77 [ 02875 ] [correction]
Soit Ω = {z ∈ C/Rez > −1}. Si z ∈ Ω, on pose

f(z) =
∫ 1

0

tz

1 + t
dt

a) Montrer que f est définie et continue sur Ω.
b) Donner un équivalent de f(x) quand x tend vers −1.
c) Donner un équivalent de f(z) quand Re(z)→ +∞.

Exercice 78 [ 02871 ] [correction]
Pour x ∈ R, on pose

f(x) =
∫ +∞

0

sin(xt)
et − 1 dt

a) Définition de f .
b) Continuité et dérivabilité de f .
c) Ecrire f(1) comme somme de série.

Exercice 79 [ 02882 ] [correction]
On pose, pour x > 0,

f(x) = 1
x

∫ +∞

0

1− e−tx

1 + t2
dt

Montrer que f est de classe C2 sur ]0,+∞[ et trouver des équivalents simples de f
en 0 et en +∞.

Exercice 80 [ 03324 ] [correction]
Pour x > 0, on pose

f(x) =
∫ x

−x

dt√
1 + t2

√
x2 − t2

a) Montrer que f est définie et continue.
b) Déterminer les limites de f en 0+ et +∞.

Exercice 81 [ 03621 ] [correction]
a) Déterminer le domaine de définition de

f(x) =
∫ x

1

cos2 t

t
dt

b) Donner un équivalent de f en 0 et en +∞.

Exercice 82 [ 03760 ] [correction]
a) Déterminer l’ensemble de définition de

f(x) =
∫ 1

0

dt√
t(1− t)(1− x2t)

b) Donner la limite de f en x = 1.

Exercice 83 [ 03736 ] [correction]
On pose

f(α) =
∫ +∞

0

dx
xα(1 + x)

a) Etudier l’ensemble de définition de f .
b) Donner un équivalent de f en 0.
c) Montrer que le graphe de f admet une symétrie d’axe x = 1/2.
d) Montrer que f est continue sur son ensemble de définition.
e) Calculer la borne inférieure de f .
Enoncé fourni par le concours CENTRALE-SUPELEC (CC)-BY-NC-SA

Exercice 84 [ 02556 ] [correction]
Pour x > 0, on pose

F (x) =
∫ 1

0

ln t
t+ x

dt
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a) Montrer que F est de classe C1 sur ]0,+∞[.
b) Calculer F ′(x) et en déduire l’expression de

G(x) = F (x) + F (1/x)

c) Soit θ ∈ R. Calculer ∫ 1

0

t− 1
t+ 1

ln t
t2 + 2tch(θ) + 1 dt

Exercice 85 [ 03887 ] [correction]
a) Montrer la continuité de l’application définie sur ]0,+∞[ par

g(x) =
∫ x

0

sin(t)
x+ t

dt

b) Préciser ses limites en 0 et +∞.

Exercice 86 [ 03889 ] [correction]
Soit

g : x 7→
∫ +∞

0

e−xt

1 + t
dt

Montrons que g est solution sur R+? de l’équation différentielle

−y′ + y = 1
x

Calcul de fonction intégrale

Exercice 87 [ 00545 ] [correction]
On considère la fonction

g : x ∈ ]−1,+∞[ 7→
∫ 1

0

t− 1
ln t t

xdt

a) Montrer que la fonction g est bien définie.
b) Justifier que la fonction est de classe C1 et exprimer g′(x).
c) En déduire une expression de g(x) à l’aide des fonctions usuelles

Exercice 88 [ 02874 ] [correction]
Etudier

f : x 7→
∫ 1

0

t− 1
ln t t

x dt

Exercice 89 [ 03888 ] [correction]
a) Montrer que l’application g : x 7→

∫ 1
0
tx−1
ln t dt est définie sur ]−1,+∞[.

b) Justifier que g est de classe C1 et calculer g′(x).
c) En déduire une expression simple de g(x) pour x > −1.

Exercice 90 [ 00546 ] [correction]
a) Justifier l’existence et calculer∫ +∞

0
cos(xt)e−tdt

Soit
F : x 7→

∫ +∞

0

sin(xt)
t

e−tdt

b) Justifier que F est définie et de classe C1 sur R. Calculer F ′(x).
c) En déduire une expression simplifiée de F (x).

Exercice 91 [ 02873 ] [correction]
Pour tout x réel, on pose

f(x) =
∫ +∞

0

cos(xt)√
t

e−t dt et g(x) =
∫ +∞

0

sin(xt)√
t

e−t dt

Existence et calcul de ces deux intégrales.

Exercice 92 [ 00553 ] [correction]
Soit

F (x, y) =
∫ +∞

0

e−xt − e−yt

t
dt avec x, y > 0

Pour y > 0, montrer que x 7→ F (x, y) est de classe C1 sur R+? et calculer

∂F

∂x
(x, y)

En déduire la valeur de F (x, y).
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Exercice 93 [ 02611 ] [correction]
On pose

F (x) =
∫ +∞

0

e−t − e−2t

t
cos(xt) dt

a) Quel est le domaine de définition réel I de la fonction F ?
b) Justifier que la fonction F est de classe C1 sur I.
c) Exprimer F (x) à l’aide des fonctions usuelles.

Exercice 94 [ 03311 ] [correction]
Soient a, b deux réels strictement positifs.
a) Justifier l’existence pour tout x ∈ R de

F (x) =
∫ +∞

0

e−at − e−bt

t
cos(xt) dt

b) Justifier que F est de classe C1 sur R et calculer F ′(x).
c) Exprimer F (x)

Exercice 95 [ 00548 ] [correction]
On pose

z : x 7→
∫ +∞

0

e(−1+ix)t
√
t

dt

et on donne
∫ +∞

0 e−t2 dt =
√
π/2.

a) Justifier et calculer z(0).
b) Montrer que z est définie, de classe C1 sur R et

z′(x) = −1
2(x+ i)z(x)

c) En déduire l’expression de z(x).

Exercice 96 [ 03655 ] [correction]
En dérivant la fonction déterminer l’expression de la fonction

g(x) =
∫ +∞

−∞
e−t

2
etxdt

Exercice 97 [ 03656 ] [correction]
a) Existence de

F (x) =
∫ +∞

0
e−t

2
ch(2xt) dt

b) Calculer F (x) en introduisant une équation différentielle vérifiée par F .
c) Calculer F (x) directement par une intégration terme à terme.

Exercice 98 [ 00555 ] [correction]
Ensemble de définition, dérivée et valeur de

f : x 7→
∫ +∞

0

ln(1 + x2t2)
1 + t2

dt.

Exercice 99 [ 03660 ] [correction]
Pour x > 0, on pose

F (x) =
∫ π/2

0
ln
(
cos2(t) + x2 sin2(t)

)
dt

a) Justifier que F est définie et de classe C1 sur ]0,+∞[.
b) Calculer F ′(x) et en déduire un expression de F (x).

Exercice 100 [ 02881 ] [correction]
Existence et calcul de ∫ 2π

0

ln(1 + x cos t)
cos t dt

Exercice 101 [ 00556 ] [correction]
Soit

F (x) =
∫ π/2

0
ln(1 + x sin2 t) dt sur [0,+∞[

a) Justifier que F est bien définie et continue.
b) Etudier la dérivabilité sur [0,+∞[ et donner l’expression de sa dérivée via le
changement de variable u = tan t.
c) Etablir que

F (x) = π(ln(1 +
√

1 + x)− ln 2)
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Exercice 102 [ 02876 ] [correction]
Existence et calcul de

f(x) =
∫ +∞

0

ln(x2 + t2)
1 + t2

dt

Exercice 103 [ 00551 ] [correction]
Soit

F (x) =
∫ 1

0

ln(1 + 2t cosx+ t2)
t

dt

a) Justifier que F est définie et de classe C1 sur [0, π/2]
b) Calculer F ′(x) sur [0, π/2]
c) Donner la valeur de F (0) puis celle de F (x) sachant

+∞∑
k=1

(−1)k−1

k2 = π2

12

Exercice 104 [ 00552 ] [correction]
Pour n ∈ N? et x > 0, on pose

In(x) =
∫ +∞

0

dt
(x2 + t2)n

a) Justifier l’existence de In(x).
b) Calculer I1(x).
c) Justifier que In(x) est de classe C1 et exprimer I ′n(x).
d) Exprimer In(x).

Exercice 105 [ 03323 ] [correction]
Pour tout x ∈ R, on pose

F (x) =
∫ +∞

0
exp

(
−
(
t2 + x2

t2

))
dt

a) Montrer que F est définie et continue sur R.
b) Montrer que F est de classe C1 sur ]0,+∞[.
c) Former une équation différentielle vérifiée par F sur ]0,+∞[.
d) En déduire une expression simple de F sur R.

Exercice 106 [ 03619 ] [correction]
Soit F la fonction définie par :

F (x) =
∫ +∞

0

arctan(xt)
t(1 + t2) dt

a) Montrer que F est définie et de classe C1 sur R+.
On admet l’identité

x2 − 1
(1 + x2t2)(1 + t2) = x2

1 + x2t2
− 1

1 + t2

valable pour tout x et t dans R
b) Déterminer l’expression de F (x).

Etude théorique

Exercice 107 [ 00540 ] [correction]
Soit f une application continue de R× [a, b] dans R.
Expliquer pourquoi f est uniformément continue sur S × [a, b] pour tout segment
S de R.
En déduire que F : x 7→

∫ b
a
f(x, t) dt est continue sur R.

Pour x ∈ R, on pose g(x) =
∫ 1

0 extdt. A l’aide de la question précédente, étudier la
continuité de g. Retrouver le résultat en calculant g(x).

Exercice 108 [ 00544 ] [correction]
Soient f : I × R→ R et u, v : I → R continues.
Montrer la continuité de la fonction

x 7→
∫ v(x)

u(x)
f(x, t)dt

Exercice 109 [ 03756 ] [correction]
Soit f : R→ R de classe C∞ vérifiant f(0) = 0.
Montrer que la fonction

g : x 7→ f(x)
x

se prolonge en une fonction de classe C∞ sur R et exprimer ses dérivées
successives en 0 en fonction de celles de f .
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Exercice 110 [ 00294 ] [correction]
Soient f : I → R une fonction de classe C∞ et a ∈ R tels que

f(a) = f ′(a) = · · · = f (α−1)(a) = 0

a) Montrer qu’on a pour tout x ∈ I

f(x) =
∫ x

a

(x− t)α−1

(α− 1)! f (α)(t)dt

b) En déduire qu’on peut écrire f(x) = (x− a)αg(x) avec g de classe C∞ sur R.

Transformée de Fourier et intégrales apparentées

Exercice 111 [ 00547 ] [correction]
On pose

z : x 7→
∫ +∞

0
e(−1+ix)t2 dt

a) Montrer que z est définie, de classe C1 sur R et vérifie

z′(x) = −1
2(x+ i)z(x)

b) En déduire l’expression de z(x) sachant z(0) =
√
π/2.

Exercice 112 [ 00549 ] [correction]
En dérivant la fonction déterminer l’expression de la fonction

g(x) =
∫ +∞

−∞
e−t

2
eitxdt

Exercice 113 [ 03211 ] [correction]
On considère

ϕ : x 7→
∫ +∞

0

eitx

1 + t2
dt

a) Montrer la définie et la continuité de ϕ sur R.
b) Montrer que ϕ est de classe C1 sur R? et montrer que

ϕ′(x) = i

∫ +∞

0

teitx

1 + t2
dt

c) Montrer que pour x > 0,

ϕ′(x) = i

∫ +∞

0

ueiu

x2 + u2 du

et déterminer un équivalent de ϕ′(x) quand x→ 0+.
d) La fonction ϕ est-elle dérivable en 0 ?

Exercice 114 [ 02499 ] [correction]
On étudie

f(x) =
∫ +∞

0
e−t

2
cos(xt) dt

a) Donner le domaine de définition de f .
b) Calculer f en formant une équation différentielle.
c) Calculer f en exploitant le développement en série entière de la fonction
cosinus.

Exercice 115 [ 00554 ] [correction]
Existence et calcul de

g(x) =
∫ +∞

0
e−t

2
cos(xt)dt

sachant g(0) =
√
π/2.

Fonction d’Euler

Exercice 116 [ 00560 ] [correction]
Démontrer que la fonction

Γ : x 7→
∫ +∞

0
tx−1e−t dt

est définie et de classe C∞ sur ]0,+∞[.

Exercice 117 [ 00561 ] [correction]
a) Démontrer que la fonction Γ donnée par

Γ(x) =
∫ +∞

0
tx−1e−t dt
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est définie et continue sur ]0,+∞[.
b) Démontrer que la fonction Γ est de classe C2 sur ]0,+∞[.
c) En exploitant l’inégalité de Cauchy Schwarz, établir que la fonction x 7→ ln Γ(x)
est convexe.

Exercice 118 [ 00562 ] [correction]
L’objectif de cet exercice est de calculer∫ +∞

0
ln(t)e−t dt

a) Montrer que pour tout t ∈ [0, n],

0 6

(
1− t

n

)n−1
6 e.e−t

b) Etablir que

lim
n→+∞

∫ n

0
ln(t)

(
1− t

n

)n−1
dt =

∫ +∞

0
ln(t)e−t dt

c) Observer que∫ n

0
ln(t)

(
1− t

n

)n−1
dt = lnn+

∫ 1

0

(1− u)n − 1
u

du

d) Conclure que ∫ +∞

0
ln(t)e−t dt = −γ

où γ désigne la constante d’Euler.

Exercice 119 [ 02635 ] [correction]
On rappelle

∫ +∞
0 e−t2 dt =

√
π

2 .
Pour x > 0, on pose

Γ(x) =
∫ +∞

0
e−ttx−1dt

a) Montrer que cette fonction est définie et indéfiniment dérivable sur ]0,+∞[.
On étudiera la régularité en se restreignant à x ∈ [a, b] ⊂ ]0,+∞[.
b) Calculer Γ(n+ 1) pour n ∈ N.

c) En réalisant le changement de variable t = n+ y
√
n, transformer l’intégrale

Γ(n+ 1) en
nn

en
√
n

∫ +∞

−∞
fn(y)dy

où fn(y) = 0 pour y 6 −
√
x, 0 6 fn(y) 6 e−y2/2 pour −

√
t < y 6 0 et

0 6 fn(y) 6 (1 + y)e−y pour y > 0 et t > 1.
d) En appliquant le théorème de convergence dominée établir la formule de
Stirling :

n! ∼
√

2πnn
n

en

Exercice 120 [ 02537 ] [correction]
a) Donner le domaine de définition de la fonction

Γ : x 7→
∫ +∞

0
tx−1e−t dt

b) Calculer l’intégrale

In(x) =
∫ n

0
tx−1

(
1− t

n

)n
dt

c) Expliquer rapidement pourquoi
(
1− t

n

)n converge vers e−t et montrer que

Γ(x) = lim
n→+∞

nxn!
x(x+ 1) . . . (x+ n)

Exercice 121 [ 00941 ] [correction]
Etablir que pour tout x > 0∫ 1

0
tx−1e−t dt =

+∞∑
n=0

(−1)n

n!(x+ n)

Applications au calcul d’intégrales

Exercice 122 [ 00535 ] [correction]
Soit f : [0,+∞[→ R définie par

f(x) =
∫ 1

0

e−x(1+t2)

1 + t2
dt
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a) Montrer que f est dérivable sur [0,+∞[ et exprimer f ′(x).
b) Calculer f(0) et lim

+∞
f .

c) On note g l’application définie par g(x) = f(x2). Montrer

g(x) +
(∫ x

0
e−t

2
dt
)2

= π

4

d) Conclure ∫ +∞

0
e−t

2
dt =

√
π

2

Exercice 123 [ 03654 ] [correction]
L’objectif de ce sujet est de calculer

I =
∫ +∞

0

e−t√
t

dt

Pour x > 0, on pose

F (x) =
∫ +∞

0

e−xt√
t(1 + t)

dt

a) Justifier que la fonction F est bien définie
b) Déterminer une équation linéaire d’ordre 1 dont F est solution sur ]0,+∞[.
c) Calculer F (0) et la limite de F en +∞.
d) En déduire la valeur de I.

Exercice 124 [ 02638 ] [correction]
On pose, pour x > 0,

F (x) =
∫ +∞

0
e−xt 1− cos t

t2
dt

a) Montrer que F est continue sur [0,+∞[ et tend vers 0 en +∞.
b) Montrer que F est deux fois dérivable sur ]0,+∞[ et calculer F ′′(x).
c) En déduire la valeur de F (0) puis la valeur de l’intégrale convergente∫ +∞

0

sin t
t

dt

Exercice 125 [ 00542 ] [correction]
a) Justifier la convergence de l’intégrale

I =
∫ +∞

0

sin t
t

dt

b) Pour tout x > 0, on pose

F (x) =
∫ +∞

0

e−xt sin t
t

dt

Déterminer la limite de F en +∞.
c) Justifier que F est dérivable sur ]0,+∞[ et calculer F ′
d) En admettant la continuité de F en 0 déterminer la valeur de I.

Exercice 126 [ 00543 ] [correction]
Pour x ∈ R+ et t > 0, on pose f(x, t) = e−xtsinct où sinc (lire sinus cardinal) est
la fonction t 7→ sin t

t prolongée par continuité en 0.
Pour n ∈ N, on pose

un(x) =
∫ (n+1)π

nπ

f(x, t)dt

a) Montrer que un(x) = (−1)n
∫ π

0 gn(x, u) du avec gn(x, u) qu’on explicitera.
b) Montrer que la série de fonctions de terme général un converge uniformément
sur R+.
c) On pose U(x) =

+∞∑
n=0

un(x). Justifier que U est continue et expliciter U sous la

forme d’une intégrale convergente.
d) Montrer que U est de classe C1 sur ]0,+∞[ et calculer U ′(x).
e) Expliciter U(x) pour x > 0 puis la valeur de

U(0) =
∫ +∞

0

sin t
t

dt

Exercice 127 [ 02872 ] [correction]
Pour x ∈ R+, soit

f(x) =
∫ +∞

0

sin t
t

e−tx dt

a) Justifier la définition de f(x).
b) Montrer que f est classe C1 sur R+?.
c) Calculer f(x) si x ∈ R+?.
d) Montrer que f est continue en 0. Qu’en déduit-on ?
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Exercice 128 [ 00541 ] [correction]
On considère les fonctions f et g définies sur R+ par :

f(x) =
∫ +∞

0

e−xt

1 + t2
dt et g(x) =

∫ +∞

0

sin t
x+ t

dt

a) Montrer que f et g sont de classe C2 sur R+? et qu’elles vérifient l’équation
différentielle

y′′ + y = 1
x

b) Montrer que f et g sont continues en 0
c) En déduire que ∫ +∞

0

sin t
t

dt = π

2

Exercice 129 [ 00550 ] [correction]
Soit F la fonction définie par :

F (x) =
∫ +∞

0

arctan(xt)
t(1 + t2) dt

a) Montrer que F est définie et de classe C1 sur R+.
b) Déterminer l’expression de F (x).
c) Calculer ∫ +∞

0

arctan2 t

t2
dt

Exercice 130 [ 03312 ] [correction]
a) Montrer que pour tout x > −1∫ 1

0

ln(1 + xt)
1 + t2

dt = ln 2
2 arctan x+ π

8 ln(1 + x2)−
∫ x

0

ln(1 + t)
1 + t2

dt

b) En déduire la valeur de ∫ 1

0

ln(1 + t)
1 + t2

dt
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Corrections

Exercice 1 : [énoncé]
A chaque fois, on vérifie que les fonctions engagées sont continues par morceaux.
a) Sur [0, π/4[, tann x CV S−−−→ 0 |tann x| 6 1 = ϕ(x) intégrable sur [0, π/4[ donc

un →
∫ π/4

0
0 dx = 0

b) Sur [0,+∞[, 1
xn+ex

CV S−−−→ f(x) avec f(x) = e−x sur [0, 1[ et f(x) = 0 sur
]1,+∞[.
De plus

∣∣∣ 1
xn+ex

∣∣∣ 6 e−x = ϕ(x) avec ϕ intégrable sur [0,+∞[ donc

vn →
∫ 1

0
e−x dx = e− 1

e

Exercice 2 : [énoncé]
En découpant l’intégrale

In =
∫ 1

0

xn

1 + xn+2 dx+
∫ +∞

1

xn

1 + xn+2 dx

En appliquant le théorème de convergence dominée aux deux intégrales, on obtient

In →
∫ +∞

1

dx
x2 = 1

Exercice 3 : [énoncé]
A chaque fois, on vérifie que les fonctions engagées sont continues par morceaux.
a) Ici, on ne peut appliquer le théorème de convergence dominée sur [0,+∞[ après
une majoration de |sin x| par 1 car la fonction dominante ϕ(x) = 1/x2 ne sera pas
intégrable sur ]0,+∞[. Pour contourner cette difficulté, on découpe l’intégrale.

un =
∫ +∞

0

sinn x
x2 dx =

∫ 1

0

sinn x
x2 dx+

∫ +∞

1

sinn x
x2 dx

On a ∣∣∣∣∫ 1

0

sinn x
x2 dx

∣∣∣∣ 6 ∫ 1

0

∣∣sinn−2(x)
∣∣ dx car |sin x| 6 |x|

Sans difficultés, par le théorème de convergence dominée∫ 1

0

∣∣sinn−2(x)
∣∣ dx→ 0

et donc ∫ 1

0

sinn x
x2 dx→ 0

Aussi ∣∣∣∣∫ +∞

1

sinn x
x2 dx

∣∣∣∣ 6 ∫ +∞

1

|sin x|n

x2 dx

Or |sin x|
n

x2
CS−−→ f(x) avec f(x) = 0 pour tout x 6= π/2 [π].

De plus |sin x|
n

x2 6 1
x2 = ϕ(x) avec ϕ intégrable sur [1,+∞[ donc∫ +∞

1

|sin x|n

x2 dx→
∫ +∞

1
f(x) dx = 0

puis un → 0.
b) On écrit

un =
∫ 1

0

xn dx
xn+2 + 1 +

∫ +∞

1

xn dx
xn+2 + 1

On a ∣∣∣∣∫ 1

0

xn dx
xn+2 + 1

∣∣∣∣ 6 ∫ 1

0
xn dx = 1

n+ 1
et ∫ +∞

1

xn dx
xn+2 + 1 −−−−−→n→+∞

∫ +∞

1

dx
x2 = 1

en vertu du théorème de convergence dominée et via la domination
∣∣∣ xn

xn+2+1

∣∣∣ 6 1
x2

sur [1,+∞[.
Ainsi un → 1.
c) On écrit

un =
∫ 1

0

xn dx
x2n + 1 +

∫ +∞

1

xn dx
x2n + 1

On a ∣∣∣∣∫ 1

0

xn dx
x2n + 1

∣∣∣∣ 6 ∫ 1

0
xn dx = 1

n+ 1
et ∣∣∣∣∫ +∞

1

xn dx
x2n + 1

∣∣∣∣ 6 ∫ +∞

1

dx
xn

= 1
n− 1
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donc un → 0.
On peut aussi appliquer le théorème de convergence dominée mais c’est moins
efficace.

Exercice 4 : [énoncé]
Posons

fn : t 7→ sin(nt)
nt+ t2

La fonction fn est définie et continue par morceaux sur ]0,+∞[.
Quand t→ 0+, fn(t) ∼ nt

nt+t2 → 1.
Quand t→ +∞ ; fn(t) = O

( 1
t2

)
.

On peut donc affirmer que fn est intégrable sur ]0,+∞[.
Pour t ∈ ]0,+∞[.
Quand n→ +∞, fn(t) = O

( 1
n

)
donc la suite (fn) converge simplement vers la

fonction nulle.
De plus, pour t 6 π/2, on a, sachant |sin u| 6 |u|,

|fn(t)| 6 nt

nt+ t2
6 1

et pour t > π/2,
|fn(t)| 6 1

nt+ t2
6

1
t2

Ainsi |fn| 6 ϕ avec

ϕ : t 7→
{

1 si t ∈ [0, π/2]
1/t2 si t ∈ ]π/2,+∞[

La fonction ϕ étant intégrable sur ]0,+∞[, on peut appliquer le théorème de
convergence dominée et affirmer

un →
∫ +∞

0
0 dt = 0

Exercice 5 : [énoncé]
La fonction intégrée ne converge pas simplement en les t = π/2 + π [2π]. Pour
contourner cette difficulté on raisonne à l’aide de valeurs absolues.∣∣∣∣∫ +∞

0
e−t sinn(t) dt

∣∣∣∣ 6 ∫ +∞

0
e−t |sinn t|dt

On a
fn(t) =

∣∣e−t sinn(t)
∣∣ CS−−→ f(t)

avec
f(t) =

{
0 si t 6= π/2 [π]
e−t sinon

Les fonctions fn et f sont continues par morceaux et

|fn(t)| 6 e−t = ϕ(t)

avec ϕ continue par morceaux intégrable sur [0,+∞[ donc par convergence
dominée :

lim
n→∞

∫ +∞

0
e−t sinn(t) dt =

∫ +∞

0
f(t) dt = 0

Exercice 6 : [énoncé]
Les fonctions données par

fn(t) =
(
1 + t2/n

)−n
sont définies et continues par morceaux sur R.
La suite de fonctions (fn) converge simplement vers f avec f(t) = e−t2 définie et
continue par morceaux sur R.
Soit t ∈ R fixé et considérons

ϕ : x 7→ −x ln(1 + t2/x)

définie sur [1,+∞[.
En étudiant le signe de ϕ′′, on démontre ϕ′ est croissante. Or lim

+∞
ϕ′ = 0 et donc

ϕ′ est négative.
La fonction ϕ est donc décroissante et par conséquent, pour tout n ∈ N?

|fn(t)| 6
(

1 + t2

n

)−n
= exp(ϕ(n)) 6 exp(ϕ(1)) = 1

1 + t2

La fonction t 7→ 1/(1 + t2) est intégrable sur R.
Par convergence dominée∫ +∞

−∞

(
1 + t2

n

)−n
dt −−−−−→

n→+∞

∫ +∞

−∞
e−t

2
dt

Exercice 7 : [énoncé]
La fonction t 7→ 1

(1+t3)n est continue par morceaux sur [0,+∞[ et on observe

1
(1 + t3)n

∼
t→+∞

1
t3n
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avec 3n > 1 donc l’intégrale
∫ +∞

0
dt

(1+t3)n est bien définie pour n > 1.
Par application du théorème de convergence dominée (en prenant ϕ(t) = 1

1+t3
pour dominatrice), on obtient

lim
n→+∞

∫ +∞

0

dt
(1 + t3)n = 0

La décroissance de (|un|) et la positivité de l’intégrale étant des propriétés
immédiates, on peut appliquer le critère spécial et affirmer que

∑
un converge.

Exercice 8 : [énoncé]
Soit n ∈ N?.
La fonction x 7→ e−xn est définie et continue par morceaux sur [1,+∞[. Etant de
plus négligeable devant 1/x2 quand x→ +∞, on peut affirmer qu’elle est
intégrable et on peut donc introduire∫ +∞

1
e−x

n

dx

Par le changement de variable C1 strictement monotone donné par la relation
t = xn , on obtient

n

∫ +∞

1
e−x

n

dx =
∫ +∞

1

e−t

t
t1/n dt

Posons alors
fn : t 7→ e−t

t
t1/n

Les fonctions fn sont définies et continues par morceaux sur [1,+∞[.
La suite de fonctions (fn) converge simplement vers la fonction

f : t 7→ e−t

t

et pour tout n ∈ N
|fn(t)| 6 e−t = ϕ(t)

avec ϕ fonction continue par morceaux et intégrable puisque t2ϕ(t) −−−−→
t→+∞

0.
On peut alors appliquer le théorème de convergence dominée et affirmer

n

∫ +∞

1
e−x

n

dx =
∫ +∞

1

e−t

t
t1/n dt −−−−−→

n→+∞

∫ +∞

1

e−t

t
dt

Exercice 9 : [énoncé]
fn est définie et continue par morceaux sur ]0,+∞[.
Quand x→ 0+, fn(x)→ 1

n , on peut donc la prolonger par continuité.
Quand x→ +∞, fn(x) = o

( 1
x2

)
.

Par suite fn est intégrable sur ]0,+∞[.

un =
∫ +∞

0

n ln(1 + x/n)
x(1 + x2) dx

Posons
gn(x) = n ln(1 + x/n)

x(1 + x2) = nfn(x)

Pour x > 0, quand n→ +∞, gn(x)→ 1
1+x2 .

De plus, sachant ln(1 + u) 6 u, on a |gn(x)| 6 1
1+x2 = ϕ(x) avec ϕ intégrable.

Par convergence dominée,

un →
∫ +∞

0

dx
1 + x2 = π

2

Exercice 10 : [énoncé]
Par changement de variable

µn =
∫ 1

0
f(ns) ds

Par convergence dominée
µn → `

Exercice 11 : [énoncé]
Considérons la suite des fonctions un : [0, 1]→ R déterminée par un(t) = f(tn).
Les fonctions un sont continues par morceaux et par continuité de f

un(t) −−−−−→
n→+∞

u(t) =
déf

{
f(0) si t ∈ [0, 1[
f(1) si t = 1

La suite de fonctions (un) converge simplement sur [0, 1] vers la fonction u
continue par morceaux.
Enfin, la fonction f étant continue sur un segment, elle y bornée ce qui permet
d’introduire

M = sup
t∈[0,1]

|f(t)|
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Puisque
∀t ∈ [0, 1] , |un(t)| 6M

avec t 7→M intégrable sur [0, 1], on peut appliquer le théorème de convergence
dominée et affirmer ∫ 1

0
f(tn) dt→

∫ 1

0
u(t) dt = f(0)

Exercice 12 : [énoncé]
Par le changement de variable u = nt

In =
∫ +∞

0
f(u/n)e−u du

Par convergence dominée, sachant

|f(u/n)| 6 ‖f‖∞ e−u = ϕ(u)

avec ϕ intégrable, on obtient

In →
∫ +∞

0
f(0)e−u du = f(0)

Exercice 13 : [énoncé]
Par le changement de variable u = nx,∫ +∞

0

nf(x)
1 + n2x2 dx =

∫ +∞

0

f(u/n)
1 + u2 du

Posons alors fn : u 7→ f(u/n)
1+u2 définie sur R+.

La suite de fonctions (fn) converge simplement vers

f∞ : u 7→ f(0)
1 + u2

Les fonctions fn et f sont continues par morceaux sur R+.

|fn(u)| 6
‖f‖∞
1 + u2 = ϕ(u)

avec ϕ intégrable sur R+.
Par convergence dominée,∫ +∞

0

nf(x)
1 + n2x2 dx −−−−−→

n→+∞

∫ +∞

0

f(0)
1 + u2 du = πf(0)

2

Exercice 14 : [énoncé]
a) Pour x > 0, posons

un(x) =
∫ +∞

0
n cos t(sin t)nf(xt) dt

L’intégrabilité de f assure que un(x) est bien définie.
Puisque f ′ est intégrable, la fonction f converge en +∞ et, puisque f est aussi
intégrable, f tend vers 0 en +∞. Par intégration par parties, on obtient alors

un(x) = − n

n+ 1

∫ +∞

0
(sin t)n+1xf ′(xt) dt

Posons gn(x) = |sin t|n+1
xf ′(xt) dt.

Chaque fonction gn est continue par morceaux.
La suite de fonctions (gn) converge simplement vers une fonction continue par
morceaux, nulle en chaque x 6= π/2 + kπ.
La fonction limite simple est continue par morceaux.
Enfin on a la domination

|gn(x)| 6 xf ′(xt) = ϕ(t)

avec la fonction ϕ intégrable.
Par convergence dominée ∫ +∞

0
gn(t) dt −−−−−→

n→+∞
0

et par comparaison
un(x) −−−−−→

n→+∞
0

b) On vient déjà d’obtenir une convergence simple de la suite de fonctions (un)
vers la fonction nulle. Montrons qu’en fait il s’agit d’une convergence uniforme.
Par changement de variable

un(x) = − n

n+ 1

∫ +∞

0
(sin(u/x))n+1f ′(u) du

Soit ε > 0. Puisque la fonction f ′ est intégrable, il existe A ∈ R+ tel que∫ +∞

A

|f ′(u)| du 6 ε

et alors

|un(x)| 6M

∫ A

0
|sin(u/x)|n+1 du+ ε avec M = max

u∈[0,A]
|f ′(u)|
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Pour x > 4A/π, on a
∀u ∈ [0, A] , 0 6

u

x
6
A

x
6
π

4
et donc ∫ A

0
|sin(u/x)|n+1 du 6

A
√

2n+1

Pour x 6 4A/π, on a par changement de variable∫ A

0
|sin(u/x)|n+1 du = x

∫ A/x

0
|sin t|n+1 dt

Pour k entier tel que kπ < A/x 6 (k + 1)π.∫ A

0
|sin(u/x)|n+1 du 6 x

∫ (k+1)π

0
|sin t|n+1 dt = x(k + 1)

∫ π

0
(sin t)n+1 dt

Or x(k + 1)π 6 A+ xπ 6 5A donc∫ A

0
|sin(u/x)|n+1 du 6 5A

Finalement, pour tout x > 0,

|un(x)| 6 5AM + AM
√

2n+1 + ε

et donc pour n assez grand, on a pour tout x > 0.

|un(x)| 6 2ε

Exercice 15 : [énoncé]
Posons

fn(t) =
{ (

1− t2/n
)n si t ∈ [0, n[

0 sinon

Pour t ∈ [0,+∞[, à partir d’un certain rang t > n et

fn(t) =
(

1− t2

n

)n
= exp

(
n ln

(
1− t2

n

))
→ e−t

2

Ainsi, la suite (fn) converge simplement vers f : t 7→ e−t2 .
En vertu de l’inégalité ln(1 + u) 6 u, on obtient

|fn(t)| 6 e−t
2

= ϕ(t)

et ce que t ∈ [0, n] ou non.
La fonction ϕ est intégrable sur [0,+∞[.
Par application du théorème de convergence dominée,

lim
n→+∞

∫ n

0

(
1− t2

n

)n
dt =

∫ +∞

0
e−t

2
dt

Exercice 16 : [énoncé]
Posons

fn(x) =
{

(1 + x/n)n si x ∈ [0, n]
0 sinon

Pour x ∈ [0,+∞[, à partir d’un certain rang x > n et

fn(x) =
(

1 + x

n

)n
e−2x = exp

(
n ln

(
1 + x

n

)
− 2x

)
→ e−x

Ainsi, la suite (fn) converge simplement vers f : x 7→ e−x.
En vertu de l’inégalité ln(1 + u) 6 u, on obtient

|fn(x)| 6 e−x = ϕ(x)

et ce que x ∈ [0, n] ou non.
La fonction ϕ est intégrable sur [0,+∞[.
Par application du théorème de convergence dominée,

lim
n→+∞

∫ n

0

(
1 + x

n

)n
e−2x dx =

∫ +∞

0
e−x dx = 1

Exercice 17 : [énoncé]
Par changement de variable∫ n

0

√
1 +

(
1− x

n

)n
dxñ =

u=1−x/n
n

∫ 1

0

√
1− un du

Par le théorème de convergence dominée∫ 1

0

√
1− un du −−−−−→

n→+∞
1

donc ∫ n

0

√
1 +

(
1− x

n

)n
dx ∼ n
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Exercice 18 : [énoncé]
Posons fn(x) =

(
cos xn

)n2

si x ∈ [0, n] et fn(x) = 0 si x ∈ ]n,+∞[.
Pour x ∈ R+, quand n→ +∞,

fn(x) =
(

cos x
n

)n2

= exp
(
n2 ln

(
1− x2/2n2 + o(1/n2)

))
→ e−x

2/2

Ainsi fn
CS−−−−→

[0,+∞[
f avec f : x 7→ e−x2/2.

Les fonctions fn et f sont continues par morceaux.
Soit ψ : [0, 1]→ R définie par ψ(t) = 1− t2/4− cos t. Par étude des variations,

∀x ∈ [0, 1] , ψ(x) > 0

On en déduit que, pour x ∈ [0, n],

ln
(

cos x
n

)
6 ln

(
1− x2

4n2

)
6 − x2

4n2

puis
fn(x) 6 e−x

2/4

Cette inégalité vaut aussi pour x ∈ ]n,+∞[ et puisque la fonction x 7→ e−x2/4 est
intégrable, on peut appliquer le théorème de convergence dominée pour affirmer

lim
n→+∞

∫ n

0

(
cos x

n

)n2

dx =
∫ +∞

0
e−x

2/2 dx =
√
π

2

Exercice 19 : [énoncé]
On a

n

∫ 1

0

f(nt)
1 + t

dt =
u=nt

∫ n

0

f(u)
1 + u/n

du =
∫ +∞

0
fn(u)du

avec

fn(u) =
{

f(u)
1+u/n si u ∈ [0, n]
0 si u ∈ ]n,+∞[

On a fn
CV S−−−→ f avec fn et f continues et |fn| 6 |f | = ϕ avec ϕ continue par

morceaux intégrable sur [0,+∞[ indépendant de n.
Par convergence dominée∫ +∞

0
fn(u) du→

∫ +∞

0
f(u) du

Exercice 20 : [énoncé]
On a ∣∣∣∣∣∣∣∣

n!
n∏
k=1

(k + x)

∣∣∣∣∣∣∣∣ 6
1× 2

(x+ 1)(x+ 2) × 1 = ϕ(x)

avec ϕ intégrable sur [0,+∞[.
Quand n→ +∞,

ln

 n!
n∏
k=1

(k + x)

 = −
n∑
k=1

ln
(

1 + x

k

)
→ −∞

car ln (1 + x/k) ∼ x/k terme général d’une série à termes positifs divergente.
Par suite

n!
n∏
k=1

(k + x)
→ 0

puis par le théorème de convergence dominée

lim
n→+∞

∫ +∞

0

n!
n∏
k=1

(k + x)
dx = 0

Exercice 21 : [énoncé]
a) Appliquons le théorème de convergence dominée.
Posons fn : [0, 1]→ R définie par

fn(t) = F
(√
n(δt− h)

)
Pour t ∈ [0, h/δ[, on a fn(t)→ 1.
Pour t ∈ ]h/δ, 1], on a fn(t)→ 0.
Enfin, pour t = h/δ, fn(t) = F (0)→ F (0).
Ainsi la suite de fonctions (fn) converge simplement sur [0, 1] vers f définie par

f(t) =

 1 si t ∈ [0, h/δ[
F (0) si t = h/δ
0 si t ∈ ]h/δ, 1]

Les fonctions fn sont continues et la limite simple f est continue par morceaux.
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Enfin
∀t ∈ [0, 1] , |fn(t)| 6 1 = ϕ(t)

avec ϕ continue par morceaux et intégrable.
Par convergence dominée,

In →
∫ 1

0
f(t) dt =

∫ h/δ

0
1 dt = h

δ

b) Par la décroissance de F , on peut écrire∫ (k+2)/n

(k+1)/n
F
(√
n(δt− h)

)
dt 6 1

n
F

(√
n

(
δ
k + 1
n
− h
))

6
∫ (k+1)/n

k/n

F
(√
n(δt− h)

)
dt

En sommant ces inégalités∫ (n+1)/n

1/n
F
(√
n(δt− h)

)
dt 6 Sn

n
6 In

et ∫ (n+1)/n

1/n
F
(√
n(δt− h)

)
dt =

∫ 1

0
F
(√
n(δ(t+ 1/n)− h)

)
dt

Par convergence dominée, on obtient de façon analogue à ce qui précède, la limite
de ce terme et on conclut

Sn ∼
h

δ
n

Exercice 22 : [énoncé]
a) Considérons la fonction

ϕ : x 7→ x ln x
x2 − 1

La fonction ϕ est définie et continue par morceaux sur ]0, 1[.
Quand x→ 0+, ϕ(x)→ 0 et quand x→ 1−,

ϕ(x) = x

x+ 1
ln x
x− 1 →

1
2

Puisque ϕ se prolonge par continuité en 0 et en 1, ϕ est intégrable sur ]0, 1[.
Or

|fn(x)| = x2n |ϕ(x)| 6 |ϕ(x)|

donc, par domination, la fonction fn est elle aussi intégrable sur ]0, 1[.

b) La suite de fonctions fn converge simplement vers la fonction nulle et est
dominée par la fonction intégrable ϕ donc par convergence dominée

Jn → 0

c) On a

Jk − Jk+1 = −
∫ 1

0
x2k+1 ln(x) dx

Réalisons une intégration par parties

−
∫ a

ε

x2k+1 ln(x) dx = −
[
x2k+2

2k + 2 ln x
]a
ε

+
∫ a

ε

x2k+1 dx

Quand ε→ 0+ et a→ 1−, on obtient

Jk − Jk+1 = 1
(2k + 2)2

et donc

Jn = lim
N→+∞

+∞∑
k=n

(Jk − Jk+1) =
+∞∑
k=n

1
(2k + 2)2

Enfin par translation d’indice

Jn =
+∞∑
k=n

1
(2k + 2)2 = 1

4

+∞∑
k=n+1

1
k2

Exercice 23 : [énoncé]
a) (fn) converge simplement vers la fonction f donnée par

f(x) =

 f(x) si x ∈ [a, 1[
f(1)/2 si x = 1
0 si x ∈ ]1, b]

b) Sachant |fn(x)| 6 |f(x)| avec f intégrable sur [a, b], on peut appliquer le
théorème de convergence dominée et on obtient directement le résultat proposé.
c) Par une intégration par parties∫ 1

a

tn−1fn(t) dt =
[

1
n

ln(1 + tn)f(t)
]1

a

− 1
n

∫ 1

a

ln(1 + tn)f ′(t) dt
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D’une part[
1
n

ln(1 + tn)f(t)
]1

a

= ln 2
n
f(1) + ln(1 + an)

n
f(a) = ln 2

n
f(1) + o

(
1
n

)
car ln(1 + an)→ 0.
D’autre part∣∣∣∣ 1n

∫ 1

a

ln(1 + tn)f ′(t) dt
∣∣∣∣ 6 1

n
‖f ′‖∞

∫ 1

0
tn dt = O

(
1
n2

)
= o

(
1
n

)
sachant ln(1 + u) 6 u.
Au final, on obtient ∫ 1

a

tn−1fn(t) dt = ln 2
n
f(1) + o

(
1
n

)

Exercice 24 : [énoncé]
L’intégrale ∫

R
fn(x)g(x)dx =

∫ b

a

fn(x)g(x)dx

est bien définie.
Par le changement de variable x = u/n bijectif de classe C1

∫
R
fn(x)g(x)dx =

∫ nb

na

1√
π

(
1− u2

2n4

)2n4

g(u/n)du =
∫ +∞

−∞
hn(u)du

avec

hn(u) = 1√
π

(
1− u2

2n4

)2n4

g(u/n)χ[na,nb]

hn est continue par morceaux, (hn) converge simplement vers h continue par
morceaux avec

h(u) = 1√
π

e−u
2
g(0)

Pour n assez grand de sorte que |a/n| , |b/n| 6 1 on a pour tout u ∈ [na, nb],∣∣u2/2n4
∣∣ 6 1/2 < 1,

|hn(u)| = 1√
π

e2n4 ln(1−u2/2n4) 6
1√
π

e−u
2

= ϕ(u)

et cette inégalité vaut aussi pour u /∈ [na, nb].

La fonction ϕ étant continue par morceaux et intégrable sur R, on peut appliquer
le théorème de convergence dominée et conclure sachant∫ +∞

−∞
e−u

2
du =

√
π

Exercice 25 : [énoncé]
L’intégrale

∫ +∞
0

ln t
et dt est définie car la fonction t 7→ ln(t)e−t est continue et

intégrable sur ]0,+∞[ puisque
√
t ln(t)e−t −−−−→

t→0+
0 et t2 ln(t)e−t −−−−→

t→+∞
0

Pour tout t ∈ R+, e−t est la limite de

un(t) =
(

1− t

n

)n−1
χ[0,n](t)

Le n− 1 de l’exposant n’est pas usuel et peut très bien être remplacé par un n.
Néanmoins pour alléger les calculs à venir, le n− 1 est préférable. . .
On a

ln(t)un(t)→ ln(t)e−t

et
|ln(t)un(t)| 6 e ln(t)e−t

donc par convergence domine∫ +∞

0

ln t
et dt = lim

n→+∞

∫ n

0

(
1− t

n

)n−1
ln(t) dt

On a ∫ n

0

(
1− t

n

)n−1
ln(t) dt =

∫ 1

0
n (1− u)n−1 ln(nu) du

avec ∫ 1

0
n (1− u)n−1 ln(nu) du = lnn+

∫ 1

0
n ln(u)(1− u)n−1 du

et par intégration par parties∫ 1

0
n ln(u)(1− u)n−1 du = [ln(u)(1− (1− u)n)]10 +

∫ 1

0

(1− u)n − 1
u

du

On notera qu’on a choisi (1− (1− u)n) pour primitive de n(1− u)n−1 car celle-ci
s’annule en 0 de sorte que l’intégration par parties n’engage que des intégrales
convergentes.
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Enfin ∫ 1

0

(1− u)n − 1
u

du = −
∫ 1

0

vn − 1
v − 1 = −

∫ 1

0

n−1∑
k=0

vk dv

puis ∫ 1

0

(1− u)n − 1
u

du = −
n∑
k=1

1
k

= − lnn− γ + o(1)

Finalement ∫ +∞

0

ln t
et dt = −γ

Exercice 26 : [énoncé]
Pour tout t > 0, on a

1
et − 1 = e−t

1− e−t =
+∞∑
n=1

e−nt

donc
t

et − 1 =
+∞∑
n=1

te−nt =
+∞∑
n=1

fn(t)

Les fonctions fn sont continues par morceaux sur ]0,+∞[ et, en vertu de l’étude
qui précède, la série

∑
fn converge simplement et sa somme est continue par

morceaux sur ]0,+∞[
Les fonctions fn sont intégrables sur ]0,+∞[ et∫ +∞

0
|fn(t)| dt =

∫ +∞

0
te−ntdt = 1

n2

qui est sommable. On en déduit que la fonction t 7→ t
et−1 est intégrable sur

]0,+∞[ et ∫ +∞

0

t

et − 1 dt =
+∞∑
n=1

1
n2

Exercice 27 : [énoncé]
Pour x ∈ [0, 1[, on peut écrire

1
1 + x2 =

+∞∑
n=0

(−1)nx2n

et pour x ∈ ]0, 1[, on a

(ln x)2

1 + x2 =
+∞∑
n=0

(−1)nx2n(ln x)2

Considérons alors la série des fonctions

un(x) = (−1)nx2n(ln x)2

Par convergence des séries précédentes, la série des fonctions un converge
simplement vers la fonction x 7→ (ln x)2/(1 + x2). Les fonctions un et la fonction
somme sont continues par morceaux.
Chaque fonction un est intégrable et∫ 1

0
|un(x)| dx =

∫ 1

0
x2n(ln x)2 dx

Par intégration par parties, on montre∫ 1

0
x2n(ln x)2 dx = 2

(2n+ 1)3

On peut alors appliquer le théorème d’intégration terme à terme et affirmer∫ 1

0

(ln x)2

1 + x2 dx = 2
+∞∑
n=0

(−1)n

(2n+ 1)3

Exercice 28 : [énoncé]
Sur ]0, 1[,

ln t
1 + t2

=
+∞∑
n=0

(−1)nt2n(ln t)

Posons fn(t) = (−1)nt2n ln t.
Les fn : ]0, 1[→ R sont continues par morceaux et la série de fonctions

∑
fn

converge simplement vers ln t
1+t2 elle-même continue par morceaux sur ]0, 1[.∫ 1

0
|fn(t)| dt = 1

(2n+ 1)2

et la série
∑ 1

(2n+1)2 converge donc on peut intégrer terme à terme la série de
fonctions et on obtient∫ 1

0

ln t
1 + t2

dt =
+∞∑
n=0

∫ 1

0
(−1)nt2n ln tdt =

+∞∑
n=0

(−1)n−1

(2n+ 1)2

Ce dernier calcul est non trivial et fait référence à la constante de Catalan.
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Exercice 29 : [énoncé]
Pour t ∈ ]0, 1[, on peut écrire

ln t
1− t2 =

+∞∑
n=0

t2n ln t

Or ∫ 1

0
t2n ln tdt = −1

(2n+ 1)2

Sachant que la série des intégrales des valeurs absolues converge, le théorème
d’intégration terme à terme de Fubini donne∫ 1

0

ln t
1− t2 dt = −

+∞∑
n=0

1
(2n+ 1)2 = −3ζ(2)

4

avec en substance la convergence de l’intégrale étudiée.

Exercice 30 : [énoncé]
a) Par intégration par parties,∫ 1

ε

ln(1 + t)
t

dt = [ln(1 + t) ln(t)]1ε −
∫ 1

ε

ln t
1 + t

dt

et quand ε→ 0, on obtient∫ 1

0

ln(1 + t)
t

dt = −
∫ 1

0

ln t
1 + t

dt

b) Sur ]0, 1[,

− ln t
1 + t

=
+∞∑
n=0

(−1)n−1tn(ln t)

Posons fn(t) = (−1)n−1tn ln t.
Les fn : ]0, 1[→ R sont continues par morceaux et la série de fonctions

∑
fn

converge simplement vers − ln t
1+t elle-même continue par morceaux sur ]0, 1[.

On a ∫ 1

0
|fn(t)| dt = 1

(n+ 1)2

et la série
∑ 1

(n+1)2 converge donc on peut intégrer terme à terme la série de
fonctions et donc

−
∫ 1

0

ln t
1 + t

dt =
+∞∑
n=0

∫ 1

0
(−1)n−1tn ln tdt =

+∞∑
n=0

(−1)n

(n+ 1)2 =
+∞∑
n=1

(−1)n−1

n2

c) En séparant les termes pairs et les termes impairs (ce qui se justifie en
transitant par les sommes partielles)

+∞∑
n=1

(−1)n−1

n2 =
+∞∑
p=0

1
(2p+ 1)2 −

+∞∑
p=1

1
(2p)2 =

+∞∑
p=1

1
n2 − 2

+∞∑
p=1

1
(2p)2 = 1

2

+∞∑
n=1

1
n2 = π2

12

Exercice 31 : [énoncé]
a) Par une intégration par parties∫ 1

ε

arctan t
t

dt = [ln(t) arctan(t)]1ε −
∫ 1

ε

ln t
1 + t2

dt

Sachant arctan t ∼
t→0

t, on obtient quand ε→ 0

∫ 1

0

arctan t
t

dt = −
∫ 1

0

ln t
1 + t2

dt

avec convergence des intégrales proposées
b) Pour tout t élément de ]0, 1[,

− ln t
1 + t2

=
+∞∑
n=0

(−1)n−1t2n(ln t)

Posons fn(t) = (−1)n−1t2n ln t.
Les fn : ]0, 1[→ R sont continues par morceaux et la série de fonctions

∑
fn

converge simplement vers − ln t
1+t2 elle-même continue par morceaux sur ]0, 1[.∫ 1

0
|fn(t)| dt = 1

(2n+ 1)2

et la série
∑ 1

(2n+1)2 converge donc on peut intégrer terme à terme la série de
fonctions et donc

−
∫ 1

0

ln t
1 + t2

dt =
+∞∑
n=0

∫ 1

0
(−1)n−1t2n ln tdt =

+∞∑
n=0

(−1)n

(2n+ 1)2

Rq : on aurait aussi pu exploiter arctan t =
+∞∑
n=0

(−1)n−1

2n+1 t2n+1.
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Exercice 32 : [énoncé]
Pour t > 0, on peut écrire

sin t
et − 1 =

+∞∑
n=1

sin t.e−nt

La fonction t 7→ sin t.e−nt est intégrable sur ]0,+∞[ et∫ +∞

0
|sin t| e−nt dt 6

∫ +∞

0
te−nt dt = 1

n2

est le terme général d’une série convergente donc par le théorème de Fubini
d’intégration terme à terme t 7→ sin t

et−1 est intégrable sur ]0,+∞[ et∫ +∞

0

sin t
et − 1 dt =

+∞∑
n=1

∫ +∞

0
sin t.e−nt dt

avec ∫ +∞

0
sin t.e−nt dt = Im

∫ +∞

0
e(−n+i)t dt = 1

n2 + 1
Finalement ∫ +∞

0

sin t
et − 1 dt =

+∞∑
n=1

1
n2 + 1

Exercice 33 : [énoncé]
Les intégrales considérées sont bien définies.
Par intégration par parties,

In(m) =
[
xn+1

n+ 1(ln x)m
]1

0
− m

n+ 1In(m− 1)

Ainsi
In(m) = (−1)m

(n+ 1)m+1m!

En particulier
In(n) = (−1)n

(n+ 1)n+1n!

b) x−x =
+∞∑
n=0

(−1)n
n! (x ln x)n.

Par convergence de la série des intégrales des valeurs absolues,∫ 1

0
x−x dx =

+∞∑
n=0

(−1)n

n! In(n) =
+∞∑
n=0

1
(n+ 1)n+1

Exercice 34 : [énoncé]
On a

1
xx

= e−x ln x =
+∞∑
n=0

(−1)n(x ln x)n

n!

donc ∫ 1

0

dx
xx

=
∫

]0,1]

+∞∑
n=0

fn

avec
fn(x) = (−1)n(x ln x)n

n!
Les fn sont continues par morceaux,

∑
fn CS vers une fonction continue par

morceaux sur ]0, 1].
Les fn sont intégrables et∫

]0,1]
|fn| =

∫
]0,1[

(−1)nxn(ln x)n

n! dx

Or ∫ 1

ε

xn(ln x)n dx =
[

1
n+ 1x

n+1(ln x)n
]1

ε

− n

n+ 1

∫ 1

ε

xn(ln x)n−1 dx

donc quand ε→ 0∫
]0,1]

xn(ln x)ndx = − n

n+ 1

∫
]0,1]

xn(ln x)n−1dx

Ainsi ∫
]0,1]

xn(ln x)n dx = (−1)n n

n+ 1
n− 1
n+ 1 · · ·

1
n+ 1

∫ 1

0
xn dx = (−1)nn!

(n+ 1)n+1

Par suite ∫ 1

0
|fn| dx = 1

(n+ 1)n+1 et
∑∫ 1

0
|fn| converge

Par le théorème d’intégration terme à terme de Fubini, on obtient que l’intégrale
étudiée et définie et∫ 1

0

dx
xx

=
+∞∑
n=0

∫ 1

0
fn(x) dx =

+∞∑
n=0

1
(n+ 1)n+1

puis le résultat voulu.
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Exercice 35 : [énoncé]
Par la série exponentielle, on peut écrire pour t > 0,

t−t = exp(−t ln t) =
+∞∑
n=0

(−1)n (t ln t)n

n!

Pour procéder à une intégration terme à terme, posons un(t) = (−1)n(t ln t)n/n!
pour t ∈ ]0, 1].
Les fonctions un sont continues par morceaux et la série de fonctions

∑
un

converge simplement sur ]0, 1] vers la fonction t 7→ t−t elle-même continue par
morceaux.
Les fonctions un sont intégrables sur ]0, 1] car on peut les prolonger par continuité
en 0 et ∫ 1

0
|un(t)| dt = (−1)n

∫ 1

0
un(t) dt

Par intégration par parties∫ 1

ε

(t ln t)n dt =
[
tn+1

n+ 1(ln t)n
]1

ε

− n

n+ 1

∫ 1

ε

tn(ln t)n−1 dt

En passant à la limite quand ε→ 0, on obtient∫ 1

0
(t ln t)n dt = − n

n+ 1

∫ 1

0
tn(ln t)n−1 dt

En itérant le procédé on obtient∫ 1

0
(t ln t)n dt = (−1)nn!

(n+ 1)n+1

et ainsi ∫ 1

0
|un(t)| dt = 1

(n+ 1)n+1 = o

(
1
n2

)
La série

∑∫ 1
0 |un| étant convergente, on peut intégrer terme à terme et l’on

obtient ∫ 1

0
t−t dx =

+∞∑
n=0

1
(n+ 1)(n+1)

avec existence de l’intégrale en premier membre.

Exercice 36 : [énoncé]
a) fp,k est définie et continue par morceaux sur ]0, 1].
Quand x 7→ 0+,

√
xfp,k(x) = xp+1/2(ln x)k → 0 donc fp,k(x) = o (1/

√
x).

Par suite fp,k est intégrable sur ]0, 1].
b) Par intégration par parties

Kp,k = − k

p+ 1Kp,k−1

c)

Kp,k = (−1)kk!
(p+ 1)kKp,0 = (−1)kk!

(p+ 1)k+1

et donc
Jn = Kn,n = (−1)nn!

(n+ 1)n+1

d) xx =
+∞∑
n=0

(x ln x)n
n! pour tout x ∈ ]0, 1].

Posons fn : x 7→ 1
n! (x ln x)n.

Les fonctions fn sont continues par morceaux et intégrables sur ]0, 1].
La série

∑
fn converge simplement sur ]0, 1] et sa somme, qui est x 7→ xx, est

continue par morceaux sur ]0, 1].
Enfin ∫ 1

0
|fn(x)| dx = 1

(n+ 1)n+1 = o

(
1
n2

)
est terme général d’une série convergente.
Par théorème d’intégration terme à terme, x 7→ xx est intégrable sur ]0, 1] et

I =
∫ 1

0
xx dx =

+∞∑
n=0

∫ 1

0
fn(x) dx =

+∞∑
n=0

(−1)n

(n+ 1)n+1

Exercice 37 : [énoncé]
Pour x ∈ ]0, 1[, on a

(ln x)p

1− x =
+∞∑
n=0

xn(ln x)p =
+∞∑
n=0

fn(x)

avec fn(x) = xn(ln x)p sur ]0, 1[.

Les fonctions fn sont continues par morceaux et la somme
+∞∑
n=0

fn l’est aussi.
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Les fonctions fn sont intégrables sur ]0, 1[ et par intégration par parties,∫ 1

0
|fn| = (−1)p

∫ 1

0
xn(ln x)p dx = p!

(n+ 1)p+1

Puisque la série
∑∫

|fn| converge, le théorème d’intégration terme à terme de
Fubini donne ∫ 1

0

(ln x)p

1− x dx =
+∞∑
n=0

∫ 1

0
fn(x) dx =(−1)pp!

+∞∑
n=1

1
np+1

avec en substance existence de l’intégrale et de la série intoduite.

Exercice 38 : [énoncé]
Pour x > 0,

xx = ex ln x =
+∞∑
n=0

(x ln x)n

n!

donc ∫ 1

0
xx dx =

∫
]0,1]

+∞∑
n=0

fn

avec
fn(x) = (x ln x)n

n!
Les fonctions fn sont continues par morceaux,

∑
fn converge simplement vers une

fonction continue par morceaux sur ]0, 1].
Les fonctions fn sont intégrables et∫

]0,1]
|fn| =

∫
]0,1[

(−1)nxn(ln x)n

n! dx

Or ∫ 1

ε

xn(ln x)n dx =
[

1
n+ 1x

n+1(ln x)n
]1

ε

− n

n+ 1

∫ 1

ε

xn(ln x)n−1 dx

donc quand ε→ 0∫
]0,1]

xn(ln x)n dx = − n

n+ 1

∫
]0,1]

xn(ln x)n−1 dx

Ainsi ∫
]0,1]

xn(ln x)n dx = (−1)n n

n+ 1
n− 1
n+ 1 · · ·

1
n+ 1

∫ 1

0
xn dx = (−1)nn!

(n+ 1)n+1

Par suite ∫ 1

0
|fn| dx = 1

(n+ 1)n+1

et il y a convergence de la série
∑∫ 1

0 |fn|
Par le théorème d’intégration terme à terme, on obtient que l’intégrale

∫
]0,1] x

x dx
est définie et ∫ 1

0
xx dx =

+∞∑
n=0

∫ 1

0
fn(x) dx =

+∞∑
n=0

(−1)n

(n+ 1)n+1

puis le résultat voulu.

Exercice 39 : [énoncé]
a) Sur [0, 1[, la série de fonction

∑
fn converge simplement et sa somme est

+∞∑
n=1

fn(x) = x

1− x (1−
√
x) = x

1 +
√
x

Cette fonction somme est continue par morceaux sur [0, 1[.
Les fonction fn sont intégrables sur [0, 1[ et∫ 1

0
|fn(x)| dx =

∫ 1

0
fn(x) dx =

u=
√
x

1
(n+ 1)(2n+ 3)

Ce terme est sommable et l’on peut donc intégrer terme à terme ce qui donne

+∞∑
n=1

∫ 1

0
fn(x) dx =

∫ 1

0

x

1 +
√
x

dx

b) Ainsi
+∞∑
n=1

1
(n+ 1)(2n+ 3) =

∫ 1

0

x

1 +
√
x

dx =
u=
√
x

5
3 − 2 ln 2

Exercice 40 : [énoncé]
Pour x ∈ [0, 2π], on peut écrire

e2 cos x =
+∞∑
n=0

2n cosn x
n!
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Posons
fn : x ∈ [0, 2π] 7→ 2n cosn x

n!
Les fonctions fn sont continues et la série de fonctions

∑
fn converge

normalement sur [0, 2π] puisque

‖fn‖∞ 6
2n

n! = o

(
1
n2

)
On peut donc intégrer terme à terme pour obtenir∫ 2π

0
e2 cos x dx =

+∞∑
n=0

2n

n!

∫ 2π

0
(cosx)n dx

Par intégration par parties (cf. intégrale de Wallis)∫ 2π

0
(cosx)n dx = n− 1

n

∫ 2π

0
(cosx)n−2 dx

Sachant ∫ 2π

0
(cosx)0 dx = 2π et

∫ 2π

0
(cosx)1 dx = 0

on obtient ∫ 2π

0
(cosx)2p dx = 2π (2p)!

22p(p!)2 et
∫ 2π

0
(cosx)2p+1 dx = 0

et donc ∫ 2π

0
e2 cos x dx =

+∞∑
p=0

22p

(2p)!
(2p)!

22p(p!)2 2π =
+∞∑
p=0

2π
(p!)2

Exercice 41 : [énoncé]

In =
∫ 2π

0

einθ

2

+∞∑
k=0

(−1)k

2k eikθ dθ

Par convergence normale de la série de fonctions sous-jacente sur [0, 2π]

In =
+∞∑
k=0

(−1)k

2k+1

∫ 2π

0
ei(n+k)θ dθ

Or
∫ 2π

0 eipθ dθ = 0 si p 6= 0 et
∫ 2π

0 eipθ dθ = 2π si p = 0.
Par conséquent

In = (−1)n2nπ si n 6 0 et In = 0 si n > 0

Exercice 42 : [énoncé]
Si |a| < 1 alors∫ 2π

0

eint

eit − a dt =
∫ 2π

0

ei(n−1)t

1− ae−it dt =
∫ 2π

0

+∞∑
k=0

akei(n−(k+1))t dt

Par convergence normale de la série∫ 2π

0

eint

eit − a dt =
+∞∑
k=0

ak
∫ 2π

0
ei(n−(k+1))t dt =

{
2πan−1 si n > 1
0 sinon

Si |a| > 1 alors∫ 2π

0

eint

eit − a dt = −1
a

∫ 2π

0

eint

1− eit/a dt = −
+∞∑
k=0

1
ak+1

∫ 2π

0
ei(n+k)t dt =

{
−2πan−1 si n 6 0
0 sinon

Exercice 43 : [énoncé]
Par sommation géométrique

∀t > 0, te−at

1− e−bt =
+∞∑
n=0

te−(a+nb)t

Posons fn : R+? → R définie par

fn(t) = te−(a+nb)t

Les fonctions fn sont continues par morceaux, la série de fonctions
∑
fn converge

simplement sur ]0,+∞[ et sa somme est continue par morceaux puisque c’est la
fonction

t 7→ te−at

1− e−bt

Les fonctions fn sont intégrables sur ]0,+∞[ et par intégration par parties∫
[0,+∞[

|fn| =
∫ +∞

0
fn = 1

(a+ bn)2 = O

(
1
n2

)
Puisque la série

∑∫
|fn| converge, on peut appliquer le théorème d’intégration

terme à terme de Fubini et on obtient∫ +∞

0

te−at

1− e−bt dt =
∫

[0,+∞[

+∞∑
n=0

fn =
∑∫

[0,+∞[
fn

+∞∑
n=0

1
(a+ bn)2
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Exercice 44 : [énoncé]
La convergence de l’intégrale proposée est facile.
En découpant l’intégrale :∫ +∞

0

e−x/n

1 + cos2 x
dx =

+∞∑
k=0

∫ (k+1)π

kπ

e−x/n

1 + cos2 x
dx =

+∞∑
k=0

e−kπ/n
∫ π

0

e−x/n

1 + cos2 x
dx

Dans la somme proposée, le terme intégrale ne dépend de l’indice sommation donc∫ +∞

0

e−x/n

1 + cos2 x
dx =

(+∞∑
k=0

e−kπ/n
)∫ π

0

e−x/n

1 + cos2 x
dx = 1

1− e−π/n

∫ π

0

e−x/n

1 + cos2 x
dx

Quand n→ +∞,
1

1− e−π/n
∼ n

π

et ∫ π

0

e−x/n

1 + cos2 x
dx→

∫ π

0

dx
1 + cos2 x

par application du théorème de convergence dominée.
Par le changement de variable t = tan x inspiré des règles de Bioche,∫ π

0

dx
1 + cos2 x

= 2
∫ π/2

0

dx
1 + cos2 x

= 2
∫ +∞

0

dt
2 + t2

= π√
2

Au final
1
n

∫ +∞

0

e−x/n

1 + cos2 x
dx −−−−−→

n→+∞

1√
2

Exercice 45 : [énoncé]
a) On a

un(1) =
∫ π/2

0
sin t(cos t)n dt =

[
− 1
n+ 1 cosn+1 t

]π/2
0

= 1
n+ 1

La série de terme général un(1) est divergente.
b) Pour α 6 1,

∀t ∈ ]0, π/2] , (sin t)α > sin t

et donc un(α) > un(1).
On en déduit que la série de terme général un(α) est alors divergente.

Pour α > 1. La série des un(α) est une série à termes positifs et
n∑
k=0

uk(α) =
∫ π/2

0
(sin t)α 1− (cos t)n+1

1− cos t dt

donc
n∑
k=0

uk(α) 6
∫ π/2

0

(sin t)α

1− cos t dt

avec l’intégrale majorante qui est convergente puisque

(sin t)α

1− cos t ∼ 2 t
α

t2
= 2
t2−α

quand t→ 0+

Puisque la série à termes positifs
∑
un(α) a ses sommes partielles majorées, elle

est convergente.
c) Par ce qui précède, on peut intégrer terme à terme car il y a convergence de la
série des intégrales des valeurs absolues des fonctions. On peut alors écrire

+∞∑
n=0

∫ π/2

0
sinα t cosn tdt =

∫ π/2

0

sinα t
1− cos t dt

Pour α = 2 ∫ π/2

0

sin2 t

1− cos t dt =
∫ π/2

0
1 + cos tdt = π

2 + 1

Pour α = 3 ∫ π/2

0

sin3 t

1− cos t dt =
∫ π/2

0
sin t(1 + cos t) dt = 3

2

Exercice 46 : [énoncé]
a) Par intégration par parties on obtient une relation de récurrence qui conduit à∫ 1

0
xn(1− x)m dx = n!m!

(n+m+ 1)!

En posant un le terme général de la série étudiée, on observe un+1
un
→ 1

4 ce qui
assure la convergence de la série.

b) S−1 =
+∞∑
n=1

∫ 1
0 x

n(1− x)n−1 dx. Par convergence de la série des intégrales des

valeurs absolues, on peut permuter et obtenir

S−1 =
∫ 1

0

xdx
1− x(1− x) = π

3
√

3
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Puisque (
2n+ 2
n+ 1

)
= 4n+ 2

n+ 1

(
2n
n

)
on observe

4(
2n+ 2
n+ 1

) − 2
n+ 1

1(
2n+ 2
n+ 1

) = 1(
2n
n

) ( ? )

En sommant pour n allant de 1 à +∞, on obtient

4
(
S0 −

1
2

)
− 2

(
S−1 −

1
2

)
= S0

puis

S0 = 1 + 2S−1

3
c) On multiplie la relation (?) par (n+ 1)p et on développe le (n+ 1)p du second
membre et en sommant comme ci-dessus, on saura exprimer 3Sp en fonction des
Sq avec q < p.

Exercice 47 : [énoncé]
a) f : x 7→ n2−x2

(n2+x2)2 est définie, continue sur [0,+∞[ et f(x) ∼
x→+∞

− 1
x2 donc∫ +∞

0 f(x)dx est définie.
b) ∫ a

0

n2 − x2

(n2 + x2)2 dx =
∫ a

0

1
n2 + x2 dx− 2

∫ a

0

x2

(n2 + x2)2 dx

et ∫ a

0

x2

(n2 + x2)2 dx = 1
2

[
− x

n2 + x2

]a
0

+ 1
2

∫ a

0

1
n2 + x2 dx

donc ∫ a

0

n2 − x2

(n2 + x2)2 dx = a

n2 + a2

Par suite ∫ +∞

0
f(x)dx = lim

a→+∞

∫ a

0
f(x)dx = 0

La série
+∞∑
n=1

∫ +∞
0

n2−x2

(n2+x2)2 dx est convergente et de somme nulle.

c) Pour x ∈ [0, a], ∣∣∣∣ n2 − x2

(n2 + x2)2

∣∣∣∣ 6 n2 + a2

n4

et
+∞∑
n=1

n2 + a2

n4 < +∞

donc
+∞∑
n=1

n2−x2

(n2+x2)2 converge normalement, et donc uniformément sur [0, a]. Par
suite ∫ a

0

+∞∑
n=1

n2 − x2

(n2 + x2)2 dx =
+∞∑
n=1

∫ a

0

n2 − x2

(n2 + x2)2 dx =
+∞∑
n=1

a

n2 + a2

d) La fonction x 7→ a
x2+a2 est décroissante et intégrable sur [0,+∞[ donc par

comparaison série-intégrale∫ +∞

1

a

x2 + a2 dx 6
+∞∑
n=1

a

n2 + a2 6
∫ +∞

0

a

x2 + a2 dx

Or ∫ +∞

1

a

x2 + a2 dx =
[
arctan x

a

]+∞
1

= π

2 − arctan 1
a

et ∫ +∞

0

a

x2 + a2 dx =
[
arctan x

a

]+∞
0

= π

2
donc

lim
a→+∞

+∞∑
n=1

a

n2 + a2 = π

2

e) Ci-dessus :

lim
a→+∞

∫ a

0

+∞∑
n=1

n2 − x2

(n2 + x2)2 dx = π

2

donc l’intégrale ∫ +∞

0

+∞∑
n=1

n2 − x2

(n2 + x2)2 dx

est convergente et vaut π/2.
Le résultat diffèrent de celui obtenu en b). Il est donc faux ici de permuter somme
et intégrale. Document7
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Exercice 48 : [énoncé]
a) an+1/an → 1/e < 1.
b) Posons

In =
∫ +∞

0
tne−αt dt

Par intégration par parties, on obtient In = n!
αn+1 d’où

an = n

∫ +∞

0
tne−nt dt

c) On a
+∞∑
n=1

an =
+∞∑
n=1

∫ +∞

0
ntne−nt dt

et la série ∑∫ +∞

0

∣∣ntne−nt
∣∣ dt =

∑
an

converge donc on peut intégrer terme à terme et on obtient
+∞∑
n=1

an =
∫ +∞

0

+∞∑
n=1

ntne−nt dt

avec

(1− te−t)
+∞∑
n=1

ntne−nt =
+∞∑
n=1

tne−nt = te−t

1− te−t

d’où la conclusion.

Exercice 49 : [énoncé]
a) Posons un(t) = 1/(1 + tn) sur ]0, 1].
La suite de fonctions (un) converge simplement vers la fonction u∞ : t 7→ 1.
Les fonctions un et la fonction u∞ sont continue par morceaux.
Enfin

∀t ∈ ]0, 1] , |un(t)| 6 1 = ϕ(t)
avec ϕ : ]0, 1]→ R+ intégrable. Par convergence dominée

In =
∫ 1

0
un(t) dt −−−−−→

n→+∞

∫ 1

0
u∞(t) dt = 1 = `

b) On a

`− In =
∫ 1

0

tn

1 + tn
dt =

∫ 1

0
t
tn−1

1 + tn
dt

Par intégration par parties,

`− In = ln 2
n
− 1
n

∫ 1

0
ln(1 + tn) dt

Puisque ∣∣∣∣∫ 1

0
ln(1 + tn)dt

∣∣∣∣ 6 ∫ 1

0
tndt = 1

n+ 1

on peut affirmer `− In ∼ ln 2
n .

c) Pour y ∈ ]0, 1[,
ln(1 + y)

y
=

+∞∑
k=0

(−1)kyk

k + 1

Par convergence de la série des intégrales des valeurs absolues,∫ 1

0

ln(1 + y)
y

dy =
+∞∑
k=0

(−1)k

(k + 1)2

Sans peine,
+∞∑
k=0

(−1)k
(k+1)2 = π2

12 sachant
+∞∑
n=1

1
n2 = π2

6 .

d) Par le changement de variable C1 strictement croissant y = tn∫ 1

0
ln(1 + tn) dt = 1

n

∫ 1

0

ln(1 + y)
y
n−1
n

dy

Par convergence dominée (domination par sa limite simple),∫ 1

0

ln(1 + y)
y
n−1
n

dy →
∫ 1

0

ln(1 + y)
y

dy = π2

12

Ainsi,

`− In = ln 2
n
− π2

12n2 + o

(
1
n2

)
puis

In = 1− ln 2
n

+ π2

12n2 + o

(
1
n2

)

Exercice 50 : [énoncé]
a) On a

|In − 1| =
∫ 1

0

tn

1 + tn
dt 6

∫ 1

0
tn dt = 1

n+ 1 → 0
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donc In → ` = 1.
b) Par intégration par parties

In − 1 = − ln 2
n

+ 1
n

∫ 1

0
ln(1 + tn) dt

Or
0 6

∫ 1

0
ln(1 + tn) dt 6

∫ 1

0
tn dt→ 0

donc
In = 1− ln 2

n
+ o

(
1
n

)
b) On a

ln(1 + tn) =
+∞∑
k=1

(−1)k−1

k
tnk

Par convergence de la série des intégrales des valeurs absolues, on obtient la
relation proposée.
c) On a

n

+∞∑
k=1

(−1)k−1

k(nk + 1) −
+∞∑
k=1

(−1)k−1

k2 =
+∞∑
k=1

(−1)k

k2(nk + 1)

avec ∣∣∣∣∣
+∞∑
k=1

(−1)k

k2(nk + 1)

∣∣∣∣∣ 6 1
n

+∞∑
k=1

1
k2 → 0

donc

n

∫ 1

0
ln(1 + tn) dt→

+∞∑
k=1

(−1)k−1

k2

avec
+∞∑
k=1

(−1)k−1

k2 = π2

12

car on sait
+∞∑
k=1

1
k2 = π2

6

Finalement
In = 1− ln 2

n
+ π2

12n2 + o

(
1
n2

)

Exercice 51 : [énoncé]
a) Par la règle de d’Alembert la série converge pour tout (s, λ) ∈ R+? × C.
∆λ : ]0; +∞[.
b)

Fλ(s) = 1
s

(
1 +

+∞∑
n=1

λn

(s+ 1) . . . (s+ n)

)
Or ∣∣∣∣∣1 +

+∞∑
n=1

λn

(s+ 1) . . . (s+ n)

∣∣∣∣∣ 6
+∞∑
n=0

|λ|n

n! = e|λ|

donc Fλ(s) −−−−−→
s→+∞

0.
c) Puisque ∣∣∣∣ λn

(s+ 1) . . . (s+ n)

∣∣∣∣ 6 λn

n!

il y a converge normale sur R+ de la série des fonctions continues
s 7→ λn

(s+1)...(s+n) . Ceci permet d’affirmer

1 +
+∞∑
n=1

λn

(s+ 1) . . . (s+ n) −−−→s→0

+∞∑
n=0

λn

n! = eλ

et donc

Fλ(s) ∼
s→0+

eλ

s

d) Par intégrations par parties successives :∫ 1

0
(1− y)s−1yn dy = n!

s(s+ 1) . . . (s+ n)

e)

Fλ(s) =
+∞∑
n=0

λn

n!

∫ 1

0
(1− y)s−1yn dy

Par convergence de la série des intégrales des valeurs absolues, on peut échanger
somme et intégrale :

Fλ(s) =
∫ 1

0
eλy(1− y)s−1 dy
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Exercice 52 : [énoncé]
La série

∑
ap

tp

p! est convergente car∣∣∣∣ap tpp!
∣∣∣∣ 6 ‖(an)‖∞

tp

p!

De plus sa somme est continue car on peut aisément établir la convergence
normale sur tout segment.
Enfin ∣∣∣∣∣

+∞∑
p=n

ap
tp

p!

∣∣∣∣∣ 6 ‖(an)‖∞ et

permet d’assurer l’existence de l’intégrale étudiée.
Posons

fp(t) = ap
tp

p! e−2t

La série de fonction
∑
fp convergence simplement.

Les fonctions fp et
+∞∑
p=n

fp sont continues par morceaux.

Les fonctions fp sont intégrables sur [0,+∞[ et∫ +∞

0
|fp(t)| dt = |ap|

2p+1 = O

(
1

2p+1

)
est terme générale d’une série convergente.
Par le théorème d’intégration terme à terme de Fubini, on obtient∫ +∞

0
e−2t

(+∞∑
p=n

ap
tp

p!

)
dt =

+∞∑
p=n

ap
2p+1

Enfin, cette expression tend vers 0 en tant que reste d’une série convergente.

Exercice 53 : [énoncé]
On sait que la fonction ζ est continue.∫ +∞

2
(ζ(x)− 1) dx =

∫ +∞

2

+∞∑
n=2

1
nx

dx

avec ∫ +∞

2

dx
nx

= 1
n2 lnn

La convergence de la série des intégrales des valeurs absolues assure la
convergence de l’intégrale du premier membre et permet de permuter intégrale et
somme. On obtient alors∫ +∞

2
(ζ(x)− 1) dx =

+∞∑
n=2

1
n2 lnn

Exercice 54 : [énoncé]
a) Posons

fn(x) =
(

cos
(π

2 sin x
))n

Les fonctions fn sont continues par morceaux et la suite de fonctions (fn)
converge simplement vers la fonction nulle sur [0, π/2[, elle-même continue par
morceaux. Enfin, on a la domination

|fn(x)| 6 1 = ϕ(x)

avec ϕ évidemment intégrable sur [0, π/2[. Par convergence dominée, on obtient

un → 0

b) Par l’absurde, si
∑
un converge alors, on peut appliquer un théorème

d’intégration terme à terme à la série de fonctions
∑
fn. En effet, les fonctions fn

sont continues par morceaux, la série de fonctions
∑
fn converge simplement sur

[0, π/2[ vers la fonction
f : x 7→ 1

1− cos
(
π
2 sin x

)
elle-même continue par morceaux. Enfin les fonctions fn sont intégrables sur
[0, π/2[ et l’hypothèse de travail absurde signifie la convergence de la série∑∫

[0,π/2[ |fn|.
Par théorème d’intégration terme à terme, on obtient

+∞∑
n=0

un =
∫ π/2

0

1
1− cos

(
π
2 sin x

) dx

avec convergence de l’intégrale. Or, quand x→ 0+

1
1− cos

(
π
2 sin x

) ∼ 8
π2x2

et donc l’intégrale introduite diverge. C’est absurde.
On en déduit que la série

∑
un diverge.
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Exercice 55 : [énoncé]
On a un > vn =

∫ π/2
0 e−t cos2n tdt.

Si la série numérique
∑
un converge alors, par comparaison de série à termes

positifs, la série
∑
vn converge aussi. Par le théorème d’intégration terme à terme

de Fubini, il y a alors intégrabilité sur ]0, π/2] de la fonction

+∞∑
n=0

e−t cos2n t = e−t

1− cos2 t
= e−t

sin2 t

Or quand t→ 0+

e−t

sin2 t
∼ 1
t2

qui n’est pas intégrable sur ]0, π/2].
C’est absurde, on en conclut que la série

∑
un diverge.

Exercice 56 : [énoncé]
a) La fonction t 7→ 1

(1+tx)n est définie et continue par morceaux sur ]0,+∞[.
Cas x < 0 :

1
(1+tx)n −−−−→t→+∞

1 donc la fonction n’est pas intégrable.
Cas x = 0 :

1
(1+tx)n −−−−→t→+∞

1
2 . Même conclusion.

Cas x > 0 :
Quand t→ 0+, 1

(1+tx)n → 1 et quand t→ +∞, 1
(1+tx)n ∼

1
tnx donc la fonction est

intégrable sur ]0,+∞[ si, et seulement si, nx > 1.
b) Pour t > 0, on remarque que

+∞∑
n=1

1
(1 + tx)n = 1

tx

Par l’absurde, si
∑
In(x)converge, on peut appliquer un théorème d’interversion

somme et intégrale assurant que t 7→ 1
tx est intégrable sur ]0,+∞[. C’est absurde.

On conclut que
∑
In(x) diverge.

Par intégration par parties avec deux convergences

In(2) =
∫ +∞

0

dt
(1 + t2)n =

[
t

(1 + t2)n

]+∞

0
+
∫ +∞

0

2nt2

(1 + t2)n+1 dt = 2n
∫ +∞

0

t2

(1 + t2)n+1 dt

Or
In(2)− In+1(2) =

∫ +∞

0

t2 dt
(1 + t2)n+1

donc
In+1(2) = 2n− 1

2n In(2)

On en déduit
In+1(2) = (2n)!

(2nn!)2
π

2
car I1(2) = π/2.
Notons que par le changement de variable t = tan u, on pouvait aussi transformer
In(2) en une intégrale de Wallis.

Exercice 57 : [énoncé]
a) Posons fn(t) = 1/(1 + t3)n définie sur [0, 1].
Les fonctions fn sont continues par morceaux et la suite (fn) converge simplement
sur ]0, 1] vers la fonction nulle, elle-même continue par morceaux. De plus

∀n > 1,∀t ∈ ]0, 1] , |fn(t)| 6 ϕ(t)

avec ϕ : t 7→ 1/(1 + t3) intégrable sur ]0, 1].
Par application du théorème de convergence dominée, on obtient un → 0
b) Les fonctions fn sont continues par morceaux et la série de fonctions

∑
fn

converge simplement sur ]0, 1] vers la fonction S continue par morceaux donnée
par

S(t) =
+∞∑
n=0

1
(1 + t3)n = 1

1− 1
1+t3

= 1 + t3

t3

Si, par l’absurde, la série
∑
un converge, on est dans la situation où la série de

terme général
∫

]0,1] |fn(t)| dt converge et l’on peut appliquer un théorème
d’intégration terme à terme affirmant :

S est intégrable sur ]0, 1] et
∫

]0,1]
S(t) dt =

+∞∑
n=1

∫ 1

0
fn(t) dt

Or ceci est absurde car la fonction S n’est pas intégrable sur ]0, 1] !
On en déduit que la série

∑
un diverge.

Exercice 58 : [énoncé]
a) Posons un(t) = 1/(1 + t3)n définie sur ]0,+∞[.
Les fonctions un sont continues par morceaux et la suite (un) converge simplement
vers la fonction nulle sur ]0,+∞[, elle-même continue par morceaux. De plus

∀n > 1,∀t ∈ ]0,+∞[ , |un(t)| 6 ϕ(t)
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avec ϕ : t 7→ 1/(1 + t3) intégrable sur [0,+∞[ et donc aussi sur ]0,+∞[.
Par application du théorème de convergence dominée sur ]0, 1] et sur [1,+∞[, on
obtient

Un → 0 et Vn → 0

b) Les fonctions un sont continues par morceaux et la série de fonctions
∑
un

converge simplement sur ]0, 1] vers la fonction U continue par morceaux donnée
par

U(t) =
+∞∑
n=1

1
(1 + t3)n = 1

1 + t3
1

1− 1
1+t3

= 1
t3

Si, par l’absurde, la série
∑
Un converge, on est dans la situation où la série de

terme général
∫

]0,1] |un(t)| dt converge et l’on peut appliquer un théorème
d’intégration terme à terme affirmant :

U est intégrable sur ]0, 1] et
∫

]0,1]
U(t) dt =

+∞∑
n=1

∫ 1

0
un(t) dt

Or ceci est absurde car la fonction U n’est pas intégrable sur ]0, 1] !
On en déduit que la série

∑
Un diverge.

En revanche, la série
∑
Vn est à termes positifs et

n∑
k=1

Vk 6
∫ +∞

1

n∑
k=1

1
(1 + t3)n dt 6

∫ +∞

1

dt
t3

= 1
2

Les sommes partielles de la série à termes positifs
∑
Vn étant majorées, on peut

affirmer que la série
∑
Vn converge.

Exercice 59 : [énoncé]
a) Quand x→ 0+, fn(x) ∼ 2x

nx →
2
n donc α = 2

n est l’unique valeur pour laquelle
f est continue en 0.
b) fn est continue sur [0,+∞[ et quand x→ +∞, fn(x) ∼ ex

enx → 0 donc fn est
bornée sur R+.
On peut envisager une argumentation plus détaillée :
- puisque f converge en +∞, il existe A > 0 tel que f est bornée sur [A,+∞[ ;
- puisque f est continue, f est bornée sur [0, A] ;
- et finalement f est bornée sur la réunion de ces deux intervalles par la plus
grande des deux bornes.
c) fn est définie et continue sur [0,+∞[ et quand x→ +∞,
x2fn(x) ∼ x2e−(n−1)x → 0 donc fn(x) = o

(
1/x2) et donc f est intégrable sur

[0,+∞[.

d) Pour x > 0,

2shx
enx − 1 = 2shx

+∞∑
k=1

e−nkx =
+∞∑
k=1

(
e−(nk−1)x − e−(nk+1)x

)
∫ +∞

0

∣∣∣e−(nk−1)x − e−(nk+1)x
∣∣∣ dx = 1

nk − 1 −
1

nk + 1 = 2
n2k2 − 1 = O

(
1
k2

)
Par convergence de la série des intégrales des valeurs absolues, on peut sommer
terme à terme et affirmer∫ +∞

0

2shx
enx − 1 dx =

+∞∑
k=1

∫ +∞

0

(
e−(nk−1)x − e−(nk+1)x

)
dx =

+∞∑
k=1

1
nk − 1 −

1
nk + 1

Pour n = 2, la somme est facile à calculer.

Exercice 60 : [énoncé]
a) Par convergence dominée In → 0.
b) Par intégration par parties avec convergence du crochet

In =
[

t

(1 + t3)n

]+∞

0
+ 3n

∫ +∞

0

t3

(1 + t3)n dt

avec ∫ +∞

0

t3

(1 + t3)n dt = In − In+1

On en déduit la relation demandée.
c) La suite (un) a la nature de la série de terme général vn = un+1 − un.
Or

vn = α ln
(

1 + 1
n

)
+ ln

(
1− 1

3n

)
= α− 1/3

n
+O

(
1
n2

)
La série de terme général vn converge si, et seulement si, α = 1/3.
d) Puisque ln

(
n1/3In

)
→ `, on obtient

In ∼
e`
3
√
n

et donc
1
n
In = O

(
1

n4/3

)
Par suite

∑
n>1

1
nIn converge.
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On a
+∞∑
n=1

1
n
In =

+∞∑
n=1

∫ +∞

0
fn(t) dt avec fn(t) = 1

n

1
(1 + t3)n

Les fonctions fn sont continues par morceaux sur ]0,+∞[, la série
∑
fn converge

simplement sur ]0,+∞[ et sa somme

+∞∑
n=1

fn =
+∞∑
n=1

1
n

1
(1 + t3)n = − ln

(
1− 1

1 + t3

)
est continue par morceaux.
Enfin, la série de terme général

∫ +∞
0 |fn| converge.

On peut donc permuter somme et intégrale pour obtenir

+∞∑
n=1

1
n
In = −

∫ +∞

0
ln
(

1− 1
1 + t3

)
dt = 2√

3
π

la dernière intégrale étant calculer par intégration par parties puis∫ +∞

0

dt
1 + t3

= 2π
3
√

3

Exercice 61 : [énoncé]
On a

1
1 + ta

=
+∞∑
n=0

(−1)ntna =
+∞∑
n=0

fn(t)

avec fn(t) = (−1)ntna sur ]0, 1[.∫ 1

0
|fn(t)| dt = 1

na+ 1

et
∑ 1

na+1 diverge, le théorème d’intégration terme à terme de Fubini ne
s’applique pas.
De plus la série de fonctions ne converge par uniformément sur [0, 1] car elle ne
converge pas simplement en 1. . .
Transitons alors par les sommes partielles et le théorème de convergence dominée.
Posons

Sn : t 7→
n∑
k=0

(−1)ktka = 1− (−1)n+1t(n+1)a

1 + ta

Les fonctions Sn sont continues par morceaux et la suite (Sn) converge
simplement sur [0, 1[ vers la fonction

S : t 7→ 1
1 + ta

elle-même continue par morceaux.
De plus

|Sn(t)| 6 2
1 + ta

= ϕ(t)

avec ϕ intégrable sur [0, 1[.
Par le théorème de convergence dominée, on obtient∫ 1

0
Sn(t) dt→

∫ 1

0

dt
1 + ta

Or ∫ 1

0
Sn(t) dt =

n∑
k=0

∫ 1

0
(−1)ktka dt =

n∑
k=0

(−1)k

ka+ 1

donc
+∞∑
n=0

(−1)n

na+ 1 =
∫ 1

0

dt
1 + ta

avec, en substance, la convergence de la série introduite.

Exercice 62 : [énoncé]
Notons que l’intégrale étudiée est bien définie.
Pour tout x ∈ ]0, 1[,

xα−1

1 + x
=

+∞∑
n=0

(−1)nxn+α−1

Le théorème d’intégration terme à terme ne pourra pas s’appliquer car ici∑∫
]0,1[
|fn| =

∑ 1
n+ α

diverge

Nous allons alors intégrer terme à terme en exploitant les sommes partielles.
Posons

Sn : x 7→
n∑
k=0

(−1)kxk+α−1 = xα−1 1− (−1)n+1xn+1

1 + x
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Les fonctions Sn sont continues par morceaux et convergent simplement sur ]0, 1[
vers la fonction

S : x 7→ xα−1

1 + x

elle-même continue par morceaux.
De plus

|Sn(x)| 6 2xα−1

1 + x
= ϕ(x)

avec ϕ fonction intégrable sur ]0, 1[.
Par le théorème de convergence dominée, on obtient∫ 1

0
Sn(x) dx→

∫ 1

0

xα−1

1 + x
dx

Or ∫ 1

0
Sn(x) dx =

n∑
k=0

∫ 1

0
(−1)kxk+α−1 dx =

n∑
k=0

(−1)k

k + α

et on peut donc conclure

+∞∑
n=0

(−1)n

n+ α
=
∫ 1

0

xα−1

1 + x
dx

avec en substance la convergence de la série introduite.

Exercice 63 : [énoncé]
a) Pour t ∈ ]0, 1[, on peut écrire

ta−1

1 + tb
=

+∞∑
n=0

(−1)nta+nb−1

Posons

Sn : t 7→
n∑
k=0

(−1)kta+kb−1 = ta−1 1− (−1)n+1t(n+1)b

1 + tb

Les fonctions Sn sont continues par morceaux et la suite (Sn) converge
simplement sur ]0, 1[ vers la fonction

S : t 7→ ta−1

1 + tb

elle-même continue par morceaux.

De plus

|Sn(t)| 6 2ta−1

1 + tb
= ϕ(t)

avec ϕ intégrable sur ]0, 1[.
Par convergence dominée, on obtient∫ 1

0
Sn(t) dt→

∫ 1

0

ta−1

1 + tb
dt

avec convergence de l’intégrale introduite.
Or ∫ 1

0
Sn(t) dt =

n∑
k=0

∫ 1

0
(−1)kta+kb−1 =

n∑
k=0

(−1)k

a+ kb

donc
+∞∑
n=0

(−1)n

a+ nb
=
∫ 1

0

ta−1

1 + tb
dt

avec convergence de la série introduite..
b) Après calculs

+∞∑
n=0

(−1)n

3n+ 1 =
∫ 1

0

dt
1 + t3

= 1
3 ln 2 + π

3
√

3

Exercice 64 : [énoncé]
Soit fn : [0,+∞[→ R la fonction définie par

fn(t) = (−1)n−1

n2 + t2

On observe ‖fn‖∞ = 1/n2 et donc la série des fonctions fn converge normalement,
donc uniformément sur [0,+∞[. Puisque chaque fn est continue, on peut affirmer
que la fonction

S : t 7→
+∞∑
n=1

(−1)n−1

n2 + t2

est définie et continue sur [0,+∞[.
Les fonctions fn sont intégrables sur R+ et∫ +∞

0
|fn(t)| dt = π

2

∫ +∞

0

dt
n2 + t2

= π

2n

Puisque la série
∑∫

|fn| diverge, on ne peut intégrer terme à terme par le
théorème de Fubini.
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Raisonnons alors par les sommes partielles en exploitant le théorème de
convergence dominée.
Posons

Sn : t 7→
n∑
k=1

(−1)k−1

k2 + t2

Les fonctions Sn sont continues par morceaux sur [0,+∞[ et converge simplement
vers la fonction S elle-même continue par morceaux.
De plus, le critère spécial des séries alternées s’appliquant, on a

0 6 Sn(t) 6 1
1 + t2

= ϕ(t)

avec ϕ intégrable sur [0,+∞[.
Par le théorème de convergence dominée, on obtient∫ +∞

0
Sn(t) dt→

∫ +∞

0

+∞∑
n=1

(−1)n−1

n2 + t2
dt

Or ∫ +∞

0
Sn(t) dt =

n∑
k=1

∫ +∞

0

(−1)n−1

n2 + t2
dt = π

2

n∑
k=1

(−1)n−1

n

donc
π

2

+∞∑
n=1

(−1)n−1

n
=
∫ +∞

0

+∞∑
n=1

(−1)n−1

n2 + t2
dt

avec convergence de la série introduite.

Exercice 65 : [énoncé]
Posons

fn : x 7→ (−1)ne−anx

Les fonctions fn sont continues et en vertu du critère spécial des séries alternées,
on peut affirmer que la série

∑
fn converge simplement sur ]0,+∞[. De plus, par

le critère spécial des séries alternées, on a

|Rn(x)| =

∣∣∣∣∣
+∞∑

k=n+1
(−1)ke−akx

∣∣∣∣∣ 6 e−an+1x

ce qui permet d’établir que la série
∑
fn converge uniformément sur tout segment

de ]0,+∞[. On en déduit que la fonction

S : x 7→
+∞∑
n=0

(−1)ne−anx

est définie et continue sur ]0,+∞[.
Pour intégrer terme à terme, nous allons exploiter les sommes partielles et le
théorème de convergence dominée. Posons

Sn : x 7→
n∑
k=0

(−1)ke−akx

Les fonctions Sn sont continues par morceaux et la suite (Sn) converge
simplement vers S elle-même continue par morceaux.
En vertu du critère spécial des séries alternées, on a

0 6 Sn(x) 6 S0(x) = e−a0x = ϕ(x)

avec ϕ intégrable.
Par convergence dominée, on obtient∫ +∞

0
Sn(x) dx→

∫ +∞

0
S(x) dx

avec convergence de l’intégrale introduite.
Or ∫ +∞

0
Sn(x) dx =

n∑
k=0

∫ +∞

0
(−1)ke−akx dx =

n∑
k=0

(−1)k

ak

donc
+∞∑
n=0

(−1)n

an
=
∫ +∞

0

+∞∑
n=0

(−1)ne−anx dx

avec en substance convergence de la série écrite.

Exercice 66 : [énoncé]
a) La fonction t 7→ tx−1

1+t est définie et continue par morceaux sur ]0, 1].
Quand t→ 0+, t

x−1

1+t ∼ t
x−1 = 1

t1−x avec 1− x < 1
donc t 7→ tx−1

1+t est intégrable sur ]0, 1].
b) Posons g(x, t) = tx−1

1+t sur ]0,+∞[× ]0, 1].
t 7→ g(x, t) est continue par morceaux sur ]0, 1],
x 7→ g(x, t) est continue sur ]0,+∞[.
Soit [a, b] ⊂ R+?,

∀(x, t) ∈ [a, b]× ]0, 1] , |g(x, t)| 6 ta−1

1 + t
6 ta−1 = ϕa(t)
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avec ϕa intégrable sur ]0, 1].
Par domination sur tout segment de ]0,+∞[, on peut affirmer que f est continue
sur ]0,+∞[.
c) Pour x > 0

f(x) + f(x+ 1) =
∫ 1

0
tx−1 dt = 1

x

d) Quand x→ 0+, f(x+ 1)→ f(1) donc f(x+ 1) = o(1/x) puis f(x) ∼ 1/x.
Quand x→ +∞,

0 6 f(x) 6
∫ +∞

0
tx−1 dt = 1

x
→ 0

donc f(x) −−−−−→
x→+∞

0.

Exercice 67 : [énoncé]
a) Posons f : [0,+∞[× [0,+∞[→ R définie par

f(x, t) = e−t

1 + tx

Pour chaque x ∈ [0,+∞[, la fonction t 7→ f(x, t) est continue par morceaux sur
[0,+∞[ et intégrable car

t2f(x, t) −−−−→
t→+∞

0

On en déduit la convergence de l’intégrale impropre définissant F (x).
b) Pour chaque t ∈ [0,+∞[, la fonction x 7→ f(x, t) est indéfiniment dérivable et

∂nf

∂xn
(x, t) = (−1)nn!

(1 + tx)n+1 t
ne−t

La fonction x 7→ ∂nf
∂xn (x, t) est continue, la fonction t 7→ ∂nf

∂xn (x, t) est continue par
morceaux et

∀(x, t) ∈ [0,+∞[× [0,+∞[ ,
∣∣∣∣∂nf∂xn

(x, t)
∣∣∣∣ 6 n!tne−t = ϕn(t)

avec ϕn : [0,+∞[→ R continue par morceaux et intégrable.
Par domination, on peut alors affirmer que F est de classe C∞ sur [0,+∞[ et

∀n ∈ N,∀x ∈ [0,+∞[ , F (n)(x) = (−1)nn!
∫ +∞

0
tne−t dt

c) En particulier
F (n)(0) = (−1)n(n!)2

Exercice 68 : [énoncé]
Considérons f : (x, t) 7→ e−xt

1+t2 définie sur ]0,+∞[× [0,+∞[
Pour tout x ∈ ]0,+∞[, t 7→ f(x, t) est continue par morceaux sur [0,+∞[ et
intégrable car

|f(x, t)| 6 1
1 + t2

Pourt ∈ [0,+∞[, la fonction x 7→ f(x, t) est de classe C2 sur ]0,+∞[ et

∂f

∂x
(x, y) = −t e−xt

1 + t2
et ∂

2f

∂x2 (x, t) = t2
e−xt

1 + t2

Pour tout x ∈ ]0,+∞[, la fonctions t 7→ ∂f
∂x (x, t) est continue par morceaux et

intégrable.
La fonction ∂2f

∂x2 est continue en x, continue par morceaux en t.
Soit [a, b] ⊂ ]0,+∞[. Sur[a,+∞[× [0,+∞[, on a∣∣∣∣∂2f

∂x2 (x, t)
∣∣∣∣ 6 e−at

avec ϕ : t 7→ e−at continue par morceaux et intégrable sur [0,+∞[.
Par domination sur tout compact, la fonction F est de classe C2 sur R+? et

F ′′(x) + F (x) =
∫ +∞

0
t2

e−xt

1 + t2
dt+

∫ +∞

0

e−xt

1 + t2
dt =

∫ +∞

0
e−xtdt = 1

x

Enfin F −−→
+∞

0 car

|f(x)| 6
∫ +∞

0

e−xt

1 + t2
dt 6

∫ +∞

0
e−xtdt = 1

x
−−−−−→
x→+∞

0

Exercice 69 : [énoncé]
a) g : (x, t) 7→ e−xt

2

1+t2 est définie continue en x et continue par morceaux en t sur
R+ × [0,+∞[ avec

|g(x, t)| 6 1
1 + t2

= ϕ(t)

et ϕ intégrable sur [0,+∞[.
Par domination, on peut affirmer que f est définie et continue sur R+.
b) ∂g

∂x existe et est continue en x et continue par morceaux en t sur R+? × [0,+∞[.
Pour x ∈ [a, b] ⊂ R+? on a∣∣∣∣∂g∂x (x, t)

∣∣∣∣ =
∣∣∣∣− t2

1 + t2
e−xt

2
∣∣∣∣ 6 e−at

2
= ψ(t)
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avec ψ intégrable sur R+.
Par domination sur tout segment de R+?, on peut affirmer que f est de classe C1

sur ]0,+∞[ avec

f ′(x) = −
∫ +∞

0

t2e−xt2

1 + t2
dt

Enfin,

f(x)− f ′(x) =
∫ +∞

0
e−xt

2
dt =

u=
√
xt

1√
x

∫ +∞

0
e−u

2
du =

√
π

2
√
x

Exercice 70 : [énoncé]
a) t 7→ 1

1+t3 est intégrable sur R+ donc g(0) existe.
u 7→ 1/u est une bijection C1 entre R+? et R+?.
On peut réaliser le changement de variable t = 1/u qui donne∫ +∞

0

dt
1 + t3

=
∫ +∞

0

udu
1 + u3

Donc

2g(0) =
∫ +∞

0

dt
t2 − t+ 1 =

[
2√
3

arctan 2t− 1√
3

]+∞

0
= 4π

3
√

3
puis

g(0) = 2π
3
√

3

b) La fonction g est paire. Pour 0 6 x 6 x′, on a pour tout t > 0, e−tx2
> e−tx′2

donc g est décroissante sur R+.
c) Pour x > 0,

0 6 g(x) 6
∫ +∞

0
e−tx

2
dt = 1

x2 → 0

donc lim
x→+∞

g(x) = 0.

Exercice 71 : [énoncé]
a) Posons

g(x, t) = 1
1 + x3 + t3

Pour tout x ∈ R+, la fonction t 7→ g(x, t) est définie, continue sur R+ et
g(x, t) ∼

+∞
1/t3 donc f(x) existe.

b) u 7→ 1/u est un C1 difféomorphisme entre R+? et R+?.

On peut réaliser le changement de variable t = 1/u qui donne∫ +∞

0

dt
1 + t3

=
∫ +∞

0

udu
1 + u3

Donc

2f(0) =
∫ +∞

0

dt
t2 − t+ 1 =

[
2√
3

arctan 2t− 1√
3

]+∞

0
= 4π

3
√

3
puis

f(0) = 2π
3
√

3

c) x 7→ g(x, t) est continue sur R+, t 7→ g(x, t) est continue par morceaux sur
[0,+∞[ avec

|g(x, t)| 6 1
1 + t3

= ϕ(t)

et ϕ intégrable sur [0,+∞[ donc f est continue.
Si x 6 y alors ∀t ∈ [0,+∞[ , g(y, t) 6 g(x, t) donc f(y) 6 f(x). Ainsi f est
décroissante.
Rq : On peut aussi montrer f de classe C1 mais cela alourdit la démonstration
d) f tend vers 0 en +∞ car

0 6 f(x) 6
∫ +∞

0

dt
x3 + t3

=
t=xu

1
x2

∫ +∞

0

du
1 + u3 →

x→+∞
0

Exercice 72 : [énoncé]
a) Posons u : R× [0, π]→ R la fonction définie par

u(x, θ) = cos(x sin θ)

La fonction u admet des dérivées partielles

∂u

∂x
(x, θ) = − sin θ sin(x sin θ) et ∂

2u

∂x2 (x, θ) = − sin2 θ cos(x sin θ)

Pour chaque x ∈ R, θ 7→ u(x, θ) et θ 7→ ∂u
∂x (x, θ) sont continues par morceaux sur

[0, π] donc intégrable.
De plus ∂2u

∂x2 est continue en x et continue par morceaux en θet

∀x ∈ R,∀θ ∈ [0, π] ,
∣∣∣∣∂2u

∂x2 (x, θ)
∣∣∣∣ 6 1 = ϕ(θ)
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L’application ϕ étant intégrable sur [0, π], on peut affirmer par domination sur
tout segment que la fonction f est de classe C2 avec

f ′(x) = − 1
π

∫ π

0
sin θ cos(x sin θ) dθ et f ′′(x) = − 1

π

∫ π

0
sin2 θ cos(x sin θ) dθ

b) On remarque

f ′′(x) = 1
π

∫ π

0
(cos2 θ − 1) cos(x sin θ) dθ

et donc
x(f ′′(x) + f(x)) = 1

π

∫ π

0
cos θ. (x cos θ cos(x sin θ)) dθ

Par intégration par parties, on obtient

x(f ′′(x) + f(x)) = −f ′(x)

On en déduit que f est solution de l’équation différentielle linéaire d’ordre 2

xy′′(x) + y′(x) + xy(x) = 0

c) Pour tout x ∈ R, on peut écrire

f(x) = 1
π

∫ π

0

+∞∑
n=0

(−1)n

(2n)! (sin θ)2nx2n dθ

Puisque la série
∑

x2n

(2n)! est convergente, un argument de convergence normale
permet une intégration terme à terme et donc

f(x) =
+∞∑
n=0

anx
2n avec an = (−1)n

(2n)!π

∫ π

0
(sin θ)2n dθ

d) Nous pourrions calculer l’intégrale définissant an car c’est une intégrale de
Wallis, mais puisqu’on nous demande d’exploiter l’équation différentielle. . .
Pour tout x ∈ R, par dérivation d’une série entière

f ′(x) =
+∞∑
n=0

(2n+ 2)an+1x
2n+1 et f ′′(x) =

+∞∑
n=0

(2n+ 2)(2n+ 1)an+1x
2n

L’équation xf ′′(x) + f ′(x) + xf(x) = 0 donne alors

+∞∑
n=0

(
(2n+ 2)2an+1 + an

)
x2n+1 = 0

Par unicité des coefficients d’un développement en série entière de rayon de
convergence > 0, on obtient

(2n+ 2)2an+1 + an = 0

Sachant a0 = 1, on conclut
an = (−1)n

22n(n!)2

Exercice 73 : [énoncé]
a) Introduisons g(x, t) = cos t

t+x définie sur R+? × [0, π/2].
La fonction g est continue et x et continue par morceaux en t.
Pour [a, b] ⊂ R+?, on a

∀(x, t) ∈ [a, b]× [0, π/2] , |g(x, t)| 6 1
t+ a

= ϕ(t)

La fonction ϕ est intégrable sur [0, π/2].
Par domination sur tout segment, on peut affirmer que f est continue sur R+?.
Aussi, pour 0 < x 6 x′, on a

∀t ∈ [0, π/2] , g(x′, t) 6 g(x, t)

En intégrant, on obtient f(x′) 6 f(x). La fonction f est donc décroissante.
On aurait pu aussi établir que f est de classe C1 et étudier le signe de sa dérivée.
b) Quand x→ +∞,

0 6 f(x) 6
∫ π/2

0

1
x+ t

dt→ 0

Quand x→ 0+

f(x) >
∫ π/4

0

cos t
t+ x

dt >
√

2
2 [ln(t+ x)]π/40 =

√
2

2 ln x+ π/4
x

→ +∞

c)
1

x+ π/2

∫ π/2

0
cos tdt 6 f(x) 6 1

x

∫ π/2

0
cos tdt

donc
f(x) ∼

x→+∞

1
x

On sait :
∀0 6 t 6 π/2, 1− 1

2 t
2 6 cos t 6 1
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donc ∫ π/2

0

dt
t+ x

− 1
2

∫ π/2

0

t2dt
t+ x

6 f(x) 6
∫ π/2

0

dt
t+ x

Or ∫ π/2

0

dt
t+ x

= ln x+ π/2
x

∼
0
− ln x

et

0 6
∫ π/2

0

t2dt
t+ x

6
∫ π/2

0
tdt = C = o(ln x)

donc
f(x) ∼

x→0
− ln x

Exercice 74 : [énoncé]
a) La fonction t 7→ (sin t)x est définie, continue et positive sur ]0, π/2].
Quand t→ 0+, (sin t)x ∼ tx avec x > −1 donc t 7→ (sin t)x est intégrable sur
]0, π/2].
Ainsi f est définie et positive sur ]−1,+∞[
b) La fonction

∂g

∂x
(x, t) = ln(sin t)(sin t)x

est définie, continue en x et continue par morceaux en t.
Soit [a, b] ⊂ ]−1,+∞[. Sur [a, b]× ]0, π/2]∣∣∣∣∂g∂x (x, t)

∣∣∣∣ 6 |ln(sin t)(sin t)a| = ϕ(t)

avec ϕ est intégrable sur ]0, π/2] car pour α tel que −a < α < 1,

tαϕ(t) ∼ ta+α |ln(t)| → 0

Par domination sur tout segment, f est de classe C1 sur ]−1,+∞[ et

f ′(x) =
∫ π/2

0
ln(sin t)(sin t)xdt 6 0

Ainsi la fonction f est décroissante.
c) En intégrant par parties

f(x+2) =
∫ π/2

0
(sin t)x(1− cos2 t)dt = f(x)−

[
(sin t)x+1

x+ 1 cos t
]π/2

0
− 1
x+ 1f(x+2)

et donc
f(x+ 2) = x+ 1

x+ 2f(x)

d) On a
ϕ(x+ 1) = (x+ 1)f(x+ 1)f(x) = xf(x− 1)f(x) = ϕ(x)

et
ϕ(1) = f(0)f(1) = π/2

donc par récurrence
∀n ∈ N?, ϕ(n) = π/2

e) ϕ est continue et quand x→ 0,

ϕ(x) = ϕ(1 + x)→ ϕ(1) = π/2

Or quand x→ 0,
f(x)→ f(0) = π/2

donc quand x→ −1,

f(x) = ϕ(x+ 1)
(x+ 1)f(x+ 1) ∼

1
x+ 1

Rq : En fait on peut montrer que ϕ est une fonction constante.

Exercice 75 : [énoncé]
a) Posons u(x, t) = (sin t)x définie sur R× ]0, π/2].
Pour tout x ∈ R, t 7→ u(x, t) est continue par morceaux sur ]0, π/2].
On a

u(x, t) ∼
t→0+

tx

donc t 7→ u(x, t) est intégrable sur ]0, π/2] si, et seulement si, x > −1.
De plus, la fonction t 7→ u(x, t) est positive et donc la convergence de l’intégrale
équivaut à l’intégrabilité de la fonction.
En conclusion, l’intégrale existe si, et seulement si, x > −1.
b) u admet une dérivée partielle

∂u

∂x
(x, t) = ln(sin t)(sin t)x

Celle-ci est continue en x et continue par morceaux en t.
Pour [a, b] ⊂ ]−1,+∞[, on a

∀(x, t) ∈ [a, b]× ]0, π/2] ,
∣∣∣∣∂u∂x (x, t)

∣∣∣∣ 6 |ln(sin t)| (sin t)a = ϕ(t)
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La fonction ϕ est intégrable car

ϕ(t) ∼
t→0+

|ln t| |ta| = o (tα) avec α ∈ ]−1, a[

Par domination sur tout segment, on obtient f de classe C1 avec

f ′(x) =
∫ π/2

0
ln(sin t)(sin t)x dt 6 0

c) Posons
ϕ(x) = (x+ 1)f(x)f(x+ 1)

Une intégration par parties avec

u′(t) = sin t et v(t) = (sin t)x−1

donne ∫ π/2

0
(sin t)x dt = (x− 1)

(∫ π/2

0
(sin t)x−2 dt−

∫ π/2

0
(sin t)x dt

)
On en déduit

ϕ(x+ 1) = ϕ(x)
Montrons que cette fonction est en fait constante.
Soit a ∈ ]−1, 0[. Pour tout n ∈ N, ϕ(a+ n) = ϕ(a).
En posant p = bac, la décroissance de f donne

ϕ(a) = ϕ(a+ n) 6 (a+ n+ 1)f(p+ n)f(p+ n+ 1)

Or
(p+ n+ 1)f(p+ n)f(p+ n+ 1) = ϕ(p+ n) = ϕ(0)

et donc

(a+ n+ 1)f(p+ n)f(p+ n+ 1) = a+ n+ 1
p+ n+ 1ϕ(0) −−−−−→

n→+∞
ϕ(0)

De façon semblable, ϕ(a) peut être minorée par une suite de limite ϕ(0).
On peut donc affirmer que ϕ est constante.

Exercice 76 : [énoncé]
Etudions la fonction donnée par

f(x) =
∫ +∞

0

arctan(x/t)
1 + t2

Notons u(x, t) = arctan(x/t)
1+t2 définie sur R+ × ]0,+∞[

t 7→ u(x, t) est continue par morceaux sur]0,+∞[ pour chaque x ∈ R+

x 7→ u(x, t) est continue sur R+ pour chaque t ∈ ]0,+∞[ et

|u(x, t)| 6 π/2
1 + t2

= ϕ(t)

avec ϕ fonction intégrable sur ]0,+∞[.
On en déduit que la fonction f est définie et continue sur R+.
x 7→ u(x, t) est dérivable sur R+? pour chaque t ∈ ]0,+∞[ et

∂u

∂x
(x, t) = t

(t2 + x2)(1 + t2)

x 7→ ∂u
∂x (x, t) est continue sur R+? pour chaque t ∈ ]0,+∞[

t 7→ ∂u
∂x (x, t) est continue par morceaux sur ]0,+∞[ pour chaque x ∈ R+? et∣∣∣∣∂u∂x (x, t)

∣∣∣∣ = 1
2x

1
(1 + t2)

car 2tx 6 x2 + t2.
Soit [a, b] ⊂ ]0,+∞[

∀(x, t) ∈ [a, b]× ]0,+∞[ ,
∣∣∣∣∂u∂x (x, t)

∣∣∣∣ = 1
2a

1
(1 + t2) = ψ(t)

avec ψ fonction intégrable.
Par domination sur tout segment, on obtient f de classe C1 sur ]0,+∞[ avec

f ′(x) =
∫ +∞

0

t

(t2 + x2)(1 + t2) dt

Pour x 6= 1, on peut décomposer la fraction rationnelle définissant l’intégrande

t

(1 + t2)(x2 + t2) = t

(x2 − 1)(1 + t2) −
t

(x2 − 1)(x2 + t2)

et on obtient alors

f ′(x) = 1
x2 − 1

[
1
2 ln

(
1 + t2

x2 + t2

)]+∞

0
= ln x

(x2 − 1)

Cette identité se prolonge en x = 1 par un argument de continuité.
On a alors ∫ x

0

ln t
(t2 − 1) dt = lim

ε→0

∫ x

ε

ln t
(t2 − 1) dt = lim

ε→0
f(x)− f(ε)
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Or f(0) = 0 et par continuité on parvient à∫ x

0

ln t
(t2 − 1) dt = f(x)

Exercice 77 : [énoncé]
a) Pour a > −1, on note Ωa = {z ∈ C/Re(z) > a}.
t 7→ tz

1+t est continue par morceaux sur ]0, 1], z 7→ tz

1+t est continue sur Ω et pour
z ∈ Ωa, ∣∣∣∣ tz

1 + t

∣∣∣∣ 6 ta

1 + t
= ϕ(t)

avec ϕ intégrable sur ]0, 1] car ϕ(t) ∼ ta quand t→ 0+.
Par domination, on peut affirmer que f est définie et continue sur Ωa.
Ceci valant pour tout a > −1, on peut encore affirmer que f est définie et
continue sur Ω.
b) On observe

f(x) + f(x+ 1) =
∫ 1

0
tx dt = 1

x+ 1
et par continuité

f(x+ 1) −−−−→
x→−1

f(0)

donc
f(x) ∼

x→−1

1
x+ 1

c) Par intégration par parties

(z + 1)f(z) = 1
2 +

∫ 1

0

tz+1

(1 + t)2 dt

Or ∣∣∣∣∫ 1

0

tz+1

(1 + t)2 dt
∣∣∣∣ 6 ∫ 1

0

∣∣tz+1∣∣ dt

avec ∣∣tz+1∣∣ = |exp((z + 1) ln t| = exp ((Re(z) + 1) ln t) = tRe(z)+1

car les exponentielles imaginaires sont de module 1.
On a alors ∣∣∣∣∫ 1

0

tz+1

(1 + t)2 dt
∣∣∣∣ 6 ∫ 1

0
tRe(z)+1 dt = 1

Re(z) + 2 −−−−−−−→Re(z)→+∞
0

Ainsi
(z + 1)f(z) −−−−−−−→

Re(z)→+∞

1
2

puis
f(z) ∼

Re(z)→+∞

1
2z

Exercice 78 : [énoncé]
a) Pour x ∈ R, t 7→ sin(xt)

et−1 est continue par morceaux sur ]0,+∞[,

sin(xt)
et − 1

=
t→0

O(1) et sin(xt)
et − 1

=
t→+∞

o

(
1
t2

)
donc f(x) est bien définie pour tout x ∈ R.
b) Posons g(x, t) = sin(xt)

et−1 .
g admet une dérivée partielle ∂g

∂x avec

∂g

∂x
(x, t) = t

et − 1 cos(xt)

x 7→ ∂g
∂x (x, t) est continue sur R, t 7→ ∂g

∂x (x, t) est continue par morceaux sur
]0,+∞[.
Enfin

∣∣∣ ∂g∂x (x, t)
∣∣∣ 6 t

et−1 = ϕ(t) avec ϕ intégrable sur ]0,+∞[.
Par domination, on peut affirmer que f est de classe C1, a fortiori continue et
dérivable.
c) La décomposition

1
et − 1 =

+∞∑
n=1

e−nt

permet d’écrire

f(1) =
∫ +∞

0

+∞∑
n=1

sin(t)e−nt dt

Par la majoration |sin(u)| 6 |u|, on obtient∫ +∞

0

∣∣sin(t)e−nt
∣∣ 6 ∫ +∞

0
te−nt dt = 1

n2

La série
∑∫

[0,+∞[ |sin(t)e−nt| dt converge, on peut intégrer terme à terme

f(1) =
+∞∑
n=1

∫ +∞

0
sin(t)e−nt dt
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On calcule l’intégrale sommée en considérant la partie imaginaire de∫ +∞

0
eite−nt dt

On obtient à terme

f(1) =
+∞∑
n=1

1
n2 + 1

Exercice 79 : [énoncé]
La fonction f est bien définie sur ]0,+∞[ et

xf(x) = π

2 −
∫ +∞

0

e−tx

1 + t2
dt

Posons
u(x, t) = e−tx

1 + t2

définie sur ]0,+∞[× [0,+∞[.
u admet deux dérivées partielles

∂u

∂x
(x, t) = − t

1 + t2
e−tx et ∂

2u

∂x2 (x, t) = t2

1 + t2
e−tx

Pour chaque x > 0, les fonctions u et ∂u
∂x sont intégrables et pour tout

[a, b] ⊂ ]0,+∞[, on a la domination∣∣∣∣∂2u

∂x2 (x, t)
∣∣∣∣ 6 e−at = ϕ(t)

avec ϕ intégrable. On en déduit que la fonction

x 7→
∫ +∞

0

e−tx

1 + t2
dt

est définie et de classe C2 sur ]0,+∞[. Il en est de même pour f par opérations
sur de telles fonctions.
Quand x→ +∞,

0 6
∫ +∞

0

e−tx

1 + t2
dt 6

∫ +∞

0
e−tx dt = 1

x

donc xf(x)→ π
2 puis

f(x) ∼
x→0+

π

2x

Etudions maintenant f(x) quand x→ 0+.
Par le changement de variable u = tx,

f(x) =
∫ +∞

0

1− e−u

x2 + u2 du =
∫ +∞

0

u

x2 + u2
1− e−u

u
du

avec
ϕ : u 7→ 1− e−u

u

Par intégration par parties,

f(x) =
[

1
2 ln(x2 + u2)ϕ(u)

]+∞

0
− 1

2

∫ +∞

0
ln(x2 + u2)ϕ′(u) du

Pour x ∈ ]0, 1], ∣∣ln(x2 + u2)
∣∣ 6 ∣∣ln(u2)

∣∣+
∣∣ln(1 + u2)

∣∣
et la fonction

u 7→
(∣∣ln(u2)

∣∣+
∣∣ln(1 + u2)

∣∣)ϕ′(u)

est intégrable sur ]0,+∞[ car ϕ′ peut être prolongée par continuité en 0 et

ϕ′(u) ∼
u→+∞

e−u

u

On en déduit
f(x) = − ln x+O(1) ∼

x→0+
− ln x

Exercice 80 : [énoncé]
a) Par le changement de variable t = ux (bijection de classe C1) on obtient

f(x) =
∫ 1

−1

du√
1 + x2u2

√
1− u2

Posons g : ]0,+∞[× ]−1, 1[→ R définie par

g(x, u) = 1√
1 + x2u2

√
1− u2

La fonction g est continue sur ]0,+∞[× ]−1, 1[ et

|g(x, u)| 6 1√
1− u2

= ϕ(u)
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avec ϕ intégrable sur ]−1, 1[.
On en déduit que f est définie et continue sur ]0,+∞[.
b) Quand x→ 0+

g(x, u) = 1√
1 + x2u2

√
1− u2

→ 1√
1− u2

Par la domination précédente

f(x) −−−−→
x→0+

∫ 1

−1

du√
1− u2

= [arcsin u]1−1 = π

De même, on obtient

f(x) −−−−−→
x→+∞

∫ 1

−1
0 du = 0

Exercice 81 : [énoncé]
a) Puisque

cos2 t

t
∼ 1
t
quand t→ 0+

on peut affirmer, par équivalence de fonctions positives, que l’intégrale diverge en
0.
On peut alors conclure que f est définie sur ]0,+∞[ (car l’intégrale sur un
segment d’une fonction continue converge) mais ne peut pas être définie sur un
domaine plus grand.
b) Posons

g(x) =
∫ x

1

sin2 t

t
dt

Cette fois-ci
sin2 t

t
∼ t quand t→ 0+

et donc la fonction g est définie et continue en 0.
Puisque

f(x) + g(x) =
∫ x

1

dt
t

= ln x

on peut conclure
f(x) ∼ ln x quand x→ 0+

Aussi
f(x) =

∫ x

1

1 + cos(2t)
2t dt = 1

2 ln x+
∫ x

1

cos(2t)
2t dt

Comme la nouvelle intégrale converge en +∞ (cela s’obtient par une intégration
par parties) on conclut

f(x) ∼ 1
2 ln x quand x→ +∞

Exercice 82 : [énoncé]
a) Pour que la racine carrée soit définie pour t ∈ ]0, 1[, il est nécessaire que
x ∈ [−1, 1].
Pour x ∈ ]−1, 1[, l’intégrale définissant f converge par les arguments
d’intégrabilité suivant

1√
t(1− t)(1− x2t)

∼
t→0+

1√
t
et 1√

t(1− t)(1− x2t)
∼

t→1−
Cte√
1− t

Pour x = ±1, l’intégrale définissant f diverge car

1√
t(1− t)(1− t)

∼
t→0+

1
1− t > 0

L’ensemble de définition de f est donc ]−1, 1[.
b) Sur [0, 1[, la fonction f est croissante et admet donc une limite en 1−.
Par l’absurde, si celle-ci est finie égale à ` ∈ R alors

∀a ∈ [0, 1[ ,
∫ a

0

dt√
t(1− t)(1− x2t)

6 `

Par intégration sur un segment, la fonction de x déterminée par le premier
membre est continue en x = 1, on en déduit∫ a

0

dt√
t(1− t)

6 `

Or ceci est absurde car par non intégrabilité d’une fonction positive∫ a

0

dt√
t(1− t)

−−−−→
a→1−

+∞

Exercice 83 : [énoncé]
a) La fonction x 7→ 1/xα(1 + x) est définie et continue par morceaux sur ]0,+∞[
avec

1
xα(1 + x)

∼
x→0+

1
xα

et 1
xα(1 + x)

∼
x→+∞

1
xα+1
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Cette fonction est donc intégrable si, et seulement si, α ∈ ]0, 1[.
La fonction intégrée étant de surcroît positive, l’intégrale définissant f(α)
converge si, et seulement si, α ∈ ]0, 1[.
b) On a

f(α)−
∫ +∞

1

dx
xα+1 =

∫ 1

0

dx
xα(1 + x) −

∫ +∞

1

dx
xα+1(1 + x)

Or ∣∣∣∣∫ +∞

1

dx
xα+1(1 + x)

∣∣∣∣ 6 ∫ +∞

1

dx
x(1 + x) = C

et pour α 6 1/2 ∣∣∣∣∫ 1

0

dx
xα(1 + x)

∣∣∣∣ 6 ∫ 1

0

dx√
x(1 + x)

= C ′

On a donc

f(α) =
∫ +∞

1

dx
xα+1 +O(1) = 1

α
+O(1) ∼ 1

α

c) Par le changement de variable C1 bijectif x = 1/t, on obtient f(α) = f(1− α)
d’où la symétrie affirmée.
d) Posons

u(α, x) = 1
xα(1 + x)

Pour chaque x ∈ ]0,+∞[, la fonction α 7→ u(α, x) est continue et pour chaque
α ∈ ]0, 1[ la fonction x 7→ u(α, x) est continue par morceaux. Enfin pour
α ∈ [a, b] ∈ ]0, 1[ (avec a > 0), on a

|u(x, α)| 6 1
xa(1 + x) si x ∈ [1,+∞[

et
|u(x, α)| 6 1

xb(1 + x) si x ∈ ]0, 1]

Ainsi
|u(x, α)| 6 ϕa,b(x) pour x ∈ ]0,+∞[

en posant ϕa(x) = u(a, x) + u(b, x) qui est intégrable.
Par domination sur tout segment, on peut affirmer que f est continue sur ]0, 1[.
e) Par le changement de variable x = 1/t, on peut écrire∫ 1

0

dx
xα(1 + x) =

∫ +∞

1

dt
t1−α(1 + t)

et alors
f(α) =

∫ +∞

1

x1−α + xα

x(1 + x) dx

On vérifie que pour x > 1, la fonction α 7→ x1−α + xα est décroissante sur ]0, 1/2]
puis croissante sur [1/2, 1[. La fonction f a donc la même monotonie et son
minimum est donc

f(1/2) =
∫ +∞

0

dt√
t(1 + t)

= π

via le changement de variable u =
√
t.

Exercice 84 : [énoncé]
a) Posons f(x, t) = ln t

t+x .
f est définie et continue sur ]0,+∞[× ]0, 1].
Pour x > 0, f(x, t) ∼

t→0+

1
x ln t donc

√
tf(x, t) −−−−→

t→0+
0 puis t 7→ f(x, t) est

intégrable sur ]0, 1].
Ainsi F est définie sur ]0,+∞[.
f admet une dérivée partielle ∂f

∂x continue avec ∂f
∂x (x, t) = − ln t

(t+x)2 .
Soit [a, b] ⊂ ]0,+∞[. Pour x ∈ [a, b],∣∣∣∣∂f∂x (x, t)

∣∣∣∣ 6 |ln t|a2 = ϕ(t)

avec ϕ intégrable sur ]0, 1].
Par domination sur tout segment, on peut affirmer que F est de classe C1 et

F ′(x) =
∫ 1

0
− ln t

(t+ x)2 dt

b) Par intégration par parties,

F ′(x) =
[
ln t
(

1
t+ x

− 1
x

)]1

0
−
∫ 1

0

1
t

(
1

t+ x
− 1
x

)
dt

où la primitive de t 7→ 1
t+x est choisie de sorte de s’annuler en 0 pour que

l’intégration par parties présente deux convergences.
Ainsi

F ′(x) =
∫ 1

0

dt
t(t+ x) = ln(x+ 1)− ln x

x

Par opérations

G′(x) = ln(x+ 1)− ln x
x

− ln(1 + 1/x) + ln x
x

= − 1
x

ln x
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puis
G(x) = G(1)− 1

2(ln x)2

Or G(1) = 2F (1) avec

F (1) =
∫ 1

0

ln t
t+ 1 dt =

∫ 1

0

+∞∑
k=0

(−1)ktk ln(t) dt

Or
∫ 1

0 t
k ln(t) dt = −1

(k+1)2 donc par convergence de la série des intégrales des

valeurs absolues, F (1) =
+∞∑
n=1

(−1)n
n2 . Sachant

+∞∑
n=1

1
n2 = π2

6 , on obtient F (1) = −π
2

12

puis

G(x) = 1
2(ln x)2 − π2

6
c) Par décomposition en éléments simples

t− 1
(t+ 1)(t2 + 2tchθ + 1) =

1
chθ−1
t+ 1 −

1
chθ−1 (t+ chθ)
t2 + 2tchθ + 1

Donc ∫ 1

0

t− 1
t+ 1

ln t
t2 + 2tch(θ) + 1 dt = 1

chθ − 1(F (1)− 1
2G(eθ)) = θ2

4(ch(θ)− 1)

Exercice 85 : [énoncé]
a) Par le changement de variable t = xu,

g(x) =
∫ x

0

sin t
t+ x

dt =
∫ 1

0

sin(xu)
1 + u

du

L’application f : (x, u) 7→ sin(xu)
1+u est définie et continue sur ]0,+∞[× [0, 1] et

|f(x, u)| 6 1 = ϕ(u)

avec ϕ intégrable sur [0, 1].
Par domination, on peut conclure que g est définie et continue sur ]0,+∞[.
b) Puisque

∀u ∈ [0, 1] , sin(xu)
1 + u

−−−−→
x→0+

0

on peut affirmer, toujours par domination, que

g(x) −−−−→
x→0+

∫ 1

0
0 du = 0

La même technique ne s’applique par pour l’étude en +∞. On va alors
transformer l’écriture de l’intégrale. Par intégration par parties

g(x) =
[
−cos(t)
x+ t

]x
0
−
∫ x

0

cos(t)
(x+ t)2 dt

Le terme entre crochet tend vers 0 quand x→ +∞ et le terme intégrale aussi car∣∣∣∣∫ x

0

cos(t)
(x+ t)2 dt

∣∣∣∣ 6 ∫ x

0

dt
x2 = 1

x

Ainsi
g(x) −−−−−→

x→+∞
0

Exercice 86 : [énoncé]
Considérons f : (x, t) 7→ e−xt

1+t définie sur ]0,+∞[× [0,+∞[
Pour t ∈ [0,+∞[, la fonction x 7→ f(x, t) est fois dérivable sur ]0,+∞[ f admet
une dérivée partielle

∂f

∂x
(x, t) = −t e

−xt

1 + t

Pour tout x ∈ ]0,+∞[, t 7→ f(x, t) est continue par morceaux et intégrable sur
[0,+∞[ car

t2f(x, t) −−−−→
t→+∞

0

De plus
∀x ∈ ]0,+∞[, t 7→ ∂f

∂x (x, t) est continue par morceaux.
∀t ∈ [0,+∞[, x 7→ ∂f

∂x (x, t) est continue.
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Enfin, pour [a, b] ⊂ [0,+∞[. On a

∀(x, t) ∈ [a, b]× [0,+∞[ ,
∣∣∣∣∂f∂x (x, t)

∣∣∣∣ 6 e−at

avec ϕ : t 7→ e−at continue par morceaux et intégrable sur [0,+∞[.
Par domination sur tout segment, la fonction g est de classe C1 sur R+? et

−g′(x) + g(x) =
∫ +∞

0
t
e−xt

1 + t
dt+

∫ +∞

0

e−xt

1 + t
dt =

∫ +∞

0
e−xt dt = 1

x

On peut aussi constater le résultat plus directement en procédant aux
changements de variable u = 1 + t puis v = ux ce qui ramène l’expression étudiée
à une primitive

g(x) = ex
∫ +∞

x

e−v

v
dv

et on peut alors vérifier la satisfaction de l’équation différentielle.

Exercice 87 : [énoncé]
a) L’application t 7→ t−1

ln t t
x est définie et continue par morceaux sur ]0, 1[.

Quand t→ 0+,
t− 1
ln t t

x = o (tx)

Quand t→ 1−,
t− 1
ln t t

x → 1

L’application t 7→ t−1
ln t t

x est donc intégrable sur ]0, 1[
Donc g est bien définie.
b) Posons f(x, t) = t−1

ln t e
x ln t.

∀x > −1, t 7→ f(x, t) est continue par morceaux et intégrable sur ]0, 1[ comme vu
ci-dessus.
La fonction f admet une dérivée partielle

∂f

∂x
(x, t) = (t− 1)ex ln t

∀x > −1, t 7→ ∂f
∂x (x, t) est continue par morceaux sur ]0, 1[,

∀t ∈ ]0, 1[ , x 7→ ∂f
∂x (x, t) est continue sur ]−1,+∞[ .

Pour [a, b] ⊂ ]−1,+∞[

∀(x, t) ∈ [a, b]× ]0, 1[ ,
∣∣∣∣∂f∂x (x, t)

∣∣∣∣ 6 (1− t)ta = ϕa(t)

avec ϕa continue par morceaux et intégrable.
Par domination sur tout segment, on peut affirmer que g est de classe C1 sur
]−1,+∞[ et

g′(x) =
∫ 1

0
(t− 1)tx dt = 1

x+ 2 −
1

x+ 1

c) Par intégration
g(x) = ln x+ 2

x+ 1 + C

Etudions C = lim
x→+∞

g(x).

La fonction t 7→ t−1
ln t peut être prolongée par continuité sur [0, 1], elle y est donc

bornée par un certain M et alors

0 6 g(x) 6
∫ 1

0
Mtx dx = M

x+ 1 −−−−−→x→+∞
0

On en déduit C = 0.

Exercice 88 : [énoncé]
Posons

u(x, t) = t− 1
ln t t

x

définie et continue par morceaux sur R× ]0, 1[.
Pour tout x ∈ R, la fonction t 7→ u(x, t) est continue par morceaux sur ]0, 1[.
Puisque

u(x, t) ∼
x→0+

tx

ln t et u(x, t) −−−−→
t→1−

1

la fonction t 7→ u(x, t) est intégrable sur ]0, 1[ si, et seulement si, x > −1.
De plus, cette fonction est positive et donc la convergence de l’intégrale équivaut à
l’intégrabilité de la fonction intégrande.
On en déduit que la fonction f est définie sur ]−1,+∞[.
La fonction u admet une dérivée partielle

∂u

∂x
(x, t) = (t− 1)tx

Cette dérivée partielle est continue en x et continue par morceaux en t.
Pour [a, b] ⊂ ]−1,+∞[, on a

∀(x, t) ∈ [a, b]× ]0, 1[ ,
∣∣∣∣∂u∂x (x, t)

∣∣∣∣ 6 (1− t)ta
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Par domination sur tout segment, on peut affirmer que f est de classe C1 sur
]−1,+∞[ avec

f ′(x) =
∫ 1

0
(t− 1)tx dt = 1

x+ 2 −
1

x+ 1
On en déduit

f(x) = ln x+ 2
x+ 1 + C

La fonction
t 7→ t− 1

ln t
est continue sur ]0, 1[ et se prolonge par continuité en 0 et 1, elle est donc bornée
par un certain M ∈ R+ et alors

|f(x)| 6
∫ 1

0
Mtx dt = M

x+ 1 −−−−−→x→+∞
0

On en déduit C = 0 puis finalement

f(x) = ln x+ 2
x+ 1

Exercice 89 : [énoncé]
a) Considérons f : (x, t) 7→ tx−1

ln t définie sur ]−1,+∞[× ]0, 1[.
Soit x > −1. La fonction t 7→ f(x, t) est continue par morceaux sur ]0, 1[.
Quand t→ 1−.
t = 1− h avec h→ 0+.

f(x, t) = (1 + h)x − 1
ln(1 + h) → x

et donc f est intégrable sur [1/2, 1[.
Quand t→ 0+.
On a

tx −−−−→
t→0+

 0 si x > 0
1 si x = 0
+∞ si x ∈ ]−1, 0[

Si x > 0, on obtient f(x, t)→ 0 ce qui permet un prolongement par continuité.
Si x < 0, on a f(x, t) = o (tx) = o (1/t−x) avec −x < 1.
Dans les deux cas, t 7→ f(x, t) est intégrable sur ]0, 1/2].
Finalement t 7→ f(x, t) est intégrable sur ]0, 1[ et donc g est définie sur ]−1,+∞[.
b) La fonction x 7→ f(x, t) = tx−1

ln t est dérivable donc f admet une dérivée partielle
∂f
∂x et

∂f

∂x
(x, t) = tx

∀x ∈ ]−1,+∞[, t 7→ ∂f
∂x (x, t) est continue par morceaux sur ]0, 1[

∀t ∈ ]0, 1[, x 7→ ∂f
∂x (x, t) est continue sur ]−1,+∞[.

Soit [a, b] ⊂ ]−1,+∞[. Pour x ∈ [a, b],∣∣∣∣∂f∂x (x, t)
∣∣∣∣ 6 ta = ϕ(t)

avec ϕ : ]0, 1[→ R+ continue par morceaux et intégrable sur ]0, 1[.
Par domination sur tout segment, g est de classe C1 et

g(x) =
∫ 1

0
tx dt = 1

x+ 1

On en déduit
g(x) = g(0) +

∫ x

0

dt
1 + t

= ln(1 + x)

Exercice 90 : [énoncé]
a) cos(xt)e−t = Re(e(−1+i.x)t) et

∣∣e(−1+i.x)t
∣∣ = e−t qui est intégrable sur R+.

Par suite
∫ +∞

0 cos(xt)e−tdt existe et∫ +∞

0
cos(xt)e−tdt = Re

(∫ +∞

0
e(−1+i.x)tdt

)
= Re

(
1

1− i.x

)
= 1

1 + x2

b) g(x, t) = sin xt
t e−t est définie et continue sur R× ]0,+∞[.

t 7→ g(x, t) est continue par morceaux sur ]0,+∞[, se prolonge par continuité en 0
et est négligeable devant t 7→ 1/t2 en +∞ donc la fonction F est bien définie sur
R.
∂g
∂x est définie sur R× ]0,+∞[, t 7→ ∂g

∂x (x, t) est continue par morceaux sur
]0,+∞[, x 7→ ∂g

∂x (x, t) est continue sur R et pour tout x > 0,∣∣∣∣∂g∂x (x, t)
∣∣∣∣ =

∣∣cosxt.e−t
∣∣ = e−t = ψ(t)

avec ψ intégrable sur R+?.
Par domination F est de classe C1 sur R avec

F ′(x) =
∫ +∞

0
cos(xt)e−tdt = 1

1 + x2

c) F (0) = 0 donc F (x) = arctan x.
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Exercice 91 : [énoncé]
La fonction u(x, t) = e(ix−1)t/

√
t définie sur R× ]0,+∞[.

t 7→ u(x, t) est continue par morceaux sur ]0,+∞[ pour chaque x ∈ R et

u(x, t) ∼
t→0+

1√
t
et t2u(x, t) −−−−→

t→+∞
0

On en déduit que la fonction donnée par

F (x) =
∫ +∞

0

e(ix−1)t
√
t

dt = f(x) + ig(x)

est définie sur R.
La fonction x 7→ u(x, t) est dérivable sur R pour chaque t ∈ ]0,+∞[ et

∂u

∂x
(x, t) = i

√
te(ix−1)t

x 7→ ∂u
∂x (x, t) est continue sur R pour chaque t ∈ ]0,+∞[,

t 7→ ∂u
∂x (x, t) est continue par morceaux sur ]0,+∞[ pour chaque x ∈ R et∣∣∣∣∂u∂x (x, t)

∣∣∣∣ =
√
te−t = ϕ(t)

avec ϕ intégrable sur ]0,+∞[ car prolongeable par continuité en 0 et vérifiant
t2ϕ(t) −−−−→

t→+∞
0.

Par domination, on peut affirmer que F est de classe C1 sur R et

F ′(x) =
∫ +∞

0

√
te(ix−1)t dt

A l’aide d’une intégration par parties, on obtient

F ′(x) = − 1
2(x+ i)F (x)

La résolution de cette équation différentielle donne

F (x) = F (0)e
i(arctan x)/2

(x2 + 1)1/4

Enfin, sachant ∫ +∞

0
e−t

2
dt =

√
π

2

on parvient à

F (x) =
√
πei(arctan x)/2

(x2 + 1)1/4

d’où les expressions de f(x) et de g(x).

f(x) =
√
π

(x2 + 1)1/4 cos
(

arctan x
2

)
et g(x) =

√
π

(x2 + 1)1/4 sin
(

arctan x
2

)
On peut encore éventuellement « simplifier »en exploitant

cosx =
√

1 + cos(2x)
2 pou x ∈ [−π/2, π/2]

ce qui donne

cos
(

arctan x
2

)
=

√
1 + 1√

1+x2

2

et aussi

sin
(

arctan x
2

)
= signe(x)

√
1− 1√

1+x2

2

Exercice 92 : [énoncé]
f : (x, t)→ e−xt−e−yt

t et ∂f
∂x (x, t) = −e−xt sont définies et continues sur R+?×R+?.

t 7→ f(x, t) est intégrable sur ]0,+∞[ car prolongeable par continuité en 0 et
négligeable devant 1/t2 en +∞.
Pour a > 0,

∀x ∈ [a,+∞[
∣∣∣∣∂f∂x (x, t)

∣∣∣∣ 6 e−at = ϕa(t)

avec ϕa intégrable sur R+?.
Par domination x 7→ F (x, y) est de classe C1 et

∂F

∂x
(x, y) =

∫ +∞

0
−e−xtdt = − 1

x

Donc F (x, y) = − ln x+ Cte et puisque pour x = y, on a F (x, y) = 0 on obtient

F (x, y) = ln y − ln x
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Exercice 93 : [énoncé]
a) Posons

ϕ : t 7→ e−t − e−2t

t

La fonction ϕ est intégrable sur ]0,+∞[ car prolongeable par continuité en 0 et
vérifiant t2ϕ(t) −−−−→

t→+∞
0. Par domination, on obtient que F est définie sur I = R.

b) Posons f(x, t) = ϕ(t) cos(xt).
f admet une dérivée partielle ∂f

∂x et

∂f

∂x
(x, t) = −(e−t − e−2t) sin(xt)

x 7→ ∂f
∂x (x, t) est continue sur R, t 7→ ∂f

∂x (x, t) est continue par morceaux sur
]0,+∞[ et

∣∣∣∂f∂x (x, t)
∣∣∣ 6 e−t + e−2t = ψ(t) avec ψ intégrable sur ]0,+∞[.

On en déduit que F est une fonction de classe C1 et

F ′(x) =
∫ +∞

0
−(e−t − e−2t) sin(xt) dt

Or ∫ +∞

0
e−at sin(xt) dt = Im

(∫ +∞

0
e(−a+ix)t dt

)
= x

a2 + x2

donc

F (x) = 1
2 ln

(
4 + x2

1 + x2

)
+ Cte

Montrons que F (x) −−−−−→
x→+∞

0 quand x→ +∞.
Par intégration par parties

F (x) =
[
ϕ(t) sin(xt)

x

]+∞

0
− 1
x

∫ +∞

0
ϕ′(t) sin(xt) dt

On en déduit

|F (x)| 6 1
x

∫ +∞

0
|ϕ′(t)| dt −−−−−→

x→+∞
0

Par suite Cte = 0 puis

F (x) = 1
2 ln 4 + x2

1 + x2

Exercice 94 : [énoncé]
On définit f : R× ]0,+∞[→ R par

f(x, t) = e−at − e−bt

t
cos(xt)

a) Pour x ∈ R, la fonction t 7→ f(x, t) est définie et continue par morceaux sur
]0,+∞[.
Quand t→ +∞, t2f(x, t)→ 0 et quand t→ 0+, f(x, t)→ b− a donc t 7→ f(x, t)
est intégrable sur ]0,+∞[.
b) Pour x ∈ R, la fonction t 7→ f(x, t) est dérivable et

∂f

∂x
(x, y) = (e−bt − e−at) sin(xt)

La fonction ∂f
∂x est continue sur R× ]0,+∞[ et∣∣∣∣∂f∂x (x, t)

∣∣∣∣ 6 e−at + e−bt = ϕ(t)

avec ϕ fonction intégrable.
On en déduit que F est de classe C1 sur R et

F ′(x) =
∫ +∞

0
(e−bt − e−at) sin(xt) dt

Or ∫ +∞

0
e−ct sin(xt) dt = Im

(∫ +∞

0
e(−c+ix)t dt

)
= x

c2 + x2

donc
F ′(x) = x

x2 + b2
− x

x2 + a2

c) On en déduit

F (x) = 1
2 ln

(
x2 + b2

x2 + a2

)
+ Cte

Pour déterminer la constante, on étudie la limite de F en +∞. Posons

ψ(t) = e−at − e−bt

t

ce qui définit une fonction de classe C1 intégrable ainsi que sa dérivée sur ]0,+∞[.
Par intégration par parties généralisée justifiée par deux convergences∫ +∞

0
ψ(t) cos(xt) dt = 1

x
[ψ(t) sin(xt)]+∞0 − 1

x

∫ +∞

0
ψ′(t) sin(xt) dt
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et donc ∣∣∣∣∫ +∞

0
ψ(t) cos(xt) dt

∣∣∣∣ 6 1
x

∫ +∞

0
|ψ′(t)| dt→ 0

On peut conclure

F (x) = 1
2 ln

(
x2 + b2

x2 + a2

)

Exercice 95 : [énoncé]
a) On réalise le changement de variable u =

√
t. On obtient z(0) =

√
π.

b) t 7→ g(x, t) = e(−1+i.x)t
√
t

est définie, continue par morceaux sur ]0,+∞[ et
intégrable.
g admet une dérivée partielle

∂g

∂x
(x, t) = i.

√
te(−1+ix)t

t 7→ ∂g
∂x (x, t) est définie et continue par morceaux sur ]0,+∞[,

x 7→ ∂g
∂x (x, t) est continue sur R,∣∣∣∣∂g∂x (x, t)

∣∣∣∣ 6 √te−t = ϕ(t)

avec ϕ intégrable sur ]0,+∞[.
La fonction z est donc définie et de classe C1 avec

z′(x) =
∫ +∞

0
i.
√
te(−1+i.x)tdt =

ipp

i

2(1− ix)

∫ +∞

0

e(−1+i.x)t
√
t

dt = − 1
2(x+ i)z(x)

c)
−1

2(x+ i) = −x+ i

2(x2 + 1) = − x

2(x2 + 1) + i

2(x2 + 1)
donc

z(x) = C exp
(
i
arctan x

2 − 1
4 ln(x2 + 1)

)
= Cei(arctan x)/2

(x2 + 1)1/4

Puisque z(0) =
√
π, on conclut

z(x) =
√
πei(arctan x)/2

(x2 + 1)1/4

Exercice 96 : [énoncé]
Posons

f(x, t) = e−t
2
etx

La fonction t 7→ f(x, t) est continue par morceaux et intégrable sur R car

t2f(x, t) −−−−→
t→±∞

0

et donc la fonction g est définie sur R.
La fonction x 7→ f(x, t) est dérivable et

∂f

∂x
(x, t) = te−t

2
etx

La fonction t 7→ ∂f
∂x (t, x) est continue par morceaux, la fonction x 7→ ∂f

∂x (x, t) est
continue.
Pour a ∈ R+, on a

∀(x, t) ∈ [−a, a]× R,
∣∣∣∣∂f∂x (x, t)

∣∣∣∣ 6 |t| ea|t|e−t2 = ϕa(t)

avec ϕa intégrable sur R indépendant de x.
On en déduit que la fonction g est de classe C1 et par une intégration par parties

g′(x) =
∫ +∞

−∞
te−t

2
etxdt =

[
−1

2e−t
2
etx
]+∞

−∞
+ 1

2

∫ +∞

−∞
xe−t

2
etxdt

On en déduit que g est solution de l’équation différentielle

g′(x)− 1
2xg(x) = 0

Après résolution de cette équation différentielle

g(x) = λex
2/4

Enfin g(0) =
√
π donne λ =

√
π.

Exercice 97 : [énoncé]
a) Posons

f(x, t) = e−t
2
ch(2xt)

La fonction t 7→ f(x, t) est continue par morceaux et intégrable sur R car

t2f(x, t) −−−−→
t→±∞

0
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et donc la fonction F est définie sur R.
b) La fonction x 7→ f(x, t) est dérivable et

∂f

∂x
(x, t) = 2te−t

2
sh(2xt)

La fonction t 7→ ∂f
∂x (t, x) est continue par morceaux, la fonction x 7→ ∂f

∂x (x, t) est
continue.
Soit a ∈ R+.

∀(x, t) ∈ [−a, a]× R,
∣∣∣∣∂f∂x (x, t)

∣∣∣∣ 6 2ash(2a |t|)e−t
2

= ϕa(t)

avec ϕa intégrable sur R indépendant de x.
On en déduit que la fonction F est de classe C1 et par une intégration par parties

F ′(x) =
∫ +∞

0
2te−t

2
sh(2xt)dt =

[
−e−t

2
sh(2xt)

]+∞
0

+ 2x
∫ +∞

0
e−t

2
ch(2xt)dt

On en déduit que F est solution de l’équation différentielle

F ′(x)− 2xF (x) = 0

Après résolution de cette équation différentielle

F (x) = λex
2

avec F (0) =
√
π/2.

c) On sait

∀x, t ∈ R, ch(2xt) =
+∞∑
n=0

22n

(2n)! (xt)
2n

Posons un : [0,+∞[→ R

un(t) = 22n

(2n)! (xt)
2ne−t

2

Les fonctions un sont continues par morceaux et la série de fonctions
∑
un

converge simplement sur [0,+∞[ vers la fonction t 7→ e−t2ch(2xt) elle-même
continue par morceaux.
Chaque fonction un est intégrable et∫ +∞

0
|un(t)| dt = 22n |x|2n

(2n)!

∫ +∞

0
t2ne−t

2
dt

Par intégration par parties∫ +∞

0
t2ne−t

2
dt =

∫ +∞

0
t2n−1 × te−t

2
dt = 2n− 1

2

∫ +∞

0
t2(n−1)e−t

2
dt

et donc ∫ +∞

0
t2ne−t

2
dt = (2n)!

22nn!

√
π

2
puis ∫ +∞

0
|un(t)| dt = |x|

2n

n!

√
π

2

Il y a alors convergence de la série
∑∫

|un| et donc on peut intégrer terme à
terme ce qui fournit

F (x) =
+∞∑
n=0

∫ +∞

0
un(t) dt =

+∞∑
n=0

x2n

n!

√
π

2 =
√
π

2 ex
2

Exercice 98 : [énoncé]
Posons g(x, t) = ln(1+x2t2)

1+t2 .
x 7→ g(x, t) est continue sur R,
t 7→ g(x, t) est continue par morceaux sur [0,+∞[,
|g(x, t)| 6 ln(1+a2t2)

1+t2 sur [−a, a] avec t 7→ ln(1+a2t2)
1+t2 intégrable.

Par domination sur tout segment, on peut donc affirmer que f est définie et
continue sur R.
Il est évident que f est paire. Nous poursuivons son étude sur R+.
∂g
∂x (x, y) = 2xt2

(1+x2t2)(1+t2) est bien définie.
x 7→ ∂g

∂x (x, t) est continue sur R+,
t 7→ ∂g

∂x (x, t) est continue par morceaux sur [0,+∞[.
Enfin

∣∣∣ ∂g∂x (x, t)
∣∣∣ 6 2bt2

(1+a2t2)(1+t2) sur [a, b] ⊂ R+? avec t 7→ 2bt2
(1+a2t2)(1+t2) intégrable.

Par domination sur tout segment de R+?, on peut affirmer que f est de classe C1

sur R+? et f ′(x) =
∫ +∞

0
2xt2

(1+x2t2)(1+t2) dt
En réalisant la décomposition en éléments simples (pour x 6= 1),
f ′(x) = π

x+1 et cette relation est aussi valable pour x = 1 par continuité.
Sachant que f(0) = 0 et que f est paire, on obtient f(x) = π ln(1 + |x|).

Exercice 99 : [énoncé]
a) Posons f(x, t) = ln(cos2(t) + x2 sin2(t)) définie sur ]0,+∞[× [0, π/2].
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Pour chaque x > 0, la fonction t 7→ f(x, t) étant continue par morceaux sur
[0, π/2], l’intégrale définissant F (x) est bien définie.
Pour chaque t > 0, la fonction x 7→ f(x, t) est dérivable et

∂f

∂x
(x, t) = 2x sin2(t)

cos2(t) + x2 sin2(t)

Soit [a, b] ⊂ ]0,+∞[.

∀(x, t) ∈ [a, b]× [0, π/2] ,
∣∣∣∣∂f∂x (x, t)

∣∣∣∣ 6 2b
cos2(t) + a2 sin2(t)

= ϕa,b(t)

avec la fonction ϕa,b : [0, π/2]→ R+ continue par morceaux et intégrable.
Par domination sur tout segment, F est de classe C1 et

F ′(x) =
∫ π/2

0

2x sin2(t)
cos2(t) + x2 sin2(t)

dt

Par le changement de variable C1 bijectif u = tan t

F ′(x) =
∫ +∞

0

2u2x

(1 + x2u2)(1 + u2) du

Par décomposition en éléments simples (si x 6= 1)

2xX
(1 + x2X)(1 +X) = 2x/(x2 − 1)

1 +X
− 2x/(x2 − 1)

1 + x2X

et donc
F ′(x) = 2x

x2 − 1

∫ +∞

0

1
1 + u2 −

1
1 + x2u2 du = π

x+ 1
et la relation vaut aussi pour x = 1 par argument de continuité.
On en déduit

F (x) = π ln(x+ 1) + Cte

Sachant F (1) = 0, on conclut

F (x) = π ln
(
x+ 1

2

)

Exercice 100 : [énoncé]
Posons

f(x) =
∫ 2π

0

ln(1 + x cos t)
cos t dt

Pour |x| > 1, l’intégrale ne peut pas être définie.
Pour |x| 6 1
En t = π/2 et t = 3π/2, il est possible de prolonger par continuité la fonction
intégrée.
Pour x = −1 :
Quand t→ 0+, ln(1− cos t) ∼ 2 ln t
Quand t→ 2π−, t = 2π − h, ln(1− cos t) = ln(1− cosh) ∼ 2 ln h
Pour x = 1, quand t→ π,t = π + h, ln(1 + cos t) = ln(1− cosh) ∼ 2 ln h.
Finalement f est définie sur [−1, 1].
Pour des raisons de symétrie,

f(x) = 2
∫ π

0

ln(1 + x cos t)
cos t dt

Par domination sur [−a, a] avec a < 1, f est C1 sur ]−1, 1[ et

f ′(x) = 2
∫ π

0

dt
1 + x cos t

Par le changement de variable u = tan t
2 ,

f ′(x) = 4
∫ +∞

0

du
(1 + u2) + x(1− u2) = 2π√

1− x2

Puisque f(0) = 0, on en déduit f(x) = 2π arcsin x.

Exercice 101 : [énoncé]
a) f(x, t) = ln(1 + x sin2 t) est définie et continue sur [0,+∞[× [0, π/2].
Soit [a, b] ⊂ [0,+∞[,

∀(x, t) ∈ [a, b]× [0, π/2] , |f(x, t)| 6 ln(1 + b) = ϕ(t)

La fonction ϕ est intégrable sur [0, π/2]
Par domination sur tout segment, on obtient F est définie et continue sur [0,+∞[.
b) f admet une dérivée partielle

∂f

∂x
(x, t) = sin2 t

1 + x sin2 t

Celle-ci est continue en x et continue par morceaux en t.

∀(x, t) ∈ [0,+∞[× [0, π/2] ,
∣∣∣∣∂f∂x (x, t)

∣∣∣∣ 6 1 = ϕ(t)
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La fonction ϕ est intégrable sur [0, π/2] et donc, par domination, F est de classe
C1 avec

F ′(x) =
∫ π/2

0

sin2 t

1 + x sin2 t
dt

Par le changement de variable u = tan t C1 strictement croissant

F ′(x) =
∫ +∞

0

u2

(1 + u2)(1 + (x+ 1)u2)

Après décomposition en éléments simples et calcul,

F ′(x) = π

2
1
x

(
1− 1√

x+ 1

)
= π

2
1

(1 +
√
x+ 1)

√
x+ 1

c) On remarque que

ln(1 +
√

1 + x)′ = 1
2

1
(1 +

√
x+ 1)

√
x+ 1

donc
F (x) = π ln(1 +

√
1 + x) + Cte

sur R+.
Par continuité en 0 et sachant F (0) = 0, on parvient à conclure.

Exercice 102 : [énoncé]
t 7→ ln(x2+t2)

1+t2 est continue par morceaux sur [0,+∞[,
x 7→ ln(x2+t2)

1+t2 est continue sur R et pour x ∈ [−a, a]∣∣∣∣ ln(x2 + t2)
1 + t2

∣∣∣∣ 6
∣∣ln(a2 + t2)

∣∣+
∣∣ln(t2)

∣∣
1 + t2

= ϕ(t)

avec ϕ intégrable. Par suite f est définie et continue sur R.
Il est immédiat que f est paire. Poursuivons, en étudiant f sur R+?

d
dx

(
ln(x2 + t2)

1 + t2

)
= 2x

(x2 + t2)(1 + t2)

t 7→ 2x
(x2+t2)(1+t2) est continue par morceaux sur [0,+∞[,

x 7→ t 7→ 2x
(x2+t2)(1+t2) est continue sur R et pour x ∈ [a, b] ⊂ R+?,∣∣∣∣ 2x

(x2 + t2)(1 + t2)

∣∣∣∣ 6 2b
(a2 + t2)(1 + t2) = ψ(t)

avec ψ intégrable. Par suite f est de classe C1 sur R+?.
Pour x 6= 1,

2x
(x2 + t2)(1 + t2) = 2x

x2 − 1

(
1

1 + t2
− 1
x2 + t2

)
donc

f ′(x) =
∫ +∞

0

2x
(x2 + t2)(1 + t2) dt = π

x+ 1
et cette relation vaut aussi pour x = 1 par continuité.
En procédant au changement de variable u = 1/t, on obtient f(0) = 0 et donc on
peut conclure

f(x) = π ln (x+ 1)

pour x ∈ R+ en exploitant un argument de continuité.

Exercice 103 : [énoncé]
a) Posons

g(x, t) = ln(1 + 2t cosx+ t2)
t

Puisque cosx > 0,
1 + 2t cosx+ t2 > 1 + t2

donc t 7→ g(x, t) est définie et continue par morceaux sur ]0, 1].
De plus

lim
t→0

ln(1 + 2t cosx+ t2)
t

= cosx

on peut donc prolonger t 7→ g(x, t) par continuité en 0. Par suite F (x) est bien
définie.
La dérivée partielle ∂g

∂x existe sur [0, π/2]× ]0, 1] et

∂g

∂x
(x, t) = − 2 sin x

1 + 2t cosx+ t2

t 7→ ∂g
∂x (x, t) est continue par morceaux sur ]0, 1],

x 7→ ∂g
∂x (x, t) est continue sur [0, π/2] et∣∣∣∣∂g∂x (x, t)

∣∣∣∣ 6 2 = ϕ(t)

avec ϕ est intégrable. Par domination F est de classe C1.
b) Pour x = 0, F ′(0) = 0.
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Pour x 6= 0,

F ′(x) = −
∫ 1

0

2 sin x
1 + 2t cosx+ t2

dt = −
∫ 1

0

2 sin x
(t+ cosx)2 + sin2 x

dt = −
[
2 arctan t+ cosx

sin x

]1

0

Or
arctan cosx

sin x = arctan(tan(π/2− x))

avec π/2− x ∈ ]−π/2, π/2[ donc

arctan cosx
sin x = π/2− x

et
arctan 1 + cosx

sin x = arctan cos (x/2)
sin(x/2) = π/2− x/2

Finalement
F ′(x) = 2((π/2− x)− (π/2− x/2)) = −x

c)

F (0) =
∫ 1

0

2 ln(1 + t)
t

dt = 2
∫ 1

0

+∞∑
n=0

(−1)n

n+ 1 t
ndt

or la série de fonctions
∑ (−1)n

n+1 t
n converge uniformément sur [0, 1] puisque la

série numérique satisfait au critère spécial ce qui permet d’écrire

|RN (t)| 6 tn+1

n+ 2 6
1

n+ 2

d’où ‖RN‖∞ → 0.
Par suite

F (0) = 2
+∞∑
n=0

(−1)n

(n+ 1)2 = π2

6

puis

F (x) = π2

6 −
x2

2

Exercice 104 : [énoncé]
a) Posons

gn(x, t) = 1
(x2 + t2)n

t→ gn(x, t) est définie continue par morceaux sur R+ et gn(x, t) ∼
+∞

1
t2n donc

l’intégrale définissant In(x) existe.
b)

I1(x) =
∫ +∞

0

dt

x2 + t2
=
[

1
x

arctan t

x

]+∞

0
= π

2x

c) ∂gn
∂x (x, t) = −2nx

(x2+t2)n+1 existe sur ]0,+∞[× [0,+∞[.
t 7→ ∂gn

∂x (x, t) est continue par morceaux sur [0,+∞[, x 7→ ∂g
∂x (x, t) est continue sur

]0,+∞[ et pour tout 0 < a < b,

∀x ∈ [a, b] ,
∣∣∣∣∂gn∂x (x, t)

∣∣∣∣ 6 2nb
(a2 + t2)n+1 = ϕa,b(t)

avec ϕa,b intégrable sur R+. Par domination sur tout segment, In est de classe C1

sur [a, b] puis sur R+? et
I ′n(x) = −2nxIn+1(x)

d) In(x) = λn
x2n+1 avec λ1 = π

2 et λn+1 = 2n+1
2n λn d’où

λn = (2n)!
22n+1(n!)2π

Exercice 105 : [énoncé]
a) Posons f : R× ]0,+∞[→ R définie par

f(x, t) = exp
(
−
(
t2 + x2

t2

))
La fonction f est continue sur R× ]0,+∞[ et

|f(x, t)| 6 e−t
2

= ϕ(t)

avec ϕ intégrable sur ]0,+∞[.
On peut donc affirmer que F est définie et continue sur R.
b) x 7→ f(x, t) est dérivable et

∂f

∂x
(x, t) = −2x

t2
exp

(
−
(
t2 + x2

t2

))
La fonction ∂f

∂x est continue sur R× ]0,+∞[ et pour x ∈ [a, b] ⊂ ]0,+∞[∣∣∣∣∂f∂x (x, t)
∣∣∣∣ 6 2b

t2
exp

(
−a

2

t2

)
exp

(
−t2

)
= ϕa,b(t)
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La fonction ϕa,b est intégrable sur ]0,+∞[ (notamment car de limite nulle en 0+)
donc on peut affirmer que F est de classe C1 sur ]0,+∞[ et

F ′(x) = −2x
∫ +∞

0

1
t2

exp
(
−
(
t2 + x2

t2

))
dt

c) Procédons au changement de variable u = x/t (bijection de classe C1)

F ′(x) = −2
∫ +∞

0
exp

(
−
(
x2

u2 + u2
))

du = −2F (x)

d) On en déduit qu’il existe λ ∈ R vérifiant

∀x > 0, F (x) = λe−2x

Puisque F est paire et continue en 0, on obtient

∀x ∈ R, F (x) = F (0)e−2|x|

Exercice 106 : [énoncé]
a) Posons

f(x, t) = arctan(xt)
t(1 + t2)

est définie sur [0,+∞[× ]0,+∞[,
t 7→ f(x, t) est intégrable sur ]0,+∞[ car prolongeable par continuité en 0 et égale
à un O(1/t3) en +∞. Ainsi F est définie sur R+

∂f

∂x
(x, t) = 1

(1 + x2t2)(1 + t2)

est définie sur [0,+∞[× ]0,+∞[,
t 7→ ∂f

∂x (x, t) est continue par morceaux sur ]0,+∞[ et x 7→ ∂f
∂x (x, t) est continue

sur [0,+∞[. ∣∣∣∣∂f∂x (x, t)
∣∣∣∣ 6 1

1 + t2
= ϕ(t)

avec ϕ continue par morceaux et intégrable sur ]0,+∞[,
donc F est de classe C1 sur R+ avec

F ′(x) =
∫ +∞

0

dt
(1 + x2t2)(1 + t2)

b) Pour x 6= 1

1
(1 + x2t2)(1 + t2) = 1

x2 − 1

(
x2

1 + x2t2
− 1

1 + t2

)
d’où

F ′(x) = x− 1
x2 − 1

π

2 = π

2(x+ 1)
ce qui est encore valable en 1 par continuité.
Par suite

F (x) = π

2 ln(x+ 1) + C

avec C = 0 puisque F (0) = 0.

Exercice 107 : [énoncé]
S × [a, b] est compact et toute fonction continue sur un compact y est
uniformément continue.
Etudions la continuité de F en α ∈ R et considérons S = [α− 1, α+ 1].

∀ε > 0,∃η > 0,∀(x, t), (x′, t′) ∈ S×[a, b] , ‖(x, t)− (x′, t′)‖∞ 6 η ⇒ |f(x, t)− f(x′, t′)| 6 ε

Donc pour |x− α| 6 η, on a

|F (x)− F (α)| 6
∫ b

a

εdt = ε(b− a)

Ainsi F est continue en α.
(x, t) 7→ ext est continue par opérations donc g l’est aussi par intégration sur un
segment.
Pour x 6= 0, g(x) = ex−1

x et g(0) = 1.
Sans difficultés, on vérifie g est continue sur R.

Exercice 108 : [énoncé]
Réalisons le changement de variable t = u(x) + θ(v(x)− u(x))∫ v(x)

u(x)
f(x, t)dt = (v(x)− u(x))

∫ 1

0
f(x, u(x) + θ(v(x)− u(x))dθ

Considérons la fonction

g : (x, θ) 7→ f(x, u(x) + θ(v(x)− u(x))
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Pour [a, b] ⊂ I, la fonction g est continue sur le compact [a, b]× [0, 1] et donc
bornée. Par conséquent, il existe M ∈ R+ vérifiant

∀(x, θ) ∈ [a, b]× [0, 1] , |g(x, θ)| 6M = ϕ(θ)

La fonction ϕ est intégrable sur [0, 1] et donc, par domination sur tout segment,
on peut affirmer la continuité de la fonction

x 7→
∫ 1

0
g(x, θ) dθ

On en déduit la continuité de la fonction étudiée par produit.

Exercice 109 : [énoncé]
Pour tout x ∈ R, on peut écrire

f(x) =
∫ x

0
f ′(t) dt =

t=xu
x

∫ 1

0
f ′(xu) du

On a donc
∀x ∈ R?, g(x) =

∫ 1

0
f ′(xu) du

Posons h(x, u) = f ′(xu) définie sur R× [0, 1].
La fonction h admet des dérivées partielles ∂nh

∂xn à tout ordre n avec

∂nh

∂xn
(x, u) = unf (n+1)(xu)

Celles-ci sont continues en x et continues par morceaux en u.
Soit [−a, a] ⊂ R. Puisque la fonction f (n+1) est continue sur le segment [−a, a],
elle y est bornée et donc il existe M ∈ R+ vérifiant

∀(x, u) ∈ [−a, a]× [0, 1] ,
∣∣∣∣∂nh∂xn

(x, u)
∣∣∣∣ 6M = ϕ(u)

Puisque la fonction ϕ est intégrable, on peut affirmer par domination sur tout
segment, que la fonction

x 7→
∫ 1

0
f ′(xu) du

est de classe C∞ sur R avec

dn

dxn

(∫ 1

0
f ′(xu) du

)
=
∫ 1

0
unf (n+1)(xu) du

On en déduit que la fonction g se prolonge en une fonction C∞ sur R avec

∀n ∈ N, g(n)(0) =
∫ 1

0
unf (n+1)(0) du = f (n+1)(0)

n+ 1

Exercice 110 : [énoncé]
a) On applique la formule de Taylor reste-intégrale à f en a.
b) On réalise le changement de variable t = a+ θ(x− a) et l’on obtient

f(x) = (x− a)α
∫ 1

0

(1− θ)α−1

(α− 1)! f (α)(a+ θ(x− a))dθ

Posons
h(x, θ) = (1− θ)α−1

(α− 1)! f (α)(a+ θ(x− a))

La fonction h admet des dérivées partielles

∂kh

∂xk
(x, θ) = (1− θ)α−1

(α− 1)! (x− a)kf (α+k)(a+ θ(x− a))

Celles-ci sont continues en x et continues par morceaux en θ.
Soit [a− b, a+ b] ⊂ R. La fonction f (α+k) est continue sur ce segment et y est
donc bornée par un certain M .
Puisque

∀x ∈ [a− b, a+ b] ,∀θ ∈ [0, 1] , a+ θ(x− a) ∈ [a− b, a+ b]

on a
∀(x, θ) ∈ [a− b, a+ b]× [0, 1] ,

∣∣∣∣∂kh∂xk
(x, θ)

∣∣∣∣ 6M = ϕ(θ)

avec ϕ fonction intégrable sur [0, 1].
Par domination sur tout segment, on peut affirmer que la fonction

g : x 7→
∫ 1

0

(1− θ)α−1

(α− 1)! f (α)(a+ θ(x− a))dθ

est de classe C∞.

Exercice 111 : [énoncé]
a) t 7→ g(x, t) = e(−1+ix)t2 est définie et continue par morceaux sur [0,+∞[.
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Puisque t 7→ |g(x, t)| = e−t2 est intégrable sur [0,+∞[, la fonction z est bien
définie.
t 7→ ∂g

∂x (x, t) = it2e(−1+ix)t2 est définie et continue par morceaux sur [0,+∞[,
x 7→ ∂g

∂x (x, t) est continue sur R,∣∣∣∣∂g∂x (x, t)
∣∣∣∣ 6 t2e−t

2
= ϕ(t)

avec ϕ intégrable sur [0,+∞[.
La fonction z est donc définie et de classe C1 sur R avec

z′(x) =
∫ +∞

0
it2e(−1+ix)t2 dt =

ipp
− 1

2(x+ i)z(x)

b) En multipliant par la quantité conjuguée

−1
2(x+ i) = −x+ i

2(x2 + 1) = − x

2(x2 + 1) + i

2(x2 + 1)

donc
z(x) = C exp

(
i
arctan x

2 − 1
4 ln(x2 + 1)

)
= Cei(arctan x)/2

(x2 + 1)1/4

Puisque z(0) =
√
π

2 , on conclut

z(x) =
√
πei(arctan x)/2

2(x2 + 1)1/4

Exercice 112 : [énoncé]
Posons

f(x, t) = e−t
2
eitx

La fonction t 7→ f(x, t) est continue par morceaux et intégrable sur R car

t2f(x, t) −−−−→
t→±∞

0

et donc la fonction g est définie sur R.
La fonction x 7→ f(x, t) est dérivable et

∂f

∂x
(x, t) = ite−t

2
eitx

La fonction t 7→ ∂f
∂x (t, x) est continue par morceaux, la fonction x 7→ ∂f

∂x (x, t) est
continue et ∣∣∣∣∂f∂x (x, t)

∣∣∣∣ 6 |t| e−t2 = ϕ(t)

avec ϕ intégrable sur R indépendant de x.
On en déduit que la fonction g est de classe C1 et par une intégration par parties

g′(x) =
∫ +∞

−∞
ite−t

2
eitxdt =

[
− i2e−t

2
eitx
]+∞

−∞
− 1

2

∫ +∞

−∞
xe−t

2
eitxdt

On en déduit que g est solution de l’équation différentielle

g′(x) + 1
2xg(x) = 0

Après résolution de cette équation différentielle

g(x) = λe−x
2/4

Enfin g(0) =
√
π donne λ =

√
π.

Exercice 113 : [énoncé]
a) Posons f : R× R→ R définie par

f(x, t) = eitx

1 + t2

La fonction f est définie et continue sur R2.
Pour tout (x, t) ∈ R2, on a

|f(x, t)| 6 1
1 + t2

= ψ(t)

avec ψ intégrable sur [0,+∞[.
On en déduit que ϕ est définie et continue sur R.
b) Par intégration par parties

ϕ(x) = − 1
ix

+ 1
ix

∫ +∞

0

2teitx

(1 + t2)2 dt

La fonction
x 7→

∫ +∞

0

2teitx

(1 + t2)2 dt

est de classe C1 sur R en vertu de la domination∣∣∣∣ ∂∂x
(

2teitx

(1 + t2)2

)∣∣∣∣ = 2t2

(1 + t2)2 6
2

1 + t2
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On en déduit que ϕ est de classe C1 sur R? avec

ϕ′(x) = 1
ix2 −

1
ix2

∫ +∞

0

2teitx

(1 + t2)2 dt+ 1
x

∫ +∞

0

2t2eitx

(1 + t2)2 dt

Or par intégration par parties∫ +∞

0

2teitx

(1 + t2)2 =
[
− eitx

1 + t2

]+∞

0
+ ix

∫ +∞

0

eitx

1 + t2
dt

donc

ϕ′(x) = − 1
x

∫ +∞

0

eitx

1 + t2
dt+ 1

x

∫ +∞

0

2t2eitx

(1 + t2)2 dt = 1
x

∫ +∞

0

t2 − 1
(1 + t2)2 eitx dt

Enfin, une dernière intégration par parties donne

ϕ′(x) = 1
x

[
− 2t

1 + t2
eitx
]+∞

0
+ i

∫ +∞

0

2t
1 + t2

eitx dt

et la relation voulue. . .
c) Par le changement de variable u = tx, on obtient l’expression proposée.
On peut décomposer

ϕ′(x) = i

∫ 1

0

ueiu

x2 + u2 du+
∫ +∞

1

ueiu

x2 + u2 du

D’une part, par intégration par parties∫ +∞

1

ueiu

x2 + u2 du =
[

ueiu

x2 + u2

]+∞

1
−
∫ +∞

1

x2 − u2

(x2 + u2)2 eiu du

avec [
ueiu

x2 + u2

]+∞

1
= − ei

x2 + 1 −−−−→x→0+
−ei

et ∣∣∣∣∫ +∞

1

x2 − u2

(x2 + u2)2 eiu du
∣∣∣∣ 6 ∫ +∞

1

u2 − x2

(x2 + u2)2 du = 1
x2 + 1 −−−−→x→0+

1

D’autre part ∫ 1

0

ueiu

x2 + u2 du =
∫ 1

0

u

x2 + u2 du+
∫ 1

0

u(eiu − 1)
x2 + u2 du

avec ∫ 1

0

u

x2 + u2 du =
[

1
2 ln(x2 + u2)

]1

0
∼

x→0+
ln x

et ∣∣∣∣∫ 1

0

u(eiu − 1)
x2 + u2 du

∣∣∣∣ 6 ∫ 1

0

∣∣eiu − 1
∣∣

u
du < +∞

Au final
ϕ′(x) = i ln x+ o(ln x) +O(1) ∼

x→0+
i ln x

d) En vertu de ce qui précède

Im(ϕ′(x)) ∼
x→0+

ln x→ −∞

On en déduit que la fonction réelle Imϕ n’est pas dérivable en 0, il en est a fortiori
de même de ϕ.

Exercice 114 : [énoncé]
Posons u(x, t) = e−t2 cos(xt).
a) Pour chaque x ∈ R, la fonction t 7→ u(x, t) est continue par morceaux sur
[0,+∞[ et négligeable devant 1/t2 en +∞ donc intégrable sur [0,+∞[. La
fonction f est définie sur R.
b) La fonction t 7→ ∂u

∂x (x, t) est continue par morceaux sur R+ et x 7→ ∂u
∂x (x, t) est

continue sur R.
Pour x ∈ [0,+∞[, ∣∣∣∣∂u∂x (x, t)

∣∣∣∣ 6 te−t
2

avec t 7→ te−t2 intégrable sur [0,+∞[, la fonction f est de classe C1 et

f ′(x) =
∫ +∞

0
−te−t

2
sin(xt)dt

Par intégration par parties impropre justifiée par deux convergences,

f ′(x) =
[

1
2e−t

2
sin(xt)

]+∞

0
− 1

2

∫ +∞

0
xe−t

2
cos(xt)dt = −1

2xf(x)

f est solution d’une équation différentielle linéaire d’ordre 1 et f(0) =
√
π/2 on

conclut
f(x) =

√
π

2 e− 1
4x

2

c) On peut écrire

f(x) =
∫ +∞

0

+∞∑
n=0

(−1)nx2n

(2n)! t2ne−t
2

dt
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Posons un(t) = (−1)nx2n

(2n)! t2ne−t2 .
Les fonctions un sont continues par morceaux sur R+.
La série

∑
un converge simplement sur R+ vers la fonction t 7→ e−t2 cos(xt) elle

aussi continue par morceaux.
Les fonctions un sont intégrables sur R+ et∫ +∞

0
|un(t)| dt = x2n

(2n)!

∫ +∞

0
t2ne−t

2
dt

Par intégration par parties impropre justifiée par deux convergences∫ +∞

0
t2ne−t

2
dt = 2n− 1

2

∫ +∞

0
t2(n−1)e−t

2
dt

et donc ∫ +∞

0
t2ne−t

2
dt = (2n)!

22nn!

∫ +∞

0
e−t

2
dt

Ainsi ∫ +∞

0
|un(t)| dt = x2n

22nn!

√
π

2
Cette quantité étant sommable, on peut intégrer terme à terme et on retrouve

f(x) =
+∞∑
n=0

(−1)nx2n

22nn!

√
π

2 =
√
π

2 e−x
2/4

Exercice 115 : [énoncé]
Posons u(x, t) = e−t2 cos(xt).
La fonction u est définie sur R× [0,+∞[ et admet une dérivée partielle

∂u

∂x
(x, t) = −te−t

2
sin(xt)

∀x ∈ R, t 7→ u(x, t) est continue par morceaux et intégrable sur [0,+∞[ car
négligeable devant 1/t2 en +∞.
∀x ∈ R, t 7→ ∂u

∂x (x, t) est continue par morceaux sur [0,+∞[.
∀t ∈ [0,+∞[, x 7→ ∂u

∂x (x, t) est continue sur R.
Enfin

∀(x, t) ∈ R× [0,+∞[ ,
∣∣∣∣∂u∂x (x, t)

∣∣∣∣ 6 te−t
2

= ϕ(t)

avec ϕ : [0,+∞[→ R continue par morceaux et intégrable sur [0,+∞[.

Par domination, la fonction g est de classe C1 et

g′(x) =
∫ +∞

0
−te−t

2
sin(xt)dt

Procédons à une intégration par parties avec les fonctions C1

u(t) = 1
2e−t

2
et v(t) = sin(xt)

Puisque le produit uv converge en 0 et +∞, l’intégration par parties impropre est
possible et

g′(x) =
[

1
2e−t

2
sin(xt)

]+∞

0
− 1

2

∫ +∞

0
xe−t

2
cos(xt) dt

Ainsi on obtient
g′(x) = −1

2xg(x)

g est solution d’une équation différentielle linéaire d’ordre 1 et g(0) =
√
π/2 on

conclut
ϕ(x) =

√
π

2 e− 1
4x

2

Exercice 116 : [énoncé]
Posons f(x, t) = tx−1e−t définie sur R+? × ]0,+∞[.
Pour tout x > 0, la fonction t 7→ f(x, t) est intégrable sur ]0,+∞[ car

tx−1e−t ∼
t→0+

tx−1 avec x− 1 > −1 et t2f(x, t) −−−−→
t→+∞

0

La fonction f admet des dérivées partielles

∂kf

∂xk
(x, t) = (ln t)ktx−1e−t

Pour tout x > 0, la fonction t 7→ ∂kf
∂xk

(x, t) est continue par morceaux et intégrable
sur ]0,+∞[ car

ta(ln t)ktx−1e−t −−−−→
x→0+

0 pour a ∈ ]1− x, 1[ et t2 × (ln t)ktx−1e−t −−−−→
t→+∞

0

Pour [a, b] ⊂ ]0,+∞[,

∀(x, t) ∈ [a, b]× ]0,+∞[ ,
∣∣∣∣∂kf∂xk

(x, t)
∣∣∣∣ 6 (ln t)k(ta−1 + tb−1)e−t = ϕ(t)
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car
tx−1 6 ta−1 + tb−1 que t 6 1 ou t > 1

La fonction ϕ est intégrable sur ]0,+∞[ et donc, par domination sur tout
segment, Γ est de classe C∞ sur ]0,+∞[

Exercice 117 : [énoncé]
a) Posons f(x, t) = tx−1e−t définie sur R+? × ]0,+∞[.
Pour tout x > 0, la fonction t 7→ f(x, t) est continue par morceaux sur ]0,+∞[ et
intégrable car

tx−1e−t ∼
t→0+

tx−1 avec x− 1 > −1 et t2f(x, t) −−−−→
t→+∞

0

La fonction Γ est donc définie sur ]0,+∞[.
Pour tout t ∈ ]0,+∞[, la fonction x 7→ f(x, t) est continue sur R+?

Pour x ∈ [a, b] ⊂ ]0,+∞[, on a tx−1 6 ta−1 ou tx−1 6 tb−1 selon que t 6 1 ou
t > 1 et donc

∀(x, t) ∈ [a, b]× ]0,+∞[ , |f(x, t)| 6 f(a, t) + f(b, t) = ϕ(t)

La fonction ϕ est intégrable et donc, par domination sur tout segment, Γ est
continue sur ]0,+∞[.
car

tx−1e−t ∼
t→0+

tx−1 avec x− 1 > −1 et t2f(x, t) −−−−→
t→+∞

0

b) Pour k = 1 ou 2.

∂kf

∂xk
existe et ∂

kf

∂xk
(x, t) = (ln t)ktx−1e−t

Pour tout x > 0 : t 7→ ∂f
∂x (x, t) est continue par morceaux et intégrable sur ]0,+∞[

car

ta ln(t)tx−1e−t −−−−→
x→0+

0 pour a ∈ ]1− x, 1[ et t2 × ln(t)tx−1e−t −−−−→
t→+∞

0

∂2f
∂x2 est continue en x et continue par morceaux en t.
Pour tout [a, b] ⊂ ]0,+∞[

∀(x, t) ∈ [a, b]× ]0,+∞[ ,
∣∣∣∣∂2f

∂x2 (x, t)
∣∣∣∣ 6 (ln t)2(ta−1 + tb−1)e−t = ϕ(t)

Par des arguments analogues aux précédents, on obtient que ϕ est intégrable sur
]0,+∞[ et donc, par domination sur tout segment, Γ est de classe C2 sur ]0,+∞[
avec

Γ′(x) =
∫ +∞

0
ln(t)tx−1e−y dt et Γ′′(x) =

∫ +∞

0
(ln t)2tx−1e−y dt

c) La dérivée seconde de ln Γ(x) est du signe de

Γ′′(x)Γ(x)− Γ′(x)2

Par l’inégalité de Cauchy-Schwarz :(∫ +∞

0

√
tx−1e−t

√
(ln t)2tx−1e−t

)
dt 6

(∫ +∞

0
tx−1e−t dt

)(∫ +∞

0
(ln t)2tx−1e−t dt

)
Ainsi

Γ′(x)2 6 Γ(x)Γ′′(x)

et donc
(ln Γ(x))′′ > 0

Finalement x 7→ ln Γ(x) est convexe.

Exercice 118 : [énoncé]
a) Puisque ln(1 + u) 6 u, on a

0 6

(
1− t

n

)n−1
= exp

(
(n− 1) ln

(
1− t

n

))
6 exp

(
−(n− 1) t

n

)
= e−tet/n 6 e.e−t

b) Pour tout t ∈ R+, ln(t)e−t est limite simple de la suite de fonction (un) définie
par un(t) =

(
1− t

n

)n−1 si t ∈ ]0, n[ et un(t) = 0 sinon.
Puisque |ln(t)un(t)| 6 e. ln(t)e−t, par convergence dominée :

lim
n→+∞

∫ n

0
ln(t)

(
1− t

n

)n−1
dt =

∫ +∞

0
ln(t)e−t dt

c) Par le changement de variable u = nt∫ n

0

(
1− t

n

)n−1
ln(t) dt =

∫ 1

0
n (1− u)n−1 ln(nu) du

avec ∫ 1

0
n (1− u)n−1 ln(nu) du = lnn+

∫ 1

0
n ln(u)(1− u)n−1 du
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et ∫ 1

ε

n ln(u)(1− u)n−1 du = [ln(u)(1− (1− u)n)]1ε +
∫ 1

ε

(1− u)n − 1
u

du

On notera que la fonction u 7→ n(1− u)n−1 est primitivée en (1− (1− u)n) qui
s’annule en 0 de sorte que l’intégration par parties donne à la limite quand ε→ 0+∫ 1

0
n ln(u)(1− u)n−1 du =

∫ 1

0

(1− u)n − 1
u

du

d) Par le changement de variable u = 1− v∫ 1

0

(1− u)n − 1
u

du = −
∫ 1

0

vn − 1
v − 1 dv = −

∫ 1

0

n−1∑
k=0

vk dv

puis ∫ 1

0

(1− u)n − 1
u

du = −
n∑
k=1

1
k

= − lnn− γ + o(1)

Finalement ∫ +∞

0
ln(t)e−t dt = −γ

Exercice 119 : [énoncé]
a) Posons f(x, t) = tx−1e−t définie sur R+? × ]0,+∞[.
Pour tout x > 0, la fonction t 7→ f(x, t) est intégrable sur ]0,+∞[ car

tx−1e−t ∼
t→0+

tx−1 avec x− 1 > −1 et t2f(x, t) −−−−→
t→+∞

0

La fonction f admet des dérivées partielles

∂kf

∂xk
(x, t) = (ln t)ktx−1e−t

Pour tout x > 0, la fonction t 7→ ∂kf
∂xk

(x, t) est continue par morceaux et intégrable
sur ]0,+∞[ car

ta(ln t)ktx−1e−t −−−−→
x→0+

0 pour a ∈ ]1− x, 1[ et t2 × (ln t)ktx−1e−t −−−−→
t→+∞

0

Pour [a, b] ⊂ ]0,+∞[,

∀(x, t) ∈ [a, b]× ]0,+∞[ ,
∣∣∣∣∂kf∂xk

(x, t)
∣∣∣∣ 6 (ln t)k(ta−1 + tb−1)e−t = ϕ(t)

car
tx−1 6 ta−1 + tb−1 que t 6 1 ou t > 1

La fonction ϕ est intégrable sur ]0,+∞[ et donc, par domination sur tout
segment, Γ est de classe C∞ sur ]0,+∞[
b) Par intégration par parties avec u′(t) = e−t et v(t) = tx, on obtient

Γ(x+ 1) = xΓ(x)

Sachant Γ(1) = 1, on obtient par récurrence Γ(n+ 1) = n!.
c) Par le changement de variable proposé

Γ(n+ 1) = nn

en
√
n

∫ +∞

−∞
fn(y)dy

avec

fn(y) = 0 sur
]
−∞,−

√
n
]
, fn(y) = e−y

√
n

(
1 + y√

n

)n
sur

]
−
√
n,+∞

[
Sur ]−

√
n, 0], une étude fonctionnelle montre n ln

(
1 + y√

n

)
− y
√
n 6 −y

2

2 qui

donne 0 6 fn(y) 6 e−y2/2.
Sur [0,+∞[, une étude fonctionnelle montre n ln

(
1 + y√

n

)
− y
√
n 6 −y+ ln(1 + y)

pour t > 1. Cela donne 0 6 fn(y) 6 (1 + y)e−y.
d) La fonction

ϕ : y →
{

e−y2/2 si y 6 0
(1 + y)e−y sinon

est intégrable sur R.
Quand n→ +∞, en réalisant un développement limité du contenu de
l’exponentielle

fn(y) = e−y
√
n+n ln

(
1+ y√

n

)
→ e−y

2/2

Par convergence dominée∫ +∞

−∞
fn(y)dy →

∫ +∞

−∞
e−y

2/2dy =
√

2π

d’où
Γ(n+ 1) = n! ∼

√
2πnn

n

en
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Exercice 120 : [énoncé]
a) La fonction Γ est définie sur R+?.
En effet, pour x ∈ R, la fonction f : t 7→ tx−1e−t est définie et continue par
morceaux sur ]0,+∞[.
Puisque t2f(t) = tx+1e−t −−−−→

t→+∞
0, la fonction f est assurément intégrable sur

[1,+∞[.
De plus, f(t) ∼

t→0+
tx−1 est intégrable sur ]0, 1] si, et seulement si, x− 1 > −1 i.e.

x > 0.
Ainsi f est intégrable sur ]0,+∞[ si, et seulement si, x > 0.
Enfin, la fonction f étant positive, l’intégrabilité équivaut à l’existence de
l’intégrale.
b) Par intégration par parties

In(x) =
[
tx

x

(
1− t

n

)n]n
0

+
∫ n

0

tx

x

n

n

(
1− t

n

)n−1
dt

En répétant l’opération

In(x) = n!
x(x+ 1) . . . (x+ n− 1)nn

∫ n

0
tx+n−1 dx

et finalement
In(x) = nxn!

x(x+ 1) . . . (x+ n)

c) Quand n→ +∞(
1− t

n

)n
= exp

(
n ln(1− t

n
)
)

= exp
(
n

(
− t
n

+ o

(
1
n

)))
→ e−t

Considérons la suite des fonctions

fn : t 7→
{
tx−1 (1− t

n

)n si t ∈ ]0, n[
0 si t ∈ [n,+∞[

Soit t > 0 fixé. Pour n assez grand t ∈ ]0, n[ et

fn(t) = tx−1
(

1− t

n

)n
→ tx−1e−t

La suite (fn) converge simplement vers la fonction f introduite dans la première
question.
Les fonctions fn et f sont continues par morceaux.

Enfin, pour t ∈ ]0, n[, on a

|fn(t)| = tx−1 exp (n ln(1− t/n) 6 tx−1e−t = f(t)

car il est connu ln(1 + u) 6 u pour tout u > −1. On a aussi |fn(t)| 6 f(t) pour
t ∈ [n,+∞[ et donc

∀t ∈ ]0, n[ , |fn(t)| 6 f(t)

La fonction f étant intégrable, on peut appliquer le théorème de convergence
dominée et affirmer

Γ(x) = lim
n→+∞

∫ +∞

0
fn(t) dt

Puisque ∫ +∞

0
fn(t) dt =

∫ n

0
tx−1

(
1− t

n

)n
dt

on peut conclure
Γ(x) = lim

n→+∞

nxn!
x(x+ 1) . . . (x+ n)

Exercice 121 : [énoncé]
Notons que

∫ 1
0 t

x−1e−t dt est bien définie.
Pour tout t ∈ ]0, 1],

tx−1e−t =
+∞∑
n=0

(−1)ntn+x−1

n!

donc ∫ 1

0
tx−1e−t dt =

∫
]0,1]

+∞∑
n=0

fn

Les fonctions fn sont continues par morceaux,
∑
fn converge simplement sur ]0, 1]

et est de somme t 7→ tx−1e−t continue par morceaux.
Les fonctions fn sont intégrables sur ]0, 1] et∫

]0,1]
|fn(t)| dt = 1

n!(x+ n)

La série
∑∫

]0,1] |fn| converge donc on peut intégrer terme à terme

∫ 1

0
tx−1e−t dt =

+∞∑
n=0

(−1)n

n!(x+ n)
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Exercice 122 : [énoncé]
a) Introduisons la fonction

u : (x, t) ∈ [0,+∞[× [0, 1] 7→ e−x(1+t2)

1 + t2

Pour chaque x ∈ [0,+∞[, la fonction t 7→ u(x, t) est continue par morceaux sur
[0, π/2]. La fonction f est donc bien définie.
La fonction u admet une dérivée partielle

∂u

∂x
: (x, t) 7→ −e−x(1+t2)

Celle-ci est continue en x, continue par morceaux en t et vérifie

∀(x, t) ∈ [0,+∞[× [0, 1] ,
∣∣∣∣∂u∂x (x, t)

∣∣∣∣ 6 1

La fonction ϕ : t 7→ 1 est intégrable sur [0, 1]. Par domination, on peut alors
affirmer que f est de classe C1 et

f ′(x) =
∫ 1

0

∂u

∂x
(x, t) dt = −

∫ 1

0
e−x(1+t2)dt

b) On a

f(0) =
∫ 1

0

dt
1 + t2

= π

4
Pour x > 0 ,

0 6 f(x) 6
∫ 1

0
e−xdt = e−x

donc lim
+∞

f = 0.
c) g est de classe C1 par composition et

g′(x) = 2xf ′(x2) = −2x
∫ 1

0
e−x

2(1+t2)dt

On a alors(
g(x) +

(∫ x

0
e−t

2
dt
)2
)′

= −2x
∫ 1

0
e−x

2(1+t2)dt+ 2e−x
2
∫ x

0
e−t

2
dt = 0

car ∫ x

0
e−t

2
dt = x

∫ 1

0
e−x

2u2
du

L’évaluation en 0 permet de conclure.
d) Pour x > 0,

∫ x
0 e−t2 dt > 0 donc∫ x

0
e−t

2
dt =

√
π

4 − g(x) −−−−−→
x→+∞

√
π

2

Exercice 123 : [énoncé]
a) Posons

f(x, t) = e−xt√
t(1 + t)

définie sur [0,+∞[× ]0,+∞[.
Soit x > 0. L’application t 7→ f(x, t) est continue par morceaux sur ]0,+∞[ et

0 6 f(x, t) 6 1√
t(1 + t)

avec
1√

t(1 + t)
∼

t→0+

1√
t
et 1√

t(1 + t)
∼

t→+∞

1
t3/2

donc t 7→ f(x, t) est intégrable sur ]0,+∞[ et l’intégrale impropre définissant F (x)
est bien convergente.
b) Pour chaque t ∈ ]0,+∞[, la fonction x 7→ f(x, t) est dérivable et

∂f

∂x
(x, t) = − te−xt√

t(1 + t)

Pour tout x ∈ ]0,+∞[, la fonction t 7→ ∂f
∂x (x, t) est continue par morceaux sur

]0,+∞[
Pour tout t ∈ ]0,+∞[, la fonction x 7→ ∂f

∂x (x, t) est continue sur ]0,+∞[
Soit [a, b] ⊂ ]0,+∞[. Pour (x, t) ∈ [a,+∞[× ]0,+∞[,∣∣∣∣∂f∂x (x, t)

∣∣∣∣ 6 √te−at = ϕ(t)

avec ϕ : ]0,+∞[→ R+ continue par morceaux et intégrable.
Par domination sur tout segment, F est de classe C1 sur ]0,+∞[ et

F ′(x) = −
∫ +∞

0

te−xt dt√
t(1 + t)

On constate alors

F (x)− F ′(x) =
∫ +∞

0

e−xt√
t

dt =
xt=u

1√
x

∫ +∞

0

e−u√
u

du = I√
x
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c) On a

F (0) =
∫ +∞

0

dt√
t(1 + t)

=
t=u2

∫ +∞

0

2 du
1 + u2 = π

et
0 6 F (x) 6

∫ +∞

0

e−xt√
t

dt = I√
x
−−−−−→
x→+∞

0

donc, par encadrement, F −−→
+∞

0.
d) Après résolution (avec méthode de variation de la constante) de l’équation

y − y′ = I√
x

avec la condition initiale y(0) = π, on obtient

∀x > 0, F (x) = ex
(
π − I

∫ x

0

e−t√
t

dt
)

La nullité de la limite de F en +∞ impose alors

I

∫ x

0

e−t√
t

dt −−−−−→
x→+∞

π

et donc
I =
√
π

Exercice 124 : [énoncé]
a) La fonction

ϕ : t 7→ 1− cos t
t2

est intégrable sur ]0,+∞[ car

ϕ(t) = O(1/t2) quand t→ +∞ et ϕ(t) −−−→
t→0

1/2

La fonction g : (x, t) 7→ e−xt 1−cos t
t2 est continue sur R+ × ]0,+∞[ et dominée par

ϕ donc F est continue.
De plus la fonction ϕ est bornée donc, pour x > 0

|F (x)| 6 ‖ϕ‖∞
∫ x

0
e−xt dt =

‖ϕ‖∞
x

et on en déduit que F tend vers 0 en +∞.

b) Les dérivées partielles ∂g
∂x et ∂2g

∂x2 existent et sont continues sur R+? × ]0,+∞[.
t 7→ ∂g

∂x (x, t) est continue par morceaux et intégrable sur ]0,+∞[.
Soit [a, b] ⊂ R+?

∀(x, t) ∈ [a, b]× ]0,+∞[ ,
∣∣∣∣∂2g

∂x2 (x, t)
∣∣∣∣ 6 2e−at = ψ(t)

La fonction ψ est intégrable sur ]0,+∞[.
Par domination sur tout segment, F est de classe C2 et

F ′′(x) =
∫ +∞

0
e−xt(1− cos t)dt = 1

x
− x

x2 + 1

c) On a
F ′(x) = ln x− 1

2 ln(x2 + 1)

car F ′(x) −−−−−→
x→+∞

0 et

F (x) = x ln x− x ln
√
x2 + 1− arctan x+ π

2

car F (x) −−−−−→
x→+∞

0.
Par continuité, on obtient F (0) = π/2.
Par intégrations par parties∫ +∞

0

1− cos t
t2

dt =
∫ +∞

0

2 sin2(t/2)
t2

dt =
[
−2 sin2(t/2)

t

]+∞

0
+
∫ +∞

0

sin t
t

dt

donc ∫ +∞

0

1− cos t
t2

dt =
∫ +∞

0

sin t
t

dt

d’où ∫ +∞

0

sin t
t

dt = π

2

Exercice 125 : [énoncé]
a) Posons u(t) = 1− cos(t) et v(t) = 1/t.
Les fonctions u et v sont de classe C1 sur ]0,+∞[ et le produit uv converge en 0 et
+∞ :

u(t)v(t) ∼
t→0

t

2 → 0 et u(t)v(t) =
t→+∞

O (1/t)→ 0
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Par intégration par parties impropre, les intégrales∫ +∞

0
u′(t)v(t) dt et

∫ +∞

0
u(t)v′(t) dt

sont de même nature. Or∫ +∞

0
u(t)v′(t) dt = −

∫ +∞

0

1− cos t
t2

dt

converge car
1− cos t

t2
∼
t→0

1
2 et 1− cos t

t2
=

t→+∞
O

(
1
t2

)
Cela permet de conclure à la convergence de

I =
∫ +∞

0

sin t
t

dt

b) Posons

f(x, t) = e−xt sin t
t

définie sur ]0,+∞[× ]0,+∞[.
Pour tout x > 0, la fonction t 7→ f(x, t) est continue par morceaux sur ]0,+∞[ et
intégrable car

f(x, t) −−−−→
t→0+

1 et t2f(x, t) −−−−→
t→+∞

0

De plus, puisque |sin t| 6 t pour tout t > 0, on a

|F (x)| 6
∫ +∞

0
e−xtdt = 1

x
−−−−−→
x→+∞

0

c) f admet une dérivée partielle

∂f

∂x
(x, t) = e−xt sin(t)

Celle-ci est continue en x et continue par morceaux en t.
Soit [a, b] ⊂ ]0,+∞[. On a

∀(x, t) ∈ [a, b]× ]0,+∞[ ,
∣∣∣∣∂f∂x (x, t)

∣∣∣∣ 6 e−at = ϕ(t)

La fonction ϕ est intégrable sur ]0,+∞[. Par domination sur tout segment, on
obtient F de classe C1 sur ]0,+∞[ et

F ′(x) =
∫ +∞

0
e−tx sin(t) dt

En exploitant ∫ +∞

0
e−tx sin(t) dt = Im

(∫ +∞

0
e−txeit dt

)
on obtient

F ′(x) = −1
1 + x2

d) On en déduit
F (x) = − arctan x+ Cte sur ]0,+∞[

et puisque lim
x→+∞

F (x) = 0,

F (x) = π

2 − arctan x

Par continuité en 0,
I = π

2

Exercice 126 : [énoncé]
a) On réalise le changement de variable t = u+ nπ :

un(x) = (−1)n
∫ π

0
e−x(u+nπ) sin u

u+ nπ
du

Ici
gn(x, u) = e−x(u+nπ) sin u

u+ nπ

b) Pour tout x ∈ R+ et tout u ∈ [0, π], gn(x, u) > 0 et gn+1(x, u) 6 gn(x, u) donc
un(x) = (−1)n |un(x)| avec (|un(x)|)n>0 décroissante. De plus

|un(x)| 6
∫ π

0

du
nπ

= 1
n

pour n ∈ N?

donc |un(x)| −−→
n∞

0. Par application du critère spécial, la série
∑
n>0

un(x) converge

et ∣∣∣∣∣
+∞∑

k=n+1
uk(x)

∣∣∣∣∣ 6 |un+1(x)| 6 1
n+ 1 → 0

ce qui donne la convergence uniforme de la série de fonctions
∑
n>0

un.

c) La fonction gn est continue en x, continue par morceaux en u et

∀x ∈ [0,+∞[× [0, π] , |gn(x, u)| 6 |sincu| 6 1
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Par domination, les fonctions un sont continues.
Comme somme d’une série uniformément convergente de fonctions continues sur
R+, la fonction U est continue sur R+. De plus, par sommation d’intégrales
contiguës

U(x) =
∫ +∞

0
e−xt sin t

t
dt

avec cette intégrale qui est définie quand x > 0 et connue convergente quand
x = 0.
d) Posons

h(x, t) = e−xt sin t
t

définie sur ]0,+∞[× ]0,+∞[.
Pour tout x > 0, la fonction t 7→ h(x, t) est continue par morceaux sur ]0,+∞[ et
intégrable car

f(x, t) −−−−→
t→0+

1 et t2f(x, t) −−−−→
t→+∞

0

h admet une dérivée partielle

∂h

∂x
(x, t) = e−xt sin(t)

Celle-ci est continue en x et continue par morceaux en t.
Soit [a, b] ⊂ ]0,+∞[. On a

∀(x, t) ∈ [a, b]× ]0,+∞[ ,
∣∣∣∣∂h∂x (x, t)

∣∣∣∣ 6 e−at = ϕ(t)

La fonction ϕ est intégrable sur ]0,+∞[. Par domination sur tout segment, on
obtient U de classe C1 sur ]0,+∞[ et

U ′(x) =
∫ +∞

0
e−tx sin(t) dt

En exploitant ∫ +∞

0
e−tx sin(t) dt = Im

(∫ +∞

0
e−txeit dt

)
on obtient

U ′(x) = −1
1 + x2

e) En intégrant
U(x) = C − arctan x sur ]0,+∞[

Or

|U(x)| 6
∫ +∞

0
e−xt dt = 1

x
−−−−−→
x→+∞

0

donc C = π/2.
Par continuité en 0,

U(0) =
∫ +∞

0

sin t
t

dt = π

2

Exercice 127 : [énoncé]
a) Pour x > 0, t2 sin t

t e−tx −−−−→
t→+∞

0 donne l’intégrabilité de t 7→ sin t
t e−tx.

Pour x = 0, il est connu que l’intégrale
∫ +∞

0
sin t
t dt est convergente bien que

t 7→ sin t
t ne soit pas intégrable.

b) Pour x ∈ [a, b] ⊂ ]0,+∞[,∣∣∣∣ d
dx

(
sin t
t

e−tx
)∣∣∣∣ 6 e−ax = ϕ(x)

avec ϕ intégrable. Par domination sur tout segment f est de classe C1 sur ]0,+∞[.
c) Pour x > 0,

f ′(x) =
∫ +∞

0
− sin(t)e−tx dt = Im

(
−
∫ +∞

0
e(−x+i)tdt

)
= − 1

x2 + 1

donc f(x) = C − arctan x.
Or

|f(x)| 6
∫ +∞

0
e−tx dt = 1

x
−−−−−→
x→+∞

0

donc
C = π

2
d) En découpant l’intégrale, on a

f(x) =
+∞∑
n=0

∫ (n+1)π

nπ

sin(t)
t

e−tx dt

Posons

un(t) =
∫ (n+1)π

nπ

sin(t)
t

e−tx dt
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Par application du critère spécial des séries alternées, on établir que la série de
fonctions continues

∑
un converge uniformément sur [0, 1], on en déduit que sa

somme, à savoir la fonction f , est continue en 0. On peut conclure que∫ +∞

0

sin t
t

dt = π

2

Exercice 128 : [énoncé]
a) Posons

f̃(x, t) = e−xt

1 + t2

Les fonctions f̃ , ∂f̃∂x et ∂2f̃
∂x2 existent et sont continues sur R+? × R.

Pour chaque x, les fonctions t 7→ f̃(x, t) et t 7→ ∂f̃
∂x (x, t) sont intégrables.

Soit [a, b] ⊂ ]0,+∞[. Sur [a, b]× [0,+∞[, on a∣∣∣∣∂2f̃

∂x2 (x, t)
∣∣∣∣ 6 t2e−at

1 + t2
6 e−at = ϕ(t)

La fonction ϕ est intégrable sur [0,+∞[.
Par domination sur tout segment, on peut affirmer que la fonction f est définie et
de classe avec

f ′′(x) =
∫ +∞

0

t2e−xt

1 + t2
dt

On a alors

f(x) + f ′′(x) =
∫ +∞

0
e−xt dt = 1

x

Posons
g̃(x, t) = sin t

x+ t

Les fonctions g̃, ∂g̃∂x et ∂2g̃
∂x2 existent et sont continues sur R+? × R.

La fonction x 7→
∫ +∞

0 g(x, t) dt est bien définie sur R+ (intégrale convergente via
intégration par parties)
La fonction t 7→ ∂g̃

∂x (x, t) est intégrable et sur [a, b]× [0,+∞[∣∣∣∣∂2g

∂2x
(x, t)

∣∣∣∣ 6 2
(a+ t)3 = ψ(t)

La fonction ψ est intégrable sur [0,+∞[.

Par domination sur tout segment, on peut affirmer que g est de classe C2 et

g′′(x) =
∫ +∞

0

2 sin t
(x+ t)3 dt

Par une intégration par parties

g′′(x) =
[
− sin t

(x+ t)2

]+∞

0
+
∫ +∞

0

cos t
(x+ t)2 dt =

∫ +∞

0

cos t
(x+ t)2 dt = 1

x
− g(x)

b) Pour x ∈ R+, ∣∣f̃(x, t)
∣∣ 6 1

1 + t2

donc f est définie et continue sur R+.

g(x)− g(0) = −
∫ +∞

0

x sin t
t(x+ t) dt = −

(
x

∫ 1

0

sin t
t(x+ t) dt+

∫ +∞

1

x sin t
t(x+ t) dt

)
mais ∣∣∣∣x∫ 1

0

sin t
t(x+ t) dt

∣∣∣∣ 6 x

∫ 1

0

dt
(x+ t) = x ln(x+ 1)− x ln x→ 0

et ∣∣∣∣∫ +∞

1

x sin t
t(x+ t)dt

∣∣∣∣ 6 x

∫ +∞

1

dt
t2
→ 0

donc g est continue en 0.
c) D’une part

|f(x)| 6
∫ +∞

0
e−xt dt = 1

x
−−−−−→
x→+∞

0

D’autre part

|g′′(x)| 6
∫ +∞

0

2 |sin t|
(x+ t)3 dt 6 1

x

∫ +∞

0

2 |sin t|
(x+ t)2 dt

et en prenant x > 1

|g′′(x)| 6 1
x

∫ +∞

0

2 |sin t|
(1 + t)2 dt −−−−−→

x→+∞
0

donc
g(x) = 1

x
− g′′(x) −−−−−→

x→+∞
0

Ainsi f − g →
+∞

0 ce qui permet via résolution de l’équation différentielle de
conclure

f = g
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On en déduit g(0) = f(0) i.e. ∫ +∞

0

sin t
t

dt = π

2

Exercice 129 : [énoncé]
a) Posons

f(x, t) = arctan(xt)
t(1 + t2)

est définie sur [0,+∞[× ]0,+∞[,
t 7→ f(x, t) est intégrable sur ]0,+∞[ car prolongeable par continuité en 0 et égale
à un O(1/t3) en +∞. Ainsi F est définie sur R+

∂f

∂x
(x, t) = 1

(1 + x2t2)(1 + t2)

est définie sur [0,+∞[× ]0,+∞[,
t 7→ ∂f

∂x (x, t) est continue par morceaux sur ]0,+∞[ et x 7→ ∂f
∂x (x, t) est continue

sur [0,+∞[. ∣∣∣∣∂f∂x (x, t)
∣∣∣∣ 6 1

1 + t2
= ϕ(t)

avec ϕ continue par morceaux et intégrable sur ]0,+∞[,
donc F est de classe C1 sur R+ avec

F ′(x) =
∫ +∞

0

dt
(1 + x2t2)(1 + t2)

b) Pour x 6= 1

1
(1 + x2t2)(1 + t2) = 1

x2 − 1

(
x2

1 + x2t2
− 1

1 + t2

)
d’où

F ′(x) = x− 1
x2 − 1

π

2 = π

2(x+ 1)
ce qui est encore valable en 1 par continuité.
Par suite

F (x) = π

2 ln(x+ 1) + C

avec C = 0 puisque F (0) = 0.
c) En intégrant par parties, on obtient π ln 2.

Exercice 130 : [énoncé]
a) Posons

f(x, t) = ln(1 + xt)
1 + t2

La fonction f est définie et continue sur ]−1,+∞[× [0, 1].
Pour t ∈ [0, 1], la fonction x 7→ f(x, t) est dérivable et

∂f

∂x
(x, t) = t

(1 + xt)(1 + t2)

La fonction ∂f
∂x est continue sur ]−1,+∞[× [0, 1].

Par intégration sur un segment, on peut affirmer que la fonction

F : x 7→
∫ 1

0
f(x, t) dt

est définie, de classe C1 sur ]−1,+∞[ et

F ′(x) =
∫ 1

0

t

(1 + xt)(1 + t2) dt

Par décomposition en éléments simples (en la variable t)

t

(1 + xt)(1 + t2) = −x
(x2 + 1)(1 + xt) + x+ t

(x2 + 1)(1 + t2)

donc
F ′(x) = − ln(1 + x)

x2 + 1 + π

4
x

x2 + 1 + ln 2
2

1
1 + x2

Puisque F (0) = 0, on peut écrire

F (x) =
∫ x

0
F ′(t) dt = −

∫ x

0

ln(1 + t)
t2 + 1 dt+ π

8 ln(x2 + 1) + ln 2
2 arctan x

b) Pour x = 1, la relation précédente donne∫ 1

0

ln(1 + t)
1 + t2

dt =π ln 2
8
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