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Enoncés 1

Espaces préhilbertiens réels

Produit scalaire

Exercice 1 [03480] [correction]
On note F = R [X] et on considére application ¢ : E x E — R donnée par

+oo
o(P.Q) = /0 P(HQ(t)e dt

a) Justifier que 'application ¢ est bien définie de E x E vers R.

b) Montrer que l'application ¢ définit un produit scalaire sur E.

¢) Pour p,q € N, calculer p(X?, X17).

d) Orthonormaliser par le procédé de Gram-Schmidt la famille (1, X, X?2).

Exercice 2 [03322] [correction]
Soient a un vecteur unitaire d’un espace préhilbertien réel E, k un réel et
¢ : EF x E— R Dapplication déterminée par

o(x,y) = (z,y) + k(z,a) (y,a)

Donner une condition nécessaire et suffisante pour que ¢ soit un produit scalaire.

Exercice 3 [04092] [correction]
Soit E = C!([0,1],R). Pour f,g € E, on pose

1
P0)= [ PO O+ 70)90)+ F0)50)
0
Montrer que ¢ définit un produit scalaire sur E.

Calculs dans un espace préhilbertien réel

Exercice 4 [00505] [correction]

Démontrer que la boule unité fermée B d’un espace préhilbertien réel est
strictement convexe i.e. que pour tout z,y € B différents et tout t € ]0, 1],
(1 —t)z +ty|| < 1.

Exercice 5 [00511] [correction]
On munit E = C ([a,b],R) du produit scalaire défini par

b
(F19)= [ H0gt0)a

En exploitant le théoreme d’approximation uniforme de Weierstrass, établir que
lorthogonal du sous-espace vectoriel F' de E formé des fonctions polynomiales est
réduit & {0}.

Exercice 6 [00513] [correction]

Soit E un espace préhilbertien réel.

a) Etablir que pour tout sous-espace vectoriel F de E, F C F++.
Désormais, on suppose E = R [X] muni du produit scalaire défini par

(P1Q) = [ PoQ@a
b) Montrer que X
H= {PER[X]// |t|P(t)dt:0}

est un hyperplan fermé de E.
¢) Soit Q € H+. Etablir que pour tout P € R[X],

/_11 PHQ(t)dt = (/_11 It| P(t) dt) (/_11 Q(t) dt)

d) Etablir que H+ = {0} et conclure qu'ici I'inclusion H C H+* est stricte.

Exercice 7 [03318] [correction]
Soient x1,...,z, des vecteurs d’'un espace préhilbertien réel E.
On suppose qu’il existe M € R tel que

V(é‘l, s ,€n) € {L 71}n7

Montrer .
> al® < M?
k=1

Diffusion autorisée a titre entiérement gratuit uniquement - dD



[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015

Enoncés 2

Exercice 8 [03321] [correction]
On munit l'espace E = C([0,1],R) du produit scalaire

1
- / f(@)g(x) da
0

Pour f € E, on note F la primitive de f qui s’annule en 0

Yz € [0,1], /f

et on considére I’endomorphisme v de E déterminé par v(f) = F.
a) Déterminer un endomorphisme v* vérifiant

Vf,g € E,(v(f),g) = (f,v"(9))

b) Déterminer les valeurs propres de ’endomorphisme v* o v.

Exercice 9 [03325] [correction]
Soit F' un sous-espace vectoriel d’un espace préhilbertien réel E. Etablir

Ft=F"t

Exercice 10 [o00351 ] [correction]

Soient e = (e;)1<i<n €t f = (fj)i1gj<n deux bases orthonormales d’un espace
euclidien E.

Soit u € L(E). On pose

A:ZZ fl|uej
i=1 j=1

Montrer que A ne dépend pas des bases orthonormales choisies

Exercice 11 [03979] [correction]
Soient a,b deux vecteurs unitaires d’un espace euclidien F.
Déterminer le maximum sur la boule unité fermée de f:x+— (a | z) (b] x)

Représentation d’une forme linéaire

Exercice 12 [ 02666 ] [correction]
a) Montrer 'existence et 'unicité de A € R,, [X] tel que

VP e R, /A dt

b) Etablir que A est de degré n.

Exercice 13 [ 03024 ] [correction]
On définit sur R [X] le produit scalaire

(P1Q) :/0 P(HQ(r) dt

Existe-t-il A € R[X] tel que

VP e R[X],P(0) = (A| P) ?

Exercice 14 [01573] [correction]

Soit £ = R[X].
a) Montrer que ¢(P,Q) = fo t)dt définit un produit scalaire sur F.
b) Soit # : E — R la forme hnealre deﬁme par 6(P) = P(0).

Montrer qu’il n’existe pas de polyndéme @ tel que pour tout P € F on ait

0(P) = (P, Q).

Polyn6mes orthogonaux

Exercice 15 [03079] [correction)]

On définit 1
2”7’1/' ((X2 - 1) )

a) Soit n > 1. Montrer que @, posséde n racines simples dans |—1, 1].
b) Montrer que

Qn(X) =

Qn=X"+(X* - 1)Rn(X)
avec R, € R[X]. En déduire Q,(1) et Q,(—1).
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¢) On pose, pour (P,Q) € R[X]?,

<P,Q>/11

Montrer que @, est orthogonal & R,,_1 [X].
d) Calculer [|Q,|°.

PH)Q(t) dt

Exercice 16 [03657 ] [correction]
On munit R [X] du produit scalaire

(P.Q) = /_ P d

a) Etablir existence et I'unicité d’une suite de polynoémes (P,) formée de
polynémes deux & deux orthogonaux avec chaque P, de degré n et de coefficient
dominant 1.

b) Etudier la parité des polynomes P,,.

¢) Prouver que pour chaque n > 1, le polyndéme P,,11 — X P, est élément de
Porthogonal a R,,_s [X].

d) En déduire alors qu’il existe A, € R tel que

Pn+1 =XP,+ APy

Exercice 17 [01332] [correction]
Soient n € N*, E =R, [X] et

+oo

(,): (P,Q) € B> (P,Q) = P(#)Q(t)e " dt

0
a) Justifier la définition de (,) et montrer qu’il s’agit d’un produit scalaire.
On pose F'={P € E, P(0) = 0}. On cherche & déterminer d(1, F). On note
(Po,...,P,) lorthonormalisée de Schmidt de (1, X,..., X™).
b) Calculer P;(0)2.

c) Déterminer une base de F- que I’on exprimera dans la base (P, ..., P,). En
déduire d(1, F*) et d(1, F).

Familles obtusangles

Exercice 18 [03157] [correction]

Soit F = (z1,...,2,) une famille de n > 2 vecteurs d’un espace préhilbertien réel.

On suppose
Vi<i#j<n,(z;|z;) <0

Montrer que toute sous famille de n — 1 vecteurs de F est libre.

Exercice 19 [o01574] [correction)]

[Famille obtusangle]

Soit x1,x9, ..., xpto des vecteurs d'un espace vectoriel euclidien E de dimension
n € N*.

Montrer qu’il est impossible que

Vi<i#j<n+2, (z;|z;) <0

Exercice 20 [00520] [correction)]

Soient x1, o, ..., Tn42 des vecteurs d’un espace vectoriel euclidien £ de dimension
n € N*.

Montrer qu’il est impossible que

On pourra commencer par les casn =1et n =2

Eléments propres d’endomorphismes euclidiens

Exercice 21 [00517] [correction)]
Soit a un vecteur normé d’un espace vectoriel euclidien F. Pour tout a € R, on
considere I’endomorphisme

faiz—z+ala]x)a

a) Préciser la composée f, o fz. Quelles sont les f, bijectives?
b) Déterminer les éléments propres de f,.

Exercice 22 [o00518] [correction)]
Soient a,b deux vecteurs unitaires d’un espace vectoriel euclidien F et f
I’application de E vers E donnée par

fia—axz—(a|x)

a) A quelle condition la fonction f est-elle bijective ?
b) Exprimer f~1(x) lorsque c’est le cas.
¢) A quelle condition ’endomorphisme f est-il diagonalisable ?
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Projections orthogonales Calculer )
inf /(f(t)2+f’(t)2) dt
0

Exercice 23 [01595 ] [correction] f€Eap
Soit p une projection d’un espace vectoriel euclidien F.

Montrer que la projection p est orthogonale si, et seulement si, Exercice 27 [00529 | [correction]

Ve € E, |p(x)| < ||z| On définit une application ¢ : R[X] x R[X] — R par

+oo

e(P,Q) = P(t)Q(t)e™" dt
Exercice 24 [03924] [correction] 0
Soit p un projecteur d’'un espace euclidien F vérifiant a) Montrer que ¢ définit un produit scalaire sur R [X].
b) Calculer p(XP, X9).
vz € B, {p(z),z) >0 c¢) Déterminer

“+o0
Montrer que p est un projecteur orthogonal. inf / e Ht? — (at +b))? dt
(a,b)eR? Jq
Exercice 25 [00524 ] [correction]

. . o . . Exercice 28 [02735] [correction
Soient E un espace vectoriel euclidien muni d’une base orthonormée [ 51 ]

e =(e1,...,e,) et F' un sous-espace vectoriel de F muni d'une base orthonormée Caleuler 1
(x1,...,2p). Montrer que la matrice de pr dans la base e est inf {/ t?(Int — at — b)*dt, (a,b) € Rz}
0
P
t .

> XX Familles totales

k=1
ou X}, est la colonne des coordonnées du vecteur x; dans e. Exercice 29 [00530] [correction]

[Formule de Parseval]
On suppose que (e, )nen est une famille orthonormale totale d’un espace
préhilbertien E. Montrer que pour tout = € F,

+oo
2 2
2] =" I(ea | 2)]
n=0

Exercice 26 [03766] [correction]
On pose E = C1([0,1],R) et

Vg€ B (f,g) = / F(Hg(t) dt + / F(t)g' (1)t

a)) Montrer que {.,.) définit un produit scalaire sur . Produit scalaire et transposition matricielle
b) On pose
V={feE/f(0)=f(1)=0} et W={feE/festC*et f'=f} Exercice 30 [03937] [correction]

Soit A € M,,(R). Comparer d’une part les espaces
Montrer que V' et W sont supplémentaires et orthogonaux.

Exprimer la projection orthogonale sur W. ker A et ker(*AA)

ient R et
c) Soient &, f €R e et d’autre part les espaces

Eop={f€E/f(0)=aet f(1) =p} ImA et Tm(A'A)
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Exercice 31 [03935] [correction]
Soient A € M,,(R) vérifiant A% = 0.
a) Etablir
ker(*A + A) = ker(A) Nker(*A)

b) En déduire
A+ A€ GL,(R) & ImA = ker A

Exercice 32 [03936] [correction]
Soit A € M,,(R) vérifiant

VX € M1 (R), [AX] < [|X]

ol ||. | désigne la norme euclidienne usuelle sur ’espace des colonnes.
Etablir
VX € My 1(R),

PAX|| < [I1X]]

Exercice 33 [03938] [correction]
Soit A € M, (R) vérifiant

VX € Mpna(R), [AX]] < |1 X]]

ou || .|| désigne la norme euclidienne usuelle sur I’espace des colonnes.
a) Etablir
VX € My 1(R), |[FAX| < |1X]|

b) Soit X € M, 1(R). Montrer que si AX = X alors 'AX = X
c¢) Etablir
My 1(R) =ker(A —I,) ® Im(A — I,,)

Exercice 34 [00354] [correction]
Soit A € M, (R). Etablir
rg(*AA) = rgA

Diffusion autorisée a titre entiérement gratuit uniquement - dD



[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015

Corrections

Corrections

Exercice 1 : [énoncé]
a) Pour P,Q € E, la fonction f : ¢t — P(t)Q(t)e™! est définie et continue par
morceaux sur [0, +-o0[ et intégrable car 2 f(t) P 0.
—+o00
b) L’application ¢ est clairement bilinéaire symétrique et positive.
Si p(P, P) = 0 alors par intégration d’une fonction continue positive on obtient

vt € [0, +oo[, P(t)?e™ " =0

et donc P admet une infinité de racines (les éléments de [0, +00[), c’est donc le
polynéme nul.

¢) Posons I, = 0+°O t"e~t dt de sorte que p(XP, X?) = I,.,.

Par intégration par parties

A A A
/ the tdt = [—t"e ] +n/ t" et dt
0 0

et quand A — +o0, on obtient I, = nl, 1. Sachant Iy = 1, on conclut I, = n! et

P(XP, X)) = (p+q)

d) Notons que la famille (1, X, X?) est libre et qu’il est donc licite de
lorthonormaliser par le procédé de Schmidt. On pose Py = 1.

On cherche Py = X 4+ APy avec (Py | P1) =0 ce qui donne 1 + A =0 et donc
P=X—1.

On cherche Py = X2 + APy + pPy avec (Py | P;) =0 et (P, | P,) = 0 ce qui donne

24+A=0et4+pu=0donc P, = X2 —4X +2.
La famille orthonormalisée cherchée et alors (Qg, @1, Q2) avec

1
Q0:1,Q1:Xf1etQ2:§(X274X+2)

Exercice 2 : [énoncé]
Il est immédiat que ¢ est une forme bilinéaire symétrique sur E.
On a
(e, ) = ||z]* + k (z,0)”
En particulier
¢(a,a) = [la|* + klla]* = (1 + k)

Pour que la forme bilinéaire symétrique ¢ soit définie positive, il est nécessaire
que 1 +k>0.

Inversement, supposons 1 + k > 0.
Si k> 0 alors ¢(z, ) > ||lz||* et donc

Vo € E\{0g},¢o(z,z) >0
Sike]-1,0[, k=—a avec a €]0,1] et

plw, ) = ||z]* = a (z,a)?
Par 'inégalité de Cauchy-Schwarz

(w,a)* < [l fal* = |||

donc
2 2 2
ez, 2) 2 |z|” — ellz)” = (1 - o) ||

de sorte que
Ve € E\{0g},p(z,z) >0

Ainsi ¢ est une forme bilinéaire symétrique définie positive donc un produit
scalaire.
Finalement, ¢ est un produit scalaire si, et seulement si, 1 + k& > 0.

Exercice 3 : [énoncé]

L’application ¢ est bien définie de £ x E — R et clairement bilinéaire et
symétrique.

Soit f € E.

1
o(f.f) = / ()2 dt +2£(0)f(1)

Par I'inégalité de Cauchy-Schwarz
1 2 1
(/ f’(t)dt) </ fl(t)*at
0 0

/0 S0 dt > (f(1) — £(0))?

et donc

puis
o(f, f) = F()2+ £(0)> >0

Au surplus, si o(f, f) = 0 alors f(0) = f(1) = 0, mais aussi fol f'(t)2dt = 0. La
fonction f est donc constante égale a 0.
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Exercice 4 : [énoncé]
Par I'inégalité triangulaire

[(1—t)z+tyl| <A —1)flz|+ ]yl <1

De plus, s’il y a égalité alors ||z|| = 1, ||y|| = 1 et les vecteurs (1 — t)x et ty sont
positivement liés.

Les vecteurs x et y étant unitaires et positivement liés, ils sont égaux. Ceci est
exclu.

Exercice 5 : [énoncé]
Soit f € F+. Puisque f est continue sur le segment [a, b], par le théoréme
d’approximation uniforme de Weierstrass :

Ve >0,3P € R[X],[|f = Pllo fap <€

||f||2—/abf2—/abf(fP)+/abfP—/abf(fP)

/abf(f—P)

En faisant tendre € vers 0, on obtient ||f]|*> = 0 donc f = 0. Ainsi F+ c {0} puis
F+ ={0}.

On a alors

avec

Sb=a)[[fllsllf = Plloe S 0—a)[fllce

Exercice 6 : [énoncé] B
a) On sait F' C F1+ et F++ fermé donc F C F++.
b) H est le noyau de la forme linéaire

1
o PH/ It| P(t) dt
—1

En vertu de I'inégalité de Cauchy-Schwarz, |¢(P)| < || P]| et donc ¢ est continue.

Par suite H est un hyperplan fermé.
¢) Pour P € R[X], on observe que

1
R= P—/ | P(u) du
1

appartient & H. La relation (R | Q) = 0 donne la relation voulue.
d) La relation précédente donne

/_11 (Q(t) = Itl /_11 Q(u) du) P(t)dt = 0

pour tout P € R[X]. Par suite
1
av =1 [ Qu)du
-1

Ceci n’est possible dans R [X] que si f_ll Q(u) du = 0 et donc seulement si @ = 0.
Ainsi H+ = {0} puis H** = E alors que H = H # E.

Exercice 7 : [énoncé]

Cas n =1, c’est immédiat.
Casn=2:

Si ||z +yl <M et ||z —y| < M alors

2 2 2 2
™ + 2z [ y) + llyll” < M* et [|lz]|” — 2(z | y) + ly]” < M*

Si (z | y) > 0 alors premiére identité donne ||z|* + ||ly||*> < M2, si (z | y) <0, Cest
la deuxieme identité qui permet de conclure.
Supposons la propriété vraie au rang n > 1.

Supposons
n+1

E ExTE

k=1

v(gly-"aen-‘rl) € {1’_1}”+17 <M

Par I’étude du cas n = 2 appliquée au vecteur

n
T = Zskxk et y = Tp41

k=1
on obtient
n 2
Y(er, . oven) € {L=1}" |3 eran|| + l|lznga|® < M?
k=1
donc
n
Y(er, .- en) € {L =11 I epan|| < /M2 = ||z
k=1
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Par hypothéese de récurrence
n
Do llzkl® < M = ||z ||
k=1

et I'on peut conclure.
Récurrence établie.

Exercice 8 : [énoncé]
a) Par intégration par parties

1

/O Fa)g(@)dr = FOG(0) = [ f@)G()da

ce qui se réécrit

1 1
| @ ae= [ @@ - 6w @
0 0

Ainsi pour
1

v*(g):x— G(1) — G(z) = / g(t)dt

x

on vérifie que v* est un endomorphisme de E vérifiant

Vf.g € E (v(f).g9) = (f,v"(9))
b)Soit A € R et f € E vérifiant (v* o v)(f) = Af.
La fonction f est nécessairement dérivable et vérifie

Af(1) =0
v(f)(x) = =Af'(2)

La fonction f est donc nécessairement deux fois dérivable et vérifie

Af(1)=0
Af(0) =0
f@) = =Af"()

Si A =0 alors f =0 et donc A n’est pas valeur propre.

Si A > 0 alors en écrivant A = 1/4/w, I’équation différentielle Ay’ + y = 0 donne la

solution générale
y(t) = acos(wt) + B sin(wt)

La condition f/(0) = 0 donne 8 = 0 et la condition f(1) =0 donne « cos(w) = 0.
Siwé m/2+ 7N alors f =0 et A =1/y/w n’est pas valeur propre.

En revanche, si w € /2 + 7N, alors par la reprise des calculs précédents donne
A = 1/y/w valeur propre associé au vecteur propre associé f(x) = cos(wx).

Si A < 0 alors la résolution de ’équation différentielle linéaire a coefficients
constants avec les conditions proposées donne f = 0 et donc A n’est pas valeur
propre.

Exercice 9 : [énoncé]
Puisque F' C F, on a déja
FtcF+

Soit a € F*.
Pour tout = € F, il existe une suite (x,) d’éléments de F telle que x,, — =.
Puisque

Vn e N, (z,,a) =0

a la limite (le produit scalaire étant continue)
(x,a) =0

et donc a € Ft. -
Finalement, par double inclusion F- = F*.

Exercice 10 : [énoncé]
Puisque la base f est orthonormale, on a

A= lule;)|?
j=1

et donc
n

A=33 (e | ule))”

i=1j=1
Notons M = (m; ;) la matrice de u dans la base orthonormale e. On a
mi; = (ei | ule;))

et donc
A=tr (tMM)

Diffusion autorisée a titre entiérement gratuit uniquement - dD



[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015

Corrections 9

Sie' = (ef,...,e)) est une autre base orthonormale de E et si M’ est la matrice

de u dans €', on peut écrire
M’ ="'PMP avec P € O,(R)

et alors
tr(tM’M') = tr(tPtMMP) = tr(tMMPtP) = tr(tMM)

Finalement, la quantité A ne dépend ni de choix de f ni de celui de e.

Exercice 11 : [énoncé]

Casa=1b:

f(@) = (a|x)? et le maximum cherché est évidemment en a.
Casa=—b:

f(x) = —(a|z)? et le maximum cherché est évidemment en 0.

Cas restants :
Les vecteurs a + b et a — b constituent une famille orthogonale.

Posons
a+b a—>b

, €2 =
lla + ]| la — bl

€ =
Les vecteurs e; et eo forment une famille orthonormale que le peut compléter en
une base orthonormale (e;)1<i<n-

Pour z tel que ||z]| < 1, on peut écrire

x:x161+~--+xnenavecx%—i—---—i—xQ <1

et alors ) @l
1+ (alb 1—(alb)
(alz)=01————F~ + 20— =
l|a+ 0 a0
puis
ﬂm_ﬁ<ruamf_ﬁ(rwwwf
T a0 R
Le maximum cherché est pour z;1 =1 et 2o = ... =z, = 0. Il vaut

()

Cette formule convient aussi pour les cas initialement isolés.

Exercice 12 : [énoncé]
a) Il est bien connu que l'application

@Q%MR@ZAfWW®&

définit un produit scalaire sur R,, [X]. L’application P +— P(0) est une forme
linéaire sur R [X] donc il existe un unique polynoéme A € R,, [X] tel que cette
forme linéaire corresponde au produit scalaire avec A, ce qui revient & dire

VP € R, [X],P(0) = (A,P) = /1 A(t)P(t) dt
0

b) Si par l’absurde le degré de A est strictement inférieur & n alors P = X A est
élément de R,, [X] et donc

/ CtA(t)? df = P(0) = 0
0

Or la fonction ¢ — tA(t)? est continue positive sur [0, 1] et la nullité de I'intégrale
précédente entraine alors

vt € [0,1],tA(t)> =0
On en déduit A = 0 ce qui est absurde.

Exercice 13 : [énoncé]
Supposons l'existence d'un tel polynéme A et considérons P(X) = X A(X).
On a

1
0=P(0)=(A|P) :/ tA(t)? dt
0
Par nullité de I'intégrale d’une fonction continue positive, on obtient
vt €[0,1],tA(t)?> =0

Le polyndéme A admet une infinité de racine, c’est donc le polynéme nul ce qui est
absurde.

Exercice 14 : [énoncé]

a) ras

b) Supposons qu’'un tel polynéme @ existe et considérons P = X Q.
Onaf(P)=0= fol tQ?*(t)dt donc Q = 0 d’ot1 § = 0. Absurde.
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Exercice 15 : [énoncé]
a) 1 et —1 sont racines de multiplicité n du polynome (X2 — 1)".
1 et —1 sont donc racines des polyndémes

(X217, (x2-1m) ., (x2-nm)"Y

En appliquant le théoreme de Rolle, on peut alors montrer par récurrence sur

k€ {0,...,n} que ((X?— 1)”)(k) possede au moins k racines dans l'intervalle
]-1,1[.

En particulier Q),, posséde au moins n racines dans |—1, 1], or deg Q,, = n donc il
n’y a pas d’autres racines que celles-ci et elles sont simples.

b) Raisonnons par récurrence sur n € N.

Pour n = 0, c’est immédiat.

Supposons la propriété établie au rang n > 0.

Qn+1(X) = m (2(n + 1)X(X2 — 1)n)(n)

Par la formule de Leibniz

1

QnJrl(X) = M (X ((X2 _ 1)n)(n) +nX ((X2 . 1)7;)("*1))

1 et —1 sont racines du polynéme ((X2 — 1)”)(n_1) et donc celui-ci peut s’écrire
(X% -1)S(X).

En exploitant 'hypothese de récurrence, on obtient

Qni1(X) = X"+ X (X2-1)R,(X)+2n X (X*-1)S(X) = X" (X1 R, 1(X)

Récurrence établie
c¢) Par intégration par parties successives et en exploitant 'annulation en 1 et —1
des polynomes

(X2 1), (X2 -1)") ...

/1 P#)Qy(t)dt = (=1)" /1 P

—1 2”7’7,'

: ((XQ _ 1)n)(”*1)

on obtient

En particulier, si P € R, [X],

d) Par la relation qui précede

| @y =g [ apma - ey

1 2nn! J_

Puisque le polyndme (X2 — 1) est unitaire et de degré 2n

2 1\n (2n) _ | (n) _ (2”’)'
[(X 1) ] =(2n)! et Q) = Sl
De plus, par intégration par parties successives
1 1 2n4+1(,,1)2
2 (n!)
17t2”dt:/ L=t)"(1+t)"dt = ——
Au final 5
2 p—
”Qn“ - (2n+ 1)

Exercice 16 : [énoncé]

a) Par récurrence sur n > 0, établissons l'existence et 1'unicité de la sous-famille
(Pr)o<kgn telle que voulue.

Cas n =0 : le polynéme P, vaut 1.

Supposons la propriété vraie au rang n > 0.

Les polynoémes P, ..., P, sont alors déterminés de fagon unique par I’hypothese
de récurrence et il reste seulement a former P, ;. Celui-ci peut s’écrire

Poy1 = X"+ Q(X) avee Q(X) € R, [X]

On veut (P41 | Px) = 0 pour tout k € {0,...,n}. Le polynéme @ doit donc
vérifier

Vi€ {0,...,n},(Q(X) | Pp) = —(X"" | P)
Ces relations détermine entiérement le polynéme @ puisque (FPp, ...
base orthogonale de R,, [X] :

, P,) est une

n

n+1
Q:_Z(X |Pk)Pk

2
im0 Pl

Le polynéme P,y existe donc et est unique.

Récurrence établie.

b) La famille ((—1)" P, (—X)) vérifie les mémes conditions que celles ayant défini
la suite (P,). On en déduit

Vn € Na Pn(_X) = (_1)npn(X)
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¢) Soit @ € R,,_2 [X].
n—2
On peut écrire Q@ = > ap Py, et donc (Ph41 | Q) = 0.
k=0
n—1
On peut aussi écrire XQ = ) a}, Py et donc (XP, | Q) = (P, | XQ) =0.
k=0
On en déduit
VQ R, 5 [X],(Ppp1 — XP, | Q)=0

d) Par simplification des termes de plus haut degré
P,i1— XP, R, [X]

On peut donc écrire

Po1 = XPy =) Py
k=0

Or P,;1 — X P, est orthogonal & Py, ..., P,_o donc
Pn+1 - XP,=apPy+a, 1P
Enfin, par parité, o, = 0 et donc

Pn+1 —XP,=ap 1P,

Exercice 17 : [énoncé]
a) Pour P,Q € E, la fonction ¢t — P(t)Q(t)e™" est définie et continue par
morceaux sur [0, +o00[ et vérifie

t2P(t)Q(t)e™"

(DQH)e ——

On peut donc affirmer que cette fonction est intégrable sur [0, +00[ ce qui assure
la bonne définition de ().

On vérifie aisément que (, ) est une forme bilinéaire symétrique positive.

Si (P, P) = 0 alors par nullité de I'intégrale d’une fonction continue positive

vt € [0, +o0[, P(t)’e " =0

On en déduit que le polynéome P admet une infinité de racines et donc P = 0.
b) Pour k > 1 ou k = 0, on peut affirmer que les polynémes Py, et P] sont
orthogonaux car

P]é S Vect(Pl, . ,Pkfl)

Par une intégration par parties

+o00
0= Pl(t)Py(t)e " dt = & [Pk(t)ze_t} oo |

1 oo 2 t
— P.(t)%e™"dt
. 5 0 2/0 () e

On en déduit
P(0)? = 1> =1

¢) F est un hyperplan (car noyau de la forme linéaire non nulle P — P(0)). Son
orthogonal est donc une droite vectorielle. Soit @@ un vecteur directeur de celle-ci.
On peut écrire

n
Q=Y (P.Q) Py
=0

Or
(P, Q) = (P, — P(0), Q) + Px(0) (1, Q)
Puisque le polynéme Py — P;(0) est élément de F, il est orthogonal & @ et 'on
obtient
(P, Q) = P,(0) (1, Q)
ce qui permet d’écrire

n

Q= AZPk(O)Pk avec A =(1,Q) #0

k=0

On en déduit 1

1(1,Q)] 1
d(1,F) = - _
n n ].
Q| \/,;_:O PL(0)? Vn+

Enfin par Pythagore
11 = d(1, F)? +d(1, F+)?

et I’on obtient
n

n+1

d(1,F+) =

Exercice 18 : [énoncé]

Raisonnons par récurrence sur n > 2.

Pour n = 2 la propriété est immédiate car aucun vecteur ne peut étre nul.
Supposons la propriété établie au rang n > 2.

Soit (z1,...,Zn+1) une famille de vecteurs vérifiant

Vi<i#j<n+1(z;|z;) <0
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Par projection orthogonale sur le sous-espace vectoriel de dimension finie
D = Vecta,, 11, on peut écrire pour tout ¢ € {1,...,n}

Ty = Yi + XNiTng

avec y; un vecteur orthogonal & x,11 et A\; < 0 puisque (x; | £,41) < 0.
On remarque alors

(@i | 25) = (95 | 95) + A |z |
et on en déduit

VI<i#j<n, (yily;) <0

Par hypothése de récurrence, on peut affirmer que la famille (ys, ..., y,) est libre
et puisque ses vecteurs sont orthogonaux au vecteur x,,+1 non nul, on peut aussi
dire que la famille (ya, ..., Yn, Zn,1) est libre. Enfin, on en déduit que la famille
(x2y...,Tn,Tni1) car cette derniére engendre le méme espace que la précédente et
est formée du méme nombre de vecteurs.
Par permutation des indices, ce qui précede vaut pour toute sous-famille formée
de n vecteurs de la famille initiale (21, ..
Récurrence établie.

Ty Tpt1)-

Exercice 19 : [énoncé]
Par récurrence sur n € N*
Pour n =1 : Soit u un vecteur unitaire de E. On peut écrire
xr1 = )\1.u, To = )\2.U,$3 = )\3.u
On a alors
(ZEl | .T,z) = )\1)\2, (ZCQ | $3) = )\2)\3, ($3 | $1) = )\3)\1

Ces trois quantités ne peuvent étre négatives car
AMA2A2 A3 301 = (A1 A2A3) > 0

Supposons la propriété établie au rang (n — 1) € N* :

Par I'absurde, supposons que la configuration soit possible :
Nécessairement x,42 # 0.

Posons F' = Vect(z,42)*. Onadim F =n — 1.

Vi<i<n+1,2 =y + NTni2
avec y; € F et \; € R.
Comme (z; | Tp+2) <0ona \; <O0.
VISi#j<n+1, (zi]a;) = (v | y) + XN [zase]® <0

donc (y; | ;) < 0.
On peut appliquer 'hypothese de récurrence a la famille (y1, ...
vecteurs qui évoluent dans F'. Récurrence établie.

,Ynt1) formée de

Exercice 20 : [énoncé]
Casn=1.
Supposons disposer de vecteurs x1, T, 3 tels que

VZ#],($Z|$3)<0

Puisque 1 # 0, (z1) est une base de F.

Cela permet d’écrire xo = Ax1 et x3 = ux;.

(2| ®1) <O0et (x3]21) <0 donne A <0 et <0 mais alors
(w2 | w3) = A |z ||* > 0!

Cas n = 2.

Supposons disposer de vecteurs 1, ..., x4 tels que

vz#%('ﬁz |'r_]) <0
21 étant non nul on peut écrire
Vi > 2,z = Nxy +

avec y; € {xl}J‘ et \; < 0.
On
Vi 22 (@i | z;) = XA+ (i |y;) <0
donc (y; | y;) < 0.
Y2, Y3, Y4 S€ positionnant sur la droite {xl}J‘7 I’étude du cas n = 1 permet de
conclure.
Cas général.
Par récurrence sur n > 1.
Pour n =1 : ci-dessus
Supposons la propriété établie au rang n > 1.
Supposons disposer de vecteurs z1, ..., T,+3 tels que

a lintérieur d’un espace vectoriel euclidien de dimension n + 1.
x1 étant non nul on peut écrire

avec y; € {xl}J‘ et \; < 0.
On a
Vi#j 22, (x| ) =N+ (i | y;) <0
done (y; | y;) < 0.
Y2, ---, Yn+3 Se positionnant sur le sous-espace vectoriel {131}L qui est de dimension
n, 'hypothese de récurrence permet de conclure.
Récurrence établie.
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Exercice 21 : [énoncé]

a) fa Ofﬁ = fa+5+o¢ﬁ-

Si a = —1 alors a € ker f, et donc f, n’est pas bijective.
(83

Sia # —1 alors, pour 8 = —f,

fﬁofa:fozofﬁsz:Id

d’out la bijectivité de f,.

b) Tout vecteur non nul orthogonal & a est vecteur propre associé a la valeur
propre 1.

Tout vecteur non nul colinéaire & a est vecteur propre associé a la valeur propre
1+ a.

Pour une raison de dimension, il ne peut y avoir d’autres vecteurs propres.

Exercice 22 : [énoncé]

a) L’application f est linéaire et l'espace F est de dimension finie. 11 suffit
d’étudier 'injectivité de f pour pouvoir conclure.

Siz € ker f alors ¢ = (a | z)b et donc (a | z) = (a | x)(a | b).
Si(a]x)#0alors (a|b) =1 et donc a =b (par égalité dans I'inégalité de
Cauchy-Schwarz).

Par contraposée si a # b alors (a | ) = 0 et 2 = 0 donc f bijective.

En revanche si a = b alors a € ker f et f n’est pas bijective.

b) Supposons a # b. Si y = f(x) alors y = x — (a | )b puis

(aly) = (a| 2)(1 = (a|b)) et donc

_ (a]y)
x—y+1_(a|b)b
©)

flz)=Xr e (a]x)b=(1- Nz

Soit A une valeur propre. Il existe x # 0 tel que f(x) = Az donc

(a]x)b= (1= Nz puis (a|z)(a]|b) = (1 —A)(a]|z) ce qui donne (a | ) =0 (qui
implique A = 1 avec E,(f) = {a}") ou A=1— (a | b).

Si(a]b) =0 : A=1 est seule valeur propre et I’espace propre associé est
I’hyperplan de vecteur normal a.

L’endomorphisme n’est alors pas diagonalisable.

Si(a]b)#0 : A=1et A=1— (a|b) sont valeurs propres et puisque F1(f) est
un hyperplan, 'endomorphisme est diagonalisable.

Exercice 23 : [énoncé]
Si p est une projection orthogonale sur un sous-espace vectoriel F' alors

Ve € B,z =p(x) + (z — p(z))
avec p(z)L(x — p(z)). Par le théoréeme de Pythagore
2 2 2 2
12]” = llp(@)[|” + [z = p(x) I = [Ip()]]

Inversement, soit p une projection telle que

Vo € B, [jp(x)]| < ||z
Puisque p est une projection, les espaces F' = Imp et G = ker p sont
supplémentaires et p est la projection sur F' parallelement a G. Il s’agit alors de

montrer que ces deux espaces sont orthogonaux.
Soient u € F,v € G et A € R. Considérons le vecteur

r=u+Av
On a p(z) = u et ||p(z)||*> < ||z||* ce qui donne
0.< 2X\(u | v) + A% o]

Ceci valant pour tout A € R, on a nécessairement (u | v) = 0.
En effet, si (u | v) # 0 alors

20(u | 0) + X2 o) ~ 2A(u] )

ce qui est une expression qui change de signe.
Ainsi les espaces F' et G sont orthogonaux et p est donc une projection
orthogonale.

Exercice 24 : [énoncé]

Le projecteur p projette sur Imp parallelement a ker p. Il est orthogonal si, et
seulement si, Imp et ker p sont des sous-espaces vectoriels orthogonaux. Soient
x €kerpet y € Imp. On a

VA ER, (p(z+ Ay),z+ Ay) =0

ce qui donne
YA ER, (\y,z+ \y) >0
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puis Ona f=g+havech=Ah+ push e W et g=f—h &V par construction.
YAER A (y,z) + X2 (y,y) =0 Les espaces V et W sont donc supplémentaires orthogonaux et I’on peut
i ire 1 jecti h 1 .P i préce
Si par 'absurde (y, z) # 0 alors introduire la projection orthogonale p sur W. Par ce qui précede

7(1) = FO)c(1)

Ay, ) + 2\ (y, y) ~ My p(f) = f(O)ch + (D)
qui n’est pas de signe constant. C’est absurde. ¢) Soit g la fonction de E, g définie par
— ach(1
g = ach + 6}?‘70()5}1

Exercice 25 : [énoncé] sh(1)
On sait » Les fonctions de E, g sont alors de la forme f = g+ h avec h parcourant V' et par

pr(z) = Z (z1 | 2)z orthogonalité de g et h

k=1 1
2 2 2
done p G2+ ) at= 1P = gl +
L) — t .
pr(e:) = ];( XiBr)y On en déduit
1 2 2
_ | | (o + B2)ch(1) — 208
en .notantt E; Mate(ez?. inf / (F®) + f/(£)?) dt = gl =
Puisque "X F; est un réel, f€Ea s Jo sh(1)
P P
t
Mats(pr(e:)) Z XiEi) Xy = ZXk XiEi Exercice 27 : [¢énoncé]
k=1 k=1 a) symétrie, bilinéarité et positivité : ok
puis Si (P, P) =0 alors f+°° P2(t)e~tdt = 0 donc (fonction continue positive
, d’intégrale nulle)
Mats(pr) ZXk X vVt e RY, P(t)=0
Comme le polynéme P admet une infinité de racines, c’est le polynéme nul.
car (Ey |-+ | Ep) = I. b) Par intégration par parties successives, f0+°° t"e~tdt = n! donc
(X7, X) = (p+q)!
Exercice 26 : [énoncé] _ .
a) Vérification sans peine. c) On interprete
b) Soit (f,g9) € V x W. On a too ,
inf eTH(t* — (at +b))* dt = d(X> Ry [X])? = || X* — 7|
(a,b)eR? J

1
9) = /0 F@)g" (@) + £(0)g (1) dt = [£(1)g (D)) = 0

avec m = aX + b le projeté orthogonal de X? sur R; [X]

2 —(v2 _
et les espaces V et W sont donc en somme directe. (X2 =7 [1) = (X*—7[X) =0 donne

Soit f € E. Posons {a—|—b—2

A= f(0)et u= f(1) = /(0)eh(1) 20+b=6

sh(1)
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Apres résolution a =4, b= —2 et

+oo
inf 2 — (at +0))2dt =4
Lt / e~H(t2 — (at + b))

Exercice 28 : [énoncé]
En introduisant l'espace E des fonctions réelles f continues sur ]0, 1] telles que
t > (tf(t))? soit intégrable et en munissant cet espace du produit scalaire

(f1g) = / 2f(D)g(t) dt

la quantité cherchée est : m = d(f, F)? avec f : t + Int et F = Vect(fo, f1) ol
fo(t) =1let fl(t) =t.
m=|f— p(f)H2 avec p la projection orthogonale sur F.

p(f)(t) = a+ bt avec (p(f) | fo) = (f | fo) et (p(f) | f1) = (f 1] f1)-

La résolution du systéme ainsi obtenu donne ¢ = 5/3 et b = —19/12.

m=|f—p(f)I> = (f —p(f) | f) = 1/432.

Exercice 29 : [énoncé]
On sait déja

—+oo

2

Y (enl @) < |

n=0
en vertu de I'inégalité de Bessel.
Par totalité de la famille, pour tout € > 0, il existe y € Vect(e, )nen tel que
=yl <e.
Le vecteur y est une combinaison linéaire de la famille (e, ),en donc il existe
N € N tel que y € Vect(eg,...,en) et donc

e 2 |z —yll = llz — p(z)]]

avec p(x) le projeté de = sur Vect(eg, . ..,en) c’'est-a-dire

(en | )en

=
2
Il
3
i]=

Par suite [||z]| — [|p(«)[|| < [lz — p(z)[| < & donne

]l < llp(2)ll + e =

+oo
Ceci valant pour tout € > 0, on obtient ||z < 4/ > (en | 2)? et finalement

n=0
+oo
2> =" (en | 2)?
n=0

Exercice 30 : [énoncé]
On sait ker A C ker(*AA) et si X € ker(*AA) alors PAAX = 0 donc

[AX|® =tX'AAX =0
puis X € ker A. Ainsi
ker A = ker(*AA)

11 en découle
rg(A) =rg(*AA)

puis
rg(A) = rg('4) = rg(" A'A) = rg(A' A)

Or Im(A*A) C ImA donc
Im(A'A) = ImA

Exercice 31 : [énoncé]
a) Evidemment
ker(*A + A) D ker(A) Nker(*A)

Inversement, soit X € ker(*A+ A). On a
FAX +AX =0

et donc
A'AX + A?X = A'AX =0
puis
IXA'AX =[P AX| =0

On en déduit *AX = 0 puis aussi AX = 0.
On peut alors conclure 1'égalité demandée.
b) (=) Supposons A + A inversible. On a alors

ker(*A 4+ A) = ker(A) Nker(*A4) = {0}
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On en déduit
dimker A + dimker ‘A < n

Or
dimker’A +rg'A=n

donc
dimker A < rg'A =rgA

Mais A% = 0 entraine ImA C ker A puis rgA < dim ker A.

Finalement, ImA C ker A et rgA = dimker A donc ImA = ker A.

(<) Supposons ImA = ker A. Soit X € ker(*A + A) = ker(A) Nker(*A4). On a

X € ker A donc X € ImA. 1l existe alors une colonne Y telle que X = AY. Mais
on a aussi ‘AX = 0 donc *AAY = 0 puis

IXI? = [ AY|? = 'Y AAY = 0

Ainsi ker(*A + A) = {0} et la matrice “A + A s’avére inversible.

Exercice 32 : [énoncé]
On a
[FAX|]" = PX ATAX = (X, ATAX)

Par I'inégalité de Cauchy-Schwarz
I'AX|]* = (x, 4'AX) < || X | A'Ax|| < x| [|'AX|

Ainsi
[fAX] < 11X

et ce que AX = 0 ou non.

Exercice 33 : [énoncé]
a) On a
[FAX|]" = PX ATAX = (X, ATAX)

Par I'inégalité de Cauchy-Schwarz
I'AX|* = (x, a'AX) < || X | A'Ax|| < x| [|'AX|

Ainsi
[fAX] < 11X

et ce que AX = 0 ou non.

b) Si AX = X alors

|*AX - X|* = [FAX]|* - 2("AX, X) + | X|* <2 () X]* - 'XAX) =0

On en déduit 'AX = X.
b) Soit X € ker(A — I,) NIm(A — I,,).

Ona AX = X (et donc ‘AX = X) et il existe Y € E vérifiant X = AY — Y.

|X]? = (X |AY —Y) ='XAY —'XY

Or
EXAY =' (FAX)Y ='XY

et donc || X||* = 0. Ainsi
ker(A — I,) NIm(A — I,,) = {0}
Enfin, le théoréme du rang
dimker(A—1,) +rg(A—1,) =dimFE

permet de conclure
E=%er(A—-1I,)®Im(A-1,)

Exercice 34 : [énoncé]
Si X € ker A alors X € ker ‘AA.

Inversement, si X € ker?AA alors "TAAX =0 donc "X"AAX =(AX)AX =0

d’ott AX =0 puis X € ker A.
Ainsi
ker(*AA) = ker A

puis par la formule du rang
rg(*AA) = rgA
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