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Déterminants
Groupe symétrique

Exercice 1 [ 02231 ] [correction]
Soit n > 2 et c la permutation circulaire c = ( 1 2 . . . n− 1 n ).
Déterminer toutes les permutations σ de Sn qui commutent avec c.

Exercice 2 [ 02225 ] [correction]
Dans Sn avec n > 2, on considère une permutation σ et un p-cycle :

c =
(
a1 a2 . . . ap

)
Observer que la permutation σ ◦ c ◦ σ−1 est un p-cycle qu’on précisera.

Exercice 3 [ 02224 ] [correction]
Soient n un entier supérieur à 2, (i, j) ∈ {1, 2, . . . , n}2 tel que i 6= j et σ ∈ Sn.
Montrer que σ et τ =

(
i j

)
commutent si, et seulement si, {i, j} est stable par

σ.

Exercice 4 [ 00121 ] [correction]
Soit H l’ensemble des σ ∈ Sn vérifiant σ(k) + σ(n+ 1− k) = n+ 1 pour tout
k ∈ {1, . . . , n}.
Montrer que H est un sous-groupe de (Sn, ◦)

Exercice 5 [ 02226 ] [correction]
Déterminer la signature de :

a) σ =
(

1 2 3 4 5 6 7 8
3 5 4 8 7 6 2 1

)
b) σ =

(
1 2 3 4 5 6 7 8
1 3 2 7 4 8 5 6

)

Exercice 6 [ 02227 ] [correction]
Soit n ∈ N?. Déterminer la signature de la permutation suivante :

a) σ =
(

1 2 · · · n− 1 n
n n− 1 · · · 2 1

)
.

b) σ =
(

1 2 3 . . . n n+ 1 n+ 2 . . . 2n− 1 2n
1 3 5 . . . 2n− 1 2 4 . . . 2n− 2 2n

)
.

Exercice 7 [ 02228 ] [correction]
Soit n > 2 et τ une transposition de Sn.
a) Montrer que l’application σ 7→ τ ◦ σ est une bijection de Sn vers Sn.
b) En déduire le cardinal de l’ensemble An formé des permutations de signature 1
élément de Sn.

Exercice 8 [ 02230 ] [correction]
Soit n > 5.
Montrer que si

(
a b c

)
et
(
a′ b′ c′

)
sont deux cycles d’ordre 3 de Sn,

alors il existe une permutation σ, paire, telle que

σ ◦
(
a b c

)
◦ σ−1 =

(
a′ b′ c′

)
Formes multilinéaires alternées

Exercice 9 [ 01410 ] [correction]
Soient F et G deux sous-espaces vectoriels supplémentaires d’un K-espace
vectoriel E.
Soient f une forme linéaire sur E, p la projection vectorielle sur F parallèlement à
G et q = Id− p sa projection complémentaire.
Montrer que l’application ϕ : E × E → K définie par

ϕ(x, y) = f(p(x))f(q(y))− f(p(y))f(q(x))

est une forme bilinéaire alternée sur E.

Exercice 10 [ 01413 ] [correction]
Soient n ∈ N?, E un K-espace vectoriel de dimension n, f ∈ L(E) et
B = (e1, ..., en) une base de E. Montrer que pour tout (x1, ..., xn) ∈ En :

n∑
j=1

det
B

(x1, ..., f(xj), ..., xn) = tr(f) det
B

(x1, ..., xn)

Déterminant d’un endomorphisme

Exercice 11 [ 01411 ] [correction]
Soient E un R-espace vectoriel de dimension finie et f un endomorphisme de E
vérifiant f2 = −Id. Montrer que l’espace E est de dimension paire.
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Exercice 12 [ 01412 ] [correction]
Soit V = {x 7→ exP (x) | P ∈ Rn [X]}.
a) Montrer que V est un sous-espace vectoriel de F(R,R) dont on déterminera la
dimension.
b) Montrer que l’application D : f 7→ f ′ est un endomorphisme de V dont on
calculera le déterminant.

Exercice 13 [ 03071 ] [correction]
Soit f un endomorphisme du R-espace vectoriel C.
a) Montrer qu’il existe d’uniques complexes a, b tels que

∀z ∈ C, f(z) = az + bz̄

b) Exprimer en fonction de a et b le déterminant de f .

Exercice 14 [ 00752 ] [correction]
Soient A ∈Mn(C) et ϕA ∈ L(Mn(C)) déterminé par

ϕA(M) = AM

Calculer la trace et le déterminant de ϕA

Exercice 15 [ 03641 ] [correction]
Soit A = (ai,j) ∈Mn(R) vérifiant

∀i ∈ {1, . . . , n} , |ai,i| >
∑
j 6=i
|ai,j |

a) Montrer que A est inversible.
b) On suppose en outre

∀i ∈ {1, . . . , n} , ai,i > 0

Montrer que detA > 0.

Déterminant d’une matrice carrée

Exercice 16 [ 01414 ] [correction]
Soit A = (ai,j) ∈Mn(C). On note Ā = (āi,j) ∈Mn(C).
Former une relation liant det(A) et detA.

Exercice 17 [ 01415 ] [correction]
Soit A ∈Mn(C) telle que tA = Ā. Montrer que detA ∈ R.

Exercice 18 [ 01416 ] [correction]
Soit A une matrice antisymétrique réelle d’ordre 2n+ 1. Montrer que

detA = 0

Ce résultat est-il encore vrai lorsque A est d’ordre pair ?

Exercice 19 [ 01417 ] [correction]
Comparer det(ai,j) et det((−1)i+jai,j) où (ai,j)16i,j6n ∈Mn(K).

Exercice 20 [ 03382 ] [correction]
Soit A ∈Mn(R) vérifiant

∀i, j ∈ {1, . . . , n} , ai,j ∈ {1,−1}

Montrer
2n−1 | detA

Exercice 21 [ 00738 ] [correction]
Soit A ∈Mn(K) de colonnes C1, . . . , Cn.
Calculer le déterminant de la matrice B de colonnes

C1 − C2, . . . , Cn−1 − Cn, Cn − C1

Exercice 22 [ 02355 ] [correction]
Soient A,B ∈Mn(R) telles que AB = BA.
Montrer que det(A2 +B2) > 0.

Exercice 23 [ 02603 ] [correction]
On dit qu’une matrice A ∈Mn(R) est élément de GLn(Z) si la matrice A est à
coefficients entiers, qu’elle est inversible et que son inverse est à coefficients entiers.
a) Montrer que si A ∈ GLn(Z) alors |detA| = 1.
b) Soient A,B ∈Mn(R) vérifiant :

∀k ∈ {0, 1, . . . , 2n} , A+ kB ∈ GLn(Z)

Calculer detA et detB.
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Exercice 24 [ 02604 ] [correction]
Soient A ∈Mn(R) (n > 2) de colonnes A1, . . . , An et B ∈Mn(R) de colonnes
B1, . . . , Bn déterminées par

Bj =
∑
i 6=j

Ai

Exprimer detB en fonction de detA.

Exercice 25 [ 02695 ] [correction]
Soit A ∈Mn(C) vérifiant pour tout X ∈Mn(C),

det(A+X) = detA+ detX

Montrer que detA = 0 puis A = 0.

Exercice 26 [ 00229 ] [correction]
Soient A et H dansMn(R) avec rgH = 1. Montrer :

det(A+H) det(A−H) 6 detA2

Exercice 27 [ 01587 ] [correction]
Soient A ∈M2n(R) antisymétrique et J ∈M2n(R) la matrice dont tous les
coefficients sont égaux à 1. Etablir

∀x ∈ R,det(A+ xJ) = detA

Exercice 28 [ 03278 ] [correction]
Soit A = (ai,j) ∈Mn(R) vérifiant

∀(i, j) ∈ {1, . . . , n}2
, ai,j > 0 et ∀i ∈ {1, . . . , n} ,

n∑
j=1

ai,j 6 1

Montrer
|detA| 6 1

Calculs de déterminants élémentaires

Exercice 29 [ 01418 ] [correction]
Calculer sous forme factorisée les déterminants suivants :

a)

∣∣∣∣∣∣
0 a b
a 0 c
b c 0

∣∣∣∣∣∣ b)

∣∣∣∣∣∣
a b c
c a b
b c a

∣∣∣∣∣∣
c)

∣∣∣∣∣∣
a+ b b+ c c+ a
a2 + b2 b2 + c2 c2 + a2

a3 + b3 b3 + c3 c3 + a3

∣∣∣∣∣∣ d)

∣∣∣∣∣∣∣∣
a a a a
a b b b
a b c c
a b c d

∣∣∣∣∣∣∣∣
e)

∣∣∣∣∣∣∣∣
a c c b
c a b c
c b a c
b c c a

∣∣∣∣∣∣∣∣ f)

∣∣∣∣∣∣
1 1 1

cos a cos b cos c
sin a sin b sin c

∣∣∣∣∣∣.

Exercice 30 [ 01419 ] [correction]
Soient a1, . . . , an ∈ C. Calculer det(amax(i,j)).
En déduire en particulier det(max(i, j)) et det(min(i, j)).

Exercice 31 [ 01420 ] [correction]
Soient a1, a2, . . . , an ∈ K. Calculer∣∣∣∣∣∣∣∣∣∣

a1 a2 · · · an
. . . . . .

...
. . . a2

(a1) a1

∣∣∣∣∣∣∣∣∣∣
Exercice 32 [ 01421 ] [correction]
Soit n ∈ N?. Calculer ∣∣∣∣∣∣∣∣∣∣∣

S1 S1 S1 · · · S1
S1 S2 S2 · · · S2
S1 S2 S3 · · · S3
...

...
...

. . .
...

S1 S2 S3 · · · Sn

∣∣∣∣∣∣∣∣∣∣∣
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où pour tout 1 6 k 6 n on a

Sk =
k∑
i=1

i

Exercice 33 [ 01423 ] [correction]
Soit

A =


a b c d
−b a −d c
−c d a −b
−d −c b a


avec a, b, c, d ∈ R.
a) Calculer tA.A. En déduire detA.
b) Soient a, b, c, d, a′, b′, c′, d′ ∈ Z. Montrer qu’il existe a′′, b′′, c′′, d′′ ∈ Z tels que :

(a2 + b2 + c2 + d2)(a′2 + b′2 + c′2 + d′2) = a′′2 + b′′2 + c′′2 + d′′2

Exercice 34 [ 03377 ] [correction]
a) Calculer ∣∣∣∣∣∣

a b c
a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣
b) En déduire ∣∣∣∣∣∣

a+ b b+ c c+ a
a2 + b2 b2 + c2 c2 + a2

a3 + b3 b3 + c3 c3 + a3

∣∣∣∣∣∣
Exercice 35 [ 03366 ] [correction]
Montrer

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 n n− 1 . . . 2

2 1
. . . 3

...
. . . . . . . . .

...

n− 1
. . . 1 n

n n− 1 . . . 2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n+1 (n+ 1)nn−1

2

Calculs de déterminants avancés

Exercice 36 [ 01425 ] [correction]
Soient a 6= b et λ1, λ2, ..., λn. On pose

∆n(x) =

∣∣∣∣∣∣∣∣∣∣
λ1 + x a+ x · · · a+ x

b+ x λ2 + x
. . .

...
...

. . . . . . a+ x
b+ x · · · b+ x λn + x

∣∣∣∣∣∣∣∣∣∣
[n]

a) Montrer que ∆n(x) est une fonction affine de x.
b) Calculer ∆n(x) et en déduire ∆n(0).

Exercice 37 [ 02693 ] [correction]
Calculer le déterminant ∣∣∣∣∣∣∣

a1 + x (x)
. . .

(x) an + x

∣∣∣∣∣∣∣
où x, a1, . . . , an réels.

Exercice 38 [ 00748 ] [correction]
Pour (i, j) ∈ [[1, n]]2, on considère ai ∈ R et bj ∈ R tels que ai + bj 6= 0.
Calculer

det
(

1
ai + bj

)
16i,j6n

[déterminant de Cauchy]

Traiter en particulier le cas où

∀i ∈ [[1, n]] , ai = bi = i [déterminant de Hilbert]

Exercice 39 [ 00299 ] [correction]
On pose

Pn(X) = Xn −X + 1 (avec n > 2)

a) Montrer que Pn admet n racines distinctes z1, . . . , zn dans C.
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b) Calculer le déterminant de
1 + z1 1 · · · 1

1 1 + z2
. . .

...
...

. . . . . . 1
1 · · · 1 1 + zn



Exercice 40 [ 03806 ] [correction]
[Déterminant de Hurwitz]
Soient a, λ1, . . . , λn ∈ C. Calculer le déterminant de la matrice suivante

H =

 a+ λ1 (a)
. . .

(a) a+ λn



Exercice 41 [ 03124 ] [correction]
Soient a1, . . . , an, b1, . . . , bn ∈ C. Calculer le déterminant de la matrice de
coefficient

ai,j =
{
ai + bi si i = j
bj sinon

Exercice 42 [ 03578 ] [correction]
Soient un naturel n > 2 et (x1, . . . , xn) une famille de n réels distincts de [0, π].
On pose

Pn =
∏

16i<j6n
(cosxj − cosxi)

et on considère la matrice Mn ∈Mn(R) de coefficient général

mi,j = cos ((j − 1)xi)

a) Montrer que mi,j est un polynôme en cosxi et donner son coefficient dominant.
b) Calculer detMn en fonction de Pn.

Exercice 43 [ 03577 ] [correction]
Pour une famille de n réels distincts (xk) de [0, π], on pose

Pn =
∏

16i<j6n
(cosxi − cosxj)

a) Combien le produit définissant Pn comporte-t-il de facteurs ?
b) Pour (i, j) ∈ [[1, 4]]2 écrire la matrice M ∈M4(R) de coefficient général

mi,j = cos ((j − 1)xi)

c) Montrer que mi,j est un polynôme en cosxi.
d) Calculer detM en fonction de P4 et montrer |detM | < 24

Calculs de déterminants par une relation de récur-
rence

Exercice 44 [ 01426 ] [correction]
Calculer en établissant une relation de récurrence

Dn =

∣∣∣∣∣∣∣∣∣∣
0 1 · · · 1

−1
. . . . . .

...
...

. . . . . . 1
−1 · · · −1 0

∣∣∣∣∣∣∣∣∣∣
[n]

Exercice 45 [ 01427 ] [correction]
Calculer en établissant une relation de récurrence

Dn =

∣∣∣∣∣∣∣∣∣∣
0 1 · · · 1

1
. . . . . .

...
...

. . . . . . 1
1 · · · 1 0

∣∣∣∣∣∣∣∣∣∣
[n]

Exercice 46 [ 01428 ] [correction]
Calculer en établissant une relation de récurrence

Dn =

∣∣∣∣∣∣∣
1 · · · 1
...

. . . (0)
1 (0) 1

∣∣∣∣∣∣∣
[n]
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Exercice 47 [ 01429 ] [correction]
Calculer en établissant une relation de récurrence

Dn =

∣∣∣∣∣∣∣∣∣∣
2 1 · · · 1

1 3
. . .

...
...

. . . . . . 1
1 · · · 1 n+ 1

∣∣∣∣∣∣∣∣∣∣
[n]

On exprimera le résultat à l’aide des termes de la suite (Hn) avec

Hn =
n∑
k=1

1
k

Exercice 48 [ 01430 ] [correction]
Calculer en établissant une relation de récurrence

Dn =

∣∣∣∣∣∣∣∣∣∣
a+ b b · · · b

a
. . . . . .

...
...

. . . . . . b
a · · · a a+ b

∣∣∣∣∣∣∣∣∣∣
[n]

Exercice 49 [ 01431 ] [correction]
Calculer

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C0
1 C1

1 0 · · · · · · 0

C0
2 C1

2 C2
2 0

...

C0
3 C1

3 C2
3 C3

3
. . .

...

C0
4 C1

4 C2
4 C3

4
. . . 0

...
. . . Cn−1

n−1
C0
n C1

n C2
n C3

n · · · Cn−1
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
[n]

en notant

Ckn =
(
n

k

)
= n!
k!(n− k)!

Exercice 50 [ 01432 ] [correction]
Calculer

Dn+1 =

∣∣∣∣∣∣∣∣∣
C0

0 C1
1 · · · Cnn

C0
1 C1

2 · · · Cnn+1
...

...
...

C0
n C1

n+1 · · · Cn2n

∣∣∣∣∣∣∣∣∣
[n+1]

en notant par

Ckn =
(
n

k

)
= n!
k!(n− k)!

Exercice 51 [ 03254 ] [correction]
Calculer le déterminant de

An =

 a (b)
. . .

(c) a

 ∈Mn(C)

Calculs de déterminants tridiagonaux

Exercice 52 [ 02584 ] [correction]
Soit (a, b) ∈ R2 ; calculer

Dn =

∣∣∣∣∣∣∣∣∣∣
a+ b b (0)

a
. . . . . .
. . . . . . b

(0) a a+ b

∣∣∣∣∣∣∣∣∣∣
[n]

Exercice 53 [ 01436 ] [correction]
Soient a, b ∈ C? distincts. Calculer

Dn =

∣∣∣∣∣∣∣∣∣∣
a+ b ab (0)

1
. . . . . .
. . . . . . ab

(0) 1 a+ b

∣∣∣∣∣∣∣∣∣∣
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Exercice 54 [ 00739 ] [correction]
Soient x ∈ C et n ∈ N?. Calculer

Dn =

∣∣∣∣∣∣∣∣∣∣
1 + x2 x (0)

x
. . . . . .
. . . . . . x

(0) x 1 + x2

∣∣∣∣∣∣∣∣∣∣
[n]

Exercice 55 [ 00740 ] [correction]
Soient θ ∈ R et n ∈ N?. Calculer

Dn =

∣∣∣∣∣∣∣∣∣∣
2 cos θ 1 (0)

1
. . . . . .
. . . . . . 1

(0) 1 2 cos θ

∣∣∣∣∣∣∣∣∣∣
[n]

Exercice 56 [ 00741 ] [correction]
Calculer

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 (0)
n 0 2

n− 1
. . . . . .
. . . . . . n

(0) 1 0

∣∣∣∣∣∣∣∣∣∣∣∣
[n+1]

Exercice 57 [ 01433 ] [correction]
Pour a ∈ K?, calculer

Dn =

∣∣∣∣∣∣∣∣∣∣
2a a (0)

a
. . . . . .
. . . . . . a

(0) a 2a

∣∣∣∣∣∣∣∣∣∣
Applications des déterminants

Exercice 58 [ 01422 ] [correction]
[Identité de Lagrange]

Calculer de deux façons : ∣∣∣∣ a −b
b a

∣∣∣∣ ∣∣∣∣ c −d
d c

∣∣∣∣
Exercice 59 [ 01441 ] [correction]
Soient E un K-espace vectoriel de dimension 3 et B = (e1, e2, e3) une base de E.
Soit f l’endomorphisme de E dont la matrice dans B est

A =

 3 −2 −3
−2 6 6
2 −2 −2


a) Pour quelles valeurs de λ, a-t-on det (A− λI3) = 0 ?
b) Déterminer une base C = (ε1, ε2, ε3) de E telle que

MatCf =

 1 0 0
0 2 0
0 0 4



Exercice 60 [ 01442 ] [correction]
Soient n ∈ N?, A ∈ GLn(R) et B ∈Mn(R).
Montrer qu’il existe ε > 0 tel que :

∀x ∈ [−ε, ε] , A+ xB ∈ GLn(R)

Exercice 61 [ 01445 ] [correction]
Soient α ∈ C et

M =


1 α 0

. . . . . .

0
. . . α

α 0 1

 ∈Mn(C)

a) Calculer detM .
b) Déterminer, en fonction de α le rang de M .

Exercice 62 [ 01446 ] [correction]
Soient a, b ∈ C.
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a) Calculer le déterminant de

M(a, b) =

 a (b)
. . .

(b) a

 ∈Mn(C)

b) En déduire le rang de M(a, b) selon les valeurs des paramètres a et b.

Exercice 63 [ 03417 ] [correction]
On note GLn(Z) l’ensemble formé des matrices inversibles d’ordre n à coefficients
entiers dont l’inverse est encore à coefficients entiers.
Soient a1, . . . , an des entiers (n > 2). Montrer qu’il existe une matrice de GLn(Z)
dont la première ligne est formée des entiers a1, a2, . . . , an si, et seulement si, ces
entiers sont premiers dans leur ensemble.

Exercice 64 [ 00749 ] [correction]
Etablir que l’inverse de la matrice H =

(
1

i+j−1

)
16i,j6n

est à coefficients entiers.

Systèmes de Cramer

Exercice 65 [ 01437 ] [correction]
Soient a, b, c et d des éléments de K deux à deux distincts.
Résoudre sur K les systèmes suivants :

a)


x+ y + z = 1

ax+ by + cz = d

a2x+ b2y + c2z = d2
b)


x+ y + z = 1

ax+ by + cz = d

a3x+ b3y + c3z = d3

Exercice 66 [ 01438 ] [correction]
Résoudre 

x+ y + z = a

x+ jy + j2z = b

x+ j2y + jz = c

en fonction de a, b, c ∈ C.

Exercice 67 [ 01439 ] [correction]
Résoudre en fonction de a ∈ C le système

x+ ay + a2z = 0
āx+ y + az = 0
ā2x+ āy + z = 0

Exercice 68 [ 01440 ] [correction]
Soient a, b, c ∈ C distincts.
a) Résoudre 

x+ ay + a2z = a3

x+ by + b2z = b3

x+ cy + c2z = c3

en introduisant : P = X3 − (x+ yX + zX2)
b) Même question pour 

x+ ay + a2z = a4

x+ by + b2z = b4

x+ cy + c2z = c4

Comatrice

Exercice 69 [ 01443 ] [correction]
Soit A = (ai,j) une matrice carrée d’ordre n à coefficients dans Z.
a) Justifier que detA ∈ Z.
b) Montrer que l’inverse de A existe et est à coefficients entiers si, et seulement si,
detA = ±1.

Exercice 70 [ 01444 ] [correction]
Soient n un entier supérieur à 2 et A ∈Mn(K).
a) Etablir  rg(A) = n ⇒ rg (com(A)) = n

rg(A) = n− 1 ⇒ rg (com(A)) = 1
rg(A) 6 n− 2 ⇒ rg (com(A)) = 0

b) Montrer
det (com(A)) = (detA)n−1

c) En déduire
com (com(A))
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Exercice 71 [ 03142 ] [correction]
Soient A,B ∈Mn(C).
On suppose que les matrices A et B commutent. Montrer que les comatrices de A
et B commutent.

Exercice 72 [ 03260 ] [correction]
Résoudre l’équation

comM = M

d’inconnue M ∈Mn(R)

Exercice 73 [ 03576 ] [correction]
a) Donner le rang de B = t(comA) en fonction de celui de A ∈Mn(K)
b) On se place dans le cas où rgA = n− 1.
Soit C ∈Mn(K) telle que

AC = CA = On

Montrer qu’il existe λ ∈ K tel que

C = λB

Exercice 74 [ 02659 ] [correction]
Soient des matrices A,B ∈Mn(Z) telles que detA et detB sont premiers entre
eux.
Montrer l’existence de U, V ∈Mn(Z) telles que

UA+ V B = In

Exercice 75 [ 03944 ] [correction]
Soit S ∈ Sn(R). Montrer que la comatrice de S est symétrique.

Déterminants de Vandermonde et apparentés

Exercice 76 [ 00742 ] [correction]
Soient x1, . . . , xn ∈ C. Calculer

Vn(x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣
1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
...

...
...

...
1 xn x2

n · · · xn−1
n

∣∣∣∣∣∣∣∣∣

Exercice 77 [ 02384 ] [correction]
Calculer pour a1, . . . , an ∈ K le déterminant suivant

Dn =

∣∣∣∣∣∣∣∣∣
1 a1 a2

1 · · · an−2
1 an1

1 a2 a2
2 · · · an−2

2 an2
...

...
...

...
...

1 an a2
n · · · an−2

n ann

∣∣∣∣∣∣∣∣∣
Exercice 78 [ 02385 ] [correction]
Calculer

Dk =

∣∣∣∣∣∣∣∣∣
1 a1 · · · ak−1

1 ak+1
1 · · · an1

1 a2 · · · ak−1
2 ak+1

2 · · · an2
...

...
...

...
...

1 an · · · ak−1
n ak+1

n · · · ann

∣∣∣∣∣∣∣∣∣
Exercice 79 [ 02386 ] [correction]
Soit λ1, . . . , λn ∈ C distincts et P (X) =

n∏
i=1

(X − λi). Calculer :

∆(X) =

∣∣∣∣∣∣∣∣∣
P (X)
X−λ1

P (X)
X−λ2

· · · P (X)
X−λn

1 1 · · · 1
...

...
...

λn−2
1 λn−2

2 · · · λn−2
n

∣∣∣∣∣∣∣∣∣
Calculs de déterminants par blocs

Exercice 80 [ 03129 ] [correction]
Soient A,B,C,D ∈Mn(K). On suppose que D est inversible et que C et D
commutent. Etablir

det
(
A B
C D

)
= det(AD −BC)

Exercice 81 [ 03130 ] [correction]
Soient A,B,C,D ∈Mn(K) avec D inversible. Etablir

det
(
A B
C D

)
= det(AD −BD−1CD)
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Exercice 82 [ 02694 ] [correction]
Soient A,B,C,D ∈Mn(K) avec AC = CA. Montrer que

det
(
A C
B D

)
= det(DA−BC)

Exercice 83 [ 02387 ] [correction]
a) Soient A,B ∈Mn(R). Montrer que

det
(

A B
−B A

)
> 0

b) Soient A,B ∈Mn(R) telles que AB = BA. Montrer que det(A2 +B2) > 0.
c) Trouver un contre-exemple à b) si A et B ne commutent pas.
d) Soient A,B,C,D ∈Mn(R) telles que AC = CA. Montrer que

det
(
A B
C D

)
= det(AD − CB)

Exercice 84 [ 01424 ] [correction]
Soient A,B ∈Mn(R).
a) Montrer ∣∣∣∣ A B

B A

∣∣∣∣ = det(A+B) det(A−B)

b) Justifier ∣∣∣∣ A −B
B A

∣∣∣∣ > 0

Exercice 85 [ 00198 ] [correction]
Soient B ∈Mn(R) et

A =
(
In B
B In

)
∈M2n(R)

a) A quelle condition la matrice A est-elle inversible ?
b) Donner son inverse quand cela est possible.

Exercice 86 [ 00713 ] [correction]
On considère une matrice M ∈Mn(K) inversible écrite sous la forme

M =
(
A B
C D

)
avec A ∈Mp(K) et D ∈Mn−p(K).
On écrit la comatrice de M sous une forme analogue

comM =
(
A′ B′

C ′ D′

)
avec A′ ∈Mp(K) et D′ ∈Mn−p(K).
Vérifier

detA′ = det(M)p−1 detD

Exercice 87 [ 03147 ] [correction]
Soient A,B,C,D ∈Mn(R).
a) On suppose CtD symétrique et D inversible. Montrer que

det
(
A B
C D

)
= det

(
AtD −BtC

)
b) On suppose toujours CtD symétrique mais on ne suppose plus D inversible.
Montrer que l’égalité précédente reste vraie.

Exercice 88 [ 03288 ] [correction]
Soient A,B,C,D des matrices carrées d’ordre n, réelles et commutant deux à
deux. Montrer que la matrice

M =
(
A B
C D

)
est inversible si, et seulement si, AD −BC l’est.
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Corrections

Exercice 1 : [énoncé]
Pour commencer, notons que, pour tout k ∈ {1, . . . , n} ck−1(1) = k et par
conséquent c−(k−1)(k) = 1.
Soit σ une permutation commutant avec cn.
Posons k = σ(1) ∈ {1, 2, ..., n} et s = c−(k−1) ◦ σ de sorte que s(1) = 1.
Comme σ et c commutent, s et c commutent aussi et on a pour tout 2 6 i 6 n,
s = c(i−1) ◦ s ◦ c−(i−1) d’où
s(i) = c(i−1) ◦ s ◦ c−(i−1)(i) = σ(i−1) ◦ s(1) = σ(i−1)(1) = i car c−(i−1)(i) = 1.
Par conséquent s = Id puis σ = ck.
Inversement les permutations de la forme ck avec 1 6 k 6 n commutent avec c.

Exercice 2 : [énoncé]
Pour x = σ(ai), on a

(σ ◦ c ◦ σ−1)(x) = σ(ai+1)

(en posant ap+1 = a1).
Pour x /∈ {σ(a1), . . . , σ(ap)}, on a

(σ ◦ c ◦ σ−1)(x) = σ ◦ σ−1(x) = x

car c(σ−1(x)) = σ−1(x) puisque σ−1(x) /∈ {a1, . . . , ap}.
Ainsi

σ ◦ c ◦ σ−1 =
(
σ(a1) σ(a2) . . . σ(ap)

)

Exercice 3 : [énoncé]
Si {i, j} est stable par σ alors {σ(i), σ(j)} = {i, j}.
On a alors

∀x /∈ {i, j} , (σ ◦ τ)(x) = σ(x) = (τ ◦ σ)(x)

Pour x = i alors (σ ◦ τ)(i) = σ(j) = (τ ◦ σ)(i) et pour x = j,
(σ ◦ τ)(j) = σ(i) = (τ ◦ σ)(j).
Par suite

σ ◦ τ = τ ◦ σ

Inversement, si σ ◦ τ = τ ◦ σ alors σ(i) = (σ ◦ τ)(j) = (τ ◦ σ)(j) = τ(σ(j)).
Puisque τ(σ(j)) 6= σ(j) on a σ(j) ∈ {i, j}.
De même σ(i) ∈ {i, j} et donc {i, j} stable par σ.

Exercice 4 : [énoncé]
H ⊂ Sn, Id ∈ H. Remarquons, ∀k ∈ {1, . . . , n}, σ(k) = n+ 1− σ(n+ 1− k).
Soient σ, σ′ ∈ H,

(σ′ ◦ σ)(k) = σ′(σ(k)) = n+ 1− σ′(n+ 1− σ(k)) = n+ 1− σ′ ◦ σ(n+ 1− k)

donc σ′ ◦ σ ∈ H.
Soit σ ∈ H. Posons ` = σ−1(k). On a

σ(n+ 1− `) = n+ 1− σ(`) = n+ 1− k

donc σ−1(n+ 1− k) = n+ 1− ` puis

σ−1(k) + σ−1(n+ 1− k) = `+ (n+ 1− `) = n+ 1

Exercice 5 : [énoncé]
On note I(σ) le nombre d’inversions de la permutation σ :

I(σ) = Card({1 6 i < j 6 n/σ(i) > σ(j)}

On a ε(σ) = (−1)I(σ) et I(σ) se calcule en dénombrant, pour chaque de terme de
la seconde ligne, le nombre de termes inférieurs qui le suit.
a) I(σ) = 2 + 3 + 2 + 4 + 3 + 2 + 1 + 0 = 17 donc ε(σ) = −1.
b) I(σ) = 0 + 1 + 0 + 3 + 0 + 2 + 0 + 0 = 6 donc ε(σ) = 1.

Exercice 6 : [énoncé]
On note I(σ) le nombre d’inversions de la permutation σ :

I(σ) = Card({1 6 i < j 6 n/σ(i) > σ(j)}

On a ε(σ) = (−1)I(σ) et I(σ) se calcule en dénombrant, pour chaque de terme de
la seconde ligne, le nombre de termes inférieurs qui le suit.
a) I(σ) = (n− 1) + (n− 2) + · · ·+ 1 + 0 = n(n−1)

2 donc

ε(σ) = (−1)
n(n−1)

2

b) I(σ) = 0 + 1 + 2 + · · ·+ (n− 1) + 0 + · · ·+ 0 = n(n−1)
2 donc

ε(σ) = (−1)
n(n−1)

2
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Exercice 7 : [énoncé]
a) L’application σ 7→ τ ◦ σ est involutive, donc bijective.
b) L’application σ 7→ τ ◦ σ transforme An en Sn\An donc CardAn = CardSn\An.
Or Sn est la réunion disjointe de An et de Sn\An donc

CardAn = 1
2CardSn = n!

2

Exercice 8 : [énoncé]
Notons que

σ ◦
(
a b c

)
◦ σ−1 =

(
σ(a) σ(b) σ(c)

)
Soit σ : Nn → Nn une permutation définie par :

σ(a) = a′, σ(b) = b′ et σ(c) = c′

Si σ est paire alors le problème est résolu.
Si σ est impaire alors soit c 6= d ∈ Nn\ {a, b, c} et τ =

(
c d

)
.

σ ◦ τ est une permutation paire satisfaisante.

Exercice 9 : [énoncé]
ϕ : E × E → K.
ϕ(y, x) = f(p(y))f(q(x))− f(p(x))f(q(x)) = −ϕ(x, y). Il suffit d’étudier la
linéarité en la 1ère variable.
ϕ(λx+ µx′, y) = f(p(λx+ µx′))f(q(y))− f(p(y))f(q(λx+ µx′)) or f , p et q sont
linéaires donc
ϕ(λx+ µx′, y) = (λf(p(x)) + µf(p(x′))) f(q(y))− f(p(y)) (λf(q(x)) + µf(q(x′)))
puis en développant et en réorganisant : ϕ(λx+ µx′, y) = λϕ(x, y) + µϕ(x′, y).
ϕ est donc une forme bilinéaire antisymétrique donc alternée.

Exercice 10 : [énoncé]
L’application ϕ : En → K définie par

ϕ(x1, . . . , xn) =
n∑
j=1

det
B

(x1, . . . , f(xj), . . . , xn)

est une forme n-linéaire alternée, donc il existe λ ∈ K tel que ϕ = λ.detB.
On a ϕ(e1, . . . , en) = λ et par suite

λ =
n∑
j=1

det
B

(e1, . . . , f(ej), . . . , en) =
n∑
j=1

aj,j = trf

avec A = (ai,j) = MatBf .

Exercice 11 : [énoncé]
Posons n = dimE. Comme det(f2) = det(−In) on a det(f)2 = (−1)n > 0, donc n
est pair.

Exercice 12 : [énoncé]
a) Il est clair que V est un sous-espace vectoriel de F(R,R).
On pose fk : R→ R définie par fk(x) = xkex.
B = (f0, . . . , fn) forme une base de V , donc dimV = n+ 1.
b) Pour f(x) = P (x)ex on a D(f)(x) = f ′(x) = (P (x) + P ′(x))ex.
D est bien une application de V dans V .
De plus la linéarité de D découle de la linéarité de la dérivation et on peut donc
conclure D ∈ L(V ).
Puisque (xkex)′ = (xk + kxk−1)ex on a D(fk) = fk + kfk−1 donc a

MatB(D) =


1 1 0

. . . . . .
. . . n

0 1

.

Par suite detD = 1× 1× · · · × 1 = 1.

Exercice 13 : [énoncé]
a) La famille (1, i) est une base du R-espace vectoriel C.
Pour a, b ∈ C, l’application ϕa,b : z 7→ az + bz̄ est R-linéaire et sa matrice dans la
base (1, i) est (

Rea+ Reb Imb− Ima
Ima+ Imb Rea− Reb

)
Pour f endomorphisme du R-espace vectoriel C de matrice(

α γ
β δ

)
dans la base (1, i), on a f = ϕa,b si, et seulement si,

Rea+ Reb = α

Ima+ Imb = β

Imb− Ima = γ

Rea− Reb = δ

Ce système possède une unique solution qui est

a = α+ δ

2 + i
β − γ

2 et b = α− δ
2 + i

β + γ

2
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b) Le déterminant de f vaut

det f = αδ − βγ = |a|2 − |b|2

Exercice 14 : [énoncé]
Notons Ei,j les matrices élémentaires deMn(C).
On observe

ϕA(Ei,j) =
n∑
k=1

ak,iEk,j

Par suite dans la base (E1,1, . . . , En,1, E1,2, . . . , En,2, . . . , E1,n, . . . , En,n), la
matrice de l’endomorphisme ϕA est diagonale par blocs avec n blocs diagonaux
tous égaux à A. On en déduit

trϕA = ntrA et detϕA = (detA)n

Exercice 15 : [énoncé]
a) Notons C1, . . . , Cn les colonnes de A et supposons

λ1C1 + · · ·+ λnCn = 0

Si m = max(|λ1| , . . . , |λn|) 6= 0 alors, puisque pour tout 1 6 i 6 n,
n∑
j=1

λjai,j = 0

on obtient

|λi| 6

∑
j 6=i
|λj | |ai,j |

|ai,i|
6 m

∑
j 6=i
|ai,j |

|ai,i|
< m

ce qui est absurde compte tenu de la définition de m.
Par suite, la famille (C1, . . . , Cn) est libre et donc A inversible.
b) Considérons l’application f : x ∈ R 7→ det(A+ xIn).
La fonction f est clairement polynomiale de monôme dominant xn, elle est donc
continue et de limite +∞ quand x→ +∞.
De plus, le résultat précédent s’applique à la matrice A+ xIn pour tout x > 0 et
donc f(x) 6= 0 sur [0,+∞[.
Par continuité, la fonction f ne peut prendre de valeurs 6 0 et donc

∀x > 0, f(x) > 0

En particulier detA = f(0) > 0.

Exercice 16 : [énoncé]
Par conjugaison d’une somme et de produits

det Ā =
∑
σ∈Sn

ε(σ)
n∏
i=1

aσ(i),i =
∑
σ∈Sn

ε(σ)
n∏
i=1

aσ(i),i = detA

Exercice 17 : [énoncé]
Ici tA = Ā, donc det(A) = det(tA) = det Ā.
Comme

det Ā =
∑
σ∈Sn

ε(σ)
n∏
i=1

aσ(i),i =
∑
σ∈Sn

ε(σ)
n∏
i=1

aσ(i),i = detA

on peut conclure detA ∈ R.

Exercice 18 : [énoncé]
Comme tA = −A on a

detA = det tA = det(−A) = (−1)2n+1 detA = −detA

donc detA = 0.
La matrice

A =
(

0 1
−1 0

)
fournit un contre-exemple au second problème posé.

Exercice 19 : [énoncé]
Notons A = (ai,j) et B = ((−1)i+jai,j). On a

detB =
∑
σ∈Sn

ε(σ)
n∏
i=1

(−1)σ(i)+iaσ(i),i

en regroupant les puissance de (−1)

detB =
∑
σ∈Sn

ε(σ)(−1)

n∑
i=1

σ(i)+i n∏
i=1

aσ(i),i

puis

detB =
∑
σ∈Sn

ε(σ)(−1)n(n+1)
n∏
i=1

aσ(i),i
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Ainsi
detB = (−1)n(n+1) detA = detA

car n(n+ 1) est pair.

Exercice 20 : [énoncé]
En ajoutant la première colonne de A à chacune des suivantes, on obtient une
matrice dont les colonnes d’indices 2 jusqu’à n ont pour coefficients 0, 2 ou −2.
On peut donc factoriser 2 sur chacune de ces colonnes et l’on obtient

detA = 2n−1 detB

avec B une matrice dont les coefficients sont 0, 1 ou −1 de sorte que detB ∈ Z

Exercice 21 : [énoncé]
La somme des colonnes de B est nulle donc detB = 0.

Exercice 22 : [énoncé]
On a

det(A+ iB) det(A− iB) = det(A2 +B2)

car A et B commutent.
Or det(A− iB) = det(A+ iB) donc det(A2 +B2) = zz̄ > 0.

Exercice 23 : [énoncé]
a) AA−1 = In donne (detA)(detA−1) = 1 or detA,detA−1 ∈ Z donc detA = ±1.
b) Posons P (x) = det(A+ xB). P est une fonction polynomiale de degré inférieur
à n.
Pour tout x ∈ {0, 1, . . . , 2n}, on a P (x) = ±1 donc P (x)2 − 1 = 0.
Le polynôme P 2 − 1 possède au moins 2n+ 1 racines et est de degré inférieur à n,
c’est donc le polynôme nul.
On en déduit que pour tout x ∈ R, P (x) = ±1.
Pour x = 0, on obtient detA = ±1.
Pour x→ +∞,

det
(

1
x
A+B

)
= P (x)

xn
→ 0

donne detB = 0.

Exercice 24 : [énoncé]
On note B la base canonique de l’espace des colonnes,

detA = det
B

(A1, . . . , An)

et

detB = det
B

(B1, . . . , Bn) = det
B

(
n∑
i=1

Bi, B2, . . . , Bn

)
avec

n∑
i=1

Bi = (n− 1)
n∑
i=1

Ai

Par suite

detB = (n− 1) det
B

(
n∑
i=1

Ai, B2 −
n∑
i=1

Ai, . . . , Bn −
n∑
i=1

Ai

)
Ce qui donne

detB = (n− 1) det
B

(
n∑
i=1

Ai,−A2, . . . ,−An

)
= (−1)n−1(n− 1) det(A1, . . . , An)

Finalement
detB = (−1)n−1(n− 1) detA

Exercice 25 : [énoncé]
Notons que pour n = 1 : la relation det(A+X) = detA+ detX est vraie pour
tout A et tout X.
On suppose dans la suite n > 2.
Pour X = A, la relation det(A+X) = detA+ detX donne 2n detA = 2 detA et
donc detA = 0.
La matrice A n’est donc par inversible et en posant r < n égal à son rang, on peut
écrire A = QJrP avec P,Q inversibles et

Jr =
(

Ir (0)
(0) On−r

)
Posons alors X = QJ ′rP avec

J ′r =
(
Or (0)
(0) In−r

)
Puisque A+X = QInP = QP , la matrice A+X est inversible et donc
detX = det(A+X) 6= 0.
On en déduit que la matrice J ′r est l’identité et donc r = 0 puis A = On.
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Exercice 26 : [énoncé]
La matrice H est équivalente à la matrice J1 dont tous les coefficients sont nuls
sauf celui en position (1, 1). Notons P,Q ∈ GLn(R) telles que

H = QJ1P

et introduisons B ∈Mn(R) déterminée par

A = QBP

La relation
det(A+H) det(A−H) 6 detA2

équivaut alors à la relation

det(B + J1) det(B − J1) 6 detB2

Notons C1, . . . , Cn les colonnes de B et B = (E1, . . . , En) la base canonique de
l’espaceMn,1(K). On a

det(B+ J1) = det
B

(C1 +E1, C2, . . . , Cn) et det(B− J1) = det
B

(C1−E1, C2, . . . , Cn)

Par multilinéarité du déterminant

det(B+J1) = detB+det
B

(E1, C2, . . . , Cn) et det(B−J1) = detB−det
B

(E1, C2, . . . , Cn)

d’où l’on tire

det(B + J1) det(B − J1) = detB2 − det
B

(E1, C2, . . . , Cn)2 6 detB2

Exercice 27 : [énoncé]
En retranchant la première ligne aux autres lignes, le déterminant de la matrice
A+ xJ apparaît comme le déterminant d’une matrice où figure des x seulement
sur la première ligne. En développant selon cette ligne, on obtient que
det(A+ xJ) est une fonction affine de la variable x.
De plus

det(A− xJ) = det(−tA− xJ) = (−1)2n det(tA+ xJ)
et puisque la matrice J est symétrique

det(A− xJ) = det(tA+ xtJ) = det(A+ xJ)

La fonction affine x 7→ det(A− xJ) est donc une fonction paire et par conséquent
c’est une fonction constante. On a alors

∀x ∈ R,det(A+ xJ) = det(A+ 0.J) = detA

Exercice 28 : [énoncé]
Raisonnons par récurrence sur n ∈ N?.
La propriété est immédiate pour n = 1.
Supposons la propriété vérifiée pour n > 1.
Soit A = (ai,j) ∈Mn+1(R) vérifiant les propriétés énoncées. En développant le
déterminant de A selon la première ligne, on obtient

detA =
n+1∑
j=1

(−1)1+ja1,j∆1,j

avec ∆1,j mineur d’indice (1, j) de la matrice A.
Puisque la matrice définissant le mineur ∆1,j est à coefficients positifs et que la
somme des coefficients de chaque ligne est inférieure à 1, on peut lui appliquer
l’hypothèse de récurrence et affirmer |∆1,j | 6 1.
On en déduit

|detA| 6
n+1∑
j=1

a1,j 6 1

Récurrence établie.

Exercice 29 : [énoncé]
a) En développant selon la première ligne,∣∣∣∣∣∣

0 a b
a 0 c
b c 0

∣∣∣∣∣∣ = −a
∣∣∣∣ a c
b 0

∣∣∣∣+ b

∣∣∣∣ a 0
b c

∣∣∣∣ = abc+ abc = 2abc

b) En sommant les colonnes sur la première et en factorisant∣∣∣∣∣∣
a b c
c a b
b c a

∣∣∣∣∣∣ = (a+ b+ c)

∣∣∣∣∣∣
1 b c
1 a b
1 c a

∣∣∣∣∣∣
En retirant la première ligne aux suivante et en développant sur la première
colonne∣∣∣∣∣∣
a b c
c a b
b c a

∣∣∣∣∣∣ = (a+ b+ c)
∣∣∣∣ a− b b− c
c− a a− b

∣∣∣∣ = (a+ b+ c)(a2 + b2 + c2− (ab+ bc+ ca))

c) En retranchant la première colonne aux suivantes puis en sommant les colonnes
sur la première

D =

∣∣∣∣∣∣
a+ b b+ c c+ a
a2 + b2 b2 + c2 c2 + a2

a3 + b3 b3 + c3 c3 + a3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a+ b c− a c− b
a2 + b2 c2 − a2 c2 − b2

a3 + b3 c3 − a3 c3 − b3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
2c c− a c− b
2c2 c2 − a2 c2 − b2

2c3 c3 − a3 c3 − b3

∣∣∣∣∣∣
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En factorisant par 2 puis en retranchant la première colonne aux suivantes

D = 2

∣∣∣∣∣∣
c −a −b
c2 −a2 −b2

c3 −a3 −b3

∣∣∣∣∣∣
Enfin en factorisant on se ramène à un déterminant de Vandermonde

D = 2abc

∣∣∣∣∣∣
1 1 1
c a b
c2 a2 b2

∣∣∣∣∣∣ = 2abc

∣∣∣∣∣∣
1 1 1
0 a− c b− c
0 a2 − c2 b2 − c2

∣∣∣∣∣∣
Finalement

D = 2abc(a− c)(b− c)
∣∣∣∣ 1 1
a+ c b+ c

∣∣∣∣ = 2abc(a− c)(b− c)(b− a)

d) En retranchant à chaque ligne la précédente (en commençant par la dernière)

D =

∣∣∣∣∣∣∣∣
a a a a
a b b b
a b c c
a b c d

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
a a a a
0 b− a b− a b− a
0 0 c− b c− b
0 0 0 d− c

∣∣∣∣∣∣∣∣ = a(b− a)(c− b)(d− c)

e) En sommant toutes les colonnes sur la première et en factorisant

D =

∣∣∣∣∣∣∣∣
a c c b
c a b c
c b a c
b c c a

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
a+ b+ 2c c c b
a+ b+ 2c a b c
a+ b+ 2c b a c
a+ b+ 2c c c a

∣∣∣∣∣∣∣∣ = (a+ b+ 2c)

∣∣∣∣∣∣∣∣
1 c c b
1 a b c
1 b a c
1 c c a

∣∣∣∣∣∣∣∣
En retranchant la première ligne aux suivantes et en factorisant

D = (a+ b+ 2c)

∣∣∣∣∣∣∣∣
1 c c b
0 a− c b− c c− b
0 b− c a− c c− b
0 0 0 a− b

∣∣∣∣∣∣∣∣
donc

D = (a+ b+ 2c)(a− b)
∣∣∣∣ a− c b− c
b− c a− c

∣∣∣∣ = (a+ b+ 2c)(a− b)((a− c)2 − (b− c)2)

puis
D = (a+ b+ 2c)(a− b)2(a+ b− 2c)

f) En retirant la première colonne aux suivantes

D =

∣∣∣∣∣∣
1 1 1

cos a cos b cos c
sin a sin b sin c

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 0 0

cos a cos b− cos a cos c− cos a
sin a sin b− sin a sin c− sin a

∣∣∣∣∣∣
Par la formule de factorisation

cos p− cos q = −2 sin p+ q

2 sin p− q2

D = −4 sin b− a2 sin c− a2

∣∣∣∣ sin b+a
2 sin c+a

2
cos b+a2 cos c+a2

∣∣∣∣
puis

D = −4 sin b− a2 sin c− a2 sin b− c2

Exercice 30 : [énoncé]

det(amax(i,j)) =

∣∣∣∣∣∣∣∣∣∣∣

a1 a2 a3 · · · an
a2 a2 a3 · · · an
a3 a3 a3 · · · an
...

...
...

...
an an an · · · an

∣∣∣∣∣∣∣∣∣∣∣
En retranchant à chaque colonne la précédente (en commençant par la première)

det(amax(i,j)) =

∣∣∣∣∣∣∣∣∣∣∣∣

a1 − a2 a2 − a3 · · · an−1 − an an
0 a2 − a3 an−1 − an an

0
. . .

...
...

. . . an−1 − an an
(0) 0 an

∣∣∣∣∣∣∣∣∣∣∣∣
et donc

det(amax(i,j)) = (a1 − a2)(a2 − a3) . . . (an−1 − an)an
Pour ai = i,

det(amax(i,j)) = (−1)n−1n

Pour ai = n+ 1− i,
det(amin(i,j)) = 1
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Exercice 31 : [énoncé]∣∣∣∣∣∣∣∣∣∣
a1 a2 · · · an

. . . . . .
...

. . . a2
(a1) a1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
a1 − a2 ?

. . .
a1 − a2

(0) a1

∣∣∣∣∣∣∣∣∣ = a1(a1−a2)n−1 via

C1 ← C1 − C2
C2 ← C2 − C3

...
Cn−1 ← Cn−1 − Cn

Exercice 32 : [énoncé]
Via Ln ← Ln − Ln−1, Ln−1 ← Ln−1 − Ln−2, . . . , L3 ← L3 − L2, L2 ← L2 − L1
(dans cet ordre)∣∣∣∣∣∣∣∣∣∣∣

S1 S1 S1 · · · S1
S1 S2 S2 · · · S2
S1 S2 S3 · · · S3
...

...
...

. . .
...

S1 S2 S3 · · · Sn

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

S1 S1 · · · · · · S1
2 · · · · · · 2

3 · · · 3

(0)
. . .

...
n

∣∣∣∣∣∣∣∣∣∣∣
= n!

Exercice 33 : [énoncé]
a) tAA = diag(δ, δ, δ, δ) avec δ = a2 + b2 + c2 + d2. Par suite
detA = ±(a2 + b2 + c2 + d2)2.
Or b, c, d fixés, par développement de déterminant, l’expression de detA est un
polynôme en a unitaire de degré 4 donc

detA = (a2 + b2 + c2 + d2)2

b) Avec des notations immédiates : AA′ = A′′ avec :
a′′ = aa′ − bb′ − cc′ − dd′

b′′ = ab′ + b′a+ cd′ − dc′

c′′ = ac′ − bd′ + ca′ + db′

d′′ = ad′ + bc′ − cb′ + da′

Par égalité des déterminants et considération de signes

(a2 + b2 + c2 + d2)2(a′2 + b′2 + c′2 + d′2)2 = (a′′2 + b′′2 + c′′2 + d′′2)2

et les quantités suivantes étant positives

(a2 + b2 + c2 + d2)(a′2 + b′2 + c′2 + d′2) = a′′2 + b′′2 + c′′2 + d′′2

avec a′′, b′′, c′′, d′′ ∈ Z par opérations.

Exercice 34 : [énoncé]
a) En factorisant les colonnes∣∣∣∣∣∣

a b c
a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣ = abc

∣∣∣∣∣∣
1 1 1
a b c
a2 b2 c2

∣∣∣∣∣∣
En retranchant à chaque ligne a fois la précédente∣∣∣∣∣∣

a b c
a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣ = abc

∣∣∣∣∣∣
1 1 1
0 b− a c− a
0 b(b− a) c(c− a)

∣∣∣∣∣∣
et enfin en développant∣∣∣∣∣∣

a b c
a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣ = abc(b− a)(c− a)(c− b)

b) En séparant la première colonne en deux∣∣∣∣∣∣
a+ b b+ c c+ a
a2 + b2 b2 + c2 c2 + a2

a3 + b3 b3 + c3 c3 + a3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a b+ c c+ a
a2 b2 + c2 c2 + a2

a3 b3 + c3 c3 + a3

∣∣∣∣∣∣+
∣∣∣∣∣∣
b b+ c c+ a
b2 b2 + c2 c2 + a2

b3 b3 + c3 c3 + a3

∣∣∣∣∣∣
Puis en procédant à des combinaisons judicieuses sur les colonnes∣∣∣∣∣∣

a+ b b+ c c+ a
a2 + b2 b2 + c2 c2 + a2

a3 + b3 b3 + c3 c3 + a3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a b c
a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣+

∣∣∣∣∣∣
b c a
b2 c2 a2

b3 c3 a3

∣∣∣∣∣∣
Enfin, par permutation des colonnes dans le deuxième déterminant∣∣∣∣∣∣

a+ b b+ c c+ a
a2 + b2 b2 + c2 c2 + a2

a3 + b3 b3 + c3 c3 + a3

∣∣∣∣∣∣ = 2

∣∣∣∣∣∣
a b c
a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣ = 2abc(b− a)(c− a)(c− b)

Exercice 35 : [énoncé]
En sommant toutes les colonnes sur la première

Dn = n(n+ 1)
2

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 n n− 1 . . . 2

1 1
. . . 3

... 2
. . .

...
...

...
. . . . . . n

1 n− 1 . . . 2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
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En retranchant à chaque ligne la précédente (en commençant par la fin)

Dn = n(n+ 1)
2

∣∣∣∣∣∣∣∣∣∣∣∣

1 n n− 1 . . . 2
0 1− n 1 . . . 1
... 1

. . .
...

...
...

. . . . . . 1
0 1 . . . 1 1− n

∣∣∣∣∣∣∣∣∣∣∣∣
On développe selon la première colonne et on se ramène à

Dn = n(n+ 1)
2

∣∣∣∣∣∣∣
a (b)

. . .
(b) a

∣∣∣∣∣∣∣
[n−1]

avec a = 1− n et b = 1. La poursuite du calcul donne alors

Dn = n(n+ 1)
2 (−1)n−1nn−2

d’où la formule proposée.

Exercice 36 : [énoncé]
a) En retirant la première colonne aux suivantes

∆n(x) =

∣∣∣∣∣∣∣∣∣
λ1 + x a− λ1 · · · a− λ1
b+ x λ2 − b (a− b)
...

. . .
b+ x (0) λn − b

∣∣∣∣∣∣∣∣∣
[n]

Puis en développant selon la première colonne on obtient une expression de la
forme.

∆n(x) = αx+ β

b) Par déterminant triangulaire

∆n(−a) =
n∏
i=1

(λi − a) et ∆n(−b) =
n∏
i=1

(λi − b)

On en déduit

α =

n∏
i=1

(λi − a)−
n∏
i=1

(λi − b)

b− a
et β =

b
n∏
i=1

(λi − a)− a
n∏
i=1

(λi − b)

b− a

Exercice 37 : [énoncé]
En retirant la première colonne aux autres, on obtient un déterminant où ne
figurent des x que sur la première colonne. En développant selon cette première
colonne, on obtient une expression affine de la variable x.∣∣∣∣∣∣∣

a1 + x (x)
. . .

(x) an + x

∣∣∣∣∣∣∣ = αx+ β

Il reste à déterminer les réels α, β exprimant cette fonction affine.
D’une part

β =

∣∣∣∣∣∣∣
a1 + x (x)

. . .
(x) an + x

∣∣∣∣∣∣∣
x=0

=

∣∣∣∣∣∣∣
a1 (0)

. . .
(0) an

∣∣∣∣∣∣∣ = a1 . . . an

et d’autre part

α = d
dx

∣∣∣∣∣∣∣
a1 + x (x)

. . .
(x) an + x

∣∣∣∣∣∣∣
′

x=0

La dérivée d’un déterminant est la somme des déterminants obtenus lorsqu’on ne
dérive qu’une colonne

α =
n∑
j=1

∣∣∣∣∣∣∣
a1 1 (0)

...
(0) 1 an

∣∣∣∣∣∣∣
où la colonne formée de 1 est à la position j. Chaque déterminant se calcule en
développant selon la ligne ne contenant que le coefficient 1 et l’on obtient

α =
n∑
j=1

∏
i 6=j

ai

Exercice 38 : [énoncé]

Dn = det
(

1
ai + bj

)
16i,j6n

=

∣∣∣∣∣∣∣∣∣∣

1
a1+b1

· · · 1
a1+bn−1

1
a1+bn

...
...

...
1

an−1+b1
· · · 1

an−1+bn−1
1

an−1+bn
1

an+b1
· · · 1

an+bn−1
1

an+bn

∣∣∣∣∣∣∣∣∣∣
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Via C1 ← C1 − Cn, . . . , Cn−1 ← Cn−1 − Cn puis factorisation :

Dn = (b1 − bn) . . . (bn−1 − bn)
(a1 + bn) . . . (an + bn)

∣∣∣∣∣∣∣∣∣∣

1
a1+b1

· · · 1
a1+bn−1

1
...

...
...

1
an−1+b1

· · · 1
an−1+bn−1

1
1

an+b1
· · · 1

an+bn−1
1

∣∣∣∣∣∣∣∣∣∣
Via L1 ← L1 − Ln, . . . , Ln−1 ← Ln−1 − Ln puis factorisation :

Dn = (b1 − bn) . . . (bn−1 − bn)(a1 − an) . . . (an−1 − an)
(a1 + bn) . . . (an + bn)(an + b1) . . . (an + bn−1)

∣∣∣∣∣∣∣∣∣
1

a1+b1
· · · 1

a1+bn−1
0

...
...

...
1

an−1+b1
· · · 1

an−1+bn−1
0

1 · · · 1 1

∣∣∣∣∣∣∣∣∣
Par conséquent

Dn =

∏
16i<j6n

(aj − ai)(bj − bi)∏
16i,j6n

(ai + bj)

Puisque ∏
16i<j6n

(j − i) = 1!2! . . . (n− 1)!

et ∏
16i,j6n

(i+ j) = (n+ 1)!
1!

(n+ 2)!
2! · · · (2n)!

n!

on obtient dans le cas particulier

Dn = (1!2! . . . (n− 1)!)3n!
(n+ 1)!(n+ 2)! . . . (2n)!

Exercice 39 : [énoncé]
a) Par l’absurde, supposons que Pn possède une racine multiple z. Celle-ci vérifie

Pn(z) = P ′n(z) = 0

On en tire
zn − z + 1 = 0(1) et nzn−1 = 1 (2)

(1) et (2) donnent
(n− 1)z = n (3)

(2) impose |z| 6 1 alors que (3) impose |z| > 1. C’est absurde.
b) Posons χ(X) le polynôme caractéristique de la matrice étudiée. On vérifie

χ(zi) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 + z1 − zi 1 (1)
. . .

...
1
...

(1) 1 1 + zn − zi

∣∣∣∣∣∣∣∣∣∣∣∣
En retranchant la i-ème colonne à toutes les autres et en développant par rapport
à la ième ligne, on obtient

χ(zi) =
n∏

j=1,j 6=i
(zj − zi) = (−1)n−1P ′(zi)

Cependant les polynômes χ et P ′ ne sont pas de même degré. . . En revanche, les
polynômes χ et (−1)n(P − P ′) ont même degré n, même coefficient dominant
(−1)n et prennent les mêmes valeurs en les n points distincts z1, . . . , zn. On en
déduit qu’ils sont égaux. En particulier le déterminant cherché est

χ(0) = (−1)n (P (0)− P ′(0)) = 2(−1)n

Exercice 40 : [énoncé]
On décompose la première colonne en somme de deux colonnes

a+ λ1

a

...
a

 =


λ1

0
...
0

+


a

a

...
a

 = λ1E1 + aC

avec E1 colonne élémentaire et C colonne constituée de 1.
On décompose de même chacune des colonnes. On peut écrire

detH = det (λ1E1 + aC, . . . , λnEn + aC)

On développe par multilinéarité et on simplifie sachant que le déterminant est nul
lorsque la colonne C apparaît deux fois. On obtient

detH = det(λ1E1 + · · ·+ λnEn) +
n∑
i=1

det(λ1E1, . . . , aC, . . . , λnEn)
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et donc

detH =
n∏
i=1

λi + a

n∑
i=1

 n∏
k=1,k 6=i

λk



Exercice 41 : [énoncé]
Notons Dn le déterminant recherché.
On décompose la première colonne en somme de deux colonnes

a1 + b1

b1

...
b1

 =


a1

0
...
0

+


b1

b1

...
b1

 = a1E1 + b1C

avec E1 colonne élémentaire et C colonne constituée de 1.
On décompose de même chacune des colonnes. On peut écrire

Dn = det (a1E1 + b1C, . . . , anEn + bnC)

On développe par multilinéarité et on simplifie sachant que le déterminant est nul
lorsque la colonne C apparaît deux fois. On obtient

Dn = det(a1E1 + · · ·+ anEn) +
n∑
i=1

det(a1E1, . . . , biC, . . . , anEn)

et donc

Dn(a1, . . . , an, b1, . . . , bn) =
n∏
i=1

ai +
n∑
i=1

bi n∏
k=1,k 6=i

ak



Exercice 42 : [énoncé]
a) cos(0.xi) est un polynôme en cos(xi) de degré 0.
cos(1.xi) est un polynôme en cos(xi) de degré 1.
Par récurrence double, on montre que cos(jxi) est un polynôme en cos(xi) de
degré j en exploitant la relation :

cos ((j + 1)xi) + cos ((j − 1)xi) = 2 cos(xi) cos(jxi)

On peut aussi par récurrence affirmer que le coefficient dominant de cos(jxi) est
2j−1 pour j > 1.

On peut même être plus précis et affirmer que cos ((j − 1)xi) est une expression
polynomiale de degré j − 1 en cos(xi).
d) detMn est une expression polynomiale en cos(x1) de degré au plus n− 1.
Puisque cos(x2), . . . , cos(xn) sont n− 1 racines distinctes du polynôme
correspondant, on peut écrire

detMn = λ(x2, . . . , xn)
n∏
j=2

(cosxj − cosx1)

L’expression du coefficient λ(x2, . . . , xn) est polynomiale en cos(x2) de degré au
plus n− 2 (car il y a déjà le facteur cos(x2)− cos(x1) dans le produit) et puisque
cos(x3), . . . , cos(xn) en sont des racines distinctes, on peut écrire

λ(x2, . . . , xn) = µ(x3, . . . , xn)
n∏
j=3

(cosxj − cosx2)

En répétant la démarche, on obtient

detMn = αn
∏

16i<j6n
(cosxj − cosxi) = αnP

Il reste à déterminer la valeur de αn. . .
Un calcul immédiat donne α2 = 1.
En développant selon la dernière ligne

detMn = cos((n− 1)xn) detMn−1 + · · ·

où les points de suspensions contiennent une expression polynomiale en cos(xn) de
degré < n− 1.
En identifiant les coefficients dominant des expressions polynomiale en cos(xn)
dans cette égalité, on obtient

αn = 2n−2αn−1

Cette relation permet de conclure

αn = 2
(n−1)(n−2)

2

Exercice 43 : [énoncé]
a) Il y autant de facteurs que de paires {i, j} i.e.(

n

2

)
= n(n− 1)

2
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b)

M =


1 cosx1 cos(2x1) cos(3x1)
1 cosx2 cos(2x2) cos(3x2)
1 cosx3 cos(2x3) cos(3x3)
1 cosx4 cos(2x4) cos(3x4)


c) La propriété est immédiate pour j = 1 ou j = 2.
Pour j = 3, cos(2xi) = 2 cos2 xi − 1.
Pour j = 4, cos(3xi) = 4 cos3 xi − 3 cosxi.
d) detM est une expression polynomiale en cos(x1) de degré au plus 3.
Puisque cos(x2), cos(x3), cos(x4) sont 3 racines distinctes du polynôme
correspondant, on peut écrire

detM = λ(x2, x3, x4)
4∏
j=2

(cosx1 − cosxj)

L’expression du coefficient λ(x2, x3, x4) est polynomiale cos(x2) de degré au plus 2
(car il y a déjà le facteur cos(x1)− cos(x2) dans le produit) et puisque
cos(x3), cos(x4) en sont des racines distinctes, on peut écrire

λ(x2, . . . , xn) = µ(x3, x4)
4∏
j=3

(cosx2 − cosxj)

En répétant la démarche, on obtient

detM = α
∏

16i<j64
(cosxi − cosxj) = αP4

Il reste à déterminer la valeur de α. . .
Une démarche analogue à la précédente aurait donnée∣∣∣∣∣∣

1 cosx1 cos(2x1)
1 cosx2 cos(2x2)
1 cosx3 cos(2x3)

∣∣∣∣∣∣ = βP3

et ∣∣∣∣ 1 cosx1
1 cosx2

∣∣∣∣ = γP2 avec γ = −1

En développant detM selon la dernière ligne et en considérant le coefficient
dominant de detM vu comme polynôme en cos(x3) on obtient

4βP3 = (−1)3αP3

et de façon analogue on a aussi

2γP2 = (−1)2βP2

On en déduit
α = 8

Puisque CardS4 = 24, detM peut se voir comme la somme de 24 termes qui sont
tous inférieurs à 1 en valeur absolue. On en déduit

|detM | 6 24

Certains des termes (par exemple 1× cos(x1)× cos(2x2)× cos(3x3)) étant
strictement inférieurs à 1 en valeur absolue, on a aussi

|detM | < 24

Exercice 44 : [énoncé]
Par les opérations élémentaires C1 ← C1 + Cn puis L1 ← L1 + Ln on obtient

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 · · · 0 1
0 0 1 · · · 1
... −1

. . . . . .
...

0
...

. . . . . . 1
−1 −1 · · · −1 0

∣∣∣∣∣∣∣∣∣∣∣∣
[n]

En développant, on parvient à la relation de récurrence

Dn = Dn−2

Comme D1 = 0 et D2 = 1, on a

Dn = 1 + (−1)n

2

Exercice 45 : [énoncé]
Par les opérations élémentaires : C1 ← C1 − Cn puis L1 ← L1 − Ln on obtient

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣

−2 0 · · · 0 1
0 0 (1)
...

. . .

0
. . .

1 (1) 0

∣∣∣∣∣∣∣∣∣∣∣∣
[n]
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En développant, on parvient à la relation de récurrence

Dn = −2Dn−1 −Dn−2

La suite (Dn) est une suite récurrente linéaire d’ordre 2 d’équation caractéristique
r2 + 2r + 1 = 0 de racine double −1.
Sachant D1 = 0 et D2 = −1, on parvient à

Dn = (−1)n−1(n− 1)

Exercice 46 : [énoncé]
En développant selon la deuxième ligne

Dn = −

∣∣∣∣∣∣∣
1 ?

. . .
(0) 1

∣∣∣∣∣∣∣
[n−1]

+Dn−1 = −1 +Dn−1

Puisque D1 = 1 on obtient
Dn = 2− n

Exercice 47 : [énoncé]
En décomposant la dernière colonne en somme de deux colonnes

Dn =

∣∣∣∣∣∣∣∣∣∣
2 1 · · · 1

1
. . . . . .

...
...

. . . n 1
1 · · · 1 1

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
2 (1) 0

. . .
...

n 0
(1) n

∣∣∣∣∣∣∣∣∣
[n]

En retranchant la dernière colonne à chacune des autres∣∣∣∣∣∣∣∣∣∣
2 1 · · · 1

1
. . . . . .

...
...

. . . n 1
1 · · · 1 1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
1 (0) 1

. . . . . .
...

n− 1 1
(0) 1

∣∣∣∣∣∣∣∣∣ = (n− 1)!

En développant selon la dernière colonne∣∣∣∣∣∣∣∣∣
2 (1) 0

. . .
...

n 0
(1) n

∣∣∣∣∣∣∣∣∣
[n]

= nDn−1

Ainsi
Dn = (n− 1)! + nDn−1

Par suite
Dn

n! = 1
n

+ Dn−1

(n− 1)!
donc

Dn

n! = D0 +
n∑
k=1

1
k

puis
Dn = (1 +Hn)n!

Exercice 48 : [énoncé]
En décomposant la première ligne en somme de deux lignes

Dn =

∣∣∣∣∣∣∣∣∣
a 0 · · · 0
a a+ b b
...

. . .
a a a+ b

∣∣∣∣∣∣∣∣∣
[n]

+

∣∣∣∣∣∣∣∣∣
b b · · · b
a a+ b b
...

. . .
a a a+ b

∣∣∣∣∣∣∣∣∣
[n]

En retranchant la première colonne à toutes les autres dans le second
déterminant, on obtient

Dn = aDn−1 + bn

Par récurrence, on en déduit

Dn = an+1 − bn+1

a− b
si a 6= b

et
Dn = (n+ 1)an si a = b

Exercice 49 : [énoncé]
En retirant à chaque ligne la précédente (et en commençant par la dernière)

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 · · · · · · 0

0 C0
1 C1

1 0
...

... C0
2 C1

2 C2
2

. . .
...

... C0
3 C1

3 C2
3

. . . 0
...

. . . Cn−2
n−2

0 C0
n−1 C1

n−1 C2
n−1 · · · Cn−2

n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
[n]
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en vertu de la formule du triangle de Pascal

Ckn = Ck−1
n−1 + Ckn−1

En développant selon la première colonne, on obtient

Dn = Dn−1

Ainsi
Dn = D1 = 1

Exercice 50 : [énoncé]
En retirant à chaque ligne la précédente (et en commençant par la dernière) on
obtient

Dn+1 =

∣∣∣∣∣∣∣∣∣
C0

0 C1
1 · · · Cnn

0 C0
1 · · · Cn−1

n
...

...
...

0 C0
n · · · Cn−1

2n−1

∣∣∣∣∣∣∣∣∣
[n+1]

en vertu de la formule du triangle de Pascal

Ckn = Ck−1
n−1 + Ckn−1

En développant selon la première colonne

Dn+1 =

∣∣∣∣∣∣∣
C0

1 · · · Cn−1
n

...
...

C0
n · · · Cn−1

2n−1

∣∣∣∣∣∣∣
[n]

Via Cn ← Cn − Cn−1, . . . , C2 ← C2 − C1 et en exploitant C0
p = C0

p+1, on obtient

Dn+1 =

∣∣∣∣∣∣∣
C0

0 · · · Cn−1
n−1

...
...

C0
n−1 · · · Cn−1

2n−2

∣∣∣∣∣∣∣ = Dn

Finalement
Dn = 1

Exercice 51 : [énoncé]
Cas b = c :
C’est un calcul classique, on effectue C1 ← C1 + · · ·+ Cn puis Li ← Li − L1
(i = 2, . . . , n) pour triangulariser le déterminant et obtenir

detAn = (a+ (n− 1)b)(a− b)n−1

Cas b 6= c :
Posons Dn = detAn. A chaque ligne on retranche la précédente

Dn =

∣∣∣∣∣∣∣∣∣
a b · · · b

c− a a− b (0)
. . . . . .

(0) c− a a− b

∣∣∣∣∣∣∣∣∣
et on développe selon la dernière colonne

Dn = b(a− c)n−1 + (a− b)Dn−1 (avec n > 2)

Ainsi

Dn = b(a− c)n−1 + b(a− b)(a− c)n−2 + · · ·+ b(a− b)n−2(a− c)1 + (a− b)n−1D1

Par sommation géométrique des premiers termes

Dn = b(a− c)n−1
1−

(
a−b
a−c

)n−1

1− a−b
a−c

+ a(a− b)n−1

puis après simplification

Dn = b(a− c)n − c(a− b)n

b− c

Exercice 52 : [énoncé]
Par développement d’un déterminant tridiagonal,

Dn = (a+ b)Dn−1 − abDn−2

La suite (Dn) est une suite récurrente linéaire d’ordre 2 d’équation caractéristique
r2 − (a+ b)r + ab = 0 de racines a et b.
Si a 6= b alors on peut écrire Dn = λan + µbn et compte tenu des valeurs initiales,
on obtient

Dn = an+1 − bn+1

a− b
Si a = b alors on peut écrire Dn = (λn+ µ)an et on parvient cette fois-ci à

Dn = (n+ 1)an
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Exercice 53 : [énoncé]
En développant par rapport à la première colonne, puis par rapport à la première
ligne dans le second déterminant on obtient pour n > 2

Dn = (a+ b)Dn−1 − abDn−2

(Dn) est une suite récurrente linéaire d’ordre 2 d’équation caractéristique
r2 − (a+ b)r + ab = 0 de racines distinctes a et b.
On a Dn = λan + µbn avec λ, µ ∈ C. D0 = 1 et D1 = a+ b donnent

Dn = an+1 − bn+1

a− b

Exercice 54 : [énoncé]
En développant par rapport à la première colonne, puis par rapport à la première
ligne dans le second déterminant on obtient pour n > 2

Dn = (1 + x2)Dn−1 − x2Dn−2

(Dn) est une suite récurrente linéaire d’ordre 2 d’équation caractéristique
r2 − (1 + x2)r + x2 = 0 de racines 1 et x2.
Si x2 6= 1 alors Dn = λ+ µx2n avec λ, µ ∈ C
D0 = 1 et D1 = 1 + x2 donnent

Dn = 1− x2n+2

1− x2

Si x2 = 1 alors Dn = λn+ µ.
D0 = 1 et D1 = 2 donnent

Dn = n+ 1

Exercice 55 : [énoncé]
En développant par rapport à la première colonne, puis par rapport à la première
ligne dans le second déterminant on obtient pour n > 2

Dn = 2 cos θDn−1 −Dn−2

(Dn) est une suite récurrente linéaire d’ordre 2 d’équation caractéristique
r2 − 2 cos θr + 1 = 0 de racines eiθ et e−iθ.
Si θ 6= 0 [π] alors Dn = λ cosnθ + µ sinnθ. D0 = 1 et D1 = 2 cos θ donnent{

λ = 1
λ cos θ + µ sin θ = 2 cos θ

puis {
λ = 1
µ = 1/tan θ

Ainsi
Dn = sin(n+ 1)θ

sin θ
Si θ = 0 [2π] alors Dn = λn+ µ. D0 = 1 et D1 = 2 donnent

Dn = n+ 1

Si θ = π [2π] alors Dn = (λn+ µ)(−1)n. D0 = 1 et D1 = 2 donnent

Dn = (−1)n(n+ 1)

Exercice 56 : [énoncé]
En développant selon la première colonne, puis la première ligne et en
recommençant : Dn = (−n)× 1× (2− n)× 3 etc. . .
Si n est pair le développement s’arrête sur le calcul de∣∣∣∣ n− 1 0

1 0

∣∣∣∣ = 0

Si n est impair le développement s’arrête par l’étape∣∣∣∣∣∣∣∣
0 n− 2 0 0
3 0 n− 1 0
0 2 0 n
0 0 1 0

∣∣∣∣∣∣∣∣ = −3

∣∣∣∣∣∣
n− 2 0 0

2 0 n
0 1 0

∣∣∣∣∣∣ = −3(n− 2)
∣∣∣∣ 0 n

1 n

∣∣∣∣ = 3n(n− 2)

En écrivant n = 2p+ 1, on parvient à

Dn = (−1)p+1(1× 3× · · · × 2p+ 1)2

Exercice 57 : [énoncé]
En développant par rapport à la première colonne, puis par rapport à la première
ligne dans le second déterminant on obtient pour n > 2

Dn = 2aDn−1 − a2Dn−2

(Dn) est une suite récurrente linéaire d’ordre 2 d’équation caractéristique
r2 − 2ar + a2 = 0 de racines double a.
On a alors Dn = (λn+ µ)an avec λ, µ ∈ K.
D0 = 1 et D1 = 2a donnent

Dn = (n+ 1)an
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Exercice 58 : [énoncé]
D’une part ∣∣∣∣ a −b

b a

∣∣∣∣ ∣∣∣∣ c −d
d c

∣∣∣∣ = (a2 + b2)(c2 + d2)

D’autre part∣∣∣∣ a −b
b a

∣∣∣∣ ∣∣∣∣ c −d
d c

∣∣∣∣ =
∣∣∣∣ ac− bd −(ad+ bc)
ad+ bc ac− bd

∣∣∣∣ = (ac− bd)2 + (ad+ bc)2

Exercice 59 : [énoncé]
a) Après calculs

det(A− λI3) = (1− λ)(4− λ)(2− λ)
On a donc

det(A− λI3) = 0⇔ λ = 1, 2 ou 4
b) Après résolution de l’équation f(x) = λx pour λ = 1, 2 ou 4, on obtient

ε1 = e1 − 2e2 + 2e3, ε2 = e1 − e2 + e3 et ε3 = e1 − 2e2 + e3

convenables.

Exercice 60 : [énoncé]
Notons A = (ai,j) et B = (bi,j). On sait

det(A+ xB) =
∑
σ∈Sn

ε(σ)
n∏
i=1

(aσ(i),i + xbσ(i),i)

La fonction x 7→ det(A+ xB) est continue (car polynomiale) et ne s’annule pas en
0 (car det(A) 6= 0), donc elle ne s’annule pas sur un voisinage de 0 ce qui résout le
problème posé.

Exercice 61 : [énoncé]
a) En écrivant la première colonne comme somme de deux colonnes on obtient

detM = 1− (−1)nαn

b) Si detM 6= 0 alors M est inversible et rgM = n.
Si detM = 0 alors M n’est pas inversible donc rgM < n.
Or M possède une matrice extraite de rang n− 1 donc rgM = n− 1.
Finalement

rgM =
{
n− 1 si − α ∈ Un
n sinon

Exercice 62 : [énoncé]
a) En sommant toutes les colonnes sur la première colonne

detM(a, b) = (a+ (n− 1)b)

∣∣∣∣∣∣∣∣∣
1 b · · · b
1 a b
...

. . .
1 a

∣∣∣∣∣∣∣∣∣
puis en retirant la première ligne au suivante

detM(a, b) = (a+ (n− 1)b)

∣∣∣∣∣∣∣∣∣
1 b · · · b
0 a− b 0
...

. . . . . .
0 · · · 0 a− b

∣∣∣∣∣∣∣∣∣ = (a+ (n− 1)b)(b− a)n−1

b) Si a = b = 0 alors
rgM(a, b) = 0

Si a = b 6= 0 alors
rg(M(a, b)) = 1

Si a 6= b et a+ (n− 1)b 6= 0 alors

rgM(a, b) = n

Si a 6= b et a+ (n− 1)b = 0 alors

rgM(a, b) = n− 1

car M(a, b) possède une matrice de rang n− 1 inversible puisque a 6= b et
a+ (n− 2)b 6= 0.

Exercice 63 : [énoncé]
Soit A une matrice de GLn(Z). Le déterminant de A ainsi que celui de son inverse
sont des entiers. Puisque

detA× detA−1 = 1

on en déduit detA = ±1. Inversement, si une matrice A ∈Mn(Z) est de
déterminant ±1 alors son inverse, qui s’exprime à l’aide de la comatrice de A, est
à coefficients entiers. Ainsi les matrices de GLn(Z) sont les matrices à coefficients
entiers de déterminant ±1.
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Soit A une matrice de GLn(Z) dont la première ligne est formée par les entiers
a1, . . . , an. En développant le calcul de detA selon la première ligne de la matrice,
on obtient une relation de la forme

a1u1 + · · ·+ anun = 1

avec les uk égaux, au signe près, à des mineurs de la matrice A. Ces uk sont donc
des entiers et la relation qui précède assure que les entiers a1, . . . , an sont premiers
dans leur ensemble.
Pour établir la réciproque, raisonnons par récurrence sur n > 2 pour établir qu’il
existe une matrice à coefficients dans Z, de déterminant 1, dont la première ligne
est a1, . . . , an premiers dans leur ensemble.
Pour n = 2. Soient a, b deux entiers premiers entre eux. Par l’égalité de Bézout, on
peut écrire

au+ bv = 1 avec u, v ∈ Z

Considérons alors la matrice

A =
(

a b
−v u

)
∈M2(Z)

Celle-ci étant de déterminant 1, elle appartient à GL2(Z).
Supposons la propriété établie au rang n > 2.
Soient a1, . . . , an, an+1 des entiers premiers dans leur ensemble. Posons

d = pgcd(a1, . . . , an)

Les entiers d et an+1 étant premiers entre eux, il existe u, v ∈ Z tels que

du+ an+1v = 1

De plus, on peut écrire
a1 = da′1, . . . , an = da′n

avec a′1, . . . , a′n premiers dans leur ensemble.
Par hypothèse de récurrence, il existe une matrice

a′1 a′2 · · · a′n
α2,1 α2,2 · · · α2,n
...

...
...

αn,1 αn,2 · · · αn,n

 ∈Mn(Z)

de déterminant 1.

Considérons alors la matrice
da′1 da′2 · · · da′n an+1
α2,1 α2,2 · · · α2,n 0
...

...
...

...
αn,1 αn,2 · · · αn,n 0
−va′1 −va′2 · · · −va′n u


Celle-ci est à coefficients entiers et en développant son déterminant par rapport à
la dernière colonne, on obtient 1.
Récurrence établie.

Exercice 64 : [énoncé]
On a H−1 = 1

detH
tcomH avec comH = (Hi,j).

Par opérations élémentaires,

det
(

1
ai + bj

)
16i,j6n

=

∏
16i<j6n

(aj − ai)(bj − bi)∏
16i,j6n

(ai + bj)

En simplifiant les facteurs communs, on obtient

Hk,`

detH = (−1)k+`(n+ k − 1)!(n+ `− 1)!
(k + `− 1)(k − 1)!2(`− 1)!2(n− k)!(n− `)!

puis

Hk,`

detH = (−1)k+`(k + `− 1)
(
n+ k − 1
k + `− 1

)(
n+ `− 1
k + `− 1

)(
k + `− 2
k − 1

)
∈ Z

Exercice 65 : [énoncé]
a) On a ∣∣∣∣∣∣

1 1 1
a b c
a2 b2 c2

∣∣∣∣∣∣ = (b− a)(c− a)(c− b) 6= 0

Par les formules de Cramer

x = (b− d)(c− d)(c− b)
(b− a)(c− a)(c− b)

y = (d− a)(c− a)(c− d)
(b− a)(c− a)(c− b)

z = (b− a)(d− a)(d− b)
(b− a)(c− a)(c− b)
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b) On a ∣∣∣∣∣∣
1 1 1
a b c
a3 b3 c3

∣∣∣∣∣∣ = (b− a)(c− a)(c− b)(a+ b+ c) 6= 0

Par les formules de Cramer

x = (b− d)(c− d)(c− b)(d+ b+ c)
(b− a)(c− a)(c− b)(a+ b+ c)

et y, z par symétrie.

Exercice 66 : [énoncé]
Le système est de Cramer via déterminant de Vandermonde.
(1) + (2) + (3) donne

x = a+ b+ c

3
(1) + j2(2) + j(3) donne

y = a+ bj2 + cj

3
et (1) + j(2) + j2(3) donne

z = a+ bj + cj2

3

Exercice 67 : [énoncé]
Le déterminant du système est∣∣∣∣∣∣

1 a a2

ā 1 a
ā2 ā 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 a a2

0 1− |a|2 a(1− |a|2)
0 ā(1− |a|2) 1− |a|4

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 a a2

0 1− |a|2 a(1− |a|2)
0 0 1− |a|2

∣∣∣∣∣∣
Si |a| 6= 1 alors est le système est de Cramer et homogène

S = {(0, 0, 0)}

Si |a| = 1 alors le système équivaut à une seule équation

x+ ay + a2z = 0

car les deux autres lui sont proportionnelles. On en déduit

S =
{

(−ay − a2z, y, z)/y, z ∈ C
}

Exercice 68 : [énoncé]
Les deux systèmes proposés sont de Cramer via déterminant de Vandermonde.
a) Si x, y, z est sa solution alors P (a) = P (b) = P (c) = 0 et donc

P = (X − a)(X − b)(X − c)

On en déduit
x = abc, y = −(ab+ bc+ ca) et z = a+ b+ c

b) Introduisons
P = X4 − (x+ yX + zX2)

Si x, y, z est solution alors P (a) = P (b) = P (c) = 0 et donc

P = (X − a)(X − b)(X − c)(X − d)

Puisque le coefficient de X3 dans P est nul, la somme des racines de P est nulle et
donc

a+ b+ c+ d = 0
puis

P = (X − a)(X − b)(X − c)(X + (a+ b+ c))
En développant, on obtient

x = σ3σ1, y = σ3 − σ1σ2 et z = σ2
1 − σ2

avec σ1, σ2, σ3 les expressions symétriques élémentaires en a, b, c.

Exercice 69 : [énoncé]
a) Pour A = (ai,j) ∈Mn(C) on a

detA =
∑
σ∈Sn

ε(σ)
n∏
i=1

ai,σ(i)

Par suite si tous les ai,j sont entiers, detA l’est aussi.
b) (⇒) Si A et A−1 sont à coefficients entiers alors detA ∈ Z et detA−1 ∈ Z.
Or detA.detA−1 = det(AA−1) = det In = 1
Donc detA = detA−1 = ±1.
(⇐) Si detA = ±1 alors A est inversible car de déterminant non nul
Son inverse est

A−1 = 1
detA

tcomA = ±tcomA

Or la comatrice de A est formée des cofacteurs de A qui sont des entiers car égaux
à des déterminants de matrices à coefficients entiers (car extraites de A).
Ainsi A−1 est une matrice à coefficients entiers
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Exercice 70 : [énoncé]
a) Si rg(A) = n alors A est inversible et sa comatrice l’est alors aussi donc

rg(com(A)) = n

Si rg(A) 6 n− 2 alors A ne possède pas de déterminant extrait d’ordre n− 1 non
nul. Par suite com(A) = On et donc

rg(com(A)) = 0

Si rg(A) = n− 1, exploitons la relation Atcom(A) = det(A).In = On.
Soient f et g les endomorphismes de Kn canoniquement associés aux matrices
A et tcom(A).
On a f ◦ g = 0 donc Img ⊂ ker f . Comme rg(f) = n− 1, dim ker f = 1 et par suite
rg(g) 6 1.
Ainsi rg(com(A)) 6 1.
Comme rg(A) = n− 1, il existe un déterminant extrait non nul d’ordre n− 1 et
par suite com(A) 6= On.
Finalement

rg(com(A)) = 1

b) Comme Atcom(A) = det(A).In on a

det(A) det com(A) = (detA)n

Si detA 6= 0 alors
det com(A) = (detA)n−1

Si detA = 0 alors rg(com(A)) 6 1 < n donc

det(com(A)) = 0

c) Si rg(A) = n alors

tcom(com(A)).com(A) = det(com(A)).In = det(A)n−1.In

Donc
tcom(com(A)) = det(A)n−1com(A)−1

Or tcom(A).A = det(A).In donc

tcom(A) = det(A).A−1

puis sachant t(B)−1 = (tB)−1 on a :

com(com(A)) = det(A)n−2A

Si rg(A) 6 n− 1 et n > 3 alors rg(comA) 6 1 6 n− 2 donc

com(com(A)) = On

Si n = 2 alors pour

A =
(
a b
c d

)
, com(A) =

(
d −c
−b a

)
et com(com(A)) = A

Exercice 71 : [énoncé]
Cas A et B inversibles
Puisque A et B commutent, leurs inverses commutent aussi
On en déduit

1
detA

t(comA) 1
detB

t(comB) = 1
detB

t(comB) 1
detA

t(comA)

En simplifiant et en transposant on obtient

com(A)com(B) = com(B)com(A)

Cas général
Pour p assez grand, les matrices

A+ 1
p
In et B + 1

p
In

sont inversibles et commutent donc

com
(
A+ 1

p
In

)
com

(
B + 1

p
In

)
= com

(
B + 1

p
In

)
com

(
A+ 1

p
In

)
En passant à la limite quand p→ +∞, on obtient

com(A)com(B) = com(B)com(A)

Exercice 72 : [énoncé]
Soit M solution de l’équation étudiée.
Puisque

t(comM)M = det(M)In
on obtient

tMM = det(M)In
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et donc
tr(tMM) = ndetM

Or

tr(tMM) =
n∑

i,j=1
m2
i,j

donc detM > 0.
De plus, en passant la relation tMM = det(M)In au déterminant, on obtient

(detM)2 = (detM)n

Cas n 6= 2
On obtient detM = 0 ou 1.
Dans le cas detM = 0, on obtient tr(tMM) = 0 et donc M = On.
Dans le cas detM = 1, on obtient tMM = In et donc M est une matrice
orthogonale de déterminant 1.
Inversement, la matrice nulle et solution de l’équation étudiée et si M est une
matrice orthogonale de déterminant 1 alors

t(comM)M = In = tMM

ce qui donne comM = M sachant M inversible.
Cas n = 2
Pour M =

(
a b
c d

)
, on a comM =

(
d −c
−b a

)
et donc comM = M si, et

seulement si, M est de la forme (
a −b
b a

)

Exercice 73 : [énoncé]
a) On sait AB = BA = det(A)In.
Si rgA = n alors A est inversible donc B aussi et rgB = n.
Si rgA = n− 1 alors dim kerA = 1 et puisque AB = On, ImB ⊂ kerA puis
rgB 6 1.
De plus, la matrice A étant de rang exactement n− 1, elle possède un mineur non
nul et donc B 6= On. Finalement rgB = 1.
Si rgA 6 n− 2 alors tous les mineurs de A sont nuls et donc B = On puis rgB = 0.
b) Puisque rgA = n− 1, dim kerA = 1 et dim ker tA = 1.
Il existe donc deux colonnes X et Y non nulles telles que

kerA = VectX et ker tA = VectY

Soit M ∈Mn(K) vérifiant AM = MA = On.
Puisque AM = On, ImM ⊂ kerA = VectX et donc on peut écrire par blocs

M = (λ1X | . . . | λnX) = XL

avec L = ( λ1 . . . λn) .
La relation MA = On donne alors XLA = On et puisque X 6= 0, on obtient
LA = 0 puis tAtL = 0. Ceci permet alors d’écrire L sous la forme L = λtY puis
M sous la forme

M = λXtY

Inversement une telle matrice vérifie AM = MA = On et donc

{M ∈Mn(K)/AM = MA = On} = Vect(XtY )

Cet espace de solution étant une droite et la matrice B étant un élément non nul
de celle-ci, il est dès lors immédiat d’affirmer que toute matrice C ∈Mn(K)
vérifiant AC = CA = On est nécessairement colinéaire à B.

Exercice 74 : [énoncé]
Il existe u, v ∈ Z tels que udetA+ v detB = 1. U = ut (comA) et V = vt (comB)
conviennent alors.

Exercice 75 : [énoncé]
Le coefficient d’indice (i, j) de la comatrice de S est

(−1)i+j∆i,j

avec ∆i,j le mineur d’indice (i, j) de la matrice S i.e. le déterminant de la matrice
obtenue en supprimant la i-ème ligne et la j-ème colonne de S. Or le déterminant
d’une matrice est aussi celui de sa transposée et puisque la matrice S est
symétrique, le mineur d’indice (i, j) est égal à celui d’indice (j, i). On en déduit
que la comatrice de S est symétrique.

Exercice 76 : [énoncé]
On réalise les opérations élémentaires Cn ← Cn − x1Cn−1,
Cn−1 ← Cn−1 − x1Cn−2,. . . , C2 ← C2 − x1C1 :

Vn(x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣
1 0 0 · · · 0
1 x2 − x1 x2(x2 − x1) · · · xn−2

2 (x2 − x1)
...

...
...

...
1 xn − x1 xn(xn − x1) · · · xn−2

n (xn − x1)

∣∣∣∣∣∣∣∣∣
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On développe selon la première ligne et on factorise par ligne :

Vn(x1, . . . , xn) =
n∏
j=2

(xj − x1)Vn−1(x2, . . . , xn)

On réitère

Vn(x1, . . . , xn) =
n∏
j=2

(xj − x1)
n∏
j=3

(xj − x2) . . .
n∏
j=n

(xj − xn−1)V1(xn)

avec V1(xn) = 1.
Ainsi

Vn(x1, . . . , xn) =
∏

16i<j6n
(xj − xi)

Exercice 77 : [énoncé]
Considérons le polynôme

P (X) = (X − a1)(X − a2) . . . (X − an)

Celui-ci se développe sous la forme

P (X) = Xn + αn−1X
n−1 + · · ·+ α0

avec α0, . . . , αn−1 ∈ K et en particulier αn−1 = −(a1 + · · ·+ an).

En procédant à l’opération Cn ← Cn +
n−2∑
k=0

αkCk+1, les coefficients de la dernière

colonne de la matrice sont transformés en

ani +
n−2∑
k=0

αka
k
i = P (ai)− αn−1a

n−1
i = −αn−1a

n−1
i car P (ai) = 0

Ainsi∣∣∣∣∣∣∣∣∣
1 a1 a2

1 · · · an−2
1 an1

1 a2 a2
2 · · · an−2

2 an2
...

...
...

...
...

1 an a2
n · · · an−2

n ann

∣∣∣∣∣∣∣∣∣ = −αn−1

∣∣∣∣∣∣∣∣∣
1 a1 a2

1 · · · an−2
1 an−1

1
1 a2 a2

2 · · · an−2
2 an−1

2
...

...
...

...
...

1 an a2
n · · · an−2

n an−1
n

∣∣∣∣∣∣∣∣∣
Sachant calculer un déterminant de Vandermonde, on obtient

Dn =
n∑
i=1

ai
∏

16i<j6n
(aj − ai)

Exercice 78 : [énoncé]
Considérons le polynôme

P (X) = (X − a1)(X − a2) . . . (X − an)

Celui-ci se développe sous la forme

P (X) = Xn + αn−1X
n−1 + · · ·+ α0

avec α0, . . . , αn−1 ∈ K et en particulier αk = (−1)n−kσn−k où les σ1, . . . , σn
désignent les expressions symétriques élémentaires en a1, . . . , an.

En procédant à l’opération Cn ← Cn +
k−1∑
j=0

αjCj+1 +
n−1∑
j=n

αjCj , les coefficients de

la dernière colonne de la matrice sont transformés en

P (ai)− αkaki = −αkaki car P (ai) = 0

Ainsi

Dk = (−1)n+1−kσn−k

∣∣∣∣∣∣∣∣∣
1 a1 · · · ak−1

1 ak+1
1 · · · an−1

1 ak1
1 a2 · · · ak−1

2 ak+1
2 · · · an−1

2 ak2
...

...
...

...
...

...
1 an · · · ak−1

n ak+1
n · · · an−1

n akn

∣∣∣∣∣∣∣∣∣
En permutant de façon circulaire les n− k dernières colonnes, on obtient

Dk = σn−k

∣∣∣∣∣∣∣∣∣
1 a1 · · · ak−1

1 ak1 ak+1
1 · · · an−1

1
1 a2 · · · ak−1

2 ak2 ak+1
2 · · · an−1

2
...

...
...

...
...

...
...

1 an · · · ak−1
n akn ak+1

n · · · an−1
n

∣∣∣∣∣∣∣∣∣
Sachant calculer un déterminant de Vandermonde, on obtient

Dk = σn−k
∏

16i<j6n
(aj − ai)

Exercice 79 : [énoncé]
En développant selon la première ligne, on peut affirmer que ∆ est un polynôme
de degré inférieur à n− 1.
Pour k ∈ {1, . . . , n},

∆(λk) = (−1)k+1
∏
i 6=k

(λk − λi)Vn−1(λ1, . . . , λ̂k, . . . , λn) = (−1)n+1Vn(λ1, . . . , λn)

Diffusion autorisée à titre entièrement gratuit uniquement - dD



[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Corrections 31

où Vn(a1, . . . , an) désigne le Vandermonde de (a1, . . . , an).
Le polynôme ∆ coïncide en n point avec le polynôme constant égal à
(−1)n+1Vn(λ1, . . . , λn), ils sont donc égaux.

Exercice 80 : [énoncé]
On a (

A B
C D

)(
D On
−C In

)
=
(
AD −BC B

On D

)
et en passant au déterminant, on obtient

det
(
A B
C D

)
detD = det(AD −BC) detD

On peut alors conclure sachant detD 6= 0.

Exercice 81 : [énoncé]
On a (

A B
C D

)(
In On

−D−1C In

)
=
(
A−BD−1C B

On D

)
et en passant au déterminant, on obtient

det
(
A B
C D

)
= det(A−BD−1C) detD = det(AD −BD−1CD)

Exercice 82 : [énoncé]
Supposons pour commencer la matrice A inversible.
Par opérations par blocs :(

A C
B D

)(
I −A−1C
0 I

)
=
(
A 0
B D −BA−1C

)
On en déduit∣∣∣∣ A C

B D

∣∣∣∣ = det(D −BA−1C) detA = det(DA−BA−1CA)

Or les matrices A et C commutent donc A−1 et C commutent aussi et∣∣∣∣ A C
B D

∣∣∣∣ = det(DA−BC)

Supposons A non inversible.
Pour p assez grand, la matrice Ap = A+ 1

pI est inversible et commute avec C donc

det
(
Ap C
B D

)
= det(DAp −BC)

En passant à la limite quand p→ +∞, la continuité du déterminant donne

det
(
A C
B D

)
= det(DA−BC)

Exercice 83 : [énoncé]
a) En multipliant les n dernières lignes par i et les n dernières colonnes aussi :

det
(

A B
−B A

)
= (−1)n det

(
A iB
−iB −A

)
puis par opérations sur les lignes

det
(

A B
−B A

)
= (−1)n det

(
A iB

A− iB −A+ iB

)
et par opérations sur les colonnes

det
(

A B
−B A

)
= (−1)n det

(
A+ iB iB

0 −A+ iB

)
On en déduit

det
(

A B
−B A

)
= (−1)n det(A+ iB) det(−A+ iB)

et enfin
det
(

A B
−B A

)
= det(A+ iB) det(A− iB)

Les matrices A et B étant réelles, cette écriture est de la forme zz̄ = |z|2 > 0.
b) det(A+ iB) det(A− iB) = det(A2 +B2) car A et B commutent donc
det(A2 +B2) > 0.

c) A =
(

1 2
0 1

)
et B =

(
1 0
2 1

)
par exemple.

d) Si A est inversible, on remarque(
I O

−CA−1 I

)(
A B
C D

)
=
(
A B
0 −CA−1B +D

)
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donc det
(
A B
C D

)
= det(A) det(−CA−1B +D) = det(AD − CB) car A et C

commutent.
On étend cette égalité aux matrices non inversibles par densité :

Les applications A 7→ det
(
A B
C D

)
et A 7→ det(AD − CB) sont continues et

coïncident sur l’ensemble des matrices inversibles commutant avec C. Or cet
ensemble est dense dans l’ensemble des matrices commutant avec C : si A
commute avec C alors pour tout λ > 0 assez petit A+ λIn est inversible et
commute avec C). Par coïncidence d’applications continues sur une partie dense,
les deux applications sont égales.

Exercice 84 : [énoncé]
a) Par opération sur les colonnes puis sur les lignes∣∣∣∣ A B

B A

∣∣∣∣ =
∣∣∣∣ A+B B
A+B A

∣∣∣∣ =
∣∣∣∣ A+B B

0 A−B

∣∣∣∣
b) De façon analogue∣∣∣∣ A −B

B A

∣∣∣∣ =
∣∣∣∣ A− iB −B
B + iA A

∣∣∣∣ =
∣∣∣∣ A− iB −B

0 A+ iB

∣∣∣∣ = |A+ iB|2 > 0

Exercice 85 : [énoncé]
a) Par les opérations Ln+1 ← Ln+1 + L1, . . . , L2n = L2n + Ln,

detA =
∣∣∣∣ In B
B + In In +B

∣∣∣∣
Par les opérations C1 ← C1 − Cn+1, . . . , Cn ← Cn − C2n,

detA =
∣∣∣∣ In −B B

On In +B

∣∣∣∣ = det(In −B) det(In +B)

Ainsi A est inversible si, et seulement si, In −B et In +B le sont (i.e.
1,−1 /∈ SpB).
On aurait aussi pu étudier le noyau de A.
b) On peut présumer que l’inverse de A est alors de la forme(

M N
N M

)

Puisque (
In B
B In

)(
M N
N M

)
=
(
M +BN N +BM
BM +N BN +M

)
et puisque {

M +BN = In

BM +N = On
⇔

{
M =

(
In −B2)−1

N = −B
(
In −B2)−1

on obtient
A−1 =

(
(In −B2)−1 −B(In −B2)−1

−B(In −B2)−1 (In −B2)−1

)
On aurait pu aussi inverser l’équation AX = Y

Exercice 86 : [énoncé]
On introduit

N =
(

tA′ Op,n−p
tB′ In−p

)
On a

MN =
(
AtA′ +BtB′ B
CtA′ +DtB′ D

)
Or

M t(comM) =
(
AtA′ +BtB′ AtC ′ +BtD′

CtA′ +DtB′ CtC ′ +DtD′

)
= (detM)nIp

donc
MN =

(
det(M)Ip B
On−p,p D

)
En passant cette relation au déterminant, on obtient

detM × det tA′ = det(M)p detD

puis facilement la relation proposée sachant detM 6= 0.

Exercice 87 : [énoncé]
a) Cas D inversible
Sachant CtD = DtC, on a(

A B
C D

)(
tD On
−tC In

)
=
(
AtD −BtC B

On D

)
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et en passant au déterminant on obtient la relation

det
(
A B
C D

)
t

detD = det
(
AtD −BtC

)
detD

puis la relation voulue sachant detD = dettD 6= 0
b) Cas D non inversible
Posons r = rgC. On peut écrire C = PJrQ avec P,Q inversibles et Jr la matrice
(symétrique) dont tous les coefficients sont nuls sauf les r premiers de la diagonale
qui sont égaux à 1. Considérons alors D′ = D + λP tQ−1 pour λ ∈ R.
On peut écrire

D′ = P
(
P−1DtQ+ λIn

)t
Q−1

Si −λ n’est pas valeur propre de P−1DtQ, la matrice D′ est inversible.
Puisqu’une matrice n’a qu’un nombre fini de valeurs propres, la matrice D′ est
assurément inversible quand λ→ 0+ avec λ assez petit.
De plus, CtD′ est symétrique car

CtD′ −D′tC = CtD + λPJrQQ
−1tP −DtC − λP tQ−1tQtJ trP = 0

Par l’étude qui précède, on obtient

det
(
A B
C D′

)
= det

(
AtD′ −BtC

)
et en passant à la limite quand λ→ 0+, on obtient

det
(
A B
C D

)
= det

(
AtD −BtC

)

Exercice 88 : [énoncé]
Cas où la matrice A inversible :
Pour

P =
(

In −A−1B
On In

)
on a

MP =
(
A On
C −CA−1B +D

)
On en déduit

detM = det(MP ) = detA× det(−CA−1B +D)

Or

detA× det(−CA−1B +D) = det(AD −ACA−1B) = det(AD −BC)

car la matrice C commute avec les matrices A et B.
On en déduit

detM = det(AD −BC)

Cas général :
Pour p ∈ N? assez grand, la matrice Ap = A+ 1/pIn est inversible et les matrices
Ap, B,C,D commutent deux à deux. Si on pose

Mp =
(
Ap B
C D

)
l’étude qui précède donne

detMp = det(ApD −BC)

En faisant tendre p vers +∞, on obtient à la limite

detM = det(AD −BC)

Il est alors immédiat de conclure que l’inversibilité de M équivaut à celle de
AD −BC.
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