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Espaces vectoriels
Structure d’espace vectoriel

Exercice 1 [ 01680 ] [correction]
Soit E un R-espace vectoriel.
On munit le produit cartésien E × E de l’addition usuelle

(x, y) + (x′, y′) = (x+ x′, y + y′)

et de la multiplication externe par les complexes définie par

(a+ i.b).(x, y) = (a.x− b.y, a.y + b.x)

Montrer que E × E est alors un C-espace vectoriel.
Celui-ci est appelé complexifié de E.

Sous espaces vectoriels

Exercice 2 [ 01681 ] [correction]
Les parties suivantes sont-elles des sous-espaces vectoriels de R2 ?

a)
{

(x, y) ∈ R2 | x 6 y
}

b)
{

(x, y) ∈ R2 | xy = 0
}

c)
{

(x, y) ∈ R2 | x = y
}

d)
{

(x, y) ∈ R2 | x+ y = 1
}

e)
{

(x, y) ∈ R2 | x2 − y2 = 0
}

f)
{

(x, y) ∈ R2 | x2 + y2 = 0
}

Exercice 3 [ 01682 ] [correction]
Soient F =

{
(x, y, z) ∈ R3 | x+ y − z = 0

}
et

G = {(a− b, a+ b, a− 3b) | a, b ∈ R}.
a) Montrer que F et G sont des sous-espaces vectoriels de R3.
b) Déterminer F ∩G.

Exercice 4 [ 01683 ] [correction]
Les parties suivantes sont-elles des sous-espaces vectoriels de RN ?

a)
{

(un) ∈ RN | (un) bornée
}

b)
{

(un) ∈ RN | (un) monotone
}

c)
{

(un) ∈ RN | (un) convergente
}

d)
{

(un) ∈ RN | (un) arithmétique
}

Exercice 5 [ 01684 ] [correction]
Soit F =

{
(un) ∈ RN | ∀n ∈ N, un+2 = nun+1 + un

}
.

Montrer que F est un sous-espace vectoriel de RN.

Exercice 6 [ 01685 ] [correction]
Les parties de F(R,R) suivantes sont-elles des sous-espaces vectoriels ?

a) {f : R→ R | f est monotone} b) {f : R→ R | f s’annule en 0}
c) {f : R→ R | f s’annule} d) {f : R→ R | f est impaire}.

Exercice 7 [ 01686 ] [correction]
Montrer que les parties de F([a, b] ,R) suivantes sont des sous-espaces vectoriels :
a) F =

{
f ∈ C1([a, b] ,R) | f ′(a) = f ′(b)

}
b) G =

{
f ∈ C0([a, b] ,R) |

∫ b
a
f(t)dt = 0

}

Exercice 8 [ 01687 ] [correction]
Soit ω ∈ C. On note ω.R = {ωx | x ∈ R}.
Montrer que ω.R est un sous-espace vectoriel de C vu comme R-espace vectoriel.
A quelle condition ω.R est-il un sous-espace vectoriel de C vu comme C-espace
vectoriel ?

Exercice 9 [ 01688 ] [correction]
Soient u1, . . . , un des vecteurs d’un K-espace vectoriel E.
Montrer que l’ensemble F = {λ1u1 + · · ·+ λnun | λ1, . . . , λn ∈ K} est un
sous-espace vectoriel de E contenant les vecteurs u1, . . . , un.

Exercice 10 [ 01689 ] [correction]
Soient E = F(R,R), C l’ensemble des fonctions de E croissantes et

∆ = {f − g/f, g ∈ C}

Montrer que ∆ est un sous-espace vectoriel de E.

Exercice 11 [ 01690 ] [correction]
Démontrer que le sous-ensemble constitué des suites réelles périodiques est un
sous-espace vectoriel d’une structure que l’on précisera.
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Opérations sur les sous-espaces vectoriels

Exercice 12 [ 01691 ] [correction]
Soient F et G des sous-espaces vectoriels de E.
Montrer

F ∩G = F +G⇔ F = G

Exercice 13 [ 01693 ] [correction]
Soient F,G et H des sous-espaces vectoriels d’un K-espace vectoriel E. Montrer
que :
a) F ∩ (G+H) ⊃ (F ∩G) + (F ∩H)
b) F + (G ∩H) ⊂ (F +G) ∩ (F +H).

Exercice 14 [ 00160 ] [correction]
Soient F , G et H des sous-espaces vectoriels d’un K-espace vectoriel E.
Comparer :
a) F ∩ (G+H) et (F ∩G) + (F ∩H).
b) F + (G ∩H) et (F +G) ∩ (F +H).

Exercice 15 [ 01692 ] [correction]
Soient F et G deux sous-espaces vectoriels d’un K-espace vectoriel E.
Montrer que F ∪G est un sous-espace vectoriel de E si, et seulement si, F ⊂ G ou
G ⊂ F .

Exercice 16 [ 00161 ] [correction]
A quelle condition la réunion de deux sous-espaces vectoriels est-elle est un
sous-espace vectoriel ?

Exercice 17 [ 01694 ] [correction]
Soient F , G et H trois sous-espaces vectoriels d’un K-espace vectoriel E.
Montrer que

F ⊂ G⇒ F + (G ∩H) = (F +G) ∩ (F +H)

Exercice 18 [ 01695 ] [correction]
Soient F,G, F ′, G′ des sous-espaces vectoriels de E tels que F ∩G = F ′ ∩G′.
Montrer que

(F + (G ∩ F ′)) ∩ (F + (G ∩G′)) = F

Espaces engendrés par une partie

Exercice 19 [ 01696 ] [correction]
Comparer Vect(A ∩B) et Vect(A) ∩Vect(B).

Exercice 20 [ 01697 ] [correction]
Soient A et B deux parties d’un K-espace vectoriel E.
Montrer

Vect(A ∪B) = Vect(A) + Vect(B)

Exercice 21 [ 01625 ] [correction]
On considère les vecteurs de R3

u = (1, 1, 1) et v = (1, 0,−1)

Montrer
Vect(u, v) = {(2α, α+ β, 2β) | α, β ∈ R}

Exercice 22 [ 01626 ] [correction]
Dans R3, on considère x = (1,−1, 1) et y = (0, 1, a) où a ∈ R.
Donner une condition nécessaire et suffisante sur a pour que u = (1, 1, 2)
appartienne à Vect(x, y). Comparer alors Vect(x, y), Vect(x, u) et Vect(y, u).

Espaces supplémentaires

Exercice 23 [ 01698 ] [correction]
Soient F =

{
f ∈ C1(R,R) | f(0) = f ′(0) = 0

}
et G =

{
x 7→ ax+ b | (a, b) ∈ R2}.

Montrer que F et G sont des sous-espaces vectoriels supplémentaires de C1(R,R).

Exercice 24 [ 01699 ] [correction]
Soient F =

{
f ∈ C([−1, 1] ,C) |

∫ 1
−1 f(t) dt = 0

}
et

G = {f ∈ C([−1, 1] ,C) | f constante}.
Montrer que F et G sont des sous-espaces vectoriels supplémentaires de
C([−1, 1] ,C).
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Exercice 25 [ 01700 ] [correction]
Soient H = {(x1, x2, . . . , xn) ∈ Kn | x1 + x2 + · · ·+ xn = 0} et
u = (1, . . . , 1) ∈ Kn.
Montrer que H et Vect(u) sont des sous-espaces vectoriels supplémentaires de Kn.

Exercice 26 [ 01701 ] [correction]
Soient E = C([0, π] ,R), F = {f ∈ E | f(0) = f(π/2) = f(π)} et
G = Vect(sin, cos).
Montrer que F et G sont des sous-espaces vectoriels supplémentaires de E.

Exercice 27 [ 01702 ] [correction]
Soit F = {f ∈ F(R,R)/f(0) + f(1) = 0}.
a) Montrer que F est un sous-espace vectoriel.
b) Déterminer un supplémentaire de F dans F(R,R).

Familles de vecteurs

Exercice 28 [ 01627 ] [correction]
Les familles suivantes de vecteurs de R3 sont-elles libres ?
Si ce n’est pas le cas, former une relation linéaire liant ces vecteurs :
a) (x1, x2) avec x1 = (1, 0, 1) et x2 = (1, 2, 2)
b) (x1, x2, x3) avec x1 = (1, 0, 0), x2 = (1, 1, 0) et x3 = (1, 1, 1)
c) (x1, x2, x3) avec x1 = (1, 2, 1), x2 = (2, 1,−1) et x3 = (1,−1,−2)
d) (x1, x2, x3) avec x1 = (1,−1, 1), x2 = (2,−1, 3) et x3 = (−1, 1,−1).

Exercice 29 [ 01628 ] [correction]
On pose f1, f2, f3, f4 : [0, 2π]→ R les fonctions définies par :
f1(x) = cosx, f2(x) = x cosx, f3(x) = sin x et f4(x) = x sin x.
Montrer que la famille (f1, f2, f3, f4) est libre.

Exercice 30 [ 01629 ] [correction]
Pour tout entier 0 6 k 6 n, on pose fk : R→ R la fonction définie par
fk(x) = ek.x.
Montrer que la famille (fk)06k6n est une famille libre de F(R,R).

Exercice 31 [ 01630 ] [correction]
Soient E un K-espace vectoriel et ~x, ~y, ~z trois vecteurs de E tels que la famille
(~x, ~y, ~z) soit libre.
On pose

~u = ~y + ~z, ~v = ~z + ~x et ~w = ~x+ ~y

Montrer que la famille (~u,~v, ~w) est libre.

Exercice 32 [ 01631 ] [correction]
Soient E un K-espace vectoriel et (u1, . . . , un, un+1) une famille de vecteurs de E.
Etablir :
a) Si (u1, . . . , un) est libre et un+1 /∈ Vect(u1, ..., un) alors (u1, . . . , un, un+1) est
libre
b) Si (u1, . . . , un, un+1) est génératrice et un+1 ∈ Vect(u1, . . . , un) alors (u1, ..., un)
est génératrice.

Exercice 33 [ 01632 ] [correction]
Soit (~x1, . . . , ~xn) une famille libre de vecteurs de E et α1, . . . , αn ∈ K .
On pose

~u = α1.~x1 + · · ·+ αn.~xn et ∀1 6 i 6 n, ~yi = ~xi + ~u

A quelle condition sur les αi, la famille (~y1, . . . , ~yn) est-elle libre ?

Exercice 34 [ 01633 ] [correction]
Soit (e1, . . . , ep) une famille libre de vecteurs de E.
Montrer que pour tout a ∈ E\Vect(e1, . . . , ep), la famille (e1 + a, . . . , ep + a) est
libre.

Exercice 35 [ 02464 ] [correction]
Soit (a, b, c) ∈ R3. Les fonctions x 7→ sin(x+ a), x 7→ sin(x+ b) et x 7→ sin(x+ c)
sont-elles linéairement indépendantes ?

Exercice 36 [ 00167 ] [correction]
Pour a ∈ R, on note fa l’application de R vers R définie par fa(x) = |x− a|.
Montrer que la famille (fa)a∈R est une famille libre d’éléments de l’espace F(R,R)
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Exercice 37 [ 00168 ] [correction]
Pour a ∈ C, on note ea l’application de R vers C définie par ea(t) = exp(at).
Montrer que la famille (ea)a∈C est une famille libre d’éléments de l’espace F(R,C).

Exercice 38 [ 00169 ] [correction]
Pour a ∈ R+, on note fa l’application de R vers R définie par

fa(t) = cos(at)

Montrer que la famille (fa)a∈R+ est une famille libre d’éléments de l’espace de
F(R,R).

Exercice 39 [ 00171 ] [correction]
Soit E l’ensemble des applications f : [−1, 1]→ R continues telles que les
restrictions f|[−1,0] et f|[0,1] soient affines.
a) Montrer que E est un R-espace vectoriel.
b) Donner une base de E.

Exercice 40 [ 00170 ] [correction]
Soit (pn)n∈N? la suite strictement croissante des nombres premiers.
Montrer que la famille (ln pn)n∈N? est une famille libre du Q-espace vectoriel R.

Somme d’un nombre fini de sous-espaces

Exercice 41 [ 00190 ] [correction]
Soient F,G, F ′, G′ des sous-espaces vectoriels d’un K-espace vectoriel E vérifiant

F ⊕G = F ′ ⊕G′ = E et F ′ ⊂ G

Montrer
F ⊕ F ′ ⊕ (G ∩G′) = E

Exercice 42 [ 00217 ] [correction]
Soient n ∈ N et E = Rn [X].
Pour tout i ∈ [[0, n]], on note

Fi = {P ∈ E/∀j ∈ [[0, n]] \ {i} , P (j) = 0}

Montrer que les Fi sont des sous-espaces vectoriels et que

E = F0 ⊕ · · · ⊕ Fn

Exercice 43 [ 00220 ] [correction]
Pour d ∈ N, notons Hd l’ensemble formé des fonctions polynomiales de R2 vers R
homogènes de degré d i.e. pouvant s’écrire comme combinaison linéaire de
fonction monôme de degré d.
Montrer que (Hd)06d6n est une famille de sous-espaces vectoriels en somme
directe.

Exercice 44 [ 00221 ] [correction]
Soient E un K-espace vectoriel de dimension finie et F1, . . . , Fn des sous-espaces
vectoriels de E.
On suppose que E = F1 + · · ·+ Fn.
Montrer qu’il existe G1, . . . , Gn sous-espaces vectoriels tels que :

∀1 6 i 6 n,Gi ⊂ Fi et E = G1 ⊕ · · · ⊕Gn

Exercice 45 [ 00222 ] [correction]
Soient E1, . . . , En et F1, . . . , Fn sous-espaces vectoriels de E tel que Ei ⊂ Fi et

n
⊕
i=1

Ei =
n
⊕
i=1

Fi

Montrer que Ei = Fi.

Exercice 46 [ 03852 ] [correction]
Dans l’espace E des fonctions continues de [−1, 1] vers R, on considère les
sous-espaces vectoriels

F1 = {f ∈ E/f est constante} , F2 = {f ∈ E/∀t ∈ [−1, 0] , f(t) = 0}

et F3 = {f ∈ E/∀t ∈ [0, 1] , f(t) = 0}

Etablir
E = F1 ⊕ F2 ⊕ F3

Sous espaces affines

Exercice 47 [ 01727 ] [correction]
A quelle condition simple le sous-espace affine V = ~a+ F est-il un sous-espace
vectoriel ?
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Exercice 48 [ 01728 ] [correction]
Soient V = ~a+ F et W = ~b+G deux sous-espaces affines d’un R-espace vectoriel
E.
Montrer que

V ∩W 6= ∅ ⇔ ~b− ~a ∈ F +G

Exercice 49 [ 01729 ] [correction]
Soient V et W deux sous-espaces affines disjoints d’un R-espace vectoriel E.
Montrer qu’il existe deux sous-espaces affines V ′ et W ′, disjoints, de même
direction et contenant respectivement V et W .

L’espace des polynômes

Exercice 50 [ 02146 ] [correction]
Soient P1 = X2 + 1, P2 = X2 +X − 1 et P3 = X2 +X.
Montrer que la famille (P1, P2, P3) est une base de K2 [X].

Exercice 51 [ 02147 ] [correction]
Pour k ∈ {0, . . . , n}, on pose Pk = (X + 1)k+1 −Xk+1.
Montrer que la famille (P0, . . . , Pn) est une base de Kn [X].

Exercice 52 [ 02148 ] [correction]
Pour k ∈ {0, . . . , n}, on pose Pk = Xk(1−X)n−k.
Montrer que la famille (P0, . . . , Pn) est une base de Kn [X].

Exercice 53 [ 02149 ] [correction]
Pour k ∈ N, on pose

Pk = X(X − 1) . . . (X − k + 1)
k!

a) Montrer que la famille (P0, P1, . . . , Pn) est une base de Rn [X].
b) Montrer que

∀x ∈ Z,∀k ∈ N, Pk(x) ∈ Z

c) Trouver tous les polynômes P tels que

∀x ∈ Z, P (x) ∈ Z

Exercice 54 [ 02150 ] [correction]
Soit E l’espace vectoriel des applications de R dans R.
On considère F la partie de E constituée des applications de la forme :

x 7→ P (x) sin x+Q(x) cosx avec P,Q ∈ Rn [X]

a) Montrer que F un sous-espace vectoriel de E.
b) Montrer que F est de dimension finie et déterminer dimF .

Exercice 55 [ 02151 ] [correction]
Soient n ∈ N et A ∈ Kn [X] un polynôme non nul.
Montrer que F = {P ∈ Kn [X] /A | P} est un sous-espace vectoriel de Kn [X] et
en déterminer la dimension et un supplémentaire.

Exercice 56 [ 02665 ] [correction]
Montrer, pour tout n ∈ N, qu’il existe un unique Pn ∈ Rn+1 [X] tel que Pn(0) = 0
et Pn(X + 1)− Pn(X) = Xn.

Exercice 57 [ 01761 ] [correction]
a) Montrer que la famille (X + k)n pour k ∈ {0, . . . , n} constitue une base de
Rn [X].
b) Redémontrer la formule donnant l’expression du déterminant de Vandermonde
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Corrections

Exercice 1 : [énoncé]
Il est aisé de constater que l’addition sur E × E est commutative, associative,
possède un neutre (0E , 0E) et que tout élément est symétrisable dans (E × E,+),
le symétrique de (x, y) étant (−x,−y).
Ainsi (E × E,+) est un groupe abélien.
Soient λ, µ ∈ C et u, v ∈ E × E. On peut écrire λ = a+ ib, µ = a′ + i.b′ avec
a, b, a′, b′ ∈ R et u = (x, y), v = (x′, y′) avec x, y, x′, y′ ∈ E. On a

λ.(u+v) = (a+ib).(x+x′, y+y′) = (ax+ax′−by−by′, ay+ay′+bx+bx′) = λ.u+λ.v

(λ+µ).u = ((a+a′)+i(b+b′)).(x, y) = (ax+a′x−by−b′y, ay+a′y+bx+b′x) = λ.u+µ.u

λ.(µ.u) = (a+ib)(a′x−b′y, a′y+b′x) = ((aa′−bb′)x−(ab′+a′b)y, (aa′−bb′)y+(ab′+a′b)x) = (λµ).u

et
1.u = u

On peut donc conclure que (E × E,+, .) est un C-espace vectoriel.

Exercice 2 : [énoncé]
a) non : pas stable par multiplication scalaire : (0, 1) appartient mais pas −(0, 1)
b) non : pas stable par addition : (1, 0) + (0, 1)
c) oui
d) non : ne passe pas par (0, 0).
e) non : pas stable par addition : (1, 1) + (1,−1)
f) oui (c’est l’espace nul !)

Exercice 3 : [énoncé]
a) F ⊂ R3, ~o = (0, 0, 0) ∈ F car 0 + 0− 0 = 0 et pour tout λ, µ ∈ R, ~u,~v ∈ F , on
peut écrire ~u = (x, y, z) et ~v = (x′, y′, z′) avec x+ y − z = 0 et x′ + y′ − z′ = 0.
On a alors λ~u+ µ~v = (λx+ µx′, λy + µy′, λz + µz′) avec
(λx+ µx′) + (λy + µy′)− (λz + µz′) = λ(x+ y − z) + µ(x′ + y′ − z′) = 0 donc
λ~u+ µ~v ∈ F .
G ⊂ R3, ~o = (0, 0, 0) ∈ G car (0, 0, 0) = (a− b, a+ b, a− 3b) pour a = b = 0.
Pour tout λ, µ ∈ R, ~u,~v ∈ G, on peut écrire ~u = (a− b, a+ b, a− 3b) et
~v = (a′ − b′, a′ + b′, a′ − 3b′) avec a, b, a′, b′ ∈ R. On a alors
λ~u+ µ~v = . . . = (a′′ − b′′, a′′ + b′′, a′′ − 3b′′) avec a′′ = λa+ µa′ et b′′ = λb+ µb′

donc λ~u+ µ~v ∈ G. Finalement F et G sont des sous-espaces vectoriels de R3.

b) ~u = (x, y, z) ∈ F ∩G si, et seulement s’il existe a, b ∈ R tels que
x = a− b
y = a+ b

z = a− 3b
x+ y − z = 0

⇔


x = a− b
y = a+ b

z = a− 3b
a+ 3b = 0

⇔


x = −4b
y = −2b
z = −6b
a = −3b

Ainsi F ∩G = {(−4b,−2b,−6b)/b ∈ R} = {(2c, c, 3c)/c ∈ R}.

Exercice 4 : [énoncé]
a) oui
b) non
c) oui
d) oui.

Exercice 5 : [énoncé]
F ⊂ RN, 0 = (0)n∈N ∈ F car ∀n ∈ N, 0 = n.0 + 0.
Soient λ, µ ∈ R et (un), (vn) ∈ F . On a

λ(un) + µ(vn) = (λun + µvn)

avec pour tout n ∈ N,

λun+2 +µvn+2 = λ(nun+1 +un) +µ(nvn+1 + vn) = n(λun+1 +µvn+1) +λun +µvn

donc λ(un) + µ(vn) ∈ F .
Ainsi F est un sous-espace vectoriel de RN.

Exercice 6 : [énoncé]
a) non
b) oui
c) non
d) oui.

Exercice 7 : [énoncé]
a) F ⊂ F([a, b] ,R) et 0̃ ∈ F .
Soient λ, µ ∈ R et f, g ∈ F . La fonction λf + µg est de classe C1 sur [a, b] et

(λf + µg)′(a) = λf ′(a) + µg′(b) = λf ′(b) + µg′(b) = (λf + µg)′(b)
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donc λf + µg ∈ F .
b) G ⊂ F([a, b] ,R) et 0̃ ∈ G.
Soient λ, µ ∈ R et f, g ∈ G. La fonction λf + µg est continue sur [a, b] et∫ b

a

(λf + µg)(t)dt = λ

∫ b

a

f(t)dt+ µ

∫ b

a

g(t)dt = 0

donc λf + µg ∈ G.

Exercice 8 : [énoncé]
ωR ⊂ C et 0 ∈ ωR car 0 = ω × 0.
Soient λ, µ ∈ R et z, z′ ∈ ω.R on peut écrire z = ωx et z′ = ωx′ avec x, x′ ∈ R et
on a (λz + µz′) = ω(λ.x+ µx′) avec λx+ µx′ ∈ R donc λz + µz′ ∈ ωR.
Ainsi ωR est un sous-espace vectoriel du R-espace vectoriel C.
Si ωR est un sous-espace vectoriel du C-espace vectoriel C alors puisque
ω = ω × 1 ∈ ωR et i ∈ C, on a i.ω ∈ ωR. Cela n’est possible que si ω = 0.
Inversement, si ω = 0 alors ωR = {0} est un sous-espace vectoriel du C-espace
vectoriel C.

Exercice 9 : [énoncé]
F ⊂ E et 0E ∈ F car

0E = 0.u1 + · · ·+ 0.un
Soient α, β ∈ K et x, y ∈ F . On peut écrire

x = λ1u1 + · · ·+ λnu et y = µ1u1 + · · ·+ µnun

avec λi, µi ∈ K. On a alors

αx+ βy = (αλ1 + βµ1)u1 + · · ·+ (αλn + βµn)un

avec αλi + βµi ∈ K donc αx+ βy ∈ F . Ainsi F est un sous-espace vectoriel de E.
De plus

∀i ∈ {1, . . . , n} , ui = λ1u1 + · · ·+ λnun

avec
λj = δi,j =

{
1 si i = j
0 sinon

Ainsi ui ∈ F .

Exercice 10 : [énoncé]
∆ ⊂ E. 0 = 0− 0 avec 0 ∈ C donc 0 ∈ ∆.
Soient h, h′ ∈ ∆. On peut écrire h = f − g et h′ = f ′ − g′ avec f, g, f ′, g′ ∈ C. On a
alors h+ h′ = (f + f ′)− (g + g′) avec (f + f ′), (g + g′) ∈ C.
Soit h ∈ ∆. On peut écrire h = f − g avec f, g ∈ C.
∀λ > 0, on a λh = λf − λg avec λf, λg ∈ C.
∀λ < 0, on a λh = (−λ)g − (−λf) avec (−λ)g, (−λ)f ∈ C.
Dans les deux cas λh ∈ ∆.

Exercice 11 : [énoncé]
Montrons que l’ensemble F étudié est un sous-espace vectoriel de l’ensemble E
des suites réelles.
Assurément F ⊂ E. La suite nulle est périodique donc 0 ∈ F . Pour u, v ∈ F et
λ, µ ∈ R, on peut affirmer que λu+ µv est TT ′ périodique en notant T et T ′ des
périodes non nulles de u et v. Ainsi λu+ µv ∈ F .

Exercice 12 : [énoncé]
(⇐) ok
(⇒) Supposons F ∩G = F +G. F ⊂ F +G = F ∩G ⊂ G et de même G ⊂ F et
F = G.

Exercice 13 : [énoncé]
a) Soit ~u ∈ (F ∩G) + (F ∩H), on peut écrire ~u = ~x+ ~y avec ~x ∈ F ∩G et
~y ∈ F ∩H.
On a donc ~u = ~x+ ~y ∈ F car ~x, ~y ∈ F et ~u = ~x+ ~y ∈ G+H car ~x ∈ G et ~y ∈ H.
Ainsi ~u ∈ F ∩ (G+H).
b) Soit ~u ∈ F + (G ∩H), on peut écrire ~u = ~x+ ~y avec ~x ∈ F et ~y ∈ G ∩H.
On a donc ~u ∈ F +G car ~x ∈ F et ~y ∈ G et aussi ~u ∈ F +H car ~x ∈ F et ~y ∈ H.
Ainsi ~u ∈ (F +G) ∩ (F +H).

Exercice 14 : [énoncé]
a) Soit x ∈ (F ∩G) + (F ∩H), on peut écrire x = u+ v avec u ∈ F ∩G et
v ∈ F ∩H.
Comme u, v ∈ F on a x ∈ F et comme u ∈ G et v ∈ H on a u+ v ∈ G+H.
Par suite (F ∩G) + (F ∩H) ⊂ F ∩ (G+H).
L’égalité n’est pas possible, prendre F,G,H trois droites distinctes d’un même
plan.
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b) Soit x ∈ F + (G ∩H), on peut écrire x = u+ v avec u ∈ F et v ∈ G ∩H.
Comme u ∈ F et v ∈ G on a x ∈ F +G et de même x ∈ F +H donc
x ∈ (F +G) ∩ (F +H).
L’égalité n’est pas possible, prendre à nouveau trois droites distinctes d’un même
plan.

Exercice 15 : [énoncé]
Par contraposée, si F 6⊂ G et G 6⊂ F alors il existe x ∈ F tel que x /∈ G et il existe
y ∈ G tel que y /∈ F .
x+ y /∈ F car

x+ y ∈ F ⇒ y = (x+ y)− x ∈ F

ce qui est exclu.
x+ y /∈ G car

x+ y ∈ G⇒ x = (x+ y)− y ∈ G

ce qui est exclu.
Ainsi, on a x, y ∈ F ∪G et x+ y /∈ F ∪G.
Puisque F ∪G n’est pas stable pour l’addition, ce n’est pas un sous-espace
vectoriel de E.

Exercice 16 : [énoncé]
Soient F et G deux sous-espaces vectoriels d’un K-espace vectoriel E.
Si F ⊂ G ou G ⊂ F alors F ∪G vaut F ou G et est évidemment un sous-espace
vectoriel de E.
Inversement, supposons que F ∪G soit un sous-espace vectoriel de E et F 6⊂ G.
Il existe x ∈ F tel que x /∈ G. Pour tout y ∈ G, x+ y ∈ F ∪G par stabilité du
sous-espace vectoriel F ∪G. Si x+ y ∈ G alors x = (x+ y)− y ∈ G ce qui est
exclu. Il reste x+ y ∈ F et alors y = (x+ y)− x ∈ F . Ainsi G ⊂ F .

Exercice 17 : [énoncé]
F + (G ∩H) ⊂ F +G et F + (G ∩H) ⊂ F +H donc
F + (G ∩H) ⊂ (F +G) ∩ (F +H).
Supposons de plus F ⊂ G.
Soit ~x ∈ (F +G) ∩ (F +H). On a ~x ∈ F +G = G et ~x = ~u+ ~v avec ~u ∈ F et
~v ∈ H.
~v = ~x− ~u ∈ G donc ~v ∈ G ∩H puis x ∈ F + (G ∩H).

Exercice 18 : [énoncé]
⊃ : ok
Soit ~x ∈ (F + (G ∩ F ′)) ∩ (F + (G ∩G′)).
On peut écrire ~x = ~u+ ~v avec ~u ∈ F et ~v ∈ G ∩ F ′ et ~x = ~u′ + ~v′ avec ~u′ ∈ F et
~v′ ∈ G ∩G′.
~u− ~u′ = ~v′ − ~v ∈ F ∩G = F ′ ∩G′. ~v = −(~v′ − ~v) + ~v′ ∈ G′ donc
~v ∈ G ∩ F ′ ∩G′ = F ∩G ⊂ F puis ~x = ~u+ ~v ∈ F . Ainsi
(F + (G ∩ F ′)) ∩ (F + (G ∩G′)) ⊂ F puis l’égalité

Exercice 19 : [énoncé]
A∩B ⊂ Vect(A)∩Vect(B) et Vect(A)∩Vect(B) est un sous-espace vectoriel donc

Vect(A ∩B) ⊂ Vect(A) ∩Vect(B)

L’inclusion réciproque n’est pas vraie : prendre A = {u} et B = {2u} avec u 6= 0E

Exercice 20 : [énoncé]
Vect(A) + Vect(B) est un sous-espace vectoriel de E.
Vect(A) + Vect(B) contient Vect(A) et Vect(B) donc contient A et B.
Ainsi Vect(A) + Vect(B) est un sous-espace vectoriel de E contenant A ∪B donc
Vect(A) + Vect(B) contient Vect(A ∪B).
Inversement, A ⊂ A ∪B donc Vect(A) ⊂ Vect(A ∪B). De même
Vect(B) ⊂ Vect(A ∪B).
Par suite Vect(A) + Vect(B) ⊂ Vect(A ∪B).
Par double inclusion, l’égalité.

Exercice 21 : [énoncé]
On peut écrire

{(2α, α+ β, 2β) | α, β ∈ R} = Vect(x, y)

avec x = (2, 1, 0) et y = (0, 1, 2).
On a u = 1

2 (x+ y) et v = 1
2 (x− y) donc u, v ∈ Vect(x, y) puis

Vect(u, v) ⊂ Vect(x, y).
Aussi x = u+ v et y = u− v donc x, y ∈ Vect(u, v) puis Vect(x, y) ⊂ Vect(u, v).
Par double inclusion l’égalité.
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Exercice 22 : [énoncé]
On a

u = λx+ µy ⇔


λ = 1
−λ+ µ = 1
λ+ aµ = 2

⇔


λ = 1
µ = 2
a = 1/2

Ainsi
u ∈ Vect(x, y)⇔ a = 1/2

et alors u = x+ 2y.
x, u ∈ Vect(x, y) donc Vect(x, u) ⊂ Vect(x, y).
x, y ∈ Vect(y, u) donc Vect(x, y) ⊂ Vect(y, u).
y, u ∈ Vect(x, u) donc Vect(y, u) ⊂ Vect(x, u).
Finalement les trois espaces sont égaux.

Exercice 23 : [énoncé]
F ⊂ C1(R,R) et õ ∈ F .
Soient λ, µ ∈ R et f, g ∈ F ,

(λf + µg)(0) = λf(0) + µg(0) = 0

et
(λf + µg)′(0) = λf ′(0) + µg′(0) = 0

donc λf + µg ∈ F .
G ⊂ C1(R,R) et õ ∈ G (en prenant a = b = 0).
Soient λ, µ ∈ R et f, g ∈ G, il existe a, b, c, d ∈ R tels que

∀x ∈ R, f(x) = ax+ b et g(x) = cx+ d

et on a alors
(λf + µg)(x) = ex+ f

avec
e = λa+ µc ∈ R et f = λb+ µd ∈ R

donc λf + µg ∈ G.
Soit h ∈ F ∩G. Il existe a, b ∈ R tels que

∀x ∈ R, h(x) = ax+ b

car h ∈ G. Or h ∈ F donc h(0) = b = 0 et h′(0) = a = 0 puis h(x) = 0 i.e. h = õ.
Ainsi

F ∩G =
{

0̃
}

Soit h ∈ C1(R,R). Posons a = h′(0) ∈ R, b = h(0), g : x 7→ ax+ b et f = h− g.
Clairement g ∈ G et h = f + g.
De plus f(0) = h(0)− b = 0 et f ′(0) = h′(0)− a = 0 donc f ∈ F .
Ainsi

F +G = C1(R,R)

Finalement, F et G sont supplémentaires dans C1(R,R).

Exercice 24 : [énoncé]
F ⊂ C([−1, 1] ,C) et 0̃ ∈ F car

∫ 1
−1 0dt = 0.

Soient λ, µ ∈ C et f, g ∈ F , on a∫ 1

−1
(λf + µg)(t)dt = λ

∫ 1

−1
f(t)dt+ µ

∫ 1

−1
g(t)dt = 0

donc λf + µg ∈ F .
G ⊂ C([−1, 1] ,R) et 0̃ ∈ G car c’est une fonction constante.
Soient λ, µ ∈ C et f, g ∈ G. On a λf + µg ∈ G car il est clair que c’est une
fonction constante.
Soit h ∈ F ∩G. On a h constante car h ∈ G. Posons C la valeur de cette constante.
Puisque h ∈ F , on a ∫ 1

−1
h(t)dt =

∫ 1

−1
C dt = 2C = 0

et donc h = 0̃. Ainsi
F ∩G =

{
0̃
}

Soit h ∈ C([−1, 1] ,C). Posons C =
∫ 1
−1 h(t)dt, g la fonction constante égale à 1

2C
et f = h− g.
Clairement g ∈ G et f + g = h. De plus

∫ 1
−1 f(t)dt =

∫ 1
−1 h(t)dt− C = 0 donc

f ∈ F .
Ainsi

F +G = C([−1, 1] ,C)

Finalement F et G sont supplémentaires dans C([−1, 1] ,C).

Exercice 25 : [énoncé]
H ⊂ Kn, ~o = (0, . . . , 0) ∈ H car 0 + · · ·+ 0 = 0.
Soient λ, µ ∈ K et x = (x1, . . . , xn) ∈ H, ~y = (y1, . . . , yn) ∈ H. On a

λx+ µ~y = (λx1 + µy1, . . . , λxn + µyn)
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avec

(λx1 + µy1) + · · ·+ (λxn + µyn) = λ(x1 + · · ·+ xn) + µ(y1 + · · ·+ yn) = 0

donc λx+ µ~y ∈ H.
Vect(u) = Ku est un sous-espace vectoriel.
Soit v ∈ H ∩Vect(u). On peut écrire v = λu = (λ, . . . , λ) car v ∈ Vect(u).
Or v ∈ H donc λ+ · · ·+ λ = 0 d’où λ = 0 et donc v = 0E . Ainsi

H ∩Vect(u) = {0E}

Soit v = (v1, . . . , vn) ∈ Kn. Posons λ = 1
n (v1 + · · ·+ vn), ~y = λu et x = v − ~y.

Clairement x+ ~y = v, ~y ∈ Vect(u). De plus x = (x1, . . . , xn) avec
x1 + · · ·+ xn = (v1 − λ) + · · ·+ (vn − λ) = (v1 + · · ·+ vn)− nλ = 0 donc x ∈ H.
Ainsi

H + Vect(u) = Kn

Finalement H et Vect(u) sont supplémentaires dans Kn.

Exercice 26 : [énoncé]
F et G sont clairement des sous-espaces vectoriels de E.
Soit f ∈ F ∩G. On peut écrire f = λ. sin +µ. cos.
De plus f(0) = f(π/2) = f(π) donne : µ = λ = −µ d’où λ = µ = 0 puis f = 0.
Soit f ∈ E. Posons λ = 2f(π/2)−f(0)−f(π)

2 , µ = f(0)−f(π)
2 , h = λ sin +µ cos et

g = f − h.
On a f = g + h avec g ∈ F et h ∈ G.
Ainsi F et G sont supplémentaires dans E.

Exercice 27 : [énoncé]
a) sans peine
b) L’ensemble des fonctions constantes convient.

Exercice 28 : [énoncé]
a) oui b) oui c) non x3 = x2 − x1 d) non x3 = −x1.

Exercice 29 : [énoncé]
Supposons

af1 + bf2 + cf3 + df4 = 0

On a
∀x ∈ [0, 2π] , (a+ bx) cosx+ (c+ dx) sin x = 0

Pour x = 0 et x = π on obtient le système :{
a = 0
a+ bπ = 0

d’où a = b = 0.
Pour x = π

2 et x = 3π
2 on obtient le système{

c+ dπ/2 = 0
c+ 3dπ/2 = 0

d’où c = d = 0.
Finalement la famille étudiée est libre.

Exercice 30 : [énoncé]
Supposons λ0f0 + · · ·+ λnfn = 0.
On a

∀x ∈ R, λ0 + λ1ex + · · ·+ λnenx = 0
Quand x→ −∞, en passant la relation ci-dessus à la limite, on obtient λ0 = 0.
On a alors

∀x ∈ R, λ1ex + · · ·+ λnenx = 0
donc

λ1 + λ2ex + · · ·+ λne(n−1)x = 0
En reprenant la démarche ci-dessus, on obtient λ1 = 0, puis de même
λ2 = . . . = λn = 0.

Exercice 31 : [énoncé]
Supposons α~u+ β~v + γ ~w = ~0. On a

(β + γ)~x+ (α+ γ)~y + (β + α)~z = ~0

Or la famille (~x, ~y, ~z) est libre donc
β + γ = 0
α+ γ = 0
α+ β = 0

Après résolution α = β = γ = 0.
Finalement, la famille étudiée est libre.
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Exercice 32 : [énoncé]
a) Supposons λ1u1 + · · ·+ λnun + λn+1un+1 = 0E .
Si λn+1 6= 0 alors un+1 = µ1u1 + · · ·+ µnun avec µi = −λi/λn+1. Ceci est exclu
car un+1 /∈ Vect(u1, ..., un).
Il reste λn+1 = 0 et on a alors λ1u1 + · · ·+ λnun = 0E donc λ1 = . . . = λn = 0 car
(u1, . . . , un) est libre.
b) Soit x ∈ E. On peut écrire x = λ1u1 + · · ·+ λnun + λn+1un+1 car
(u1, . . . , un, un+1) génératrice.
Or on peut écrire un+1 = µ1u1 + · · ·+ µnun car un+1 ∈ Vect(u1, . . . , un), on a
donc x = ν1u1 + · · ·+ νnun avec νi = λi + λn+1µi. Ainsi x ∈ Vect(u1, . . . , un).
Finalement (u1, ..., un) est génératrice.

Exercice 33 : [énoncé]
Supposons λ1~y1 + · · ·+ λn~yn = ~0. On a
(λ1 + α1(λ1 + · · ·+ λn)).~x1 + · · ·+ (λn + αn(λ1 + · · ·+ λn)).~xn = ~0 donc

(λ1 + α1(λ1 + · · ·+ λn)) = 0
...

(λn + αn(λ1 + · · ·+ λn)) = 0

En sommant les équations on obtient :

(λ1 + · · ·+ λn)(1 + (α1 + · · ·+ αn)) = 0

Si α1 + · · ·+ αn 6= −1 alors λ1 + · · ·+ λn = 0 puis par le système
λ1 = · · · = λn = 0.
Si α1 + · · ·+ αn = −1 alors α1~y1 + · · ·+ αn~yn = ~o.
Finalement (~y1, . . . , ~yn) est libre si, et seulement si, α1 + · · ·+ αn 6= −1.

Exercice 34 : [énoncé]
Supposons

λ1(e1 + a) + · · ·+ λp(ep + a) = 0E
On a λ1e1 + · · ·+ λpep = −(λ1 + · · ·+ λp).a.
Si λ1 + · · ·+ λp 6= 0 alors

a = −λ1e1 + · · ·+ λpep
λ1 + · · ·+ λp

∈ Vect(e1, . . . , ep)

C’est exclu.
Si λ1 + · · ·+ λp = 0 alors λ1e1 + · · ·+ λpep = 0E puis λ1 = . . . = λp = 0.

Exercice 35 : [énoncé]
Non car ces trois fonctions sont combinaisons linéaires des deux suivantes

x 7→ sin x et x 7→ cosx

Exercice 36 : [énoncé]
Soient a1, . . . , an ∈ R des réels deux à deux distincts. Supposons
λ1fa1 + · · ·+ λnfan

= 0. Pour tout i ∈ {1, . . . , n}, si λi 6= 0 alors
λ1fa1 + · · ·+ λnfan n’est pas dérivable en ai alors que la fonction nulle l’est.
Nécessairement λi = 0 et la famille étudiée est donc libre.

Exercice 37 : [énoncé]
Montrons que toute sous-famille finie à n éléments de (ea)a∈C est libre.
Par récurrence sur n > 1. Pour n = 1 : ok Supposons la propriété établie au rang
n > 1.
Soient a1, . . . , an+1 complexes distincts et supposons λ1ea1 + · · ·+ λn+1ean+1 = 0
(1). En dérivant cette relation :
a1λ1ea1 + · · ·+ an+1λn+1ean+1 = 0 (2). La combinaison linéaire an+1(1)− (2)
donne λ1(an+1 − a1)ea1 + · · ·+ λn(an+1 − an)ean

= 0. Par hypothèse de
récurrence et en exploitant que les ai sont deux à deux distincts, on obtient
λ1 = . . . = λn = 0 puis ensuite aisément λn+1 = 0. Récurrence établie.

Exercice 38 : [énoncé]
Montrons que toute sous-famille finie à n éléments de (fa)a∈R+ est libre.
Par récurrence sur n > 1.
Pour n = 1 : ok
Supposons la propriété établie au rang n > 1.
Soient a1, . . . , an+1 des réels positifs distincts et supposons

λ1fa1 + · · ·+ λn+1fan+1 = 0 (1)

En dérivant 2 fois cette relation :

a2
1λ1fa1 + · · ·+ a2

n+1λn+1fan+1 = 0 (2)

La combinaison a2
n+1(1)− (2) donne

λ1(a2
n+1 − a2

1)fa1 + · · ·+ λn(a2
n+1 − a2

n)fan
= 0

Par hypothèse de récurrence et en exploitant que les a2
i sont deux à deux distincts,

on obtient λ1 = . . . = λn = 0 puis ensuite aisément λn+1 = 0. Récurrence établie.
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Exercice 39 : [énoncé]
a) E est un sous-espace vectoriel de C([−1, 1] ,R).
b) x 7→ 1, x 7→ x et x 7→ |x| forment une base de E.

Exercice 40 : [énoncé]
Supposons

λ1 ln p1 + · · ·+ λn ln pn = 0 avec λk ∈ Q

En réduisant au même dénominateur on parvient à

a1 ln p1 + · · ·+ an ln pn = 0 avec ak ∈ Z

puis
ln
∏
k

pak

k = 0

et enfin ∏
k/ak>0

pak

k =
∏

k/ak<0

p−ak

k

L’unicité de la décomposition primaire d’un entier permet alors de conclure
ak = 0 pour tout k ∈ {1, . . . , n}.

Exercice 41 : [énoncé]
Supposons x+ x′ + y = 0 avec x ∈ F , x′ ∈ F ′ et y ∈ G ∩G′.
Puisque x′ ∈ F ′ ⊂ G et y ∈ G ∩G′ ⊂ G, on a x′ + y ∈ G.
Or F et G sont en somme directe donc x+ (x′ + y) = 0 avec x ∈ F et x′ + y ∈ G
entraîne x = 0 et x′ + y = 0.
Sachant x′ + y = 0 avec x ∈ F ′, y ∈ G′ et F ′, G′ en somme directe, on a
x′ = y = 0.
Finalement x = x′ = y = 0 et on peut affirmer que les espaces F, F ′ et G∩G′ sont
en somme directe.
Soit a ∈ E. Puisque E = F ⊕G, on peut écrire a = x+ b avec x ∈ F et b ∈ G.
Sachant E = F ′ ⊕G′, on peut écrire b = x′ + y avec x′ ∈ F ′ et y ∈ G′.
Or y = b− x′ avec b ∈ G et x′ ∈ F ′ ⊂ G donc y ∈ G et ainsi y ∈ G ∩G′.
Finalement, on obtient a = x+ x′ + y avec x ∈ F , x′ ∈ F ′ et y ∈ G ∩G′.
On peut conclure E ⊂ F ⊕ F ′ ⊕ (G ∩G′) puis E = F ⊕ F ′ ⊕ (G ∩G′).

Exercice 42 : [énoncé]
Les Fi sont clairement des sous-espaces vectoriels.
Supposons P0 + · · ·+ Pn = 0 avec Pi ∈ Fi.

Pi possède par définition n racines et (P0 + · · ·+ Pn)(i) = 0 donc Pi(i) = 0 ce qui
fournit une n+ 1ème racine. Par suite Pi = 0 car degPi 6 n.
Soit P ∈ E.
Analyse : Supposons P = P0 + · · ·+ Pn avec Pi ∈ Fi.
On a P (i) = Pi(i) car Pj(i) = 0 pour j 6= i.
Par suite

Pi = P (i)
n∏

j=0,j 6=i

(X − j)
(i− j)

Synthèse : Les Pi précédemment proposés conviennent car
Pi ∈ Fi par construction et P = P0 + · · ·+ Pn puisque P − (P0 + · · ·+ Pn) est le
polynôme nul car de degré 6 n et possédant au moins n+ 1 racines : 0, 1, . . . , n.

Exercice 43 : [énoncé]
Hd est définit comme le sous-espace vectoriel engendré par les monômes de degré
d, c’est donc un sous-espace vectoriel. Si

n∑
k=0

Pk = 0 avec Pk ∈ Hk alors l’unicité

de l’écriture d’un polynôme en somme de monôme permet de conclure Pk = 0
pour tout k ∈ {0, . . . , n}. La famille (Hd)06d6n est donc bien une famille de
sous-espaces vectoriels en somme directe.

Exercice 44 : [énoncé]
Posons G1 = F1, G2 le supplémentaire de G1 ∩ F2 dans F2, et plus généralement
Gi le supplémentaire de (G1 ⊕ · · · ⊕Gi−1) ∩ Fi dans Fi.
Les Gi existent, ce sont des sous-espaces vectoriels, Gi ⊂ Fi et G1 ⊕ · · · ⊕Gn.
Soit x ∈ E. On peut écrire x =

n∑
i=1

xi avec xi ∈ Fi.

Or xi = yi1 + · · ·+ yii avec yij ∈ Gj car Fi = ((G1 ⊕ · · · ⊕Gi−1) ∩ Fi)⊕Gi.

Par suite x = z1 + · · ·+ zn avec zk =
n∑̀
=k
y`k ∈ Gk. Par suite E = G1 ⊕ · · · ⊕Gn.

Exercice 45 : [énoncé]
Soit x ∈ Fi.
Puisque a x ∈

n
⊕
i=1

Fi =
n
⊕
i=1

Ei, on peut écrire x = x1 + · · ·+ xn avec xi ∈ Ei.
On a alors

x1 + · · ·+ (xi − x) + · · ·+ xn = 0E
avec x1 ∈ F1,. . . , xi − x ∈ Fi,. . . , xn ∈ Fn.
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Or les espaces F1, . . . , Fn sont en somme directe, donc les vecteurs précédents sont
nuls et en particulier

x = xi ∈ Ei

Exercice 46 : [énoncé]
Supposons

f1 + f2 + f3 = 0 avec fi ∈ Fi
En évaluant en 0, on obtient f1 = 0.
En évaluant en t ∈ ]0, 1], on obtient f2(t) = 0 et donc f2 = 0 puis f2 est aussi
nulle sur [−1, 0].
En évaluant en t ∈ [−1, 0[, on obtient f3(t) = 0 et donc f3 = 0.
On peut donc affirmer que les espaces F1, F2 et F3 sont en somme directe.
Soit f ∈ E. Posons

f1 : t 7→ f(0)

f2 : t 7→
{
f(t)− f(0) si t ∈ ]0, 1]
0 si t ∈ [−1, 0]

et
f3 : t 7→

{
0 si t ∈ [0, 1]
f(t)− f(0) si t ∈ [−1, 0[

Les fonctions f1, f2, f3 sont continues et l’on observe

f = f1 + f2 + f3 avec fi ∈ Fi

On peut alors conclure
E = F1 ⊕ F2 ⊕ F3

Exercice 47 : [énoncé]
Si ~a ∈ F alors V = ~a+ F = F est un sous-espace vectoriel.
Inversement, si V est un sous-espace vectoriel alors ~o ∈ V donc il existe ~b ∈ F tel
que ~o = ~a+~b.
On a alors ~a = −~b ∈ F . La condition cherchée et ~a ∈ F .

Exercice 48 : [énoncé]
(⇒) Supposons V ∩W 6= ∅. Soit ~x ∈ V ∩W . On peut écrire ~x = ~a+ ~u = ~b+ ~v
avec ~u ∈ F et ~v ∈ G.
On a alors ~b− ~a = ~u+ (−~v) ∈ F +G.
(⇐) Inversement, si ~b−~a ∈ F +G alors on peut écrire ~b−~a = ~u+ ~v avec ~u ∈ F et
~v ∈ G.
On alors ~x = ~a+ ~u = ~b− ~v ∈ V ∩W .

Exercice 49 : [énoncé]
V = ~a+ F , W = ~b+G.
Posons V ′ = ~a+ (F +G) et W ′ = ~b+ (F +G).
V ′ et W ′ sont deux sous-espaces affines de même direction contenant
respectivement F et G.
Si V ′ ∩W ′ 6= ∅. Considérons ~x ∈ V ′ ∩W ′.
On peut écrire ~x = ~a+ (~u+ ~v) = ~b+ (~u′ + ~v′) avec ~u, ~u′ ∈ F et ~v,~v′ ∈ G.
On a alors ~a+ (~u− ~u′) = b+ (~v′ − ~v) ∈ V ∩W ce qui est exclu car V et W
disjoints.
Ainsi V ′ et W ′ sont disjoints.

Exercice 50 : [énoncé]
Supposons λ1P1 + λ2P2 + λ3P3 = 0. Par égalité de coefficients de polynômes :

λ1 − λ2 = 0
λ2 + λ3 = 0

λ1 + λ2 + λ3 = 0

Après résolution λ1 = λ2 = λ3 = 0.
La famille (P1, P2, P3) est une famille libre formée de 3 = dimK2 [X] polynômes
de K2 [X], c’est donc une base de K2 [X].

Exercice 51 : [énoncé]
On remarque que degPk = k donc Pk ∈ Kn [X].
Supposons λ0P0 + · · ·+ λnPn = 0.
Si λn 6= 0 alors deg(λ0P0 + · · ·+ λnPn) = n car
deg(λ0P0 + · · ·+ λn−1Pn−1) 6 n− 1 et deg λnPn = n
Ceci est exclu, donc λn = 0.
Sachant λn = 0, le même raisonnement donne λn−1 = 0 et ainsi de suite
λn−2 = . . . = λ0 = 0.
La famille (P0, . . . , Pn) est une famille libre de n+ 1 = dimKn [X] éléments de
Kn [X], c’est donc une base de Kn [X].

Exercice 52 : [énoncé]
Supposons λ0P0 + · · ·+ λnPn = 0.
En évaluant en 0, on obtient λ0 = 0 et alors λ1X(1−X)n−1 + · · ·+ λnX

n = 0.
En simplifiant par X (ce qui est possible car X 6= 0) on obtient
λ1(1−X)n−1 + · · ·+ λnX

n−1 = 0 qui évaluée en 0 donne λ1 = 0. On reprend ce
processus jusqu’à obtention de λ2 = . . . = λn = 0.

Diffusion autorisée à titre entièrement gratuit uniquement - dD



[http://mp.cpgedupuydelome.fr] édité le 17 février 2015 Corrections 14

La famille (P0, . . . , Pn) est une famille libre de n+ 1 = dimKn [X] éléments de
Kn [X] (car degPk = n), c’est donc une base de Kn [X].

Exercice 53 : [énoncé]
a) C’est une famille de polynômes de degrés étagés.
b) Quand k 6 m,

Pk(m) =
(
m

k

)
Quand 0 6 m 6 k − 1,

Pk(m) = 0

Quand m < 0,

Pk(m) = (−1)k
(
m+ k − 1

k

)
c) Soit P non nul solution. On peut écrire

P = λ0P0 + · · ·+ λnPn

avec n = degP .
P (0) ∈ Z donne λ0 ∈ Z.
P (1) ∈ Z sachant λ0P0(1) ∈ Z donne λ1 ∈ Z etc...
Inversement ok
Finalement les polynômes solutions sont ceux se décomposant en coefficients
entiers sur les Pk.

Exercice 54 : [énoncé]
a) F ⊂ E et la fonction nulle appartient à F (en prenant P = Q = 0 ∈ Rn [X])
Soient f, g ∈ F et λ, µ ∈ R. On peut écrire f(x) = P (x) sin x+Q(x) cosx et
g(x) = P̂ (x) sin x+ Q̂(x) cosx avec P,Q, P̂ , Q̂ ∈ Rn [X].
On a alors λf + µg = (λP + µP̂ )(x) sin x+ (λQ+ µQ̂)(x) cosx avec
λP + µP̂ , λQ+ µQ̂ ∈ Rn [X] donc λf + µg ∈ F et finalement F est un sous-espace
vectoriel de E.
b) Posons fk(x) = xk sin x et gk(x) = xk cosx avec k ∈ {0, . . . , n}.
Les fonctions f0, . . . , fn, g0, . . . , gn sont des fonctions de F formant clairement une
famille génératrice.
Supposons λ0f0 + · · ·+ λnfn + µ0g0 + · · ·+ µngn = 0 alors pour tout x ∈ R on a :
(λ0 + λ1x+ · · ·+ λnx

n) sin x+ (µ0 + µ1x+ · · ·+ µnx
n) cosx = 0.

Pour x = π/2 + 2kπ avec k ∈ Z, on obtient une infinité de racine au polynôme
λ0 + λ1X + · · ·+ λnX

n.

Ceci permet d’affirmer λ0 = λ1 = . . . = λn = 0.
Pour x = 2kπ avec k ∈ Z, on peut affirmer µ0 = µ1 = . . . = µn = 0.
On peut conclure que (f0, . . . , fn, g0, . . . , gn) est libre et donc une base de F puis
dimF = 2(n+ 1).

Exercice 55 : [énoncé]
F ⊂ Kn [X], 0 ∈ F car A | 0.
Soient λ, µ ∈ K et P,Q ∈ F .
A | P et A | Q donc A | λP + µQ puis λP + µQ ∈ F .
Ainsi F est un sous-espace vectoriel de Kn [X].
Notons p = degA. On a

F ⊕Kp−1 [X] = Kn [X]

ce qui détermine un supplémentaire de F et donne dimF = n+ 1− p.

Exercice 56 : [énoncé]
Considérons l’application ϕ : Rn+1 [X]→ Rn [X] définie par
ϕ(P ) = P (X + 1)− P (X). L’application ϕ est bien définie, linéaire et de noyau
R0 [X]. Par le théorème du rang elle est donc surjective et les solutions de
l’équation ϕ(P ) = Xn se déduisent les unes des autres par l’ajout d’un élément de
R0 [X] c’est-à-dire d’une constante. Ainsi il existe une unique solution vérifiant
P (0) = 0.

Exercice 57 : [énoncé]
a) La matrice de la famille étudiée dans la base canonique de Rn [X] a pour
coefficient général

ai,j =
(
n

i

)
ji avec 0 6 i, j 6 n

En factorisant par ligne le déterminant de cette matrice est

n∏
i=0

(
n

i

)
Vn+1(0, 1, . . . , n) 6= 0

avec Vn+1(a0, . . . , an) déterminant de Vandermonde.
b) cf. cours.
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