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Enoncés 1

Arithmétique
Divisibilité

Exercice 1 [o01187] [correction]
Résoudre dans Z les équations suivantes :
a)z—1]|x+3b)z+2]|2?+2.

Exercice 2 [01188] [correction]
Résoudre dans Z? les équations suivantes :

1 1 1
a) xy = 3x + 2y b);—k;:g c)a? —y? —dx -2y =5

Exercice 3 [00155] [correction]
Soit A un ensemble de n + 1 > 2 entiers distincts tous inférieurs ou égaux a 2n.
Montrer qu’il existe deux éléments de A tels que 'un divise 'autre.

Exercice 4 [02358] [correction]
Pour n € N*, on désigne par N le nombre de diviseurs positifs de n et par P leur
produit. Quelle relation existe-t-il entre n, N et P?

Division euclidienne

Exercice 5 [01189] [correction]

Soient a € Z et b € N*, on note ¢ le quotient de la division euclidienne de a — 1
par b.

Déterminer pour tout n € N, le quotient de la division euclidienne de (ab™ — 1)
par b" L

Exercice 6 [01198] [correction]

a) Montrer que si r est le reste de la division euclidienne de a € N par b € N* alors
2" — 1 est le reste de la division euclidienne de 2¢ — 1 par 2° — 1.

b) Montrer que pged (2% — 1,2° — 1) = 2preed(@b) _ 1,

Exercice 7 [01215] [correction]
On consideére la suite (¢, )nen définie par

wo=0,p1=1et Vn €N, pni2 = pnt1+¥n

a) Montrer
Vn € N¥, Pn+1Pn—1 — @i = (_1)n
b) En déduire
Vn € N*, o Apni1 =1

c¢) Montrer

Vn € N7Vm (S N*, Pn+m = PmPn+1 + Pm—1¥n
d) En déduire

Vm,n € N*, pged(pn, Pmtn) = pged(@n; om)

puis pged(@m, pn) = pged(vn, @) ou r est le reste de la division euclidienne de m
par n.
e) Conclure

ngd(@mv L)On) = Ppged(m,n)

PGCD et PPCM

Exercice 8 [01195] [correction]

Déterminer le pged et les coefficients de ’égalité de Bézout (1730-1783) des entiers
a et b suivants :

a)a=33etb=24b)a=37et b=27c) a=270 et b=105.

Exercice 9 [o01196] [correction]
Soient a,b,d € Z. Montrer 1’équivalence :

(Fu,v € Z,au + bv = d) < pged(a, b) | d

Exercice 10 [01197] [correction]
Montrer que le pged de 2n + 4 et 3n + 3 ne peut étre que 1, 2,3 ou 6.
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Enoncés 2

Exercice 11 [o01199] [correction]
Soient d,m € N. Donner une condition nécessaire et suffisante pour que le systéme

pged(z,y) =d
ppem(z,y) =m

possede un couple (z,y) € N? solution.

Exercice 12 [o01200] [correction]
Résoudre dans N? I’équation :

pged(z,y) +ppem(z,y) =z +y

Exercice 13 [o1201 ] [correction]
Résoudre dans N? les systemes :

) pged(z,y) =5 z+y =100
a
ppem(z,y) = 60 pged(z,y) = 10

Nombres premiers entre eux

Exercice 14 [o01202] [correction]
Soient a et b premiers entre eux.
Montrer que a A (a +b) =bA (a+b) =1 puis (a+b) Aab=1.

Exercice 15 [01203] [correction]

Soient a,b € Z.

a) On suppose a A b = 1. Montrer que (a + b) A ab = 1.

b) On revient au cas général. Calculer pged(a + b, ppem(a, b)).

Exercice 16 [01204 ] [correction]
Montrer que pour tout n € N* on a :

a) (NP +n)A2n+1)=1 b)Bn2+2n)A(n+1)=1

Exercice 17 [01205] [correction]
Montrer que pour tout entier n € N*, n 4+ 1 et 2n + 1 sont premiers entre eux.

En déduire
2n
n+1]|
n
Exercice 18 [ 01206 ] [correction]

Soient a et b premiers entre eux et ¢ € Z.
Montrer que pged(a, be) = pged(a, ¢).

Exercice 19 [o01207] [correction)]

Soient a et b deux entiers premiers entre eux non nuls.

Notre but est de déterminer tous les couples (u,v) € Z? tels que au + bv = 1.

a) Justifier 'existence d’au moins un couple solution (ug, vg).

b) Montrer que tout autre couple solution est de la forme (ug + kb, vg — ka) avec
kelZ.

¢) Conclure.

Exercice 20 [o01208] [correction)]
a) Pour n € N, montrer qu’il existe un couple unique (a,,b,) € N? tel que

(1+V2)" =a, +b,V2

b) Calculer a? — 2b2.
¢) En déduire que a,, et b,, sont premiers entre eux.

Exercice 21 [01209] [correction]
Soient a et b deux entiers relatifs premiers entre eux et d € N un diviseur de ab.
Montrer

3(dy,d) € N?, d = dida,dy |aet da|b

Exercice 22 [01210] [correction]

On note div(n) ensemble des diviseurs positifs d’un entier n € Z.
Soient a,b € Z premiers entre eux et ¢ : div(a) x div(b) — N définie par
ok, l) = k¢.

Montrer que ¢ réalise une bijection de div(a) x div(b) vers div(ab).
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Enoncés

Exercice 23 [03624] [correction]
Soit n € N. Montrer que les entiers

a; =4nl+1

pour ¢ € {1,...,n+ 1} sont deux & deux premiers entre eux.

Nombres premiers

Exercice 24 [03209] [correction]
Soient n > 2 et N la somme de n entiers impairs consécutifs. Montrer que N n’est
pas un nombre premier.

Exercice 25 [01219] [correction]
Montrer que les nombres suivants sont composés :
a) 4n3 + 6n2 +4n + 1 avec n € N* b) n* —n? + 16 avec n € Z.

Exercice 26 [03623] [correction]
Soit n un naturel non nul. Montrer qu’il existe toujours un nombre premier
strictement compris entre n et n! + 2.

Exercice 27 [o01224] [correction]
Justifier 'existence de 1000 entiers consécutifs sans nombres premiers.

Exercice 28 [02653] [correction]
Soit p un nombre premier, p > 5. Montrer que p? — 1 est divisible par 24.

Exercice 29 [02369] [correction]
On suppose que n est un entier > 2 tel que 2" — 1 est premier.
Montrer que n est nombre premier.

Exercice 30 [o01220] [correction]
Soient a et p deux entiers supérieurs a 2.
Montrer que si a? — 1 est premier alors a = 2 et p est premier.

Exercice 31 [02656] [correction)]
Soient des entiers a > 1 et n > 0.
Montrer que si a™ + 1 est premier alors n est une puissance de 2.

Exercice 32 [03351] [correction]
Soient a,b € N\ {0,1} et n € N*.
On suppose que a” + b™ est un nombre premier. Montrer que n est une puissance

de 2.

Exercice 33 [01223] [correction]

Soit E = {4k — 1/k € N*}.

a) Montrer que pour tout n € E, il existe p € PN E tel que p | n.

b) En déduire qu'’il y a une infinité de nombre premier p tel que p = —1  [4].

Exercice 34 [02654] [correction)]
Montrer qu’il existe une infinité de nombres premiers de la forme 4n + 3.

Exercice 35 [02657] [correction)]

Soit, pour n € N, F, = 22" 4 1.

a) Montrer, si (n,m) € N? avec n # m, que F,, A F,,, = 1.

b) Retrouver & I'aide du a) le fait que I’ensemble des nombres premiers est infini.

Etudes arithmétiques

Exercice 36 [01225] [correction)]
Soit n € N, montrer
VneQe ImeN, n=m?

En déduire que v2 ¢ Q et V3 ¢ Q

Exercice 37 [o1211] [correction)]
Soient a et b deux entiers relatifs tels que a? | b*>. Montrer que a | b.

Exercice 38 [o01212] [correction]
Soit « € Q. On suppose qu'il existe n € N* tel que 2™ € Z. Montrer que z € Z.
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Exercice 39 [o01213] [correction]
Soient a,b € N*. On suppose qu'il existe m,n premiers entre eux tels que a” = b™.
Montrer qu’il existe ¢ € N* tel que a =c" et b =c™.

Exercice 40 [o01214] [correction]

On divise un cercle en n arcs égaux et on joint les points de division de p en p
jusqu’a ce qu’on revienne au point de départ. Quel est le nombre de cotés du
polygone construit ?

Exercice 41 [03669 ] [correction]
On étudie I’équation algébrique

(E):x”+an_1x"*1+~~~+a1x+a0:0

d’inconnue x et ou les coefficients ag, aq,...,a,_1 sont supposés entiers.
Montrer que les solutions réelles de (F) sont entiéres ou irrationnelles.

Exercice 42 [02361] [correction]

Soit P € Z[X] et a,b deux entiers relatifs avec b > 0 et v/b irrationnel.

a) Exemple : montrer que v/6 est irrationnel.

b) Quelle est la forme de (a 4+ v/b)™ ?

¢) Montrer que si a 4 v/b est racine de P alors a — v/b aussi.

d) On suppose que a + Vb est racine double de P. Montrer que P = RQ? avec R
et @ dans Z [X].

Exercice 43 [ 03681 ] [correction]
On note d(n) le nombre de diviseurs positifs de n € N*.
Déterminer un équivalent de
1 n
> d
L3
k=1

représentant la moyenne du nombre de diviseurs positifs des entiers inférieurs a n.

Exercice 44 [o1227] [correction]
Soit n € N\ {0, 1}. Montrer que n est le produit de ses diviseurs non triviaux si, et
seulement si, n = p3 avec p € P ou n = pips avec p1,po € P distincts.

Exercice 45 [01228] [correction]
Soient p € P et a € N*. Déterminer les diviseurs positifs de p®.

Exercice 46 [01229] [correction)]
N

Soit n € N\ {0,1} et n = [ pp* sa décomposition primaire.
k=1

Quel est le nombre de diviseurs positifs de n ?

Exercice 47 [01230] [correction]
Soit n € N\ {0, 1} dont la décomposition primaire est

N
o=1I
=1

On note d(n) le nombre de diviseurs supérieurs ou égaux & 1 de n et o(n) la
somme de ceux-ci.

Montrer
N N ai+1 1
( i =

d(n):H ozH—l)eta(n):H !

i=1 o Pl

Exercice 48 [01231] [correction]

Soit 0 : Z — N qui a n € Z associe la somme de diviseurs positifs de n.

a) Soit p € P et a € N*. Calculer o(p®).

b) Soient a,b € Z premiers entre eux.

Montrer que tout diviseur positif d du produit ab s’écrit de maniére unique
d = didy avec dy et do diviseurs positifs de a et b.

c¢) En déduire que si a et b sont premiers entre eux alors o(ab) = o(a)o(b).
d) Exprimer o(n) en fonction de la décomposition primaire de n.

Exercice 49 [o03725] [correction]

[Théoréeme d’Aubry]

Soit IV un entier strictement positif.

On suppose que le cercle d’équation 22 + y2 = N posséde un point rationnel
(:L'Oa yO) :

On introduit (xy, yj) un point entier obtenu par arrondi de (zo, yo)-

En étudiant lintersection du cercle avec la droite joignant (zo,vo0) et (20, Y5)s
montrer que le cercle contient un point entier (x1,y1).
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Valuation p-adique

Exercice 50 [01226] [correction]

Pour p € P et n € Z, on note vp(n) Pexposant de la plus grande puissance de p
divisant n.

a) Montrer que v2(1000!) = 994.

b) Plus généralement, calculer v,(n!). On rappelle que

Vz € R, H)JJ ]

Exercice 51 [02370] [correction]
On note P I'ensemble des nombres premiers. Pour tout entier n > 0, on note
vp(n) exposant de p dans la décomposition de n en facteurs premiers. On note
|| la partie entiere de x. On note 7(z) le nombre de nombres premiers au plus
égaux a x.
OO
a) Montrer que v,(n!) = Z { J

Lln(2n) J

b) Montrer que divise plL e

p€73 p<2n

¢) Montrer que ( (2n)7(2n),

d) Montrer que - )) quand & — 400

Petit théoréme de Fermat

Exercice 52 [o01222] [correction]
Soit p un nombre premier.
a) Montrer

VEe{1,2,....p—1},p] (Z)

b) En déduire que
Yn €Z,n’ =n [p]

Exercice 53 [03636] [correction)]
Soit m > 2 un entier. On suppose

Vae{l,....,.n—1},a"" =1 [n]

Montrer que n est un nombre premier

Exercice 54 [00204] [correction)]
[Nombres de Carmichael]
Soit n un entier supérieur a 2.
On suppose que n pour tout facteur premier p de n, p? ne divise pas n mais p — 1
divise n — 1.
Etablir
Va € Z,a" =a [n]

Exercice 55 [03686] [correction]
On désire établir qu’il existe une infinité de nombres premiers de la forme 4n + 1.
Pour cela on raisonne par I’absurde et on suppose que ceux-ci sont en nombre fini
et on les numérote pour former la liste py,...,p,.
On pose alors

N = (2P1~~-Pr)2 +1

a) On suppose qu’il existe un facteur premier ¢ de N de la forme 4n + 3.
Etablir

(2p1 .. .pr)(q’l) =-1 g

b) Conclure en exploitant le petit théoréeme de Fermat.
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Corrections

Exercice 1 : [énoncé]
a) x = 1 n’est pas solution. Pour = # 1 :

r-1llz+3e B =1+ L cZer—-1€Divid) = {1,2,4,-1,-2, -4}

Ainsi § = {2,3,5,0,—1,—-3}.

b) £ = —2 n’est pas solution. Pour = # —2 :
2
z+2|a?+26 2 =2+ 5, €Z s x+2€Div(6) =

{17 27 33 67 _]-7 _2» _37 _6}
Ainsi S = {~1,0,1,4, -3, —4, -5, —8}.

Exercice 2 : [énoncé]
a) On a
ry=3r+2y<= (z—2)(y—3)=6

En détaillant les diviseurs de 6 possibles, on obtient

S = {(31 9)’ (47 6)’ (57 5)7 (8’ 4)7 (17 _3)7 (07 0)’ (_17 1)’ (_47 2)}

b) Pour z,y € Z*,

1 1 1
—+-=-&bzx+dy=zy< (x—5)(y—5)=25
r y 5

En détaillant les diviseurs de 25 possibles, on obtient
S ={(6, 30), (10, 10), (30, 6), (4, —20), (—20,4)}

¢) On a
-y —dr—2y=5& (x-2)°—(y+1)° =38

et donc
22—y —dr—2y=5(z—y—-3)(z+y—1)=8

En détaillant les diviseurs de 8 possibles et sachant

_a+b
r—y—3=a T = 92 +2
<~

Jj+y—1: b—a
y=—7 -1

on obtient
S= {(570)7 (5, _2)7 (_170)7 (_17 _2)}

Exercice 3 : [énoncé]

Les entiers m compris entre 1 et 2n peuvent s’écrire m = 2Fp avec p impair
compris entre 1 et 2n.

Il y a exactement n entiers impairs possible entre 1 et 2n. Pour les n 4 1 entiers
considérés, il y en a donc au moins 2 pour lesquels la valeur de p est la méme. Ils
s’écrivent 2Fp et 20p.

Le plus petit des deux divise ’autre.

Exercice 4 : [énoncé]
En associant dans P2 = P x P chaque diviseur d avec celui qui lui est conjugué
n/d, on obtient un produit de N termes égaux a n. Ainsi

P2 =nt

Exercice 5 : [énoncé]

a—1=bg+ravec0<r<b.

ab® —1=(bg+7r+1)b" —1=gb" "t +07(r+1)—1.

Or 0 < b™(r+1) — 1 < b™*! donc la relation ci-dessus est la division euclidienne
de ab™ — 1 par b"t1.

Le quotient de celle-ci est donc q.

Exercice 6 : [énoncé]
a) On aa = bg + r avec 0 < r < b.

20— =2kt 1 = 9batr _or L or 1 = (20 —1)(1420+-. . 420 D)or Lo

avec 0 < 2" —1 <20 — 1.

b) Posons ag = a, a; = b et définissons ag, ..., a,;, comme par 'algorithme

d’Euclide avec a,, = pged(am—1, am—2).

On a

pged(29—1,2°—1) = pged (290 —1,29 —1) = pged (241 —1,2%2—1) = ... = pged (29" —1,2°—1

Exercice 7 : [énoncé]

a) Par récurrence sur n € N* :

Pour n =1 : @opg — 92 =0—1=—1: ok.
Supposons la propriété établie au rang n > 1.

Prt2Pn—Pni1 = (Pnt@ni1)on—Pni1 (Pnten—1) = Cr—Pnrrona = —(-1)" =
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Récurrence établie.

b) Par I’égalité de Bézout on obtient que ¢, A @,4+1 = 1 puisque la relation
précédente permet d’écrire wp,, + vp,+1 = 1 avec u,v € Z.

¢) Par récurrence sur m € N*

Pour m =1: @nt1 = @10n+1 + @opn car o1 =1 et g = 0.

Supposons la propriété établie au rang n > 1

Exercice 10 : [énoncé]
3x (2n+4) — 2 x (3n+ 3) = 6 donc pged(2n +4,3n + 3) | 6.

Exercice 11 : [énoncé]
Si le systéme posséde une solution alors d | m est une condition nécessaire.
Inversement si d | m alors z = d et y = m donne un couple (x,y) € N? solution.

Prtm+l = Plnt1)+m o) PmPn+2TPm—1Pn+1 = PmPnt1TPmPntTPm—1Pnt1 = Pm41Pn+1TPmPn

Récurrence établie.

d)

PECA(Pmtn, ¥n) = PECA(PmPn—1FPm-19n, ¢n) = PECA(PmPn—1, ¥n) = PEeA(Pm, ¢n)

car n A pp—1 = 1.
Par récurrence on obtient que

Vq S N: Pm A Pn = S0m+qn N ©n

On en déduit alors pged(pm, n) = pged(en, @) car on peut écrire m = ng +r
avec ¢ € N.

e) Suivons l'algorithme d’Euclide calculant pged(m,n) :

ag =m,a1 =n, ag = a1q1 + a2, a1 = a2g2 + as,..., ap—1 = apqp + 0 avec

a, = pged(m, n)

Or pged(en, om) = Pged(Paqs Par) = PEed(Pa,, Paz) = - - = PEed(Pa,; Y0) = ¢a,,
car ¢g = 0.

Ainsi ngd(QPma (pn) = Ppged(m,n)-

Exercice 8 : [énoncé]

a) pged(a,b) = 3 et 3a — 4b = 3.
b) pged(a,b) =1 et 11b —8a =1
¢) pged(a,b) =15 et 2a — 5b = 15

Exercice 9 : [énoncé]

(=) Supposons d = au + bv avec u,v € Z.

pged(a,b) | a et pged(a, b) | b done pged(a, b) | au + bv = d.

(<) Supposons pged(a, bd) | d. On peut écrire d = kpged(a,b) avec k € Z.
Par I’égalité de Bézout, il existe ug, vy € Z tels que

aug + bvg = pged(a, b)

et on a alors
d=au+bv

avec u = kug et v=kvg € Z

Exercice 12 : [énoncd]
Soit (x,y) € N? un couple solution. Posons ¢ = pged(x,y).
On peut écrire

x=20x et y=20y avecax’ Ay =1

L’équation devient :
l+a'y =2’ +y & @ -1y -1)=0s2"=1ouy =1

Ainsi (z,y) est de la forme (6, 0k) ou (dk,d) avec k € N.
Inversement ces couples sont solutions.

Exercice 13 : [énoncé]

a) Soit (z,y) solution. pged(z,y) = 5 donc z = bz’ et y = 5y’ avec 2/,y’ € N
premiers entre eux.

ppem(z,y) = 52’y’ = 60 donc z'y’ = 12 d’ou

(') € {(1,12),(2,6), (3,4), (4,3), (6,2), (12, 1)}.

Les couples (2,6) et (6,2) sont a éliminer car 2 et 6 ne sont pas premiers entre eux.
Finalement (z,y) € {(5,60), (15,20), (20, 15), (60, 5)}.

Inversement : ok. Finalement S = {(5, 60), (15, 20), (20, 15), (60,5)}.

b) Soit (x,y) solution. pged(z,y) = 10 donc & = 102’ et y = 10y’ avec 2’,y’ € N
premiers entre eux.

x4y =10(z' +y") = 100 donc z’' + y’ = 10.

Sachant 2’ Ay' =1, il reste («/,v') € {(1,9), (3,7),(7,3),(9,1)} puis

(z,y) € {(10,90), (30,70), (70, 30), (90, 10)}.

Inversement : ok. Finalement S = {(10,90), (30, 70), (70, 30), (90, 10)}.

Exercice 14 : [énoncé]

Posons d = pged(a, a + b).
Onadl|aetd]|(a+b)alorsd|b=(a+b)—adoncd]|pged(a,b) =1 puis d = 1.
De méme pged(b,a +b) = 1. Ainsi a A (a +b) =b A (a+b) =1 et par suite
abA(a+b) =1
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Exercice 15 : [énoncé]
a) pged(a, a + b) = pged(a, b) et pged(b,a + b) = pged(a,b) = 1.
Ainsi (a+b)Aa=1et (a+b)Ab=1donc (a+b) Aab=1.

b) Posons 6 = pged(a,b). On peut écrire a = da’ et b = 0b" avec a’ AV = 1.

pged(a + b, ppem(a, b)) = dpged(a’ 4 V', ppem(a’, b)) = 4§

Exercice 16 : [énoncé]

a)n® +n=n(n+1).

Ix2n+1)—2xn=1donc 2n+1)An=1.
2x(n+1)—1x(2n+1)=1donc 2n+1)A(n+1)=1
Par produit (2n + 1) A (n? +n) = 1.

b) 3n? + 2n = n(3n + 2).
Ix(n+1)—1xn=1doncnA(n+1)=1.
3x(m+1)—1xBn+2)=1donc Bn+2)A(n+1)=1.
Par produit (3n% +2n) A (n+1) = 1.

Exercice 17 : [énoncé]
2x(n+1)—1x(2n+1)=1donc (n+1)A(2n+1)=1.

On a
2n+1 2n+1 2n
n+1 T on+1 n
2n +1 2n
1 = (2 1
(n+ )<n+1> (n+)<n>

. 2n+1
Puisque €Z,on a

n+1
2n
(n+D|@n+D< )

donc

n

(n+D|<iﬁ

or (n+1)A(2n+1) =1 donc

Exercice 18 : [énoncé]

Posons d = pged(a, be) et 6 = pged(a, ¢).
Oné|aetd|cdoncd|bepuisd|d.

Inversement d | a et d | be.
OrdAb=1card|aetaNb=1. Doncd|cpuisd]|3J.
Par double divisibilité d = 6.

Exercice 19 : [énoncé]

a) Théoréme de Bézout.

b) Soit (u,v) € Z? un couple solution. On a au + bv = 1 = aug + byy donc

a(u — ug) = b(vg —v)

Onaa|blvg—v)oraAb=1donca]|wvy—wv. Ainsi Ik € Z tel que v = vy — ka et
alors a(u — ug) = b(vg — v) donne a(u — ug) = abk puis u = ug + kb (sachant

a #0).

¢) Inversement les couples de la forme ci-dessus sont solutions.

Exercice 20 : [énoncé]
a) Unicité : Si (an, b,) et (ap, B,) sont solutions alors

an + bn\/i =y, + ﬁn\/i
donc

(bn - 571)\/5 = (an - an)
Si b, # B, alors

ap —a
ﬁ:bn_ﬁn GQ

ce qui est absurde.
On en déduit b, = 3, puis a, = a,
Existence : Par la formule du binéme

(1+V2)" = . <n> V2

k
k=0
En séparant les termes d’indices pairs de ceux d’indices impairs, on a

(14+V2)" = ay, + b,V2

E(m/2) /. B((n=1)/2) ¢
"= 2P et b, = 2P

p=0 p=0

avec
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b) On a
a2 — 2% = (a, + b, V2) (an - bn\/i)

Or en reprenant les calculs qui précedent
(1-V2)" =a, — b,V2

donc

al — 202 = (1+V2)"(1 = v2)" = (=1)"

¢) La relation qui précéde permet d’écrire
anpt + b,v =1 avec u,v € Z

On en déduit que a,, et b, sont premiers entre eux.

Exercice 21 : [énoncé]

Unicité : Si (dy,d2) est solution alors pged(d, a) = pged(dids, a)
OrdaAa=1cardy|betaNb=1, donc pged(dids,a) = pged(dy,a) = dy car
dl ‘ a.

De méme ds = pged(d,b) d’ot 'unicité.

Existence : Posons dy = pged(d, a) et da = pged(d,b). On a dy | a et dg | b.
di|aetdy|bdoncdy Ade=1caraAb=1.

dy | d,dy|detd ANdy=1donc dds |d.

Inversement : Par 1’égalité de Bézout on peut écrire d; = u1d + via et

dy = ugd + vab donc d | dyds = Ud + v1veab car d | ab.

Exercice 22 : [énoncé]

Sik|aetl]|balors k€ | ab. Ainsi p(div(a) x div(b)) C div(ab).

Soit d € div(ab). Posons k = pged(d, a) et £ = pged(d,b). On a k € div(a),
tedivib) et kAl=1caranb=1 Commek|d, {|det kAl =1onakl|d. De
plus k = du + av et £ = du’ + bv donc kf = dU + abV d’ou d | k{ et finalement

d = k{. Ainsi ¢(div(a) x div(b)) = div(ab).

Soit (k,¢) € div(a) x div(b) et (k',¢') € div(a) x div(b). Si ¢(k,?) = ¢(k', ') alors
kt =K1,

Comme k | k'’ et kA¢ =1onak|k’. De méme k' | k donc k = k’. De méme
e=1.

Ainsi ¢ est injective et finalement ¢ réalise une bijection de div(a) x div(b) vers
div(ab).

Exercice 23 : [énoncé]

Par 'absurde, supposons que a; et a; (avec i,j € {1,...,n+ 1}) ne soient pas
premiers entre eux.

Considérons d un diviseur premier commun a a; et a;. L’entier d est diviseur de
a; — a;j donc de (i — j).nl.

Puisque d est premier et diviseur de i — j ou de n!, il est nécessairement inférieur
a n et donc assurément diviseur de n!. Or d divise aussi a; = i.n! + 1 et donc d
divise 1.

C’est absurde.

Exercice 24 : [énoncé]
Notons 2p + 1 le premier nombre impair sommé. On a

I
-

N = (2k+2p+1) = n(n+ 2p)
0

£
I

avecn > 2 et n+ 2p > 2. Ainsi N est composé.

Exercice 25 : [énoncé]

a)dnd +6n2+4n+1=n+1)*—nt=((n+1)2-n2)((n+1)2 +n?) =
(2n +1)(2n? 4+ 2n + 1).

Cet entier est composé pour n € N* car 2n+1 > 2 et mZ+2n+1>=2.

b) n* —n? +16 = (n? + 4)2 — 9n? = (n? — 3n +4)(n? + 3n + 4).

De plus les équations n2 —3n+4=0,1ou —letn?+3n+4=01ou —1
n’ont pas de solutions car toutes de discriminant négatif. Par conséquent

n* —n? + 16 est composée.

Exercice 26 : [énoncé]

Considérons l'entier n! 4+ 1. Celui-ci est divisible par un nombre premier p
inférieur a n! + 1.

Si ce nombre premier p est aussi inférieur & n alors il divise n! (car apparait
comme 'un des facteurs de ce produit) et donc il divise aussi 1 = (n! + 1) — nl.
Ceci est absurde et donc le nombre premier en question est au moins égal a n + 1.
Finalement, il est strictement compris entre n et n! + 2.

Exercice 27 : [énoncé]

Considérons les x;, = 1001! + k& avec 2 < k < 1001. Ce sont 1000 entiers
consécutifs.

Pour tout 2 < k < 1001, on a k | (1001)! donc k | zx avec 2 < k < xy, donc x, ¢ P.
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Exercice 28 : [énoncé]
On peut factoriser

pPP—1=(p-1(p+1)

p est impair donc les nombres p — 1 et p 4+ 1 sont deux entiers pairs consécutifs,
I'un est divisible par 2, 'autre par 4. Ainsi

8|p*—1

Les entiers p — 1, p, p+ 1 sont consécutifs, I'un est divisible par 3, ce ne peut étre p
car p > 5 premier. Ainsi
3)p*—1

Enfin, 3 et 8 étant premiers entre eux

24| p* -1

Exercice 29 : [énoncé]
Sin = ab avec a,b € N* alors

2" — 1= (2“—1)(1+2‘1+...+2a(b—1))

donc 2* —1]2" —1dou2°—1=10u2*—1=2"—1 ce qui implique a =1 ou
a=n.
Ainsi n ne possede que des diviseurs triviaux, il est premier.

Exercice 30 : [énoncé]

Supposons que a? — 1 premier.

Comme a? —1=(a—1)(1+a+-+a’)onaa—1=1ou
l+a+---+aP™ 1 =1

Orp>2eta#0doncl+a+---+aP~! # 1. Par conséquent a = 2.
Montrons maintenant que p est premier.

Si d | p alors on peut écrire p = cd puis a? — 1 = (a?)¢ — 1.

Si d # p alors ¢ > 2 puis par le résultat précédent on obtient a? = 2 puis d = 1.
Ainsi les seuls diviseurs de p sont 1 et lui-méme.

Finalement p est premier.

Exercice 31 : [énoncé]
On peut écrire
n=282p+41)

On a alors

a"+1 =0 — (=) = (b+ 1)
avec b = a?".
On en déduit que b+ 1| a™ + 1, or a™ + 1 est supposé premier et b+ 1 > 1 donc
b+1=a"+1 puis n = 2~.

Exercice 32 : [énoncé]
On peut écrire n = 2¥(2p + 1) avec k,p € N et I’enjeu est d’établir p = 0.
Posons o = a2" et b= »2". On a

an + bn _ a2p+1 + 52p+1 _ a2p+1 o (7ﬂ2p+1)

On peut alors factoriser par o — (—f) = a + 8 et puisque a™ + b™ est un nombre
premier, on en déduit que o+ =1 ou a+ 8 = a™ + b". Puisque «, 8 > 1, le cas
a+ 8 =1 est a exclure et puisque a < a™ et B < b, lecasa+ B =a"+b"
entraine

a=a"et f=0b"

Puisque a > 2, I'égalité o = a™ = o®P*! entraine p = 0 et finalement n est une
puissance de 2.

Exercice 33 : [énoncé]
a) n est impair, il n’est donc pas divisible par 2. Si tous les nombres premiers p
divisant n sont tels que p=1 [4] alorsn=1 [4] et doncn ¢ E
b) Supposons qu’il n’y en ait qu'un nombre fini de nombres premiers p1ps . . . py.
Considérons

n=4pips...pp — 1€ FE

Il existe p € PN E tel que p | n mais p | p1pa ... p, donc p | 1. Absurde.

Exercice 34 : [énoncé]

Par I'absurde, supposons qu’il n’y ait qu’un nombre fini de nombres premiers de
la forme 4n 4 3. On peut introduire le nombre N égal au produit de ceux-ci.
Considérons alors 'entier 4N — 1.

4N — 1 est impair donc 2 ne le divise pas.

Si tous les facteurs premiers de 4N — 1 sont égaux a 1 modulo 4 alors

AN —1=1 [4] ce qui est absurde.

L’un au moins des facteurs premiers de 4N — 1 est alors de la forme 4n + 3 et
celui-ci apparait donc dans le produit N . Ce facteur premier divise alors les
nombres 4N — 1 et N, il divise donc —1, c’est absurde!
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Exercice 35 : [énoncé]
a) Quitte & échanger, supposons n < m.
On remarque que

gm=—n

(F, — 1) =F,—-1

En développant cette relation par la formule du binéme, on parvient a une
relation de la forme
F,, +vF, =2

avec v € Z car les coeflicients binomiaux sont des entiers.

On en déduit que pged(F,,, Fin) =1 ou 2.

Puisque F,, et F,, ne sont pas tous deux pairs, ils sont premiers entre eux.

b) Les F,, sont en nombre infini et possedent des facteurs premiers distincts, il
existe donc une infinité de nombres premiers.

Exercice 36 : [énoncé]

(<) ok

(=) Si v/n € Q alors on peut écrire \/n =2 avec pAg=1.
On a alors ¢?n = p? donc n | p?

De plus ¢*>n = p? et p? A ¢®> = 1 donne p? | n.

Par double divisibilité n = p?.

ni 2, ni 3 ne sont des carrés d'un entier, donc v/2 ¢ Q et /3 ¢ Q.

Exercice 37 : [énoncé]

Supposons a? | b2.

Posons d = pged(a,b). On a d? = pged(a, b)? = pged(a?,b?) = a? donc d = |a| puis
a|b.

Exercice 38 : [énoncé]

On peut écrire x = g avecp€eZ, e N et pAg=1.

2™ =k € Z donne ¢"k =p™. pAq=1donc p® A ¢" = 1. Puisque ¢" | p" X 1 on a
q" | 1 (par Gauss).

Par suite ¢" =1l et doncg=1et z =p € Z.

Exercice 39 : [énoncé]

Il existe u,v € Z tel que mu + nv = 1.

Analyse : Si ¢ convient alors ¢ = ¢™*+t" = ptq?. A priori ¢ € Q.

Synthese : Soit ¢ = b*a”. On a ¢ = b""a™ = a™"a™ = a et de méme ™ = b.
Puisque le nombre rationnel ¢ possede une puissance entiere, ¢ € Z.

Exercice 40 : [énoncé]

Le nombre de c6té du polygone construit est le plus petit entier k£ € N* tel que
n | kp.

Posons § = pged(n,p). On peut écrire n = dn’ et p = dp’ avec n’ Ap’ = 1.
n|kp<n'|kp ie n |k Ainsi k=n'=n/o.

Exercice 41 : [énoncé]

Supposons x = p/q une racine rationnelle de 1’équation (E) avec p et ¢ premiers
entre eux.

En réduisant au méme dénominateur, on obtient

P+ an 1"t 4+ apg" T+ aog™ =0
Puisque ¢ divise a,_1gp™ ' +--- + a1pg" " + apq™, on obtient que ¢ divise p™.

Or p et g sont premiers entre eux donc nécessairement ¢ = 1 et donc x = p € Z.
Ainsi les racines rationnelles de (E) sont entieres.

Exercice 42 : [énoncé]

a) Supposons v/6 = p/q avec p A g = 1. On a 6¢> = p? donc p pair, p = 2k. On
obtient alors 3¢? = 2k? et donc ¢ est pair. Absurde car p et g sont premiers entre
eux.

b) Par développement selon la formule du bindéme de Newton

(a + \/E)" = oy + ﬂk\/l; avec ag, O € Z

¢) a+ Vb racine de P = Y ap X" donne
k=0

n n
S acon = (z ﬂ) Vi
k=0 k=0
L’irrationalité de v/b entraine
n n
Zakak = Zakﬂk =0
k=0 k=0

ce qui permet de justifier qu’alors P(a — v/b) = 0.
d) Posons

Q=(X—-a+Vb)(X —a—Vb)=X?—2aX +d*> - becZ[X]
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Par division euclidienne P = Q.S + T avec degT < 2. Or en posant cette division
euclidienne, on peut affirmer que S,T € Z [X] avec P,Q € Z[X] et Q unitaire.
a+Vb,a — /b racine de P entraine T = 0 et donc P = QS avec Q, S € Z[X]. En
dérivant P’ = Q'S + QS’ et a + /b entraine racine de P’ donne a + v/b racine de
S. On peut alors comme ci-dessus justifier S = QR avec R € Z [X] et conclure.

Exercice 43 : [énoncé]
On peut écrire

Zd(k):zn:21

k=1 k=1 d|k

n

et en permutant les deux sommes

Zd(k):i o1

k=1 d=1keAy

n
avec Ay 'ensemble des multiples de d qui sont inférieurs & n. On a évidemment

CardAy = E(n/d)

et donc

Puisque

on obtient I’encadrement

on obtient

Exercice 44 : [énoncé]

(<) clair

(=) n est divisible par un nombre premier p et ne peut lui étre égal. On peut
donc écrire n = pd avec 1 < d < n. Si d est premier alors on obtient la seconde
forme. Sinon, il ne peut qu’étre divisible par p (car ¢ | d implique que n est un
multiple de pgd car n est produit de ses diviseurs non triviaux). Le nombre d est
alors de la forme d = p*. k =1 et k > 3 sont & exclure puisque n est le produit de
ses diviseurs non triviaux. Il reste d = p? et alors n = p>

Exercice 45 : [énoncé]

Soit d € Div(p®) NN. Notons /3 la plus grande puissance de p telle que p® | d.
On peut écrire d = p°k avec p fk.

Puisque p fket pe PonapAk=1.Or k| p® x 1 donc, par Gauss : k | 1.
Par suite d = p” avec 8 € N. De plus d | p® donc p® < p® puis 8 < a.
Inversement : ok.

Exercice 46 : [énoncé]

N

Les diviseurs positifs sont les d = [] pf’“ avec V1 < k < N,0 < B < ag.
k=1

Le choix des 8 conduisant a des diviseurs distincts, il y a exactement

N
IT (e + 1) diviseurs positifs de n.
k=1

Exercice 47 : [énoncé]
Soit d € N diviseur de n.
Tout diviseur premier de d est aussi diviseur de n et c¢’est donc 'un des pq,...,pnN.

N
Par suite, on peut écrire d = [] p;* avec f5; € N.
i=1

d donc pf n d’ou §; < ;.

s
N .
Ainsi d est de la forme d = [] pfl avec pour tout ¢ € {1,...,N},0< 3; < o.

i=1
Inversement de tels nombres sont bien diviseurs de n.
Il y a autant de nombres de cette forme distincts que de choix pour les
N
Bi,...,Bn.Pour 3, il y a a; + 1 choix possibles, au total d(n) = [] (a; + 1).
i=1
De plus

o(n) = zl: i

B1=0 B2=0 BN

an o Qo anN
pﬂflpéb N 'p?VN — Z p11 Z p22 Z pJ‘i/N
=0 B1=0 B2=0 Bn=0
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Par sommation géométrique

Exercice 48 : [énoncé]

a) Div(p*) NN = {1,p,p2, . ,p’l} donc o(p®) = ap+j;1.

b) Soit d € Div(ab) N N. Posons d; = pged(d, a) et ds = pged(d, b).

On a dy € Div(a) NN et dy € Div(b) NN.

Puisque aAb=1onady Ads =1.Or d; | det ds|ddonc dids | d.

dy = duy + av; et dy = dug + bvy done dids = dk + abvvy d’ou d | dids.
Finalement d = d;d>.

Supposons d = d192 avec 01 € Div(a) NN et dy € Div(b) N N.

On ad;y | 8102 et dy Ad2 =1 done dy | 61 et de méme &y | dy puis d; = d;. De
méme dg = 52.

c)o(ab)= > d= > > dids = (Z d1> (Z db> =o(a)o(b).

4

dlab dila da|b dila da|b

p;li+1_1
i—1

N
d) Sin=pit...pa" alors o(n) = [] =,
i=1

Exercice 49 : [énoncé]
Si le couple (xg,yo) est entier la conclusion est entendue.
Sinon, on peut écrire

xo = po/do et yo = qo/do avec po,qo € Z et dy € N\ {0,1}

Considérons alors un couple entier (x(, ;) obtenu par arrondi de (zg, o). On a

D? = (z0 — 20)* + (yo — )* < 1/4+1/4
La droite joignant nos deux couples peut étre paramétrée par

{x:x6+/\(xo—x6)

avec A € R
Y =yo + Myo — o)

Cette droite coupe le cercle en (zg,yo) pour A = 1 et recoupe encore celui-ci en

(z1,y1) obtenu pour
(20)* + (y5)* — N?

A= D2

Puisque

D? = N? — 2(xox}y + yoyo) + (24)? + (y6)* = @

avec d; € N* et dy < dy car D? < 1.

Le nombre X est donc de la forme dok/dy avec k entier et les coordonnées (x1,y1)

sont alors de la forme
x1 =p1/dy et y1 = q1/dy avec p1,q1 € Z et dy € N*, dy < dy

Si dy =1, le processus s’arréte, sinon il suffit de répéter 'opération jusqu’a
obtention d’un couple entier.

Exercice 50 : [énoncé]

a) v2(1000!) = 500 + v2(500!) car 1000! = 2590 x 500! x k avec k produit de
nombres impairs.

v2(1000!) =500 4+ 250+ 1254+ 62+ 31+ 15+ 7+ 3 + 1 = 994.

b) En isolant les multiples de p dans le produit décrivant p!, on obtient

- g (1)
w121 o 22

puis

or

avec = n/p® donne

puis finalement

avec

Diffusion autorisée a titre entiérement gratuit uniquement - dD



[http://mp.cpgedupuydelome.fr] édité le 17 février 2015

Corrections 14

Exercice 51 : [énoncé]

a) Pour k suffisamment grand Ln / ka = 0, la somme évoquée existe donc car elle
ne comporte qu’'un nombre fini de termes non nuls. n! =1 x 2 x ... X n, parmi les
entiers allant de 1 & n, il y en a exactement |n/p] divisibles par p, |n/p?|
divisibles par p?, etc...donc

b) On a

Pour tout p € P,

»(6) -2 (5] -25)

r[22] —2|z] =0 ou 1 donc
> (|5] -2[]) < cmteemr im0 < |52

2n
De plus les nombres premiers diviseurs de = EM))' sont diviseurs d’un entier
n !

inférieur & 2n (lemme d’Euclide) et sont donc eux-mémes inférieur & 2n. Il en
découle
1n(2n)J

T oL

<2n> |
K PEP;pK2n

car toutes les puissances de nombres premiers intervenant dans la décomposition
2n In(2n)

de divisent ] pL P J
n pEP;p<2n

Notons qu’en fait ce produit désigne

ppem(1,2,...,2n)
¢) On a

2 ln(2n)
) 1 .

pEP;p<2n

(2n)7r(2n)

I1 i < I o=

pEP;p<2n PEP;p<2n

d) En passant au logarithme :

Zlnkﬂka

A Taide d’une comparaison intégrale on obtient

n n (n+1)
/ <> k< / In(t) dt
k=1

m(2n) In(2n)

donc .
nlnn—n+1< Zlnk (n+1Inn+1)—n
k=1
donc .
Zlnkznlnn—n—&—O(lnn)
k=1
Par suite
2n
Zlnk 221nk—2nln(2n)—2n— 2(nlnn —n)+ O(Inn)
k=1 k=1
puis

2n n
> Ink—2) Ink~n(2)(2n)
k=1 k=1

2n
In2n

x 2|x/2]
Inz  In2 |z/2]

par calculs et 7(x) ~ m(2 |z/2]) car 7(z) et w(2 |x/2]) ne différent qu’au plus
d’une unité et 7(z) — +oo.
Finalement, une certaine satisfaction.

(2)-+(22)
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donc .
() (0)

Par suite p | k (Z)

Or p est premier et k < p donc kA p =1 puis p | (Z) en vertu du théoréme de

Gauss.

b) Par récurrence finie sur n € {0,1,...,p — 1}

Pour n =0: ok

Supposons la propriété établie au rang n € {0,1,...,p — 2}
Par la formule du binéme

(n—i—l)p:np—i—%:(p)nk—i—l:n—i—l [p]

k=1 k

carpour 1 < k<p—1.

Récurrence établie.
Pour tout n € Z, il existe r € {0,1,...,p—1} telque n =7 [p] et

Exercice 53 : [énoncé]

Pour tout a € {1,...,n — 1}, a est premier avec n. En effet, un diviseur commun
A a et n est diviseur de ¢! — 1 et donc de 1.

On en déduit que n est premier puisque premier avec chaque naturel strictement
inférieur a lui-méme.

Exercice 54 : [énoncé]

Par hypothése, on peut écrire n = p1ps ... p, avec pq,...
deux a deux distincts.

Soit a € Z. Considérons i € {1,...,r}.

Si p; ne divise pas a, le petit théoréme de Fermat assure a?~1 =1 [p;].
Puisque p; — 1 divise n — 1, on a encore a® ' =1 [p;] et donc a® =a [p;]
Si p; divise a alors p; divise aussi a” et donc a® =0=a [p,].

, pr Nombres premiers

Enfin, chaque p; divisant a™ — a et les p; étant deux & deux premiers entre eux,
n=pp...p. divise a” — a et finalement a” =a [n] .

La réciproque de ce résultat est vraie.

Ce résultat montre que le petit théoreme de Fermat ne caractérise pas les nombres
premiers. Les nombres non premiers satisfaisant le petit théoreme de Fermat, sont
les nombres de Carmichael. Le plus petit d’entre eux est 561, le suivant 1105.

Exercice 55 : [énoncé]
a) Puisque ¢ divise N, on a

(2p1 .. pr)i=—1 [q]

On peut écrire le nombre premier ¢ sous la forme 4n + 3 et alors

2n-+1

(2p1 .. 'Pr)(q_l) = [(2]91 . ~Pr)2} = (_1)2n+1 =-1 [q]

b) Par le petit théoréme de Fermat, on a aussi

(2p1 .. .pr)(q_l) =1 |q

et puisque 1 et —1 ne sont pas congrus modulo ¢, on obtient une absurdité.

La décomposition en facteurs premiers de N, ne fait donc intervenir aucun
nombre premier de la forme 4n + 3. Les facteurs premiers de N ne peuvent donc
qu’étre 2 et ceux de la forme 4n + 1. Ceux-ci divisent alors 2p; ...p, et donc, par
opérations, ils divisent aussi 1.

C’est absurde.

Notons qu’on peut démontrer, plus simplement, qu’il existe aussi une infinité de
nombres premiers de la forme 4n + 3.
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