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Espaces préhilbertiens réels
Produit scalaire

Exercice 1 [ 03480 ] [correction]
On note E = R [X] et on considère l’application ϕ : E × E → R donnée par

ϕ(P,Q) =
∫ +∞

0
P (t)Q(t)e−t dt

a) Justifier que l’application ϕ est bien définie de E × E vers R.
b) Montrer que l’application ϕ définit un produit scalaire sur E.
c) Pour p, q ∈ N, calculer ϕ(Xp, Xq).
d) Orthonormaliser par le procédé de Gram-Schmidt la famille (1, X,X2).

Exercice 2 [ 03322 ] [correction]
Soient a un vecteur unitaire d’un espace préhilbertien réel E, k un réel et
ϕ : E × E → R l’application déterminée par

ϕ(x, y) = 〈x, y〉+ k 〈x, a〉 〈y, a〉

Donner une condition nécessaire et suffisante pour que ϕ soit un produit scalaire.

Exercice 3 [ 04092 ] [correction]
Soit E = C1 ([0, 1] ,R). Pour f, g ∈ E, on pose

ϕ(f, g) =
∫ 1

0
f ′(t)g′(t) dt+ f(1)g(0) + f(0)g(1)

Montrer que ϕ définit un produit scalaire sur E.

Calculs dans un espace préhilbertien réel

Exercice 4 [ 00505 ] [correction]
Démontrer que la boule unité fermée B d’un espace préhilbertien réel est
strictement convexe i.e. que pour tout x, y ∈ B différents et tout t ∈ ]0, 1[,
‖(1− t)x+ ty‖ < 1.

Exercice 5 [ 00511 ] [correction]
On munit E = C ([a, b] ,R) du produit scalaire défini par

(f | g) =
∫ b

a

f(t)g(t) dt

En exploitant le théorème d’approximation uniforme de Weierstrass, établir que
l’orthogonal du sous-espace vectoriel F de E formé des fonctions polynomiales est
réduit à {0}.

Exercice 6 [ 00513 ] [correction]
Soit E un espace préhilbertien réel.
a) Etablir que pour tout sous-espace vectoriel F de E, F̄ ⊂ F⊥⊥.
Désormais, on suppose E = R [X] muni du produit scalaire défini par

(P | Q) =
∫ 1

−1
P (t)Q(t) dt

b) Montrer que

H =
{
P ∈ R [X] /

∫ 1

−1
|t|P (t) dt = 0

}
est un hyperplan fermé de E.
c) Soit Q ∈ H⊥. Etablir que pour tout P ∈ R [X],∫ 1

−1
P (t)Q(t) dt =

(∫ 1

−1
|t|P (t) dt

)(∫ 1

−1
Q(t) dt

)
d) Etablir que H⊥ = {0} et conclure qu’ici l’inclusion H̄ ⊂ H⊥⊥ est stricte.

Exercice 7 [ 03318 ] [correction]
Soient x1, . . . , xn des vecteurs d’un espace préhilbertien réel E.
On suppose qu’il existe M ∈ R tel que

∀(ε1, . . . , εn) ∈ {1,−1}n ,

∥∥∥∥∥
n∑
k=1

εkxk

∥∥∥∥∥ 6M

Montrer
n∑
k=1
‖xk‖2 6M2
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Exercice 8 [ 03321 ] [correction]
On munit l’espace E = C([0, 1] ,R) du produit scalaire

〈f, g〉 =
∫ 1

0
f(x)g(x) dx

Pour f ∈ E, on note F la primitive de f qui s’annule en 0

∀x ∈ [0, 1] , F (x) =
∫ x

0
f(t) dt

et on considère l’endomorphisme v de E déterminé par v(f) = F .
a) Déterminer un endomorphisme v? vérifiant

∀f, g ∈ E, 〈v(f), g〉 = 〈f, v?(g)〉

b) Déterminer les valeurs propres de l’endomorphisme v? ◦ v.

Exercice 9 [ 03325 ] [correction]
Soit F un sous-espace vectoriel d’un espace préhilbertien réel E. Etablir

F⊥ = F̄⊥

Exercice 10 [ 00351 ] [correction]
Soient e = (ei)16i6n et f = (fj)16j6n deux bases orthonormales d’un espace
euclidien E.
Soit u ∈ L(E). On pose

A =
n∑
i=1

n∑
j=1

(fi | u(ej))2

Montrer que A ne dépend pas des bases orthonormales choisies

Exercice 11 [ 03979 ] [correction]
Soient a, b deux vecteurs unitaires d’un espace euclidien E.
Déterminer le maximum sur la boule unité fermée de f : x 7→ (a | x) (b | x)

Représentation d’une forme linéaire

Exercice 12 [ 02666 ] [correction]
a) Montrer l’existence et l’unicité de A ∈ Rn [X] tel que

∀P ∈ Rn [X] , P (0) =
∫ 1

0
A(t)P (t) dt

b) Etablir que A est de degré n.

Exercice 13 [ 03024 ] [correction]
On définit sur R [X] le produit scalaire

〈P | Q〉 =
∫ 1

0
P (t)Q(t) dt

Existe-t-il A ∈ R [X] tel que

∀P ∈ R [X] , P (0) = 〈A | P 〉 ?

Exercice 14 [ 01573 ] [correction]
Soit E = R [X].
a) Montrer que ϕ(P,Q) =

∫ 1
0 P (t)Q(t)dt définit un produit scalaire sur E.

b) Soit θ : E → R la forme linéaire définie par θ(P ) = P (0).
Montrer qu’il n’existe pas de polynôme Q tel que pour tout P ∈ E on ait
θ(P ) = ϕ(P,Q).

Polynômes orthogonaux

Exercice 15 [ 03079 ] [correction]
On définit

Qn(X) = 1
2nn!

(
(X2 − 1)n

)(n)

a) Soit n > 1. Montrer que Qn possède n racines simples dans ]−1, 1[.
b) Montrer que

Qn = Xn + (X2 − 1)Rn(X)

avec Rn ∈ R [X]. En déduire Qn(1) et Qn(−1).
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c) On pose, pour (P,Q) ∈ R [X]2,

〈P,Q〉 =
∫ 1

−1
P (t)Q(t) dt

Montrer que Qn est orthogonal à Rn−1 [X].
d) Calculer ‖Qn‖2.

Exercice 16 [ 03657 ] [correction]
On munit R [X] du produit scalaire

〈P,Q〉 =
∫ 1

−1
P (t)Q(t) dt

a) Etablir l’existence et l’unicité d’une suite de polynômes (Pn) formée de
polynômes deux à deux orthogonaux avec chaque Pn de degré n et de coefficient
dominant 1.
b) Etudier la parité des polynômes Pn.
c) Prouver que pour chaque n > 1, le polynôme Pn+1 −XPn est élément de
l’orthogonal à Rn−2 [X].
d) En déduire alors qu’il existe λn ∈ R tel que

Pn+1 = XPn + λnPn−1

Exercice 17 [ 01332 ] [correction]
Soient n ∈ N?, E = Rn [X] et

〈 , 〉 : (P,Q) ∈ E2 7→ 〈P,Q〉 =
∫ +∞

0
P (t)Q(t)e−t dt

a) Justifier la définition de 〈 , 〉 et montrer qu’il s’agit d’un produit scalaire.
On pose F = {P ∈ E,P (0) = 0}. On cherche à déterminer d(1, F ). On note
(P0, . . . , Pn) l’orthonormalisée de Schmidt de (1, X, . . . ,Xn).
b) Calculer Pk(0)2.
c) Déterminer une base de F⊥ que l’on exprimera dans la base (P0, . . . , Pn). En
déduire d(1, F⊥) et d(1, F ).

Familles obtusangles

Exercice 18 [ 03157 ] [correction]
Soit F = (x1, . . . , xn) une famille de n > 2 vecteurs d’un espace préhilbertien réel.

On suppose
∀1 6 i 6= j 6 n, (xi | xj) < 0

Montrer que toute sous famille de n− 1 vecteurs de F est libre.

Exercice 19 [ 01574 ] [correction]
[Famille obtusangle]
Soit x1, x2, ..., xn+2 des vecteurs d’un espace vectoriel euclidien E de dimension
n ∈ N?.
Montrer qu’il est impossible que

∀1 6 i 6= j 6 n+ 2, (xi | xj) < 0

Exercice 20 [ 00520 ] [correction]
Soient x1, x2, ..., xn+2 des vecteurs d’un espace vectoriel euclidien E de dimension
n ∈ N?.
Montrer qu’il est impossible que

∀i 6= j, (xi | xj) < 0

On pourra commencer par les cas n = 1 et n = 2

Eléments propres d’endomorphismes euclidiens

Exercice 21 [ 00517 ] [correction]
Soit a un vecteur normé d’un espace vectoriel euclidien E. Pour tout α ∈ R, on
considère l’endomorphisme

fα : x 7→ x+ α(a | x)a

a) Préciser la composée fα ◦ fβ . Quelles sont les fα bijectives ?
b) Déterminer les éléments propres de fα.

Exercice 22 [ 00518 ] [correction]
Soient a, b deux vecteurs unitaires d’un espace vectoriel euclidien E et f
l’application de E vers E donnée par

f : x 7→ x− (a | x)b

a) A quelle condition la fonction f est-elle bijective ?
b) Exprimer f−1(x) lorsque c’est le cas.
c) A quelle condition l’endomorphisme f est-il diagonalisable ?
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Projections orthogonales

Exercice 23 [ 01595 ] [correction]
Soit p une projection d’un espace vectoriel euclidien E.
Montrer que la projection p est orthogonale si, et seulement si,

∀x ∈ E, ‖p(x)‖ 6 ‖x‖

Exercice 24 [ 03924 ] [correction]
Soit p un projecteur d’un espace euclidien E vérifiant

∀x ∈ E, 〈p(x), x〉 > 0

Montrer que p est un projecteur orthogonal.

Exercice 25 [ 00524 ] [correction]
Soient E un espace vectoriel euclidien muni d’une base orthonormée
e = (e1, . . . , en) et F un sous-espace vectoriel de E muni d’une base orthonormée
(x1, . . . , xp). Montrer que la matrice de pF dans la base e est

p∑
k=1

Xk
tXk

où Xk est la colonne des coordonnées du vecteur xk dans e.

Exercice 26 [ 03766 ] [correction]
On pose E = C1([0, 1] ,R) et

∀f, g ∈ E, 〈f, g〉 =
∫ 1

0
f(t)g(t) dt+

∫ 1

0
f ′(t)g′(t) dt

a) Montrer que 〈., .〉 définit un produit scalaire sur E.
b) On pose

V = {f ∈ E/f(0) = f(1) = 0} et W =
{
f ∈ E/f est C2 et f ′′ = f

}
Montrer que V et W sont supplémentaires et orthogonaux.
Exprimer la projection orthogonale sur W .
c) Soient α, β ∈ R et

Eα,β = {f ∈ E/f(0) = α et f(1) = β}

Calculer
inf

f∈Eα,β

∫ 1

0

(
f(t)2 + f ′(t)2) dt

Exercice 27 [ 00529 ] [correction]
On définit une application ϕ : R [X]× R [X]→ R par

ϕ(P,Q) =
∫ +∞

0
P (t)Q(t)e−t dt

a) Montrer que ϕ définit un produit scalaire sur R [X].
b) Calculer ϕ(Xp, Xq).
c) Déterminer

inf
(a,b)∈R2

∫ +∞

0
e−t(t2 − (at+ b))2 dt

Exercice 28 [ 02735 ] [correction]
Calculer

inf
{∫ 1

0
t2(ln t− at− b)2 dt, (a, b) ∈ R2

}

Familles totales

Exercice 29 [ 00530 ] [correction]
[Formule de Parseval]
On suppose que (en)n∈N est une famille orthonormale totale d’un espace
préhilbertien E. Montrer que pour tout x ∈ E,

‖x‖2 =
+∞∑
n=0
|(en | x)|2

Produit scalaire et transposition matricielle

Exercice 30 [ 03937 ] [correction]
Soit A ∈Mn(R). Comparer d’une part les espaces

kerA et ker(tAA)

et d’autre part les espaces
ImA et Im(AtA)
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Exercice 31 [ 03935 ] [correction]
Soient A ∈Mn(R) vérifiant A2 = 0.
a) Etablir

ker(tA+A) = ker(A) ∩ ker(tA)

b) En déduire
tA+A ∈ GLn(R)⇔ ImA = kerA

Exercice 32 [ 03936 ] [correction]
Soit A ∈Mn(R) vérifiant

∀X ∈Mn,1(R), ‖AX‖ 6 ‖X‖

où ‖ . ‖ désigne la norme euclidienne usuelle sur l’espace des colonnes.
Etablir

∀X ∈Mn,1(R),
∥∥tAX∥∥ 6 ‖X‖

Exercice 33 [ 03938 ] [correction]
Soit A ∈Mn(R) vérifiant

∀X ∈Mn,1(R), ‖AX‖ 6 ‖X‖

où ‖ . ‖ désigne la norme euclidienne usuelle sur l’espace des colonnes.
a) Etablir

∀X ∈Mn,1(R),
∥∥tAX∥∥ 6 ‖X‖

b) Soit X ∈Mn,1(R). Montrer que si AX = X alors tAX = X
c) Etablir

Mn,1(R) = ker(A− In)⊕ Im(A− In)

Exercice 34 [ 00354 ] [correction]
Soit A ∈Mn(R). Etablir

rg(tAA) = rgA
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Corrections

Exercice 1 : [énoncé]
a) Pour P,Q ∈ E, la fonction f : t 7→ P (t)Q(t)e−t est définie et continue par
morceaux sur [0,+∞[ et intégrable car t2f(t) −−−−→

t→+∞
0.

b) L’application ϕ est clairement bilinéaire symétrique et positive.
Si ϕ(P, P ) = 0 alors par intégration d’une fonction continue positive on obtient

∀t ∈ [0,+∞[ , P (t)2e−t = 0

et donc P admet une infinité de racines (les éléments de [0,+∞[), c’est donc le
polynôme nul.
c) Posons In =

∫ +∞
0 tne−t dt de sorte que ϕ(Xp, Xq) = Ip+q.

Par intégration par parties∫ A

0
tne−t dt =

[
−tne−t

]A
0 + n

∫ A

0
tn−1e−t dt

et quand A→ +∞, on obtient In = nIn−1. Sachant I0 = 1, on conclut In = n! et

ϕ(Xp, Xq) = (p+ q)!

d) Notons que la famille (1, X,X2) est libre et qu’il est donc licite de
l’orthonormaliser par le procédé de Schmidt. On pose P0 = 1.
On cherche P1 = X + λP0 avec (P0 | P1) = 0 ce qui donne 1 + λ = 0 et donc
P1 = X − 1.
On cherche P2 = X2 + λP0 + µP1 avec (P0 | P2) = 0 et (P1 | P2) = 0 ce qui donne
2 + λ = 0 et 4 + µ = 0 donc P2 = X2 − 4X + 2.
La famille orthonormalisée cherchée et alors (Q0, Q1, Q2) avec

Q0 = 1, Q1 = X − 1 et Q2 = 1
2
(
X2 − 4X + 2

)

Exercice 2 : [énoncé]
Il est immédiat que ϕ est une forme bilinéaire symétrique sur E.
On a

ϕ(x, x) = ‖x‖2 + k 〈x, a〉2

En particulier
ϕ(a, a) = ‖a‖2 + k ‖a‖4 = (1 + k)

Pour que la forme bilinéaire symétrique ϕ soit définie positive, il est nécessaire
que 1 + k > 0.

Inversement, supposons 1 + k > 0.
Si k > 0 alors ϕ(x, x) > ‖x‖2 et donc

∀x ∈ E\ {0E} , ϕ(x, x) > 0

Si k ∈ ]−1, 0[, k = −α avec α ∈ ]0, 1[ et

ϕ(x, x) = ‖x‖2 − α 〈x, a〉2

Par l’inégalité de Cauchy-Schwarz

〈x, a〉2 6 ‖x‖2 ‖a‖2 = ‖x‖2

donc
ϕ(x, x) > ‖x‖2 − α ‖x‖2 = (1− α) ‖x‖2

de sorte que
∀x ∈ E\ {0E} , ϕ(x, x) > 0

Ainsi ϕ est une forme bilinéaire symétrique définie positive donc un produit
scalaire.
Finalement, ϕ est un produit scalaire si, et seulement si, 1 + k > 0.

Exercice 3 : [énoncé]
L’application ϕ est bien définie de E × E → R et clairement bilinéaire et
symétrique.
Soit f ∈ E.

ϕ(f, f) =
∫ 1

0
f ′(t)2 dt+ 2f(0)f(1)

Par l’inégalité de Cauchy-Schwarz(∫ 1

0
f ′(t) dt

)2

6
∫ 1

0
f ′(t)2 dt

et donc ∫ 1

0
f ′(t)2 dt > (f(1)− f(0))2

puis
ϕ(f, f) > f(1)2 + f(0)2 > 0

Au surplus, si ϕ(f, f) = 0 alors f(0) = f(1) = 0, mais aussi
∫ 1

0 f
′(t)2 dt = 0. La

fonction f est donc constante égale à 0.
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Exercice 4 : [énoncé]
Par l’inégalité triangulaire

‖(1− t)x+ ty‖ 6 (1− t) ‖x‖+ t ‖y‖ 6 1

De plus, s’il y a égalité alors ‖x‖ = 1, ‖y‖ = 1 et les vecteurs (1− t)x et ty sont
positivement liés.
Les vecteurs x et y étant unitaires et positivement liés, ils sont égaux. Ceci est
exclu.

Exercice 5 : [énoncé]
Soit f ∈ F⊥. Puisque f est continue sur le segment [a, b], par le théorème
d’approximation uniforme de Weierstrass :

∀ε > 0,∃P ∈ R [X] , ‖f − P‖∞,[a,b] 6 ε

On a alors

‖f‖2 =
∫ b

a

f2 =
∫ b

a

f(f − P ) +
∫ b

a

fP =
∫ b

a

f(f − P )

avec ∣∣∣∣∣
∫ b

a

f(f − P )

∣∣∣∣∣ 6 (b− a) ‖f‖∞ ‖f − P‖∞ 6 (b− a) ‖f‖∞ ε

En faisant tendre ε vers 0, on obtient ‖f‖2 = 0 donc f = 0. Ainsi F⊥ ⊂ {0} puis
F⊥ = {0}.

Exercice 6 : [énoncé]
a) On sait F ⊂ F⊥⊥ et F⊥⊥ fermé donc F̄ ⊂ F⊥⊥.
b) H est le noyau de la forme linéaire

ϕ : P 7→
∫ 1

−1
|t|P (t) dt

En vertu de l’inégalité de Cauchy-Schwarz, |ϕ(P )| 6 ‖P‖ et donc ϕ est continue.
Par suite H est un hyperplan fermé.
c) Pour P ∈ R [X], on observe que

R = P −
∫ 1

−1
|u|P (u) du

appartient à H. La relation (R | Q) = 0 donne la relation voulue.
d) La relation précédente donne∫ 1

−1

(
Q(t)− |t|

∫ 1

−1
Q(u) du

)
P (t) dt = 0

pour tout P ∈ R [X]. Par suite

Q(t) = |t|
∫ 1

−1
Q(u) du

Ceci n’est possible dans R [X] que si
∫ 1
−1 Q(u) du = 0 et donc seulement si Q = 0.

Ainsi H⊥ = {0} puis H⊥⊥ = E alors que H̄ = H 6= E.

Exercice 7 : [énoncé]
Cas n = 1, c’est immédiat.
Cas n = 2 :
Si ‖x+ y‖ 6M et ‖x− y‖ 6M alors

‖x‖2 + 2(x | y) + ‖y‖2 6M2 et ‖x‖2 − 2(x | y) + ‖y‖2 6M2

Si (x | y) > 0 alors première identité donne ‖x‖2 + ‖y‖2 6M2, si (x | y) 6 0, c’est
la deuxième identité qui permet de conclure.
Supposons la propriété vraie au rang n > 1.
Supposons

∀(ε1, . . . , εn+1) ∈ {1,−1}n+1
,

∥∥∥∥∥
n+1∑
k=1

εkxk

∥∥∥∥∥ 6M

Par l’étude du cas n = 2 appliquée au vecteur

x =
n∑
k=1

εkxk et y = xn+1

on obtient

∀(ε1, . . . , εn) ∈ {1,−1}n ,

∥∥∥∥∥
n∑
k=1

εkxk

∥∥∥∥∥
2

+ ‖xn+1‖2 6M2

donc

∀(ε1, . . . , εn) ∈ {1,−1}n ,

∥∥∥∥∥
n∑
k=1

εkxk

∥∥∥∥∥ 6
√
M2 − ‖xn+1‖2
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Par hypothèse de récurrence
n∑
k=1
‖xk‖2 6M2 − ‖xn+1‖2

et l’on peut conclure.
Récurrence établie.

Exercice 8 : [énoncé]
a) Par intégration par parties∫ 1

0
F (x)g(x) dx = F (1)G(1)−

∫ 1

0
f(x)G(x) dx

ce qui se réécrit ∫ 1

0
F (x)g(x) dx =

∫ 1

0
f(x) (G(1)−G(x)) dx

Ainsi pour

v?(g) : x 7→ G(1)−G(x) =
∫ 1

x

g(t) dt

on vérifie que v? est un endomorphisme de E vérifiant

∀f, g ∈ E, 〈v(f), g〉 = 〈f, v?(g)〉

b)Soit λ ∈ R et f ∈ E vérifiant (v? ◦ v)(f) = λf .
La fonction f est nécessairement dérivable et vérifie{

λf(1) = 0
v(f)(x) = −λf ′(x)

La fonction f est donc nécessairement deux fois dérivable et vérifie
λf(1) = 0
λf ′(0) = 0

f(x) = −λf ′′(x)

Si λ = 0 alors f = 0 et donc λ n’est pas valeur propre.
Si λ > 0 alors en écrivant λ = 1/

√
ω, l’équation différentielle λy′′ + y = 0 donne la

solution générale
y(t) = α cos(ωt) + β sin(ωt)

La condition f ′(0) = 0 donne β = 0 et la condition f(1) = 0 donne α cos(ω) = 0.
Si ω /∈ π/2 + πN alors f = 0 et λ = 1/

√
ω n’est pas valeur propre.

En revanche, si ω ∈ π/2 + πN, alors par la reprise des calculs précédents donne
λ = 1/

√
ω valeur propre associé au vecteur propre associé f(x) = cos(ωx).

Si λ < 0 alors la résolution de l’équation différentielle linéaire à coefficients
constants avec les conditions proposées donne f = 0 et donc λ n’est pas valeur
propre.

Exercice 9 : [énoncé]
Puisque F ⊂ F̄ , on a déjà

F̄⊥ ⊂ F⊥

Soit a ∈ F⊥.
Pour tout x ∈ F̄ , il existe une suite (xn) d’éléments de F telle que xn → x.
Puisque

∀n ∈ N, 〈xn, a〉 = 0

à la limite (le produit scalaire étant continue)

〈x, a〉 = 0

et donc a ∈ F̄⊥.
Finalement, par double inclusion F⊥ = F̄⊥.

Exercice 10 : [énoncé]
Puisque la base f est orthonormale, on a

A =
n∑
j=1
‖u(ej)‖2

et donc

A =
n∑
i=1

n∑
j=1

(ei | u(ej))2

Notons M = (mi,j) la matrice de u dans la base orthonormale e. On a

mi,j = (ei | u(ej))

et donc
A = tr

(
tMM

)
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Si e′ = (e′1, . . . , e′n) est une autre base orthonormale de E et si M ′ est la matrice
de u dans e′, on peut écrire

M ′ = tPMP avec P ∈ On(R)

et alors
tr(tM ′M ′) = tr(tP tMMP ) = tr(tMMP tP ) = tr(tMM)

Finalement, la quantité A ne dépend ni de choix de f ni de celui de e.

Exercice 11 : [énoncé]
Cas a = b :
f(x) = (a | x)2 et le maximum cherché est évidemment en a.
Cas a = −b :
f(x) = − (a | x)2 et le maximum cherché est évidemment en 0.
Cas restants :
Les vecteurs a+ b et a− b constituent une famille orthogonale.
Posons

e1 = a+ b

‖a+ b‖
, e2 = a− b

‖a− b‖

Les vecteurs e1 et e2 forment une famille orthonormale que le peut compléter en
une base orthonormale (ei)16i6n.
Pour x tel que ‖x‖ 6 1, on peut écrire

x = x1e1 + · · ·+ xnen avec x2
1 + · · ·+ x2

n 6 1

et alors
(a | x) = x1

1 + (a | b)
‖a+ b‖

+ x2
1− (a | b)
‖a− b‖

puis

f(x) = x2
1

(
1 + (a | b)
‖a+ b‖

)2
− x2

2

(
1− (a | b)
‖a+ b‖

)2

Le maximum cherché est pour x1 = 1 et x2 = . . . = xn = 0. Il vaut(
1 + (a | b)
‖a+ b‖

)2

Cette formule convient aussi pour les cas initialement isolés.

Exercice 12 : [énoncé]
a) Il est bien connu que l’application

(P,Q) 7→ 〈P,Q〉 =
∫ 1

0
P (t)Q(t) dt

définit un produit scalaire sur Rn [X]. L’application P 7→ P (0) est une forme
linéaire sur R [X] donc il existe un unique polynôme A ∈ Rn [X] tel que cette
forme linéaire corresponde au produit scalaire avec A, ce qui revient à dire

∀P ∈ Rn [X] , P (0) = 〈A,P 〉 =
∫ 1

0
A(t)P (t) dt

b) Si par l’absurde le degré de A est strictement inférieur à n alors P = XA est
élément de Rn [X] et donc ∫ 1

0
tA(t)2 dt = P (0) = 0

Or la fonction t 7→ tA(t)2 est continue positive sur [0, 1] et la nullité de l’intégrale
précédente entraîne alors

∀t ∈ [0, 1] , tA(t)2 = 0

On en déduit A = 0 ce qui est absurde.

Exercice 13 : [énoncé]
Supposons l’existence d’un tel polynôme A et considérons P (X) = XA(X).
On a

0 = P (0) = 〈A | P 〉 =
∫ 1

0
tA(t)2 dt

Par nullité de l’intégrale d’une fonction continue positive, on obtient

∀t ∈ [0, 1] , tA(t)2 = 0

Le polynôme A admet une infinité de racine, c’est donc le polynôme nul ce qui est
absurde.

Exercice 14 : [énoncé]
a) ras
b) Supposons qu’un tel polynôme Q existe et considérons P = XQ.
On a θ(P ) = 0 =

∫ 1
0 tQ

2(t)dt donc Q = 0 d’où θ = 0. Absurde.
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Exercice 15 : [énoncé]
a) 1 et −1 sont racines de multiplicité n du polynôme (X2 − 1)n.
1 et −1 sont donc racines des polynômes

(X2 − 1)n,
(
(X2 − 1)n

)′ ,. . . , ((X2 − 1)n
)(n−1)

En appliquant le théorème de Rolle, on peut alors montrer par récurrence sur
k ∈ {0, . . . , n} que

(
(X2 − 1)n

)(k) possède au moins k racines dans l’intervalle
]−1, 1[.
En particulier Qn possède au moins n racines dans ]−1, 1[, or degQn = n donc il
n’y a pas d’autres racines que celles-ci et elles sont simples.
b) Raisonnons par récurrence sur n ∈ N.
Pour n = 0, c’est immédiat.
Supposons la propriété établie au rang n > 0.

Qn+1(X) = 1
2n+1(n+ 1)!

(
2(n+ 1)X(X2 − 1)n

)(n)

Par la formule de Leibniz

Qn+1(X) = 1
2nn!

(
X
(
(X2 − 1)n

)(n) + nX
(
(X2 − 1)n

)(n−1)
)

1 et −1 sont racines du polynôme
(
(X2 − 1)n

)(n−1) et donc celui-ci peut s’écrire
(X2 − 1)S(X).
En exploitant l’hypothèse de récurrence, on obtient

Qn+1(X) = Xn+1+X(X2−1)Rn(X)+2nX(X2−1)S(X) = Xn+1+(X2−1)Rn+1(X)

Récurrence établie
c) Par intégration par parties successives et en exploitant l’annulation en 1 et −1
des polynômes

(X2 − 1)n,
(
(X2 − 1)n

)′ ,. . . , ((X2 − 1)n
)(n−1)

on obtient ∫ 1

−1
P (t)Qn(t) dt = (−1)n

2nn!

∫ 1

−1
P (n)(t)(t2 − 1)n dt

En particulier, si P ∈ Rn−1 [X],∫ 1

−1
P (t)Qn(t) dt = 0

d) Par la relation qui précède∫ 1

−1
(Qn(t))2 dt = 1

2nn!

∫ 1

−1
Q(n)
n (t)(1− t2)n dt

Puisque le polynôme (X2 − 1)n est unitaire et de degré 2n[
(X2 − 1)n

](2n) = (2n)! et Q(n)
n = (2n)!

2nn!
De plus, par intégration par parties successives∫ 1

−1
(1− t2)n dt =

∫ 1

0
(1− t)n(1 + t)n dt = 22n+1(n!)2

(2n+ 1)!

Au final
‖Qn‖2 = 2

(2n+ 1)

Exercice 16 : [énoncé]
a) Par récurrence sur n > 0, établissons l’existence et l’unicité de la sous-famille
(Pk)06k6n telle que voulue.
Cas n = 0 : le polynôme P0 vaut 1.
Supposons la propriété vraie au rang n > 0.
Les polynômes P0, . . . , Pn sont alors déterminés de façon unique par l’hypothèse
de récurrence et il reste seulement à former Pn+1. Celui-ci peut s’écrire

Pn+1 = Xn+1 +Q(X) avec Q(X) ∈ Rn [X]

On veut (Pn+1 | Pk) = 0 pour tout k ∈ {0, . . . , n}. Le polynôme Q doit donc
vérifier

∀k ∈ {0, . . . , n} , (Q(X) | Pk) = −(Xn+1 | Pk)
Ces relations détermine entièrement le polynôme Q puisque (P0, . . . , Pn) est une
base orthogonale de Rn [X] :

Q = −
n∑
k=0

(Xn+1 | Pk)
‖Pk‖2 Pk

Le polynôme Pn+1 existe donc et est unique.
Récurrence établie.
b) La famille ((−1)nPn(−X)) vérifie les mêmes conditions que celles ayant défini
la suite (Pn). On en déduit

∀n ∈ N, Pn(−X) = (−1)nPn(X)
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c) Soit Q ∈ Rn−2 [X].

On peut écrire Q =
n−2∑
k=0

akPk et donc (Pn+1 | Q) = 0.

On peut aussi écrire XQ =
n−1∑
k=0

a′kPk et donc (XPn | Q) = (Pn | XQ) = 0.

On en déduit
∀Q ∈ Rn−2 [X] , (Pn+1 −XPn | Q) = 0

d) Par simplification des termes de plus haut degré

Pn+1 −XPn ∈ Rn [X]

On peut donc écrire

Pn+1 −XPn =
n∑
k=0

αkPk

Or Pn+1 −XPn est orthogonal à P0, . . . , Pn−2 donc

Pn+1 −XPn = αnPn + αn−1Pn−1

Enfin, par parité, αn = 0 et donc

Pn+1 −XPn = αn−1Pn−1

Exercice 17 : [énoncé]
a) Pour P,Q ∈ E, la fonction t 7→ P (t)Q(t)e−t est définie et continue par
morceaux sur [0,+∞[ et vérifie

t2P (t)Q(t)e−t −−−−→
t→+∞

0

On peut donc affirmer que cette fonction est intégrable sur [0,+∞[ ce qui assure
la bonne définition de 〈 , 〉.
On vérifie aisément que 〈 , 〉 est une forme bilinéaire symétrique positive.
Si 〈P, P 〉 = 0 alors par nullité de l’intégrale d’une fonction continue positive

∀t ∈ [0,+∞[ , P (t)2e−t = 0

On en déduit que le polynôme P admet une infinité de racines et donc P = 0.
b) Pour k > 1 ou k = 0, on peut affirmer que les polynômes Pk et P ′k sont
orthogonaux car

P ′k ∈ Vect(P1, . . . , Pk−1)

Par une intégration par parties

0 =
∫ +∞

0
P ′k(t)Pk(t)e−t dt = 1

2
[
Pk(t)2e−t

]+∞
0 + 1

2

∫ +∞

0
Pk(t)2e−t dt

On en déduit
Pk(0)2 = ‖Pk‖2 = 1

c) F est un hyperplan (car noyau de la forme linéaire non nulle P 7→ P (0)). Son
orthogonal est donc une droite vectorielle. Soit Q un vecteur directeur de celle-ci.
On peut écrire

Q =
n∑
k=0
〈Pk, Q〉Pk

Or
〈Pk, Q〉 = 〈Pk − Pk(0), Q〉+ Pk(0) 〈1, Q〉

Puisque le polynôme Pk − Pk(0) est élément de F , il est orthogonal à Q et l’on
obtient

〈Pk, Q〉 = Pk(0) 〈1, Q〉
ce qui permet d’écrire

Q = λ

n∑
k=0

Pk(0)Pk avec λ = 〈1, Q〉 6= 0

On en déduit
d(1, F ) = |〈1, Q〉|

‖Q‖
= 1√

n∑
k=0

Pk(0)2

= 1√
n+ 1

Enfin par Pythagore
‖1‖2 = d(1, F )2 + d(1, F⊥)2

et l’on obtient
d(1, F⊥) =

√
n

n+ 1

Exercice 18 : [énoncé]
Raisonnons par récurrence sur n > 2.
Pour n = 2 la propriété est immédiate car aucun vecteur ne peut être nul.
Supposons la propriété établie au rang n > 2.
Soit (x1, . . . , xn+1) une famille de vecteurs vérifiant

∀1 6 i 6= j 6 n+ 1, (xi | xj) < 0
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Par projection orthogonale sur le sous-espace vectoriel de dimension finie
D = Vectxn+1, on peut écrire pour tout i ∈ {1, . . . , n}

xi = yi + λixn+1

avec yi un vecteur orthogonal à xn+1 et λi < 0 puisque (xi | xn+1) < 0.
On remarque alors

(xi | xj) = (yi | yj) + λiλj ‖xn+1‖2

et on en déduit
∀1 6 i 6= j 6 n, (yi | yj) < 0

Par hypothèse de récurrence, on peut affirmer que la famille (y2, . . . , yn) est libre
et puisque ses vecteurs sont orthogonaux au vecteur xn+1 non nul, on peut aussi
dire que la famille (y2, . . . , yn, xn+1) est libre. Enfin, on en déduit que la famille
(x2, . . . , xn, xn+1) car cette dernière engendre le même espace que la précédente et
est formée du même nombre de vecteurs.
Par permutation des indices, ce qui précède vaut pour toute sous-famille formée
de n vecteurs de la famille initiale (x1, . . . , xn, xn+1).
Récurrence établie.

Exercice 19 : [énoncé]
Par récurrence sur n ∈ N?
Pour n = 1 : Soit u un vecteur unitaire de E. On peut écrire
x1 = λ1.u, x2 = λ2.u, x3 = λ3.u
On a alors

(x1 | x2) = λ1λ2, (x2 | x3) = λ2λ3, (x3 | x1) = λ3λ1

Ces trois quantités ne peuvent être négatives car

λ1λ2λ2λ3λ3λ1 = (λ1λ2λ3)2 > 0

Supposons la propriété établie au rang (n− 1) ∈ N? :
Par l’absurde, supposons que la configuration soit possible :
Nécessairement xn+2 6= 0.
Posons F = Vect(xn+2)⊥. On a dimF = n− 1.

∀1 6 i 6 n+ 1, xi = yi + λi.xn+2

avec yi ∈ F et λi ∈ R.
Comme (xi | xn+2) < 0 on a λi < 0.

∀1 6 i 6= j 6 n+ 1, (xi | xj) = (yi | yj) + λiλj ‖xn+2‖2
< 0

donc (yi | yj) < 0.
On peut appliquer l’hypothèse de récurrence à la famille (y1, . . . , yn+1) formée de
vecteurs qui évoluent dans F . Récurrence établie.

Exercice 20 : [énoncé]
Cas n = 1.
Supposons disposer de vecteurs x1, x2, x3 tels que

∀i 6= j, (xi | xj) < 0

Puisque x1 6= 0, (x1) est une base de E.
Cela permet d’écrire x2 = λx1 et x3 = µx1.
(x2 | x1) < 0 et (x3 | x1) < 0 donne λ < 0 et µ < 0 mais alors
(x2 | x3) = λµ ‖x1‖2

> 0 !
Cas n = 2.
Supposons disposer de vecteurs x1, ..., x4 tels que

∀i 6= j, (xi | xj) < 0

x1 étant non nul on peut écrire

∀i > 2, xi = λix1 + yi

avec yi ∈ {x1}⊥ et λi < 0.
On

∀i 6= j > 2, (xi | xj) = λiλj + (yi | yj) < 0
donc (yi | yj) < 0.
y2, y3, y4 se positionnant sur la droite {x1}⊥, l’étude du cas n = 1 permet de
conclure.
Cas général.
Par récurrence sur n > 1.
Pour n = 1 : ci-dessus
Supposons la propriété établie au rang n > 1.
Supposons disposer de vecteurs x1, ..., xn+3 tels que

∀i 6= j, (xi | xj) < 0

à l’intérieur d’un espace vectoriel euclidien de dimension n+ 1.
x1 étant non nul on peut écrire

∀i > 2, xi = λix1 + yi

avec yi ∈ {x1}⊥ et λi < 0.
On a

∀i 6= j > 2, (xi | xj) = λiλj + (yi | yj) < 0
donc (yi | yj) < 0.
y2, ..., yn+3 se positionnant sur le sous-espace vectoriel {x1}⊥ qui est de dimension
n, l’hypothèse de récurrence permet de conclure.
Récurrence établie.
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Exercice 21 : [énoncé]
a) fα ◦ fβ = fα+β+αβ .
Si α = −1 alors a ∈ ker fα et donc fα n’est pas bijective.
Si α 6= −1 alors, pour β = − α

1+α ,

fβ ◦ fα = fα ◦ fβ = f0 = Id

d’où la bijectivité de fα.
b) Tout vecteur non nul orthogonal à a est vecteur propre associé à la valeur
propre 1.
Tout vecteur non nul colinéaire à a est vecteur propre associé à la valeur propre
1 + α.
Pour une raison de dimension, il ne peut y avoir d’autres vecteurs propres.

Exercice 22 : [énoncé]
a) L’application f est linéaire et l’espace E est de dimension finie. Il suffit
d’étudier l’injectivité de f pour pouvoir conclure.
Si x ∈ ker f alors x = (a | x)b et donc (a | x) = (a | x)(a | b).
Si (a | x) 6= 0 alors (a | b) = 1 et donc a = b (par égalité dans l’inégalité de
Cauchy-Schwarz).
Par contraposée si a 6= b alors (a | x) = 0 et x = 0 donc f bijective.
En revanche si a = b alors a ∈ ker f et f n’est pas bijective.
b) Supposons a 6= b. Si y = f(x) alors y = x− (a | x)b puis
(a | y) = (a | x)(1− (a | b)) et donc

x = y + (a | y)
1− (a | b)b

c)
f(x) = λx⇔ (a | x)b = (1− λ)x

Soit λ une valeur propre. Il existe x 6= 0 tel que f(x) = λx donc
(a | x)b = (1− λ)x puis (a | x)(a | b) = (1− λ)(a | x) ce qui donne (a | x) = 0 (qui
implique λ = 1 avec Eλ(f) = {a}⊥) ou λ = 1− (a | b).
Si (a | b) = 0 : λ = 1 est seule valeur propre et l’espace propre associé est
l’hyperplan de vecteur normal a.
L’endomorphisme n’est alors pas diagonalisable.
Si (a | b) 6= 0 : λ = 1 et λ = 1− (a | b) sont valeurs propres et puisque E1(f) est
un hyperplan, l’endomorphisme est diagonalisable.

Exercice 23 : [énoncé]
Si p est une projection orthogonale sur un sous-espace vectoriel F alors

∀x ∈ E, x = p(x) + (x− p(x))

avec p(x)⊥(x− p(x)). Par le théorème de Pythagore

‖x‖2 = ‖p(x)‖2 + ‖x− p(x)‖2 > ‖p(x)‖2

Inversement, soit p une projection telle que

∀x ∈ E, ‖p(x)‖ 6 ‖x‖

Puisque p est une projection, les espaces F = Imp et G = ker p sont
supplémentaires et p est la projection sur F parallèlement à G. Il s’agit alors de
montrer que ces deux espaces sont orthogonaux.
Soient u ∈ F, v ∈ G et λ ∈ R. Considérons le vecteur

x = u+ λ.v

On a p(x) = u et ‖p(x)‖2 6 ‖x‖2 ce qui donne

0 6 2λ(u | v) + λ2 ‖v‖2

Ceci valant pour tout λ ∈ R, on a nécessairement (u | v) = 0.
En effet, si (u | v) 6= 0 alors

2λ(u | v) + λ2 ‖v‖2 ∼
λ→0

2λ(u | v)

ce qui est une expression qui change de signe.
Ainsi les espaces F et G sont orthogonaux et p est donc une projection
orthogonale.

Exercice 24 : [énoncé]
Le projecteur p projette sur Imp parallèlement à ker p. Il est orthogonal si, et
seulement si, Imp et ker p sont des sous-espaces vectoriels orthogonaux. Soient
x ∈ ker p et y ∈ Imp. On a

∀λ ∈ R, 〈p(x+ λy), x+ λy〉 > 0

ce qui donne
∀λ ∈ R, 〈λy, x+ λy〉 > 0
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puis
∀λ ∈ R, λ 〈y, x〉+ λ2 〈y, y〉 > 0

Si par l’absurde 〈y, x〉 6= 0 alors

λ 〈y, x〉+ λ2 〈y, y〉 ∼
λ→0

λ 〈y, x〉

qui n’est pas de signe constant. C’est absurde.

Exercice 25 : [énoncé]
On sait

pF (x) =
p∑
k=1

(xk | x)xk

donc

pF (ei) =
p∑
k=1

(tXkEi)xk

en notant Ei = Mate(ei).
Puisque tXkEi est un réel,

MatB(pF (ei)) =
p∑
k=1

(tXkEi)Xk =
p∑
k=1

Xk
tXkEi

puis

MatB(pF ) =
p∑
k=1

Xk
tXk

car (E1 | · · · | En) = In.

Exercice 26 : [énoncé]
a) Vérification sans peine.
b) Soit (f, g) ∈ V ×W . On a

〈f, g〉 =
∫ 1

0
f(t)g′′(t) + f ′(t)g′(t) dt = [f(t)g′(t)]10 = 0

et les espaces V et W sont donc en somme directe.
Soit f ∈ E. Posons

λ = f(0) et µ = f(1)− f(0)ch(1)
sh(1)

On a f = g + h avec h = λch + µsh ∈W et g = f − h ∈ V par construction.
Les espaces V et W sont donc supplémentaires orthogonaux et l’on peut
introduire la projection orthogonale p sur W . Par ce qui précède

p(f) = f(0)ch + f(1)− f(0)ch(1)
sh(1) sh

c) Soit g la fonction de Eα,β définie par

g = αch + β − αch(1)
sh(1) sh

Les fonctions de Eα,β sont alors de la forme f = g + h avec h parcourant V et par
orthogonalité de g et h∫ 1

0

(
f(t)2 + f ′(t)2) dt = ‖f‖2 = ‖g‖2 + ‖h‖2

On en déduit

inf
f∈Eα,β

∫ 1

0

(
f(t)2 + f ′(t)2) dt = ‖g‖2 = (α2 + β2)ch(1)− 2αβ

sh(1)

Exercice 27 : [énoncé]
a) symétrie, bilinéarité et positivité : ok
Si ϕ(P, P ) = 0 alors

∫ +∞
0 P 2(t)e−tdt = 0 donc (fonction continue positive

d’intégrale nulle)
∀t ∈ R+, P (t) = 0

Comme le polynôme P admet une infinité de racines, c’est le polynôme nul.
b) Par intégration par parties successives,

∫ +∞
0 tne−t dt = n! donc

ϕ(Xp, Xq) = (p+ q)!

c) On interprète

inf
(a,b)∈R2

∫ +∞

0
e−t(t2 − (at+ b))2 dt = d(X2,R1 [X])2 =

∥∥X2 − π
∥∥2

avec π = aX + b le projeté orthogonal de X2 sur R1 [X]
(X2 − π | 1) = (X2 − π | X) = 0 donne{

a+ b = 2
2a+ b = 6
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Après résolution a = 4, b = −2 et

inf
(a,b)∈R2

∫ +∞

0
e−t(t2 − (at+ b))2 dt = 4

Exercice 28 : [énoncé]
En introduisant l’espace E des fonctions réelles f continues sur ]0, 1] telles que
t 7→ (tf(t))2 soit intégrable et en munissant cet espace du produit scalaire

(f | g) =
∫ 1

0
t2f(t)g(t) dt

la quantité cherchée est : m = d(f, F )2 avec f : t 7→ ln t et F = Vect(f0, f1) où
f0(t) = 1 et f1(t) = t.
m = ‖f − p(f)‖2 avec p la projection orthogonale sur F .
p(f)(t) = a+ bt avec (p(f) | f0) = (f | f0) et (p(f) | f1) = (f | f1).
La résolution du système ainsi obtenu donne a = 5/3 et b = −19/12.
m = ‖f − p(f)‖2 = (f − p(f) | f) = 1/432.

Exercice 29 : [énoncé]
On sait déjà

+∞∑
n=0

(en | x)2 6 ‖x‖2

en vertu de l’inégalité de Bessel.
Par totalité de la famille, pour tout ε > 0, il existe y ∈ Vect(en)n∈N tel que
‖x− y‖ 6 ε.
Le vecteur y est une combinaison linéaire de la famille (en)n∈N donc il existe
N ∈ N tel que y ∈ Vect(e0, . . . , eN ) et donc

ε > ‖x− y‖ > ‖x− p(x)‖

avec p(x) le projeté de x sur Vect(e0, . . . , eN ) c’est-à-dire

p(x) =
N∑
n=0

(en | x)en

Par suite |‖x‖ − ‖p(x)‖| 6 ‖x− p(x)‖ 6 ε donne

‖x‖ 6 ‖p(x)‖+ ε =

√√√√ N∑
n=0

(en | x)2 + ε 6

√√√√+∞∑
n=0

(en | x)2 + ε

Ceci valant pour tout ε > 0, on obtient ‖x‖ 6

√
+∞∑
n=0

(en | x)2 et finalement

‖x‖2 =
+∞∑
n=0

(en | x)2

Exercice 30 : [énoncé]
On sait kerA ⊂ ker(tAA) et si X ∈ ker(tAA) alors tAAX = 0 donc

‖AX‖2 = tXtAAX = 0

puis X ∈ kerA. Ainsi
kerA = ker(tAA)

Il en découle
rg(A) = rg(tAA)

puis
rg(A) = rg(tA) = rg(ttAtA) = rg(AtA)

Or Im(AtA) ⊂ ImA donc
Im(AtA) = ImA

Exercice 31 : [énoncé]
a) Evidemment

ker(tA+A) ⊃ ker(A) ∩ ker(tA)

Inversement, soit X ∈ ker(tA+A). On a

tAX +AX = 0

et donc
AtAX +A2X = AtAX = 0

puis
tXAtAX =

∥∥tAX∥∥2 = 0

On en déduit tAX = 0 puis aussi AX = 0.
On peut alors conclure l’égalité demandée.
b) (⇒) Supposons tA+A inversible. On a alors

ker(tA+A) = ker(A) ∩ ker(tA) = {0}
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On en déduit
dim kerA+ dim ker tA 6 n

Or
dim ker tA+ rgtA = n

donc
dim kerA 6 rgtA = rgA

Mais A2 = 0 entraîne ImA ⊂ kerA puis rgA 6 dim kerA.
Finalement, ImA ⊂ kerA et rgA = dim kerA donc ImA = kerA.
(⇐) Supposons ImA = kerA. Soit X ∈ ker(tA+A) = ker(A) ∩ ker(tA). On a
X ∈ kerA donc X ∈ ImA. Il existe alors une colonne Y telle que X = AY . Mais
on a aussi tAX = 0 donc tAAY = 0 puis

‖X‖2 = ‖AY ‖2 = tY tAAY = 0

Ainsi ker(tA+A) = {0} et la matrice tA+A s’avère inversible.

Exercice 32 : [énoncé]
On a ∥∥tAX∥∥2 = tXAtAX =

〈
X,AtAX

〉
Par l’inégalité de Cauchy-Schwarz∥∥tAX∥∥2 =

〈
X,AtAX

〉
6 ‖X‖

∥∥AtAX∥∥ 6 ‖X‖
∥∥tAX∥∥

Ainsi ∥∥tAX∥∥ 6 ‖X‖

et ce que tAX = 0 ou non.

Exercice 33 : [énoncé]
a) On a ∥∥tAX∥∥2 = tXAtAX =

〈
X,AtAX

〉
Par l’inégalité de Cauchy-Schwarz∥∥tAX∥∥2 =

〈
X,AtAX

〉
6 ‖X‖

∥∥AtAX∥∥ 6 ‖X‖
∥∥tAX∥∥

Ainsi ∥∥tAX∥∥ 6 ‖X‖

et ce que tAX = 0 ou non.

b) Si AX = X alors∥∥tAX −X∥∥2 =
∥∥tAX∥∥2 − 2

〈
tAX,X

〉
+ ‖X‖2 6 2

(
‖X‖2 − tXAX

)
= 0

On en déduit tAX = X.
b) Soit X ∈ ker(A− In) ∩ Im(A− In).
On a AX = X (et donc tAX = X) et il existe Y ∈ E vérifiant X = AY − Y .

‖X‖2 = 〈X | AY − Y 〉 = tXAY − tXY

Or
tXAY = t

(
tAX

)
Y = tXY

et donc ‖X‖2 = 0. Ainsi

ker(A− In) ∩ Im(A− In) = {0}

Enfin, le théorème du rang

dim ker(A− In) + rg(A− In) = dimE

permet de conclure
E = ker(A− In)⊕ Im(A− In)

Exercice 34 : [énoncé]
Si X ∈ kerA alors X ∈ ker tAA.
Inversement, si X ∈ ker tAA alors tAAX = 0 donc tXtAAX = t(AX)AX = 0
d’où AX = 0 puis X ∈ kerA.
Ainsi

ker(tAA) = kerA

puis par la formule du rang
rg(tAA) = rgA
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