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Applications linéaires
Etude de linéarité

Exercice 1 [ 01703 ] [correction]
Les applications entre R-espaces vectoriels suivantes sont-elles linéaires :
a) f : R3 → R définie par f(x, y, z) = x+ y + 2z
b) f : R2 → R définie par f(x, y) = x+ y + 1
c) f : R2 → R définie par f(x, y) = xy
d) f : R3 → R définie par f(x, y, z) = x− z ?

Exercice 2 [ 01704 ] [correction]
Soit f : R2 → R2 définie par f(x, y) = (x+ y, x− y).
Montrer que f est un automorphisme de R2 et déterminer son automorphisme
réciproque.

Exercice 3 [ 01705 ] [correction]
Soit J : C([0, 1] ,R)→ R définie par J(f) =

∫ 1
0 f(t)dt.

Montrer que J est une forme linéaire.

Exercice 4 [ 01706 ] [correction]
Soit ϕ : C∞(R,R)→ C∞(R,R) définie par ϕ(f) = f ′′ − 3f ′ + 2f .
Montrer que ϕ est un endomorphisme et préciser son noyau.

Exercice 5 [ 01707 ] [correction]
Soient a un élément d’un ensemble X non vide et E un K-espace vectoriel.
a) Montrer que Ea : F(X,E)→ E définie par Ea(f) = f(a) est une application
linéaire.
b) Déterminer l’image et le noyau de l’application Ea.

Exercice 6 [ 01708 ] [correction]
Soit E le R-espace vectoriel des applications indéfiniment dérivables sur R.
Soient ϕ : E → E et ψ : E → E les applications définies par :
ϕ(f) = f ′ et ψ(f) est donnée par :

∀x ∈ R, ψ(f)(x) =
∫ x

0
f(t)dt

a) Montrer que ϕ et ψ sont des endomorphismes de E.
b) Exprimer ϕ ◦ ψ et ψ ◦ ϕ.
c) Déterminer images et noyaux de ϕ et ψ.

Exercice 7 [ 02012 ] [correction]
Montrer que l’application partie entière Ent : K(X)→ K [X] est linéaire et
déterminer son noyau.

Linéarité et sous-espaces vectoriels

Exercice 8 [ 01709 ] [correction]
Soit f une application linéaire d’un K-espace vectoriel E vers un K-espace
vectoriel F .
Montrer que pour toute partie A de E, on a f(VectA) = Vect f(A).

Exercice 9 [ 01711 ] [correction]
Soient E,F deux K-espaces vectoriels, f ∈ L(E,F ) et A,B deux sous-espaces
vectoriels de E. Montrer

f(A) ⊂ f(B)⇔ A+ ker f ⊂ B + ker f

Exercice 10 [ 03247 ] [correction]
Soient u un endomorphisme d’un K-espace vectoriel E et F un sous-espace
vectoriel de E.
a) Exprimer u−1(u(F )) en fonction de F et de keru.
b) Exprimer u(u−1(F )) en fonction de F et de Imu.
c) A quelle condition a-t-on u(u−1(F )) = u−1(u(F )) ?

Exercice 11 [ 03286 ] [correction]
Caractériser les sous-espaces F d’un espace vectoriel E tels que

h−1(h(F )) = h(h−1(F ))

Exercice 12 [ 02680 ] [correction]
Soit E et F des K-espaces vectoriels. On se donne f ∈ L(E,F ), une famille
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(Ei)16i6n de sous-espaces vectoriels de E et une famille (Fj)16j6p de sous-espaces
vectoriels de F .
a) Montrer

f(
n∑
i=1

Ei) =
n∑
i=1

f(Ei)

b) Montrer que si f est injective et si la somme des Ei est directe alors la somme
des f(Ei) est directe.
c) Montrer

f−1(
p∑
j=1

Fj) ⊃
p∑
j=1

f−1(Fj)

Montrer que cette inclusion peut être stricte. Donner une condition suffisante
pour qu’il y ait égalité.

Linéarité et colinéarité

Exercice 13 [ 01658 ] [correction]
Soient E un K-espace vectoriel et f ∈ L(E) tel que les vecteurs x et f(x) sont
colinéaires et ce pour tout x ∈ E.
a) Justifier que pour tout x ∈ E, il existe λx ∈ K tel que f(x) = λx.x.
b) Montrer que pour tout couple de vecteurs non nuls x et y, on a λx = λy.
(indice : on pourra distinguer les cas : (x, y) liée ou (x, y) libre.)
c) Conclure que f est une homothétie vectorielle.

Exercice 14 [ 00159 ] [correction]
Soit f ∈ L(E) tel que pour tout x ∈ E, x et f(x) soient colinéaires.
Montrer que f est une homothétie vectorielle.

Exercice 15 [ 03418 ] [correction]
Soient f, g ∈ L(E,F ). On suppose

∀x ∈ E,∃λx ∈ K, g(x) = λxf(x)

Montrer qu’il existe λ ∈ K tel que

g = λf

Images et noyaux

Exercice 16 [ 01712 ] [correction]
Soient f et g deux endomorphismes d’un K-espace vectoriel E.
Montrer que g ◦ f = 0 si, et seulement si, Imf ⊂ ker g.

Exercice 17 [ 01713 ] [correction]
Soient f et g deux endomorphismes d’un K-espace vectoriel E.
a) Comparer ker f ∩ ker g et ker(f + g).
b) Comparer Imf + Img et Im(f + g).
c) Comparer ker f et ker f2.
d) Comparer Imf et Imf2.

Exercice 18 [ 01714 ] [correction]
Soit f un endomorphisme d’un K-espace vectoriel E. Montrer
a) Imf ∩ ker f = {0E} ⇔ ker f = ker f2.
b) E = Imf + ker f ⇔ Imf = Imf2.

Exercice 19 [ 01715 ] [correction]
Soient E un K-espace vectoriel et f ∈ L(E) tel que

f2 − 3f + 2Id = 0

a) Montrer que f est inversible et exprimer son inverse en fonction de f .
b) Etablir que ker(f − Id) et ker(f − 2Id) sont des sous-espaces vectoriels
supplémentaires de E.

Exercice 20 [ 01716 ] [correction]
Soient f, g, h ∈ L(E) tels que

f ◦ g = h, g ◦ h = f et h ◦ f = g

a) Montrer que f, g, h ont même noyau et même image.
b) Montrer f5 = f .
c) En déduire que l’image et le noyau de f sont supplémentaires dans E.
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Exercice 21 [ 01754 ] [correction]
Soient f et g deux endomorphismes d’un K-espace vectoriel E vérifiant f ◦ g = Id ;
montrer que ker f = ker(g ◦ f), Img = Im(g ◦ f) puis que ker f et Img sont
supplémentaires.

Exercice 22 [ 03360 ] [correction]
Soient f et g deux endomorphismes d’un espace vectoriel E sur R ou C vérifiant
f ◦ g = Id.
a) Montrer que ker(g ◦ f) = ker f et Im(g ◦ f) = Img.
b) Montrer

E = ker f ⊕ Img
c) Dans quel cas peut-on conclure g = f−1 ?
d) Calculer (g ◦ f) ◦ (g ◦ f) et caractériser g ◦ f

Exercice 23 [ 01717 ] [correction]
Soient f, g ∈ L(E) tels que

g ◦ f ◦ g = g et f ◦ g ◦ f = f

a) Montrer que Imf et ker g sont supplémentaires dans E.
b) Justifier que f(Img) = Imf .

L’anneau des endomorphismes

Exercice 24 [ 01710 ] [correction]
Soient E un K-espace vectoriel et f un endomorphisme de E nilpotent i.e. tel qu’il
existe n ∈ N? pour lequel fn = 0. Montrer que Id− f est inversible et exprimer
son inverse en fonction de f .

Exercice 25 [ 01726 ] [correction]
A quelle condition une translation et un endomorphisme d’un K-espace vectoriel
E commutent-ils ?

Exercice 26 [ 03242 ] [correction]
Soit E un K-espace vectoriel de dimension finie et F un sous-espace vectoriel de
L(E) stable par composition et contenant l’endomorphisme IdE .
Montrer que F ∩GL(E) est un sous-groupe de (GL(E), ◦)

Projections et symétries vectorielles

Exercice 27 [ 01718 ] [correction]
Soient E un K-espace vectoriel et p ∈ L(E).
a) Montrer que p est un projecteur si, et seulement si, Id− p l’est.
b) Exprimer alors Im(Id− p) et ker(Id− p) en fonction de Imp et ker p.

Exercice 28 [ 01719 ] [correction]
Soient p, q ∈ L(E). Montrer l’équivalence entre les assertions :
(i) p ◦ q = p et q ◦ p = q ;
(ii) p et q sont des projecteurs de même noyau.

Exercice 29 [ 01720 ] [correction]
Soient E un K-espace vectoriel et p, q deux projecteurs de E qui commutent.
Montrer que p ◦ q est un projecteur de E. En déterminer noyau et image.

Exercice 30 [ 01723 ] [correction]
Soit E un K-espace vectoriel.
Soit s un endomorphisme de E involutif, i.e. tel que s2 = Id.
On pose F = ker(s− Id) et G = ker(s+ Id).
a) Montrer que F et G sont des sous-espaces vectoriels supplémentaires de E.
b) Montrer que s est la symétrie vectorielle par rapport à F et parallèlement à G.
Plus généralement, Soient α ∈ K\ {1} et f un endomorphisme de E tel que
f2 − (α+ 1)f + αId = 0.
On pose F = ker(f − Id) et G = ker(f − αId).
c) Montrer que F et G sont supplémentaires dans E.
d) Montrer que f est l’affinité par rapport à F , parallèlement à G et de rapport α.

Exercice 31 [ 01724 ] [correction]
Soit f ∈ L(E) tel que f2 − 4f + 3I = 0̃.
Montrer que ker(f − Id)⊕ ker(f − 3Id) = E.
Quelle transformation vectorielle réalise f ?

Exercice 32 [ 01725 ] [correction]
Soient E un K-espace vectoriel et p un projecteur de E. On pose q = Id− p et on
considère
L = {f ∈ L(E) | ∃u ∈ L(E), f = u ◦ p} et M = {g ∈ L(E) | ∃v ∈ L(E), g = v ◦ q}.
Montrer que L et M sont des sous-espaces vectoriels supplémentaires de L(E).
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Exercice 33 [ 00165 ] [correction]
Soient p et q deux projecteurs d’un K-espace vectoriel E.
a) Montrer que p et q ont même noyau si, et seulement si, p ◦ q = p et q ◦ p = q.
b) Enoncer une condition nécessaire et suffisante semblable pour que p et q aient
même image.

Exercice 34 [ 02468 ] [correction]
Soient p et q deux projecteurs d’un K-espace vectoriel E vérifiant p ◦ q = 0.
a) Montrer que r = p+ q − q ◦ p est un projecteur.
b) Déterminer image et noyau de celui-ci.

Exercice 35 [ 00164 ] [correction]
Soient p, q deux projecteurs d’un K-espace vectoriel E.
a) Montrer que p+ q est un projecteur si, et seulement si, p ◦ q = q ◦ p = 0̃.
b) Préciser alors Im(p+ q) et ker(p+ q).

Exercice 36 [ 00166 ] [correction]
Soit E un C-espace vectoriel de dimension finie et u ∈ L(E).
On suppose qu’il existe un projecteur p de E tel que u = p ◦ u− u ◦ p.
a) Montrer que u(ker p) ⊂ Imp et Imp ⊂ keru.
b) En déduire u2 = 0.
c) Réciproque ?

Exercice 37 [ 02939 ] [correction]
Soient E un espace vectoriel de dimension finie, p et q dans L(E) tels que
p ◦ q = q et q ◦ p = p. Les endomorphismes p et q sont-ils diagonalisables ?
codiagonalisables ?

Exercice 38 [ 02242 ] [correction]
Soient E et F deux K-espaces vectoriels de dimensions finies respectives n et p
avec n > p.
On considère u ∈ L(E,F ) et v ∈ L(F,E) vérifiant

u ◦ v = IdF

a) Montrer que v ◦ u est un projecteur.
b) Déterminer son rang, son image et son noyau.

Exercice 39 [ 03251 ] [correction]
Soit f un endomorphisme d’un K-espace vectoriel E de dimension n. Montrer

f est un projecteur ⇔ rgf + rg(Id− f) = n

Exercice 40 [ 03759 ] [correction]
Soient p et q deux projecteurs d’un R-espace vectoriel E vérifiant

Imp ⊂ ker q

Montrer que p+ q − p ◦ q est un projecteur et préciser son image et son noyau.

Exercice 41 [ 03359 ] [correction]
Soient f et g deux endomorphismes d’un espace vectoriel E sur R ou C vérifiant
f ◦ g = Id.
a) Montrer que ker(g ◦ f) = ker f et Im(g ◦ f) = Img.
b) Montrer

E = ker f ⊕ Img
c) Dans quel cas peut-on conclure g = f−1 ?
d) Calculer (g ◦ f) ◦ (g ◦ f) et caractériser g ◦ f

Formes linéaires et hyperplans

Exercice 42 [ 03314 ] [correction]
Soit H un hyperplan d’un K-espace vectoriel de E de dimension quelconque.
Soit a un vecteur de E qui n’appartient pas à H. Montrer

H ⊕Vect(a) = E

Exercice 43 [ 00174 ] [correction]
Soient H un hyperplan d’un K-espace vectoriel E de dimension quelconque et D
une droite vectorielle non incluse dans H.
Montrer que D et H sont supplémentaires dans E.

Exercice 44 [ 03315 ] [correction]
Soit H un hyperplan d’un K-espace vectoriel de E de dimension quelconque.
On suppose que F est un sous-espace vectoriel de E contenant H. Montrer

F = H ou F = E

Diffusion autorisée à titre entièrement gratuit uniquement - dD



[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Enoncés 5

Exercice 45 [ 00208 ] [correction]
Soient f, g ∈ E? telles que ker f = ker g. Montrer qu’il existe α ∈ K tel que f = αg.

Exercice 46 [ 00205 ] [correction]
Soit e = (e1, . . . , en) une famille de vecteurs d’un K-espace vectoriel E de
dimension n ∈ N?. On suppose que

∀f ∈ E?, f(e1) = . . . = f(en) = 0⇒ f = 0

Montrer que B est une base de E.

Applications linéaires en dimension finie

Exercice 47 [ 01654 ] [correction]
Soit E un K-espace vectoriel de dimension finie, V un sous-espace vectoriel de E
et f ∈ L(E). Montrer

V ⊂ f(V )⇒ f(V ) = V

Exercice 48 [ 01655 ] [correction]
Soit f ∈ L(E,F ) injective. Montrer que pour tout famille (x1, . . . , xp) de vecteurs
de E, on a

rg(f(x1), . . . , f(xp)) = rg(x1, . . . , xp)

Exercice 49 [ 01656 ] [correction]
Soit E un K-espace vectoriel de dimension n > 1 et f un endomorphisme
nilpotent non nul de E. Soit p le plus petit entier tel que fp = 0.
a) Soit x /∈ ker fp−1. Montrer que la famille (x, f(x), f2(x), . . . , fp−1(x)) est libre.
b) En déduire que fn = 0.

Exercice 50 [ 01659 ] [correction]
Soit E un K-espace vectoriel de dimension finie.
Soient f, g ∈ L(E) tels que

f2 + f ◦ g = Id

Montrer que f et g commutent.

Exercice 51 [ 01662 ] [correction]
Déterminer une base du noyau et de l’image des applications linéaires suivantes :
a) f : R3 → R3 définie par f(x, y, z) = (y − z, z − x, x− y)
b) f : R4 → R3 définie par f(x, y, z, t) = (2x+ y + z, x+ y + t, x+ z − t)
c) f : C→ C définie par f(z) = z + iz̄ (C est ici vu comme un R-espace vectoriel).

Exercice 52 [ 00172 ] [correction]
Soient E un K-espace vectoriel de dimension n > 1, f un endomorphisme
nilpotent non nul de E et p le plus petit entier tel que fp = 0̃.
a) Montrer qu’il existe x ∈ E tel que la famille(

x, f(x), f2(x), . . . , fp−1(x)
)

soit libre.
b) En déduire fn = 0̃.

Exercice 53 [ 00178 ] [correction]
Soit f un endomorphisme d’un espace vectoriel de dimension n. Montrer que
(I, f, f2, . . . , fn

2) est liée et en déduire qu’il existe un polynôme non
identiquement nul qui annule f .

Exercice 54 [ 02495 ] [correction]
Soit E un plan vectoriel.
a) Montrer que f endomorphisme non nul est nilpotent si, et seulement si,
ker f = Imf .
b) En déduire qu’un tel endomorphisme ne peut s’écrire sous la forme f = u ◦ v
avec u et v nilpotents.

Exercice 55 [ 02161 ] [correction]
Soient a0, a1, . . . , an des éléments deux à deux distincts de K.
Montrer que l’application ϕ : Kn [X]→ Kn+1 définie par

ϕ(P ) = (P (a0), P (a1), . . . , P (an))

est un isomorphisme de K-espace vectoriel.

Exercice 56 [ 02162 ] [correction]
Soient a0, . . . , an des réels distincts et ϕ : R2n+1 [X]→ R2n+2 définie par

ϕ(P ) = (P (a0), P ′(a0), . . . , P (an), P ′(an))

Montrer que ϕ est bijective.
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Rang d’une application linéaire

Exercice 57 [ 01660 ] [correction]
Soient E un K-espace vectoriel de dimension finie et f, g ∈ L(E).
Montrer que

rg(f + g) 6 rg(f) + rg(g)

puis que
|rg(f)− rg(g)| 6 rg(f − g)

Exercice 58 [ 01661 ] [correction]
Soient E et F deux K-espaces vectoriels de dimension finies et
f ∈ L(E,F ), g ∈ L(F,E) telles que f ◦ g ◦ f = f et g ◦ f ◦ g = g.
Montrer que f, g, f ◦ g et g ◦ f ont même rang.

Exercice 59 [ 02682 ] [correction]
Soient f, g ∈ L(E) où E est un espace vectoriel sur K de dimension finie. Montrer

|rg(f)− rg(g)| 6 rg(f + g) 6 rg(f) + rg(g)

Exercice 60 [ 02504 ] [correction]
Soient u et v deux endomorphismes d’un espace vectoriel de dimension finie E.
a) Montrer

|rg(u)− rg(v)| 6 rg(u+ v) 6 rg(u) + rg(v)

b) Trouver u et v dans L(R2) tels que

rg(u+ v) < rg(u) + rg(v)

c) Trouver deux endomorphismes u et v de R2 tels que

rg(u+ v) = rg(u) + rg(v)

Exercice 61 [ 00201 ] [correction]
Soient E,F deux K-espaces vectoriels de dimensions finies et f, g ∈ L(E,F ).
Montrer

rg(f + g) = rg(f) + rg(g)⇔
{
Imf ∩ Img = {0}
ker f + ker g = E

Exercice 62 [ 00191 ] [correction]
Soient f et g deux endomorphismes de E. Montrer que :
a) rg(f ◦ g) 6 min(rg f, rg g).
b) rg(f ◦ g) > rg f + rg g − dimE.

Exercice 63 [ 02467 ] [correction]
Soient f et g deux endomorphismes d’un K-espace vectoriel E de dimension finie.
a) Montrer

rg(g ◦ f) = rgg ⇔ E = Imf + ker g
b) Montrer

rg(g ◦ f) = rgf ⇔ Imf ∩ ker g = {0}

Formule du rang

Exercice 64 [ 01665 ] [correction]
Soit f un endomorphisme d’un K-espace vectoriel E de dimension finie.
Montrer que les assertions suivantes sont équivalentes :
(i) Imf et ker f supplémentaires dans E ;
(ii) E = Imf + ker f ;
(iii) Imf2 = Imf ;
(iv) ker f2 = ker f .

Exercice 65 [ 01666 ] [correction]
Soit E un K-espace vectoriel de dimension finie et f, g ∈ L(E) tels que f + g
bijectif et g ◦ f = 0̃. Montrer que

rgf + rgg = dimE

Exercice 66 [ 01663 ] [correction]
Soient E un K-espace vectoriel de dimension finie n et f un endomorphisme de E.
Montrer l’équivalence

ker f = Imf ⇔ f2 = 0 et n = 2rg(f)

Exercice 67 [ 03127 ] [correction]
Soient E un K-espace vectoriel de dimension n ∈ N? et u un endomorphisme de E
vérifiant u3 = 0̃.
Etablir

rgu+ rgu2 6 n
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Exercice 68 [ 01668 ] [correction]
Soient f, g ∈ L(E) tels que

f + g = Id et rgf + rgg = dimE

Montrer que f et g sont des projecteurs complémentaires.

Exercice 69 [ 00189 ] [correction]
Soient u, v ∈ L(Kn) tels que

u+ v = id et rg(u) + rg(v) 6 n

Montrer que u et v sont des projecteurs.

Exercice 70 [ 01672 ] [correction]
[Images et noyaux itérés d’un endomorphisme]
Soient E un K-espace vectoriel de dimension finie n > 1 et f un endomorphisme
de E.
Pour tout p ∈ N, on pose Ip = Imfp et Np = ker fp.
a) Montrer que (Ip)p>0 est décroissante tandis que (Np)p>0 est croissante.
b) Montrer qu’il existe s ∈ N tel que Is+1 = Is et Ns+1 = Ns.
c) Soit r le plus petit des entiers s ci-dessus considérés.
Montrer que

∀s > r, Is = Ir et Ns = Nr

d) Montrer que Ir et Nr sont supplémentaires dans E.

Exercice 71 [ 00197 ] [correction]
[Images et noyaux itérés d’un endomorphisme]
Soit f un endomorphisme d’un K-espace vectoriel E de dimension finie n > 1.
Pour tout p ∈ N, on pose

Ip = Imfp et Np = ker fp

a) Montrer que les suites (Ip)p>0 et (Np)p>0 sont respectivement décroissante et
croissante et que celles-ci sont simultanément stationnaires.
b) On note r le rang à partir duquel les deux suites sont stationnaires. Montrer

Ir ⊕Nr = E

Exercice 72 [ 01674 ] [correction]
Soient E un K-espace vectoriel de dimension finie et f, g ∈ L(E).
Soit H un supplémentaire de ker f dans E.
On considère h : H → E la restriction de g ◦ f à H.
a) Montrer que

ker(g ◦ f) = kerh+ ker f

b) Observer que
rgh > rgf − dim ker g

c) En déduire que

dim ker(g ◦ f) 6 dim ker g + dim ker f

Exercice 73 [ 03421 ] [correction]
Soient E,F,G,H des K-espaces vectoriels de dimensions finies et f ∈ L(E,F ),
g ∈ L(F,G), h ∈ L(G,H) des applications linéaires. Montrer

rg(g ◦ f) + rg(h ◦ g) 6 rgg + rg(h ◦ g ◦ f)

Exercice 74 [ 03639 ] [correction]
Soient v ∈ L(E,F ) et u ∈ L(F,G). Etablir

rgu+ rgv − dimF 6 rg(u ◦ v) 6 min(rgu, rgv)

Exercice 75 [ 00195 ] [correction]
Soient E un K-espace vectoriel de dimension finie et f, g ∈ L(E).
Etablir que

dim (ker(g ◦ f)) 6 dim (ker g) + dim (ker f)

Exercice 76 [ 00194 ] [correction]
Soient f ∈ L(E) et F un sous-espace vectoriel de E. Montrer

dim ker f ∩ F > dimF − rgf
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Exercice 77 [ 00196 ] [correction]
On dit qu’une suite d’applications linéaires

{0} u0→E1
u1→E2

u2→· · ·
un−1→ En

un→{0}

est exacte si on a Imuk = keruk+1 pour tout k ∈ {0, . . . , n− 1}. Montrer que si
tous les Ek sont de dimension finie, on a la formule dite d’Euler-Poincaré :

n∑
k=1

(−1)k dimEk = 0

Exercice 78 [ 03156 ] [correction]
Soit u un endomorphisme d’un K-espace vectoriel E de dimension finie.
Montrer

∀k, ` ∈ N,dim
(
keruk+`) 6 dim

(
keruk

)
+ dim

(
keru`

)

Exercice 79 [ 02585 ] [correction]
Soient E un K-espace vectoriel de dimension finie n, f et g deux endomorphismes
de E.
a) En appliquant le théorème du rang à la restriction h de f à l’image g, montrer
que

rgf + rgg − n 6 rg(f ◦ g)

b) Pour n = 3, trouver tous les endomorphismes de E tels que f2 = 0.

Applications linéaires et espaces supplémentaires

Exercice 80 [ 01664 ] [correction]
Soient E un K-espace vectoriel de dimension finie et f ∈ L(E) tel que
rg(f2) = rg(f).
a) Etablir Imf2 = Imf et ker f2 = ker f .
b) Montrer que Imf et ker f sont supplémentaires dans E.

Exercice 81 [ 00223 ] [correction]
Soit f un endomorphisme d’un K-espace vectoriel E de dimension finie vérifiant

rg(f2) = rgf

a) Etablir
Imf2 = Imf et ker f2 = ker f

b) Montrer
ker f ⊕ Imf = E

Exercice 82 [ 01667 ] [correction]
Soit E un K-espace vectoriel de dimension finie n.
Soient u et v deux endomorphismes de E tels que

E = Imu+ Imv = keru+ ker v

Etablir que d’une part, Imu et Imv, d’autre part keru et ker v sont
supplémentaires dans E.

Exercice 83 [ 00224 ] [correction]
Soient E un K-espace vectoriel de dimension finie et f, g ∈ L(E).
On suppose

Imf + Img = ker f + ker g = E

Montrer que ces sommes sont directes.

Exercice 84 [ 00212 ] [correction]
Soit f un endomorphisme d’un K-espace vectoriel E vérifiant f3 = Id.
Montrer

ker(f − Id)⊕ Im(f − Id) = E

Exercice 85 [ 00214 ] [correction]
Soient f, g ∈ L(E) tels que

g ◦ f ◦ g = f et f ◦ g ◦ f = g

a) Montrer que ker f = ker g et Imf = Img.
On pose

F = ker f = ker g et G = Imf = Img

b) Montrer que
E = F ⊕G
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Exercice 86 [ 00213 ] [correction]
Soient f, g ∈ L(E) tels que

f ◦ g ◦ f = f et g ◦ f ◦ g = g

Montrer que ker f et Img sont supplémentaires dans E.

Exercice 87 [ 00215 ] [correction]
Soient f, g ∈ L(E) tels que

g ◦ f ◦ g = g et f ◦ g ◦ f = f

a) Montrer que
Imf ⊕ ker g = E

b) Justifier que
f(Img) = Imf

Exercice 88 [ 00218 ] [correction]
Soient f1, . . . , fn des endomorphismes d’un K-espace vectoriel E vérifiant

f1 + · · ·+ fn = Id et ∀1 6 i 6= j 6 n, fi ◦ fj = 0

a) Montrer que chaque fi est une projection vectorielle.
b) Montrer que

n
⊕
i=1

Imfi = E.

Exercice 89 [ 00219 ] [correction]
Soient E un C-espace vectoriel de dimension finie et p1, . . . , pm des projecteurs de
E dont la somme vaut IdE . On note F1, . . . , Fm les images de p1, . . . , pm. Montrer

E =
m
⊕
k=1

Fk

Exercice 90 [ 03241 ] [correction]
Soient E,F,G trois K-espaces vectoriels et u ∈ L(E,F ), v ∈ L(F,G) et w = v ◦ u.
Montrer que w est un isomorphisme si, et seulement si, u est injective, v est
surjective et

Imu⊕ ker v = F

Applications linéaires définies sur une base

Exercice 91 [ 01671 ] [correction]
Soit E un K-espace vectoriel de dimension n ∈ N.
Montrer qu’il existe un endomorphisme f tel que Imf = kerf si, et seulement si,
n est pair.

Exercice 92 [ 01653 ] [correction]
Justifier qu’il existe une unique application linéaire de R3 dans R2 telle que :

f(1, 0, 0) = (0, 1), f(1, 1, 0) = (1, 0) et f(1, 1, 1) = (1, 1)

Exprimer f(x, y, z) et déterminer noyau et image de f .

Exercice 93 [ 00173 ] [correction]
Soient E un K-espace vectoriel de dimension finie n ∈ N? et f un endomorphisme
de E tel qu’il existe un vecteur x0 ∈ E pour lequel la famille
(x0, f(x0), . . . , fn−1(x0)) soit une base de E. On note

C = {g ∈ L(E)/g ◦ f = f ◦ g}

a) Montrer que C est un sous-espace vectoriel de L(E).
b) Observer que

C =
{
a0Id + a1f + · · ·+ an−1f

n−1 | a0, . . . , an−1 ∈ K
}

c) Déterminer la dimension de C.

Exercice 94 [ 03801 ] [correction]
Soit E un K-espace vectoriel de dimension n > 1 (avec K = R ou C)
Soit f un endomorphisme de E nilpotent d’ordre n.
On note

C(f) = {g ∈ L(E)/g ◦ f = f ◦ g}

a) Montrer que C(f) est un sous-espace vectoriel de L(E).
b) Soit a un vecteur de E tel que fn−1(a) 6= 0E .
Montrer que la famille (a, f(a), . . . , fn−1(a)) constitue une base de E.
c) Soit ϕa : C(f)→ E l’application définie par ϕa(g) = g(a).
Montrer que ϕa est un isomorphisme.
d) En déduire que

C(f) = Vect(Id, f, . . . , fn−1)
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Exercice 95 [ 00192 ] [correction]
Soient F et G deux sous-espaces vectoriels d’un K-espace vectoriel E de
dimension finie n.
Former une condition nécessaire et suffisante sur F et G pour qu’il existe un
endomorphisme u de E tel que Imu = F et keru = G.

Exercice 96 [ 02379 ] [correction]
Soit f ∈ L(R6) tel que rgf2 = 3. Quels sont les rangs possibles pour f ?

Formes linéaires en dimension finie

Exercice 97 [ 01675 ] [correction]
Soit E un K-espace vectoriel de dimension n ∈ N? et ϕ une forme linéaire non
nulle sur E.
Montrer que pour tout u ∈ E\ kerϕ, kerϕ et Vect(u) sont supplémentaires dans
E.

Exercice 98 [ 01676 ] [correction]
Soient E un K-espace vectoriel de dimension n et (f1, f2, . . . , fn) une famille de
formes linéaires sur E.
On suppose qu’il existe un vecteur x ∈ E non nul tel que pour tout i ∈ {1, . . . , n},
fi(x) = 0.
Montrer que la famille (f1, f2, . . . , fn) est liée dans E?.

Exercice 99 [ 01679 ] [correction]
Soit f un endomorphisme de R3 tel que f2 = 0.
Montrer qu’il existe a ∈ R3 et ϕ ∈ (R3)? tels que pour tout x ∈ R3 on a
f(x) = ϕ(x).a.

Exercice 100 [ 03131 ] [correction]
Soient a0, a1, . . . , an ∈ R deux à deux distincts. Montrer qu’il existe
(λ0, . . . , λn) ∈ Rn+1 unique vérifiant

∀P ∈ Rn [X] ,
∫ 1

0
P (t) dt =

n∑
k=0

λkP (ak)

Exercice 101 [ 02685 ] [correction]
Soient a0, a1, . . . , an des réels non nuls deux à deux distincts.
On note Fj l’application de Rn [X] dans R définie par

Fj(P ) =
∫ aj

0
P

Montrer que (F0, F1, . . . , Fn) est une base de (Rn [X])?.

Exercice 102 [ 03140 ] [correction]
Soit E un K-espace vectoriel de dimension finie n > 1. Montrer

∀x, y ∈ E, x 6= y ⇒ ∃ϕ ∈ E?, ϕ(x) 6= ϕ(y)

Exercice 103 [ 00209 ] [correction]
Soient E un K-espace vectoriel de dimension finie et f , g deux formes linéaires
non nulles sur E. Montrer

∃x ∈ E, f(x)g(x) 6= 0

Exercice 104 [ 00206 ] [correction]
Soient f1, . . . , fn des formes linéaires sur un K-espace vectoriel E de dimension n.
On suppose qu’il existe x ∈ E non nul tel que

f1(x) = . . . = fn(x) = 0

Montrer que la famille (f1, . . . , fn) est liée.

Exercice 105 [ 02684 ] [correction]
Soit E et F des espaces vectoriels sur K, de dimensions finies ou non. Montrer que
(E × F )? et E? × F ? sont isomorphes.

Espaces d’applications linéaires

Exercice 106 [ 00179 ] [correction]
Soient E et F deux K-espaces vectoriels de dimensions finies et G un sous-espace
vectoriel de E. On pose

A = {u ∈ L(E,F )/G ⊂ keru}

a) Montrer que A est un sous-espace vectoriel de L(E,F ).
b) Déterminer la dimension de A.
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Exercice 107 [ 00180 ] [correction]
Soit f un endomorphisme d’un K-espace vectoriel E de dimension finie.
Montrer que l’ensemble des endomorphismes g de E tels que f ◦ g = 0 est un
sous-espace vectoriel de L(E) de dimension dimE × dim ker f .

Exercice 108 [ 03771 ] [correction]
Soient E et F deux K-espaces vectoriels de dimensions finies.
Soit W un sous-espace vectoriel de E
Soit A l’ensemble des applications linéaires de E dans F s’annulant sur W .
a) Montrer que A est un espace vectoriel.
b) Trouver la dimension de A.

Exercice 109 [ 00200 ] [correction]
Soient E un K-espace vectoriel de dimension finie n et F un sous-espace vectoriel
de E de dimension p. On note

AF = {f ∈ L(E)/Imf ⊂ F} et BF = {f ∈ L(E)/F ⊂ ker f}

a) Montrer que AF et BF sont des sous-espaces vectoriels de L(E) et calculer
leurs dimensions.
b) Soient u un endomorphisme de L(E) et ϕ : L(E)→ L(E) définie par
ϕ(f) = u ◦ f . Montrer que ϕ est un endomorphisme de L(E). Déterminer
dim kerϕ.
c) Soit v ∈ Imϕ. Etablir que Imv ⊂ Imu. Réciproque ? Déterminer rgϕ.

Exercice 110 [ 00203 ] [correction]
Soient E et F des K-espaces vectoriels de dimensions finies et f ∈ L(F,E).
Exprimer la dimension de {g ∈ L(E,F )/f ◦ g ◦ f = 0} en fonction du rang de f et
des dimensions de E et F .

Endomorphismes opérant sur les polynômes

Exercice 111 [ 02152 ] [correction]
Soit n ∈ N? et ∆ : Kn+1 [X]→ Kn [X] l’application définie par

∆(P ) = P (X + 1)− P (X)

a) Montrer que ∆ est bien définie et que ∆ est une application linéaire.
b) Déterminer le noyau de ∆.
c) En déduire que cette application est surjective.

Exercice 112 [ 00163 ] [correction]
Soient n ∈ N?, E = Rn [X] et ∆ l’endomorphisme de E déterminé par
∆(P ) = P (X + 1)− P (X).
a) Justifier que l’endomorphisme ∆ est nilpotent.
b) Déterminer des réels a0, . . . , an, an+1 non triviaux vérifiant :

∀P ∈ Rn [X] ,
n+1∑
k=0

akP (X + k) = 0

Exercice 113 [ 02153 ] [correction]
Soit ∆ : C [X]→ C [X] l’application définie par

∆ (P ) = P (X + 1)− P (X)

a) Montrer que ∆ est un endomorphisme et que pour tout polynôme P non
constant deg (∆(P )) = degP − 1.
b) Déterminer ker ∆ et Im∆.
c) Soit P ∈ C [X] et n ∈ N. Montrer

∆n(P ) = (−1)n
n∑
k=0

(−1)k
(
n

k

)
P (X + k)

d) En déduire que si degP < n alors

n∑
k=0

(
n

k

)
(−1)kP (k) = 0

Exercice 114 [ 02154 ] [correction]
Soit ϕ : Kn+1 [X]→ Kn [X] définie par ϕ(P ) = (n+ 1)P −XP ′.
a) Justifier que ϕ est bien définie et que c’est une application linéaire.
b) Déterminer le noyau de ϕ.
c) En déduire que ϕ est surjective.

Exercice 115 [ 02155 ] [correction]
a) Montrer que ϕ : Rn [X]→ Rn [X] définie par ϕ(P ) = P (X) + P (X + 1) est
bijective.
On en déduit qu’il existe un unique Pn ∈ Rn [X] tel que

Pn(X) + Pn(X + 1) = 2Xn
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Montrer que pour tout n ∈ N, il existe Pn ∈ Rn [X] unique tel que

Pn(X) + Pn(X + 1) = 2Xn

b) Justifier qu’on peut exprimer Pn(X + 1) en fonction de P0, . . . , Pn.
c) En calculant de deux façons Pn(X + 2) + Pn(X + 1) déterminer une relation
donnant Pn en fonction de P0, . . . , Pn−1.

Exercice 116 [ 02156 ] [correction]
Soient A un polynôme non nul de R [X] et r : R [X]→ R [X] l’application définie
par :

∀P ∈ R [X] , r(P ) est le reste de la division euclidienne de P par A

Montrer que r est un endomorphisme de R [X] tel que r2 = r ◦ r = r.
Déterminer le noyau et l’image de cet endomorphisme.

Exercice 117 [ 03133 ] [correction]
Soient a, b ∈ R distincts. Montrer qu’il existe un unique endomorphisme ϕ de
R [X] vérifiant

ϕ(1) = 1, ϕ(X) = X et ∀P ∈ R [X] , P (a) = P (b) = 0⇒ ϕ(P ) = 0

Exercice 118 [ 03046 ] [correction]
Soit P ∈ R [X]. Montrer que la suite (P (n))n∈N vérifie une relation de récurrence
linéaire à coefficients constants.

Exercice 119 [ 00074 ] [correction]
Pour p ∈ N et a ∈ R\ {0, 1}, on note Sp l’ensemble des suites (un) vérifiant

∃P ∈ Rp [X] ,∀n ∈ N, un+1 = aun + P (n)

a) Montrer que si u ∈ Sp, P est unique ; on le notera Pu.
b) Montrer que Sp est un R-espace vectoriel.
c) Montrer que φ, qui à u associe Pu, est linéaire et donner une base de son noyau.
Que représente son image ?
d) Donner une base de Sp (on pourra utiliser Rk(X) = (X + 1)k − aXk pour
k ∈ [[0, p]]).
e) Application : déterminer la suite (un) définie par

u0 = −2 et un+1 = 2un − 2n+ 7

Isomorphisme induit

Exercice 120 [ 02909 ] [correction]
Soient E un espace vectoriel, F1 et F2 deux sous-espaces vectoriels de E.
a) Montrer que si F1 et F2 ont un supplémentaire commun alors ils sont
isomorphes.
b) Montrer que la réciproque est fausse.

Exercice 121 [ 00199 ] [correction]
Soit f ∈ L(E) tel que f2 = 0 avec E un K-espace vectoriel de dimension finie
Montrer que

∃g ∈ L(E), f ◦ g + g ◦ f = IdE ⇔ Imf = ker f

Exercice 122 [ 00503 ] [correction]
[Factorisation par un endomorphisme]
Soient E un K-espace vectoriel de dimension finie et f, g ∈ L(E).
Montrer

Img ⊂ Imf ⇔ ∃h ∈ L(E), g = f ◦ h

Exercice 123 [ 00202 ] [correction]
[Factorisation par un endomorphisme]
Soient E un K-espace vectoriel de dimension finie et f, g ∈ L(E). Montrer

ker f ⊂ ker g ⇔ ∃h ∈ L(E), g = h ◦ f

Exercice 124 [ 00185 ] [correction]
Soient E un K-espace vectoriel de dimension finie et u, v ∈ L(E).
Résoudre l’équation u ◦ f = v d’inconnue f ∈ L(E).
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Corrections

Exercice 1 : [énoncé]
a) oui b) non c) non d) oui

Exercice 2 : [énoncé]
Soient λ, µ ∈ R et ~u = (x, y), ~v = (x′, y′) ∈ R2

f(λ~u+ µ~v) = f(λx+ µx′, λy + µy′)

donne
f(λ~u+ µ~v) = ((λx+ µx′) + (λy + µy′), (λx+ µx′)− (λy + µy′))
donc

f(λ~u+ µ~v) = λ(x+ y, x− y) + µ(x′ + y′, x′ − y′) = λf(~u) + µf(~v)

De plus f : R2 → R2 donc f est un endomorphisme de R2.
Pour tout (x, y) ∈ R2 et tout (x′, y′) ∈ R2{

x′ = x+ y

y′ = x− y
⇔

{
x = (x′ + y′)/2
y = (x′ − y′)/2

Par suite, chaque (x′, y′) ∈ R2 possède un unique antécédent par f :

((x′ + y′)/2, (x′ − y′)/2)

f est donc bijective.
Finalement f est un automorphisme de R2 et
f−1 : (x′, y′) 7→ ((x′ + y′)/2, (x′ − y′)/2).

Exercice 3 : [énoncé]
Soient λ, µ ∈ R et f, g ∈ C([0, 1] ,R),

J(λf + µg) =
∫ 1

0
λf(t) + µg(t)dt

et par linéarité de l’intégrale

J(λf + µg) = λ

∫ 1

0
f(t)dt+ µ

∫ 1

0
g(t)dt = λJ(f) + µJ(g)

De plus J : C([0, 1] ,R)→ R donc J est une forme linéaire sur C([0, 1] ,R).

Exercice 4 : [énoncé]
Soient λ, µ ∈ R et f, g ∈ C∞(R,R),

ϕ(λf + µg) = (λf + µg)′′ − 3(λf + µg)′ + 2(λf + µg)

puis
ϕ(λf + µg) = λ(f ′′ − 3f ′ + 2f) + µ(g′′ − 3g′ + 2g)

donc
ϕ(λf + µg) = λϕ(f) + µϕ(g)

De plus ϕ : C∞(R,R)→ C∞(R,R) donc ϕ est un endomorphisme C∞(R,R).

f ∈ kerϕ⇔ f ′′ − 3f ′ + 2f = 0

C’est une équation différentielle linéaire d’ordre 2 à coefficients constants
d’équation caractéristique r2 − 3r + 2 = 0 de racines 1 et 2. La solution générale
est

f(x) = C1ex + C2e2x

Par suite
kerϕ =

{
C1ex + C2e2x/C1, C2 ∈ R

}
Exercice 5 : [énoncé]
a) Soient λ, µ ∈ K et f, g ∈ F(X,E),

Ea(λf + µg) = (λf + µg)(a) = λf(a) + µg(a) = λEa(f) + µEa(g)

Par suite Ea est une application linéaire.
b) f ∈ kerEa ⇔ f(a) = 0. kerEa = {f ∈ F(X,E)/f(a) = 0}.
ImEa ⊂ E et ∀~x ∈ E, en considérant f : X → E la fonction constante égale à ~x,
on a Ea(f) = ~x. Par suite ~x ∈ ImEa et donc E ⊂ ImEa. Par double inclusion
ImEa = E.

Exercice 6 : [énoncé]
a) Soient λ, µ ∈ R et f, g ∈ E,

ϕ(λf + µg) = (λf + µg)′ = λf ′ + µg′ = λϕ(f) + µϕ(g)

et

∀x ∈ R, ψ(λf+µg)(x) =
∫ x

0
λf(t) + µg(t)dt = λ

∫ x

0
f(t)dt+µ

∫ x

0
g(t)dt = (λψ(f)+µψ(g))(x)
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donc
ψ(λf + µg) = λψ(f) + µψ(g)

De plus ϕ : E → E et ψ : E → E donc ϕ et ψ sont des endomorphismes de E.
b) On a

∀f ∈ E, (ϕ ◦ ψ) = (ψ(f))′ = f

car ψ(f) est la primitive de f qui s’annule en 0. Ainsi

ϕ ◦ ψ = IdE

Aussi
∀f ∈ E, ∀x ∈ R, (ψ ◦ ϕ)(f)(x) =

∫ x

0
f ′(t)dt = f(x)− f(0)

c) ϕ ◦ ψ est bijective donc ϕ est surjective et ψ injective.
ϕ est surjective donc Imϕ = E. kerϕ est formé des fonctions constantes.
ψ est injective donc kerψ =

{
0̃
}
. Imψ est l’espace des fonctions de E qui

s’annulent en 0.

Exercice 7 : [énoncé]
Soient λ, µ ∈ K et F,G ∈ K(X). On peut écrire

F = Ent(F ) + F̂ et G = Ent(G) + Ĝ

avec deg F̂ ,deg Ĝ < 0.
Puisque

λF + µG = λEnt(F ) + µEnt(G) + λF̂ + µĜ

avec deg(λF̂ + µĜ) < 0 on a

Ent(λF + µG) = λEnt(F ) + µEnt(G)

Ainsi Ent est linéaire.

ker Ent = {F ∈ K(X)/ degF < 0}

Exercice 8 : [énoncé]
f(VectA) est un sous-espace vectoriel de F et A ⊂ VectA donc f(A) ⊂ f(VectA).
Par suite Vectf(A) ⊂ f(VectA).
Inversement, f−1(Vectf(A)) est un sous-espace vectoriel de E qui contient A donc
A ⊂ f−1(Vectf(A)) puis f(A) ⊂ f(f−1(Vectf(A))) ⊂ Vectf(A).
Par double inclusion l’égalité.

Exercice 9 : [énoncé]
(⇒) Supposons f(A) ⊂ f(B).
Soit ~x ∈ A+ ker f . On peut écrire ~x = ~u+ ~v avec ~u ∈ A et ~v ∈ ker f .
f(~x) = f(~u) ∈ f(A) ⊂ f(B) donc il existe ~w ∈ B tel que f(~x) = f(~w).
On a alors ~x = ~w + (~x− ~w) avec ~w ∈ B et ~x− ~w ∈ ker f . Ainsi ~x ∈ B + ker f .
(⇐) Supposons A+ ker f ⊂ B + ker f .
Soit ~y ∈ f(A). Il existe ~x ∈ A tel que ~y = f(~x). Or ~x ∈ A ⊂ A+ ker f ⊂ B + ker f
donc on peut écrire ~x = ~u+ ~v avec ~u ∈ B et ~v ∈ ker f . On a alors
~y = f(~x) = f(~u) ∈ f(B).

Exercice 10 : [énoncé]
a) u−1(u(F )) est un sous-espace vectoriel de E qui contient F et keru donc

F + keru ⊂ u−1(u(F ))

Inversement, soit x ∈ u−1(u(F )). On a u(x) ∈ u(F ) donc il existe a ∈ F tel que
u(x) = u(a) et alors pour b = x− a on a x = a+ b avec a ∈ F et b ∈ keru. Ainsi

u−1(u(F )) = F + keru

b) u(u−1(F )) est un sous-espace vectoriel de E inclus dans F et dans Imu donc

u(u−1(F )) ⊂ F ∩ Imu

Inversement, soit x ∈ F ∩ Imu. Il existe a ∈ E tel que x = u(a). Or, puisque
x ∈ F , a ∈ u−1(F ) et donc x = u(a) ∈ u(u−1(F )). Ainsi

u(u−1(F )) = F ∩ Imu

c) On a u(u−1(F )) = u−1(u(F )) si, et seulement si,

F + keru = F ∩ Imu

Si cette condition est vérifiée alors

F ⊂ F + keru = F ∩ Imu ⊂ F

et donc
F = F + keru = F ∩ Imu

ce qui entraîne
keru ⊂ F et F ⊂ Imu

Inversement, si ces conditions sont vérifiées, on a immédiatement
F + keru = F = F ∩ Imu.
Finalement u(u−1(F )) = u−1(u(F )) si, et seulement si, F est inclus dans l’image
d’un endomorphisme injectif.
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Exercice 11 : [énoncé]
Les inclusions suivantes sont toujours vraies

F ⊂ h−1(h(F )) et h(h−1(F )) ⊂ F

Si h−1(h(F )) = h(h−1(F )) alors

h−1(h(F )) = F et h(h−1(F )) = F

Les inclusions h−1(h(F )) ⊂ F et F ⊂ h(h−1(F )) entraînent respectivement
kerh ⊂ F et F ⊂ Imh.
Inversement, supposons

kerh ⊂ F ⊂ Imh

Pour x ∈ h−1(h(F )), il existe a ∈ F tel que h(x) = h(a). On a alors
x− a ∈ kerh ⊂ F et donc x = a+ (x− a) ∈ F . Ainsi h−1(h(F )) ⊂ F puis
h−1(h(F )) = F
Aussi pour y ∈ F ⊂ Imh, il existe a ∈ E tel que y = h(a) et puisque y ∈ F ,
a ∈ h−1(F ). Ainsi F ⊂ h(h−1(F )) puis F = h(h−1(F )).
Finalement

h−1(h(F )) = h(h−1(F ))

Exercice 12 : [énoncé]
a) Si y ∈ f(

n∑
i=1

Ei) alors on peut écrire y = f(x1 + · · ·+ xn) avec xi ∈ Ei. On alors

y = f(x1) + · · ·+ f(xn) avec f(xi) ∈ f(Ei) et ainsi f(
n∑
i=1

Ei) ⊂
n∑
i=1

f(Ei).

Si y ∈
n∑
i=1

f(Ei) alors on peut écrire y = f(x1) + · · ·+ f(xn) avec xi ∈ Ei. On a

alors y = f(x) avec x = x1 + · · ·+ xn ∈
n∑
i=1

Ei donc f(
n∑
i=1

Ei) ⊃
n∑
i=1

f(Ei).

b) Si f(x1) + · · ·+ f(xn) = 0 avec xi ∈ Ei alors f(x1 + · · ·+ xn) = 0 donc
x1 + · · ·+ xn = 0 car f injective puis x1 = . . . = xn = 0 car les Ei sont en somme
directe et enfin f(x1) = . . . = f(xn) = 0. Ainsi les f(Ei) sont en somme directe.

c) Soit x ∈
p∑
j=1

f−1(Fj). On peut écrire x = x1 + · · ·+ xp avec f(xj) ∈ Fj donc

f(x) = f(x1) + · · ·+ f(xp) ∈
p∑
j=1

Fj . Ainsi
p∑
j=1

f−1(Fj) ⊂ f−1(
p∑
j=1

Fj).

On obtient une inclusion stricte en prenant par exemple pour f une projection sur
une droite D et en prenant F1, F2 deux droites distinctes de D et vérifiant
D ⊂ F1 + F2.
f = 0 ou f = Id sont des conditions suffisantes faciles. . .

Plus finement, supposons chaque Fj inclus dans Imf (et p > 1)

Pour x ∈ f−1(
p∑
j=1

Fj), on peut écrire f(x) = y1 + · · ·+ yp avec yj ∈ Fj . Or

Fj ⊂ Imf donc il existe xj ∈ E vérifiant f(xj) = yj . Evidemment xj ∈ f−1(Fj).
Considérons alors x′1 = x− (x2 + · · ·+ xp), on a f(x′1) = y1 donc x′1 ∈ f−1(Fj) et

x = x′1 + x2 + · · ·+ xp ∈
p∑
j=1

f−1(Fj). Ainsi f−1(
p∑
j=1

Fj) ⊂
p∑
j=1

f−1(Fj) puis

l’égalité.

Exercice 13 : [énoncé]
a) Si x = 0E alors n’importe quel λx convient..
Sinon, la famille (x, f(x)) étant liée, il existe (λ, µ) 6= (0, 0) tel que
λx+ µf(x) = 0E .
Si µ = 0 alors λx = 0E , or x 6= 0E donc λ = 0 ce qui est exclu car (λ, µ) 6= (0, 0).
Il reste µ 6= 0 et on peut alors écrire f(x) = λxx avec λx = −λ/µ.
b) Cas (x, y) liée : on peut écrire y = µx avec µ 6= 0 (car x, y 6= 0E).
D’une part f(y) = λyy = µλyx. D’autre part f(y) = f(µx) = µf(x) = µλxx.
Sachant µ 6= 0 et x 6= 0E , on conclut : λx = λy.
Cas (x, y) libre :
D’une part f(x+ y) = λx+y(x+ y), d’autre part
f(x+ y) = f(x) + f(y) = λxx+ λyy.
Ainsi λx+y(x+ y) = λxx+ λyy.
Par liberté de la famille (x, y), on peut identifier les coefficients et on obtient
λx = λx+y = λy.
c) L’application x 7→ λx est constante sur E\ {0E}. Notons λ la valeur de cette
constante.
On a ∀x ∈ E\ {0E} , f(x) = λx, de plus cette identité vaut aussi pour x = 0E et
donc f = λId.

Exercice 14 : [énoncé]
Pour tout x non nul, la liaison de la famille (x, f(x)) permet d’écrire f(x) = λxx
avec λx ∈ K unique.
Soient x, y non nuls.
Cas (x, y) liée :
On peut écrire y = µx et alors

Of(y) = µλxx = λxy et f(y) = λyy

donc λy = λx.
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Cas (x, y) libre :
f(x+ y) = λx+y(x+ y) = λxx+ λyy

donc λx = λy par identification des scalaires facteurs dans une famille libre.
On pose λ la valeur commune des λx. On a donc

∀x ∈ E\ {0E} , f(x) = λx

et cette relation vaut aussi pour x = 0E . On peut alors conclure f = λId.

Exercice 15 : [énoncé]
Soient x, y ∈ E\ ker f .
Si la famille (f(x), f(y)) est libre alors les deux égalités

g(x+ y) = λx+y (f(x) + f(y)) et g(x+ y) = λxf(x) + λyf(y)

entraînent λx = λy par identification des coefficients.
Si la famille (f(x), f(y)) est liée avec alors on peut écrire

f(y) = αf(x) avec α 6= 0

et donc y − αx ∈ ker f . Or il est immédiat d’observer que le noyau de f est inclus
dans celui de g et donc

g(y) = αg(x)

De plus
αg(x) = αλxf(x) et g(y) = αλyf(x)

donc à nouveau λx = λy.
Posons λ la valeur commune des scalaires λx pour x parcourant E\ ker f .
Pour tout x ∈ E, qu’il soit dans ker f ou non, on peut affirmer

g(x) = λf(x)

et donc g = λf .

Exercice 16 : [énoncé]
Si Imf ⊂ ker g alors pour tout x ∈ E, f(x) ∈ Imf ⊂ ker g donc g(f(x)) = 0E .
Ainsi g ◦ f = 0.
Si g ◦ f = 0 alors pour tout x ∈ E, g(f(x)) = 0E donc f(x) ∈ ker g. Ainsi

∀x ∈ E, f(x) ∈ ker g

donc Imf ⊂ ker g.

Exercice 17 : [énoncé]
a) Soit x ∈ ker f ∩ ker g on (f + g)(x) = f(x) + g(x) = 0E . Ainsi
ker f ∩ ker g ⊂ ker f + g.
b) Soit y ∈ Im(f + g). Il existe x ∈ E, y = (f + g)(x) = f(x) + g(x) ∈ Imf + Img.
Ainsi Imf + g ⊂ Imf + Img.
c) Soit x ∈ ker f , f2(x) = f(f(x)) = f(0E) = 0E donc x ∈ ker f2. Ainsi
ker f ⊂ ker f2.
d) Soit y ∈ Imf2. Il existe x ∈ E, y = f2(x) = f(f(x)) = f(~u) avec ~u = f(x) donc
y ∈ Imf . Ainsi Imf2 ⊂ Imf .

Exercice 18 : [énoncé]
a) (⇒) Supposons Imf ∩ ker f = {0E}.
L’inclusion ker f ⊂ ker f2 est toujours vraie indépendamment de l’hypothèse.
Soit x ∈ ker f2, on a f2(x) = f(f(x)) = 0E donc f(x) ∈ ker f .
De plus f(x) ∈ Imf or par hypothèse Imf ∩ ker f = {0E} donc f(x) = 0E puis
x ∈ ker f . Ainsi ker f2 ⊂ ker f puis l’égalité.
(⇐) Supposons ker f = ker f2.
Soit y ∈ Imf ∩ ker f . On peut écrire y = f(x) avec x ∈ E. Or f(y) = 0E donc
f2(x) = 0E . Ainsi x ∈ ker f2 = ker f et par suite y = f(x) = 0E . Finalement
Imf ∩ ker f = {0E}.
b) (⇒) Supposons E = Imf + ker f .
L’inclusion Imf2 ⊂ Imf est vraie indépendamment de l’hypothèse.
Soit y ∈ Imf . Il existe x ∈ E tel que y = f(x). Or on peut écrire x = u+ v avec
u ∈ Imf et v ∈ ker f .
Puisque u ∈ Imf , on peut écrire u = f(a) avec a ∈ E. On a alors
y = f(f(a) + v) = f2(a) + f(v) = f2(a) ∈ Imf2. Ainsi Imf ⊂ Imf2 puis l’égalité.
(⇐) Supposons Imf = Imf2. L’inclusion Imf + ker f ⊂ E est toujours vraie.
Inversement, soit x ∈ E. f(x) ∈ Imf = Imf2 donc il existe a ∈ E tel que
f(x) = f2(a).
Posons u = f(a) et v = x− u.
Clairement x = u+ v, u ∈ Imf . De plus f(v) = f(x)− f(u) = f(x)− f2(a) = 0
donc v ∈ ker f .
Finalement E = Imf + ker f .

Exercice 19 : [énoncé]
a) Posons g = 1

2 (3Id− f) ∈ L(E). On a f ◦ g = 3
2f −

1
2f

2 = Id et de même
g ◦ f = Id donc f est un automorphisme et f−1 = g.
b) En tant que noyaux d’applications linéaires, ker(f − Id) et ker(f − 2Id) sont
des sous-espaces vectoriels de E.
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Soit x ∈ ker(f − Id)∩ ker(f − 2Id). On a f(x) = x et f(x) = 2x donc x = 0E . Ainsi

ker(f − Id) ∩ ker(f − 2Id) = {0E}

Soit x ∈ E. Posons u = 2x− f(x) et v = f(x)− x.
On a u+ v = x, f(u) = 2f(x)− f2(x) = 2x− f(x) = u donc u ∈ ker(f − Id) et
f(v) = f2(x)− f(x) = 2f(x)− 2x = 2v donc v ∈ ker(f − 2Id). Ainsi

E = ker(f − Id) + ker(f − 2Id)

Finalement, ker(f − Id) et ker(f − 2Id) sont des sous-espaces vectoriels
supplémentaires de E.

Exercice 20 : [énoncé]
a) Soit x ∈ kerh. On g ◦ h(x) = 0 donc x ∈ ker f . Ainsi kerh ⊂ ker f .
De même ker f ⊂ ker g et ker g ⊂ kerh d’où l’égalité des noyaux.
Soit y ∈ Imh, il existe x ∈ E tel que h(x) = y. Mais alors f(g(x)) = y donc
y ∈ Imf .
Ainsi Imh ⊂ Imf et de même Imf ⊂ Img et Img ⊂ Imh d’où l’égalité des images.
b) On remarque

f2 = (g ◦ h) ◦ f = g ◦ (h ◦ f) = g2

et
f2 = f ◦ (g ◦ h) = (f ◦ g) ◦ h = h2

On a alors

f = g ◦ h = g ◦ (f ◦ g) = g ◦ (g ◦ h) ◦ (h ◦ f) = g2 ◦ h2 ◦ f = f5

c) Si x ∈ Imf ∩ ker f alors il existe a ∈ E tel que x = f(a) et on a f(x) = 0. On a
donc

x = f(a) = f5(a) = f4(x) = 0
Ainsi

Imf ∩ ker f = {0}
Par une éventuelle analyse-synthèse, on remarque que pour tout x ∈ E, on peut
écrire

x = f4(x) +
(
x− f4(x)

)
avec

f4(x) ∈ Imf et x− f4(x) ∈ ker f
Ainsi

Imf + ker f = E

Finalement les espaces Imfet ker f sont supplémentaires dans E.

Exercice 21 : [énoncé]
On a toujours ker f ⊂ ker(g ◦ f).
Inversement, pour x ∈ ker(g ◦ f), on a g ◦ f(x) = 0 donc f ◦ g ◦ f(x) = f(0) = 0.
Or f ◦ g = Id donc f(x) = 0.
Ainsi ker(g ◦ f) ⊂ ker f puis ker(g ◦ f) = ker f .
On a toujours Im(g ◦ f) ⊂ Img.
Inversement, pour y ∈ Img, il existe x ∈ E tel que y = g(x) et alors
y = g ◦ f ◦ g(x) = (g ◦ f)(g(x)) ∈ Im(g ◦ f).
Ainsi Img ⊂ Im(g ◦ f) puis Im(g ◦ f) = Img
Soit x ∈ ker f ∩ Img. Il existe a ∈ E tel que x = g(a) et alors f(x) = 0 donne
f(g(a)) = 0 d’où a = 0 car f ◦ g = Id. On en déduit x = g(a) = 0 et donc
ker f ∩ Img = {0}.
Soit x ∈ E. On peut écrire x = (x− g(f(x))) + g(f(x)) avec g(f(x)) ∈ Img et
x− g(f(x)) ∈ ker f car

f (x− g(f(x))) = f(x)− (f ◦ g)(f(x)) = f(x)− f(x) = 0

Ainsi E = ker f + Img et finalement ker f et Img sont supplémentaires dans E.

Exercice 22 : [énoncé]
a) Evidemment ker f ⊂ ker(g ◦ f) et Im(g ◦ f) ⊂ Img.
Pour x ∈ ker(g ◦ f), on a f(x) = f(g(f(x)) = f(0) = 0 donc x ∈ ker f .
Pour y ∈ Img, il existe x ∈ E tel que y = g(x) et alors
y = g(f(g(x)) = g(f(a)) ∈ Im(g ◦ f).
b) Si x ∈ ker f ∩ Img alors on peut écrire x = g(a) et puisque f(x) = 0,
a = f(g(a)) = 0 donc x = 0.
Pour x ∈ E, on peut écrire x = (x− g(f(x)) + g(f(x)) avec x− g(f(x)) ∈ ker f et
g(f(x)) ∈ Img.
c) Si f est inversible alors f ◦ g = Id entraîne g = f−1.
Cette condition suffisante est aussi évidemment nécessaire.
d) (g ◦ f) ◦ (g ◦ f) = g ◦ (f ◦ g) ◦ f = g ◦ f et donc g ◦ f est un projecteur.

Exercice 23 : [énoncé]
a) Soit x ∈ Imf ∩ ker g.
Il existe a ∈ E tel que x = f(a) donc

x = f(a) = (f ◦ g ◦ f)(a) = (f ◦ g)(x) = 0

Soit x ∈ E.
Analyse :
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Supposons x = u+ v avec u = f(a) ∈ Imf et v ∈ ker g.
g(x) = g ◦ f(a) donc (f ◦ g)(x) = f(a) = u.
Synthèse :
Posons u = (f ◦ g)(x) et v = x− u.
On a u ∈ Imf , x = u+ v et g(v) = g(x)− g(u) = 0 i.e. v ∈ ker g.
b) On a immédiatement f(Img) ⊂ Imf .
Inversement, pour y ∈ Imf , on peut écrire y = f(x) avec x ∈ E.
Par symétrie, on a E = Img ⊕ ker f et on peut écrire

x = g(a) + u avec a ∈ E et u ∈ ker f

On a alors y = f(g(a)) ∈ f(Img) et l’on obtient l’inclusion Imf ⊂ f(Img).

Exercice 24 : [énoncé]
Id = Id− fn = (Id− f)(Id + f + · · ·+ fn−1) et aussi
Id = (Id + f + · · ·+ fn−1)(Id− f).
Par suite Id− f est inversible et (Id− f)−1 = Id + f + · · ·+ fn−1.

Exercice 25 : [énoncé]
Soient f ∈ L(E) et t = tu où u ∈ E. Soit x ∈ E

(f ◦ t)(x) = (t ◦ f)(x)⇔ f(x) + f(u) = f(x) + u⇔ f(u) = u

Une translation est un endomorphisme commutent si, et seulement si, le vecteur
de translation est invariant par l’endomorphisme.

Exercice 26 : [énoncé]
Posons H = F ∩GL(E)
On a immédiatement H ⊂ GL(E), IdE ∈ H et ∀u, v ∈ H,u ◦ v ∈ H.
Montrer que H est stable par passage à l’inverse.
Soit u ∈ H. Considérons l’application ϕ : F → F définie par

ϕ(v) = u ◦ v

L’application ϕ est évidemment linéaire et puisque u est inversible, cette
application est injective. Or F est un K-espace vectoriel de dimension finie (car
sous-espace vectoriel de L(E), lui-même de dimension finie) donc ϕ est un
automorphisme de F . Par suite l’application ϕ est surjective et puisque IdE ∈ F ,
il existe v ∈ F tel que

u ◦ v = IdE
On en déduit u−1 = v ∈ F et donc u−1 ∈ H.

Exercice 27 : [énoncé]
a) (Id− p)2 = Id− 2p+ p2 donc (Id− p)2 = (Id− p)⇔ p = p2.
b) p ◦ (Id− p) = 0̃ donc Im(Id− p) ⊂ ker p.
Inversement, soit x ∈ ker p, on a (Id− p)(x) = x− p(x) = x donc x ∈ Im(Id− p).
Ainsi ker p ⊂ Im(Id− p).
Finalement ker p = Im(Id− p) et de même ker(Id− p) = Imp.

Exercice 28 : [énoncé]
(i)⇒(ii) Supposons (i)
p2 = p ◦ q ◦ p = p ◦ q = p et q2 = q ◦ p ◦ q = q ◦ p = q donc p et q sont des
projecteurs.
Soit x ∈ ker p. On a q(x) = q(p(x)) = 0E donc x ∈ ker q. Ainsi ker p ⊂ ker q. Par
symétrie l’égalité.
(ii)⇒(i) Supposons (ii)
Soit x ∈ E. On peut écrire x = u+ v avec u ∈ Imq et v ∈ ker q = ker p.
D’une part (p ◦ q)(x) = p(q(u)) + p(0E) = p(u) et d’autre part
p(x) = p(u) + p(v) = p(u).
Ainsi p ◦ q = p et de même q ◦ p = q.

Exercice 29 : [énoncé]
(p ◦ q)2 = p ◦ q ◦ p ◦ q = p2 ◦ q2 = p ◦ q donc p ◦ q est un projecteur.
Soit x ∈ ker p+ ker q, il existe (u, v) ∈ ker p× ker q tels que x = u+ v et alors

(p ◦ q)(x) = (p ◦ q)(u) + (p ◦ q)(v) = (q ◦ p)(u) + (p ◦ q)(v) = 0E

donc x ∈ ker p ◦ q.
Ainsi

ker p+ ker q ⊂ ker p ◦ q

Inversement, soit x ∈ ker p ◦ q. On peut écrire x = u+ v avec u ∈ ker p et v ∈ Imp.

(p ◦ q)(x) = (q ◦ p)(x) = q(v) = 0E

donc v ∈ ker q. Par suite x ∈ ker p+ ker q.
Par double inclusion

ker p ◦ q = ker p+ ker q

Soit y ∈ Imp ◦ q, il existe x ∈ E tel que y = (p ◦ q)(x). On a y = p(q(x)) ∈ Imp et
y = q(p(x)) ∈ Imq donc y ∈ Imp ∩ Imq. Ainsi Imp ◦ q ⊂ Imp ∩ Imq.
Inversement, soit y ∈ Imp ∩ Imq. Il existe x ∈ E, y = q(x) et
y = p(y) = (p ◦ q)(x) ∈ Imp ◦ q.
Ainsi Imp ∩ Imq ⊂ Imp ◦ q puis l’égalité.
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Exercice 30 : [énoncé]
a) F et G sont des sous-espaces vectoriels car noyaux d’endomorphismes.
Soit ~x ∈ F ∩G. On a s(~x) = ~x et s(~x) = −~x donc ~x = ~o. Ainsi F ∩G = {~o}.
Soit ~x ∈ E. Posons ~u = 1

2 (~x+ s(~x)) et ~v = 1
2 (~x− s(~x)).

On a ~x = ~u+ ~v, s(~u) = ~u donc ~u ∈ F et s(~v) = −~v donc ~v ∈ G.
Ainsi F +G = E. F et G sont donc supplémentaires dans E.
b) ∀~x ∈ E, ∃!(~u,~v) ∈ F ×G tel que ~x = ~u+ ~v.
On a s(~x) = s(~u) + s(~v) = ~u− ~v donc x est la symétrie par rapport à F
parallèlement à G.
c) F et G sont des sous-espaces vectoriels car noyaux d’endomorphismes.
Soit ~x ∈ F ∩G. On a f(~x) = ~x et f(~x) = α~x donc ~x = ~o. Ainsi F ∩G = {~o}.
Soit ~x ∈ E. Posons ~u = 1

1−α (f(~x)− α~x) et ~v = 1
1−α (~x− f(~x)).

On a ~x = ~u+ ~v, f(~u) = ~u donc ~u ∈ F et f(~v) = α~v donc ~v ∈ G.
Ainsi F +G = E. F et G sont donc supplémentaires dans E.
d) ∀~x ∈ E, ∃!(~u,~v) ∈ F ×G tel que ~x = ~u+ ~v.
On a f(~x) = f(~u) + f(~v) = ~u+ α~v donc f est l’affinité par rapport à F
parallèlement à G et de rapport α.

Exercice 31 : [énoncé]
Soit ~x ∈ ker(f − Id) ∩ ker(f − 3Id). On a f(~x) = ~x et f(~x) = 3~x donc ~x = ~o.
Soit ~x ∈ E. Posons ~u = 1

2 (3~x− f(~x)) et ~v = 1
2 (f(~x)− ~x).

On a ~x = ~u+ ~v avec ~u ∈ ker(f − Id) et ~v ∈ ker(f − 3Id) après calculs.
f est l’affinité vectorielle par rapport à F = ker(f − Id), parallèlement à
G = ker(f − 3Id) et de rapport 3.

Exercice 32 : [énoncé]
ϕ : u 7→ u ◦ p est un endomorphisme de L(E) donc L = Imϕ est un sous-espace
vectoriel de L(E).
ψ : v 7→ v ◦ q est un endomorphisme de L(E) donc M = Imψ est un sous-espace
vectoriel de L(E).
Soit f ∈ L ∩M . Il existe u, v ∈ L(E) tels que f = u ◦ p = v ◦ q.
On a f ◦ p = u ◦ p2 = u ◦ p = f et f ◦ p = v ◦ q ◦ p = 0 car q ◦ p = 0 donc f = 0.
Ainsi L ∩M = {0}.
Soit f ∈ L(E). On a f = f ◦ Id = f ◦ (p+ q) = f ◦ p+ f ◦ q ∈ L+M . Ainsi
L(E) = L+M .
Finalement L et M sont supplémentaires dans L(E).

Exercice 33 : [énoncé]
a) Supposons ker p = ker q. On a

p ◦ q − p = p ◦ (q − Id)

Or Im(q − Id) = ker q donc Im(q − Id) ⊂ ker p puis

p ◦ q − p = 0

Ainsi p ◦ q = p et de même on obtient q ◦ p = q.
Inversement, si p ◦ q = p et q ◦ p = q alors ker q ⊂ ker p et ker p ⊂ ker q d’où
l’égalité ker p = ker q.
b) Supposons Imp = Imq. On a ker(p− Id) = Imq donc (p− Id) ◦ q = 0 d’où
p ◦ q = q. Et de façon semblable, q ◦ p = p.
Inversement, l’égalité p ◦ q = q entraîne Imq ⊂ Imp et l’égalité q ◦ p = p entraîne
Imp ⊂ Imq. Ainsi, la condition nécessaire et suffisante cherchée est

p ◦ q = q et q ◦ p = p

Exercice 34 : [énoncé]
a) Calculons

r2 = (p+ q − q ◦ p)2 = (p+ q − q ◦ p) ◦ (p+ q − q ◦ p)

En développant et en exploitant p ◦ q = 0 on obtient,

r2 = p2 + q ◦ p+ q2 − q2 ◦ p− q ◦ p2

En exploitant p2 = p et q2 = q, on parvient à r2 = r donc r est un projecteur.
b) Pour tout x ∈ E,

r(x) = p(x) + q(x− p(x)) ∈ Imp+ Imq

donc
Imr ⊂ Imp+ Imq

Inversement, si x ∈ Imp+ Imq, on peut écrire x = a+ b avec a ∈ Imp et b ∈ Imq.
Puisque p ◦ q = 0, on a p(b) = 0 et puisque a ∈ Imp, on a p(a) = a.
Ainsi p(x) = a et donc b = x− a = x− p(x).
Or b ∈ Imq donc b = q(b) puis b = q(x− p(x)) = q(x)− q(p(x)).
Finalement x = a+ b = p(x) + q(x)− q(p(x)) = r(x) et donc x ∈ Imr.
Ainsi

Imr = Imp+ Imq
Soit x ∈ ker p ∩ ker q, on a r(x) = p(x) + q(x)− q(p(x)) = 0 donc x ∈ ker r.
Inversement, soit x ∈ ker r.
On a p(x) + q(x− p(x)) = 0 donc p(x) = p(p(x)) = p(q(x− p(x))) = 0 car p ◦ q = 0.
Ainsi x ∈ ker p. De plus p(x) + q(x− p(x)) = 0 sachant p(x) = 0 donne q(x) = 0 et
donc x ∈ ker q.
Finalement ker r ⊂ ker p ∩ ker q puis

ker r = ker p ∩ ker q

Diffusion autorisée à titre entièrement gratuit uniquement - dD



[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Corrections 20

Exercice 35 : [énoncé]
a) (⇐) Supposons p ◦ q = q ◦ p = 0̃. On a alors

(p+ q)2 = p2 + p ◦ q + q ◦ p+ q2 = p+ q

(⇒) Supposons p+ q projecteur. Par les mêmes calculs que ci-dessus

p ◦ q + q ◦ p = 0̃

En composant cette relation avec p à droite et à gauche, on obtient

p ◦ q ◦ p+ q ◦ p = 0̃ et p ◦ q + p ◦ q ◦ p = 0̃

On en déduit q ◦ p = p ◦ q puis p ◦ q = q ◦ p = 0̃.
b) On a évidemment

Im(p+ q) ⊂ Imp+ Imq

Inversement, pour x ∈ Imp+ Imq, on a x = a+ b avec a ∈ Imp et b ∈ Imq.
Puisque p ◦ q = 0, p(b) = 0 et donc p(x) = p(a) = a. De même q(x) = b et donc
x = p(x) + q(x) ∈ Im(p+ q).
Ainsi

Im(p+ q) = Imp+ Imq

On a évidemment
ker p ∩ ker q ⊂ ker(p+ q)

Inversement pour x ∈ ker(p+ q), on a p(x) + q(x) = 0 donc p2(x) + p(q(x)) = 0
puis p(x) = 0 car p2 = p et p ◦ q = 0. Ainsi x ∈ ker p et de même x ∈ ker q.
Finalement

ker p ∩ ker q = ker(p+ q)

Exercice 36 : [énoncé]
a) Si x ∈ ker p alors p(u(x)) = u(x) + u(p(x)) = u(x) donc u(x) ∈ Imp. Ainsi
u(ker p) ⊂ Imp.
Si x ∈ Imp alors p(x) = x donc u(x) = p(u(x))− u(p(x)) = p(u(x))− u(x) d’où
2u(x) = p(u(x)). Par suite u(x) ∈ Imp donc p(u(x)) = u(x) et enfin la relation
précédente donne u(x) = 0. Ainsi x ∈ keru.
b) Pour x ∈ E, u(x) = u(p(x)) + u(x− p(x)).
Or u(p(x)) = 0 car Imp ⊂ keru et u(x− p(x)) ∈ u(ker p) ⊂ Imp ⊂ keru donc
u2(x) = 0.
c) Supposons u2 = 0. On a Imu ⊂ keru. Soit p une projection sur Imu. On a
p ◦ u = u car les vecteurs de Imu sont invariants par p et on a u ◦ p = 0 car
Imp = Imu ⊂ keru. Ainsi, il existe une projection p pour laquelle u = p ◦ u− u ◦ p.
La réciproque est vraie.

Exercice 37 : [énoncé]
p◦p = p◦ (q ◦p) = (p◦ q)◦p = q ◦p = p et donc p est un projecteur. De même q est
un projecteur et donc p et q sont diagonalisables. Si p et q sont codiagonalisables
alors p et q commutent et donc p = q ◦ p = p ◦ q = q. Réciproque immédiate.

Exercice 38 : [énoncé]
a) (v ◦ u)2 = v ◦ IdF ◦ u = v ◦ u donc v ◦ u est un projecteur.
b) Le rang d’un projecteur est égal à sa trace donc

rg(v ◦ u) = tr(v ◦ u) = tr(u ◦ v) = tr(IdF ) = p

On a

Im(v ◦ u) ⊂ Imv et dim Im(v ◦ u) = rg(v ◦ u) = p > rg(v) = dim Imv

On en déduit
Im(v ◦ u) = Imv

On a

keru ⊂ ker(v ◦ u) et dim keru = n− rgu > n− p = n− rg(v ◦ u) = dim ker(v ◦ u)

donc
ker(v ◦ u) = keru

Exercice 39 : [énoncé]
Si f est un projecteur alors f est la projection sur Imf parallèlement à ker f
tandis que Id− f est la projection complémentaire sur ker f parallèlement à Imf .
On en déduit

rgf + rg(Id− f) = rgf + dim ker f = n

en vertu de la formule du rang.
Inversement, supposons

rgf + rg(Id− f) = n

Posons F = Imf et G = Im(Id− f).
Pour tout x ∈ E, on a

x = f(x) + (x− f(x)) ∈ F +G

donc E ⊂ F +G puis E = F +G.
Or dimF + dimG = rgf + rg(Id− f) = dimE donc E = F ⊕G et la
décomposition d’un vecteur x en la somme de f(x) ∈ F et de x− f(x) ∈ G est
unique. Puisque f apparaît comme associant à x le vecteur de F dans sa
décomposition en somme d’un vecteur de F et de G, on peut affirmer que f est la
projection du F parallèlement à G.

Diffusion autorisée à titre entièrement gratuit uniquement - dD



[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Corrections 21

Exercice 40 : [énoncé]
Puisque Imp ⊂ ker q, on a q ◦ p = 0 et en développant puis en simplifiant

(p+ q − p ◦ q)2 = p+ q − p ◦ q

On peut donc conclure que r = p+ q − p ◦ q est un projecteur.
Montrons

Imr = Imp+ Imq

L’inclusion ⊂ est immédiate car

∀x ∈ E, r(x) = p(x− q(x)) + q(x)

Inversement, soit x ∈ Imp+ Imq. On peut écrire x = p(a) + q(b) avec a, b ∈ E. On
a alors par le calcul

r(x) = r(p(a)) + r(q(b)) = p(a) + q(b) = x

et ainsi x ∈ Imr.
Montrons aussi

ker r = ker p ∩ ker q

L’inclusion ⊃ est immédiate. Inversement, pour x ∈ ker r on a

p(x) + q(x)− p ◦ q(x) = 0E

En appliquant q, on obtient q(x) = 0E puis on en déduit aussi p(x) = 0E et ainsi
x ∈ ker p ∩ ker q.

Exercice 41 : [énoncé]
a) Evidemment ker f ⊂ ker(g ◦ f) et Im(g ◦ f) ⊂ Img.
Pour x ∈ ker(g ◦ f), on a f(x) = f(g(f(x)) = f(0) = 0 donc x ∈ ker f .
Pour y ∈ Img, il existe x ∈ E tel que y = g(x) et alors
y = g(f(g(x)) = g(f(a)) ∈ Im(g ◦ f).
b) Si x ∈ ker f ∩ Img alors on peut écrire x = g(a) et puisque f(x) = 0,
a = f(g(a)) = 0 donc x = 0.
Pour x ∈ E, on peut écrire x = (x− g(f(x))) + g(f(x)) avec x− g(f(x)) ∈ ker f et
g(f(x)) ∈ Img.
c) Si f est inversible alors f ◦ g = Id entraîne g = f−1.
Cette condition suffisante est aussi évidemment nécessaire.
d) (g ◦ f) ◦ (g ◦ f) = g ◦ (f ◦ g) ◦ f = g ◦ f et donc g ◦ f est un projecteur.

Exercice 42 : [énoncé]
Puisque a /∈ H, on vérifie aisément

Vect(a) ∩H = {0E}

Soit ϕ une forme linéaire non nulle telle que H = kerϕ.
Pour tout x ∈ E, on peut écrire

x = (x− λa) + λa avec λ = ϕ(x)/ϕ(a)

Puisque ϕ(x− λa) = 0, on a x− λa ∈ H et puisque λa ∈ Vect(a), on obtient

E = H + Vect(a)

Exercice 43 : [énoncé]
Bien entendu H ∩D = {0} mais ici aucun argument de dimension ne permet de
conclure directement.
Soit ϕ une forme linéaire dont H est le noyau et u un vecteur non nul de D.
Il est clair que ϕ(u) 6= 0 et alors pour tout x ∈ E, on peut écrire

x = (x− λu) + λu avec λ = ϕ(x)/ϕ(u)

On a alors x− λu ∈ H car ϕ(x− λu) = 0 et λu ∈ D donc E = H +D.

Exercice 44 : [énoncé]
Si F 6= H alors il existe a ∈ F tel que a /∈ H.
On a alors

H ⊕Vect(a) = E

et puisque H ⊂ F et Vect(a) ⊂ F , on peut conclure E = F

Exercice 45 : [énoncé]
Si f = 0 : ok. Sinon, on introduit ~u /∈ ker f de sorte que Vect~u et ker f soient
supplémentaires puis on introduit α de sorte que f(~u) = αg(~u) avant de conclure
via h = f − αg s’annule sur ker f et ~u.

Exercice 46 : [énoncé]
Par contraposée : si e n’est pas une base de E alors Vect(e1, . . . , en) 6= E.
Soit H un hyperplan tel que Vect(e1, . . . , en) ⊂ H et f une forme linéaire non
nulle de noyau H.
On a f(e1) = . . . = f(en) = 0 mais f 6= 0.
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Exercice 47 : [énoncé]
Si V = {0} : ok
Sinon, soit (e1, . . . , ep) une base de V .
f(V ) = f(Vect(e1, . . . , ep)) = Vect(f(e1), . . . , f(ep)).
Donc f(V ) est un sous-espace vectoriel de E de dimension inférieure à p. Or
V ⊂ f(V ) donc dim f(V ) > p et par suite dim f(V ) = p. Par inclusion et égalité
des dimensions : f(V ) = V .

Exercice 48 : [énoncé]
Par définition

rg(f(x1), . . . , f(xp)) = dimVect(f(x1), . . . , f(xp)) = dim f(Vect(x1, . . . , xp))

or f est injective donc

dim f(Vect(x1, . . . , xp)) = dimVect(x1, . . . , xp)

et ainsi
rg(f(x1), . . . , f(xp)) = rg(x1, . . . , xp)

Exercice 49 : [énoncé]
a) Il existe x /∈ ker fp−1 car fp−1 6= 0 par définition de p.
Supposons

λ0x+ λ1f(x) + · · ·+ λp−1f
p−1(x) = ~0

En composant par fp−1 la relation ci-dessus, on obtient

λ0f
p−1(x) = ~0

car
fp(x) = . . . = f2p−2(x) = ~0

Il s’ensuit λ0 = 0.
En composant par fp−2, . . . , f0 la relation initiale, on obtient successivement
λ1 = . . . = λp−1 = 0.
La famille (x, f(x), . . . , fp−1(x)) est donc libre.
b) Comme cette famille est libre et composée de p vecteurs en dimension n on a
p 6 n.
Puisque fp = 0, fn = fn−p ◦ fp = 0.

Exercice 50 : [énoncé]
On a

f ◦ (f + g) = Id

donc, par le théorème d’isomorphisme, f + g est inversible et

f + g = f−1

On en déduit (f + g) ◦ f = Id qui donne

f ◦ g = g ◦ f

Exercice 51 : [énoncé]
a) u = (x, y, z) ∈ ker f ⇔ x = y = z. u = (1, 1, 1) forme une base de ker f .
Par le théorème du rang rgf = dimR3 − dim ker f = 2.
Soit v = f(1, 0, 0) = (0,−1, 1) et ~w = f(0, 1, 0) = (1, 0,−1) vecteurs non
colinéaires de Imf .
(v, ~w) est une famille libre formée de 2 = dim Imf vecteurs de Imf , c’est donc une
base de Imf .
b) ker f = {(x, y,−2x− y,−x− y)/ x, y ∈ R} = Vect(u, v) avec u = (1, 0,−2,−1)
et v = (0, 1,−1,−1).
(u, v) est une famille libre, elle forme donc une base de ker f , par suite
dim ker f = 2.
Par le théorème du rang : rg f = dimR4 − dim ker f = 2.
~a = f(1, 0, 0, 0) = (2, 1, 1) ∈ Imf et ~b = f(0, 1, 0, 0) = (1, 1, 0) ∈ Imf .
(a, b) forme une famille libre formée de 2 = dim Imf vecteurs de Imf , c’est donc
une base de Imf .
c) ker f = {z = a+ i.b/a,b ∈ R, a+ b = 0}.
Soit z1 = 1− i, on observe que ker f = Vect(z1), donc (z1) forme une base de ker f
et dim ker f = 1.
Par le théorème du rang : rg f = dimR C− dim ker f = 1.
z2 = f(1) = 1 + i ∈ Imf , donc (z2) forme une base de Imf car rg f = 1.

Exercice 52 : [énoncé]
a) Une petite analyse assure que le vecteur x ne peut appartenir au noyau de
fp−1 car sinon la famille introduite comporterait le vecteur nul et serait donc liée.
Introduisons donc x /∈ ker fp−1. Ceci est possible car, par hypothèse, l’application
fp−1 n’est pas nulle.
Supposons

λ0x+ λ1f(x) + · · ·+ λp−1f
p−1(x) = 0E
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En composant par fp−1 la relation ci-dessus, on obtient

λ0f
p−1(x) = 0E

et donc λ0 = 0 car fp−1(x) 6= 0E .
En composant de même par fp−2, . . . , f0 la relation initiale, on obtient
successivement

λ1 = 0, . . . , λp−1 = 0

La famille
(
x, f(x), . . . , fp−1(x)

)
est donc libre.

b) La famille précédente est composée de p vecteurs en dimension n et elle est
libre donc p 6 n.
Par suite

fn = fn−p ◦ fp = 0̃

Exercice 53 : [énoncé]
Si dimE = n alors dimL(E) = n2 donc la famille (I, f, f2, . . . , fn

2) est liée car
formée de n2 + 1 élément. Une relation linéaire sur les éléments de cette famille
donne immédiatement un polynôme annulateur non nul.

Exercice 54 : [énoncé]
a) Si ker f = Imf alors f2 = 0 et donc f est nilpotent.
Si f est nilpotent alors ker f 6= {0} et donc dim ker f = 1 ou 2. Or f 6= 0 donc il
reste dim ker f = 1.
ker f ⊂ ker f2 donc dim ker f2 = 1 ou 2.
Si dim ker f2 = 1 alors ker f = ker f2 et classiquement (cf. noyaux itérés)
ker fn = ker f pour tout n ∈ N ce qui contredit la nilpotence de f .
Il reste donc dim ker f2 = 2 et donc f2 = 0. Ainsi f est nilpotent.
b) Si f = u ◦ v avec u et v nilpotents et nécessairement non nuls alors Imf ⊂ Imu
et ker v ⊂ ker f . Or ces espaces sont de dimension 1 donc Imf = Imu et
ker f = ker v. Mais Imf = ker f donc Imu = ker v puis keru = Imv d’où u ◦ v = 0.
C’est absurde.

Exercice 55 : [énoncé]
Soient λ, µ ∈ K et P,Q ∈ Kn [X]. Clairement ϕ(λP + µQ) = λϕ(P ) + µϕ(Q).
Soit P ∈ kerϕ. On a ϕ(P ) = (0, . . . , 0) donc P (a0) = P (a1) = . . . = P (an) = 0.
degP 6 n et P admet au moins n+ 1 racines distinctes donc P = 0.
kerϕ = {0} donc ϕ est injectif. De plus dimKn [X] = dimKn+1 donc ϕ est un
isomorphisme.

Exercice 56 : [énoncé]
ϕ est clairement linéaire et si P ∈ kerϕ alors P a plus de racines (comptés avec
multiplicité) que son degré donc P = 0. Ainsi ϕ est injective et puisque
dimR2n+1 [X] = dimR2n+2, ϕ est un isomorphisme.

Exercice 57 : [énoncé]
On a Im(f + g) ⊂ Imf + Img donc

rg(f + g) 6 dim(Imf +Img) = dim Imf + dim Img−dim Imf ∩ Img 6 rg(f) +rg(g)

Aussi
rg(f) = rg(f − g + g) 6 rg(f − g) + rg(g)

donc
rg(f)− rg(g) 6 rg(f − g)

On conclut par symétrie sachant rg(f − g) = rg(g − f).

Exercice 58 : [énoncé]
Le rang d’une application linéaire composée est inférieur aux rangs des
applications linéaires qui la compose.
D’une part rg(f ◦ g), rg(g ◦ f) 6 rg(f), rg(g)
D’autre part rg(f) = rg(f ◦ g ◦ f) 6 rg(g ◦ f), rg(f ◦ g), rg(g) et
rg(g) = rg(g ◦ f ◦ g) 6 rg(f)
Ces comparaisons permettent de conclure.

Exercice 59 : [énoncé]
Facilement Im(f + g) ⊂ Imf + Img donc

rg(f + g) 6 dim(Imf + Img) 6 rg(f) + rg(g)

Puisque f = f + g + (−g),

rg(f) 6 rg(f + g) + rg(−g) = rg(f + g) + rg(g)

Aussi rg(g) 6 rg(f + g) + rg(f) donc

|rg(f)− rg(g)| 6 rg(f + g)
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Exercice 60 : [énoncé]
a) Pour tout x ∈ E, on a

(u+ v)(x) = u(x) + v(x) ∈ Imu+ Imv

donc
Im(u+ v) ⊂ Imu+ Imv

Puisque
dim (F +G) 6 dimF + dimG

on obtient
rg(u+ v) 6 rgu+ rgv

De plus, on peut écrire
u = (u+ v) + (−v)

donc
rgu 6 rg(u+ v) + rg(−v) = rg(u+ v) + rgv

puis
rgu− rgv 6 rg(u+ v)

Aussi
rgv − rgu 6 rg(u+ v)

et donc
|rg(u)− rg(v)| 6 rg(u+ v)

b) Les endomorphismes u = v = IdR2 conviennent.
c) Les endomorphismes u = v = 0 conviennent..

Exercice 61 : [énoncé]
(⇒) Supposons rg(f + g) = rgf + rgg.
Sachant Im(f + g) ⊂ Imf + Img, on a rg(f + g) 6 rgf + rgg − dim (Imf ∩ Img) et
donc dim(Imf ∩ Img) 6 0.
Ainsi Imf ∩ Img = {0}.
Sachant ker f ∩ ker g ⊂ ker(f + g), on a
dim ker f + dim ker g − dim(ker f + ker g) 6 dim ker(f + g).
Par la formule du rang, on obtient alors
dimE + rg(f + g) 6 rgf + rgg + dim(ker f + ker g) et donc
dim(ker f + ker g) > dimE. Ainsi ker f + ker g = E
(⇐) Supposons Imf ∩ Img = {0} et ker f + ker g = E.
Montrons Im(f + g) = Imf + Img.
On sait déjà Im(f + g) ⊂ Imf + Img.

Inversement, soit x ∈ Imf + Img.
Il existe a, b ∈ E tels que x = f(a) + g(b).
Puisque E = ker f + ker g, on peut écrire a = u+ v avec u ∈ ker f et v ∈ ker g. On
a alors f(a) = f(v).
De même, on peut écrire g(b) = g(w) avec w ∈ ker f .
On a alors x = f(v) + g(w) = (f + g)(v + w) car f(w) = 0 et g(v) = 0. Ainsi
x ∈ Im(f + g).
Finalement Im(f + g) = Imf + Img.
Par suite rg(f + g) = rgf + rgg − dim(Imf ∩ Img) = rgf + rgg.

Exercice 62 : [énoncé]
a) Im(f ◦ g) ⊂ Imf donc rg(f ◦ g) 6 rgf .
Im(f ◦ g) = f(Img) = Imf�Img.
Puisque la dimension d’une image est toujours inférieure à la dimension de
l’espace de départ rg(f ◦ g) 6 dim Img = rgg.
b) rg(f ◦ g) = dim f(Img).
Par le théorème du rang appliqué à l’application linéaire f�Img,
dim f(Img) + dim ker f�Img = dim Img donc rg(f ◦ g) = rgg − dim ker f�Img.
Or ker f�Img ⊂ ker f donc dim ker f�Img 6 dimE − rgf puis
rg(f ◦ g) > rg f + rg g − dimE.

Exercice 63 : [énoncé]
a) Commençons par observer Im(g ◦ f) ⊂ Img.
(⇐) Supposons E = Imf + ker g.
Soit y ∈ Img, il existe x ∈ E tel que y = g(x) et on peut écrire x = a+ b avec
a ∈ Imf et b ∈ ker g.
On a alors y = g(x) = g(a) + g(b) = g(a) ∈ Im(g ◦ f) car a ∈ Imf .
Ainsi Img ⊂ Im(g ◦ f) et donc Img = Im(g ◦ f). Par suite rg(g ◦ f) = rgg.
(⇒) Supposons rg(g ◦ f) = rgg.
Par inclusion et égalité des dimensions, on a Img = Im(g ◦ f).
Soit x ∈ E et y = g(x). Puisque y ∈ Img = Im(g ◦ f), il existe a ∈ E tel que
y = (g ◦ f)(a). Posons alors b = x− f(a). On a x = f(a) + b, f(a) ∈ Imf et
b ∈ ker g car g(b) = g(x)− g(f(a)) = y − (g ◦ f)(a) = 0.
Ainsi E ⊂ Imf + ker g puis E = Imf + ker g.
b) (⇐) Supposons Imf ∩ ker g = {0}.
Soit (e1, . . . , ep) une base de Imf avec p = rgf .
On a Imf = Vect(e1, . . . , ep) donc Im(g ◦ f) = Vect(g(e1), . . . , g(ep)).
Supposons λ1g(e1) + · · ·+ λpg(ep) = 0.
On a g(λ1e1 + · · ·+ λep) = 0 donc λ1e1 + · · ·+ λep ∈ ker g. Or
λ1e1 + · · ·+ λep ∈ Imf donc λ1e1 + · · ·+ λep = 0 puisque Imf ∩ ker g = {0}.
Puisque la famille (e1, . . . , ep) est libre, on obtient λ1 = . . . = λp = 0.
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Ainsi la famille (g(e1), . . . , g(ep)) est libre et c’est donc une base de Im(g ◦ f).
On en déduit rg(g ◦ f) = p = rgf .
(⇒) Par contraposée, supposons Imf ∩ ker g 6= {0}.
Soit e1 ∈ Imf ∩ ker g un vecteur non nul.
La famille (e1) est libre, on peut donc la compléter en une base (e1, . . . , ep) de
Imf .
On a Imf = Vect(e1, . . . , ep) donc Im(g ◦ f) = Vect(g(e1), . . . , g(ep)).
Or g(e1) = 0 donc Im(g ◦ f) = Vect(g(e2), . . . , g(ep)) puis rg(g ◦ f) 6 p− 1 < p.
Ainsi rg(g ◦ f) 6= rgf .

Exercice 64 : [énoncé]
(i) ⇒ (ii) : ok
(ii) ⇒ (iii) Supposons E = Imf + ker f .
L’inclusion Imf2 ⊂ Imf est vraie indépendamment de l’hypothèse.
∀y ∈ Imf , ∃x ∈ E tel que y = f(x). Or on peut écrire x = u+ v avec u ∈ Imf et
v ∈ ker f .
Puisque u ∈ Imf , on peut écrire u = f(a) avec a ∈ E. On a alors
y = f(f(a) + v) = f2(a) + f(v) = f2(a) ∈ Imf2. Ainsi Imf ⊂ Imf2 puis l’égalité.
(iii) ⇒ (iv) Supposons Imf2 = Imf .
Par le théorème du rang : dimE = rgf + dim ker f = rgf2 + dim ker f2 donc
dim ker f = dim ker f2.
De plus l’inclusion ker f ⊂ ker f2 est toujours vraie.
Par inclusion et égalité des dimensions : ker f = ker f2.
(iv) ⇒ (i) Supposons ker f = ker f2.
Soit y ∈ Imf ∩ ker f . On peut écrire y = f(x) avec x ∈ E. Or f(y) = 0 donc
f2(x) = 0. Ainsi x ∈ ker f2 = ker f et par suite y = f(x) = 0. Finalement
Imf ∩ ker f = {0}.
De plus, par le théorème du rang dimE = dim Imf + dim ker f donc Imf et ker f
sont supplémentaires dans E.

Exercice 65 : [énoncé]
g ◦ f = 0̃ donne Imf ⊂ ker g donc rg(f) 6 dim ker g = dimE − rg(g). Par suite
rg(f) + rg(g) 6 dimE.
f + g bijectif donne Imf + g = E. Or Imf + g ⊂ Imf + Img d’où
dimE 6 rg(f) + rg(g).

Exercice 66 : [énoncé]
(⇒) Si ker f = Imf alors f2 = 0 car Imf ⊂ ker f .

De plus, par le théorème du rang : dimE = rgf + dim ker f = 2rgf car
dim ker f = dim Imf .
(⇐) Si f2 = 0 et n = 2rg(f) alors d’une part Imf ⊂ ker f et d’autre part, par le
théorème du rang :
2rgf = rgf + dim ker f donc dim Imf = dim ker f . Par inclusion et égalité des
dimensions Imf = ker f .

Exercice 67 : [énoncé]
Puisque u3 = 0̃, on a Imu2 ⊂ keru et donc

rgu2 6 dim keru

Or par la formule du rang

rgu+ dim keru = dimE

donc
rgu+ rgu2 6 dimE

Exercice 68 : [énoncé]
On a

f = f ◦ Id = f2 + f ◦ g
Montrons f ◦ g = 0̃ en observant Img ⊂ ker f .
Pour cela montrons Img = ker f en observant

rgg = dim ker f et ker f ⊂ Img

Puisque rgf + rgg = dimE et puisque par la formule du rang,
rgf + dim ker f = dimE, on peut affirmer rgg = dim ker f .
D’autre part, pour x ∈ ker f , on a x = f(x) + g(x) = g(x) donc x ∈ Img. Ainsi
ker f ⊂ Img.
Par inclusion et égalité des dimension ker f = Img puis f ◦ g = 0̃ donc f2 = f .
Ainsi f est un projecteur et g = Id− f est son projecteur complémentaire.

Exercice 69 : [énoncé]
On a

Kn = Im(u+ v) ⊂ Imu+ Imv
donc rg(u) + rg(v) > n puis rgu+ rgv = n
Si x ∈ keru alors x = u(x) + v(x) = v(x) donc x ∈ Imv. Par les dimensions, on
conclut keru = Imv et de même ker v = Imu. Par suite u ◦ v = v ◦ u = 0 et donc
aisément u2 = u et v2 = v.
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Exercice 70 : [énoncé]
a) ∀~y ∈ Imfp+1, ∃~x ∈ E, ~y = fp+1(~x) = fp(f(~x)) ∈ Imfp donc Ip+1 ⊂ Ip.
∀~x ∈ ker fp, on a fp(~x) = ~o donc fp+1(~x) = f(~o) = ~o puis ~x ∈ ker fp+1. Ainsi
Np ⊂ Np+1.
b) La suite dim Ip est une suite décroissante d’entiers naturels donc il existe s ∈ N
tel que dim Is = dim Is+1. Par inclusion et égalité des dimensions, on a alors
Is = Is+1.
De plus, par le théorème du rang :
dimNs = dimE − dim Is = dimE − dim Is+1 = dimNs+1.
Par inclusion et égalité des dimensions, on a alors Ns = Ns+1.
c) Montrons par récurrence sur s > r que Is = Ir.
La propriété est vraie au rang r.
Supposons la propriété vraie au rang s.
On sait déjà que Is+1 ⊂ Is.
∀~y ∈ Is, ∃~x ∈ E tel que ~y = fs(~x) = fs−r(fr(~x)).
Or fr(~x) ∈ Ir = Ir+1 donc ∃~u ∈ E tel que fr(~x) = fr+1(~u) et alors
~y = fs+1(~u) ∈ Is+1.
Ainsi Is+1 = Is puis, par hypothèse de récurrence : Is+1 = Ir.
Par le théorème du rang : dimNr + dim Ir = dimE = dimNs + dim Is donc par
inclusion et égalité des dimensions : ∀s > r,Ns = Nr.
d) Soit ~x ∈ Ir ∩Nr. Il existe ~u ∈ E tel que ~x = fr(~u) et on a fr(~x) = ~o.
Par suite ~u ∈ N2r, or N2r = Nr donc ~x = fr(~u) = ~o. Par suite Ir ∩Nr = {~o}.
De plus, par le théorème du rang : dim Ir + dimNr = dimE donc Ir et Nr sont
supplémentaires dans E.

Exercice 71 : [énoncé]
a) Pour tout y ∈ Imfp+1, il existe x ∈ E tel que y = fp+1(x) = fp(f(x)) ∈ Imfp
donc Ip+1 ⊂ Ip.
Pour tout x ∈ ker fp, on a fp(x) = 0 donc fp+1(x) = f(0) = 0 puis x ∈ ker fp+1.
Ainsi Np ⊂ Np+1.
La suite (dim Ip) est une suite décroissante d’entiers naturels donc il existe un
rang s ∈ N à partir duquel cette suite est stationnaire. De plus, par le théorème
du rang les suites (dim Ip) et (dimNp) sont simultanément stationnaires. Par
inclusion et égalité des dimensions, les suites (Ip) et (Np) sont simultanément
stationnaires.
b) Soit x ∈ Ir ∩Nr. Il existe u ∈ E tel que x = fr(u) et on a fr(x) = 0.
Par suite u ∈ N2r, or N2r = Nr donc x = fr(u) = 0. Par suite Ir ∩Nr = {0}. De
plus, par le théorème du rang : dim Ir + dimNr = dimE donc Ir et Nr sont
supplémentaires dans E.

Exercice 72 : [énoncé]
a) Si ~x ∈ kerh alors ~x ∈ ker g ◦ f et si ~x ∈ ker f alors ~x ∈ ker g ◦ f donc
kerh+ ker f ⊂ ker g ◦ f .
Inversement, soit ~x ∈ ker g ◦ f . On peut écrire ~x = ~u+ ~v avec ~u ∈ H et ~v ∈ ker f .
(g ◦ f)(~x) = ~o donc h(~u) = (g ◦ f)(~u) = ~o d’où ~x ∈ kerh+ ker f .
b) f réalise une bijection de H vers Imf donc rg(h) = rg(g|Imf )
rg(g|Imf ) + dim ker gImf = dim Imf donc
rg(h) = rg(f)− dim ker g|Imf > rg(f)− dim ker g.
c) dim ker g ◦ f 6 dim kerh+ dim ker f .
dim kerh = dimH − rg(h) 6 rg(f)− (rgf − dim ker g) 6 dim ker g puis l’inégalité
voulue.

Exercice 73 : [énoncé]
Pour ϕ,ψ applications linéaires composables

rg(ψ ◦ ϕ) = dim Imψ�Imϕ = rgϕ− dim (Imϕ ∩ kerψ)

Ainsi
rg(h ◦ g ◦ f) = rg(g ◦ f)− dim (Im(g ◦ f) ∩ kerh)

et
rg(h ◦ g) = rgg − dim (Img ∩ kerh)

Puisque
Im(g ◦ f) ⊂ Img

on a
dim (Im(g ◦ f) ∩ kerh) 6 dim (Img ∩ kerh)

ce qui fournit l’inégalité demandée.

Exercice 74 : [énoncé]
La deuxième inégalité est bien connue et provient de Im(u ◦ v) ⊂ Imu qui donne
rg(u ◦ v) 6 rgu et de Im(u ◦ v) = u(v(E)) = Imu�v(E) qui donne rg(u) 6 rgv car le
rang d’une application linéaire est inférieure à la dimension de l’espace de départ.
Montrons maintenant la première inégalité.
Comme déjà écrit Im(u ◦ v) = Imu�v(E) donc par la formule du rang

rg(u ◦ v) = dim v(E)− dim keru�v(E)

Or keru�v(E) ⊂ keru donc

rg(u ◦ v) > rgv − dim keru = rgu+ rgv − dimF
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Exercice 75 : [énoncé]
Par le théorème du rang,

dim (ker(g ◦ f)) = dimE − rg(g ◦ f)

Or
rg(g ◦ f) = dim g(f(E)) = rgg�f(E)

Par le théorème du rang,

rgg�f(E) = dim f(E)− dim
(
ker g�f(E)

)
Or ker g�f(E) ⊂ ker g donc

rg
(
g�f(E)

)
> dim f(E)− dim (ker g)

Enfin, par le théorème du rang,

dim f(E) = rgf = dimE − dim (ker f)

Au final,
dim (ker(g ◦ f)) 6 dim (ker f) + dim (ker g)

Exercice 76 : [énoncé]
Considérons f�F restriction de f au départ de F et à l’arrivée dans E.
ker f�F = ker f ∩ F et rgf�F 6 rgf . L’application du théorème du rang f�F permet
alors de conclure.

Exercice 77 : [énoncé]
La formule du rang du rang donne

dimEk = dim Imuk + dim keruk

donc, sachant dim Imuk = dim keruk+1 on obtient :

n∑
k=1

(−1)k dimEk =
n∑
k=2

(−1)k−1 dim keruk+
n∑
k=1

(−1)k dim keruk = −dim keru1 = 0

car Imun = {0} et keru1 = Imu0 = {0}.

Exercice 78 : [énoncé]
Soient k, ` ∈ N. Considérons le sous-espace vectoriel

F = keruk+`

et introduisons l’application linéaire restreinte v : F → E définie par

∀x ∈ F, v(x) = u`(x)

On vérifie aisément
ker v ⊂ keru` et Imv ⊂ keruk

La formule du rang appliquée à v donne

dim
(
keruk+`) = rgv + dim ker v

ce qui donne
dim

(
keruk+`) 6 dim

(
keruk

)
+ dim

(
keru`

)

Exercice 79 : [énoncé]
a)kerh ⊂ ker f donc dim kerh 6 dim ker f .
En appliquant la formule du rang à f et à h on obtient

dim ker f = n− rgf et dim kerh = rgg − rgh

On en déduit
rgf + rgg − n 6 rgh

Or Im(f ◦ g) = Imh donc rg(f ◦ g) = rgh et on peut conclure.
b) Un endomorphisme f vérifie f2 = 0 si, et seulement si, Imf ⊂ ker f ce qui
entraîne, en dimension 3, rgf = 1.
Si l’endomorphisme f n’est pas nul, en choisissant x ∈ E tel que x /∈ ker f et en
complétant le vecteur f(x) ∈ ker f , en une base (f(x), y) de ker f , on obtient que
la matrice de f dans la base (x, f(x), y) est 0 0 0

1 0 0
0 0 0


Inversement, un endomorphisme f représenté par une telle matrice vérifie f2 = 0.
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Exercice 80 : [énoncé]
a) rg(f2) = rg(f)⇒ Imf2 = Imf car on sait Imf2 ⊂ Imf .
Par le théorème du rang ker f2 = ker f car on sait ker f ⊂ ker f2.
b) Soit x ∈ ker f ∩ Imf .
On peut écrire x = f(a). Comme f(x) = 0, on a a ∈ ker f2 = ker f donc x = 0.
Par le théorème du rang, on conclut.

Exercice 81 : [énoncé]
a) rg(f2) = rg(f)⇒ Imf2 = Imf car on sait Imf2 ⊂ Imf .
Par le théorème du rang ker f2 = ker f car on sait ker f ⊂ ker f2.
b) Soit x ∈ ker f ∩ Imf .
On peut écrire x = f(a). Comme f(x) = 0, on a a ∈ ker f2 = ker f donc x = 0.
Par le théorème du rang, on conclut.

Exercice 82 : [énoncé]
On a

dim (Imu ∩ Imv) = rgu+ rgv − dim (Imu+ Imv) = rgu+ rgv − dimE

et

dim (keru ∩ ker v) = dim keru+dim ker v−dim (keru+ ker v) = dim keru+dim ker v−dimE

donc en sommant

dim (Imu ∩ Imv) + dim (keru ∩ ker v) = 0

car en vertu du théorème du rang

dimE = rgu+ dim keru = rgv + dim ker v

Par suite
dim (Imu ∩ Imv) = dim (keru ∩ ker v) = 0

et donc
Imu ∩ Imv = keru ∩ ker v = {0E}

Les espaces Imu et Imv sont supplémentaires dans E. De même pour keru et ker v.

Exercice 83 : [énoncé]
D’une part

rgf + rgg − dim Imf ∩ Img = dimE

et d’autre part

dim ker f + dim ker g − dim ker f ∩ ker g = dimE

En sommant et en exploitant la formule du rang

dim Imf ∩ Img + dim ker f ∩ ker g 6 0

donc Imf ∩ Img = ker f ∩ ker g = {0}.

Exercice 84 : [énoncé]
Soit x ∈ ker(f − Id) ∩ Im(f − Id).
On a f(x) = x et on peut écrire x = (f − Id)(a) = f(a)− a.
f(x) = f2(a)− f(a), f2(x) = f3(a)− f2(a) = a− f2(a) puis x+ f(x) + f2(x) = 0.
Or x+ f(x) + f2(x) = 3x donc x = 0.
Soit x ∈ E.
Analyse : Supposons x = u+ v avec u ∈ ker(f − Id) et v ∈ Im(f − Id).
On peut écrire v = f(a)− a.
Ainsi x = u+ f(a)− a, f(x) = u+ f2(a)− f(a), f2(x) = u+ a− f2(a).
Donc u = 1

3 (x+ f(x) + f2(x)).
Synthèse : Posons u = 1

3 (x+ f(x) + f2(x)) et v = x− u.
On a f(u) = u car f3(x) = x et

v = 2
3x−

1
3f(x)− 1

3f
2(x) = 1

3x−
1
3f(x)− 1

3f
2(x) + 1

3f
3(x)

donc
v = (f − Id)

(
−1

3x+ 1
3f

2(x)
)
∈ Im(f − Id)

Finalement ker(f − Id)⊕ Im(f − Id) = E.

Exercice 85 : [énoncé]
a) Si x ∈ ker f alors g(x) = (f ◦ g ◦ f)(x) = 0 donc x ∈ ker g. Par symétrie

ker f = ker g.

Si y ∈ Imf alors il existe a ∈ E tel que y = f(a) = (g ◦ f ◦ g)(a) donc y ∈ Img. Par
symétrie

Imf = Img
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b) Soit x ∈ F ∩G. Il existe a ∈ E tel que x = g(a) or

f(a) = (g ◦ f ◦ g)(a) = (g ◦ f)(x) = g(0) = 0

Ainsi a ∈ ker f = ker g d’où x = g(a) = 0.
Soit x ∈ E.
Analyse :
Supposons x = u+ v avec u ∈ F = ker f et v = g(a) ∈ G = Img.
On a

f(x) = (f ◦ g)(a)
donc

(g ◦ f)(x) = f(a)
Synthèse :
Puisque (g ◦ f)(x) ∈ Img = Imf , il existe a ∈ E tel que

(g ◦ f)(x) = f(a)

Posons alors v = g(a) et u = x− v. On a immédiatement v ∈ Img et x = u+ v.
On a aussi u ∈ ker f car

f(u) = f(x)− f(v) ∈ Imf

et
g(f(u)) = (g ◦ f)(x)− (g ◦ f ◦ g)(a) = (g ◦ f)(x)− f(a) = 0

Ainsi
f(u) ∈ ker g ∩ Imf

puis
f(u) = 0

Exercice 86 : [énoncé]
Soit x ∈ ker f ∩ Img. On peut écrire x = g(a) avec a ∈ E.
On a alors

f(g(a)) = 0
puis

x = g(a) = (g ◦ f ◦ g)(a) = g(0) = 0
Soit x ∈ E. On peut écrire x = a+ b avec

a = x− g(f(x)) et b = g(f(x))

On vérifie immédiatement b ∈ Img et on obtient a ∈ ker f par

f(a) = f(x)− f(g(f(x)) = 0

Exercice 87 : [énoncé]
a) Soit x ∈ Imf ∩ ker g.
Il existe a ∈ E tel que x = f(a) donc

x = f(a) = (f ◦ g ◦ f)(a) = (f ◦ g)(x) = 0

Soit x ∈ E.
Analyse :
Supposons x = u+ v avec u = f(a) ∈ Imf et v ∈ ker g.
g(x) = g ◦ f(a) donc (f ◦ g)(x) = f(a) = u.
Synthèse :
Posons u = (f ◦ g)(x) et v = x− u.
On a u ∈ Imf , x = u+ v et g(v) = g(x)− g(u) = 0 i.e. v ∈ ker g.
b) On a f(Img) ⊂ Imf et ∀y ∈ Imf on peut écrire y = f(x) avec x = g(a) + u et
u ∈ ker f .
On a alors y = f(g(a)) ∈ f(Img).

Exercice 88 : [énoncé]
a) fi = fi ◦ Id = fi ◦

n∑
j=1

fj = fi ◦ fi donc fi est une projection vectorielle.

b) Supposons
n∑
i=1

xi = 0E avec xi ∈ Imfi.

En appliquant fi, on obtient fi(xi) = xi = 0E car fi(xj) = 0E .
Les espaces Imfi sont donc en somme directe.
Soit x ∈ E, on peut écrire

x = Id(x) =
n∑
i=1

fi(x) ∈
n∑
i=1

Imfi

On peut alors conclure
n
⊕
i=1

Imfi = E

Exercice 89 : [énoncé]
Puisque p1 + · · ·+ pm = IdE , on a pour tout x ∈ E,

x = p1(x) + · · ·+ pm(x) ∈
m∑
k=1

Fk

Ainsi

E ⊂
m∑
k=1

Fk
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De plus

dimE = trIdE =
m∑
k=1

trpk

Or les pk sont des projecteurs, donc trpk = rgpk = dimFk.
Ainsi

dimE =
m∑
k=1

dimFk

On peut alors conclure E =
m∑
k=1

Fk puis E =
m
⊕
k=1

Fk.

Exercice 90 : [énoncé]
Supposons que w est un isomorphisme.
Puisque l’application w = v ◦ u est injective, l’application u est injective.
Puisque l’application w = v ◦ u est surjective, l’application v est surjective.
Soit y ∈ Imu ∩ ker v. Il existe x ∈ E tel que y = u(x) et on a v(y) = 0 donc
w(x) = 0. Or kerw = {0E} donc x = 0E puis y = 0F . Ainsi

Imu ∩ ker v = {0F }

Soit y ∈ F , v(y) ∈ G et donc il existe x ∈ E tel que w(x) = v(y).
Posons alors a = u(x) et b = y − a.
On a immédiatement y = a+ b et a ∈ Imu.
De plus v(b) = v(y)− v(a) = v(y)− w(x) = 0 donc b ∈ ker v.
Ainsi

Imu⊕ ker v = F

Inversement, supposons u injective, v surjective et Imu et ker v supplémentaires
dans F .
Soit x ∈ kerw. On a v(u(x)) = 0 donc u(x) ∈ ker v. Or u(x) ∈ Imu donc u(x) = 0F
car Imu ∩ ker v = {0F }. Puisque u est injective, x = 0E et ainsi kerw = {0E}.
Soit z ∈ G. Il existe y ∈ F tel que z = v(y) car v est surjective. On peut écrire
y = u(a) + b avec a ∈ E et b ∈ ker v car Imu+ ker v = F . On a alors
z = v(u(a)) = w(a) et donc Imw = G.
Finalement G est un isomorphisme.

Exercice 91 : [énoncé]
Si un tel endomorphisme f existe alors

dimE = rg(f) + dim kerf = 2rg(f)

donc n est pair.
Inversement si n est pair, n = 2p avec p ∈ N
Si p = 0, l’endomorphisme nul convient.
Si p > 0, soit e = (e1, . . . , e2p) une base de E et f ∈ L(E) défini par :

f(e1) = 0E , . . . , f(ep) = 0E , f(ep+1) = e1, . . . , f(e2p) = ep

Pour cet endomorphisme, il est clair que Vect(e1, . . . , ep) ⊂ Imf et
Vect(e1, . . . , ep) ⊂ ker f .
Par suite dim Imf,dim ker f > p et par le théorème du rang
dim Imf, dim ker f = p.
Par inclusion et égalité des dimensions

Imf = Vect(e1, . . . , ep) = ker f

Exercice 92 : [énoncé]
Posons e1 = (1, 0, 0), e2 = (1, 1, 0) et e3 = (1, 1, 1).
Il est immédiat d’observer que (e1, e2, e3) est une base de E.
Une application linéaire est entièrement caractérisée par l’image des vecteurs
d’une base, par suite f existe et est unique.
(x, y, z) = (x− y)e1 + (y − z)e2 + ze3 donc
f(x, y, z) = (x− y)f(e1) + (y − z)f(e2) + zf(e3) = (y, x− y + z).
ker f = Vectu avec u = (1, 0,−1).
Par le théorème du rang dim Imf = 2 et donc Imf = R2.

Exercice 93 : [énoncé]
a) C ⊂ L(E), 0 ∈ C.
Soient λ, µ ∈ K et g, h ∈ C. On a

f ◦ (λg + µh) = λ(f ◦ g) + µ(f ◦ h) = λ(g ◦ f) + µ(h ◦ f) = (λg + µh) ◦ f

donc λg + µh ∈ C.
b) Soit g = a0Id + a1f + · · ·+ an−1f

n−1.
On a g ◦ f = a0f + a1f

2 + · · ·+ an−1f
n = f ◦ g donc g ∈ C.

Ainsi {
a0Id + a1f + · · ·+ an−1f

n−1 | a0, . . . , an−1 ∈ K
}
⊂ C

Inversement, soit g ∈ C.
Puisque (x0, f(x0), . . . , fn−1(x0)) est une base de E, il existe a0, a1, . . . , an−1 ∈ K
tels que : g(x0) = a0x0 + a1f(x0) + · · ·+ an−1f

n−1(x0). Introduisons
h = a0Id + a1f + · · ·+ an−1f

n−1.
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g, h ∈ C et g(x0) = h(x0) donc

g(f(x0)) = f(g(x0)) = f(h(x0)) = h(f(x0))

et de manière plus générale

g(fk(x0)) = fk(g(x0)) = fk(h(x0)) = h(fk(x0))

Ainsi g et h prennent mêmes valeurs sur la base (x0, f(x0), . . . , fn−1(x0)) donc
g = h.
Ainsi

C ⊂
{
an−1f

n−1 + · · ·+ a1f + a0Id | a0, . . . , an−1 ∈ K
}

puis l’égalité.
c) On a C = Vect(Id, f, f2, . . . , fn−1).
De plus si a0Id + a1f + · · ·+ an−1f

n−1 = 0 alors en évaluant en x0

a0x0 + a1f(x0) + · · ·+ an−1f
n−1(x0) = 0

or la famille (x0, f(x0), . . . , fn−1(x0)) est libre donc a0 = a1 = · · · = an−1 = 0.
La famille (Id, f, f2, . . . , fn−1) est une famille libre et génératrice de C, c’est donc
une base de C.
Par suite dim C = n.

Exercice 94 : [énoncé]
a) C(f) ⊂ L(E), 0̃ ∈ C(f).
Soient λ, µ ∈ K et g, h ∈ C(f). On a

f ◦ (λg + µh) = λ(f ◦ g) + µ(f ◦ h) = λ(g ◦ f) + µ(h ◦ f) = (λg + µh) ◦ f

donc λg + µh ∈ C(f).
b) Supposons

λ0a+ λ1f(a) + · · ·+ λn−1f
n−1(a) = 0E

En appliquant fn−1 à cette relation, on obtient λ0f
n−1(a) = 0E et donc λ0 = 0

car fn−1(a) 6= 0E .
En répétant l’opération, on obtient successivement la nullité de chaque λk.
La famille (a, f(a), . . . , fn−1(a)) est alors libre puis base de E car constituée de
n = dimE vecteurs de E.
c) L’application ϕa est linéaire car

ϕa(λf + µg) = λf(a) + µg(a) = λϕa(f) + µϕa(g)

Si ϕa(g) = 0E alors g(a) = 0E puis g(f(a)) = f(g(a)) = 0E , etc. L’application g
est alors nulle sur une base et c’est donc l’application nulle. Ainsi ϕa est injective.

Soit b ∈ E. Considérons l’application linéaire g définie par

g(a) = b, g(f(a)) = f(b),. . . ,g(f (n−1)(a)) = f (n−1)(b)

L’application linéaire g est entièrement définie par l’image d’une base et l’on
vérifie g ◦ f = f ◦ g sur chaque vecteur de cette base. Ainsi g ∈ C(f) et l’on vérifie
ϕa(g) = b. Ainsi ϕa est surjective.
d) Par l’isomorphisme dim C(f) = n.
Il est immédiat de vérifier Vect(Id, f, . . . , fn−1) ⊂ C(f) ainsi que la liberté de la
famille (Id, f, . . . , fn−1).
Par inclusion et égalité des dimensions, on conclut C(f) = Vect(Id, f, . . . , fn−1).

Exercice 95 : [énoncé]
Par le théorème du rang, la condition dimF + dimG = dimE est nécessaire.
Montrons qu’elle est aussi suffisante.
Soit H un supplémentaire de G dans E. On a dimH = dimF = p
Soient (ε1, . . . , εn) une base de E telle que (ε1, . . . , εp) soit base de H et
(εp+1, . . . , εn) base de G.
Soit (e1, . . . , ep) une base de F .
Une application linéaire est caractérisée par l’image d’une base.
Soit u : E → E l’application linéaire définie par

∀1 6 i 6 p, u(εi) = ei et ∀p+ 1 6 i 6 n, u(εi) = 0

Par construction, il est clair que F ⊂ Imu et G ⊂ keru.
Par le théorème du rang et la relation dimF + dimG = dimE, on obtient
dimF = rgu et dimG = dim keru. Par inclusions et égalités des dimensions :

F = Imu et G = keru

Exercice 96 : [énoncé]
Puisque Imf2 ⊂ Imf ⊂ R6, on a 3 6 rgf 6 6.
Si rgf = 6 alors f est un isomorphisme, donc f2 aussi et rgf2 = 6. Contradiction.
Si rgf = 5 alors dim ker f = 1. Considérons g = f|Imf . Par le théorème du rang
dim ker g = 5− rgg. Or Img ⊂ Imf2 donc rgg 6 3 et par suite dim ker g > 2. Or
ker g ⊂ ker f donc dim ker f > 2. Contradiction.
rgf = 3 et rgf = 4 sont possibles en considérant :

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 et


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0


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Exercice 97 : [énoncé]
kerϕ est un hyperplan de E et Vectu une droite car u 6= 0E puisque u /∈ kerϕ.
kerϕ+ Vect(u) est un sous-espace vectoriel de E contenant kerϕ, donc de
dimension n− 1 ou n.
Si dim kerϕ+ Vect(u) = n− 1 alors par inclusion et égalité des dimensions

kerϕ+ Vect(u) = kerϕ

Or u ∈ kerϕ+ Vect(u) et u /∈ kerϕ. Ce cas est donc exclu.
Il reste dim kerϕ+ Vect(u) = n i.e.

kerϕ+ Vect(u) = E

Comme de plus

dim kerϕ+ dimVect(u) = n− 1 + 1 = n = dimE

on peut affirmer que la somme est directe et donc kerϕ et Vect(u) sont
supplémentaires dans E.

Exercice 98 : [énoncé]
Soit ϕ une forme linéaire ne s’annulant pas sur x. Celle-ci n’est pas combinaison
linéaire de la famille (f1, . . . , fn). Cette famille n’est donc pas génératrice et par
suite elle est liée car formée de n = dimE? éléments de E?.

Exercice 99 : [énoncé]
Si f = 0 la propriété est immédiate.
Sinon f2 = 0 donne Imf ⊂ ker f et en vertu du théorème du rang, dim Imf = 1.
Soit a un vecteur directeur de la droite Imf . Pour tout x ∈ R3, il existe un unique
α ∈ R tel que f(x) = α.a. Posons ϕ(x) = α ce qui définit ϕ : R3 → R.
Les identités

f(λx+ µy) = ϕ(λx+ µy)a

et
f(λx+ µy) = λf(x) + µf(y) = (λϕ(x) + µϕ(y))a

avec a 6= 0E donnent la linéarité

ϕ(λx+ µy) = λϕ(x) + µϕ(y)

L’application ϕ est donc une forme linéaire sur R3.

Exercice 100 : [énoncé]
Posons ϕk : Rn [X]→ R la forme linéaire définie par

ϕk(P ) = P (ak)

Supposons
λ0ϕ0 + · · ·+ λnϕn = 0

Pour tout polynôme P ∈ Rn [X], on a

λ0P (a0) + · · ·+ λnP (an) = 0

Considérons le polynôme d’interpolation de Lagrange

Lk =
∏
j 6=k

X − aj
ak − aj

défini de sorte que
Lk ∈ Rn [X] et Lk(aj) = δj,k

En prenant P = Lk, on obtient λk = 0.
La famille (ϕ0, . . . , ϕn) est libre et puisque formée de n+ 1 = dim (Rn [X])?
éléments de (Rn [X])?, c’est une base de (Rn [X])?.
Puisque

ϕ : P 7→
∫ 1

0
P (t) dt

est une forme linéaire sur Rn [X], on peut affirmer qu’il existe (λ0, . . . , λn) ∈ Rn+1

unique vérifiant
ϕ = λ0ϕ0 + · · ·+ λnϕn

Exercice 101 : [énoncé]
Il est clair que les application Fj sont éléments de (Rn [X])? espace de dimension
n+ 1. Pour conclure, il suffit d’observer la liberté de la famille (F0, . . . , Fn).
Supposons λ0F0 + · · ·+ λnFn = 0.
En appliquant cette égalité aux polynômes 1, 2X, . . . , (n+ 1)Xn on obtient les
équations formant le système linéaire :

λ0a0 + · · ·+ λnan = 0
λ0a

2
0 + · · ·+ λna

2
n = 0

· · ·
λ0a

n+1
0 + · · ·+ λna

n+1
n = 0
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Par un déterminant de Vandermonde, ce système est de Cramer ce qui entraîne

λ0 = . . . = λn = 0

La famille est alors libre et constituée du bon nombre de vecteurs pour former une
base de (Rn [X])?.

Exercice 102 : [énoncé]
Soient x, y ∈ E tels que x 6= y.
Le vecteur x− y est non nul, il peut donc être complété pour former une base de
E. La forme linéaire correspondant à la première application composante dans
cette base est alors solution du problème posé.

Exercice 103 : [énoncé]
Si ker f = ker g alors le résultat est immédiat.
Sinon, pour des raisons de dimension, ker f 6⊂ ker g et ker g 6⊂ ker f .
La somme d’un vecteur de ker f qui ne soit pas dans ker g et d’un vecteur de ker g
qui ne soit pas dans ker f est solution.

Exercice 104 : [énoncé]
Soit ϕ une forme linéaire ne s’annulant pas sur x. Celle-ci n’est pas combinaison
linéaire des (f1, . . . , fn).
Cette famille n’est donc pas génératrice et par suite elle est liée car formée de
n = dimE? éléments de E?.

Exercice 105 : [énoncé]
Pour f ∈ E? et g ∈ F ?, posons f ⊗ g l’application définie sur E × F par
(f ⊗ g)(x, y) = f(x) + g(y). Il est facile d’observer f ⊗ g ∈ (E × F )?. Considérons
ϕ : E? × F ? → (E × F )? définie par ϕ(f, g) = f ⊗ g.
L’application ϕ est linéaire.
Si ϕ(f, g) = 0 alors pour tout (x, y) ∈ E × F , f(x) + g(y) = 0.
Pour y = 0, on peut affirmer f = 0 et pour x = 0, on affirme g = 0. Ainsi
(f, g) = (0, 0) et donc ϕ est injective.
Soit h ∈ (E × F )?. Posons f : x 7→ h(x, 0), g : y 7→ h(y, 0). On vérifie aisément
f ∈ E?, g ∈ F ? et ϕ(f, g) = h car h(x, y) = h(x, 0) + h(0, y).

Exercice 106 : [énoncé]
a) Si u et v s’annulent sur G, il en est de même pour λu+ µv.
b) Soit H un supplémentaire de G dans E. L’application ϕ : u 7→ u�H définie un
isomorphisme entre A et L(H,F ). En effet la connaissance d’une application
linéaire sur deux espaces supplémentaires la caractérise entièrement, ici u�G = 0 et
donc u�H détermine u. Par suite dimA = (dimE − dimG)× dimF .

Exercice 107 : [énoncé]
Posons F = {g ∈ L(E)/f ◦ g = 0}. Soit g ∈ L(E). On a clairement
g ∈ F ⇔ Img ⊂ ker f . Par conséquent F = L(E, ker f) d’où la dimension.

Exercice 108 : [énoncé]
a) Si f, g ∈ L(E,F ) s’annulent sur W , il en est de même de λf + µg. . .
b) Soit V un supplémentaire de W dans E. L’application

Φ : A→ L(V, F )

qui à f ∈ A associe sa restriction au départ de V est un isomorphisme car une
application linéaire est entièrement déterminée par ses restrictions linéaires sur
deux espaces supplémentaires.
On en déduit

dimA = dimL(V, F ) = (dimE − dimW )× dimF

Exercice 109 : [énoncé]
a) AF et BF sont des parties de L(E) contenant l’endomorphisme nul.
Im(λf) ⊂ Imf avec égalité si λ 6= 0 et Im(f + g) ⊂ Imf + Img donc AF est un
sous-espace vectoriel de L(E).
Aussi ker f ⊂ ker(λf) et ker f ∩ ker g ⊂ ker(f + g) donc BF est un sous-espace
vectoriel de L(E).
AF s’identifie avec L(E,F ) donc

dimAF = np

En introduisant G un supplémentaire de F dans E, BF est isomorphe à L(G,E)
et donc

dimBF = n(n− p)

b) ϕ est linéaire en vertu de la linéarité du produit de composition.

f ∈ kerϕ⇔ Imf ⊂ keru
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donc kerϕ = BImf puis
dim kerϕ = n(n− rgu)

c) Si v ∈ Imϕ alors il existe f ∈ L(E) tel que v = u ◦ f et donc Imv ⊂ Imu.
Inversement si Imv ⊂ Imu alors en introduisant (e1, . . . , en) une base de E, pour
tout i, il existe fi ∈ E tel que v(ei) = u(fi). Considérons alors l’endomorphisme f
déterminé par f(ei) = fi. On vérifie v = u ◦ f car ces deux applications prennent
mêmes valeurs sur une base. Imϕ = AImu donc

rgϕ = nrgu

Exercice 110 : [énoncé]
Notons A = {g ∈ L(E,F )/f ◦ g ◦ f = 0} = {g ∈ L(E,F )/Im(g�Imf ) ⊂ ker f}
Soit G un supplémentaire de Imf dans E.
Un élément de A est entièrement déterminée par :
- sa restriction de Imf à valeurs dans ker f et
- sa restriction de G à valeurs dans F .
Par suite A est isomorphe à L(Imf, ker f)× L(G,F ).
Il en découle dimA = dimE dimF − (rgf)2.

Exercice 111 : [énoncé]
a) P (X + 1) et P (X) sont de polynômes de mêmes degré et de coefficients
dominants égaux donc

degP (X + 1)− P (X) < degP

à moins que P = 0. Par suite

∀P ∈ Kn+1 [X] , ∆(P ) ∈ Kn [X]

Soient λ, µ ∈ K et P,Q ∈ Kn+1 [X].

∆(λP+µQ) = (λP+µQ)(X+1)−(λP+µQ)(X) = λ(P (X+1)−P (X))+µ(Q(X+1)−Q(X))

donc
∆(λP + µQ) = λ∆(P ) + µ∆(Q)

b) On a
P ∈ ker ∆⇔ P (X + 1)− P (X) = 0

En écrivant

P ∈ ker ∆⇔ P (X+1) = P (X)⇔ a0+a1(X+1)+· · ·+an(X+1)n = a0+a1X+· · ·+anXn

En développant et en identifiant les coefficients, on obtient successivement,
an = 0, . . . , a1 = 0 et donc ker ∆ = K0 [X].
c) Par la formule du rang

rg∆ = dimKn+1 [X]− dim ker ∆ = n+ 2− 1 = n+ 1 = dimKn [X]

donc ∆ est surjectif.

Exercice 112 : [énoncé]
a) On remarque que si degP 6 m alors deg ∆(P ) 6 m− 1.
On en déduit Im∆ ⊂ Rn−1 [X], Im∆2 ⊂ Rn−2 [X],. . . puis ∆n+1 = 0.
b) Introduisons l’endomorphisme T : P (X) 7→ P (X + 1).
On a ∆ = T − Id et par la formule du binôme de Newton (T et Id commutent),

n+1∑
k=0

(−1)n+1−k

(
n+ 1
k

)
T k = 0

Ainsi pour

ak = (−1)k
(
n+ 1
k

)
on a

∀P ∈ Rn [X] ,
n+1∑
k=0

akP (X + k) = 0

Exercice 113 : [énoncé]
a) ∆ est clairement linéaire.
Soit P ∈ C [X] non nul et n = degP . On peut écrire P = a0 + a1X + · · ·+ anX

n

avec an 6= 0.
∆(P ) = a1∆(X) + · · ·+ an∆(Xn) or deg ∆(X), . . . ,deg ∆(Xn−1) 6 n− 1 et
deg ∆(Xn) = n− 1 donc deg ∆(P ) = n− 1.
b) Si P est constant alors ∆(P ) = 0 et sinon ∆(P ) 6= 0 donc ker ∆ = C0 [X].
Soit P ∈ Cn [X]. La restriction ∆̃ de ∆ au départ Cn+1 [X] et à l’arrivée dans
Cn [X] est bien définie, de noyau de dimension 1 et en vertu du théorème du rang
surjective. Il s’ensuit que ∆ est surjective.
c) Notons T ∈ L(C [X]) défini par T (P ) = P (X + 1).
∆ = T − I donc

∆n =
n∑
k=0

(−1)n−k
(
n

k

)
T k
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avec T k(P ) = P (X + k) donc

∆n(P ) = (−1)n
n∑
k=0

(−1)k
(
n

k

)
P (X + k)

d) Si degP < n alors ∆n(P ) = 0 donc
n∑
k=0

(
n

k

)
(−1)kP (k) = 0

Exercice 114 : [énoncé]
a) Si P ∈ Kn [X] alors ϕ(P ) ∈ Kn [X].
Si degP = n+ 1 alors (n+ 1)P et XP ′ ont même degré (n+ 1) et même coefficient
dominant donc deg(n+ 1)P −XP ′ < n+ 1 puis (n+ 1)P −XP ′ ∈ Kn [X].
Finalement ∀P ∈ Kn+1 [X], ϕ(P ) ∈ Kn [X] et donc l’application ϕ est bien définie.
Pour λ, µ ∈ K et tout P,Q ∈ Kn+1 [X] :
ϕ(λP + µQ) = (n+ 1)(λP + µQ)−X(λP + µQ)′ =
λ((n+ 1)P −XP ′) + µ((n+ 1)Q−XQ′)
et donc ϕ(λP + µQ) = λϕ(P ) + µϕ(Q).

b) Soit P =
n+1∑
k=0

akX
k ∈ Kn+1 [X]. ϕ(P ) = 0⇔ ∀k ∈ {0, 1, . . . , n+ 1},

(n+ 1)ak = kak.
Ainsi P ∈ kerϕ⇔ ∀k ∈ {0, 1 . . . , n} , ak = 0. Par suite kerϕ = Vect(Xn+1).
c) Par le théorème du rang
rg(ϕ) = dimKn+1 [X]− dim kerϕ = n+ 2− 1 = dimKn [X] donc ϕ est surjective.

Exercice 115 : [énoncé]
a) ϕ est linaire. Si degP = k ∈ N alors degϕ(P ) = k donc kerϕ = {0}. Par suite
ϕ est bijective.
b) (P0, . . . , Pn) est une famille de polynômes de degrés étagés, c’est donc une base
de Rn [X].
Puisque Pn(X + 1) ∈ Rn [X], on peut écrire Pn(X + 1) =

n∑
k=0

λkPk.

c) Pn(X + 2) + Pn(X + 1) = 2(X + 1)n et Pn(X + 2) + Pn(X + 1) =
n∑
k=0

2λkXk

donc λk = Ckn.

Pn = 2Xn − Pn(X + 1) = 2Xn −
n−1∑
k=0

CknPk − Pn puis Pn = Xn − 1
2

n−1∑
k=0

CknPk.

Exercice 116 : [énoncé]
Soient λ, µ ∈ R et P1, P2 ∈ R [X].
On a P1 = AQ1 + r(P1), P2 = AQ2 + r(P2) avec deg r(P1),deg r(P2) < degA.
Donc λP1 + µP2 = A(λQ1 + µQ2) + λr(P1) + µr(P2) avec
deg(λr(P1) + µr(P2)) < degA.
Par suite r(λP1 + µP2) = λr(P1) + µr(P2). Finalement r est un endomorphisme
de R [X].
De plus pour tout P ∈ R [X], on a r(P ) = A× 0 + r(P ) avec deg r(P ) < degA
donc r(r(P )) = r(P ). Ainsi r2 = r. r est un projecteur.

∀P ∈ R [X] , r(P ) = 0⇔ A | P

donc ker r = A.R [X].
∀P ∈ R [X] , r(P ) ∈ Rn−1 [X]

en posant n = degA. Donc Imr ⊂ Rn−1 [X].
Inversement,

∀P ∈ Rn−1 [X] , r(P ) = P ∈ Imr

Donc Rn−1 [X] ⊂ Imr.
Finalement Imr = Rn−1 [X].

Exercice 117 : [énoncé]
Supposons ϕ solution.
Soit P ∈ R [X]. Par division euclidienne de P par (X − a)(X − b) on peut écrire

P = (X − a)(X − b)Q(X) + αX + β

En évaluant cette identité en a et b, on détermine α et β

α = P (b)− P (a)
b− a

et β = bP (a)− aP (b)
b− a

Par linéarité de ϕ on obtient

ϕ(P ) = ϕ(αX + β) = αX + β

car ϕ ((X − a)(X − b)Q(X)) = 0.
Ainsi

ϕ(P ) = P (b)− P (a)
b− a

X + bP (a)− aP (b)
b− a

ce qui détermine ϕ de façon unique.
Inversement, on vérifie aisément que l’application ϕ définie sur R [X] par la
relation précédente est un endomorphisme de R [X] résolvant le problème posé.
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Exercice 118 : [énoncé]
Posons T : P (X) 7→ P (X + 1) et ∆ = T − Id endomorphismes de R [X].
∆(P ) = P (X + 1)− P (X).
On vérifie que si degP 6 p alors deg ∆(P ) 6 p− 1.
Soit P ∈ Rp [X].
Par ce qui précède, on a ∆p+1(P ) = 0.
Or

∆p+1 =
p+1∑
k=0

(
p+ 1
k

)
(−1)p+1−kT k

car T et Id commutent.
On en déduit

p+1∑
k=0

(
p+ 1
k

)
(−1)kP (X + k) = 0

et en particulier pour tout n ∈ N,

p+1∑
k=0

(
p+ 1
k

)
(−1)kP (n+ k) = 0

Exercice 119 : [énoncé]
a) Si u ∈ Sp et si deux polynômes P,Q conviennent pour exprimer un+1 en
fonction de un alors

∀n ∈ N, P (n) = Q(n)

Puisque le polynôme P −Q possède une infinité de racines, c’est le polynôme nul
et donc P = Q.
b) Sp ⊂ RN, 0 ∈ Sp (avec P = 0).
Soient λ, µ ∈ R et u, v ∈ Sp.
Pour tout n ∈ N, on obtient aisément

(λu+ µv)n+1 = a(λu+ µv)n + (λPu + µPv)(n)

et donc λu+ µv ∈ Sp avec Pλu+µv = λPu + µPv ∈ Rp [X].
Sp est un sous-espace vectoriel de RN donc c’est un R-espace vectoriel.
c) Ci-dessus, on a obtenu Pλu+µv = λPu + µPv ce qui correspond à la linéarité de
l’application φ.
u ∈ kerφ si, et seulement si, Pu = 0 ce qui signifie que u est une suite géométrique
de raison a.
On en déduit que la suite (an)n∈N est un vecteur directeur de la droite vectorielle
qu’est le noyau de φ.

L’image de φ est Rp [X] car l’application φ est surjective puisque pour tout
polynôme P ∈ R [X], on peut définir une suite élément de Sp par la relation

u0 ∈ R et ∀n ∈ N, un+1 = aun + P (n)

d) La famille (R0, R1, . . . , Rp) est une famille de polynômes de degrés étagés de
Rp [X], elle forme donc une base de Rp [X]. Pour k ∈ [[0, p]], il est facile de
déterminer une suite u = (un) ∈ Sp vérifiant Su = Rk car

un+1 = aun +Rk(n)⇔ un+1 − (n+ 1)k = a(un − nk)

Ainsi la suite
u : n 7→ nk

convient.
Considérons alors la famille formée des suites

v : n 7→ an et vk : n 7→ nk avec k ∈ [[0, p]]

Supposons
λv + λ0v0 + · · ·+ λpvp = 0

En appliquant φ, on obtient

λ0R0 + · · ·+ λpRp = 0

donc λ0 = . . . = λp = 0 puis la relation initiale donne λ = 0 car v 6= 0.
La famille (v, v0, . . . , vp) est donc libre.
De plus, en vertu de la formule du rang

dimSp = dim kerφ+ rgφ = 1 + (p+ 1) = p+ 2

donc la famille (v, v0, . . . , vp) est une base de Sp.
e) En reprenant les notations qui précèdent, on peut écrire

u = λv + λ0v0 + λ1v1

On a
Pu = λ0R0 + λ1R1 = −2X + 7

Puisque R0 = −1 et R1 = 1−X, on obtient λ1 = 2 et λ0 = −5.
Par suite

un = λ2n + 2n− 5

Puisque u0 = −2, on obtient λ = 7.
Finalement

un = 3.2n + 2n− 5
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Exercice 120 : [énoncé]
a) Supposons que H est un supplémentaire commun à F1 et F2.
Considérons la projection p sur F1 parallèlement à H. Par le théorème du rang, p
induit par restriction un isomorphisme de tout supplémentaire de noyau vers
l’image de p. On en déduit que F1 et F2 sont isomorphes.
b) En dimension finie, la réciproque est vraie car l’isomorphisme entraîne l’égalité
des dimensions des espaces et on peut alors montrer l’existence d’un
supplémentaire commun (voir l’exercice d’identifiant 181)
C’est en dimension infinie que nous allons construire un contre-exemple.
Posons E = K [X] et prenons F1 = E, F2 = X.E. Les espaces F1 et F2 sont
isomorphes via l’application P (X) 7→ XP (X). Ils ne possèdent pas de
supplémentaires communs car seul {0} est supplémentaire de F1 et cet espace
n’est pas supplémentaire de F2.

Exercice 121 : [énoncé]
Notons que Imf ⊂ ker f car on suppose f2 = 0.
(⇒) Si x ∈ ker f alors x = (f ◦ g)(x) + 0 ∈ Imf donc Imf = ker f .
(⇐) Soient F un supplémentaire de Imf = ker f dans E. Par le théorème du rang

dimF = n− dim ker f = dim Imf

L’application h = f|F : F → Imf est un isomorphisme car elle est linéaire entre
deux espaces de dimensions finies égales et injective car kerh = F ∩ ker f = {0E}.
Soit g ∈ L(E) déterminé par

g|Imf = h−1 et g|F = 0

On a
∀x ∈ Imf , (f ◦ g + g ◦ f)(x) = (f ◦ g)(x) = (f ◦ h−1)(x) = x

car f2 = 0.
et

∀x ∈ F , (f ◦ g + g ◦ f)(x) = (g ◦ f)(x) = h−1(f(x)) = x

car g|F = 0.
On en déduit f ◦ g + g ◦ f = IdE .

Exercice 122 : [énoncé]
(⇐) ok
(⇒) Supposons Img ⊂ Imf . Soit H un supplémentaire de ker f dans E. f réalise
un isomorphisme ϕ de H vers Imf .

Posons h = ϕ−1 ◦ g. L’application h est bien définie car g est à valeurs dans
Img ⊂ Imf et ϕ−1 est définie sur Imf . De plus, h est linéaire par composition et

f ◦ h = f ◦ ϕ−1 ◦ g

Puisque ϕ−1 prend ses valeurs dans H, f ◦ ϕ−1 = ϕ ◦ ϕ−1 = IdImf puis

f ◦ h = IdImf ◦ g = g

Exercice 123 : [énoncé]
(⇐) ok
(⇒) Supposons ker f ⊂ ker g. Soit H un supplémentaire de ker f dans E. f réalise
un isomorphisme de H vers Imf noté f�H . Soient K un supplémentaire de Imf
dans E et h ∈ L(E) déterminé par

h�Imf = g ◦ f−1
�H et h�K = 0

(ou n’importe quelle autre application linéaire).
Pour tout x ∈ ker f ,

g(x) = 0 = (h ◦ f)(x)

et pour tout x ∈ H,

(h ◦ f)(x) = h(f�H(x)) = g(f−1
�H (f�H(x))) = g(x)

Les applications g et h ◦ f coïncidant sur deux sous-espaces vectoriels
supplémentaires, elles sont égales.

Exercice 124 : [énoncé]
Si Imv 6⊂ Imu, il n’y a pas de solution.
Supposons Imv ⊂ Imu. Soit H un supplémentaire de keru dans E. u|H réalise un
isomorphisme de H vers Imu. Tout f ∈ L(E) s’écrit de manière unique
f = f1 + f2 avec f1 = pH ◦ f et f2 = pkeru ◦ f .
u ◦ f = v ⇔ u ◦ f1 = v ⇔ u|H ◦ f1 = v ⇔ f1 = (u|H)−1 ◦ v.
Les solutions de l’équation sont les f = (u|H)−1 ◦ v + f2 avec f2 ∈ L(E, keru)
quelconque.
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