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Arithmétique
Divisibilité

Exercice 1 [ 01187 ] [correction]
Résoudre dans Z les équations suivantes :
a) x− 1 | x+ 3 b) x+ 2 | x2 + 2.

Exercice 2 [ 01188 ] [correction]
Résoudre dans Z2 les équations suivantes :

a) xy = 3x+ 2y b) 1
x

+ 1
y

= 1
5 c) x2 − y2 − 4x− 2y = 5

Exercice 3 [ 00155 ] [correction]
Soit A un ensemble de n+ 1 > 2 entiers distincts tous inférieurs ou égaux à 2n.
Montrer qu’il existe deux éléments de A tels que l’un divise l’autre.

Exercice 4 [ 02358 ] [correction]
Pour n ∈ N?, on désigne par N le nombre de diviseurs positifs de n et par P leur
produit. Quelle relation existe-t-il entre n, N et P ?

Division euclidienne

Exercice 5 [ 01189 ] [correction]
Soient a ∈ Z et b ∈ N?, on note q le quotient de la division euclidienne de a− 1
par b.
Déterminer pour tout n ∈ N, le quotient de la division euclidienne de (abn − 1)
par bn+1.

Exercice 6 [ 01198 ] [correction]
a) Montrer que si r est le reste de la division euclidienne de a ∈ N par b ∈ N? alors
2r − 1 est le reste de la division euclidienne de 2a − 1 par 2b − 1.
b) Montrer que pgcd(2a − 1, 2b − 1) = 2pgcd(a,b) − 1.

Exercice 7 [ 01215 ] [correction]
On considère la suite (ϕn)n∈N définie par

ϕ0 = 0, ϕ1 = 1 et ∀n ∈ N, ϕn+2 = ϕn+1 + ϕn

a) Montrer
∀n ∈ N?, ϕn+1ϕn−1 − ϕ2

n = (−1)n

b) En déduire
∀n ∈ N?, ϕn ∧ ϕn+1 = 1

c) Montrer
∀n ∈ N,∀m ∈ N?, ϕn+m = ϕmϕn+1 + ϕm−1ϕn

d) En déduire
∀m,n ∈ N?, pgcd(ϕn, ϕm+n) = pgcd(ϕn, ϕm)

puis pgcd(ϕm, ϕn) = pgcd(ϕn, ϕr) où r est le reste de la division euclidienne de m
par n.
e) Conclure

pgcd(ϕm, ϕn) = ϕpgcd(m,n)

PGCD et PPCM

Exercice 8 [ 01195 ] [correction]
Déterminer le pgcd et les coefficients de l’égalité de Bézout (1730-1783) des entiers
a et b suivants :
a) a = 33 et b = 24 b) a = 37 et b = 27 c) a = 270 et b = 105.

Exercice 9 [ 01196 ] [correction]
Soient a, b, d ∈ Z. Montrer l’équivalence :

(∃u, v ∈ Z, au+ bv = d)⇔ pgcd(a, b) | d

Exercice 10 [ 01197 ] [correction]
Montrer que le pgcd de 2n+ 4 et 3n+ 3 ne peut être que 1, 2, 3 ou 6.
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Exercice 11 [ 01199 ] [correction]
Soient d,m ∈ N. Donner une condition nécessaire et suffisante pour que le système{

pgcd(x, y) = d

ppcm(x, y) = m

possède un couple (x, y) ∈ N2 solution.

Exercice 12 [ 01200 ] [correction]
Résoudre dans N2 l’équation :

pgcd(x, y) + ppcm(x, y) = x+ y

Exercice 13 [ 01201 ] [correction]
Résoudre dans N2 les systèmes :

a)
{
pgcd(x, y) = 5
ppcm(x, y) = 60

b)
{
x+ y = 100
pgcd(x, y) = 10

Nombres premiers entre eux

Exercice 14 [ 01202 ] [correction]
Soient a et b premiers entre eux.
Montrer que a ∧ (a+ b) = b ∧ (a+ b) = 1 puis (a+ b) ∧ ab = 1.

Exercice 15 [ 01203 ] [correction]
Soient a, b ∈ Z.
a) On suppose a ∧ b = 1. Montrer que (a+ b) ∧ ab = 1.
b) On revient au cas général. Calculer pgcd(a+ b,ppcm(a, b)).

Exercice 16 [ 01204 ] [correction]
Montrer que pour tout n ∈ N? on a :

a) (n2 + n) ∧ (2n+ 1) = 1 b) (3n2 + 2n) ∧ (n+ 1) = 1

Exercice 17 [ 01205 ] [correction]
Montrer que pour tout entier n ∈ N?, n+ 1 et 2n+ 1 sont premiers entre eux.
En déduire

n+ 1 |
(

2n
n

)

Exercice 18 [ 01206 ] [correction]
Soient a et b premiers entre eux et c ∈ Z.
Montrer que pgcd(a, bc) = pgcd(a, c).

Exercice 19 [ 01207 ] [correction]
Soient a et b deux entiers premiers entre eux non nuls.
Notre but est de déterminer tous les couples (u, v) ∈ Z2 tels que au+ bv = 1.
a) Justifier l’existence d’au moins un couple solution (u0, v0).
b) Montrer que tout autre couple solution est de la forme (u0 + kb, v0 − ka) avec
k ∈ Z.
c) Conclure.

Exercice 20 [ 01208 ] [correction]
a) Pour n ∈ N, montrer qu’il existe un couple unique (an, bn) ∈ N2 tel que

(1 +
√

2)n = an + bn
√

2

b) Calculer a2
n − 2b2

n.
c) En déduire que an et bn sont premiers entre eux.

Exercice 21 [ 01209 ] [correction]
Soient a et b deux entiers relatifs premiers entre eux et d ∈ N un diviseur de ab.
Montrer

∃!(d1, d2) ∈ N2, d = d1d2, d1 | a et d2 | b

Exercice 22 [ 01210 ] [correction]
On note div(n) l’ensemble des diviseurs positifs d’un entier n ∈ Z.
Soient a, b ∈ Z premiers entre eux et ϕ : div(a)× div(b)→ N définie par
ϕ(k, `) = k`.
Montrer que ϕ réalise une bijection de div(a)× div(b) vers div(ab).
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Exercice 23 [ 03624 ] [correction]
Soit n ∈ N. Montrer que les entiers

ai = i.n! + 1

pour i ∈ {1, . . . , n+ 1} sont deux à deux premiers entre eux.

Nombres premiers

Exercice 24 [ 03209 ] [correction]
Soient n > 2 et N la somme de n entiers impairs consécutifs. Montrer que N n’est
pas un nombre premier.

Exercice 25 [ 01219 ] [correction]
Montrer que les nombres suivants sont composés :
a) 4n3 + 6n2 + 4n+ 1 avec n ∈ N? b) n4 − n2 + 16 avec n ∈ Z.

Exercice 26 [ 03623 ] [correction]
Soit n un naturel non nul. Montrer qu’il existe toujours un nombre premier
strictement compris entre n et n! + 2.

Exercice 27 [ 01224 ] [correction]
Justifier l’existence de 1000 entiers consécutifs sans nombres premiers.

Exercice 28 [ 02653 ] [correction]
Soit p un nombre premier, p > 5. Montrer que p2 − 1 est divisible par 24.

Exercice 29 [ 02369 ] [correction]
On suppose que n est un entier > 2 tel que 2n − 1 est premier.
Montrer que n est nombre premier.

Exercice 30 [ 01220 ] [correction]
Soient a et p deux entiers supérieurs à 2.
Montrer que si ap − 1 est premier alors a = 2 et p est premier.

Exercice 31 [ 02656 ] [correction]
Soient des entiers a > 1 et n > 0.
Montrer que si an + 1 est premier alors n est une puissance de 2.

Exercice 32 [ 03351 ] [correction]
Soient a, b ∈ N\ {0, 1} et n ∈ N?.
On suppose que an + bn est un nombre premier. Montrer que n est une puissance
de 2.

Exercice 33 [ 01223 ] [correction]
Soit E = {4k − 1/k ∈ N?}.
a) Montrer que pour tout n ∈ E, il existe p ∈ P ∩ E tel que p | n.
b) En déduire qu’il y a une infinité de nombre premier p tel que p = −1 [4].

Exercice 34 [ 02654 ] [correction]
Montrer qu’il existe une infinité de nombres premiers de la forme 4n+ 3.

Exercice 35 [ 02657 ] [correction]
Soit, pour n ∈ N, Fn = 22n + 1.
a) Montrer, si (n,m) ∈ N2 avec n 6= m, que Fn ∧ Fm = 1.
b) Retrouver à l’aide du a) le fait que l’ensemble des nombres premiers est infini.

Etudes arithmétiques

Exercice 36 [ 01225 ] [correction]
Soit n ∈ N, montrer √

n ∈ Q⇔ ∃m ∈ N, n = m2

En déduire que
√

2 /∈ Q et
√

3 /∈ Q

Exercice 37 [ 01211 ] [correction]
Soient a et b deux entiers relatifs tels que a2 | b2. Montrer que a | b.

Exercice 38 [ 01212 ] [correction]
Soit x ∈ Q. On suppose qu’il existe n ∈ N? tel que xn ∈ Z. Montrer que x ∈ Z.
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Exercice 39 [ 01213 ] [correction]
Soient a, b ∈ N?. On suppose qu’il existe m,n premiers entre eux tels que am = bn.
Montrer qu’il existe c ∈ N? tel que a = cn et b = cm.

Exercice 40 [ 01214 ] [correction]
On divise un cercle en n arcs égaux et on joint les points de division de p en p
jusqu’à ce qu’on revienne au point de départ. Quel est le nombre de côtés du
polygone construit ?

Exercice 41 [ 03669 ] [correction]
On étudie l’équation algébrique

(E) : xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0

d’inconnue x et où les coefficients a0, a1, . . . , an−1 sont supposés entiers.
Montrer que les solutions réelles de (E) sont entières ou irrationnelles.

Exercice 42 [ 02361 ] [correction]
Soit P ∈ Z [X] et a, b deux entiers relatifs avec b > 0 et

√
b irrationnel.

a) Exemple : montrer que
√

6 est irrationnel.
b) Quelle est la forme de (a+

√
b)n ?

c) Montrer que si a+
√
b est racine de P alors a−

√
b aussi.

d) On suppose que a+
√
b est racine double de P . Montrer que P = RQ2 avec R

et Q dans Z [X].

Exercice 43 [ 03681 ] [correction]
On note d(n) le nombre de diviseurs positifs de n ∈ N?.
Déterminer un équivalent de

1
n

n∑
k=1

d(k)

représentant la moyenne du nombre de diviseurs positifs des entiers inférieurs à n.

Exercice 44 [ 01227 ] [correction]
Soit n ∈ N\ {0, 1}. Montrer que n est le produit de ses diviseurs non triviaux si, et
seulement si, n = p3 avec p ∈ P ou n = p1p2 avec p1, p2 ∈ P distincts.

Exercice 45 [ 01228 ] [correction]
Soient p ∈ P et α ∈ N?. Déterminer les diviseurs positifs de pα.

Exercice 46 [ 01229 ] [correction]

Soit n ∈ N\ {0, 1} et n =
N∏
k=1

pαkk sa décomposition primaire.

Quel est le nombre de diviseurs positifs de n ?

Exercice 47 [ 01230 ] [correction]
Soit n ∈ N\ {0, 1} dont la décomposition primaire est

n =
N∏
i=1

pαii

On note d(n) le nombre de diviseurs supérieurs ou égaux à 1 de n et σ(n) la
somme de ceux-ci.
Montrer

d(n) =
N∏
i=1

(αi + 1) et σ(n) =
N∏
i=1

pαi+1
i − 1
pi − 1

Exercice 48 [ 01231 ] [correction]
Soit σ : Z→ N qui à n ∈ Z associe la somme de diviseurs positifs de n.
a) Soit p ∈ P et α ∈ N?. Calculer σ(pα).
b) Soient a, b ∈ Z premiers entre eux.
Montrer que tout diviseur positif d du produit ab s’écrit de manière unique
d = d1d2 avec d1 et d2 diviseurs positifs de a et b.
c) En déduire que si a et b sont premiers entre eux alors σ(ab) = σ(a)σ(b).
d) Exprimer σ(n) en fonction de la décomposition primaire de n.

Exercice 49 [ 03725 ] [correction]
[Théorème d’Aubry]
Soit N un entier strictement positif.
On suppose que le cercle d’équation x2 + y2 = N possède un point rationnel
(x0, y0).
On introduit (x′0, y′0) un point entier obtenu par arrondi de (x0, y0).
En étudiant l’intersection du cercle avec la droite joignant (x0, y0) et (x′0, y′0),
montrer que le cercle contient un point entier (x1, y1).
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Valuation p-adique

Exercice 50 [ 01226 ] [correction]
Pour p ∈ P et n ∈ Z, on note vp(n) l’exposant de la plus grande puissance de p
divisant n.
a) Montrer que v2(1000!) = 994.
b) Plus généralement, calculer vp(n!). On rappelle que

∀x ∈ R,
⌊
bpxc
p

⌋
= bxc

Exercice 51 [ 02370 ] [correction]
On note P l’ensemble des nombres premiers. Pour tout entier n > 0, on note
vp(n) l’exposant de p dans la décomposition de n en facteurs premiers. On note
bxc la partie entière de x. On note π(x) le nombre de nombres premiers au plus
égaux à x.

a) Montrer que vp(n!) =
+∞∑
k=1

⌊
n
pk

⌋
.

b) Montrer que
(

2n
n

)
divise

∏
p∈P;p62n

p

⌊
ln(2n)

ln p

⌋
.

c) Montrer que
(

2n
n

)
6 (2n)π(2n).

d) Montrer que x
ln x = O(π(x)) quand x→ +∞

Petit théorème de Fermat

Exercice 52 [ 01222 ] [correction]
Soit p un nombre premier.
a) Montrer

∀k ∈ {1, 2, . . . , p− 1} , p |
(
p

k

)
b) En déduire que

∀n ∈ Z, np ≡ n [p]

Exercice 53 [ 03636 ] [correction]
Soit n > 2 un entier. On suppose

∀a ∈ {1, . . . , n− 1} , an−1 ≡ 1 [n]

Montrer que n est un nombre premier

Exercice 54 [ 00204 ] [correction]
[Nombres de Carmichael]
Soit n un entier supérieur à 2.
On suppose que n pour tout facteur premier p de n, p2 ne divise pas n mais p− 1
divise n− 1.
Etablir

∀a ∈ Z, an ≡ a [n]

Exercice 55 [ 03686 ] [correction]
On désire établir qu’il existe une infinité de nombres premiers de la forme 4n+ 1.
Pour cela on raisonne par l’absurde et on suppose que ceux-ci sont en nombre fini
et on les numérote pour former la liste p1, . . . , pr.
On pose alors

N = (2p1 . . . pr)2 + 1

a) On suppose qu’il existe un facteur premier q de N de la forme 4n+ 3.
Etablir

(2p1 . . . pr)(q−1) ≡ −1 [q]

b) Conclure en exploitant le petit théorème de Fermat.
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Corrections

Exercice 1 : [énoncé]
a) x = 1 n’est pas solution. Pour x 6= 1 :
x− 1 | x+ 3⇔ x+3

x−1 = 1 + 4
x−1 ∈ Z⇔ x− 1 ∈ Div(4) = {1, 2, 4,−1,−2,−4}

Ainsi S = {2, 3, 5, 0,−1,−3}.
b) x = −2 n’est pas solution. Pour x 6= −2 :
x+ 2 | x2 + 2⇔ x2+2

x+2 = x− 2 + 6
x+2 ∈ Z⇔ x+ 2 ∈ Div(6) =

{1, 2, 3, 6,−1,−2,−3,−6}.
Ainsi S = {−1, 0, 1, 4,−3,−4,−5,−8}.

Exercice 2 : [énoncé]
a) On a

xy = 3x+ 2y ⇔ (x− 2)(y − 3) = 6

En détaillant les diviseurs de 6 possibles, on obtient

S = {(3, 9), (4, 6), (5, 5), (8, 4), (1,−3), (0, 0), (−1, 1), (−4, 2)}

b) Pour x, y ∈ Z?,

1
x

+ 1
y

= 1
5 ⇔ 5x+ 5y = xy ⇔ (x− 5)(y − 5) = 25

En détaillant les diviseurs de 25 possibles, on obtient

S = {(6, 30), (10, 10), (30, 6), (4,−20), (−20, 4)}

c) On a
x2 − y2 − 4x− 2y = 5⇔ (x− 2)2 − (y + 1)2 = 8

et donc
x2 − y2 − 4x− 2y = 5⇔ (x− y − 3)(x+ y − 1) = 8

En détaillant les diviseurs de 8 possibles et sachant

{
x− y − 3 = a

x+ y − 1 = b
⇔


x = a+ b

2 + 2

y = b− a
2 − 1

on obtient
S = {(5, 0), (5,−2), (−1, 0), (−1,−2)}

Exercice 3 : [énoncé]
Les entiers m compris entre 1 et 2n peuvent s’écrire m = 2kp avec p impair
compris entre 1 et 2n.
Il y a exactement n entiers impairs possible entre 1 et 2n. Pour les n+ 1 entiers
considérés, il y en a donc au moins 2 pour lesquels la valeur de p est la même. Ils
s’écrivent 2kp et 2`p.
Le plus petit des deux divise l’autre.

Exercice 4 : [énoncé]
En associant dans P 2 = P × P chaque diviseur d avec celui qui lui est conjugué
n/d, on obtient un produit de N termes égaux à n. Ainsi

P 2 = nN

Exercice 5 : [énoncé]
a− 1 = bq + r avec 0 6 r < b.
abn − 1 = (bq + r + 1)bn − 1 = qbn+1 + bn(r + 1)− 1.
Or 0 6 bn(r + 1)− 1 < bn+1 donc la relation ci-dessus est la division euclidienne
de abn − 1 par bn+1.
Le quotient de celle-ci est donc q.

Exercice 6 : [énoncé]
a) On aa = bq + r avec 0 6 r < b.

2a−1 = 2bq+r−1 = 2bq+r−2r + 2r−1 = (2b−1)(1 + 2b+ · · ·+ 2b(q−1))2r + 2r−1

avec 0 6 2r − 1 < 2b − 1.
b) Posons a0 = a, a1 = b et définissons a2, . . . , am comme par l’algorithme
d’Euclide avec am = pgcd(am−1, am−2).
On a

pgcd(2a−1, 2b−1) = pgcd(2a0−1, 2a1−1) = pgcd(2a1−1, 2a2−1) = . . . = pgcd(2am−1, 20−1) = 2am−1

Exercice 7 : [énoncé]
a) Par récurrence sur n ∈ N? :
Pour n = 1 : ϕ2ϕ0 − ϕ2

1 = 0− 1 = −1 : ok.
Supposons la propriété établie au rang n > 1.

ϕn+2ϕn−ϕ2
n+1 = (ϕn+ϕn+1)ϕn−ϕn+1(ϕn+ϕn−1) = ϕ2

n−ϕn+1ϕn−1 =
HR
−(−1)n = (−1)n+1
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Récurrence établie.
b) Par l’égalité de Bézout on obtient que ϕn ∧ ϕn+1 = 1 puisque la relation
précédente permet d’écrire uϕn + vϕn+1 = 1 avec u, v ∈ Z.
c) Par récurrence sur m ∈ N?
Pour m = 1 : ϕn+1 = ϕ1ϕn+1 + ϕ0ϕn car ϕ1 = 1 et ϕ0 = 0.
Supposons la propriété établie au rang n > 1

ϕn+m+1 = ϕ(n+1)+m =
HR

ϕmϕn+2+ϕm−1ϕn+1 = ϕmϕn+1+ϕmϕn+ϕm−1ϕn+1 = ϕm+1ϕn+1+ϕmϕn

Récurrence établie.
d)

pgcd(ϕm+n, ϕn) = pgcd(ϕmϕn−1+ϕm−1ϕn, ϕn) = pgcd(ϕmϕn−1, ϕn) = pgcd(ϕm, ϕn)

car ϕn ∧ ϕn−1 = 1.
Par récurrence on obtient que

∀q ∈ N : ϕm ∧ ϕn = ϕm+qn ∧ ϕn
On en déduit alors pgcd(ϕm, ϕn) = pgcd(ϕn, ϕr) car on peut écrire m = nq + r
avec q ∈ N.
e) Suivons l’algorithme d’Euclide calculant pgcd(m,n) :
a0 = m, a1 = n, a0 = a1q1 + a2, a1 = a2q2 + a3,..., ap−1 = apqp + 0 avec
ap = pgcd(m,n)
Or pgcd(ϕn, ϕm) = pgcd(ϕa0 , ϕa1) = pgcd(ϕa1 , ϕa2) = . . . = pgcd(ϕap , ϕ0) = ϕap
car ϕ0 = 0.
Ainsi pgcd(ϕm, ϕn) = ϕpgcd(m,n).

Exercice 8 : [énoncé]
a) pgcd(a, b) = 3 et 3a− 4b = 3.
b) pgcd(a, b) = 1 et 11b− 8a = 1
c) pgcd(a, b) = 15 et 2a− 5b = 15

Exercice 9 : [énoncé]
(⇒) Supposons d = au+ bv avec u, v ∈ Z.
pgcd(a, b) | a et pgcd(a, b) | b donc pgcd(a, b) | au+ bv = d.
(⇐) Supposons pgcd(a, b) | d. On peut écrire d = kpgcd(a, b) avec k ∈ Z.
Par l’égalité de Bézout, il existe u0, v0 ∈ Z tels que

au0 + bv0 = pgcd(a, b)

et on a alors
d = au+ bv

avec u = ku0 et v = kv0 ∈ Z

Exercice 10 : [énoncé]
3× (2n+ 4)− 2× (3n+ 3) = 6 donc pgcd(2n+ 4, 3n+ 3) | 6.

Exercice 11 : [énoncé]
Si le système possède une solution alors d | m est une condition nécessaire.
Inversement si d | m alors x = d et y = m donne un couple (x, y) ∈ N2 solution.

Exercice 12 : [énoncé]
Soit (x, y) ∈ N2 un couple solution. Posons δ = pgcd(x, y).
On peut écrire

x = δx′ et y = δy′ avec x′ ∧ y′ = 1

L’équation devient :

1 + x′y′ = x′ + y′ ⇔ (x′ − 1)(y′ − 1) = 0⇔ x′ = 1 ou y′ = 1

Ainsi (x, y) est de la forme (δ, δk) ou (δk, δ) avec k ∈ N.
Inversement ces couples sont solutions.

Exercice 13 : [énoncé]
a) Soit (x, y) solution. pgcd(x, y) = 5 donc x = 5x′ et y = 5y′ avec x′, y′ ∈ N
premiers entre eux.
ppcm(x, y) = 5x′y′ = 60 donc x′y′ = 12 d’où
(x′, y′) ∈ {(1, 12), (2, 6), (3, 4), (4, 3), (6, 2), (12, 1)}.
Les couples (2, 6) et (6, 2) sont à éliminer car 2 et 6 ne sont pas premiers entre eux.
Finalement (x, y) ∈ {(5, 60), (15, 20), (20, 15), (60, 5)}.
Inversement : ok. Finalement S = {(5, 60), (15, 20), (20, 15), (60, 5)}.
b) Soit (x, y) solution. pgcd(x, y) = 10 donc x = 10x′ et y = 10y′ avec x′, y′ ∈ N
premiers entre eux.
x+ y = 10(x′ + y′) = 100 donc x′ + y′ = 10.
Sachant x′ ∧ y′ = 1, il reste (x′, y′) ∈ {(1, 9), (3, 7), (7, 3), (9, 1)} puis
(x, y) ∈ {(10, 90), (30, 70), (70, 30), (90, 10)}.
Inversement : ok. Finalement S = {(10, 90), (30, 70), (70, 30), (90, 10)}.

Exercice 14 : [énoncé]
Posons d = pgcd(a, a+ b).
On a d | a et d | (a+ b) alors d | b = (a+ b)− a donc d | pgcd(a, b) = 1 puis d = 1.
De même pgcd(b, a+ b) = 1. Ainsi a ∧ (a+ b) = b ∧ (a+ b) = 1 et par suite
ab ∧ (a+ b) = 1.
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Exercice 15 : [énoncé]
a) pgcd(a, a+ b) = pgcd(a, b) et pgcd(b, a+ b) = pgcd(a, b) = 1.
Ainsi (a+ b) ∧ a = 1 et (a+ b) ∧ b = 1 donc (a+ b) ∧ ab = 1.
b) Posons δ = pgcd(a, b). On peut écrire a = δa′ et b = δb′ avec a′ ∧ b′ = 1.
pgcd(a+ b,ppcm(a, b)) = δpgcd(a′ + b′,ppcm(a′, b′)) = δ

Exercice 16 : [énoncé]
a) n2 + n = n(n+ 1).
1× (2n+ 1)− 2× n = 1 donc (2n+ 1) ∧ n = 1.
2× (n+ 1)− 1× (2n+ 1) = 1 donc (2n+ 1) ∧ (n+ 1) = 1
Par produit (2n+ 1) ∧ (n2 + n) = 1.
b) 3n2 + 2n = n(3n+ 2).
1× (n+ 1)− 1× n = 1 donc n ∧ (n+ 1) = 1.
3× (n+ 1)− 1× (3n+ 2) = 1 donc (3n+ 2) ∧ (n+ 1) = 1.
Par produit (3n2 + 2n) ∧ (n+ 1) = 1.

Exercice 17 : [énoncé]
2× (n+ 1)− 1× (2n+ 1) = 1 donc (n+ 1) ∧ (2n+ 1) = 1.
On a (

2n+ 1
n+ 1

)
= 2n+ 1

n+ 1

(
2n
n

)
donc

(n+ 1)
(

2n+ 1
n+ 1

)
= (2n+ 1)

(
2n
n

)

Puisque
(

2n+ 1
n+ 1

)
∈ Z, on a

(n+ 1) | (2n+ 1)
(

2n
n

)

or (n+ 1) ∧ (2n+ 1) = 1 donc

(n+ 1) |
(

2n
n

)

Exercice 18 : [énoncé]
Posons d = pgcd(a, bc) et δ = pgcd(a, c).
On δ | a et δ | c donc δ | bc puis δ | d.
Inversement d | a et d | bc.
Or d ∧ b = 1 car d | a et a ∧ b = 1. Donc d | c puis d | δ.
Par double divisibilité d = δ.

Exercice 19 : [énoncé]
a) Théorème de Bézout.
b) Soit (u, v) ∈ Z2 un couple solution. On a au+ bv = 1 = au0 + bv0 donc
a(u− u0) = b(v0 − v)
On a a | b(v0 − v) or a ∧ b = 1 donc a | v0 − v. Ainsi ∃k ∈ Z tel que v = v0 − ka et
alors a(u− u0) = b(v0 − v) donne a(u− u0) = abk puis u = u0 + kb (sachant
a 6= 0).
c) Inversement les couples de la forme ci-dessus sont solutions.

Exercice 20 : [énoncé]
a) Unicité : Si (an, bn) et (αn, βn) sont solutions alors

an + bn
√

2 = αn + βn
√

2

donc
(bn − βn)

√
2 = (αn − an)

Si bn 6= βn alors
√

2 = αn − a
bn − βn

∈ Q

ce qui est absurde.
On en déduit bn = βn puis an = αn
Existence : Par la formule du binôme

(1 +
√

2)n =
n∑
k=0

(
n

k

)
√

2
k

En séparant les termes d’indices pairs de ceux d’indices impairs, on a

(1 +
√

2)n = an + bn
√

2

avec

an =
E(n/2)∑
p=0

(
n

2p

)
2p et bn =

E((n−1)/2)∑
p=0

(
n

2p+ 1

)
2p
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b) On a
a2
n − 2b2

n = (an + bn
√

2)
(
an − bn

√
2
)

Or en reprenant les calculs qui précèdent

(1−
√

2)n = an − bn
√

2

donc
a2
n − 2b2

n = (1 +
√

2)n(1−
√

2)n = (−1)n

c) La relation qui précède permet d’écrire

anu+ bnv = 1 avec u, v ∈ Z

On en déduit que an et bn sont premiers entre eux.

Exercice 21 : [énoncé]
Unicité : Si (d1, d2) est solution alors pgcd(d, a) = pgcd(d1d2, a)
Or d2 ∧ a = 1 car d2 | b et a ∧ b = 1, donc pgcd(d1d2, a) = pgcd(d1, a) = d1 car
d1 | a.
De même d2 = pgcd(d, b) d’où l’unicité.
Existence : Posons d1 = pgcd(d, a) et d2 = pgcd(d, b). On a d1 | a et d2 | b.
d1 | a et d2 | b donc d1 ∧ d2 = 1 car a ∧ b = 1.
d1 | d, d2 | d et d1 ∧ d2 = 1 donc d1d2 | d.
Inversement : Par l’égalité de Bézout on peut écrire d1 = u1d+ v1a et
d2 = u2d+ v2b donc d | d1d2 = Ud+ v1v2ab car d | ab.

Exercice 22 : [énoncé]
Si k | a et ` | b alors k` | ab. Ainsi ϕ(div(a)× div(b)) ⊂ div(ab).
Soit d ∈ div(ab). Posons k = pgcd(d, a) et ` = pgcd(d, b). On a k ∈ div(a),
` ∈ div(b) et k ∧ ` = 1 car a ∧ b = 1. Comme k | d, ` | d et k ∧ ` = 1 on a k` | d. De
plus k = du+ av et ` = du′ + bv donc k` = dU + abV d’où d | k` et finalement
d = k`. Ainsi ϕ(div(a)× div(b)) = div(ab).
Soit (k, `) ∈ div(a)× div(b) et (k′, `′) ∈ div(a)× div(b). Si ϕ(k, `) = ϕ(k′, `′) alors
k` = k′`′.
Comme k | k′`′ et k ∧ `′ = 1 on a k | k′. De même k′ | k donc k = k′. De même
` = `′.
Ainsi ϕ est injective et finalement ϕ réalise une bijection de div(a)× div(b) vers
div(ab).

Exercice 23 : [énoncé]
Par l’absurde, supposons que ai et aj (avec i, j ∈ {1, . . . , n+ 1}) ne soient pas
premiers entre eux.
Considérons d un diviseur premier commun à ai et aj . L’entier d est diviseur de
ai − aj donc de (i− j).n!.
Puisque d est premier et diviseur de i− j ou de n!, il est nécessairement inférieur
à n et donc assurément diviseur de n!. Or d divise aussi ai = i.n! + 1 et donc d
divise 1.
C’est absurde.

Exercice 24 : [énoncé]
Notons 2p+ 1 le premier nombre impair sommé. On a

N =
n−1∑
k=0

(2k + 2p+ 1) = n(n+ 2p)

avec n > 2 et n+ 2p > 2. Ainsi N est composé.

Exercice 25 : [énoncé]
a) 4n3 + 6n2 + 4n+ 1 = (n+ 1)4 − n4 = ((n+ 1)2 − n2)((n+ 1)2 + n2) =
(2n+ 1)(2n2 + 2n+ 1).
Cet entier est composé pour n ∈ N? car 2n+ 1 > 2 et 2n2 + 2n+ 1 > 2.
b) n4 − n2 + 16 = (n2 + 4)2 − 9n2 = (n2 − 3n+ 4)(n2 + 3n+ 4).
De plus les équations n2 − 3n+ 4 = 0, 1 ou − 1 et n2 + 3n + 4 = 0,1 ou − 1
n’ont pas de solutions car toutes de discriminant négatif. Par conséquent
n4 − n2 + 16 est composée.

Exercice 26 : [énoncé]
Considérons l’entier n! + 1. Celui-ci est divisible par un nombre premier p
inférieur à n! + 1.
Si ce nombre premier p est aussi inférieur à n alors il divise n! (car apparaît
comme l’un des facteurs de ce produit) et donc il divise aussi 1 = (n! + 1)− n!.
Ceci est absurde et donc le nombre premier en question est au moins égal à n+ 1.
Finalement, il est strictement compris entre n et n! + 2.

Exercice 27 : [énoncé]
Considérons les xk = 1001! + k avec 2 6 k 6 1001. Ce sont 1000 entiers
consécutifs.
Pour tout 2 6 k 6 1001, on a k | (1001)! donc k | xk avec 2 6 k < xk donc xk /∈ P.
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Exercice 28 : [énoncé]
On peut factoriser

p2 − 1 = (p− 1)(p+ 1)

p est impair donc les nombres p− 1 et p+ 1 sont deux entiers pairs consécutifs,
l’un est divisible par 2, l’autre par 4. Ainsi

8 | p2 − 1

Les entiers p− 1, p, p+ 1 sont consécutifs, l’un est divisible par 3, ce ne peut être p
car p > 5 premier. Ainsi

3 | p2 − 1

Enfin, 3 et 8 étant premiers entre eux

24 | p2 − 1

Exercice 29 : [énoncé]
Si n = ab avec a, b ∈ N? alors

2n − 1 = (2a − 1)(1 + 2a + · · ·+ 2a(b−1))

donc 2a − 1 | 2n − 1 d’où 2a − 1 = 1 ou 2a − 1 = 2n − 1 ce qui implique a = 1 ou
a = n.
Ainsi n ne possède que des diviseurs triviaux, il est premier.

Exercice 30 : [énoncé]
Supposons que ap − 1 premier.
Comme ap − 1 = (a− 1)(1 + a+ · · ·+ ap−1) on a a− 1 = 1 ou
1 + a+ · · ·+ ap−1 = 1.
Or p > 2 et a 6= 0 donc 1 + a+ · · ·+ ap−1 6= 1. Par conséquent a = 2.
Montrons maintenant que p est premier.
Si d | p alors on peut écrire p = cd puis ap − 1 = (ad)c − 1.
Si d 6= p alors c > 2 puis par le résultat précédent on obtient ad = 2 puis d = 1.
Ainsi les seuls diviseurs de p sont 1 et lui-même.
Finalement p est premier.

Exercice 31 : [énoncé]
On peut écrire

n = 2k(2p+ 1)

On a alors
an + 1 = b2p+1 − (−1)2p+1 = (b+ 1)c

avec b = a2k .
On en déduit que b+ 1 | an + 1, or an + 1 est supposé premier et b+ 1 > 1 donc
b+ 1 = an + 1 puis n = 2k.

Exercice 32 : [énoncé]
On peut écrire n = 2k(2p+ 1) avec k, p ∈ N et l’enjeu est d’établir p = 0.
Posons α = a2k et β = b2k . On a

an + bn = α2p+1 + β2p+1 = α2p+1 − (−β2p+1)

On peut alors factoriser par α− (−β) = α+ β et puisque an + bn est un nombre
premier, on en déduit que α+ β = 1 ou α+ β = an + bn. Puisque α, β > 1, le cas
α+ β = 1 est à exclure et puisque α 6 an et β 6 bn, le cas α+ β = an + bn

entraîne
α = an et β = bn

Puisque a > 2, l’égalité α = an = α2p+1 entraîne p = 0 et finalement n est une
puissance de 2.

Exercice 33 : [énoncé]
a) n est impair, il n’est donc pas divisible par 2. Si tous les nombres premiers p
divisant n sont tels que p = 1 [4] alors n = 1 [4] et donc n /∈ E
b) Supposons qu’il n’y en ait qu’un nombre fini de nombres premiers p1p2 . . . pn.
Considérons

n = 4p1p2 . . . pn − 1 ∈ E

Il existe p ∈ P ∩ E tel que p | n mais p | p1p2 . . . pn donc p | 1. Absurde.

Exercice 34 : [énoncé]
Par l’absurde, supposons qu’il n’y ait qu’un nombre fini de nombres premiers de
la forme 4n+ 3. On peut introduire le nombre N égal au produit de ceux-ci.
Considérons alors l’entier 4N − 1.
4N − 1 est impair donc 2 ne le divise pas.
Si tous les facteurs premiers de 4N − 1 sont égaux à 1 modulo 4 alors
4N − 1 ≡ 1 [4] ce qui est absurde.
L’un au moins des facteurs premiers de 4N − 1 est alors de la forme 4n+ 3 et
celui-ci apparaît donc dans le produit N . Ce facteur premier divise alors les
nombres 4N − 1 et N , il divise donc −1, c’est absurde !
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Exercice 35 : [énoncé]
a) Quitte à échanger, supposons n < m.
On remarque que

(Fn − 1)2m−n
= Fm − 1

En développant cette relation par la formule du binôme, on parvient à une
relation de la forme

Fm + vFn = 2
avec v ∈ Z car les coefficients binomiaux sont des entiers.
On en déduit que pgcd(Fn, Fm) = 1 ou 2.
Puisque Fn et Fm ne sont pas tous deux pairs, ils sont premiers entre eux.
b) Les Fn sont en nombre infini et possèdent des facteurs premiers distincts, il
existe donc une infinité de nombres premiers.

Exercice 36 : [énoncé]
(⇐) ok
(⇒) Si

√
n ∈ Q alors on peut écrire

√
n = p

q avec p ∧ q = 1.
On a alors q2n = p2 donc n | p2

De plus q2n = p2 et p2 ∧ q2 = 1 donne p2 | n.
Par double divisibilité n = p2.
ni 2, ni 3 ne sont des carrés d’un entier, donc

√
2 /∈ Q et

√
3 /∈ Q.

Exercice 37 : [énoncé]
Supposons a2 | b2.
Posons d = pgcd(a, b). On a d2 = pgcd(a, b)2 = pgcd(a2, b2) = a2 donc d = |a| puis
a | b.

Exercice 38 : [énoncé]
On peut écrire x = p

q avec p ∈ Z, q ∈ N? et p ∧ q = 1.
xn = k ∈ Z donne qnk = pn. p ∧ q = 1 donc pn ∧ qn = 1. Puisque qn | pn × 1 on a
qn | 1 (par Gauss).
Par suite qn = 1 et donc q = 1 et x = p ∈ Z.

Exercice 39 : [énoncé]
Il existe u, v ∈ Z tel que mu+ nv = 1.
Analyse : Si c convient alors c = cmu+nv = buav. A priori c ∈ Q.
Synthèse : Soit c = buav. On a cn = bnuanv = amuanv = a et de même cm = b.
Puisque le nombre rationnel c possède une puissance entière, c ∈ Z.

Exercice 40 : [énoncé]
Le nombre de côté du polygone construit est le plus petit entier k ∈ N? tel que
n | kp.
Posons δ = pgcd(n, p). On peut écrire n = δn′ et p = δp′ avec n′ ∧ p′ = 1.
n | kp⇔ n′ | kp′ i.e. n′ | k. Ainsi k = n′ = n/δ.

Exercice 41 : [énoncé]
Supposons x = p/q une racine rationnelle de l’équation (E) avec p et q premiers
entre eux.
En réduisant au même dénominateur, on obtient

pn + an−1qp
n−1 + · · ·+ a1pq

n−1 + a0q
n = 0

Puisque q divise an−1qp
n−1 + · · ·+ a1pq

n−1 + a0q
n, on obtient que q divise pn.

Or p et q sont premiers entre eux donc nécessairement q = 1 et donc x = p ∈ Z.
Ainsi les racines rationnelles de (E) sont entières.

Exercice 42 : [énoncé]
a) Supposons

√
6 = p/q avec p ∧ q = 1. On a 6q2 = p2 donc p pair, p = 2k. On

obtient alors 3q2 = 2k2 et donc q est pair. Absurde car p et q sont premiers entre
eux.
b) Par développement selon la formule du binôme de Newton

(a+
√
b)n = αk + βk

√
b avec αk, βk ∈ Z

c) a+
√
b racine de P =

n∑
k=0

akX
k donne

n∑
k=0

akαk =
(

n∑
k=0

akβk

)
√
b

L’irrationalité de
√
b entraîne

n∑
k=0

akαk =
n∑
k=0

akβk = 0

ce qui permet de justifier qu’alors P (a−
√
b) = 0.

d) Posons

Q = (X − a+
√
b)(X − a−

√
b) = X2 − 2aX + a2 − b ∈ Z [X]
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Par division euclidienne P = QS + T avec deg T < 2. Or en posant cette division
euclidienne, on peut affirmer que S, T ∈ Z [X] avec P,Q ∈ Z [X] et Q unitaire.
a+
√
b, a−

√
b racine de P entraîne T = 0 et donc P = QS avec Q,S ∈ Z [X]. En

dérivant P ′ = Q′S +QS′ et a+
√
b entraîne racine de P ′ donne a+

√
b racine de

S. On peut alors comme ci-dessus justifier S = QR avec R ∈ Z [X] et conclure.

Exercice 43 : [énoncé]
On peut écrire

n∑
k=1

d(k) =
n∑
k=1

∑
d|k

1

et en permutant les deux sommes

n∑
k=1

d(k) =
n∑
d=1

∑
k∈Ad

1

avec Ad l’ensemble des multiples de d qui sont inférieurs à n. On a évidemment

CardAd = E(n/d)

et donc
n∑
k=1

d(k) =
n∑
d=1

E
(n
d

)
Puisque

x− 1 < E (x) 6 x

on obtient l’encadrement

n

(
n∑
d=1

1
d
− 1
)

6
n∑
k=1

d(k) 6n
n∑
d=1

1
d

Sachant qu’il est connu que
n∑
k=1

1
d
∼ lnn

on obtient
1
n

n∑
k=1

d(k) ∼ lnn

Exercice 44 : [énoncé]
(⇐) clair
(⇒) n est divisible par un nombre premier p et ne peut lui être égal. On peut
donc écrire n = pd avec 1 < d < n. Si d est premier alors on obtient la seconde
forme. Sinon, il ne peut qu’être divisible par p (car q | d implique que n est un
multiple de pqd car n est produit de ses diviseurs non triviaux). Le nombre d est
alors de la forme d = pk. k = 1 et k > 3 sont à exclure puisque n est le produit de
ses diviseurs non triviaux. Il reste d = p2 et alors n = p3

Exercice 45 : [énoncé]
Soit d ∈ Div(pα) ∩ N. Notons β la plus grande puissance de p telle que pβ | d.
On peut écrire d = pβk avec p 6 |k.
Puisque p 6 |k et p ∈ P on a p ∧ k = 1. Or k | pα × 1 donc, par Gauss : k | 1.
Par suite d = pβ avec β ∈ N. De plus d | pα donc pβ 6 pα puis β 6 α.
Inversement : ok.

Exercice 46 : [énoncé]

Les diviseurs positifs sont les d =
N∏
k=1

pβkk avec ∀1 6 k 6 N, 0 6 βk 6 αk.

Le choix des βk conduisant à des diviseurs distincts, il y a exactement
N∏
k=1

(αk + 1) diviseurs positifs de n.

Exercice 47 : [énoncé]
Soit d ∈ N diviseur de n.
Tout diviseur premier de d est aussi diviseur de n et c’est donc l’un des p1, . . . , pN .

Par suite, on peut écrire d =
N∏
i=1

pβii avec βi ∈ N.

pβii | d donc pβii | n d’où βi 6 αi.

Ainsi d est de la forme d =
N∏
i=1

pβii avec pour tout i ∈ {1, . . . , N}, 0 6 βi 6 αi.

Inversement de tels nombres sont bien diviseurs de n.
Il y a autant de nombres de cette forme distincts que de choix pour les

β1, . . . , βN .Pour βi, il y a αi + 1 choix possibles, au total d(n) =
N∏
i=1

(αi + 1).

De plus

σ(n) =
α1∑
β1=0

α2∑
β2=0

. . .

αN∑
βN=0

pβ1
1 pβ2

2 . . . pβNN =

 α1∑
β1=0

pβ1
1

 α2∑
β2=0

pβ2
2

 . . .

 αN∑
βN=0

pβNN


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Par sommation géométrique

σ(n) =
N∏
i=1

pαi+1
i − 1
pi − 1

Exercice 48 : [énoncé]
a) Div(pα) ∩ N =

{
1, p, p2, . . . , pα

}
donc σ(pα) = pα+1−1

p−1 .
b) Soit d ∈ Div(ab) ∩ N. Posons d1 = pgcd(d, a) et d2 = pgcd(d, b).
On a d1 ∈ Div(a) ∩ N et d2 ∈ Div(b) ∩ N.
Puisque a ∧ b = 1 on a d1 ∧ d2 = 1. Or d1 | d et d2 | d donc d1d2 | d.
d1 = du1 + av1 et d2 = du2 + bv2 donc d1d2 = dk + abv1v2 d’où d | d1d2.
Finalement d = d1d2.
Supposons d = δ1δ2 avec δ1 ∈ Div(a) ∩ N et δ2 ∈ Div(b) ∩ N.
On a d1 | δ1δ2 et d1 ∧ δ2 = 1 donc d1 | δ1 et de même δ1 | d1 puis d1 = δ1. De
même d2 = δ2.

c) σ(ab) =
∑
d|ab

d =
∑
d1|a

∑
d2|b

d1d2 =
(∑
d1|a

d1

)(∑
d2|b

db

)
= σ(a)σ(b).

d) Si n = pα1
1 . . . pαNN alors σ(n) =

N∏
i=1

p
αi+1
i

−1
pi−1 .

Exercice 49 : [énoncé]
Si le couple (x0, y0) est entier la conclusion est entendue.
Sinon, on peut écrire

x0 = p0/d0 et y0 = q0/d0 avec p0, q0 ∈ Z et d0 ∈ N\ {0, 1}

Considérons alors un couple entier (x′0, y′0) obtenu par arrondi de (x0, y0). On a

D2 = (x0 − x′0)2 + (y0 − y′0)2 6 1/4 + 1/4

La droite joignant nos deux couples peut être paramétrée par{
x = x′0 + λ(x0 − x′0)
y = y′0 + λ(y0 − y′0)

avec λ ∈ R

Cette droite coupe le cercle en (x0, y0) pour λ = 1 et recoupe encore celui-ci en
(x1, y1) obtenu pour

λ = (x′0)2 + (y′0)2 −N2

D2

Puisque

D2 = N2 − 2(x0x
′
0 + y0y

′
0) + (x′0)2 + (y′0)2 = d1

d0

avec d1 ∈ N? et d1 < d0 car D2 < 1.
Le nombre λ est donc de la forme d0k/d1 avec k entier et les coordonnées (x1, y1)
sont alors de la forme

x1 = p1/d1 et y1 = q1/d1 avec p1, q1 ∈ Z et d1 ∈ N?, d1 < d0

Si d1 = 1, le processus s’arrête, sinon il suffit de répéter l’opération jusqu’à
obtention d’un couple entier.

Exercice 50 : [énoncé]
a) v2(1000!) = 500 + v2(500!) car 1000! = 2500 × 500!× k avec k produit de
nombres impairs.
v2(1000!) = 500 + 250 + 125 + 62 + 31 + 15 + 7 + 3 + 1 = 994.
b) En isolant les multiples de p dans le produit décrivant p!, on obtient

vp(n!) =
⌊
n

p

⌋
+ vp

(⌊
n

p

⌋
!
)

puis

vp(n!) =
⌊
n

p

⌋
+
⌊
bn/pc
p

⌋
+ vp

(⌊
bn/pc
p

⌋
!
)

or ⌊
bpxc
p

⌋
= bxc

avec x = n/p2 donne ⌊
bn/pc
p

⌋
=
⌊
n

p2

⌋
puis finalement

vp(n!) =
⌊
n

p

⌋
+
⌊
n

p2

⌋
+ · · ·+

⌊
n

pk

⌋
avec

k =
⌊

lnn
ln p

⌋
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Exercice 51 : [énoncé]
a) Pour k suffisamment grand

⌊
n/pk

⌋
= 0, la somme évoquée existe donc car elle

ne comporte qu’un nombre fini de termes non nuls. n! = 1× 2× . . .× n, parmi les
entiers allant de 1 à n, il y en a exactement bn/pc divisibles par p,

⌊
n/p2⌋

divisibles par p2, etc. . . donc

vp(n!) =
+∞∑
k=1

⌊
n

pk

⌋
b) On a (

2n
n

)
= (2n)!

(n!)2

Pour tout p ∈ P,

vp

(
(2n)!
(n!)2

)
=
∞∑
k=1

(⌊
2n
pk

⌋
− 2

⌊
n

pk

⌋)
or b2xc − 2 bxc = 0 ou 1 donc

∞∑
k=1

(⌊
2n
pk

⌋
− 2

⌊
n

pk

⌋)
6 Card

{
k ∈ N?/

⌊
2n/pk

⌋
> 0
}
6

⌊
ln(2n)

ln p

⌋

De plus les nombres premiers diviseurs de
(

2n
n

)
= (2n)!

(n!)2 sont diviseurs d’un entier

inférieur à 2n (lemme d’Euclide) et sont donc eux-mêmes inférieur à 2n. Il en
découle (

2n
n

)
|

∏
p∈P;p62n

p

⌊
ln(2n)

ln p

⌋
car toutes les puissances de nombres premiers intervenant dans la décomposition

de
(

2n
n

)
divisent

∏
p∈P;p62n

p

⌊
ln(2n)

ln p

⌋
.

Notons qu’en fait ce produit désigne

ppcm(1, 2, . . . , 2n)

c) On a(
2n
n

)
6

∏
p∈P;p62n

p

[
ln(2n)

ln p

]
6

∏
p∈P;p62n

p
ln(2n)

ln p 6
∏

p∈P;p62n
(2n) = (2n)π(2n)

d) En passant au logarithme :

2n∑
k=1

ln k − 2
n∑
k=1

ln k 6 π(2n) ln(2n)

A l’aide d’une comparaison intégrale on obtient∫ n

1
ln(t) dt 6

n∑
k=1

ln k 6
∫ (n+1)

1
ln(t) dt

donc

n lnn− n+ 1 6
n∑
k=1

ln k 6 (n+ 1) ln(n+ 1)− n

donc
n∑
k=1

ln k = n lnn− n+O(lnn)

Par suite
2n∑
k=1

ln k − 2
n∑
k=1

ln k = 2n ln(2n)− 2n− 2(n lnn− n) +O(lnn)

puis
2n∑
k=1

ln k − 2
n∑
k=1

ln k ∼ ln(2)(2n)

On en déduit
2n

ln 2n = O(π(2n))

Ajoutons
x

ln x ∼
2 bx/2c

ln 2 bx/2c
par calculs et π(x) ∼ π(2 bx/2c) car π(x) et π(2 bx/2c) ne différent qu’au plus
d’une unité et π(x)→ +∞.
Finalement, une certaine satisfaction.

Exercice 52 : [énoncé]
a) On a (

p

k

)
= p

k

(
p− 1
k − 1

)
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donc

k

(
p

k

)
= p

(
p− 1
k − 1

)

Par suite p | k
(
p

k

)
.

Or p est premier et k < p donc k ∧ p = 1 puis p |
(
p

k

)
en vertu du théorème de

Gauss.
b) Par récurrence finie sur n ∈ {0, 1, . . . , p− 1}
Pour n = 0 : ok
Supposons la propriété établie au rang n ∈ {0, 1, . . . , p− 2}
Par la formule du binôme

(n+ 1)p = np +
p−1∑
k=1

(
p

k

)
nk + 1 ≡ n+ 1 [p]

car pour 1 6 k 6 p− 1. (
p

k

)
≡ 0 [p]

Récurrence établie.
Pour tout n ∈ Z, il existe r ∈ {0, 1, . . . , p− 1} tel que n ≡ r [p] et

np ≡ rp ≡ r ≡ n [p]

Exercice 53 : [énoncé]
Pour tout a ∈ {1, . . . , n− 1}, a est premier avec n. En effet, un diviseur commun
à a et n est diviseur de an−1 − 1 et donc de 1.
On en déduit que n est premier puisque premier avec chaque naturel strictement
inférieur à lui-même.

Exercice 54 : [énoncé]
Par hypothèse, on peut écrire n = p1p2 . . . pr avec p1, . . . , pr nombres premiers
deux à deux distincts.
Soit a ∈ Z. Considérons i ∈ {1, . . . , r}.
Si pi ne divise pas a, le petit théorème de Fermat assure api−1 ≡ 1 [pi].
Puisque pi − 1 divise n− 1, on a encore an−1 ≡ 1 [pi] et donc an ≡ a [pi]
Si pi divise a alors pi divise aussi an et donc an ≡ 0 ≡ a [pi].

Enfin, chaque pi divisant an − a et les pi étant deux à deux premiers entre eux,
n = p1 . . . pr divise an − a et finalement an ≡ a [n] .
La réciproque de ce résultat est vraie.
Ce résultat montre que le petit théorème de Fermat ne caractérise pas les nombres
premiers. Les nombres non premiers satisfaisant le petit théorème de Fermat, sont
les nombres de Carmichael. Le plus petit d’entre eux est 561, le suivant 1105.

Exercice 55 : [énoncé]
a) Puisque q divise N , on a

(2p1 . . . pr)2 ≡ −1 [q]

On peut écrire le nombre premier q sous la forme 4n+ 3 et alors

(2p1 . . . pr)(q−1) ≡
[
(2p1 . . . pr)2]2n+1 ≡ (−1)2n+1 ≡ −1 [q]

b) Par le petit théorème de Fermat, on a aussi

(2p1 . . . pr)(q−1) ≡ 1 [q]

et puisque 1 et −1 ne sont pas congrus modulo q, on obtient une absurdité.
La décomposition en facteurs premiers de N , ne fait donc intervenir aucun
nombre premier de la forme 4n+ 3. Les facteurs premiers de N ne peuvent donc
qu’être 2 et ceux de la forme 4n+ 1. Ceux-ci divisent alors 2p1 . . . pr et donc, par
opérations, ils divisent aussi 1.
C’est absurde.
Notons qu’on peut démontrer, plus simplement, qu’il existe aussi une infinité de
nombres premiers de la forme 4n+ 3.
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