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Les fractions rationnelles
Généralités

Exercice 1 [ 02007 ] [correction]
Soit F ∈ K(X) de représentant irréductible P/Q.
Montrer que F est paire si, et seulement si, P et Q sont tous deux pairs ou
impairs.

Exercice 2 [ 02008 ] [correction]
Soient n ∈ N? et ω = ei 2π

n .
a) Soit P ∈ C [X] un polynôme vérifiant P (ωX) = P (X).
Montrer qu’il existe un polynôme Q ∈ C [X] tel que P (X) = Q(Xn).
b) En déduire la réduction au même dénominateur de la fraction rationnelle

F =
n−1∑
k=0

X + ωk

X − ωk

Exercice 3 [ 00539 ] [correction]
Soit F ∈ C(X) telle que, pour tout n ∈ N non pôle de F , F (n) ∈ Q.
Montrer que F ∈ Q(X).

Degré

Exercice 4 [ 02004 ] [correction]
Montrer qu’il n’existe pas de fraction rationnelle F telle que F 2 = X.

Exercice 5 [ 02006 ] [correction]
Soit F ∈ K(X). Montrer que degF ′ < degF − 1⇒ degF = 0.

Exercice 6 [ 02005 ] [correction]
Déterminer un supplémentaire de K [X] dans K(X).

Racines et pôles

Exercice 7 [ 02009 ] [correction]
Soient p et q deux entiers naturels non nuls premiers entre eux.
Déterminer les racines et les pôles de

F = Xp − 1
Xq − 1

en précisant les multiplicités respectives.

Exercice 8 [ 02010 ] [correction]
Soit F ∈ K(X).
a) Soit a un zéro d’ordre α > 1 de F . Montrer que a est zéro d’ordre α− 1 de F ′.
b) Comparer les pôles de F et de F ′, ainsi que leur ordre de multiplicité.

Exercice 9 [ 02011 ] [correction]
Montrer qu’il n’existe pas de F ∈ C(X) telle que

F ′ = 1
X

Décomposition en éléments simples

Exercice 10 [ 02013 ] [correction]
Effectuer la décomposition en éléments simples dans C [X] des fractions
rationnelles suivantes :

a) X
2 + 2X + 5

X2 − 3X + 2 b) X2 + 1
(X − 1)(X − 2)(X − 3) c) 1

X(X − 1)2

d) 2X
X2 + 1 e) 1

X2 +X + 1 f) 4
(X2 + 1)2

g) 3X − 1
X2(X + 1)2 h) 1

X4 +X2 + 1 i) 3
(X3 − 1)2

Exercice 11 [ 02014 ] [correction]
Soit n ∈ N. Former la décomposition en éléments simples de

n!
X(X − 1) . . . (X − n)
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Exercice 12 [ 02676 ] [correction]
Décomposer en éléments simples dans C(X) la fraction rationnelle

Xn−1

Xn − 1

Applications de la décomposition en éléments
simples

Exercice 13 [ 02015 ] [correction]
Soit la fraction

F = 1
X(X + 1)

a) Réaliser la décomposition en éléments simples de F .
b) En déduire une simplification pour n > 1 de

n∑
k=1

1
k(k+1) .

c) Procéder de même pour calculer :
n∑
k=1

1
k(k+1)(k+2) .

Exercice 14 [ 02016 ] [correction]
Exprimer la dérivée d’ordre n de

1
X(X2 + 1)

Exercice 15 [ 02017 ] [correction]
Soit

F = 1
X2 + 1 ∈ C(X)

a) En réalisant la décomposition en éléments simples de F , exprimer F (n).
b) Montrer qu’il existe Pn ∈ Rn [X] tel que

F (n) = Pn
(X2 + 1)n+1

c) Déterminer les zéros de Pn.

Exercice 16 [ 02018 ] [correction]
Soit

F = 1
(X − 1)3(X + 1)3

a) Quelle relation existe entre la partie polaire de F en 1 et celle en −1.
b) Former la décomposition en éléments simples de la fraction F .
c) En déduire un couple (U, V ) ∈ R [X]2 tel que :

(X + 1)3U + (X − 1)3V = 1

Exercice 17 [ 02019 ] [correction]
On pose ωk = e2ikπ/n avec k ∈ {0, . . . , n− 1} et n > 2.
Réduire au même dénominateur

F =
n−1∑
k=0

1
X − ωk

Exercice 18 [ 02020 ] [correction]
Soient n ∈ N tel que n > 2 et p ∈ {0, 1, . . . , n− 1}. On pose pour
k ∈ {0, 1, . . . , n− 1}, ωk = exp

( 2ikπ
n

)
.

Mettre sous forme irréductible la fraction
n−1∑
k=0

ωpk
X − ωk

Exercice 19 [ 02021 ] [correction]
Soient n ∈ N? et z1, z2, . . . , zn ∈ C deux à deux distincts. On pose

Q =
n∏
k=1

(X − zk)

a) Pour p ∈ {0, 1, . . . , n− 1}, exprimer la décomposition en éléments simples de
Xp/Q à l’aide des Q′(zk).
b) En déduire, pour p ∈ {0, 1, . . . , n− 1}, la valeur de

n∑
k=1

zpk
Q′(zk)
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Exercice 20 [ 02022 ] [correction]
Soit P ∈ C [X] un polynôme scindé à racines simples x1, . . . , xn.
a) Former la décomposition en éléments simples de la fraction 1/P .
b) On suppose P (0) 6= 0. Observer

n∑
k=1

1
xkP ′(xk) = − 1

P (0)

Exercice 21 [ 02023 ] [correction]
Soit P ∈ C [X] un polynôme scindé à racines simples : x1, . . . , xn.
a) Former la décomposition en éléments simples de P ′′/P .
b) En déduire que

n∑
k=1

P ′′(xk)
P ′(xk) = 0

Exercice 22 [ 02372 ] [correction]
Soit P ∈ Rn [X] scindé à racines simples (x1, . . . , xn). Montrer

n∑
k=1

P ′′(xk)
P ′(xk) = 0

Exercice 23 [ 02024 ] [correction]
Soient a1, . . . , an ∈ C, deux à deux distincts, et α1, . . . , αn ∈ C, deux à deux
distincts, tels que

∀i, j ∈ {1, 2, . . . , n} , ai + αj 6= 0

Résoudre le système

x1

a1 + α1
+ x2

a2 + α1
+ · · ·+ xn

an + α1
= 1

x1

a1 + α2
+ x2

a2 + α2
+ · · ·+ xn

an + α2
= 1

...
x1

a1 + αn
+ x2

a2 + αn
+ · · ·+ xn

an + αn
= 1

Exercice 24 [ 03335 ] [correction]
Soit P (x) = a0 + a1x+ a2x

2 + · · ·+ anx
n un polynôme réel dont toutes les racines

sont réelles.
a) Montrer

∀x ∈ R, (P ′2 − PP ′′)(x) > 0

b) En déduire
∀k ∈ {1, . . . , n− 1} , ak−1ak+1 6 a2

k
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Corrections

Exercice 1 : [énoncé]
Si F est paire alors F (−X) = F (X) donc P (−X)Q(X) = P (X)Q(−X).
Q(X) | P (X)Q(−X) et P ∧Q = 1 donc Q(X) | Q(−X). De même Q(−X) | Q(X).
Or coeff(Q(X)) = 1 et coeff(Q(−X)) = (−1)n avec n = degQ.
Si n est pair alors Q(−X) = Q(X) puis P (−X) = P (X).
Si n est impair alors Q(−X) = −Q(X) puis P (−X) = −P (X).

Exercice 2 : [énoncé]
a) Ecrivons

P =
+∞∑
k=0

akX
k

avec (ak) suite de complexe nulle au-delà d’un certain rang.
La relation P (ωX) = P (X) donne

+∞∑
k=0

akω
kXk =

+∞∑
k=0

akX
k

puis
∀k ∈ N, akωk = ak

Par suite ak = 0 pour tout k 6= 0 [n]. En posant b` = an` et Q =
+∞∑̀
=0
b`X

` on

obtient
P (X) = Q(Xn)

b) La réduction au même dénominateur de la fraction

F =
n−1∑
k=0

X + ωk

X − ωk

donne
F = P

Xn − 1 avec degP = n

Comme F (ωX) = F (X) on obtient

P (ωX)
Xn − 1 = P (X)

Xn − 1

puis P (ωX) = P (X).

Par suite P est de la forme P = aXn + b.
En étudiant la partie entière de F on obtient a = n.
En étudiant la valeur de F en 0 on obtient b = n.
Par suite

F = n
Xn + 1
Xn − 1

Exercice 3 : [énoncé]
Soient P,Q ∈ C [X] tels que F = P/Q.
Le cas où P = 0 étant immédiat, supposons-le désormais exclu.
Posons p = degP et q = degQ et écrivons

P =
p∑
k=0

akX
k et Q =

q∑
`=0

b`X
`, ak, b` ∈ C

Considérons p+ q + 1 naturels n n’annulant pas Q. Pour chacun, la relation

P (n)− ynQ(n) = 0 avec F (n) = yn ∈ Q

définit une équation

a0 + na1 + · · ·+ npap − ynb0 − · · · − ynnqbq = 0

Le système formé par ses équations est compatible (dans C) et à coefficients
rationnels. Par application de la méthode de Gauss (par exemple), on peut
affirmer que ce système possède une solution rationnelle. Il existe donc

α0, α1, . . . , αp, β0, β1, . . . , βq ∈ Q

tels que pour

R =
p∑
k=0

αkX
k ∈ Q [X] et S =

q∑
`=0

β`X
` ∈ Q [X]

on ait
R(n)− ynS(n) = 0

pour chacun de p+ q + 1 naturels n initialement considéré. On a alors pour ces n,

P (n)S(n) = Q(n)R(n)

et donc le polynôme
PS −QR
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admet au moins p+ q + 1 racines.
Or

deg(PS −QR) 6 p+ q

donc
PS = QR

puis

F = R

S
∈ Q(X)

Exercice 4 : [énoncé]
Si F est solution alors degF 2 = 2 degF = 1 avec degF ∈ Z. C’est impossible.

Exercice 5 : [énoncé]
Supposons degF ′ < degF − 1. F = A

B et F ′ = A′B−AB′

B2 .
Si A ou B sont constants : c’est assez rapide
Sinon : degF ′ < degF − 1⇒ deg(A′B −AB′) < degA′B = degAB′ donc
coeff(A′B) = coeff(AB′) d’où degA = degB puis degF = 0.

Exercice 6 : [énoncé]
Soit V = {F ∈ K(X)/ degF < 0}. V ⊂ K(X), 0 ∈ V et ∀λ, µ ∈ K, ∀F,G ∈ V ,
deg(λF + µG) 6 max(degF,degG) < 0 donc λF + µG ∈ V . V est un sous-espace
vectoriel.
Clairement V ∩K [X] = {0}.
De plus ∀F ∈ K(X), F = P +G avec P = Ent(F ) ∈ K [X] et G ∈ V .

Exercice 7 : [énoncé]
Déterminons les racines communes à Xp − 1 et Xq − 1. Soit ω un telle racines.
On a ωp = ωq = 1. Puisque p et q sont premiers entre eux, il existe u, v ∈ Z tels
que pu+ qv = 1.
On a alors ω = ωpu+qv = (ωp)u(ωq)v = 1. Inversement, 1 est racine commune.
De plus, notons que toutes les racines de Xp − 1 et Xq − 1 sont simples.
Les racines de F sont les racines p ème de l’unité autres que 1. Elles sont simples.
Les pôles de F sont les racines q ème de l’unité autres que 1. Ils sont simples.
1 n’est ni pôle, ni racine.

Exercice 8 : [énoncé]
Notons P/Q le représentant irréductible de F .
a) Soit a zéro de multiplicité α > 1. On a P = (X − a)αP̂ avec P̂ (a) 6= 0 et
Q(a) 6= 0.

F ′ = (X − a)α−1(αP̂Q+ (X − a)P̂ ′Q− (X − a)P̂Q′)
Q2

a n’est pas racine de αP̂Q+ (X − a)P̂ ′Q− (X − a)P̂Q′, donc a est racine de
multiplicité α− 1 de F ′.
b) Soit a pôle de F de multiplicité α. On a P (a) 6= 0 et Q = (X − a)αQ̂ avec
Q̂(a) 6= 0.

F ′ = (X − a)P ′Q̂− αPQ̂− (X − a)PQ̂′

(X − a)α+1Q̂2

a n’est pas racine de (X − a)P ′Q̂− αPQ̂− (X − a)PQ̂′, donc a est pôle de
multiplicité α+ 1 de F ′.

Exercice 9 : [énoncé]
Par l’absurde, supposons qu’il existe F ∈ C(X) telle que F ′ = 1/X.
Notons P/Q son représentant irréductible. F ′ = 1/X donne

(P ′Q− PQ′)X = Q2

X divise Q2 donc 0 est racine de Q2 et donc a fortiori de Q. Posons α ∈ N? sa
multiplicité dans Q.
P et Q étant premier entre eux, 0 n’est pas racine de P .
0 est racine de multiplicité α− 1 de PQ′ et racine de multiplicité au moins α de
P ′Q donc 0 est racine de multiplicité exactement α− 1 de P ′Q− PQ′.
D’autre part 0 est racine de multiplicité 2α de Q2 = (P ′Q− PQ′)X.
Par égalité de multiplicité 2α = (α− 1) + 1 d’où α = 0. Absurde.

Exercice 10 : [énoncé]
a) X2+2X+5

X2−3X+2 = 1− 8
X−1 + 13

X−2
b) X2+1

(X−1)(X−2)(X−3) = 1
X−1 −

5
X−2 + 5

X−3
c) 1

X(X−1)2 = 1
X + 1

(X−1)2 − 1
X−1

d) 2X
X2+1 = 1

X−i + 1
X+i

e) 1
X2+X+1 = − i/

√
3

X−j + i/
√

3
X−j2

f) 4
(X2+1)2 = − 1

(X−i)2 − i
X−i −

1
(X+i)2 + i

X+i
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g) 3X−1
X2(X+1)2 = − 1

X2 + 5
X −

4
(X+1)2 − 5

(X+1)

h) 1
X4+X2+1 = (1−j)/6

X−j + (1−j2)/6
X−j2 − (1−j)/6

X+j −
(1−j2)/6
X+j2 .

i) En exploitant l’astuce F (j2X) = F (jX) = F (X) :
3

(X3−1)2 = 1/3
(X−1)2 − 2/3

(X−1) + j2/3
(X−j)2 − 2j/3

(X−j) + j/3
(X−j2)2 − 2j2/3

(X−j2) .

Exercice 11 : [énoncé]
La partie entière est nulle et 0, 1, . . . , n sont pôles simples.
On peut donc écrire

n!
X(X − 1)...(X − n) =

n∑
k=0

ak
(X − k)

avec

ak = n!
k(k − 1)...1.(−1) . . . (k − n) = (−1)n−k n!

k!(n− k)! = (−1)n−k
(
n

k

)

Exercice 12 : [énoncé]
Les pôles de cette fraction rationnelles sont simples et sont les racines n-ième de
l’unité ω0, . . . , ωn−1. Sachant que la fraction rationnelle est de degré strictement
négatif, sa partie entière est nulle et sa décomposition en éléments simples
cherchée s’écrit

Xn−1

Xn − 1 =
n−1∑
k=0

αk
X − ωk

La partie polaire
λ

X − a
d’un pôle simple a d’une fraction rationnelle P/Q s’obtient par la relation

λ = P (a)
Q′(a)

En effet, si Q(X) = (X − a)R(X) on a Q′(a) = R(a)
Ici

αk =
(

Xn−1

(Xn − 1)′

)
(ωk) = 1

n

et donc
Xn−1

Xn − 1 = 1
n

n−1∑
k=0

1
X − ωk

Exercice 13 : [énoncé]
a) On obtient

F = X + 1−X
X(X + 1) = 1

X
− 1
X + 1

b) Par télescopage

n∑
k=1

1
k(k + 1) =

n∑
k=1

1
k
− 1
k + 1 = 1− 1

n+ 1 = n

n+ 1

c) On a
1

X(X + 1)(X + 2) = 1/2
X
− 1
X + 1 + 1/2

X + 2
donc

n∑
k=1

1
k(k + 1)(k + 2) = 1

4 −
1

2n+ 2 + 1
2n+ 4

Exercice 14 : [énoncé]
Par décomposition en éléments simples

1
X(X2 + 1) = 1

X
− 1/2
X − i

− 1/2
(X + i)

et on sait (
1

X − a

)(n)
= (−1)nn!

(X − a)n+1

donc (
1

X(X2 + 1)

)(n)
= (−1)nn!

(
1

Xn+1 −
1/2

(X − i)n+1 −
1/2

(X + i)n+1

)

Exercice 15 : [énoncé]
a) La décomposition en éléments simples est

F = 1
2i

(
1

X − i
− 1
X + i

)
donc

F (n) = (−1)nn!
2i

(
1

(X − i)n+1 −
1

(X + i)n+1

)
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b) F (n) = Pn
(X2+1)n+1 avec

Pn = (−1)nn!
2i

(
(X + i)n+1 − (X − i)n+1) ∈ Cn [X]

Mais Pn = Pn donc Pn ∈ Rn [X].
c) Pour x ∈ R :

Pn(x) = 0⇔ (x+ i)n+1 = (x− i)n+1

⇔ ∃k ∈ {1, . . . , n} , x = cot
(

kπ

n+ 1

)
Cela fournit n racines réelles et il n’en peut y en avoir d’autres complexes.

Exercice 16 : [énoncé]
a) On remarque que F (−X) = F (X).
Si P (X)

(X−1)3 est la partie polaire de F en 1, alors −P (−X)
(X+1)3 est sa partie polaire en −1.

b) On obtient

1
(X − 1)3(X + 1)3 = 1/8

(X − 1)3 −
3/16

(X − 1)2 + 3/16
X − 1−

1/8
(X + 1)3 −

3/16
(X + 1)2 −

3/16
X + 1

c) En réduisant au même dénominateur

U = 1
16(2− 3(X − 1) + 3(X − 1)2) et V = − 1

16(2 + 3(X + 1) + 3(X + 1)2)

Exercice 17 : [énoncé]
La réduction au même dénominateur de F s’écrit

F = P

Xn − 1

avec degP < n.
∀k ∈ {0, . . . n− 1}, (

P (X)
nXn−1

)
(ωk) = 1

donc
P (ωk)− nωn−1

k = 0
Puisque P − nXn−1 ∈ Rn−1 [X] et possède n racines, c’est le polynôme nul.
Finalement

F = nXn−1

Xn − 1

Exercice 18 : [énoncé]
On a

n−1∑
k=0

ωpk
X − ωk

= P

Xn − 1 avec degP < n

De plus, par décomposition en éléments simples

P (ωk)
(Xn − 1)′(ωk) = ωpk

Par suite on a
P (ωk) = nωn−1

k ωpk = nωp−1
k

Ces n relations permettent de reconnaître P puisqu’on sait degP < n
On obtient :

P = nXp−1 si p > 1 ou P = nXn−1 si p = 0

Exercice 19 : [énoncé]
a) On a

Xp

Q
=

n∑
k=1

λk
X − zk

avec
λk =

zpk
Q′(zk)

b) En multipliant par X,
Xp+1

Q
=

n∑
k=1

λkX

X − zk

puis en remplaçant X par un réel de limite +∞, on obtient d’un côté
n∑
k=1

zp
k

Q′(zk) et

de l’autre 1 si p+ 1 = n et 0 sinon.

Exercice 20 : [énoncé]
a) On a

1
P

= 1
λ(X − x1) . . . (X − xn) =

n∑
i=1

λi
X − xi

avec
λi = 1

P ′(xi)
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b) En évaluant en 0
n∑
i=1

1
xiP ′(xi)

= − 1
P (0)

Exercice 21 : [énoncé]
a) On a

P ′′

P
= P ′′

λ(X − x1) . . . (X − xn) =
n∑
i=1

λi
X − xi

avec λi = P ′′(xi)
P ′(xi) .

b) Puisque deg XP ′′

P < 0 on a
n∑
i=1

λi = 0

Exercice 22 : [énoncé]
On a

P ′′

P
=

n∑
k=1

αk
X − xk

avec αk = P ′′(xk)
P ′(xk)

Sachant que
xP ′′(x)
P (x) −−−−−→

x→+∞
0

on obtient
n∑
k=1

P ′′(xk)
P ′(xk) = 0

Exercice 23 : [énoncé]
Considérons la fraction rationnelle

F (X) = 1−
n∑
i=1

xi
ai +X

La satisfaction du système équivaut aux équations

F (α1) = . . . = F (αn) = 0

En réduisant F au même dénominateur

F = P

Q
avec P unitaire, degP = n et Q =

n∏
i=1

(X + ai)

Les équations F (α1) = . . . = F (αn) = 0 signifient alors

P = (X − α1) . . . (X − αn)

La décomposition en éléments simples F donne alors

xi =
(−1)n

n∏
k=1

(αk + ai)
n∏

k=1,k 6=i
(ak − ai)

Exercice 24 : [énoncé]
a) En notant x1, . . . , xn les racines réelles de P , on a

P ′(x)
P (x) =

n∑
k=1

1
x− xk

En dérivant, on obtient

P (x)P ′′(x)− P ′(x)2

P (x)2 = −
n∑
k=1

1
(x− xk)2

ce qui permet de conclure.
b) Notons x1 < . . . < xp les racines réelles de P de multiplicités α1, . . . , αp ∈ N?.
Puisque P ne possède pas de racines complexes, on a

α1 + · · ·+ αp = degP

Par application du théorème de Rolle, P ′ possède une racine dans chacun des
intervalles ]x1, x2[ , . . . , ]xp−1, xp[ et de plus x1, . . . , xp sont racines de P ′ de
multiplicités α1 − 1, . . . , αp − 1 (en acceptant de dire qu’une racine de multiplicité
0, n’est pas racine). Puisque

p− 1 + (α1 − 1) + · · ·+ (αp − 1) = degP − 1 = degP ′

le polynôme P ′ ne possède pas de racines complexes. Il en est de même de
P ′′,P (3),. . .
En appliquant le résultat du a) à P (k−1) en x = 0, on obtient

((k)!ak)2 − ((k − 1)!ak−1) ((k + 1)!ak+1) > 0

puis l’inégalité voulue que le produit ak+1ak−1 soit positif ou non.
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