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Equations différentielles linéaires
Résolution d’équation scalaire d’ordre 1

Exercice 1 [ 00382 ] [correction]
Résoudre sur ]1,+∞[ l’équation différentielle

y′ − x

x2 − 1y = 2x

Exercice 2 [ 03782 ] [correction]
Résoudre sur ]−π/2, π/2[

y′(x)− tan(x)y + (cosx)2 = 0

Exercice 3 [ 00376 ] [correction]
Résoudre les équations différentielles suivantes :
a) y′ − y = sin(2x)ex
b) y′ + 2xy = 2xe−x2

c) y′ + y tan x = sin 2x sur ]−π/2, π/2[

Exercice 4 [ 00377 ] [correction]
Déterminer les solutions, s’il en existe, des problèmes de Cauchy suivants :
a) y′ − (x+ 1)(y + 1) = 0 et y(0) = 1
b) (1 + x2)y′ − (x+ 1)y = 2 et y(0) = −1.

Exercice 5 [ 03505 ] [correction]
On considère l’équation

(E) : (1− x)y′ − y = g

où g : ]−1, 1[→ R est donnée.
a) Résoudre l’équation homogène associée.
b) On suppose que la fonction g est développable en série entière

g(x) =
+∞∑
n=0

bnx
n

de rayon de convergence R > 1.

Montrer que (E) admet au moins une solution développable en série entière en 0,

y(x) =
+∞∑
n=0

anx
n

de rayon de convergence R′ > 1 et exprimer les an en fonction de bn pour tout
n ∈ N.

Etude théorique d’équation d’ordre 1

Exercice 6 [ 00380 ] [correction]
Soit a : R+ → R continue et intégrable.
Établir que les solutions de l’équation différentielle y′ − a(t)y = 0 sont bornées
sur R+.

Exercice 7 [ 00381 ] [correction]
a) Soit h : R→ C continue de limite nulle en +∞. Montrer que les solutions de
l’équation différentielle y′ + y = h converge vers 0 en +∞.
b) Soit f : R→ C de classe C1. On suppose que f + f ′ −−→

+∞
`. Montrer que

f −−→
+∞

`.

Exercice 8 [ 03109 ] [correction]
Soient α un complexe de partie réelle strictement positive et une application
f : R→ R de classe C1 telle que f ′ + αf tend vers 0 en +∞.
Montrer que f tend vers 0 en +∞.

Exercice 9 [ 04100 ] [correction]
Soit α ∈ C et ϕ : R→ C une fonction continue et périodique de période T > 0.
On étudie l’équation différentielle

(E) : y′ + αy = ϕ(t)

a) Montrer que si y est solution sur R de l’équation (E) alors la fonction
t 7→ y(t+ T ) l’est aussi.
b) En déduire qu’une solution y de (E) est T -périodique si, et seulement si,
y(0) = y(T ).
c) Montrer que l’équation (E) admet une unique solution T -périodique, sauf pour
des valeurs exceptionnelles de α que l’on précisera.
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Résolution avec raccord d’équation d’ordre 1

Exercice 10 [ 00419 ] [correction]
Résoudre sur R l’équation

(E) : x2y′ − y = 0

Exercice 11 [ 00421 ] [correction]
Résoudre sur R l’équation suivante

(ex − 1)y′ + exy = 1

Exercice 12 [ 03468 ] [correction]
Résoudre sur R l’équation suivante

sh(x)y′ − ch(x)y = 1

Exercice 13 [ 00429 ] [correction]
Résoudre sur R l’équation

E : y′ + y = max(x, 0)

Exercice 14 [ 02889 ] [correction]
Résoudre

x ln x y′ − (3 ln x+ 1)y = 0

Exercice 15 [ 00420 ] [correction]
Résoudre sur R les équations suivantes :

a) xy′ − y = x b) xy′ + y − 1 = 0
c) xy′ − 2y = x4 d) x(1 + x2)y′ − (x2 − 1)y + 2x = 0

Exercice 16 [ 00422 ] [correction]
Résoudre sur R les équations suivantes :

a) y′ sin x− y cosx+ 1 = 0 b) (sin x)3 y′ = 2(cosx)y

Exercice 17 [ 00423 ] [correction]
Déterminer les solutions, s’il en existe, des problèmes de Cauchy suivants :
a) (tan x)y′ − y = 0 et y(0) = 0
b) (tan x)y′ − y = 0 et y(0) = 1.

Exercice 18 [ 00424 ] [correction]
Résoudre sur tout intervalle de R l’équation différentielle

x(x2 − 1)y′ + 2y = x2

Exercice 19 [ 00425 ] [correction]
Soit α ∈ R. Résoudre sur R l’équation différentielle

xy′ − αy = 0

en discutant selon les valeurs de α.

Exercice 20 [ 00105 ] [correction]
Soit f ∈ C1(R+,R) et g une solution sur R+? de l’équation différentielle

xy′ − y = f(x)

a) Démontrer que g se prolonge par continuité en 0. Déterminer une condition
nécessaire sur f ′(0) pour que la fonction ainsi prolongée soit dérivable en 0.
Démontrer que cette condition n’est pas suffisante.
b) f est supposée de classe C2 et la condition précédente est vérifiée.
Démontrer que g est de classe C2.

Exercice 21 [ 00506 ] [correction]
Soit (E) l’équation différentielle

(ln x)y′ + y

x
= 1

a) Résoudre (E) sur ]0, 1[ et sur ]1,+∞[.
b) Soit g la fonction définie sur ]−1,+∞[ \ {0} par

g(x) = ln(1 + x)
x

Montrer que g se prolonge sur ]−1,+∞[ en une fonction de classe C∞.
c) Démontrer que (E) admet une solution de classe C∞ sur ]0,+∞[.

Diffusion autorisée à titre entièrement gratuit uniquement - dD



[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Enoncés 3

Exercice 22 [ 01369 ] [correction]
Soit α un paramètre réel. On désire résoudre sur R l’équation différentielle

E : xy′ = αy

On considère x 7→ y(x) une solution de E sur R+? et R−? .
a) Donner l’expression de y(x) sur R+? et sur R−?.
On notera C+ et C− les constantes réelles permettant d’exprimer y(x) sur R+? et
R−?.
b) A quelles conditions sur les constantes C+ et C−, est-il possible de prolonger y
par continuité en 0 ?
On distinguera trois cas, selon que α < 0, α = 0 ou α > 0.
c) Pour α > 0, à quelles conditions sur les constantes C+ et C− la fonction
prolongée y est-elle dérivable en 0 ?
On distinguera trois cas, selon que 0 < α < 1, α = 1 ou α > 1.
d) Résumer l’étude précédente en donnant la solution générale de E sur R en
fonction de α.

Résolution d’équation scalaire d’ordre 2

Exercice 23 [ 03240 ] [correction]
Soit α > 0. Résoudre sur I = ]0,+∞[ l’équation différentielle

Eα : x2y′′(x) + xy′(x)− α2y(x) = 0

On pourra étudier les fonctions propres de l’application

ϕ : y(x) 7→ xy′(x)

Méthode de variation des constantes

Exercice 24 [ 00405 ] [correction]
Résoudre l’équation différentielle

y′′ + 4y′ + 4y = e−2t

1 + t2

Exercice 25 [ 00406 ] [correction]
Résoudre l’équation différentielle

y′′ + y = tan t

Exercice 26 [ 00407 ] [correction]
Résoudre l’équation différentielle

y′′ + y = tan2 t

Exercice 27 [ 02893 ] [correction]
Résoudre sur ]0, π[

y′′ + y = cotanx

Exercice 28 [ 00408 ] [correction]
Soit f : R→ R une fonction continue.
a) Résoudre sur R l’équation différentielle

y′′ + y = f

On exprimera la solution à l’aide d’une intégrale.
b) Déterminer la solution telle que y(0) = y′(0) = 0.

Exercice 29 [ 02455 ] [correction]
a) Résoudre l’équation différentielle

y′′ + y = cos(nt)

b) Soit
∑
an une série absolument convergente.

Résoudre l’équation différentielle

y′′ + y =
+∞∑
n=0

an cos(nt)

Exercice 30 [ 00409 ] [correction]
Soit f : R→ R une fonction de classe C2 telle que

f + f ′′ > 0

Montrer
∀x ∈ R, f(x) + f(x+ π) > 0
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Exercice 31 [ 02896 ] [correction]
Soit f ∈ C∞(R,C) 2π-périodique. Existe-t-il y ∈ C∞(R,C) 2π-périodique et
solution de

y′′ + y = f ?

Exercice 32 [ 02895 ] [correction]
Soit f ∈ C1(R+,R) monotone ayant une limite finie en +∞.
Montrer que les solutions de l’équation y′′ + y = f sont bornées.

Exercice 33 [ 02894 ] [correction]
a) Résoudre sur R+? par variation des constantes l’équation différentielle

y′′ + y = 1/x

b) En déduire une expression de

f(x) =
∫ +∞

0
e−tx dt

1 + t2

valable pour x > 0.
c) Calculer ∫ +∞

0

sin t
t

dt

Recherche de solution développable en série en-
tières

Exercice 34 [ 01016 ] [correction]
a) Déterminer les séries entières solutions au voisinage de 0 de l’équation
différentielle

y′′ + 2xy′ + 2y = 0
b) Exprimer parmi celles-ci, celles dont la somme est une fonction paire.

Exercice 35 [ 00401 ] [correction]
Résoudre sur ]−1, 1[ l’équation

4(1− t2)y′′(t)− 4ty′(t) + y(t) = 0

en recherchant les fonctions développables en série entière.

Exercice 36 [ 00404 ] [correction]
a) Résoudre sur R l’équation

(1 + t2)y′′(t) + 4t y′(t) + 2y(t) = 0

en recherchant les séries entières solutions.
b) Résoudre ensuite

(1 + t2)y′′(t) + 4t y′(t) + 2y(t) = 1
1 + t2

Exercice 37 [ 02528 ] [correction]
a) Montrer qu’il existe une solution h de l’équation

xy′′ + y′ + y = 0

développable en série entière et vérifiant h(0) = 1.
b) Montrer que h ne s’annule qu’une fois sur ]0, 2[.

Wronskien

Exercice 38 [ 00394 ] [correction]
Soient a, b : I → C continues et (f1, f2) un système fondamental de solutions de
l’équation

E : y′′ + a(t)y′(t) + b(t)y = 0

Former une équation différentielle linéaire d’ordre 1 vérifiée par le wronskien

w : t 7→
∣∣∣∣ f1(t) f2(t)
f ′1(t) f ′2(t)

∣∣∣∣
Exercice 39 [ 04001 ] [correction]
On étudie sur ]0,+∞[ l’équation différentielle

(E) : ty′′ + (1− 2t)y′ + (t− 1)y = 0

a) Vérifier que ϕ(t) = et détermine une solution de (E).
b) Déterminer une expression du wronskien w(t) des deux solutions de l’équation
(E).
c) En déduire une solution de (E) indépendante de ϕ et exprimer la solution
générale de (E).
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Etude théorique d’équation d’ordre 2

Exercice 40 [ 01555 ] [correction]
Soit q : R→ R+ une fonction continue non nulle.
On se propose de montrer que les solutions sur R de l’équation y′′ + q(x)y = 0
s’annulent.
Pour cela, on raisonne par l’absurde et on suppose que f est une solution ne
s’annulant pas.
a) Justifier que f est de signe constant.
Quitte à considérer −f au lieu de f , on peut supposer

∀x ∈ R, f(x) > 0

b) Etudier le signe de f ′′.
c) Soit a ∈ R quelconque. Quelle est l’équation de la tangente à f en a ?
d) Montrer que le graphe de f est en dessous de sa tangente en a.
e) En déduire que f ′(a) = 0 et conclure.

Exercice 41 [ 00402 ] [correction]
Soit q : R→ R+ une fonction continue non nulle.
Montrer que toute solution sur R de l’équation différentielle y′′ + q(x)y = 0
s’annule.

Exercice 42 [ 03779 ] [correction]
Soient q une fonction continue sur [a, b] à valeurs réelles et f une solution non
nulle sur [a, b] de l’équation différentielle

(E) : y′′(x) + q(x)y(x) = 0

Montrer que f admet un nombre fini de zéros.

Exercice 43 [ 03499 ] [correction]
Soient p, q : [0, 1]→ R continue et l’équation différentielle définie sur [0, 1] suivante

y′′ + p(t)y′ + q(t)y = 0

Montrer que si une solution possède une infinité de racines alors celle-ci est la
fonction nulle.

Exercice 44 [ 03110 ] [correction]
Soient f ∈ C1(]0,+∞[ ,R) et g une solution non identiquement nulle de

E : y′′ + fy = 0

a) Montrer que les zéros de g sont isolés.
Dans la suite, x1 et x2 sont deux zéros consécutifs de g vérifiant x1 < x2.
b) Montrer, si x ∈ [x1, x2]

(x2 − x)
∫ x

x1

(t− x1)f(t)g(t) dt+ (x− x1)
∫ x2

x

(x2 − t)f(t)g(t) dt = (x2 − x1)g(x)

c) En déduire une minoration de ∫ x2

x1

|f(t)| dt

Exercice 45 [ 00436 ] [correction]
Soient q une fonction continue, intégrable sur [0,+∞[ et (E) l’équation
différentielle

y′′ + q(x)y = 0

a) Si f est une solution bornée de (E) sur [0,+∞[, montrer que sa dérivée f ′
converge en +∞.
Quelle est la valeur de sa limite ?
b) Soient f et g deux solutions bornées. Étudier le wronskien de f et de g

w = f ′g − fg′

En déduire que f et g sont liées. Que peut-on en conclure ?

Exercice 46 [ 03671 ] [correction]
Soient q1, q2 : I → R continues vérifiant q1 6 q2.
On note ϕ1 et ϕ2 deux solutions sur I respectivement des équations

y′′ + q1(x)y = 0 et y′′ + q2(x)y = 0

On suppose la solution ϕ1 non identiquement nulle.
a) Montrer que les zéros de ϕ1 sont isolés i.e. que si x0 ∈ I annule ϕ1 alors

∃α > 0,∀x ∈ I ∩ [x0 − α, x0 + α] , ϕ(x) = 0⇒ x = x0

b) Soient a < b deux zéros consécutifs de ϕ1. Montrer que ϕ2 s’annule sur [a, b].
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(indice : étudier ϕ1ϕ
′
2 − ϕ2ϕ

′
1)

c) Application : montrer que si ϕ est une solution non nulle de l’équation
y′′ + exy = 0 alors

∀a ∈ R+,∃x ∈ [a, a+ π] , ϕ(x) = 0

Exercice 47 [ 03100 ] [correction]
On considère l’équation différentielle

E0 : y′′ − exy = 0

a) Soit y une solution de E0 sur R. Etudier la convexité de y2.
En déduire que si y(0) = y(1) = 0 alors y est nulle sur R.
b) Soient y1 et y2 deux solutions de E0 telles que

(y1(0), y′1(0)) = (0, 1) et (y2(1), y′2(1)) = (0, 1)

Démontrer que (y1, y2) est un système fondamental de solutions de E0.
c) Soit f ∈ C(R,R). Démontrer que l’équation différentielle

E : y′′ − exy = f(x)

admet une unique solution y telle que

y(0) = y(1) = 0

Exercice 48 [ 03387 ] [correction]
On considère l’équation différentielle

(E) : y′′ + cos2(t)y = 0

a) Justifier l’existence d’une solution u de (E) telle que u(0) = 1 et u′(0) = 0.
b) Démontrer l’existence de deux réels α, β vérifiant

α < 0 < β, u′(α) > 0 et u′(β) < 0

En déduire que u possède au moins un zéro dans R−? et R+?.
c) Justifier l’existence de réels

γ = max {t < 0/u(t) = 0} et δ = min {t > 0/u(t) = 0}

d) Soit v une solution de (E) linéairement indépendante de u.
En étudiant les variations de

W = uv′ − u′v

montrer que v possède au moins un zéro dans]γ, δ[.
e) Soit w une solution non nulle de (E). Démontrer que w admet une infinité de
zéros. On pourra introduire pour n ∈ N, la fonction

wn : R→ R, t 7→ w(t− nπ)

[Enoncé fourni par le CENTRALE-SUPELEC (CC)-BY-NC-SA]

Exercice 49 [ 03920 ] [correction]
Soient q ∈ C0 ([a,+∞[ ,R+) et (E) l’équation différentielle y′′ = q(x)y.
a) Soit f une solution de (E) telle que f(a) > 0 et f ′(a) > 0.
Montrer que f et f ′ sont strictement positives et que f tend vers +∞ en +∞.
b) Soient u et v les solutions de (E) telles que{

u(a) = 1
u′(a) = 0

et
{
v(a) = 0
v′(a) = 1

Calculer u′v − uv′. Montrer que, sur ]a,+∞[, u/v et u′/v′ sont monotones de
monotonies contraires. Montrer que u/v et u′/v′ tendent en +∞ vers la même
limite réelle.
c) Montrer qu’il existe une unique solution g de (E), strictement positive, telle
que g(a) = 1 et telle que g décroisse sur [a,+∞[.
d) Déterminer g lorsque q(x) = 1/x4 sur [1,+∞[.
On pourra poser y(x) = xz(1/x).

Problèmes se ramenant à la résoluton d’équations
différentielles

Exercice 50 [ 02535 ] [correction]
Quelles sont les fonctions continues f telles que

f(x) = −1−
∫ x

0
(2x− t)f(t)dt ?

Exercice 51 [ 02419 ] [correction]
Soit f : R→ R continue vérifiant l’équation

∀x ∈ R, f(x) +
∫ x

0
(x− t)f(t) dt = 1− x

a) Montrer que f est de classe C1.
b) Trouver toutes les fonctions f solution de l’équation étudiée.
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Exercice 52 [ 00378 ] [correction]
Déterminer les fonctions f : R→ R continues vérifiant

∀x ∈ R, f(x) =
∫ x

0
tf(t) dt+ 1

Exercice 53 [ 02890 ] [correction]
Trouver les fonctions f : R→ R continues telles que pour tout x réel

f(x)− 2
∫ x

0
f(t) cos(x− t) dt = 1

Exercice 54 [ 01554 ] [correction]
Trouver toutes les applications f : R→ R deux fois dérivables telles que

∀x ∈ R, f ′′(x) + f(−x) = x

Exercice 55 [ 02892 ] [correction]
Déterminer les fonctions f : R+? → R dérivables telles que

∀x > 0, f ′(x) = f(1/x)

Exercice 56 [ 03506 ] [correction]
Déterminer la dimension de l’espace

E =
{
y ∈ C2(R,R)/∀x ∈ R, y′′(x) + y(x) = y(0) cos(x)

}
Exercice 57 [ 03108 ] [correction]
Soient f une fonction réelle continue sur [0, 1] et λ un réel.
Trouver u fonction réelle continue sur [0, 1] telle que

u(x) = λ

∫ x

0
u(t) dt+ f(x)

Exercice 58 [ 01553 ] [correction]
Déterminer les fonctions f : R→ R deux fois dérivables telles que

∀x, y ∈ R, f(x+ y) + f(x− y) = 2f(x)f(y) et f(0) = 1

Résolution avec raccord d’équation d’ordre 2

Exercice 59 [ 00427 ] [correction]
Résoudre sur R l’équation

(t+ 1)2y′′ − 2(t+ 1)y′ + 2y = 0

en commençant par rechercher les solutions polynomiales.

Exercice 60 [ 00428 ] [correction]
Résoudre sur R l’équation

E : (t+ 1)y′′ − (t+ 2)y′ + y = 0

Exercice 61 [ 00426 ] [correction]
On considère l’équation différentielle

xy′′ − y′ − x3y = 0

a) Montrer que si y est solution sur I alors x 7→ y(−x) est solution sur I ′
symétrique de I par rapport à 0.
b) Résoudre sur R+? l’équation via le changement de variable t = x2.
c) Déterminer les solutions sur R.

Exercice 62 [ 03501 ] [correction]
On étudie l’équation différentielle

(E) : 4xy′′ + 2y′ − y = 0

a) Déterminer les fonctions développables en série entière solutions
b) Résoudre (E) sur R+? et sur R−? en posant respectivement x = t2 et x = −t2.
c) Déterminer les solutions de (E) sur R.

Exercice 63 [ 01560 ] [correction]
Résoudre sur R l’équation différentielle

E : xy′′ − (1 + x)y′ + y = 1

en posant z = y′ − y.
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Résolution par changement de fonction inconnue

Exercice 64 [ 01556 ] [correction]
Résoudre sur R l’équation

(1 + x2)y′′ + 2xy′ = 0

Exercice 65 [ 01561 ] [correction]
Résoudre sur R l’équation

E : (1 + ex)y′′ + 2exy′ + (2ex + 1)y = xex

en posant z(x) = (1 + ex)y(x).

Exercice 66 [ 01559 ] [correction]
Résoudre l’équation différentielle

(1 + ex)2y′′ − 2ex(1 + ex)y′ − (3ex + 1)y = 0

en introduisant
z(x) = y(x)

1 + ex

Exercice 67 [ 01558 ] [correction]
Résoudre sur R l’équation

y′′ + 4xy′ + (3 + 4x2)y = 0

en introduisant la fonction z(x) = ex2
y(x).

Exercice 68 [ 00413 ] [correction]
Résoudre sur R+? l’équation

x2y′′ + 4xy′ − (x2 − 2)y = 0

en posant z = x2y.

Exercice 69 [ 03508 ] [correction]
Résoudre sur ]0,+∞[ l’équation différentielle

xy′′(x) + 2y′(x)− xy(x) = 0

en posant y(x) = xαz(x) avec α ∈ R bien choisi.

Exercice 70 [ 00411 ] [correction]
Résoudre sur R l’équation

(1 + ex)y′′ + y′ − exy = 0

en introduisant la fonction z = y′ + y.

Exercice 71 [ 00412 ] [correction]
Résoudre sur ]0,+∞[ l’équation

x2y′′ − 2y + 3
x

= 0

en introduisant la fonction z(x) = xy′(x) + y(x).

Méthode de Lagrange

Exercice 72 [ 00395 ] [correction]
On étudie l’équation différentielle

(t2 + 1)y′′ − 2y = t

a) Déterminer une solution polynomiale non nulle ϕ(t) de l’équation homogène
associée.
b) Résoudre l’équation homogène en procédant au changement de fonction
inconnue y(t) = ϕ(t)z(t).
c) Exprimer la solution générale de l’équation étudiée.

Exercice 73 [ 00396 ] [correction]
On étudie l’équation

(1 + t2)2y′′(t)− 2t(1 + t2)y′(t) + 2(t2 − 1)y(t) = (1 + t2)

a) Déterminer une solution polynomiale non nulle ϕ(t) de l’équation homogène.
b) Résoudre l’équation en procédant au changement de fonction inconnue
y(t) = ϕ(t)z(t).
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Exercice 74 [ 00397 ] [correction]
On étudie sur R+? l’équation

t3y′′ + ty′ − y = 0

a) Déterminer une solution polynomiale non nulle ϕ(t) de cette équation.
b) Résoudre l’équation en procédant au changement de fonction inconnue
y(t) = ϕ(t)z(t).

Exercice 75 [ 00398 ] [correction]
On étudie sur R+? l’équation différentielle

t2y′′ + ty′ − y = 1

a) Déterminer une solution polynomiale non nulle ϕ(t) de l’équation homogène.
b) Résoudre l’équation en procédant au changement de fonction inconnue
y(t) = ϕ(t)z(t).

Exercice 76 [ 00400 ] [correction]
On étudie sur ]0, 1[ l’équation

x(1− x)y′′ + (1− 3x)y′ − y = 0

a) Rechercher une solution non nulle ϕ(x) développable en série entière.
b) Terminer de résoudre l’équation par le changement de fonction inconnue
y(x) = ϕ(x)z(x)

Exercice 77 [ 01319 ] [correction]
On étudie l’équation différentielle suivante sur ]0,+∞[

(E) : xy′′ + 3y′ − 4x3y = 0

a) Chercher une solution ϕ(x) développable en série entière au voisinage de 0 et
non nulle.
b) Terminer de résoudre l’équation par le changement de fonction inconnue
y(x) = ϕ(x)z(x)

Exercice 78 [ 03504 ] [correction]
On étudie sur ]0, 1[ l’équation différentielle suivante

x2(1− x)y′′ − x(1 + x)y′ + y = 0

a) Rechercher une solution développable en série entière non nulle ϕ(x).
b) Achever de résoudre cette équation par le changement de fonction
y(x) = ϕ(x)z(x).

Résolution par changement de variable

Exercice 79 [ 00414 ] [correction]
Résoudre sur R+? l’équation

x2y′′ + xy′ + y = 0

en posant x = et.

Exercice 80 [ 01566 ] [correction]
Résoudre sur R+? les équations suivantes via le changement de variable t = ln x.

a) x2y′′ + xy′ − y = x2 b) x2y′′ − 2y = x

Exercice 81 [ 00416 ] [correction]
Résoudre sur ]−1, 1[ l’équation

(1− x2)y′′ − xy′ + 4y = arccosx

en procédant au changement de variable x = cos(t).

Exercice 82 [ 00415 ] [correction]
Résoudre sur R l’équation

(1 + x2)2y′′ + 2(x− 1)(1 + x2)y′ + y = 0

en procédant au changement de variable t = arctan x.

Exercice 83 [ 01564 ] [correction]
Résoudre sur R

(x2 + 1)2y′′ + 2x(x2 + 1)y′ + y = 0
via t = arctan x.

Exercice 84 [ 00417 ] [correction]
Résoudre sur R l’équation

y′′ + 2t
t2 + 1y

′ + 1
(t2 + 1)2 y = t

(t2 + 1)2

en posant x = arctan t.
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Exercice 85 [ 02573 ] [correction]
En indiquant les hypothèses nécessaires, effectuer le changement de variable
u = ϕ(t) dans l’équation différentielle

(1 + t2)x′′ + tx′ + a2x = 0

tel qu’elle devienne une équation à coefficients constants et la résoudre.

Exercice 86 [ 02540 ] [correction]
On veut résoudre

(E) : (x+ 1)y′′ − (3x+ 4)y′ + 3y = (3x+ 2)e3x

Si ∆ est l’opérateur de dérivation et Q(X) = X − 3, on a Q(∆)(y) = y′ − 3y.
Montrer l’existence d’un polynôme P de la forme a(x)X + b(x) tel que (E)
devienne

(P (∆) ◦Q(∆)) (y) = (3x+ 2)e3x

Résoudre l’équation à l’aide du changement de variable z = Q(∆)(y).

Equations vectorielles d’ordre 1

Exercice 87 [ 00384 ] [correction]
Soient a, b ∈ L(E) vérifiant a ◦ b = b ◦ a.
En considérant pour x0 ∈ E, l’application t 7→ (exp(ta) ◦ exp(tb))x0, établir

exp(a+ b) = exp(a) ◦ exp(b)

Exercice 88 [ 02900 ] [correction]
On munit Rn de sa structure euclidienne canonique et on identifie L(Rn) avec
Mn(R).
Soit A ∈Mn(R). Montrer que les assertions suivantes sont équivalentes :
(i) la matrice A est antisymétrique ;
(ii) chaque solution Y du système différentiel Y ′ = AY est de norme constante.

Exercice 89 [ 01320 ] [correction]
Soit A ∈M2n(R) une matrice vérifiant

A2 + I2n = O2n

Exprimer la solution générale de l’équation matricielle

X ′(t) = AX(t)

Exercice 90 [ 03670 ] [correction]
Soit A ∈Mn(C) une matrice dont aucune valeur propre n’est élément de 2iπZ.
a) Montrer que eA − In est inversible.
Soit B : R→Mn,1(C) une fonction continue et 1-périodique.
b) Montrer que l’équation

(E) : X ′ = AX +B(t)

d’inconnue X : R→Mn,1(C) possède une unique solution 1-périodique.

Exercice 91 [ 03921 ] [correction]
a) Soit N ∈Mn(C) nilpotente d’indice p. Montrer que (In, N,N2, . . . , Np−1) est
une famille libre.
Exprimer

et(λIn+N)

b) Soit A ∈Mn(C) ayant pour unique valeur propre λ ∈ C. Montrer que
N = A− λIn est nilpotente.
Montrer que les solutions du système différentiel X ′ = AX sont toutes bornées sur
R si, et seulement si, λ est imaginaire pur et A = λIn.
c) Soit A ∈Mn(C) de polynôme caractéristique

(X − λ1)n1 . . . (X − λm)nm

les λk étant deux à deux distincts. Soit f l’endomorphisme de Cn canoniquement
associé à A. Montrer que

Cn =
m
⊕
k=1

ker(f − λkIdCn)nk

En déduire l’existence d’une base de Cn dans laquelle la matrice de f est
diagonale par blocs.
d) Avec les notations de c). Montrer que les solutions de X ′ = AX sont bornées si,
et seulement si, les λk sont imaginaires purs et que A est diagonalisable.
e) Montrer qu’une matrice antisymétrique réelle est diagonalisable.

Systèmes différentiels d’ordre 1

Exercice 92 [ 00385 ] [correction]
Résoudre le système différentiel réel suivant{

x′ = cos(t)x+ sin(t) y
y′ = − sin(t)x+ cos(t) y
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Exercice 93 [ 00386 ] [correction]
Résoudre le système différentiel suivant{

x′1 = (2− t)x1 + (t− 1)x2

x′2 = 2(1− t)x1 + (2t− 1)x2

Exercice 94 [ 00387 ] [correction]
Résoudre le système différentiel suivant :{

x′1 = (t+ 3)x1 + 2x2

x′2 = −4x1 + (t− 3)x2

Exercice 95 [ 00388 ] [correction]
Résoudre le système différentiel{

x′1 = (1 + t)x1 + tx2 − et

x′2 = −tx1 + (1− t)x2 + et

Systèmes différentiels d’ordre 1 à coefficients
constants

Exercice 96 [ 00389 ] [correction]
Résoudre le système différentiel suivant{

x′ = 4x− 2y
y′ = x+ y

Exercice 97 [ 03490 ] [correction]
Résoudre le système différentiel suivant{

x′1 = −x1 + 3x2 + et

x′2 = −2x1 + 4x2

Exercice 98 [ 00390 ] [correction]
Résoudre le système différentiel suivant{

x′ = x+ 8y + et

y′ = 2x+ y + e−3t

Exercice 99 [ 00391 ] [correction]
Résoudre le système différentiel suivant

x′ = y + z

y′ = x

z′ = x+ y + z

Exercice 100 [ 00392 ] [correction]
Résoudre le système différentiel suivant

x′ = 2x− y + 2z
y′ = 10x− 5y + 7z
z′ = 4x− 2y + 2z

Exercice 101 [ 02902 ] [correction]
Résoudre le système différentiel linéaire

x′ = x− z
y′ = x+ y + z

z′ = −x− y + z

Exercice 102 [ 04101 ] [correction]
On étudie le système différentiel

(S) :


x′ = z − y
y′ = x− z
z′ = y − x

a) Ce système possède-t-il des solutions ?
b) Sans résoudre le système, montrer que pour tout réel t, le point M(t) de
coordonnées (x(t), y(t), z(t)) se situe à l’intersection d’un plan et d’une sphère.
c) Calculer A3 et exprimer sous forme matricielle la solution générale du système
(S).
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Exercice 103 [ 04102 ] [correction]
Soit A une matrice non inversible deMn(R) et t 7→ X(t) une solution du système
différentiel X ′ = AX . Montrer que les valeurs prises par la fonction t 7→ X(t)
sont incluses dans un hyperplan affine.
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Corrections

Exercice 1 : [énoncé]
C’est une équation différentielle linéaire du premier ordre.
Solution homogène : y0(x) = C

√
x2 − 1.

Par variation de la constante, solution particulière y1(x) = 2(x2 − 1).
Solution générale : y(x) = C

√
x2 − 1 + 2(x2 − 1).

Exercice 2 : [énoncé]
C’est une équation différentielle linéaire de solution générale homogène

y(x) = λ

cosx

L’application de la méthode de la variation de la constante amène à déterminer∫
cos3 xdx =

∫
cosxdx−

∫
cosx sin2 xdx = sin x− 1

3 sin3 x

Au final, on obtient la solution générale

y(x) =
1
3 sin3 x− sin x+ λ

cosx

Exercice 3 : [énoncé]
a) y(x) = (C + sin2 x)ex
b) y(x) = (x2 + C)e−x2

c) y(x) = C cosx− 2 cos2 x

Exercice 4 : [énoncé]
a) Solution de l’équation homogène sur R : y(x) = Ce 1

2 (x+1)2 avec C ∈ R.
Solution particulière sur R : y0(x) = −1.
Solution générale sur R

y(x) = Ce 1
2 (x+1)2

− 1 avec C ∈ R

On aura y(0) = 1 si, et seulement si, C = 2/
√
e.

b) Solution de l’équation homogène sur R : y(x) = C
√
x2 + 1earctan x avec C ∈ R

Solution particulière sur R : y0(x) = x− 1 après recherche de solution de la forme
ax+ b.

Solution générale sur R

y(x) = C
√
x2 + 1earctan x + x− 1 avec c ∈ R

On aura y(0) = −1 si, et seulement si, C = 0.

Exercice 5 : [énoncé]
a) C’est une équation différentielle linéaire. La solution générale homogène est

y(x) = λ

1− x

b) Analyse :
Supposons y somme d’une série entière

∑
anx

n de rayon de convergence R′ > 1
solution sur ]0, 1[ de l’équation (E). Pour x ∈ ]0, 1[, on a

y′(x) =
+∞∑
n=1

nanx
n−1 =

+∞∑
n=0

(n+ 1)an+1x
n

et donc

(1− x)y′(x) + y(x) =
+∞∑
n=0

[(n+ 1)(an+1 − an)]xn =
+∞∑
n=0

bnx
n

Par unicité des coefficients d’un développement en série entière, on obtient

∀n ∈ N, an+1 = an + bn
n+ 1

et donc

∀n ∈ N?, an = a0 +
n−1∑
k=0

bk
k + 1

Synthèse :
Considérons la suite (an)n∈N? déterminée par a0 = 0 et

∀n ∈ N?, an =
n−1∑
k=0

bk
k + 1

Pour |x| < 1, on a

|anxn| 6
n−1∑
k=0

|bk| |x|n

k + 1 6
n−1∑
k=0
|bk| |x|k
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Or la série
∑
bnx

n est absolument convergente (car R > 1) et donc la suite
(anxn) est bornée.
On en déduit que le rayon de convergence R′ de la série entière

∑
anx

n vérifie
R′ > 1 et les calculs qui précède assure que sa somme est solution sur ]−1, 1[ de
l’équation étudiée.

Exercice 6 : [énoncé]
La solution générale de l’équation étudiée est

y(t) = λeA(t) avec A(t) =
∫ t

0
a(u)du

Or pour tout t > 0,

|A(t)| 6
∫ t

0
|a(u)|du 6

∫ +∞

0
|a(u)|du

et donc la fonction y est bornée.

Exercice 7 : [énoncé]
a) La solution générale de l’équation différentielle y′ + y = h est

y(x) =
(
λ+

∫ x

0
h(t)etdt

)
e−x

Pour tout ε > 0, il existe A ∈ R tel que

∀x > A, |h(t)| 6 ε

On a alors

y(x) =
(
λ+

∫ A

0
h(t)etdt

)
e−x +

∫ x

A

h(t)et−xdt

avec ∣∣∣∣∫ x

A

h(t)et−xdt
∣∣∣∣ 6 ε et

(
λ+

∫ A

0
h(t)etdt

)
e−x −−−−−→

x→+∞
0

b) Posons h = f ′ + f − `. f − ` est solution de l’équation différentielle y′ + y = h
donc f − ` −−→

+∞
0 puis f −−→

+∞
`.

Exercice 8 : [énoncé]
Posons g = f ′ + αf . La fonction f est solution de l’équation différentielle.

y′ + αy = g

La solution générale de cette équation différentielle est

y(x) = λe−αx +
∫ x

0
g(t)eα(t−x) dt

Ainsi, on peut écrire

f(x) = λe−αx +
∫ x

0
g(t)eα(t−x) dt

Il est immédiat que λe−αx → 0 quand x→ +∞ car Reα > 0.
Étudions maintenant la limite du terme intégral.
Soit ε > 0. Puisque la fonction g tend vers 0 en +∞, il existe A > 0 tel que

∀t > A, |g(t)| 6 ε

On a alors pour tout x > A∫ x

0
g(t)eα(t−x) dt =

∫ A

0
g(t)eα(t−x) dt+

∫ x

A

g(t)eα(t−x) dt

avec ∣∣∣∣∫ x

A

g(t)eα(t−x) dt
∣∣∣∣ 6 ∫ x

A

εeRe(α)(t−x) dt 6 ε

Re(α)

[
eRe(α)(t−x)

]x
A
6

ε

Re(α)

et ∣∣∣∣∣
∫ A

0
g(t)eα(t−x) dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ A

0
g(t)eαt dt

∣∣∣∣∣ e−Re(α)x = Ctee−Re(α)x −−−−−→
x→+∞

0

Pour x assez grand on a alors∣∣∣∣∫ x

0
g(t)eα(t−x) dt

∣∣∣∣ 6 ε

Re(α) + ε

Ainsi
∫ x

0 g(t)eα(t−x) dt −−−−−→
x→+∞

0 puis f(x) −−−−−→
x→+∞

0.
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Exercice 9 : [énoncé]
a) Posons z(t) = y(t+ T ). La fonction z est dérivable sur R et

∀t ∈ R, z′(t) + αz(t) = y′(t+ T ) + αy(t+ T ) = ϕ(t+ T ) = ϕ(t)

La fonction z est donc solution de (E).
b) Si y est T -périodique, on a évidemment y(0) = y(T ).
Inversement, si y(0) = y(T ) alors y et z sont solutions d’un même problème de
Cauchy posé en 0. Par unicité de ces solutions, on peut conclure y = z.
c) On peut exprimer la solution générale de l’équation (E)

y(t) =
(
λ+

∫ t

0
ϕ(u)eαu du

)
e−αt

L’équation y(0) = y(T ) équivaut alors l’équation

λ =
(
λ+

∫ T

0
ϕ(u)eαu du

)
e−αT

Si eαT 6= 1, cette équation précédente possède une unique solution en l’inconnue λ
ce qui détermine y.
La condition eαT = 1 est uniquement vérifiée pour les valeurs

α = 2ikπ
T

avec k ∈ Z

Exercice 10 : [énoncé]
Sur R+? ou R−?,

E ⇔ y′ = 1
x2 y

Solution générale : y(x) = Ce−1/x.
Soit y une solution sur R.
y est solution sur R+? et R−? donc il existe C+, C− ∈ R telles que

∀x > 0, y(x) = C+e−1/x et ∀x < 0, y(x) = C−e−1/x

Continuité en 0

y(x) −−−−→
x→0+

0 et y(x) −−−−→
x→0−

{
±∞ si C− 6= 0
0 sinon

Nécessairement y(0) = 0 et C− = 0.

Dérivabilité en 0

y′(x) = C+

x2 e−1/x −−−−→
x→0+

0 et y′(x) −−−−→
x→0−

0 donc y′(0) = 0

Equation différentielle en 0 : 02y′(0)− y(0) = 0 : ok.
Finalement

∃C ∈ R, y(x) =
{
Ce−1/x si x > 0
0 sinon

Inversement une telle fonction est solution.

Exercice 11 : [énoncé]
Solution générale sur R+? ou R−?

y(x) = C + x

ex − 1 avec C ∈ R

Soit y une fonction solution sur R+? et R−?.
Il existe C+, C− ∈ R tels que

∀x > 0, y(x) = C+ + x

ex − 1 et ∀x < 0, y(x) = C− + x

ex − 1

Pour que la fonction y puisse être prolongée par continuité en 0, il faut
C+ = C− = 0 auquel cas

y(x) = x

ex − 1 pour x 6= 0

et la fonction se prolonge par y(0) = 1.
On vérifie que ce prolongement est de classe C∞ car inverse d’une fonction
développable en série entière.
De plus

∀x ∈ R, (ex − 1) y(x) = x

donne par dérivation, la vérification de l’équation différentielle sur R.
Finalement, il existe une seule solution sur R :

y(x) = x

ex − 1 prolongée par continuité avec y(0) = 1
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Exercice 12 : [énoncé]
Solution générale sur R+? ou R−?

y(x) = C shx− chx

Après recollement en 0, solution générale sur R

y(x) = C shx− chx avec C ∈ R

Exercice 13 : [énoncé]
Sur R+, E ⇔ y′ + y = x de solution générale y(x) = Ce−x + x− 1.
Sur R−, E ⇔ y′ + y = 0 de solution générale y(x) = Ce−x.
Soit y solution de E sur R.
Comme y est solution sur R+ et R−, il existe C+, C− ∈ R telle que

∀x > 0, y(x) = C+e−x + x− 1 et ∀x 6 0, y(x) = C−e−x

Définition en 0 : y(0) = C+ − 1 = C− donc C+ = C− + 1.
Dérivabilité en 0 : y′(x) −−−−→

x→0+
−C+ + 1 et y′(x) −−−−→

x→0−
−C−

donc y′(0) = −C+ + 1 = −C−.
Equation différentielle en 0 : −C+ + 1 + C+ − 1 = max(0, 0) : ok
Finalement, il existe C ∈ R telle que

y(x) =
{
Ce−x + x− 1 si x > 0
(C − 1)e−x sinon

Inversement : ok

Exercice 14 : [énoncé]
C’est une équation différentielle linéaire d’ordre 1 définie sur ]0,+∞[.
Sur ]0, 1[ ou ]1,+∞[, ∫ 3 ln x+ 1

x ln x dx = 3 ln x+ ln |ln x|+ Cte

Solution générale sur ]0, 1[ ou ]1,+∞[

y(x) = λx3 |ln x|

Solution sur ]0,+∞[.
Soient y : ]0, 1[ ∪ ]1,+∞[→ R solution de l’équation sur ]0, 1[ et ]1,+∞[.
Il existe λ, µ ∈ R vérifiant y(x) = λx3 ln x sur ]0, 1[ et y(x) = µx3 ln x sur ]1,+∞[.
La continuité en 1 donne y(1) = 0 sans conditions sur λ et µ.
La dérivabilité en 1 donne λ = µ.
Ainsi y(x) = λx3 ln x sur ]0,+∞[ qui est évidement solution.

Exercice 15 : [énoncé]
a) Solution générale sur R+? ou R−? :

y(x) = x ln |x|+ Cx avec C ∈ R

Pas de recollement possible en 0.
b) Solution générale sur R+? ou R−? :

y(x) = 1 + C

x
avec C ∈ R

Après recollement en 0, solution générale sur R : y(x) = 1.
c) Solution générale sur R+? ou R−? :

y(x) = 1
2x

4 + Cx2 avec C ∈ R

Après recollement en 0, solution générale sur R :

y(x) =


C+x2 + 1

4x
4 si x > 0

C−x2 + 1
4x

4 si x < 0
avec C+, C− ∈ R

d) Solution générale sur R+? ou R−? :

y(x) = 1
x

+ C
x2 + 1
x

avec C ∈ R

Via
x2 − 1

x(1 + x2) = 2x2 − (1 + x2)
x(1 + x2) = 2x

1 + x2 −
1
x

Après recollement en 0, solution générale sur R : y(x) = −x.

Exercice 16 : [énoncé]
a) Solution générale sur Ik = ]kπ, (k + 1)π[ , k ∈ R :

y(x) = cosx+ C sin x avec C ∈ R

Après recollement en chaque kπ, solution générale sur R :

y(x) = cosx+ C sin x avec C ∈ R

b)) Solution générale sur Ik = ]kπ, (k + 1)π[ , k ∈ R :

y(x) = Ce1/sin2 x avec C ∈ R
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Après recollement en chaque kπ, solution générale sur R :

y(x) =
{
Cke1/sin2 x si x ∈ Ik
0 si x = kπ

avec (Ck) ∈ RZ

Exercice 17 : [énoncé]
a) Soit I = ]−π/2, π/2[ le plus grand intervalle contenant où l’équation
différentielle a un sens.
Posons I+ = ]0, π/2[ et I− = ]−π/2, 0[.
Solution générale sur I+ : y(x) = C+ sin x.
Solution générale sur I− : y(x) = C− sin x.
Cherchons les solutions définies sur I.
Analyse : Soit y une solution sur I, s’il en existe.
y est a fortiori solution sur I+ et I− donc :
∃C+, C− ∈ R tel que y(x) = C+ sin x sur I+ et y(x) = C− sin x sur I−.
Comme y doit être continue en 0, lim

x→0+
y(x) = lim

x→0−
y(x) = y(0) = 0. Pas

d’informations sur C+ ni C−.
Comme y doit être dérivable en 0,
lim
x→0+

y(x)−y(0)
x = C+ = y′(0) = lim

x→0−
y(x)−y(0)

x = C−.
Donc C+ = C−. Finalement y(x) = C+ sin x sur I entier.
Synthèse : y(x) = C sin(x) avec C ∈ R est bien solution sur I.
On aura y(0) = 0⇔ C. sin(0) = 0 ce qui est toujours vraie.
Il y a ici une infinité de solutions au problème de Cauchy.
b) On aura y(0) = 1⇔ C. sin(0) = 1 ce qui est impossible.
Il n’y a ici aucune solution au problème de Cauchy.

Exercice 18 : [énoncé]
Soit I = ]−∞,−1[ , ]−1, 0[ , ]0, 1[ ou ]1,+∞[.
Sur I, l’équation différentielle devient : y′ + 2

x(x2−1)y = x
x2−1 .

La solution générale sur I est x2(ln|x|+C)
x2−1 avec C ∈ R.

Après recollement en 1, 0 et -1 on conclut, pour tout intervalle I :
Si 1, 0,−1 /∈ I, y(x) = x2(ln|x|+C)

x2−1 avec C ∈ R

Si 1,−1 /∈ I et 0 ∈ I, y(x) =



x2 ln |x|+ C+x2

x2 − 1 si x > 0

0 si x = 0
x2 ln |x|+ C−x2

x2 − 1 si x < 0

avec C+, C− ∈ R.

Si 1 ∈ I ou −1 ∈ I, y(x) = x2 ln|x|
x2−1 .

Exercice 19 : [énoncé]
Sur R+? et R−? : y(x) = C |x|α.
Soit y une solution sur R.
On a y(x) = C+xα sur R+? et y(x) = C− |x|α sur R−?.
Si α < 0, la limite en 0 implique C+ = C− = 0 donc y = 0. Inversement ok.
Si α = 0, la limite en 0 donne C+ = C− et on conclut que y est constante.
Inversement ok.
Si α > 0, la limite en 0 donne y(0) = 0.
On a y′(x) = αC+xα−1 sur R+? et y(x) = −αC− |x|α sur R−?.
Si α < 1, la limite en 0 implique C+ = C− = 0 donc y = 0. Inversement ok.
Si α = 1, la limite en 0 implique C+ = −C− et on conclut que y est linéaire.
Inversement ok.
Si α > 1, la limite en 0 existe et est nulle ce qui permet d’affirmer y′(0) = 0
L’équation différentielle est bien vérifiée en 0.

Inversement, lorsque α > 1, la fonction définie par y(x) =


C+xα si x > 0
0 si x = 0
C−(−x)α si x < 0

est

solution.

Exercice 20 : [énoncé]
a) On résout l’équation différentielle linéaire étudiée et, par la méthode de
variation de la constante, on obtient la solution générale suivante

g(x) = λx+ x

∫ x

1

f(t)
t2

dt

Par une intégration par parties, on peut écrire

g(x) = λx− f(x) + xf(1) + x

∫ x

1

f ′(t)
t

dt

Quand x→ 0+, on a ∣∣∣∣x∫ x

1

f ′(t)
t

dt
∣∣∣∣ 6 ‖f ′‖∞,[0,1] x |ln x|

et on obtient
g(x)→ −f(0)

Quand x→ 0+

1
x

(g(x)− g(0)) = λ− f(x)− f(0)
x

+ f(1) +
∫ x

1

f ′(t)
t

dt
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Le terme f(x)−f(0)
x converge vers f ′(0).

Si f ′(0) 6= 0 alors l’intégrale
∫

]0,1]
f ′(t)
t dt diverge et donc le terme

∫ x
1
f ′(t)
t dt

diverge. On en déduit qu’alors g n’est pas dérivable en 0.
L’égalité f ′(0) = 0 est une condition nécessaire à la dérivabilité de g en 0. Cette
condition n’est pas suffisante. En effet considérons une fonction de classe C1 telle
que

f ′(x) ∼
x→0+

1
ln x

L’intégrale
∫

]0,1]
f ′(t)
t dt demeure divergente alors que f ′(0) = 0.

b) Puisque f est de classe C2 et vérifie f ′(0) = 0 on peut écrire

f(x) = f(0) + x2ϕ(x) pour tout x > 0

avec ϕ : ]0,+∞[→ R de classe C2 et convergeant vers f ′′(0)/2 en 0+.
On a alors pour tout x > 0

g(x) = λx+ xf(0)− f(0) + x

∫ x

1
ϕ(t) dt

g est de classe C3 sur ]0,+∞[ car ϕ y est de classe C2.
On prolonge g par continuité en 0 en posant g(0) = −f(0)

g′(x) = λ+ f(0) + xϕ(x) +
∫ x

1
ϕ(t) dt

Quand x→ 0+, g′ converge et donc g est de classe C1 sur [0,+∞[.

g′′(x) = 2ϕ(x) + xϕ′(x)

Or
ϕ′(x) = f ′(x)

x2 − 2f(x)− f(0)
x3

donc
g′′(x) = f ′(x)

x
= f ′(x)− f ′(0)

x
−−−−→
x→0+

f ′′(0)

On en déduit que g est de classe C2 sur [0,+∞[

Exercice 21 : [énoncé]
a) (E) est une équation différentielle linéaire d’ordre 1. Après résolution via
variation de la constante, on obtient la solution générale

y(x) = x+ λ

ln x

b) Par opérations, la fonction g est de classe C∞ sur [1/2,+∞[.
Pour x ∈ ]−1, 1[ on a le développement en série entière

ln(1 + x) =
+∞∑
n=1

(−1)n−1

n
xn

et si x 6= 0, on obtient

g(x) =
+∞∑
n=0

(−1)n

n+ 1 x
n

Si l’on pose g(0) = 1, la relation précédente reste valable pour x = 0 et ainsi on a
prolongé g en une fonction développable en série entière sur ]−1, 1[.
Ce prolongement est donc de classe C∞ sur ]−1, 1[ puis sur ]−1,+∞[.
c) La fonction g est à valeurs strictement positives et on peut donc introduire la
fonction f définie sur ]0,+∞[ par

f(x) = 1
g(x− 1)

La fonction f est de classe C∞ et sur ]0, 1[ ou ]1,+∞[

f(x) = x− 1
ln x

Ainsi f est solution de (E) sur ]0, 1[ et ]1,+∞[ et enfin on vérifie aisément que
l’équation différentielle (E) est aussi vérifiée quand x = 1.

Exercice 22 : [énoncé]
a) E est une équation différentielle linéaire d’ordre 1 de solution générale sur R+?

et R−? :
y(x) = C |x|α

Comme y est solution sur R+? et R−? , il existe C+, C− ∈ R tels que

∀x > 0, y(x) = C+ |x|α et ∀x < 0, y(x) = C− |x|α

b) Si α < 0 alors

y(x) −−−−→
x→0+

{
±∞ si C+ 6= 0
0 sinon et y(x) −−−−→

x→0−

{
±∞ si C− 6= 0
0 sinon

y peut être prolongée par continuité en 0 si, et seulement si, C+ = C− = 0 et
alors y(0) = 0.
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La solution correspondante est la fonction nulle qui est solution de E.
Si α = 0 alors

y(x) −−−−→
x→0+

C+ et y(x) −−−−→
x→0−

C−

y peut être prolongée par continuité en 0 si, et seulement si, C+ = C− et alors
y(0) = C+.
La solution correspondante est une fonction constante qui inversement est
solution de E.
Si α > 0 alors

y(x) −−−−→
x→0+

0 et y(x) −−−−→
x→0−

0

y peut être prolongée par continuité en 0 indépendamment de C+ et C− en
posant y(0) = 0.
c) Si α ∈ ]0, 1[ alors

y′(x) −−−−→
x→0+

{
±∞ si C+ 6= 0
0 sinon et y′(x) −−−−→

x→0−

{
±∞ si C− 6= 0
0 sinon

En vertu du théorème du prolongement C1, la fonction y est dérivable en 0 si, et
seulement si, C+ = C− = 0.
La solution correspondante est la fonction nulle qui est solution de E.
Si α = 1 alors

y′(x) −−−−→
x→0+

C+ et y′(x) −−−−→
x→0−

−C−

La fonction y est dérivable en 0 si, et seulement si, C+ = −C−.
La fonction correspondante est alors x 7→ C+x sur R qui est solution de E.
Si α > 1 alors

y′(x) −−−−→
x→0+

0 et y′(x) −−−−→
x→0−

0

La fonction prolongée est dérivable en 0 indépendamment de C+ et C−.
Cette fonction est alors solution de E sur R car dérivable sur R et vérifiant
l’équation différentielle.
d) Si α < 0 ou 0 < α < 1 : seule la fonction nulle est seule solution sur R.
Si α = 0 alors les fonctions constantes sont les solutions de E sur R.
Si α = 1 alors les fonctions linéaires (x 7→ Cx) sont les solutions de E sur R.
Si α > 1 alors les solutions de E sur R sont les fonctions

x 7→

 C+ |x|α si x > 0
0 si x = 0
C− |x|α si x < 0

avec C+, C− ∈ R

Exercice 23 : [énoncé]
Soit λ ∈ R. En résolvant sur I l’équation différentielle

xy′(x) = λy(x)

on obtient que x 7→ xλ est une fonction propre de l’application ϕ. Pour une telle
fonction, on a

xy′(x) = λy(x)

donc en dérivant
xy′′(x) + y′(x)− λy′(x) = 0

puis
x2y′′(x) + xy′(x)− λ2y(x) = 0

On en déduit que les fonctions x 7→ xα et x 7→ x−α sont solutions sur I de
l’équation différentielle Eα. Or cette équation est une équation différentielle
linéaire d’ordre 2 homogène résolue en y′′, son ensemble solution est donc un plan
vectoriel. Puisque les deux précédentes fonctions sont des solutions indépendantes,
elles constituent une base de ce plan vectoriel.
La solution générale de Eα est donc

y(x) = λxα + µx−α avec λ, µ ∈ R

Exercice 24 : [énoncé]
C’est une équation différentielle linéaire d’ordre 2 de solution homogène :
y(t) = (λt+ µ)e−2t.
Par la méthode de variation des constantes, cherchons une solution particulière de
la forme y(t) = λ(t)te−2t + µ(t)e−2t avec λ, µ fonctions dérivables.

λ′(t)te−2t + µ′(t)e−2t = 0

λ′(t)(1− 2t)e−2t − 2µ′(t)e−2t = e−2t

1 + t2

donne 
λ′(t) = 1

1 + t2

µ′(t) = −t
1 + t2

λ(t) = arctan t et µ(t) = − 1
2 ln(1 + t2) conviennent.

Finalement la solution générale des l’équation étudiée est :

y(t) = t arctan(t)e−2t − 1
2 ln(1 + t2)e−2t + (λt+ µ)e−2t
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Exercice 25 : [énoncé]
C’est une équation différentielle linéaire d’ordre 2 de solution homogène :
y = λ cos t+ µ sin t.
Par la méthode de variation des constantes, cherchons une solution particulière de
la forme y(t) = λ(t) cos(t) + µ(t) sin(t) avec λ, µ fonctions dérivables.{
λ′(t) cos t+ µ′(t) sin t = 0
−λ′(t) sin t+ µ′(t) cos t = tan t

,
{
λ′(t) = −sin2 t/cos t
µ′(t) = sin t

,

λ(t) =
∫ cos2 t−1

cos t dt = sin t− 1
2 ln 1+sin t

1−sin t et µ(t) = − cos t conviennent car∫ 1
cos tdt =

∫ cos t
1−sin2 tdt = 1

2 ln 1+sin t
1−sin t .

Finalement la solution générale de l’équation étudiée est :
y(t) = − 1

2 cos t ln 1+sin t
1−sin t + λ cos t+ µ sin t sur Ik =

]
−π2 + kπ, π2 + kπ

[
.

Exercice 26 : [énoncé]
C’est une équation différentielle linéaire d’ordre à 2 de solution homogène :
y = λ cos t+ µ sin t.
Par la méthode de variation des constantes, cherchons une solution particulière de
la forme y(t) = λ(t) cos(t) + µ(t) sin(t) avec λ, µ fonctions dérivables.{
λ′(t) cos t+ µ′(t) sin t = 0
−λ′(t) sin t+ µ′(t) cos t = tan2 t

,
{
λ′(t) = −sin3 t/cos2 t

µ′(t) = sin2 t/cos t
,

λ(t) = − 1
cos t − cos t et µ(t) =

∫ 1−cos2 t
cos t dt = 1

2 ln 1+sin t
1−sin t − sin t conviennent car∫ 1

cos tdt =
∫ cos t

1−sin2 tdt = 1
2 ln 1+sin t

1−sin t .
Finalement la solution générale de l’équation étudiée est :
y(t) = −2 + 1

2 sin t ln 1+sin t
1−sin t + λ cos t+ µ sin t sur Ik =

]
−π2 + kπ, π2 + kπ

[
.

Exercice 27 : [énoncé]
C’est une équation différentielle linéaire d’ordre à 2 de solution homogène :
y = A cosx+B sin x.
Méthode de variation des constantes{

A′(x) cosx+B′(x) sin x = 0
−A′(x) sin x+B′(x) cosx = cotanx

Après résolution et intégration

y(x) = −1
2 sin x ln 1 + cosx

1− cosx +A cosx+B sin x

Exercice 28 : [énoncé]
a) C’est une équation différentielle linéaire d’ordre à 2 de solution homogène :
y = λ cos t+ µ sin t.
Par la méthode de variation des constantes, cherchons une solution particulière de
la forme y(t) = λ(t) cos(t) + µ(t) sin(t) avec λ, µ fonctions dérivables.{
λ′(t) cos t+ µ′(t) sin t = 0
−λ′(t) sin t+ µ′(t) cos t = f(t)

,

cos t× (1)− sin t× (2) donne λ′(t) = −f(t) sin t.
sin t× (1) + cos(t)× (2) donne µ′(t) = f(t) cos t.
Choisissons λ(t) =

∫ t
0 −f(u) sin udu et µ(t) =

∫ t
0 f(u) cosudu

ce qui donne la solution particulière :
y(t) =

∫ t
0 f(u)(sin t cosu− sin u cos t) du =

∫ t
0 f(u) sin(t− u) du.

La solution générale de l’équation est
y(t) =

∫ t
0 f(u) sin(t− u)du+ λ cos(t) + µ sin(t).

b) y(0) = 0 donne λ = 0.
Avec les notations précédentes :
y′(t) = −λ(t) sin t+ µ(t) cos t− λ sin t+ µ cos t
donc y′(0) = µ(0) + µ = µ puis µ = 0.
Finalement : y(t) =

∫ t
0 f(u) sin(t− u) du.

Exercice 29 : [énoncé]
a) La solution générale de l’équation homogène associée est

y(t) = λ cos t+ µ sin t

On peut avoir l’intuition de trouver une solution particulière de la forme
y(t) = α cos(nt) et, en effet on obtient,

y(t) = −1
n2 − 1 cos(nt)

solution particulière lorsque n 6= 1. La solution générale est alors

y(t) = λ cos t+ µ sin t+ 1
1− n2 cos(nt)

Quand n = 1, on applique la méthode de variation des constantes. On obtient une
solution particulière en résolvant{

λ′(t) cos t+ µ′(t) sin t = 0
−λ′(t) sin t+ µ′(t) cos t = cos(nt)
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Par les formules de Cramer, on obtient

λ′(t) = − sin t cos t et µ′(t) = cos2(t)

Alors
λ(t) = −1

2 sin2 t et µ(t) = t

2 + sin(t) cos(t)
2

conviennent et l’on obtient la solution particulière

y(t) = t

2 sin t

puis la solution générale

y(t) = λ cos t+ µ sin t+ 1
2 t sin t

b) Soit

f(t) = a0 + a1

2 t sin t+
+∞∑
n=2

an
1− n2 cos(nt)

Sans difficultés, on peut dériver deux fois sous le signe somme car il y a
convergence normale de la série des dérivées secondes et convergences simples
intermédiaires. On peut alors conclure que f est de classe C2 et solution de
l’équation différentielle étudiée. La solution générale de celle-ci est alors

y(t) = λ cos t+ µ sin t+ f(t)

Exercice 30 : [énoncé]
Posons g = f + f ′′. f est évidemment solution de l’équation différentielle

y′′ + y = g

Après application de la méthode de variation des constantes, la solution générale
de cette équation est

y(x) = a cosx+ b sin x+
∫ x

0
g(t) sin(x− t) dt

Pour une telle solution,

y(x+ π) + y(x) =
∫ x+π

x

g(t) sin(x+ π − t) dt > 0

Ainsi f vérifie
f(x) + f(x+ π) > 0

Exercice 31 : [énoncé]
Les solutions de l’équation différentielle y′′ + y = f sont de classe C∞ car f l’est.
Par application de la méthode de variation des constantes, la solution générale de
l’équation y′′ + y = f est

y(x) = λ cosx+ µ sin x+
∫ x

0
f(t) sin(x− t) dt

Cette solution est 2π-périodique si, et seulement si,∫ x

0
f(t) sin(x− t) dt =

∫ x+2π

0
f(t) sin(x− t) dt

i.e.
∫ x+2π
x

f(t) sin(x− t) dt = 0 pour tout x ∈ R.
En développant le sinus et en exploitant la liberté de la famille (sin, cos) ainsi que
la 2π-périodicité de f , cela équivaut à la condition∫ 2π

0
f(t) sin tdt =

∫ 2π

0
f(t) cos tdt = 0

Exercice 32 : [énoncé]
Par application de la méthode de variation des constantes, la solution générale de
l’équation y′′ + y = f est

y(x) = λ cosx+ µ sin x+
∫ x

0
f(t) sin(x− t) dt

Pour conclure, il suffit de justifier que x 7→
∫ x

0 f(t) sin(x− t) dt est bornée.
Par intégration par parties,∫ x

0
f(t) sin(x− t) dt = f(x)− f(0) cosx−

∫ x

0
f ′(t) cos(x− t) dt

Quitte à passer à l’opposé, on peut supposer f croissante et donc f ′(t) > 0.
Puisque −1 6 cos(x− t) 6 1,

f(0)− f(x) 6
∫ x

0
f ′(t) cos(x− t) dt 6 f(x)− f(0)

puis
f(0)(1− cosx) 6

∫ x

0
f(t) sin(x− t) dt 6 2f(x)− f(0)(1 + cosx)

La fonction f étant bornée (car convergente en +∞), il en est de même de
x 7→

∫ x
0 f(t) sin(x− t) dt.
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Exercice 33 : [énoncé]
a) C’est une équation différentielle linéaire d’ordre à 2 à coefficients constants de
solution homogène

y = A cosx+B sin x

La méthode de variation des constantes propose une solution particulière de la
forme

y(x) = A(x) cosx+B(x) sin x

avec A et B fonctions dérivables solutions du système{
A′(x) cosx+B′(x) sin x = 0
−A′(x) sin x+B′(x) cosx = 1/x

En faisant cos(x)× (1)− sin(x)× (2), on détermine A′(x) et B′(x) s’obtient de
façon analogue {

A′(x) = −sin x/x
B′(x) = cosx/x

On peut alors proposer

A(x) =
∫ +∞

x

sin t
t

dt et B(x) = −
∫ +∞

x

cos t
t

dt

où les intégrales introduites ont le bon goût de converger. . .
La solution générale de l’équation différentielle est alors

y(x) = A cosx+B sin x+ cosx
∫ +∞

x

sin t
t

dt− sin x
∫ +∞

x

cos t
t

dt

b) Posons u(x, t) = e−tx/(1 + t2) définie sur R+ × [0,+∞[.
x 7→ u(x, t) est continue sur R+ pour chaque t ∈ [0,+∞[
t 7→ u(x, t) est continue par morceaux sur ]0,+∞[ pour chaque x ∈ R+ et

|u(x, t)| 6 1
1 + t2

= ϕ(t)

avec ϕ intégrable sur [0,+∞[. Par domination f est définie et continue sur
[0,+∞[.
De plus, x 7→ u(x, t) est deux fois dérivable sur R+ pour chaque t ∈ [0,+∞[ avec

∂u

∂x
(x, t) = −te

−tx

1 + t2
et ∂

2u

∂x2 (x, t) = t2e−tx

1 + t2

La dérivée partielle ∂u
∂x est continue par morceaux et intégrable sur [0,+∞[.

La dérivée partielle ∂2u
∂x2 est continue en x et continue par morceaux en t.

Soit [a, b] ⊂ ]0,+∞[. On a

∀(x, t) ∈ [a, b]× [0,+∞[ ,
∣∣∣∣∂2u

∂x2 (x, t)
∣∣∣∣ 6 t2e−at

1 + t2
6 e−at = ϕ(t)

avec ϕ intégrable. Par domination sur tout segment, f est de classe C2 sur ]0,+∞[
et

f ′′(x) =
∫ +∞

0
e−tx t2

1 + t2
dt

On vérifie alors
f ′′(x) + f(x) =

∫ +∞

0
e−tx dt = 1

x

de sorte que f est solution sur R+? de l’équation différentielle

y′′ + y = 1
x

Ainsi, il existe A,B ∈ R tels que

f(x) = A cosx+B sin x+ cosx
∫ +∞

x

sin t
t

dt− sin x
∫ +∞

x

cos t
t

dt

On observe
0 6 f(x) 6

∫ +∞

0
e−tx dt = 1

x

donc par encadrement f −−→
+∞

0 ce qui entraîne A = B = 0.
Ainsi

∀x > 0, f(x) = cosx
∫ +∞

x

sin t
t

dt− sin x
∫ +∞

x

cos t
t

dt

Séparément, on calcule f(0)

f(0) =
∫ +∞

0

dt
1 + t2

= [arctan t]+∞0 = π

2

c) Par convergence de l’intégrale, quand x→ 0+∫ +∞

x

sin t
t

dt→
∫ +∞

0

sin t
t

dt

De plus ∫ +∞

x

cos t
t

dt =
∫ +∞

1

cos t
t

dt+
∫ 1

x

cos t
t

dt = Cte +
∫ 1

x

cos t
t

dt
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avec ∣∣∣∣∫ 1

x

cos t
t

dt
∣∣∣∣ 6 ∫ 1

x

dt
t

= − ln x

donc
sin x

∫ +∞

x

cos t
t

dt→ 0

Ainsi en passant à la limite en 0 l’expression précédente de f(x), on obtient∫ +∞

0

sin t
t

dt = f(0) = π

2

Exercice 34 : [énoncé]
a) Analyse : Soit

∑
anx

n une série entière de rayon de convergence R > 0 et de
somme S.
La fonction S est solution sur ]−R,R[ de l’équation différentielle
Sur ]−R,R[ ,

S′′(x) + 2xS′(x) + 2S(x) =
+∞∑
n=0

((n+ 2)(n+ 1)an+2 + 2(n+ 1)an)xn

Par conséquent, S est solution de l’équation différentielle

y′′ + 2xy′ + 2y = 0

si, et seulement si,
∀n ∈ N, an+2 = −2

n+ 2an

ce qui donne

a2p = (−1)p

p! a0 et a2p+1 = (−1)p2p

(2p+ 1)...3a1 = (−1)p4pp!
(2p+ 1)! a1

Synthèse : Soit
∑
anx

n la série entière déterminée par les coefficients
précédemment proposés.
Une telle série entière est de rayon de convergence R = +∞ car a2p = O (1/p!) et
a2p+1 = O(4p/p!).
De plus par les calculs ci-dessus elle est solution de l’équation différentielle
proposée sur R.
b) Les solutions paires sont obtenue pour a2p+1 = 0. Cela donne

∀x ∈ R, S(x) = a0e−x
2

Exercice 35 : [énoncé]
Soit y la somme de la série entière

∑
ant

n de rayon de convergence R supposé > 0.

4(1− t2)y′′(t)− 4ty′(t) + y(t) =
+∞∑
n=0

(
4(n+ 2)(n+ 1)an+2 − (4n2 − 1)an

)
tn donc

y est solution de l’équation étudiée si, et seulement si,

∀n ∈ N, an+2 = (n− 1/2)(n+ 1/2)
(n+ 1)(n+ 2) an

donc a2p =
(

1/2
2p

)
a0 et a2p+1 =

(
1/2

2p+ 1

)
a1.

Or personne, oh non personne, n’ignore que

√
1 + t =

+∞∑
n=0

(
1/2
n

)
tn et

√
1− t =

+∞∑
n=0

(−1)n
(

1/2
n

)
tn

avec un rayon de convergence égal à 1.
En prenant a0 = a1 = 1, on obtient la fonction t 7→

√
1 + t.

En prenant a0 = 1 et a1 = −1, on obtient t 7→
√

1− t.
Ces deux fonctions sont solutions de l’équation étudiée (car R = 1) et, étant
indépendantes, elles constituent un système fondamental de solutions. La solution
générale s’exprime

y(t) = λ
√

1 + t+ µ
√

1− t

Exercice 36 : [énoncé]

a) Soit y(t) =
+∞∑
n=0

ant
n une série entière solution de rayon de convergence R > 0.

Sur ]−R,R[, la fonction y est de classe C∞ et

y(t) =
+∞∑
n=0

ant
n, y′(t) =

+∞∑
n=0

nant
n−1 et y′′(t) =

+∞∑
n=0

n(n− 1)antn−2

de sorte que

(1 + t2)y′′(t) + 4t y′(t) + 2y(t) =
+∞∑
n=0

(n+ 2)(n+ 1)(an+2 + an)tn

Par unicité des coefficients d’un développement en série entière, la fonction y est
solution de l’équation étudiée sur ]−R,R[ si, et seulement si,

∀n ∈ N, an+2 = −an
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ce qui donne
∀p ∈ N, a2p = (−1)pa0 et a2p+1 = (−1)pa1

et on obtient

y(t) = a0

+∞∑
p=0

(−1)pt2p + a1

+∞∑
p=0

(−1)pt2p+1 = a0 + a1t

1 + t2

Puisque la série entière écrite est de rayon de convergence R > 1, on peut assurer
que les fonctions proposées sont solutions sur ]−1, 1[ à l’équation étudiée. Cela
fournit un système fondamental de solutions sur ]−1, 1[ qu’il suffit de réinjecter
dans l’équation pour affirmer que ces fonctions forment aussi un système
fondamental de solution sur R.
Puisque l’espace des solutions de cette équation homogène est de dimension 2, on
peut conclure que la solution générale est

y(t) = λ+ µt

1 + t2

b) La méthode de variation des constantes nous amène à recherche une solution
particulière

y(t) = λ(t) + µ(t)t
1 + t2

avec λ et µ fonctions dérivables solution du système
λ′(t)
1 + t2

+ µ′(t)t
1 + t2

= 0

− 2tλ′(t)
(1 + t2)2 + µ′(t)(1− t2)

(1 + t2)2 = 1
(1 + t2)2

On obtient λ′(t) = − t
1+t2 et µ′(t) = 1

1+t2 puis

y(t) = t arctan t− ln
√

1 + t2

1 + t2

Cette solution particulière permet ensuite d’exprimer la solution générale.

Exercice 37 : [énoncé]
a) Par analyse synthèse, on obtient

h(x) =
+∞∑
n=0

(−1)n

(n!)2 x
n

de rayon de convergence R = +∞.
b) h(0) = 1 et par application du critère spécial des séries alternées à la série∑

n>1

(−1)n

(n!)2 2n

on obtient

−2 <
+∞∑
n=1

(−1)n

(n!)2 2n < −1

et donc h(2) < 0. On en déduit que h s’annule sur ]0, 2[.
La fonction h est dérivable et

h′(x) =
+∞∑
n=1

(−1)n

n!(n− 1)!x
n−1

On peut à nouveau appliquer le critère spécial des séries alternées à cette série
pour tout x ∈ ]0, 2[ et on en déduit h′(x) < 0.

Exercice 38 : [énoncé]
Par dérivation d’un déterminant

w′(t) =
∣∣∣∣ f ′1(t) f ′2(t)
f ′1(t) f ′2(t)

∣∣∣∣+
∣∣∣∣ f1(t) f2(t)
f ′′1 (t) f ′′2 (t)

∣∣∣∣
donc

w′(t) =
∣∣∣∣ f1(t) f2(t)
−a(t)f ′1(t)− b(t)f1(t) −a(t)f ′2(t)− b(t)f2(t)

∣∣∣∣
puis

w′(t) =
∣∣∣∣ f1(t) f2(t)
−a(t)f ′1(t) −a(t)f ′2(t)

∣∣∣∣ = −a(t)
∣∣∣∣ f1(t) f2(t)
f ′1(t) f ′2(t)

∣∣∣∣
Ainsi w est solution de l’équation différentielle

w′ + a(t)w = 0

Exercice 39 : [énoncé]
a) Un simple calcul de vérification.
b) Le wronskien de deux solutions de l’équation homogène (E) est solution de
l’équation différentielle

tw′(t) + (1− 2t)w(t) = 0
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Après résolution, on obtient

w(t) = λ
e2t

t
avec λ ∈ R

c) Soit ψ une solution indépendante de ϕ (la théorie assure qu’il en existe) et w le
wronskien de ϕ et ψ. Quitte à multiplier ψ par une constante ad hoc, on peut
supposer

w(t) = e2t

t

et la fonction ψ apparaît solution de l’équation différentielle

ϕψ′ − ψϕ′ = w(t)

c’est-à-dire
etψ′ − etψ = w(t)

Après résolution, on obtient
ψ(t) = ln(t)et

Le couple (ϕ,ψ) constituant un système fondamental de solutions, on peut
exprimer la solution générale

y(t) = (λ ln(t) + µ)et avec λ, µ ∈ R

Exercice 40 : [énoncé]
a) f est continue, si f n’est pas de signe constant alors f s’annule.
b) On a

∀x ∈ R, f ′′(x) = −q(x)f(x) 6 0

c) L’équation est
y = f ′(a)(x− a) + f(a)

d) Considérons g : R→ R définie par g(x) = f(x)− (f ′(a)(x− a) + f(a)).
g est dérivable et g′(x) = f ′(x)− f ′(a). Or f ′ est décroissante, on peut donc
dresser le tableau de variation de g et puisque g(a) = 0, constater

∀x ∈ R, g(x) 6 0

e) Si f ′(a) 6= 0 alors f étant en dessous de sa tangente prend des valeurs
négatives, c’est impossible.
On en déduit que

∀a ∈ R, f ′(a) = 0

donc f est constante et f ′′ = 0.

Pour que f vérifie l’équation
y′′ + q(x)y = 0

(sachant q 6= 0) il est nécessaire que f soit constante égale à 0.
C’est absurde.

Exercice 41 : [énoncé]
Par l’absurde :
S’il existe y une solution sur R de y′′ + q(x)y = 0 qui ne s’annule pas.
Deux cas sont possibles : y est positive ou y est négative.
Si y est positive alors y′′ 6 0.
La fonction y est donc concave et sa courbe représentative est en dessous de
chacune de ses tangentes.
Si y possède une tangente de pente non nulle, y prend des valeurs négatives, exclu.
Par suite y est nécessairement constante et alors y′′ = 0 puis q(x)y(x) = 0
implique que y est constante égale à 0. Absurde.
Si y est négative, le même raisonnement permet de conclure.

Exercice 42 : [énoncé]
Par l’absurde, si f admet une infinité de zéros, on peut construire une suite (xn)
formée de zéros de f deux à deux distincts. Puisque [a, b] est compact, on peut
extraire de cette suite (xn), une suite convergente que nous noterons encore (xn).
Soit c la limite de (xn). Par continuité, on a f(c) = 0.
En appliquant le théorème de Rolle à f entre xn et xn+1, on détermine cn compris
entre xn etxn+1 tel que f ′(cn) = 0. Par encadrement, cn → c et par continuité
f ′(c) = 0.
Le problème de Cauchy linéaire formé par l’équation (E) et les conditions initiales

y(c) = 0 et y′(c) = 0

possède une unique solution qui est la fonction nulle.
La fonction f est donc nulle : c’est absurde.

Exercice 43 : [énoncé]
Soit y une solution de l’équation étudiée possédant une infinité de racines.
Nous allons montrer qu’il existe a ∈ [0, 1] vérifiant y(a) = y′(a) = 0.
Il est possible de former une suite (xn) de racines deux à deux distinctes de la
fonction y. Puisque la suite (xn) est une suite d’éléments du compact [0, 1], elle
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possède une suite extraite convergente que nous noterons encore (xn). Ainsi on
obtient une suite d’éléments deux à deux distincts de [0, 1] vérifiant

xn → a ∈ [0, 1] , ∀n ∈ N, y(xn) = 0

Par continuité de la fonction y, on obtient y(a) = 0.
Par application du théorème de Rolle entre xn et xn+1 (qui sont distincts) il
existe cn compris entre xn et xn+1 vérifiant y′(cn) = 0. Par encadrement cn → a
et par continuité de y′, on obtient y′(a) = 0.
Finalement y apparaît comme solution du problème de Cauchy{

y′′ + p(t)y′ + q(t)y = 0
y(a) = y′(a) = 0

Or la fonction nulle est aussi évidemment solution.
Par unicité de la solution sur [0, 1] à ce problème de Cauchy, on peut conclure que
y est la fonction nulle.

Exercice 44 : [énoncé]
a) Par l’absurde supposons que g possède un zéro non isolé a. Il existe alors une
suite (xn) de zéros de g distincts de a convergeant vers a. Puisque g(xn) = 0, à la
limite g(a) = 0. Puisque

g′(a) = lim
x→a,x6=a

g(x)− g(a)
x− a

on a aussi
g′(a) = lim

n→+∞

g(xn)− g(a)
xn − a

= 0

Ainsi g(a) = g′(a) = 0 et donc g est la fonction nulle car cette dernière est
l’unique solution de l’équation linéaire d’ordre 2 E vérifiant les conditions initiales
y(a) = y′(a) = 0.
b) Posons

ϕ(x) = (x2 − x)
∫ x

x1

(t− x1)f(t)g(t) dt+ (x− x1)
∫ x2

x

(x2 − t)f(t)g(t) dt

La fonction ϕ est dérivable et

ϕ′(x) = −
∫ x

x1

(t− x1)f(t)g(t) dt+
∫ x2

x

(x2 − t)f(t)g(t) dt

La fonction ϕ est donc deux fois dérivable et

ϕ′′(x) = (x1 − x2)f(x)g(x)

Puisque g est solution de l’équation E, on obtient

ϕ′′(x) = (x2 − x1)g′′(x)

et donc
ϕ(x) = (x2 − x1)g(x) + αx+ β

Or les fonctions ϕ et g s’annulent toutes deux en x1 etx2 donc α = β = 0 puis

ϕ(x) = (x2 − x1)g(x)

c) Soit α = max
[x1,x2]

|g| 6= 0. Pour x tel que |g(x)| = α, la relation précédente donne

α(x2 − x1) 6 (x2 − x)
∣∣∣∣∫ x

x1

(t− x1)f(t)g(t) dt
∣∣∣∣+ (x− x1)

∣∣∣∣∫ x2

x

(x2 − t)f(t)g(t) dt
∣∣∣∣

puis

α(x2−x1) 6 α(x2−x)(x−x1)
∫ x

x1

|f(t)| dt+α(x2−x)(x−x1)
∫ x2

x

|f(t)| dt = α(x2−x)(x−x1)
∫ x2

x1

|f(t)| dt

On en déduit ∫ x2

x1

|f(t)| dt > 4
x2 − x1

car
(x2 − x)(x− x1) 6 (x2 − x1)2

4

Exercice 45 : [énoncé]
a) La fonction f est de classe C2 et

f ′(x) = f ′(0) +
∫ x

0
f ′′(t) dt = f ′(0)−

∫ x

0
q(t)f(t) dt

Puisque la fonction q est intégrable sur [0,+∞[ et puisque f est bornée, on peut
affirmer que la fonction qf est intégrable sur [0,+∞[. Par suite l’intégrale de
l’expression précédente de f ′(x) converge quand x→ +∞. On en déduit que f ′
converge en +∞.
Posons ` sa limite.
Si ` > 0 alors il existe A assez grand tel que pour tout x > A on a f ′(x) > `/2.
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On a alors

f(x) = f(A) +
∫ x

A

f ′(t) dt > f(A) + `

2(x−A) −−−−−→
x→+∞

+∞

ce qui contredit l’hypothèse f bornée.
De même, ` < 0 est absurde et il reste donc ` = 0.
b) En dérivant

w′ = f ′′g + f ′g′ − f ′g′ − f ′′g = 0

car f et g sont solutions de (E).
On en déduit que le wronskien w est constant et puisque les fonctions f et g sont
bornées, leurs dérivées f ′ et g′ convergent vers 0 en +∞ et donc w −−→

+∞
0.

Ainsi le wronskien w est constant égal à 0 et donc les fonctions f et g sont liées.
On en déduit que l’équation différentielle E possède une solution non bornée.

Exercice 46 : [énoncé]
a) Si ϕ1 possède une solution non isolée x0 alors il existe une suite (xn)n∈N de
zéros de ϕ1 deux à deux distincts convergeant vers x0. En appliquant le théorème
de Rolle entre les deux termes distincts xn et xn+1, on détermine une suite (cn)
convergeant vers x0 formée de zéros de ϕ′1. En passant la relation ϕ′(cn) = 0 à la
limite on obtient ϕ′(x0) = 0. Ainsi ϕ1 se comprend comme la solution du
problème de Cauchy constitué de l’équation différentielle y′′ + q1(x) = 0 et des
conditions initiales y(x0) = y′(x0) = 0. Or ce problème de Cauchy possède une
solution unique et celle-ci est la fonction nulle, cas que l’énoncé exclut.
b) On suppose les zéros de a et b consécutifs donc ϕ1 est de signe constant sur
[a, b].
Quitte à considérer −ϕ1 on peut supposer ϕ1 > 0 sur [a, b] et, sachant
ϕ′1(a), ϕ′1(b) 6= 0 car ϕ1 est non identiquement nulle, on a ϕ′1(a) > 0 et ϕ′1(b) < 0.
Si ϕ2 n’est pas de signe constant sur [a, b] alors, par le théorème de valeurs
intermédiaires, ϕ2 s’annule sur ]a, b[.
Si en revanche ϕ2 est de signe constant sur [a, b] alors, quitte à considérer −ϕ2, on
peut supposer ϕ2 > 0 sur [a, b] afin de fixer les idées. Considérons alors la fonction
donnée par

w(t) = ϕ1(t)ϕ′2(t)− ϕ2(t)ϕ′1(t)

La fonction w est décroissante car

w′(t) = ϕ1(t)ϕ′′2(t)− ϕ2(t)ϕ′′1(t) = (q1(t)− q2(t))ϕ1(t)ϕ2(t) 6 0

Or w(a) = −ϕ2(a)ϕ′1(a) 6 0 et w(b) = −ϕ2(b)ϕ′1(b) > 0 donc nécessairement
ϕ2(a) = ϕ2(b) = 0.

c) Il suffit d’appliquer ce qui précède à q1(x) = 1 et q2(x) = ex sur I = R+ sachant
que ϕ1(x) = sin(x− a) est solution de l’équation y′′ + y = 0 et s’annule en a et
a+ π.

Exercice 47 : [énoncé]
L’équation E0 est une équation différentielle linéaire d’ordre 2 homogène.
a) y2 est deux fois dérivable et

(y2)′′(x) = 2y(x)y′′(x) + 2 (y′(x))2 = 2ex (y(x))2 + 2 (y′(x))2
> 0

Par suite la fonction y2 est convexe.
Si y(0) = y(1) = 0 alors, sachant que y2 est convexe, le graphe de y2 est en
dessous de chacune de ses cordes et donc y2 est nulle sur [0, 1]. On en déduit que y
est nulle sur [0, 1] et en particulier y(0) = y′(0) = 0. Or la fonction nulle est la
seule solution de l’équation différentielle E0 vérifiant les conditions initiales
y(0) = y′(0) = 0. On en déduit que la fonction y est nulle sur R.
b) Le wronskien en 0 des solutions y1, y2 est

w(0) =
∣∣∣∣ y1(0) y2(0)
y′1(0) y′2(0)

∣∣∣∣ = y2(0)

Si y2(0) = 0 alors, sachant y2(1) = 0, le résultat qui précède entraîne y2 = 0̃. Or
y′2(1) = 1 6= 0. C’est impossible et donc w(0) = y2(0) 6= 0.
On en déduit que (y1, y2) est un système fondamental de solutions de E0.
Notons que l’on démontre par le même argument que y1(1) 6= 0.
c) Soit ỹ une solution particulière de l’équation E.
La solution générale de E est de la forme y(x) = ỹ(x) + λ1y1(x) + λ2y2(x).
Cette solution vérifie y(0) = y(1) = 0 si, et seulement si,

ỹ(0) + λ2y2(0) = 0 et ỹ(1) + λ1y1(1) = 0

Ces deux équations déterminent λ1 et λ2 de façon unique puisque y1(1), y2(0) 6= 0.

Exercice 48 : [énoncé]
a) (E) est une équation différentielle linéaire d’ordre 2 définie sur R. Les
conditions initiales proposées déterminent alors une solution unique définie sur R.
b) Puisque la fonction u est continue et u(0) = 1, la fonction u est strictement
positive au voisinage de 0 et par la satisfaction de l’équation différentielle, on peut
affirmer que u′′ est strictement négative au voisinage de 0. La fonction u′ étant
alors strictement décroissante au voisinage de 0 et vérifiant u′(0) = 0, les
existences de α et β sont assurées.
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Par l’absurde, supposons que la fonction u ne s’annule par sur R+.
La fonction u est alors positive et u′′ est négative sur R+. La fonction u′ étant
donc décroissante sur R+, on a

∀t > β, u′(t) 6 u′(β)

En intégrant
∀x > β, u(x)− u(β) 6 u′(β)(x− β)

Or cette affirmation est incompatible avec un passage à la limite quand x→ +∞.
On en déduit que u s’annule au moins une fois sur R+ (et cette annulation est
nécessairement sur R+?)
De même, on justifie que u s’annule au moins une fois sur R−? (et on peut même
montrer que la fonction u est paire. . . )
c) Considérons l’ensemble

A = {t > 0/u(t) = 0}
C’est une partie non vide et minorée de R, elle admet donc une borne inférieure δ.
Par la caractérisation séquentielle d’une borne inférieure, il existe une suite
(tn) ∈ AN, telle que

tn → δ

Puisque u(tn) = 0, on obtient à la limite u(δ) = 0. Evidemment δ > 0 et δ 6= 0
donc δ ∈ A et ainsi δ est un minimum de A.
De même on obtient γ.
d) Grâce à l’équation différentielle

W ′ = u′′v − uv′′ = 0

Le wronskien W est donc constant mais peu importe. . . puisque les solutions u et v
sont indépendantes, le wronskien ne s’annule pas et il est donc de signe constant.
Or

W (γ) = u′(γ)v(γ) et W (δ) = u′(δ)v(δ)
Puisque u est strictement positive sur ]γ, δ[, u′′ est strictement négative et u′
strictement décroissante sur ce même intervalle. On en déduit

u′(γ) > 0 et u′(δ) < 0

ce qui entraîne que v(γ) et v(δ) sont de signes stricts contraires. On en déduit que
v s’annule sur ]γ, δ[.
e) Plus généralement, qu’une solution de (E) soit colinéaire à u ou non, on peut
affirmer que celle-ci possède un zéro dans [γ, δ]. Or on vérifie que les fonctions wn
sont solutions de (E) et donc chacune possède au moins un zéro dans [γ, δ]. On en
déduit que la fonction w possède au moins un zéro dans chaque intervalle
[γ + nπ, δ + nπ] ce qui assure l’existence d’une infinité de zéros.

Exercice 49 : [énoncé]
a) Par l’absurde, supposons que f s’annule et introduisons

b = inf {t ∈ [a,+∞[ /f(t) = 0}

Par continuité de f , on a f(b) = 0 et sachant f(a) > 0, on aussi.

∀t ∈ [a, b] , f(t) > 0

On en déduit f ′′(t) = q(t)f(t) > 0 et donc f ′ est croissante sur [a, b]. Sachant
f ′(a) > 0, la fonction f est croissante sur [a, b]. Ceci est incompatible avec la
valeur f(b) = 0. C’est absurde.
On en déduit que f ne s’annule pas sur [a,+∞[ et est donc strictement positive.
Comme au dessus, on retrouve que f ′ est croissante et donc strictement positive.
Enfin

f(x) = f(a) +
∫ x

a

f ′(t) dt > f(a) + f ′(a)(x− a) −−−−−→
x→+∞

+∞

b) (u′v − uv′)′ = u′′v − uv′′ = 0. La fonction u′v − uv′ est donc constante égale à
−1 (qui est sa valeur en a).
Puisque v(a) = 0 et v′(a) = 1, les fonctions v et v′ sont strictement positives sur
un intervalle de la forme ]a, a+ h] (avec h > 0). En appliquant la question
précédente avec a+ h plutôt que a, on assure que v et v′ sont strictement
positives sur ]a,+∞[. On peut donc introduire les fonctions u/v et u′/v′. Aussi(u

v

)′
= −1

v2 6 0 et
(
u′

v′

)′
= u′′v′ − u′v′′

v′2
= q

v′2
> 0

On a
u

v
− u′

v′
= uv′ − u′v

vv′
= 1
vv′

avec v −−→
+∞

+∞ et v′ > v′(a) = 1. On en déduit que les fonctions u/v et u′/v′ ont
la même limite en +∞ (ces limites existent assurément par monotonie). Aussi
cette limite est finie car la fonction u/v est au dessus de la fonction u′/v′. Nous
noterons ` cette limite.
c) Les solutions de (E) sont les fonctions de la forme

g = λu+ µv

car (u, v) forme un système fondamentale de solutions de l’équation linéaire (E).
La condition g(a) = 1 impose λ = 1.
Les conditions g strictement positive et décroissante imposent respectivement

u+ µv > 0 et u′ + µv′ 6 0
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La constante µ est alors nécessairement −`.
Finalement g = u− `v. La réciproque est immédiate.
d) Le changement de fonction proposé transpose l’équation x4y′′(x) = y(x) en
z′′(1/x) = z(1/x).
La solution générale de l’équation (E) sur [1,+∞[ est donc

y(x) = x
(
λe1/x + µe−1/x

)
Par développement limité

y(x) =
x→+∞

x ((λ+ µ) + o(1))

Pour que la fonction g décroisse en restant positive, il est nécessaire que λ+µ = 0.
Sachant y(1) = λe + µ/e, on obtient

g(x) = ex
e2 − 1

(
e1/x − e−1/x

)
On aurait aussi pu calculer

u(x) = xe1/x−1 et v(x) = x

2

(
−e1/x−1 + e−1/x+1

)
et reprendre ce qui précède.

Exercice 50 : [énoncé]
Supposons f solution.

f(x) = −1− 2x
∫ x

0
f(t)dt+

∫ x

0
tf(t)dt

On a f(0) = −1 et f dérivable avec

f ′(x) = −2
∫ x

0
f(t)dt− 2xf(x) + xf(x)

Par suite y : x 7→
∫ x

0 f(t)dt est solution de l’équation différentielle

y′′ + xy′ + 2y = 0

avec les conditions initiales y(0) = 0 et y′(0) = −1. Ceci détermine y et donc f de
manière unique.
En recherchant les solutions développables en séries entières, on obtient
y(x) = −xe−x2/2 puis

f(x) = (x2 − 1)e−x
2/2

Exercice 51 : [énoncé]
a) On peut écrire

f(x) = 1− x− x
∫ x

0
f(t) dt+

∫ x

0
tf(t) dt

Par opération sur les fonctions de classe C1, f est de classe C1.
b) Soit f solution. f est de classe C1 et

f ′(x) = −1−
∫ x

0
f(t) dt

On en déduit que f est de classe C2 et

f ′′(x) + f(x) = 0

Ainsi la fonction f est de la forme

f(x) = λ cosx+ µ sin x

De plus, on observe f(0) = 1 et f ′(0) = −1 ce qui détermine λ et µ :

λ = 1 et µ = −1

Il ne reste plus qu’à vérifier que la fonction x 7→ cosx− sin x est solution, soit en
remontant les calculs (ce qui est possible) soit en refaisant ceux-ci.

Exercice 52 : [énoncé]
Si f est solution alors f est de classe C1 et on a :

f ′(x) = xf(x) et f(0) = 1

Après résolution de l’équation différentielle sous-jacente, on obtient

f(x) = ex
2/2

Inversement, f(x) = ex2/2 définit une solution du problème posé.

Exercice 53 : [énoncé]
Remarquons∫ x

0
f(t) cos(x− t) dt = cosx

∫ x

0
f(t) cos tdt+ sin x

∫ x

0
f(t) sin tdt
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Si f est solution alors

f(x) = 1 + 2
∫ x

0
f(t) cos(x− t) dt

et donc f(0) = 1.
f est dérivable car somme de fonctions dérivables.

f ′(x) = −2 sin x
∫ x

0
f(t) cos tdt+ 2 cosx

∫ x

0
f(t) sin tdt+ 2f(x)

et f ′(0) = 2.
f est alors deux fois dérivable et

f ′′(x) = 1− f(x) + 2f ′(x)

Ainsi f est solution de l’équation différentielle

y′′ − 2y′ + y = 1

vérifiant les conditions initiales y(0) = 1 et y′(0) = 2.
La solution générale de cette équation différentielle linéaire d’ordre 2 est

y(x) = (λx+ µ)ex + 1

Cela conduit à f(x) = 2xex + 1.
Inversement, soit par calculs, soit en remontant le raisonnement, on peut affirmer
que la fonction proposée est solution.

Exercice 54 : [énoncé]
Soit f une solution du problème posé.
Posons g(x) = f(x) + f(−x). La fonction g est une fonction paire, deux fois
dérivable et solution de : y′′ + y = 0. Par suite g(x) = C cos(x)
Posons h(x) = f(x)− f(−x). La fonction h est une fonction impaire, deux fois
dérivable et solution de : y′′ − y = 2x. Par suite h(x) = Dshx− 2x.
On en déduit f(x) = C cosx+Dshx− x.
Inversement de telles fonctions sont bien solutions.

Exercice 55 : [énoncé]
Soit f une fonction solution. f est dérivable et

f ′(x) = f(1/x)

donc f ′ est encore dérivable. La fonction f est donc deux fois dérivable avec

f ′′(x) = − 1
x2 f

′(1/x) = − 1
x2 f(x)

La fonction f apparaît alors comme étant solution sur R+? de l’équation
différentielle

E : x2y′′ + y = 0

E est une équation différentielle d’Euler. Réalisons le changement de variable
t = ln x.
Soient y : R+? → R deux fois dérivable et z : R→ R définie par

z(t) = y(et)

z est deux fois dérivable et
y(x) = z(ln x)

y′(x) = 1
x
z′(ln x)

y′′(x) = − 1
x2 z

′(ln x) + 1
x2 z

′′(ln x)

y est solution sur R+? de E si, et seulement si, z est solution sur R de

F : z′′ − z′ + z = 0

F est un équation différentielle linéaire d’ordre 2 à coefficients constants
homogène de solution générale

z(x) =
(
λ cos

√
3x
2 + µ sin

√
3x
2

)
ex/2

La solution générale de E sur R+? est donc

y(x) =
√
x

(
λ cos

√
3 ln x
2 + µ sin

√
3 ln x
2

)
Revenons à la fonction f . Il existe λ, µ ∈ R telles que

f(x) =
√
x

(
λ cos

√
3 ln x
2 + µ sin

√
3 ln x
2

)
On a alors

f ′(x) = 1
2
√
x

(
(λ+ µ

√
3) cos

√
3 ln x
2 + (µ− λ

√
3) sin

√
3 ln x
2

)
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et donc

f ′(x) = f(1/x)⇔
{
λ+ µ

√
3 = 2λ

λ
√

3− µ = 2µ
⇔ λ = µ

√
3

Finalement, les solutions sont les fonctions f données par

∀x ∈ R, f(x) = C
√
x cos

(√
3 ln x
2 − π

6

)
avec C ∈ R

Exercice 56 : [énoncé]
Les éléments de E sont les solutions de l’équation différentielle

y′′ + y = α cos(x) vérifiant y(0) = α

L’équation différentielle est linéaire d’ordre 2 à coefficients constants.
La fonction x 7→ α

2 x sin x est solution particulière et la solution générale est

y(x) = λ cosx+ µ sin x+ α

2 x sin x

Les solutions vérifiant la condition y(0) = α sont les fonctions données par

y(x) = α

(
cosx+ 1

2x sin x
)

+ µ sin x

On en déduit que l’espace E est de dimension 2.

Exercice 57 : [énoncé]
Soit u une fonction solution.
Posons

U(x) =
∫ x

0
u(t) dt

La fonction U est de classe C1 et vérifie{
U(0) = 0
U ′(x) = λU(x) + f(x)

La résolution de l’équation différentielle linéaire U ′ = λU + f(x) donne par pour
solution générale

U(x) = Ce−λx +
(∫ x

0
f(t)eλt dt

)
e−λx

La condition initiale U(0) = 0 déterminer la constante C

C = 0

On en déduit la fonction u

u(x) = f(x)− λ
∫ x

0
f(t)eλ(t−x) dt

Inversement, une telle fonction est solution car sa primitive s’annulant en 0 vérifie
l’équation U ′ = λU + f(x).

Exercice 58 : [énoncé]
Soit f solution.
En prenant x = 0 dans la relation, on observe que f est nécessairement paire.
En dérivant la relation deux fois par rapport à x on obtient

f ′′(x+ y) + f ′′(x− y) = 2f ′′(x)f(y)

En dérivant la relation deux fois par rapport à y on obtient

f ′′(x+ y) + f ′′(x− y) = 2f(x)f ′′(y)

On en déduit
f ′′(x)f(y) = f(x)f ′′(y)

Pour y = 0, on obtient l’équation f ′′(x) = λf(x) avec λ = f ′′(0).
Si λ > 0 alors f(x) = ch

√
λx.

Si λ = 0 alors f(x) = 1.
Si λ < 0 alors f(x) = cos

√
−λx

Inversement, on vérifie par le calcul qu’une fonction de la forme précédente est
solution du problème posé.

Exercice 59 : [énoncé]
Sur I = ]−∞,−1[ ou ]−1,+∞[ l’espace des solutions de cette équation
différentielle linéaire d’ordre 2 est un plan vectoriel. En recherchant ses solutions
polynomiale on obtient les fonctions y(t) = a(t2 − 1) + b(t+ 1). Les deux fonctions
polynomiales t 7→ t2 − 1 et t 7→ t+ 1 sont solutions et indépendantes, elles
constituent un système fondamental de solution de l’équation sur I. Reste à
recoller celles-ci en −1.
Si y est solution sur R, elle est a fortiori solution sur ]−∞,−1[ et ]−1,+∞[ donc il
existe a1, b1, a2, b2 ∈ R tels que ∀t > −1, y(t) = a1(t2 − 1) + b1(t+ 1) et
∀t < −1, y(t) = a2(t2 − 1) + b2(t+ 1).
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Recherchons parmi les fonctions de la forme précédente celles pouvant être
prolongée en une fonction deux fois dérivable en −1
Limite en −1 : lim

t→−1+
y(t) = 0 et lim

t→−1−
y(t) = 0. On peut prolonger y en −1 en

posant y(−1) = 0.
∀t > −1, y′(t) = 2a1t+ b1 et ∀t > −1, y′(t) = 2a2t+ b2.
Limite en −1 : lim

t→−1+
y′(t) = −2a1 + b1 et lim

t→−1−
y(t) = −2a2 + b2. La fonction y

est dérivable en −1 si, et seulement si, −2a1 + b1 = −2a2 + b2. Si tel est le cas :
∀t > −1, y′′(t) = 2a1 et ∀t < −1, y′′(t) = 2a2.
Limite en −1 : lim

t→−1+
y′′(t) = 2a1 et lim

t→−1−
y′′(t) = 2a2. La fonction y est deux fois

dérivable en −1 si, et seulement si, 2a1 = 2a2.
Au final y peut être prolongée en une fonction deux fois dérivable si, et seulement
si, a1 = a2 et b1 = b2.
La fonction y est alors donnée par y(t) = a1(t2 − 1) + b1(t+ 1) sur R et elle bien
solution de l’équation.
Finalement les solutions sur R de l’équation sont les fonctions

y(t) = a(t2 − 1) + b(t+ 1) avec a, b ∈ R

Exercice 60 : [énoncé]
On remarque

(t+ 1)y′′ − (t+ 2)y′ + y = 0⇔ (t+ 1)(y′ − y)′ − (y′ − y) = 0

Les fonctions y(t) = et et y(t) = t+ 2 sont solutions sur R.
Par suite, sur I = ]−∞,−1[ ou ]−1,+∞[, la solution générale est
y(t) = λet + µ(t+ 2) car on sait que l’espace des solutions est de dimension 2.
Après recollement en −1, la solution générale sur R est y(t) = λet + µ(t+ 2).

Exercice 61 : [énoncé]
a) z : x 7→ y(−x) est deux fois dérivable sur I ′ et vérifie bien l’équation.
b) Soient y une fonction deux fois dérivable définie sur R+? et z définie par
z(t) = y(

√
t) de sorte que y(x) = z(x2). z est deux fois dérivable.

On a y′(x) = 2xz′(x2) et y′′(x) = 2z′(x2) + 4x2z′′(x2).
y est solution sur R+? si, et seulement si,

4z′′ − z = 0

Cela donne
y(x) = λe x2

2 + µe− x2
2

c) Soit y une solution sur R de l’équation proposée.
Puisque y est solution sur R+? et R−? on peut écrire :

∀x > 0, y(x) = λ1e
x2
2 + µ1e−

x2
2 et ∀x < 0, y(x) = λ2e

x2
2 + µ2e−

x2
2

Puisque y est continue en 0
λ1 + µ1 = λ2 + µ2

y′ est continue en 0 ne donne rien de plus

y′′(x) →
x→0+

λ1 − µ1 et y′′(x) →
x→0−

λ2 − µ2

Donc y′′(0) = λ1 − µ1 = λ2 − µ2 d’où λ1 = µ1 et λ2 = µ2.
Finalement

∀x ∈ R, y(x) = λ1e
x2
2 + µ1e−

x2
2

Inversement, une telle fonction est solution sur R.

Exercice 62 : [énoncé]
a) Soit

∑
anx

nune série entière de rayon de convergence R > 0.

Sur ]−R,R[, la fonction x 7→ y(x) =
+∞∑
n=0

anx
n est de classe C∞ avec

y′(x) =
+∞∑
n=0

(n+ 1)an+1x
n et y′′ =

+∞∑
n=1

(n+ 1)nan+1x
n−1

On a alors

4xy′′ + 2y′ − y =
+∞∑
n=0

(2(2n+ 1)(n+ 1)an+1 − an)xn

Par unicité des coefficients d’un développement en série entière, la fonction y est
solution de l’équation (E) si, et seulement si,

∀n ∈ N, an+1 = an
(2n+ 1)(2n+ 2)

Ce qui donne
∀n ∈ N, an = 1

(2n)!a0

Inversement, la série entière donnée par
∑ a0

(2n)!x
n est de rayon de convergence

+∞ et en vertu des calculs qui précèdent, sa somme est solution sur R de
l’équation (E).
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b) Considérons I = R+? ou R−? et posons x = εt2 avec ε = ±1.
Soit y : I → R une fonction deux fois dérivable et z : R+? → R définie par
z(t) = y(εt2).
La fonction z est deux fois dérivable et

z(t) = y(εt2), z′′(t) = 2εty′(εt2) et z′′(t) = 4t2y′′(εt2) + 2εy′(εt2)

de sorte que
z′′(t)− z(t) = 4xy′′(x) + 2y′(x)− y(x)

Ainsi y est solution de (E) sur I si, et seulement si, z est solution sur R+? de
l’équation différentielle linéaire à coefficients constants z′′ − z = 0. La solution
générale de cette dernière est z(t) = λcht+ µsht et la solution générale de (E) sur
I est donc

y(x) = λch
(√
|x|
)

+ µsh
(√
|x|
)

c) Soit y une solution de (E) sur R+? et R−?. On peut écrire

∀x > 0, y(x) = λch
(√
|x|
)

+µsh
(√
|x|
)

et ∀x < 0, y(x) = λ′ch
(√
|x|
)

+µ′sh
(√
|x|
)

Le raccord par continuité exige λ = λ′.
La dérivabilité du raccord exige µ = µ′ = 0.
La fonction ainsi obtenue correspond alors au développement en série entière
initiale qu’on sait être solution sur R.

Exercice 63 : [énoncé]
Soit y : R→ R une fonction deux fois dérivable et z : R→ R définie par z = y′− y.
z est dérivable et z′ = y′′ − y′.
y est solution de E si, et seulement si, z est solution de F : xz′ − z = 1.
F est une équation différentielle linéaire d’ordre 1.
Solution générale de F sur R+? et R−? : z(x) = Cx− 1.
Après recollement, solution générale de F sur R : z(x) = Cx− 1.
Reste à résoudre G : y′ − y = Cx− 1.
Solution homogène : y0(x) = Dex.
Solution particulière y1(x) = −C(x+ 1) + 1.
Solution générale de E : y(x) = −C(x+ 1) +Dex + 1 avec C,D ∈ R.

Exercice 64 : [énoncé]
Soit y : R→ R une fonction deux fois dérivable. Posons z = y′, z est dérivable.
y est solution de l’équation différentielle si, et seulement si, z solution de

(1 + x2)z′ + 2xz = 0

On obtient
z(x) = C

1 + x2

puis
y(x) = C arctan x+D

Exercice 65 : [énoncé]
Soit y : R→ R une fonction deux fois dérivable et z : R→ R définie par
z(x) = (1 + ex)y(x).
z est deux fois dérivable et z′(x) = (1 + ex)y′(x) + exy(x),
z′′(x) = (1 + ex)y′′(x) + 2exy′(x) + exy(x)
y est solution de E si, et seulement si, z est solution de F : z′′ + z = xex.
F est une équation différentielle linéaire d’ordre 2 à coefficients constants de
solution homogène z0(x) = λ cosx+ µ sin x et de solution particulière :
z1(x) = x−1

2 ex.
Solution générale de F : z(x) = λ cosx+ µ sin x+ x−1

2 ex.
La solution générale de E est donc : y(x) = λ cos x+µ sin x+ x−1

2 ex

1+ex .

Exercice 66 : [énoncé]
Soit y : R→ R deux fois dérivable et z : R→ R définie par

z(x) = y(x)
1 + ex

La fonction z est deux fois dérivable.
On a y(x) = (1 + ex)z(x), y′(x) = (1 + ex)z′(x) + exz(x),
y′′(x) = (1 + ex)z′′(x) + 2exz′(x) + exz(x).
y est solution de l’équation étudiée si, et seulement si, z′′ − z = 0.
On obtient pour solution générale de l’équation z′′ − z = 0

z(x) = C1ex + C2e−x

et on en déduit la solution générale de l’équation étudiée

y(x) = (C1ex + C2e−x)(1 + ex)

Exercice 67 : [énoncé]
Soit y : R→ R une fonction deux fois dérivable. Posons z : x 7→ ex2

y(x), z est
deux fois dérivable.
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y est solution de l’équation différentielle si, et seulement si, z solution de
z′′ + z = 0.
On obtient

z(x) = C1 cosx+ C2 sin x

et on en déduit
y(x) = (C1 cosx+ C2 sin x)e−x

2

Exercice 68 : [énoncé]
Soit y : R+? → R une fonction deux fois dérivable.
Posons z : R+? → R définie par z(x) = x2y(x). z est deux fois dérivable.
z′(x) = x2y′(x) + 2xy(x), z′′(x) = x2y′′(x) + 4xy′(x) + 2y(x).
On observe x2y′′ + 4xy′ − (x2 − 2)y = 0⇔ z′′ − z = 0
La solution générale de l’équation z′′ = z est z(x) = λex + µe−x.
La solution générale de l’équation initiale est donc y(x) = λex+µe−x

x2 .

Exercice 69 : [énoncé]
Soit y : ]0,+∞[→ R une fonction deux fois dérivable et z : ]0,+∞[→ R donnée
par

z(x) = x−αy(x)

La fonction z est deux fois dérivable et

y′(x) = xαz′(x) + αxα−1z(x), y′′(x) = xαz′′(x) + 2αxα−1z′(x) + α(α− 1)xα−2z(x)

donc

xy′′(x)+2y′(x)−xy(x) = xα+1z′′(x)+2(α+1)xαz′(x)+
(
α(α+ 1)xα−1 − xα+1) z(x)

Pour α = −1, on obtient

xy′′(x) + 2y′(x)− xy(x) = z′′(x)− z(x)

et donc y est solution de l’équation étudiée si, et seulement si,

z(x) = λchx+ µshx

ce qui donne la solution générale

y(x) = λchx+ µshx
x

Exercice 70 : [énoncé]
Soit y une fonction deux fois dérivable sur R.
Posons z la fonction définie par z = y + y′.
y est solution de l’équation différentielle proposée si, et seulement si, z est solution
de (1 + ex)z′ − exz = 0 i.e. z(x) = C(ex + 1). On en déduit
y(x) = αe−x + β(ex + 2).

Exercice 71 : [énoncé]
Soit y une fonction deux fois dérivable définie sur ]0,+∞[ et z la fonction définie
par z(x) = xy′(x) + y(x). z est dérivable. y est solution de l’équation différentielle
proposée si, et seulement si, z est solution de

x.z′ − 2z = − 3
x

Après résolution de cette équation différentielle :

z(x) = Cx2 + 1
x

avec C ∈ R

Par suite
xy′(x) + y(x) = Cx2 + 1/x

Après résolution de cette équation différentielle

y(x) = C ′

x
+ 1

3Cx
2 + ln x

x
avec C,C ′ ∈ R

Inversement les fonctions proposées sont bien solutions.

Exercice 72 : [énoncé]
a) L’équation homogène associée est

(t2 + 1)y′′ − 2y = 0

La fonction ϕ(t) = t2 + 1 en est solution sur R.
b) Procédons au changement de fonction inconnue y(t) = ϕ(t)z(t).
On obtient

(t2 + 1)z′′(t) + 4tz′(t) = 0

qui donne
z′(t) = λ

(t2 + 1)2
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Sachant ∫
dt

(t2 + 1)2 = 1
2 arctan t+ 1

2
t

t2 + 1
on obtient

z(t) = λ

2

(
arctan t+ t

t2 + 1

)
+ µ

ce qui donne la solution homogène

y(t) = λ

2
(
(t2 + 1) arctan t+ t

)
+ µ(t2 + 1) + t

4(t2 + 1)

avec λ, µ ∈ R.
c) y(t) = −t/2 est solution particulière donc la solution générale est

y(t) = λ(t2 + 1) + µ((t2 + 1) arctan t+ t)− 1
2 t

avec λ, µ ∈ R.

Exercice 73 : [énoncé]
a) Si y est un polynôme unitaire de degré n solution de l’équation homogène, le
coefficient de tn+2 dans le premier membre de l’équation est

n(n− 1)− 2n+ 2 = n2 − 3n+ 2 = (n− 2)(n− 1)

et donc nécessairement n 6 2.
Pour ϕ(t) = at2 + bt+ c, le premier membre de l’équation devient :

2a(1+ t2)2−2t(2at+b)(1+ t2)+2(t2−1)(at2 +bt+c) = (2c−2a)t2−4bt+(2a−2c)

d’où a = c et b = 0
Finalement ϕ(t) = t2 + 1 est solution particulière.
b) Par le changement de fonction inconnue y(t) = ϕ(t)z(t), on parvient à
l’équation

(1 + t2)3z′′(t) + 2t(1 + t2)2z′(t) = (1 + t2)
Après résolution de cette équation d’ordre 1 en l’inconnue z′, on obtient

z′(t) = λ+ arctan t
(1 + t2)

puis
z(t) = µ+ λ arctan t+ 1

2 (arctan t)2

Finalement la solution générale de l’équation étudiée est

y(t) = λ(1 + t2) arctan t+ µ(1 + t2) + 1
2(1 + t2) (arctan t)2

Exercice 74 : [énoncé]
a) ϕ(t) = t est évidemment solution particulière.
b) On pose le y(t) = tz(t) et on parvient à l’équation

t4z′′ + t2(2t+ 1)z′ = 0

On résout cette équation en la fonction inconnue z′ puis on intègre pour obtenir

z(t) = λe1/t + µ

Finalement la solution générale est

y(t) = λte1/t + µt

Exercice 75 : [énoncé]
a) ϕ(t) = t est solution remarquable.
b) En posant y(t) = tz(t) et on parvient à l’équation

t3z′′ + 3t2z′ = 1

On résout cette équation en la fonction inconnue z′

z′(t) = λ

t3
+ 1
t2

avec λ ∈ R

et l’on obtient
z(t) = λ′

t2
+ µ− 1

t
avec λ′, µ ∈ R

Finalement, la solution générale est

y(t) = λ

t
+ µt− 1 avec λ, µ ∈ R

Exercice 76 : [énoncé]
a) Soit y la somme de la série entière

∑
anx

n de rayon de convergence R supposé
> 0.

x(1− x)y′′ + (1− 3x)y′ − y =
+∞∑
n=0

(n+ 1)2(an+1 − an)xn

On en déduit y(x) = 1
1−x solution de l’équation étudiée.

b) On pose y(x) = z(x)
1−x avec z deux fois dérivable et l’on obtient

xz′′ + z′ = 0
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On résout cette équation en la fonction inconnue z′

z′(x) = λ

x

puis on intègre
z(x) = λ ln x+ µ avec λ, µ ∈ R

Finalement, la solution générale sur ]0, 1[ est

y(x) = λ ln(x) + µ

1− x

Exercice 77 : [énoncé]
a) Soit

∑
anx

n une série entière de rayon de convergence R > 0 et de somme y1
sur ]−R,R[.
Pour tout x ∈ ]−R,R[, on a

xy′′(x)+3y′(x)−4x3y(x) = 3a1+8a2x+21a3x
2+

+∞∑
n=3

((n+ 1)(n+ 3)an+1 − 4an−3)xn

Par unicité des coefficients d’un développement en série entière, on peut affirmer
que y est solution de E sur ]−R,R[ si, et seulement si,

a1 = a2 = a3 = 0

∀n > 3, an+1 = 4
(n+ 1)(n+ 3)an−3

Posons a0 = 1 et pour tout p ∈ N?, a4p = 1
2p(2p+1)a4(p−1), les autres an nuls.

Ainsi
a4p = 1

(2p+ 1)! , a4p+1 = a4p+2 = a4p+3 = 0

La série entière correspondante est de rayon de convergence R = +∞ et sa somme

ϕ : x 7→
+∞∑
n=0

x4p

(2p+ 1)!

est solution sur R de l’équation différentielle E en vertu des calculs qui précèdent.
Pour x 6= 0,

ϕ(x) = 1
x2

+∞∑
n=0

(x2)2p+1

(2p+ 1)! = sh(x2)
x2

b) On pose y(x) = ϕ(x)z(x) et l’équation (E) devient

z′′(x) =
(

1
x
− 4xch(x2)

sh(x2)

)
z′(x)

Après résolution en la fonction inconnue z′ on obtient

z′(x) = λx

sh2(x2)

puis

z(x) = −λ2
ch(x2)
sh(x2) + µ avec λ, µ ∈ R

La solution générale de l’équation est alors

y(x) = λsh(x2) + µch(x2)
x2 avec λ, µ ∈ R

Exercice 78 : [énoncé]
a) Soit

∑
anx

n une série entière de rayon de convergence R > 0 et de somme y
sur ]−R,R[
Pour tout x ∈ ]−R,R[, on a

x2(1− x)y′′ − x(1 + x)y′ + y = a0 +
+∞∑
n=1

n2(an+1 − an)xn

La fonction y est donc solution de l’équation différentielle étudiée si, et seulement
si,

a0 = 0 et ∀n ∈ N?, an+1 = an

Inversement, en considérant la fonction ϕ : x 7→ x
1−x , on obtient une fonction

développable en série entière avec un rayon de convergence R = 1 et les calculs qui
précèdent assure que y est solution sur ]−1, 1[ de l’équation étudiée.
b) On pose

y(x) = xz(x)
1− x

Après calculs, la fonction y est solution de l’équation étudiée si, et seulement si,

xz′′(x) + z′(x) = 0

Après résolution de cette équation en l’inconnue z′, on obtient

z′(x) = λ

x
avec λ ∈ R
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puis en intégrant
z(x) = λ ln x+ µ avec λ, µ ∈ R

Finalement, la solution générale de l’équation étudiée est

y(x) = (λ ln x+ µ)x
1− x

Exercice 79 : [énoncé]
Soit y : R+? → R une fonction deux fois dérivable.
Posons z : R→ R définie par z(t) = y(et). z est deux fois dérivable.
y(x) = z(ln x), y′(x) = 1

xz
′(ln x) et y′′(x) = 1

x2 z
′′(ln x)− 1

x2 z
′(ln x).

Par suite x2y′′ + xy′ + y = 0⇔ z′′ + z = 0.
Solution générale : y(x) = λ cos(ln x) + µ sin(ln x).

Exercice 80 : [énoncé]
a) Les solutions sur R+? sont :

y(x) = C1

x
+ C2x+ x2

3

b) Les solutions sur R+? sont :

y(x) = C1

x
+ C2x

2 − x

2

Exercice 81 : [énoncé]
x = cos t, t = arccosx, x ∈ ]−1, 1[ ,t ∈ ]0, π[.
Soit y une fonction deux fois dérivable définie sur ]−1, 1[.
Posons z la fonction définie sur ]0, π[ par z(t) = y(x) = y(cos t).
z est deux fois dérivable.
Après calculs :
y est solution de l’équation différentielle proposée si, et seulement si, z est solution
de l’équation différentielle z′′ + 4z = t i.e.

z(t) = λ cos 2t+ µ sin 2t+ 1
4 t avec λ, µ ∈ R

On en déduit

y(x) = λ(2x2 − 1) + 2µx
√

1− x2 + 1
4 arccosx avec λ, µ ∈ R

Exercice 82 : [énoncé]
Soit y une fonction deux fois dérivable définie sur R.
Posons z la fonction définie sur ]−π/2, π/2[ par z(t) = y(x) = y(tan t).
z est deux fois dérivable.
Après calculs :
y est solution de l’équation différentielle proposée si, et seulement si, z est solution
de l’équation z′′ − 2z′ + z = 0 i.e. z(t) = (λt+ µ)et avec λ, µ ∈ R.
On en déduit y(x) = (λ arctan x+ µ)earctan x avec λ, µ ∈ R.

Exercice 83 : [énoncé]
Soit y une fonction deux fois dérivable sur R et z : I = ]−π/2, π/2[→ R définie
par z(t) = y(tan t).
z est deux fois dérivable et

∀x ∈ R, y(x) = z(arctan x)

y′(x) = z′(arctan x)
1 + x2 et y′′(x) = − 2x

(1 + x2)2 z
′(arctan x) + 1

(1 + x2)2 z
′′(arctan x)

y est solution si, et seulement si, z est solution sur I de l’équation z′′ + z = 0.
On obtient

z(t) = λ cos t+ µ sin t

et
y(x) = λ+ µx√

1 + x2

Exercice 84 : [énoncé]
Soient y une fonction deux fois dérivable sur R et z : I = ]−π/2, π/2[→ R définie
par z(x) = y(tan x).
z est deux fois dérivable et ∀t ∈ R, y(t) = z(arctan t).
y′(t) = z′(arctan t)

1+t2 et y′′(t) = − 2t
(1+t2)2 z

′(arctan t) + 1
(1+t2)2 z

′′(arctan t).
y est solution si, et seulement si,

z′′(arctan t) + z(arctan t) = t

soit z′′(x) + z(x) = tan x sur I.
z′′ + z = 0 donc z = λ cosx+ µ sin x.
Méthode de la variation des constantes : λ′(x) = − sin2 x

cos x et µ′(x) = sin x.∫
− sin2 x

cosx dx =
u=sin x

∫
u2

u2 − 1 du = u+ 1
2 ln

∣∣∣∣u− 1
u+ 1

∣∣∣∣+ C = sin x+ 1
2 ln 1− sin x

1 + sin x + C
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Prenons λ(x) = sin x+ 1
2 ln 1−sin x

1+sin x et µ(x) = − cosx.
On obtient : z(x) = 1

2 ln 1−sin x
1+sin x cosx solution particulière.

Finalement
y(t) = λ+ µt√

1 + t2
+ 1

2
√

1 + t2
ln
√

1 + t2 − t√
1 + t2 + t

Exercice 85 : [énoncé]
Soient x : R→ R une fonction deux fois dérivable et ϕ : R→ R un C2

difféomorphisme.
Posons y : R→ R définie de sorte que y(u) = x(t) i.e. y(u) = x(ϕ−1(u)).
La fonction y est deux fois dérivable et pour tout t ∈ R, x(t) = y(ϕ(t)).
On a alors x′(t) = ϕ′(t)y′(ϕ(t)) et x′′(t) = (ϕ′(t))2

y′′(ϕ(t)) + ϕ′′(t)y′(ϕ(t)).
Par suite

(1+t2)x′′(t)+tx′(t)+a2x(t) = (1+t2)ϕ′(t)2y′′(ϕ(t))+
(
(1 + t2)ϕ′′(t) + tϕ′(t)

)
y′(ϕ(t))+a2y(ϕ(t))

Pour ϕ(t) = argsht, ϕ′(t) = 1√
1+t2 et (1 + t2)ϕ′′(t) + tϕ′(t) = 0 de sorte que

(1 + t2)x′′(t) + tx′(t) + a2x(t) = 0⇔ y′′(ϕ(t)) + a2y(ϕ(t)) = 0

Cela nous amène à résoudre l’équation

y′′(u) + a2y(u) = 0

Si a 6= 0, la solution générale de y′′(u) + a2y(u) = 0 est
y(u) = λ cos(au) +µ sin(au) et la solution générale de (1 + t2)x′′+ tx′+a2x = 0 est

x(t) = λ cos(aargsht) + µ sin(aargsht) avec λ, µ ∈ R

Si a = 0, on parvient à

x(t) = λ+ µargsht avec λ, µ ∈ R

Exercice 86 : [énoncé]
P = (x+ 1)X − 1 convient.

(E)⇔ (x+ 1)z′ − z = (3x+ 2)e3x

Après résolution avec recollement la solution générale de cette dernière équation
est z(x) = λ(x+ 1) + e3x.

(E)⇔ y′ − 3y = λ(x+ 1) + e3x

La solution générale est

y(x) = λ′(3x+ 4) + µe3x + xe3x

Exercice 87 : [énoncé]
ϕ : t 7→ exp(ta) ◦ exp(tb)x0 est dérivable et vérifie ϕ′(t) = (a+ b)ϕ(t). En effet

(exp(ta) ◦ exp(tb))′ = a ◦ exp(ta) ◦ exp(tb) + exp(ta) ◦ b ◦ exp(tb)

or b ◦ exp(ta) = exp(ta) ◦ b car a et b commutent donc

(exp(ta) ◦ exp(tb))′ = (a+ b) ◦ exp(ta) ◦ exp(tb)

De plus ϕ(0) = x0 donc ϕ(t) = exp(t(a+ b))x0. Puisque ceci vaut pour tout x0 :

exp(t(a+ b)) = exp(ta) ◦ exp(tb)

et pour t = 1 la relation demandée.

Exercice 88 : [énoncé]
Soit Y une solution du système différentiel Y ′ = AY .
La norme de Y s’obtient en calculant tY Y .
On a

(tY Y )′ = tY ′Y + tY Y ′ = tY (tA+A)Y

Ainsi si A est antisymétrique, (tY Y )′ = 0 et donc Y est de norme constante.
Inversement, si chaque solution du système différentiel est de norme constante
alors pour tout Y0 ∈ Rn,

tY0(tA+A)Y0 = 0

Par suite 0 est la seule valeur propre de l’endomorphisme symétrique tA+A et,
puisque celui-ci est diagonalisable, on obtient

tA+A = 0

La matrice A est donc antisymétrique.

Exercice 89 : [énoncé]
L’équation étudiée est une équation différentielle linéaire d’ordre 1 à coefficient
constant. Sa solution générale peut être exprimée par une exponentielle

X(t) = exp(tA)X(0)

avec

exp(tA) =
+∞∑
k=0

tk

k!A
k
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Or A2 = −I2n donc, en séparant les termes d’indices pairs de ceux d’indices
impairs de cette série absolument convergente

exp(tA) =
+∞∑
p=0

(−1)p

(2p)! t
2pI2n +

+∞∑
p=0

(−1)p

(2p+ 1)! t
2p+1A = cos(t)I2n + sin(t)A

Ainsi la solution générale de l’équation étudiée est

X(t) = cos(t)X(0) + sin(t)AX(0)

Exercice 90 : [énoncé]
a) La matrice complexe A est assurément trigonalisable et on peut donc écrire
A = PTP−1 avec

P ∈ GLn(C) et T =

 λ1 ?
. . .

(0) λn

 où λk ∈ SpA

On a alors

P−1(eA − In)P = eT − In =

 eλ1 − 1 ?
. . .

(0) eλn − 1


avec

∀1 6 k 6 n, eλk − 1 6= 0 car λk /∈ 2iπZ

On peut donc conclure eA − In ∈ GLn(C).
b) La solution générale de l’équation (E) est de la forme

X(t) = etAX0 + X̃(t)

avec X̃ solution particulière et X0 ∈Mn,1(C) colonne quelconque.
Analyse :
Soit X une solution 1-périodique. On a X(1) = X(0) et donc après résolution

X0 = (eA − In)−1(X̃(0)− X̃(1))

ce qui détermine entièrement la solution X.
Synthèse :
Considérons la fonction définie comme au terme de l’analyse ci-dessus. Elle est
solution de l’équation (E) et vérifie X(1) = X(0).
Considérons alors la fonction donnée par Y (t) = X(t+ 1).

On vérifie que Y est encore solution de (E) (car la fonction B est périodique) et
puisque Y (0) = X(1) = X(0), les fonctions X et Y sont égales car solutions d’un
même problème de Cauchy.
Finalement, la fonction X est périodique.

Exercice 91 : [énoncé]
a) Supposons

λ0In + λ1N + · · ·+ λp−1N
p−1 = On

En multipliant par Np−1 on obtient λ0N
p−1 = On car Np = On. Or Np−1 6= On

donc λ0 = 0.
On montre de même successivement que λ1 = 0,. . . , λp−1 = 0.
On conclut que la famille (In, N,N2, . . . , Np−1) est libre.
Puisque λIn et N commutent, on a

et(λIn+N) = etλInetN = eλt
(
In + t

1!N + t2

2!N
2 + · · ·+ tp−1

(p− 1)!N
p−1
)

b) Le polynôme caractéristique de A est scindé dans C [X] et possède une unique
racine λ, on a donc

χA(X) = (X − λ)n

En vertu du théorème de Cayley Hamilton

Nn = (A− λIn)n = On

La matrice N s’avère donc nilpotente.
Les solutions du système différentiel X ′ = AX sont les fonctions

t 7→ X(t) = etAX(0) = eλt.etNX(0)

Si N est nulle et λ ∈ iR, il est clair que toutes les solutions sont bornées.
Inversement, supposons les solutions toutes bornées. En choisissant
X(0) ∈ kerN\ {On}, la solution

t 7→ etAX(0) = eλtX(0)

est bornée sur R et nécessairement λ ∈ iR.
Notons p l’indice de nilpotence de N et choisissons X(0) /∈ kerNp−1. La solution

t 7→ eλt.etNX(0)

devant être bornée avec
∣∣eλt∣∣ = 1, la fonction

t 7→ X(0) + tNX(0) + · · ·+ tp−1

(p− 1)N
p−1X(0)
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est elle aussi bornée. Or Np−1X(0) 6= 0 et donc cette solution ne peut pas être
bornée si p− 1 > 0.
On en déduit p = 1 puis N = On.
c) Les polynômes (X − λk)nk sont deux à deux premiers entre eux. Par le
théorème de Cayley Hamilton et le lemme de décomposition des noyaux, on
obtient

Cn =
m
⊕
k=1

ker(f − λkIdCn)nk

Une base adaptée à cette décomposition fournit une représentation matricielle ∆
de f diagonale par blocs. Plus précisément, les blocs diagonaux sont de la forme

λkIdnk
+Nk avec Nnk

k = Onk

d) La matrice A est semblable à ∆ et on peut donc écrire

A = P∆P−1 avec P inversible

Les solutions de l’équation X ′ = AX correspondent aux solutions de l’équation
Y ′ = ∆Y via Y = P−1X.
Les solutions de X ′ = AX seront bornées si, et seulement si, celles de Y ′ = ∆Y le
sont. En raisonnant par blocs et en exploitant le résultat du b), on peut affirmer
que les solutions de X ′ = AX sont bornées sur R si, et seulement si, les λk sont
imaginaires purs et les Nk tous nuls (ce qui revient à dire que A est
diagonalisable).
e) Supposons A antisymétrique réelle. Puisque A et tA commutent

t(etA)etA = et
tA+tA = eOn = In

Soit X : t 7→ etA.X(0) une solution de l’équation X ′ = AX. On a

‖X(t)‖2 = tX(t)X(t) = tX(0)t(etA)etAX(0) = ‖X(0)‖2

Les solutions sont toutes bornées et donc A est diagonalisable à valeurs propres
imaginaires pures.

Exercice 92 : [énoncé]
Soit (x, y) solution sur R.
On pose z = x+ iy, on a z′(t) = e−itz(t) donc z(t) = Ceie−it = Cei cos t+sin t avec
C ∈ C.
En écrivant C = A+ iB avec A,B ∈ R on peut conclure

x(t) = esin(t)(A cos(cos(t))−B sin(cos(t))

et
y(t) = esin(t)(B cos(cos(t)) +A sin(cos(t))

Vérification : il suffit de remonter les calculs.

Exercice 93 : [énoncé]
C’est un système différentiel linéaire d’ordre 1 homogène défini sur R d’équation
matricielle X ′ = A(t)X avec

A(t) =
(

2− t t− 1
2(1− t) 2t− 1

)
et X(t) =

(
x1(t)
x2(t)

)

χA(t) = X2 − (t+ 1)X + t.
Sp(A(t)) = {1, t}.
Si t 6= 1,

E1(A(t)) = Vect
(

1
1

)
et Et(A(t)) = Vect

(
1
2

)

Pour P =
(

1 1
1 2

)
indépendant de t, A(t) = PD(t)P−1 avec D(t) =

(
1 0
0 t

)
et cette relation est aussi vraie pour t = 1.
En posant Y = P−1X,

X ′ = A(t)X ⇔ Y ′ = D(t)Y

En écrivant

Y (t) =
(
y1(t)
y2(t)

)
on a

Y ′ = D(t)Y ⇔
{
y′1 = y1

y′2 = ty2
⇔

{
y1(t) = λet

y2(t) = µet
2/2 avec λ, µ ∈ R

Puisque

X = PY =
(

1 1
1 2

)(
y1

y2

)
on obtient

X ′ = A(t)X ⇔ X(t) = λ

(
et

et

)
+ µ

(
et

2/2

2et
2/2

)
avec λ, µ ∈ R

Exercice 94 : [énoncé]
C’est un système différentiel linéaire d’ordre 1 homogène défini sur R d’équation
matricielle X ′ = A(t)X avec

A(t) =
(
t+ 3 2
−4 t− 3

)
et X(t) =

(
x1(t)
x2(t)

)
.
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χA(t) = X2 − 2tX + (t2 − 1), Sp(A) = {t+ 1, t− 1}.

Et+1(A) = Vect
(

1
−1

)
et Et−1(A) = Vect

(
1
−2

)
.

Pour P =
(

1 1
−1 −2

)
indépendante de t, A(t) = PD(t)P−1 avec

D(t) =
(
t+ 1 0

0 t− 1

)
.

En posant Y = P−1X, X ′ = A(t)X ⇔ Y ′ = D(t)Y .

En écrivant Y (t) =
(
y1(t)
y2(t)

)
,

Y ′ = D(t)Y ⇔
{
y′1 = (t+ 1)y1

y′2 = (t− 1)y2
⇔

{
y1 = λe(t2+2t)/2

y2 = µe(t2−2t)/2
avec λ, µ ∈ R.

X = PY =
(

1 1
−1 −2

)(
y1

y2

)
,

X ′ = A(t)X ⇔ X(t) = λ

(
e(t2+2t)/2

−e(t2+2t)/2

)
+ µ

(
e(t2−2t)/2

−2e(t2−2t)/2

)
avec λ, µ ∈ R.

Exercice 95 : [énoncé]
C’est un système différentiel linéaire d’ordre 1 défini sur R d’équation matricielle
X ′ = A(t)X +B(t) avec

A(t) =
(

1 + t t
−t 1− t

)
et B(t) =

(
−et

et

)
Commençons par résoudre l’équation homogène X ′ = A(t)X.
χA(t) = (X − 1)2.

E1(A(t)) = Vect
(

1
−1

)
.

Pour P =
(

1 0
−1 1

)
indépendante de t, A(t) = PT (t)P−1 avec

T (t) =
(

1 t
0 1

)
.

En posant Y = P−1X,
X ′ = A(t)X ⇔ Y ′ = T (t)Y

En écrivant Y =
(
y1

y2

)
, Y ′ = T (t)Y ⇔

{
y′1 = y1 + ty2

y′2 = y2
⇔

 y1 = µet + λ

2 t
2et

y2 = λet

avec λ, µ ∈ K.
Puisque

X = PY =
(

1 0
−1 1

)(
y1

y2

)
on obtient

X ′ = A(t)X ⇔ X(t) = λ

(
(t2/2)et

(1− t2/2)et

)
+ µ

(
et

−et

)

La famille (X1, X2) forme un système fondamental de solutions de l’équation
homogène.
Cherchons une solution particulière.
X(t) = λ(t)X1(t) + µ(t)X2(t) avec λ et µ fonctions dérivables.

X ′ = A(t)X +B(t)⇔ λ′(t)
(

(t2/2)et

(1− t2/2)et

)
+ µ′(t)

(
et

−et

)
=
(
−et

et

)

λ(t) = 0 et µ(t) = −t conviennent

X(t) =
(
−tet

tet

)
est solution particulière.

Solution générale :

X(t) = λ

(
(t2/2)et

(1− t2/2)et

)
+ µ

(
et

−et

)
+
(
−tet

tet

)

Exercice 96 : [énoncé]
C’est un système différentiel linéaire d’ordre 1 homogène d’équation matricielle
X ′ = AX avec

A =
(

4 −2
1 1

)
et X(t) =

(
x(t)
y(t)

)
Sp(A) = {2, 3} et

E2(A) = Vect
(

1
1

)
, E3(A) = Vect

(
2
1

)

On a A = PDP−1 avec

P =
(

1 2
1 1

)
et D =

(
2 0
0 3

)
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Pour Y = P−1X,
X ′ = AX ⇔ Y ′ = DY

et

Y ′ = DY ⇔ Y =
(
λe2t

µe3t

)
avec λ, µ ∈ K

Finalement

X ′ = AX ⇔ X(t) = λ

(
e2t

e2t

)
+ µ

(
2e3t

e3t

)
avec λ, µ ∈ K

Exercice 97 : [énoncé]
C’est un système différentiel de taille 2 linéaire à coefficients constant d’équation
matricielle X ′ = AX +B(t) avec

X =
(
x1

x2

)
, A =

(
−1 3
−2 4

)
et B(t) =

(
et

0

)

Equation homogène : X ′ = AX.

χA = (X − 1)(X − 2), Sp(A) = {1, 2}, E1(A) = Vect
(

3
2

)
et E2(A) = Vect

(
1
1

)
.

On a
A = PDP−1 avec P =

(
3 1
2 1

)
et D =

(
1 0
0 2

)
et donc

X ′ = AX ⇔ X ′ = PDP−1X ⇔ P−1X ′ = DP−1X

Posons Y = P−1X. On a Y ′ = P−1X ′ et donc X ′ = AX ⇔ Y ′ = DY .

Posons Y =
(
y1

y2

)
.

Y ′ = DY ⇔

{
y′1 = y1

y′2 = 2y2
⇔

{
y1(t) = λ1et

y2(t) = λ2e2t avec λ1, λ2 ∈ K

X = PY =
(

3 1
2 1

)(
y1

y2

)
donc

X ′ = AX ⇔ X(t) =
(

3λ1et + λ2e2t

2λ1et + λ2e2t

)
= λ1

(
3et

2et

)
+ λ2

(
e2t

e2t

)

X1(t) =
(

3et

2et

)
et X2(t) =

(
e2t

e2t

)
définissent un système fondamental de

solutions.
Solution particulière :
X(t) = λ1(t)X1(t) + λ2(t)X2(t) avec λ1, λ2 fonctions dérivables.

X ′ = AX +B(t)⇔ λ′1(t)X1(t) + λ′2(t)X2(t) = B(t)

donc

X ′ = AX +B(t)⇔
{

3λ′1(t)et + λ′2(t)e2t = et

2λ′1(t)et + λ′2(t)e2t = 0
⇔

{
λ′1(t) = 1
λ′2(t) = −2e−t

λ1(t) = t et λ2(t) = 2e−t conviennent

X(t) =
(

(3t+ 2)et

(2t+ 2)et

)
est solution particulière.

Solution générale :

X(t) = λ1

(
3et

2et

)
+ λ2

(
e2t

e2t

)
+
(

(3t+ 2)et

(2t+ 2)et

)
avec λ1, λ2 ∈ R

i.e. {
x1(t) = 3λ1et + λ2e2t + (3t+ 2)et

x2(t) = 2λ1et + λ2e2t + (2t+ 2)et
avec λ1, λ2 ∈ R

Exercice 98 : [énoncé]
C’est un système différentiel linéaire d’ordre 1 d’équation matricielle
X ′ = AX +B(t) avec

A =
(

1 8
2 1

)
, B(t) =

(
et

e−3t

)
et X(t) =

(
x(t)
y(t)

)

Sp(A) = {5,−3}, E5(A) = Vect
(

2
1

)
et E−3(A) = Vect

(
−2
1

)
.

A = PDP−1 avec

P =
(

2 −2
1 1

)
, P−1 = 1

4

(
1 2
−1 2

)
et D =

(
5 0
0 −3

)
Pour Y = P−1X est solution de Y ′ = DY + C(t) avec

C(t) = P−1B(t) = 1
4

(
et + 2e−3t

−et + 2e−3t

)
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Après résolution, on obtient

Y ′ = DY + C(t)⇔ Y (t) =

λe5t − 1
16et − 1

16e−3t

µe−3t − 1
16et + 1

2 te
−3t


puis

X ′ = AX+B(t)⇔ X(t) = λ

(
2e5t

e5t

)
+µ
(
−2e−3t

e−3t

)
+

−te−3t − 1
8e−3t

−1
8et + 1

2 te
−3t − 1

16e−3t


On peut aussi procéder par variation des constantes après résolution séparée de
l’équation homogène.

Exercice 99 : [énoncé]
C’est un système différentiel linéaire d’ordre 1 homogène d’équation matricielle
X ′ = AX avec

A =

 0 1 1
1 0 0
1 1 1

 et X(t) =

x(t)
y(t)
z(t)


Sp(A) = {−1, 2, 0},

E−1(A) = Vect

−1
1
0

 , E2(A) = Vect

 2
1
3

 , E0(A) = Vect

 0
1
−1


On a A = PDP−1 avec

P =

 −1 2 0
1 1 1
0 3 −1

 et D =

 −1 0 0
0 2 0
0 0 0


En posant Y = P−1X, on obtient

X ′ = AX ⇔ Y ′ = DY

or

Y ′ = DY ⇔ Y (t) =

λe−t

µe2t

ν

 avec λ, µ, ν ∈ K

donc

X ′ = AX ⇔ X(t) = λ

−e−t

e−t

0

+ µ

 2e2t

e2t

3e2t

+ ν

 0
1
−1

 avec λ, µ, ν ∈ K

Exercice 100 : [énoncé]
C’est un système différentiel linéaire d’ordre 1 homogène d’équation matricielle
X ′ = AX avec

A =

 2 −1 2
10 −5 7
4 −2 2

 et X(t) =

x(t)
y(t)
z(t)


χA(X) = −X2(X + 1).
Après triangularisation, on a A = PTP−1 pour

P =

 −1 1 0
1 2 1
2 0 1

 et T =

 −1 0 0
0 0 1
0 0 0


Pour Y = P−1X, X ′ = AX ⇔ Y ′ = TY .

Y ′ = TY ⇔ Y =

 λe−t

µt+ ν

µ

 avec λ, µ, ν ∈ K

La solution générale du système est donc

X(t) = λ

−e−t

e−t

2e−t

+ µ

 t

2t+ 1
1

+ ν

 1
2
0

 avec λ, µ, ν ∈ K

Exercice 101 : [énoncé]

A =

 1 0 −1
1 1 1
−1 −1 1

, χA = −(X − 2)(X2 −X + 1).

La résolution complexe est alors facile puisque la matrice A est diagonalisable.
La résolution réelle est en revanche plus délicate à obtenir, détaillons-la :
X1 = t(1, 0,−1) est vecteur propre de A, complétons-le avec deux vecteurs d’un
plan stable.
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Les plans stables s’obtiennent en étudiant les éléments propres de tA.
Sp(tA) = SpA = {2} et E2(tA) = Vectt(2, 1,−1). Ainsi le plan d’équation
2x+ y − z = 0 est stable par tA.
Prenons X2 = t(0, 1, 1) et X3 = AX2 = t(−1, 2, 0). On vérifie AX3 = X3 −X2.

Ainsi pour P =

 1 0 −1
0 1 2
−1 1 0

, on a P−1AP =

 2 0 0
0 0 −1
0 1 1

 = B.

Pour X = t(x, y, z) et Y = t(y1, y2, y3) = P−1X, on a X ′ = AX ⇔ Y ′ = BY .
Ceci nous conduit à la résolution suivante :
y′1 = 2y1

y′2 = −y3

y′3 = y2 + y3

⇔


y′1 = 2y1

y′2 = −y3

y′′2 − y′2 + y2 = 0
⇔


y1(t) = αe2t

y2(t) = e 1
2 t(λ cos

√
3

2 t+ µ sin
√

3
2 t)

y3(t) = −y′2(t)
Et on peut conclure via X = PY .

Exercice 102 : [énoncé]
a) (S) est un système différentiel linéaire homogène de taille 3, l’ensemble de ses
solutions est un espace vectoriel de dimension 3.
b) Posons m(t) = x(t) + y(t) + z(t). On constate m′(t) = 0 et donc le point M
évolue sur un plan d’équation x+ y + z = a. Posons d(t) = x2(t) + y2(t) + z2(t).
On constate d′(t) = 0 et donc le point M évolue sur une sphère d’équation
x2 + y2 + z2 = R2.
c) Le système s’écrit X ′ = AX avec

A =

 0 −1 1
1 0 −1
−1 1 0


On vérifie A3 = −3A et on en déduit A2n+1 = (−3)nA et A2n+2 = (−3)A2 puis

exp(t.A) = In +
+∞∑
n=0

(−3)nt2n+1

(2n+ 1)! A+
+∞∑
n=1

(−3)nt2n+2

(2n+ 2)! A2

Ainsi
exp(t.A) = In + 1√

3
sin(
√

3t)A+ 1
3

(
1− cos(

√
3t)
)
A2

et la solution générale du système est

X(t) = X0 + 1√
3

sin
(√

3t
)
AX0 + 1

3

(
1− cos

(√
3t
))

A2X0

Exercice 103 : [énoncé]
Puisque la matrice A n’est pas inversible, son rang est strictement inférieur à n et
il existe donc un hyperplan H contenant l’image de A. Soit a1x1 + · · ·+ anxn = 0
une équation de cet hyperplan. Puisque les vecteurX ′(t) sont des valeurs prises
par A, celles-ci appartiennent à l’hyperplan précédent et donc

a1x
′
1(t) + · · ·+ anx

′
n(t) = 0

On en déduit
(a1x1(t) + · · ·+ anxn(t))′ = 0

et donc
a1x1(t) + · · ·+ anxn(t) = Cte
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