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Enoncés

Applications linéaires

Etude de linéarité

Exercice 1 [01703] [correction]

Les applications entre R-espaces vectoriels suivantes sont-elles linéaires :
a) f:R3® — R définie par f(z,y,2) =2 +y+ 22

b) f:R? — R définie par f(z,y) =z +y+1

c) f:R? — R définie par f(z,y) = xy

d) f:R3 — R définie par f(x,y,2) =2 — 27

Exercice 2 [01704] [correction]

Soit f: R? — R? définie par f(x,y) = (z +y,z — y).

Montrer que f est un automorphisme de R? et déterminer son automorphisme
réciproque.

Exercice 3 [01705] [correction]
Soit J : €([0,1],R) — R définie par J(f) = [, f(t)dt.
Montrer que J est une forme linéaire.

Exercice 4 [01706] [correction]
Soit ¢ : C*(R,R) — C*(R,R) définie par ¢(f) = f" —3f" + 2f.
Montrer que ¢ est un endomorphisme et préciser son noyau.

Exercice 5 [01707] [correction]

Soient a un élément d’'un ensemble X non vide et £ un K-espace vectoriel.

a) Montrer que E, : F(X, E) — E définie par E,(f) = f(a) est une application
linéaire.

b) Déterminer I'image et le noyau de Papplication F,.

Exercice 6 [o01708] [correction]
Soit E le R-espace vectoriel des applications indéfiniment dérivables sur R.
Soient ¢ : E — E et ¢ : E — FE les applications définies par :

o(f) = f" et ¥(f) est donnée par :

Ve € R o(f)(x) = / " f(t)de

a) Montrer que ¢ et ¥ sont des endomorphismes de E.
b) Exprimer ¢ o 1) et 1 o .
¢) Déterminer images et noyaux de ¢ et 1.

Exercice 7 [02012] [correction]
Montrer que l'application partie entiere Ent : K(X) — K [X] est linéaire et
déterminer son noyau.

Linéarité et sous-espaces vectoriels

Exercice 8 [01709] [correction]

Soit f une application linéaire d’'un K-espace vectoriel E vers un K-espace
vectoriel F'.

Montrer que pour toute partie A de E, on a f(Vect A) = Vect f(A).

Exercice 9 [o01711] [correction]
Soient E, F' deux K-espaces vectoriels, f € L(E, F) et A, B deux sous-espaces
vectoriels de E. Montrer

f(A)Cf(B)e A+kerf CB+kerf

Exercice 10 [ 03247 [correction]

Soient u un endomorphisme d’un K-espace vectoriel E et F' un sous-espace
vectoriel de E.

a) Exprimer u~!(u(F)) en fonction de F et de ker u.

b) Exprimer u(u~!(F)) en fonction de F et de Imu.

c) A quelle condition a-t-on u(u=1(F)) = u= ! (u(F))?

Exercice 11 [03286] [correction]
Caractériser les sous-espaces F' d’un espace vectoriel E tels que

Exercice 12 [ 02680 ] [correction]
Soit E et I’ des K-espaces vectoriels. On se donne f € L(E, F'), une famille
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(E;)1<ign de sous-espaces vectoriels de E et une famille (F})1¢;j<p de sous-espaces

vectoriels de F.
a) Montrer

b) Montrer que si f est injective et si la somme des F; est directe alors la somme

des f(E;) est directe.
¢) Montrer

P P
-1 -1
FRQF) D Y FTHE)
j=1 j=1
Montrer que cette inclusion peut étre stricte. Donner une condition suffisante
pour qu’il y ait égalité.

Linéarité et colinéarité

Exercice 13 [o01658] [correction]

Soient E un K-espace vectoriel et f € L(E) tel que les vecteurs x et f(x) sont
colinéaires et ce pour tout = € FE.

a) Justifier que pour tout x € E, il existe A, € K tel que f(z) = A;.z.

b) Montrer que pour tout couple de vecteurs non nuls z et y, on a Ay = A,.
(indice : on pourra distinguer les cas : (x,y) liée ou (x,y) libre.)

¢) Conclure que f est une homothétie vectorielle.

Exercice 14 [o00159 ] [correction]
Soit f € L(E) tel que pour tout z € E, x et f(x) soient colinéaires.
Montrer que f est une homothétie vectorielle.

Exercice 15 [03418] [correction]
Soient f,g € L(E, F). On suppose

Ve € E,3N; €K, g(z) = Ao f()
Montrer qu’il existe A € K tel que

g=Af

Images et noyaux

Exercice 16 [o01712] [correction]
Soient f et g deux endomorphismes d’'un K-espace vectoriel E.
Montrer que g o f = 0 si, et seulement si, Imf C ker g.

Exercice 17 [01713] [correction]

Soient f et g deux endomorphismes d’'un K-espace vectoriel E.
a) Comparer ker f Nker g et ker(f + g).

b) Comparer Imf + Img et Im(f + g).

c¢) Comparer ker f et ker f2.

d) Comparer Imf et Imf2.

Exercice 18 [o01714] [correction)]

Soit f un endomorphisme d’un K-espace vectoriel E. Montrer
a) Imf Nker f = {0g} < ker f = ker f2.

b) E =Imf + ker f & Imf = Imf2.

Exercice 19 [o1715] [correction)]
Soient E un K-espace vectoriel et f € L(E) tel que

f2=3f+2ld=0

a) Montrer que f est inversible et exprimer son inverse en fonction de f.
b) Etablir que ker(f — Id) et ker(f — 2Id) sont des sous-espaces vectoriels
supplémentaires de F.

Exercice 20 [o01716] [correction)]
Soient f,g,h € L(FE) tels que

fog=h,goh=fethof=g

a) Montrer que f, g, h ont méme noyau et méme image.
b) Montrer f5 = f.
¢) En déduire que 'image et le noyau de f sont supplémentaires dans E.
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Exercice 21 [o1754] [correction]

Soient f et g deux endomorphismes d’un K-espace vectoriel E vérifiant fog = 1d;
montrer que ker f = ker(go f), Img = Im(g o f) puis que ker f et Img sont
supplémentaires.

Exercice 22 [ 03360 ] [correction]
Soient f et g deux endomorphismes d’un espace vectoriel E sur R ou C vérifiant
fog=1d.
a) Montrer que ker(g o f) = ker f et Im(g o f) = Img.
b) Montrer
E = ker f & Img

c) Dans quel cas peut-on conclure g = f=1?
d) Calculer (go f)o (go f) et caractériser g o f

Exercice 23 [o1717] [correction]
Soient f,g € L(E) tels que

gofog=get fogof=Ff

a) Montrer que Imf et ker g sont supplémentaires dans FE.
b) Justifier que f(Img) = Imf.

L’anneau des endomorphismes

Exercice 24 [o1710] [correction]

Soient E un K-espace vectoriel et f un endomorphisme de E nilpotent i.e. tel qu’il
existe n € N* pour lequel f™* = 0. Montrer que Id — f est inversible et exprimer
son inverse en fonction de f.

Exercice 25 [01726] [correction]
A quelle condition une translation et un endomorphisme d’un K-espace vectoriel
E commutent-ils ?

Exercice 26 [03242] [correction]

Soit E un K-espace vectoriel de dimension finie et F' un sous-espace vectoriel de
L(F) stable par composition et contenant ’endomorphisme Idg.

Montrer que F N GL(E) est un sous-groupe de (GL(E), o)

Projections et symétries vectorielles

Exercice 27 [o01718] [correction]

Soient E un K-espace vectoriel et p € L(E).

a) Montrer que p est un projecteur si, et seulement si, Id — p lest.

b) Exprimer alors Im(Id — p) et ker(Id — p) en fonction de Imp et ker p.

Exercice 28 [01719] [correction]

Soient p,q € L(E). Montrer I’équivalence entre les assertions :
(i) pog=pet gop=g;

(ii) p et g sont des projecteurs de méme noyau.

Exercice 29 [01720] [correction]
Soient E un K-espace vectoriel et p, ¢ deux projecteurs de F qui commutent.
Montrer que p o ¢ est un projecteur de E. En déterminer noyau et image.

Exercice 30 [o01723] [correction)]

Soit F un K-espace vectoriel.

Soit s un endomorphisme de E involutif, i.e. tel que s? = Id.

On pose F' =ker(s —Id) et G = ker(s + 1d).

a) Montrer que F' et G sont des sous-espaces vectoriels supplémentaires de E.

b) Montrer que s est la symétrie vectorielle par rapport & F' et parallelement & G.
Plus généralement, Soient @ € K\ {1} et f un endomorphisme de E tel que
fP=(a+1)f+ald=0.

On pose F =ker(f —1Id) et G = ker(f — ald).

c) Montrer que F' et G sont supplémentaires dans E.

d) Montrer que f est laffinité par rapport & F, parallelement & G et de rapport a.

Exercice 31 [o01724] [correction)]

Soit f € L(E) tel que f2 —4f + 31 = 0.
Montrer que ker(f —1Id) @ ker(f — 3Id) = E.
Quelle transformation vectorielle réalise f 7

Exercice 32 [o01725] [correction]

Soient E un K-espace vectoriel et p un projecteur de E. On pose ¢ = Id — p et on
considere

L={feL(E)|Fuel(E),f=uoptet M ={ge L(E)|TveL(E),g=voq}.
Montrer que L et M sont des sous-espaces vectoriels supplémentaires de £(E).
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Exercice 33 [o0165] [correction]

Soient p et ¢ deux projecteurs d’un K-espace vectoriel E.

a) Montrer que p et ¢ ont méme noyau si, et seulement si, pog=pet gop =gq.
b) Enoncer une condition nécessaire et suffisante semblable pour que p et g aient
méme image.

Exercice 34 [o02468] [correction]

Soient p et ¢ deux projecteurs d’un K-espace vectoriel E vérifiant p o ¢ = 0.
a) Montrer que r = p+ g — g o p est un projecteur.

b) Déterminer image et noyau de celui-ci.

Exercice 35 [oo0164 ] [correction]

Soient p, g deux projecteurs d’un K-espace vectoriel E.

a) Montrer que p + ¢ est un projecteur si, et seulement si, pogq=gop = 0.
b) Préciser alors Im(p + ¢) et ker(p + q).

Exercice 36 [o00166 ] [correction]

Soit E' un C-espace vectoriel de dimension finie et u € L(E).

On suppose qu'’il existe un projecteur p de E tel que u = pou — uop.
a) Montrer que u(ker p) C Imp et Imp C ker u.

b) En déduire u? = 0.

¢) Réciproque ?

Exercice 37 [02939 ] [correction]

Soient E un espace vectoriel de dimension finie, p et ¢ dans L(E) tels que
poq=qet gop=p. Les endomorphismes p et ¢ sont-ils diagonalisables ?
codiagonalisables 7

Exercice 38 [02242] [correction]

Soient E et F' deux K-espaces vectoriels de dimensions finies respectives n et p
avec n > p.

On consideére v € L(E, F) et v € L(F, E) vérifiant

uov=1Idg

a) Montrer que v o u est un projecteur.
b) Déterminer son rang, son image et son noyau.

Exercice 39 [o03251] [correction]
Soit f un endomorphisme d’un K-espace vectoriel E de dimension n. Montrer

f est un projecteur < rgf +rg(ld — f) =n

Exercice 40 [03759] [correction)]
Soient p et ¢ deux projecteurs d’'un R-espace vectoriel E vérifiant

Imp C kerg

Montrer que p + g — p o q est un projecteur et préciser son image et son noyau.

Exercice 41 [03359] [correction)]
Soient f et g deux endomorphismes d’un espace vectoriel E sur R ou C vérifiant
fog=1d.
a) Montrer que ker(go f) = ker f et Im(g o f) = Img.
b) Montrer
E =ker f & Img

c¢) Dans quel cas peut-on conclure g = f=17
d) Calculer (go f)o (go f) et caractériser g o f

Formes linéaires et hyperplans

Exercice 42 [03314] [correction]
Soit H un hyperplan d’un K-espace vectoriel de E de dimension quelconque.
Soit a un vecteur de E qui n’appartient pas a H. Montrer

H & Vect(a) = E

Exercice 43 [00174] [correction)]

Soient H un hyperplan d’'un K-espace vectoriel E de dimension quelconque et D
une droite vectorielle non incluse dans H.

Montrer que D et H sont supplémentaires dans F.

Exercice 44 [03315] [correction]
Soit H un hyperplan d’un K-espace vectoriel de E de dimension quelconque.
On suppose que F' est un sous-espace vectoriel de E contenant H. Montrer

F=HouF=F
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Exercice 45 [00208 ] [correction]

Soient f,g € E* telles que ker f = ker g. Montrer qu’il existe a € K tel que f = ag.

Exercice 46 [ 00205 ] [correction]
Soit e = (€1, ..., e,) une famille de vecteurs d’un K-espace vectoriel E de
dimension n € N*. On suppose que

VEfeE" fle1)=...=flen) =0=f=0

Montrer que B est une base de F.

Applications linéaires en dimension finie

Exercice 47 [o01654 ] [correction]
Soit E un K-espace vectoriel de dimension finie, V' un sous-espace vectoriel de F
et f € L(F). Montrer

VcfV)=fVv)=Vv

Exercice 48 [o01655 ] [correction]
Soit f € L(E, F) injective. Montrer que pour tout famille (zq, ...
de E, on a

,Zp) de vecteurs

rg(f(21),- -, fp)) = vz, ap)

Exercice 49 [01656 ] [correction]

Soit F un K-espace vectoriel de dimension n > 1 et f un endomorphisme
nilpotent non nul de E. Soit p le plus petit entier tel que fP = 0.

a) Soit x ¢ ker fP~1. Montrer que la famille (z, f(z), f2(x),..., fP~1(x)) est libre.
b) En déduire que f™ = 0.

Exercice 50 [01659 ] [correction]
Soit E un K-espace vectoriel de dimension finie.
Soient f,g € L(E) tels que

fP4fog=1d

Montrer que f et g commutent.

Exercice 51 [o01662] [correction]

Déterminer une base du noyau et de I'image des applications linéaires suivantes :
a) f:R?® — R3 définie par f(z,y,2) = (y — 2,2 — z,2 — )

b) f: R* — R? définie par f(z,y,2,t) = e +y+z,x+y+t,x+z—1t)

c¢) f: C — C définie par f(z) = z+ iz (C est ici vu comme un R-espace vectoriel).

Exercice 52 [o00172] [correction)]

Soient E un K-espace vectoriel de dimension n > 1, f un endomorphisme
nilpotent non nul de E et p le plus petit entier tel que fP = 0.

a) Montrer qu’il existe € E tel que la famille

(z, f(2), f2(2),..., [P~} (2))

soit libre.
b) En déduire f* = 0.

Exercice 53 [00178] [correction]

Soit f un endomorphisme d’un espace vectoriel de dimension n. Montrer que
(I, f, f% ..., f"z) est liée et en déduire qu’il existe un polynéme non
identiquement nul qui annule f.

Exercice 54 [02495] [correction)]

Soit E un plan vectoriel.

a) Montrer que f endomorphisme non nul est nilpotent si, et seulement si,

ker f = Imf.

b) En déduire qu'un tel endomorphisme ne peut s’écrire sous la forme f = uowv
avec u et v nilpotents.

Exercice 55 [o02161] [correction]
Soient ag, aq,...,a, des éléments deux a deux distincts de K.
Montrer que I'application ¢ : K,, [X] — K"+ définie par

p(P) = (Plao), P(ar), ..., P(an))

est un isomorphisme de K-espace vectoriel.

Exercice 56 [02162] [correction]
Soient ag, ..., a, des réels distincts et ¢ : Ro,, 11 [X] — R?"*2 définie par

o(P) = (P(ao), P'(ag), ..., Plan), P'(an))

Montrer que ¢ est bijective.
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Rang d’une application linéaire

Exercice 57 [o01660] [correction]
Soient E un K-espace vectoriel de dimension finie et f,g € L(E).
Montrer que

rg(f+g) <rg(f) +1g(9)

puis que
Irg(f) —ra(g)| <xg(f —9)

Exercice 58 [o1661 ] [correction]

Soient E et F' deux K-espaces vectoriels de dimension finies et
fELEF),ge LIF,FE) telles que fogof=f etgofog=g.
Montrer que f,g, f o g et go f ont méme rang.

Exercice 59 [02682] [correction]
Soient f,g € L(E) ou E est un espace vectoriel sur K de dimension finie. Montrer

lrg(f) —rg(g)| < rg(f +g) <rg(f) +re(g)

Exercice 60 [ 02504 ] [correction]
Soient u et v deux endomorphismes d’un espace vectoriel de dimension finie E.
a) Montrer

rg(u) —rg(v)| < rg(u +v) <rg(u) +rg(v)
b) Trouver u et v dans £(R?) tels que

rg(u 4+ v) < rg(u) + rg(v)
¢) Trouver deux endomorphismes u et v de R? tels que

rg(u +v) = rg(u) + rg(v)

Exercice 61 [o0201 ] [correction]

Soient E, F' deux K-espaces vectoriels de dimensions finies et f,g € L(E, F).
Montrer

Imf NImg = {0}

rg(f +9) =1g(f) +rglg) < {kerf—i—kerg =K

Exercice 62 [00191] [correction]

Soient f et g deux endomorphismes de FE. Montrer que :
a) rg(f o g) < min(rg f,rg g).

b) rg(fog) > rgf+rgg — dimE.

Exercice 63 [ 02467 ] [correction)]
Soient f et g deux endomorphismes d’'un K-espace vectoriel E de dimension finie.
a) Montrer
rg(go f) =rgg < E=Imf +kerg
b) Montrer
rg(go f) = rgf < Imf Nkerg = {0}

Formule du rang

Exercice 64 [01665] [correction)]

Soit f un endomorphisme d’un K-espace vectoriel E de dimension finie.
Montrer que les assertions suivantes sont équivalentes :

(i) Imf et ker f supplémentaires dans E;

(ii) E =Imf + ker f;

(iii) Imf? = Imf;

(iv) ker f2? = ker f.

Exercice 65 [o01666] [correction)]
Soit E un K-espace vectoriel de dimension finie et f,g € L(E) tels que f + ¢
bijectif et g o f = 0. Montrer que

rgf +rgg =dim F

Exercice 66 [01663] [correction)]
Soient E un K-espace vectoriel de dimension finie n et f un endomorphisme de F.
Montrer I’équivalence

ker f =Imf < f2=0et n = 2rg(f)

Exercice 67 [03127] [correction]
Soient E un K-espace vectoriel de dimension n € N* et u un endomorphisme de F
vérifiant u? = 0.
Etablir
rgu + rgu2 <n
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Exercice 68 [01668] [correction]
Soient f,g € L(E) tels que

f+g=Idetrgf +rgg=dimFE

Montrer que f et g sont des projecteurs complémentaires.

Exercice 69 [ 00189 ] [correction]
Soient u,v € L(K™) tels que

u+v=1id et rg(u) +rg(v) <n

Montrer que u et v sont des projecteurs.

Exercice 70 [o1672] [correction]
[Images et noyaux itérés d’un endomorphisme]
Soient E' un K-espace vectoriel de dimension finie n > 1 et f un endomorphisme
de F.
Pour tout p € N, on pose I, = Imf? et N, = ker fP.
a) Montrer que (Ip),>0 est décroissante tandis que (Np)p>0 est croissante.
b) Montrer qu’il existe s € N tel que I;41 = I et N1 = No.
¢) Soit r le plus petit des entiers s ci-dessus considérés.
Montrer que
Vs>r, I, =1.et Ng= N,

d) Montrer que I, et N, sont supplémentaires dans E.

Exercice 71 [o0197] [correction]

[Images et noyaux itérés d’un endomorphisme]

Soit f un endomorphisme d’'un K-espace vectoriel £ de dimension finie n > 1.
Pour tout p € N, on pose

I, = Imf? et N, = ker fP

a) Montrer que les suites (I,)p>0 et (Np)p>0 sont respectivement décroissante et
croissante et que celles-ci sont simultanément stationnaires.
b) On note r le rang a partir duquel les deux suites sont stationnaires. Montrer

I,®N,=F

Exercice 72 [o01674] [correction]

Soient E un K-espace vectoriel de dimension finie et f, g € L(E).
Soit H un supplémentaire de ker f dans F.

On considere h : H — E la restriction de go f a H.

a) Montrer que

ker(go f) = ker h + ker f

b) Observer que
rgh > rgf — dimkerg

¢) En déduire que

dimker(g o f) < dimker g + dim ker f

Exercice 73 [o03421] [correction)]
Soient F, F,G, H des K-espaces vectoriels de dimensions finies et f € L(E, F),
g€ L(F,G), h € L(G, H) des applications linéaires. Montrer

rg(go f) +rg(hog) <rgg+rghogo f)

Exercice 74 [03639] [correction)]
Soient v € L(E, F) et v € L(F,G). Etablir

rgu + rgv — dim F' < rg(u o v) < min(rgu, rgv)

Exercice 75 [00195] [correction)]
Soient E un K-espace vectoriel de dimension finie et f,g € L(E).
Etablir que

dim (ker(g o f)) < dim (ker g) 4+ dim (ker f)

Exercice 76 [00194] [correction]
Soient f € L(FE) et F un sous-espace vectoriel de E. Montrer

dimker f N F > dim F —rgf
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Exercice 77 [00196] [correction]
On dit qu’'une suite d’applications linéaires

(8 p%E,%... "5 B, {0

est exacte si on a Imuy = ker ugy1 pour tout k € {0,...,n — 1}. Montrer que si
tous les Fj sont de dimension finie, on a la formule dite d’Euler-Poincaré :

n

> (-1)FdimE, =0

k=1

Exercice 78 [03156] [correction]
Soit u un endomorphisme d’un K-espace vectoriel £ de dimension finie.
Montrer

Vk, £ € N, dim (ker ukH) < dim (ker uk) + dim (ker ue)

Exercice 79 [ 02585 ] [correction]
Soient E un K-espace vectoriel de dimension finie n, f et g deux endomorphismes
de E.
a) En appliquant le théoréme du rang a la restriction h de f & 'image g, montrer
que

rgf +1gg —n <rg(fog)

b) Pour n = 3, trouver tous les endomorphismes de E tels que f? = 0.

Applications linéaires et espaces supplémentaires

Exercice 80 [o01664 ] [correction)]

Soient E un K-espace vectoriel de dimension finie et f € L(F) tel que
rg(f?) = rg(f).

a) Etablir Imf? = Imf et ker f2 = ker f.

b) Montrer que Imf et ker f sont supplémentaires dans E.

Exercice 81 [00223] [correction]
Soit f un endomorphisme d’'un K-espace vectoriel E de dimension finie vérifiant

rg(f?) = rgf

a) Etablir
Imf? = Imf et ker 2 = ker f

b) Montrer
ker f@Imf=F

Exercice 82 [o01667] [correction)]
Soit E un K-espace vectoriel de dimension finie n.
Soient u et v deux endomorphismes de E tels que

FE =Imu + Imv = keru + ker v

Etablir que d’une part, Imu et Imv, d’autre part ker u et ker v sont
supplémentaires dans E.

Exercice 83 [00224] [correction)]
Soient E un K-espace vectoriel de dimension finie et f,g € L(E).
On suppose

Imf +Img=ker f+kerg=F

Montrer que ces sommes sont directes.

Exercice 84 [00212] [correction]
Soit f un endomorphisme d’un K-espace vectoriel F vérifiant f3 = Id.
Montrer

ker(f —Id)®Im(f —1d) = FE

Exercice 85 [00214 ] [correction]
Soient f,g € L(F) tels que

gofog=/fet fogof=g

a) Montrer que ker f = ker g et Imf = Img.
On pose
F =kerf=kerget G=Imf =1Img

b) Montrer que
E=FaG
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Exercice 86 [00213] [correction]
Soient f,g € L(E) tels que

fogof=fetgofog=yg

Montrer que ker f et Img sont supplémentaires dans E.

Exercice 87 [00215] [correction]
Soient f,g € L(E) tels que

gofog=get fogof=f

a) Montrer que
Imf®kerg=F

b) Justifier que
f(Img) = Imf

Exercice 88 [00218] [correction]
Soient fi,..., f, des endomorphismes d'un K-espace vectoriel E vérifiant

fit ot fa=ldetVI<i#j<n, fiof;=0

a) Montrer que chaque f; est une projection vectorielle.
b) Montrer que & Imf; = E.
i=1

Exercice 89 [00219] [correction]
Soient E un C-espace vectoriel de dimension finie et py,..., p, des projecteurs de
E dont la somme vaut Idg. On note Fy, ..., F,, les images de p1,...,pm,. Montrer

E= & F,
k=1

Exercice 90 [o03241] [correction]
Soient E, F, G trois K-espaces vectoriels et u € L(E, F), v € L(F,G) et w =vou.
Montrer que w est un isomorphisme si, et seulement si, u est injective, v est
surjective et

Imu @ kerv = F

Applications linéaires définies sur une base

Exercice 91 [o1671] [correction)]

Soit F un K-espace vectoriel de dimension n € N.

Montrer qu’il existe un endomorphisme f tel que Imf = ker f si, et seulement si,
n est pair.

Exercice 92 [01653] [correction)]
Justifier qu’il existe une unique application linéaire de R? dans R? telle que :

f(1,0,0) = (0,1), f(1,1,0) = (1,0) et f(1,1,1) = (1,1)

Exprimer f(x,y,z) et déterminer noyau et image de f.

Exercice 93 [00173] [correction)]

Soient E un K-espace vectoriel de dimension finie n € N* et f un endomorphisme
de F tel qu’il existe un vecteur zg € E pour lequel la famille

(20, f(x0), ..., " 1(x0)) soit une base de E. On note

C={g9€L(E)/gof=[og}

a) Montrer que C est un sous-espace vectoriel de L(E).
b) Observer que

C={ald+arf+ - +an1f"""|ao,...,an_1 € K}

c¢) Déterminer la dimension de C.

Exercice 94 [o03s801] [correction]
Soit F un K-espace vectoriel de dimension n > 1 (avec K =R ou C)
Soit f un endomorphisme de E nilpotent d’ordre n.
On note
C(f)={9 € L(E)/go f=fog}
a) Montrer que C(f) est un sous-espace vectoriel de L(E).
b) Soit @ un vecteur de E tel que f"~1(a) # 0.
Montrer que la famille (a, f(a), ..., f*~*(a)) constitue une base de FE.
¢) Soit ¢, : C(f) — F application définie par ¢,(g) = g(a).
Montrer que ¢, est un isomorphisme.
d) En déduire que

C(f) = Vect(Id, f,..., f* 1)
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Exercice 95 [00192] [correction]

Soient F' et G deux sous-espaces vectoriels d'un K-espace vectoriel E de
dimension finie n.

Former une condition nécessaire et suffisante sur F' et G pour qu’il existe un
endomorphisme u de F tel que Imu = F et keru = G.

Exercice 96 [ 02379 ] [correction]
Soit f € L(RS) tel que rgf? = 3. Quels sont les rangs possibles pour f?

Formes linéaires en dimension finie

Exercice 97 [o01675 ] [correction]

Soit £ un K-espace vectoriel de dimension n € N* et ¢ une forme linéaire non
nulle sur E.

Montrer que pour tout u € E\ ker ¢, ker ¢ et Vect(u) sont supplémentaires dans
E.

Exercice 98 [01676 ] [correction]
Soient E un K-espace vectoriel de dimension n et (f1, fa,...
formes linéaires sur FE.

On suppose qu’il existe un vecteur = € F non nul tel que pour tout i € {1,...,n},
fi(z) =0.

Montrer que la famille (f1, fo, ...

, frn) une famille de

, fn) est libe dans E*.

Exercice 99 [o1679] [correction]
Soit f un endomorphisme de R? tel que f2 = 0.
Montrer qu’il existe a € R? et ¢ € (R3)* tels que pour tout z € R on a

f(2) = p(x).a.

Exercice 100 | 03131 ] [correction]
Soient ag,ai,...,a, € R deux & deux distincts. Montrer qu’il existe
(Xos - -+, An) € R unique vérifiant

VP € R, [X] ,/01 P(t)dt = i MeP(ax)
k=0

Exercice 101 [02685 ] [correction]
Soient ag,ai,...,a, des réels non nuls deux a deux distincts.
On note F; lapplication de R,, [X] dans R définie par

Fj(P)/OajP

Montrer que (Fo, F1, ..., F},) est une base de (R, [X])*.

Exercice 102 [o03140 ] [correction)]
Soit F un K-espace vectoriel de dimension finie n > 1. Montrer

Vo, y € E,x #y = dp € E*,0(z) # o(y)

Exercice 103 [ 00209 ] [correction]
Soient £ un K-espace vectoriel de dimension finie et f, g deux formes linéaires
non nulles sur E. Montrer

S € B, f(2)g(x) # 0

Exercice 104 [00206 ] [correction]
Soient f1,..., f, des formes linéaires sur un K-espace vectoriel E de dimension n.
On suppose qu'il existe € E non nul tel que

fil)=...= fu(z)=0

Montrer que la famille (f1,..., f,) est liée.

Exercice 105 [ 02684 ] [correction)]
Soit E et F' des espaces vectoriels sur K, de dimensions finies ou non. Montrer que
(E x F)* et E* x F* sont isomorphes.

Espaces d’applications linéaires

Exercice 106 [ 00179 ] [correction]
Soient E et F' deux K-espaces vectoriels de dimensions finies et G un sous-espace
vectoriel de . On pose

A={ue L(E,F)/G C keru}

a) Montrer que A est un sous-espace vectoriel de L(E, F).
b) Déterminer la dimension de A.
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Exercice 107 [00180 ] [correction]

Soit f un endomorphisme d’'un K-espace vectoriel E de dimension finie.
Montrer que I’ensemble des endomorphismes g de F tels que fog =0 est un
sous-espace vectoriel de L(FE) de dimension dim E x dim ker f.

Exercice 108 [ 03771 ] [correction]

Soient E et F' deux K-espaces vectoriels de dimensions finies.

Soit W un sous-espace vectoriel de

Soit A I’ensemble des applications linéaires de E' dans F' s’annulant sur W.
a) Montrer que A est un espace vectoriel.

b) Trouver la dimension de A.

Exercice 109 [ 00200 ] [correction]
Soient E un K-espace vectoriel de dimension finie n et F' un sous-espace vectoriel
de E de dimension p. On note

Ap={f € L(E)/Imf C F} et Bp ={f € L(E)/F C ker f}

a) Montrer que Ap et Br sont des sous-espaces vectoriels de L(E) et calculer
leurs dimensions.

b) Soient v un endomorphisme de L(E) et ¢ : L(E) — L(F) définie par

o(f) =wuo f. Montrer que ¢ est un endomorphisme de L(FE). Déterminer
dim ker ¢.

¢) Soit v € Img. Etablir que Imv C Imu. Réciproque ? Déterminer rgep.

Exercice 110 [00203] [correction]

Soient E et F' des K-espaces vectoriels de dimensions finies et f € L(F, E).
Exprimer la dimension de {g € L(E,F)/f ogo f =0} en fonction du rang de f et
des dimensions de E et F.

Endomorphismes opérant sur les polynémes
Exercice 111 [o2152] [correction]
Soit n € N* et A : K, 41 [X] — K, [X] 'application définie par

A(P) = P(X +1) - P(X)

a) Montrer que A est bien définie et que A est une application linéaire.
b) Déterminer le noyau de A.
¢) En déduire que cette application est surjective.

Exercice 112 [00163 ] [correction]

Soient n € N*, E =R, [X] et A 'endomorphisme de E déterminé par
A(P) = P(X +1) — P(X).

a) Justifier que 'endomorphisme A est nilpotent.

b) Déterminer des réels ag, ..., an, a,+1 non triviaux vérifiant :

n+1
VP € R, [X],) axP(X +k)=0
k=0

Exercice 113 [02153] [correction]
Soit A : C[X] — C[X] l'application définie par

A(P)=P(X+1)—P(X)
a) Montrer que A est un endomorphisme et que pour tout polynéme P non
constant deg (A(P)) = deg P — 1.

b) Déterminer ker A et ImA.
c) Soit P € C[X] et n € N. Montrer

k=

o

d) En déduire que si deg P < n alors

3 (Z) (—1)*P(k) =0

k=0

Exercice 114 [ 02154 ] [correction)]

Soit ¢ : K41 [X] = K, [X] définie par p(P) = (n+1)P — X P'.

a) Justifier que ¢ est bien définie et que c’est une application linéaire.
b) Déterminer le noyau de ¢.

¢) En déduire que ¢ est surjective.

Exercice 115 [02155 ] [correction]

a) Montrer que ¢ : R, [X] — R, [X] définie par p(P) = P(X) + P(X + 1) est
bijective.

On en déduit qu’il existe un unique P, € R, [X] tel que
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Montrer que pour tout n € N, il existe P,, € R,, [X] unique tel que

b) Justifier qu'on peut exprimer P, (X + 1) en fonction de Py, ..., P,.
¢) En calculant de deux facons P, (X + 2) + P, (X + 1) déterminer une relation
donnant P, en fonction de Py, ..., P,_1.

Exercice 116 [ 02156 ] [correction]
Soient A un polynéme non nul de R [X] et r : R[X] — R [X] lapplication définie
par :

VP € R[X], r(P) est le reste de la division euclidienne de P par A

Montrer que 7 est un endomorphisme de R [X] tel que 7> =ror =r.
Déterminer le noyau et 'image de cet endomorphisme.

Exercice 117 [03133] [correction]
Soient a,b € R distincts. Montrer qu’il existe un unique endomorphisme ¢ de
R [X] vérifiant

o(1) =1, p(X) = X et ¥YP € R[X], P(a) = P(b) =0 = ¢(P) =0

Exercice 118 [ 03046 ] [correction]
Soit P € R[X]. Montrer que la suite (P(n))nen vérifie une relation de récurrence
linéaire a coeflicients constants.

Exercice 119 [o00074 ] [correction]
Pour p € N et a € R\ {0,1}, on note S, I’ensemble des suites (u,) vérifiant

dP e R, [X],Vn € N, up41 = au,, + P(n)

a) Montrer que si u € Sy, P est unique; on le notera P,.

b) Montrer que S, est un R-espace vectoriel.

¢) Montrer que ¢, qui & u associe P,, est linéaire et donner une base de son noyau.
Que représente son image ?

d) Donner une base de S, (on pourra utiliser Ry,(X) = (X + 1)¥ — aX* pour

k€ [0.p]):

e) Application : déterminer la suite (u,,) définie par

ug = —2 et Upy1 = 2u, —2n+7

Isomorphisme induit

Exercice 120 [02909 ] [correction]

Soient E un espace vectoriel, F; et Fy deux sous-espaces vectoriels de F.
a) Montrer que si F3 et Fy ont un supplémentaire commun alors ils sont
isomorphes.

b) Montrer que la réciproque est fausse.

Exercice 121 [o00199 ] [correction]
Soit f € L(E) tel que f? =0 avec E un K-espace vectoriel de dimension finie
Montrer que

Jge L(E), fog+go f=1Idg & Imf = ker f

Exercice 122 [ 00503 ] [correction]
[Factorisation par un endomorphisme]
Soient E un K-espace vectoriel de dimension finie et f,g € L(E).
Montrer
Img C Imf < 3h € L(E),g= foh

Exercice 123 [00202 ] [correction]
[Factorisation par un endomorphisme]
Soient E un K-espace vectoriel de dimension finie et f, g € L(E). Montrer

ker f Ckerg< Jh € L(E),g=ho f

Exercice 124 [oo185 ] [correction]
Soient E un K-espace vectoriel de dimension finie et u,v € L(E).
Résoudre I'équation u o f = v d’inconnue f € L(E).

Diffusion autorisée a titre entiérement gratuit uniquement - dD



[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015

Corrections 13

Corrections

Exercice 1 : [énoncé]
a) oui b) non ¢) non d) oui

Exercice 2 : [énoncé]
Soient A\, € Ret @ = (z,y),7 = (z/,y') € R?

FONG + p@) = fOx + pa’, \y + py')
donne

(J;()«Z + p0) = (Az + pa') + Ay + py'), Az + pa') — Ay + py'))
onc

FOT+pd) = XNz +y,x —y) +p@ +y, 0" —y) = \f(T) + pnf(7)

De plus f : R? — R? donc f est un endomorphisme de R2.
Pour tout (z,y) € R? et tout (2/,7y') € R?

¥=x+y z= (2 +y)/2
{y’=w—y@{y=($’—y’)/2

Par suite, chaque (2/,y’) € R? posséde un unique antécédent par f :

(@ +9)/2,(=" = y)/2)

f est donc bijective.
Finalement f est un automorphisme de R? et

@ y) = (@ +y)/2, (@ = y')/2).

Exercice 3 : [énoncé]
Soient A\, u € Ret f,g € C([0,1],R),

1
TS +ng) = [ AF(0)+ ugle)
0
et par linéarité de l'intégrale

IOF+p5) = A [ f0dt+u [ gte)de =230 + TG0

De plus J : C([0,1],R) — R donc J est une forme linéaire sur C([0, 1], R).

Exercice 4 : [énoncé]
Soient A\, u € R et f,g € C°(R,R),

p(Af +ng) = (\f + p19)" = 3\f + 1g)' +2(\f + ng)
puis
(Mf +pg) = Mf" =3 +2f) + u(g" — 39" +29)
donc
eAS + pg) = 2p(f) + pee(9)
De plus ¢ : C*(R,R) — C*(R,R) donc ¢ est un endomorphisme C*(R,R).

fekerpe f"—3f +2f=0

C’est une équation différentielle linéaire d’ordre 2 a coefficients constants
d’équation caractéristique r? — 3r 4+ 2 = 0 de racines 1 et 2. La solution générale

est
f(z) = C1e” 4 Ce*®

Par suite
kerap = {CleI + 026293/01, Cy € R}

Exercice 5 : [énoncé]
a) Soient A\, p € Ket f,g € F(X, E),

Eo(\f + ng) = (\f + pg)(a) = Mf(a) + pg(a) = NE(f) + pEa(g)

Par suite F, est une application linéaire.

b) f€kerE, < f(a) =0.kerE, = {f € F(X,FE)/f(a) = 0}.

ImE, C E et VZ € E, en considérant f : X — FE la fonction constante égale a Z,
on a E,(f) = Z. Par suite & € ImE, et donc E C ImFE,. Par double inclusion
ImE, = E.

Exercice 6 : [énoncé]
a) Soient \,u € Ret f,g € E,

O +pg) = (M +pg) =X+ ng" = re(f) + up(g)

et

Vo € R, Y\ f+ug)(a) = / M) + pg(t)de = X / " f(t)dip / " g(t)dt = (W) iy
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donc

VAS+ pg) = M0(f) + u(g)
Deplus p: E— E et ¢p: E— E donc ¢ et ¥ sont des endomorphismes de F.
b) On a

ViEE, (potp)=((f) =f

car ¥ (f) est la primitive de f qui s’annule en 0. Ainsi
poy =Idp

Aussi

V€ B, Vo R, (40 0)(f)(x) = / P dt = f@) - £(0)

¢) p o1 est bijective donc ¢ est surjective et ¢ injective.

@ est surjective donc Imyp = E. ker ¢ est formé des fonctions constantes.
1) est injective donc kery) = {6} Im1) est I'espace des fonctions de F qui
s’annulent en 0.

Exercice 7 : [énoncé]
Soient A, p € Ket F,G € K(X). On peut écrire

F =Ent(F) + F et G =Ent(G) + G
avec deg F',deg G < 0.
Puisque ) .
AF 4+ uG = MAEnt(F) + pEnt(G) + AF + uG

avec deg()\ﬁ’ + ,ué) <0Oona
Ent(AF + pG) = AEnt(F) + pEnt(G)
Ainsi Ent est linéaire.

kerEnt = {F € K(X)/deg F' < 0}

Exercice 8 : [énoncé]

f(VectA) est un sous-espace vectoriel de F' et A C VectA donc f(A) C f(VectA).
Par suite Vectf(A) C f(VectA).

Inversement, f~*(Vectf(A)) est un sous-espace vectoriel de E qui contient A donc
A C f1(Vectf(A)) puis f(A) C f(f~ (Vectf(A))) C Vectf(A).

Par double inclusion 1’égalité.

Exercice 9 : [énoncé]

(=) Supposons f(A) C f(B).

Soit & € A+ ker f. On peut écrire ¥ = © + v avec & € A et U € ker f.

f(@) = f(u) € f(A) C f(B) donc il existe w € B tel que f(Z) = f(w).

On a alors & = W + (& — W) avec W € B et & — W € ker f. Ainsi ¥ € B + ker f.
(«=) Supposons A + ker f C B + ker f.

Soit j € f(A). l existe T € A tel que = f(Z). Or T € AC A+ker f C B+kerf
donc on peut écrire & =4 + U avec & € B et ¥ € ker f. On a alors

y=[@) = [fa@)e f(B)

Exercice 10 : [énoncé]
a) u~(u(F)) est un sous-espace vectoriel de E qui contient F' et ker u donc

F+keru Cu ' (u(F))

Inversement, soit z € =1 (u(F)). On a u(z) € u(F) donc il existe a € F tel que
u(z) = u(a) et alors pour b=z —aonax=a+baveca € F et b€ keru. Ainsi

u t(u(F)) = F + keru
b) u(u~1(F)) est un sous-espace vectoriel de E inclus dans F et dans Imu donc
u(u™'(F)) C FNiImu

Inversement, soit € F N Imu. Il existe a € E tel que x = u(a). Or, puisque
r€F,acu(F)etdoncx=u(a) €u(ut(F)). Ainsi

u(u™(F)) = FNImu
¢) On a u(u=(F)) = u=(u(F)) si, et seulement si,
F +keru=FNlImu
Si cette condition est vérifiée alors
FCcF+keru=FNImuCF

et donc
F=F+keru=FNImu

ce qui entraine

keru C F et F C Imu

Inversement, si ces conditions sont vérifiées, on a immédiatement
F+keru=F = FNImu.

Finalement u(u~!(F)) = u~(u(F)) si, et seulement si, F est inclus dans I'image
d’un endomorphisme injectif.
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Exercice 11 : [énoncé]
Les inclusions suivantes sont toujours vraies

F cCh ' (h(F)) et h(h " Y(F))C F
Si h=Y(h(F)) = h(h~1(F)) alors
=Y W(F))=Feth(h " '(F))=F

Les inclusions h™1(h(F)) C F et F C h(h~™
kerh C F et F' C Imh.
Inversement, supposons

L(F)) entrainent respectivement

kerh C F' C Imh

Pour # € h=1(h(F)), il existe a € F tel que h(x) =
x—a€kerhCFetdoncer=a+ (r—a)€ F. Ainsi h™
h=Y(h(F))=F

Aussi pour y € F' C Imh, il existe a € E tel que y = h(a) et puisque y € F,
a € h=1(F). Ainsi F C h(h™Y(F)) puis F = h(h=(F)).

Finalement

h(a). On a alors
L(h(F)) C F puis

Exercice 12 : [énoncé]

a) Siy € f(> E;) alors on peut écrire y = f(x1 + -+ x,) avec x; € E;. On alors
i=1
y=flz)+-

Siye i:lf(E

+ flra) avee f(w:) € (B et ainsi f(3 o) 3 F(E)

;) alors on peut écrire y = f(z1) + -+ f(zn) avec z; € E;. On a

“+x, € ZE donc f(ZE)D anlf(El)

alors y = f(x) avec x = 21 + -
=1 =
-+ x,) =0 donc

b) Si f(x1)+ -+ f(x,) =0 avec z; € E alors f(x1 —|—
x1+ -+ x, =0 car f injective puis 1 = ... =z, = 0 car les E; sont en somme

directe et enfin f(z1) =...= f(z,) = 0. Ainsi les f(E;) sont en somme directe.
P
c) Soit z € Y f7H(F
j=1

). On peut écrire x = x1 + - - - + x;, avec f(x;) € F; donc

F@) = flar) +-+ flw,) € épj. Ainsi éf*l(fy) c f*l(é Fy).

On obtient une inclusion stricte en prenant par exemple pour f une projection sur
une droite D et en prenant F, F5 deux droites distinctes de D et vérifiant

D C Fy + Fs.

f =0o0u f =1d sont des conditions suffisantes faciles. ..

Plus finement, supposons chaque Fj inclus dans Imf (et p > 1)
P
(> Fj), on peut écrire f(z) =y; + -
j=1

F; C Imf donc il existe z; € E vérifiant f(x;) = y;. Evidemment xj € fUEF).
Considérons alors 2] =« — (za+--- +xp), on a f(:nl) = y1 donc 7} € f7H(F}) et

weér( ). Ainsi f (ZF)CZf '(F

Pour z € f~ +yp avec y; € Fj. Or

x=a)+aa+--- ) puis

I’égalité.

Exercice 13 : [énoncé]

a) Si « = Og alors n’importe quel \, convient..

Sinon, la famille (z, f(z)) étant liée, il existe (A, p) # (0,0) tel que

Az + pf(x) =0g.

Si =0 alors Az = 0g, or  # 0 donc A = 0 ce qui est exclu car (A, 1) # (0,0).
Il reste 1 # 0 et on peut alors écrire f(x) = A\ avec A, = —\/p.

b) Cas (z,y) liée : on peut écrire y = px avec u # 0 (car x,y # O0g).

D’une part f(y) = A\yy = pAyx. D’autre part f(y) = f(uz) = pf(z) = prz.
Sachant 1 # 0 et x # Og, on conclut : Ay = Ay.

Cas (x,y) libre :
D’une part f(z +y) = Ap1y(z +y), d’autre part
f@+y) = f@)+ fy) = Aaw + Ayy.

Ainsi Agyy(z+y) = Az + Ayy.

Par liberté de la famille (z,y), on peut identifier les coefficients et on obtient
Az = gy = Aye

c¢) L’application x — A, est constante sur E\ {Og}. Notons A la valeur de cette
constante.

On a Vx € E\{0g}, f(x)
donc f = AId.

= Az, de plus cette identité vaut aussi pour z = 0g et

Exercice 14 : [énoncé]

Pour tout z non nul, la liaison de la famille (z, f(z)) permet d’écrire f(z) = A,z
avec A; € K unique.

Soient x,y non nuls.

Cas (x,y) liée :

On peut écrire y = px et alors

Of(y) = przz = Ny et f(y) = Ayy

donc Ay, = A;.
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Cas (z,y) libre :
f@+y) = Aoy (z+y) = Aoz + Ayy

donc A, = Ay par identification des scalaires facteurs dans une famille libre.
On pose A la valeur commune des A\;. On a donc

Ve € E\{0g}, f(z) = Az

et cette relation vaut aussi pour £ = Og. On peut alors conclure f = AId.

Exercice 15 : [énoncé]
Soient x,y € F\ ker f.
Si la famille (f(z), f(y)) est libre alors les deux égalités

9T +y) = Aoty (f () + f(y)) et gz +y) = Aaf(2) + Ay f(y)

entrainent A\, = A, par identification des coeflicients.
Si la famille (f(z), f(y)) est liée avec alors on peut écrire

fly) = af(x) avec a # 0

et donc y — ax € ker f. Or il est immédiat d’observer que le noyau de f est inclus
dans celui de g et donc

9(y) = ag(x)
De plus
ag(z) = aX; f(z) et g(y) = ar, f(z)

donc & nouveau Ay = Ay
Posons A la valeur commune des scalaires A\, pour x parcourant E\ ker f.
Pour tout = € E, qu’il soit dans ker f ou non, on peut affirmer

9(x) = Af(x)
et donc g = \f.

Exercice 16 : [énoncé]

Si Imf C ker g alors pour tout « € E, f(z) € Imf C ker g donc g(f(z)) = Og.
Ainsi go f = 0.

Si go f =0 alors pour tout x € E, g(f(x)) = 0g donc f(z) € ker g. Ainsi

Ve € E, f(x) € kerg

donc Imf C kerg.

Exercice 17 : [énoncé]

a) Soit x € ker f Nkerg on (f + g)(z) = f(x) + g(z) = 0p. Ainsi

ker f Nkerg C ker f + g.

b) Soit y € Im(f +g). N existe z € E, y = (f + 9)(z) = f(z) + g(x) € Imf + Img.
Ainsi Imf + g C Imf + Img.

¢) Soit = € ker f, f%(z) = f(f(z)) = f(0g) = 0 donc x € ker f2. Ainsi

ker f C ker f2.

d) Soit y € Imf2. Il existe x € E, y = f2(z) = f(f(x)) = f(@) avec @ = f(x) donc
y € Imf. Ainsi Imf? C Imf.

Exercice 18 : [énoncé]

a) (=) Supposons Imf Nker f = {0g}.

L’inclusion ker f C ker f2 est toujours vraie indépendamment de ’hypothése.
Soit = € ker f2, on a f2(x) = f(f(z)) = 0g donc f(x) € ker f.

De plus f(x) € Imf or par hypothése Imf Nker f = {Og} donc f(z) = O puis
x € ker f. Ainsi ker f2 C ker f puis 1’égalité.

(<) Supposons ker f = ker f2.

Soit y € Imf Nker f. On peut écrire y = f(z) avec x € E. Or f(y) = 0 donc
f?(x) = 0g. Ainsi o € ker f? = ker f et par suite y = f(2) = Op. Finalement
Imf Nker f ={0g}.

b) (=) Supposons E =Imf + ker f.

L’inclusion Imf? C Imf est vraie indépendamment de I’hypothése.

Soit y € Imf. Il existe x € F tel que y = f(z). Or on peut écrire x = u + v avec
u € Imf et v € ker f.

Puisque u € Imf, on peut écrire u = f(a) avec a € E. On a alors
y=f(f(a)+v) = f%(a) + f(v) = f%(a) € Imf?. Ainsi Imf C Imf? puis I'égalité.
(<) Supposons Imf = Imf2. L’inclusion Imf + ker f C E est toujours vraie.
Inversement, soit z € E. f(z) € Imf = Imf? donc il existe a € E tel que

F(z) = 2(a).

Posons u = f(a) et v =2z — u.

Clairement x = u + v, u € Imf. De plus f(v) = f(z) — f(u) = f(z) — f?(a) =0
donc v € ker f.

Finalement F = Imf + ker f.

Exercice 19 : [énoncé]

a) Posons g = $(3ld — f) € L(E). Ona fog=3f— 1f?=1d et de méme

go f =1d donc f est un automorphisme et f~! = g.

b) En tant que noyaux d’applications linéaires, ker(f — Id) et ker(f — 2Id) sont
des sous-espaces vectoriels de FE.
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Soit € ker(f —Id) Nker(f —2Id). On a f(z) = z et f(z) = 22 donc z = Og. Ainsi
ker(f —Id) Nker(f — 2Id) = {0g}

Soit x € E. Posons u = 2z — f(z) et v = f(x) — x.
Onau+v=uz, f(u)=2f(z) — f*(z) = 2o — f(x) = u donc u € ker(f —1d) et
f(w) = f?(z) — f(x) = 2f(x) — 2o = 2v donc v € ker(f — 2Id). Ainsi

E = ker(f — 1d) + ker(f — 2Id)

Finalement, ker(f — Id) et ker(f — 2Id) sont des sous-espaces vectoriels
supplémentaires de F.

Exercice 20 : [énoncé]

a) Soit ¢ € ker h. On go h(x) =0 donc x € ker f. Ainsi ker h C ker f.

De méme ker f C ker g et ker g C ker h d’ou 1’égalité des noyaux.

Soit y € Imh, il existe € E tel que h(x) = y. Mais alors f(g(x)) =y donc

y € Imf.

Ainsi Imh C Imf et de méme Imf C Img et Img C Imh d’ou I’égalité des images.
b) On remarque

f2=(goh)of=go(hof) =g’
et
fP=folgoh)=(fog)oh=h’

On a alors
f=goh=go(fog)=go(goh)o(hof)=g*ch’of=f°

¢) Si z € Imf Nker f alors il existe a € E tel que z = f(a) et on a f(z) =0. On a
donc

@ = f(a) = f*(a) = fH(z) =0

Ainsi

Imf Nker f = {0}
Par une éventuelle analyse-syntheése, on remarque que pour tout € F, on peut
écrire

z = fiz) + (z - f(2))
avec
fHz) € Imf et 2 — f4(z) € ker f

Ainsi

Imf+kerf=F

Finalement les espaces Im fet ker f sont supplémentaires dans E.

Exercice 21 : [énoncé]

On a toujours ker f C ker(g o f).

Inversement, pour x € ker(go f), ona go f(x) =0 donc fogo f(z) = f(0) =0.
Or fog=1d donc f(z) =0.

Ainsi ker(g o f) C ker f puis ker(go f) = ker f.

On a toujours Im(g o f) C Img.

Inversement, pour y € Imyg, il existe 2 € E tel que y = g(x) et alors
y=gofog(x)=(g0/)(g9(x)) €Im(go f).

Ainsi Img C Im(g o f) puis Im(g o f) = Img

Soit € ker f NImg. Il existe a € E tel que z = g(a) et alors f(z) = 0 donne
f(g(a)) =0dott a =0 car fog=1Id. On en déduit = = g(a) = 0 et donc
ker f N Img = {0}.

Soit # € E. On peut écrire z = (z — g(f(z))) + g(f(x)) avec g(f(z)) € Img et
x —g(f(z)) € ker f car

fle—g(f(@)) = f(@) = (feg)(f(z)) = f(x) = f(z) =0

Ainsi F = ker f + Img et finalement ker f et Img sont supplémentaires dans F.

Exercice 22 : [énoncé]

a) Evidemment ker f C ker(go f) et Im(go f) C Img.

Pour = € ker(go f), on a f(z) = f(g(f(x)) = f(0) = 0 donc = € ker f.
Pour y € Imyg, il existe = € E tel que y = g(x) et alors

y = 9(/(9(x)) = g(f(a)) € (g f).

b) Si z € ker f N Img alors on peut écrire x = g(a) et puisque f(z) =0,
a= f(g(a)) =0 donc z = 0.

Pour z € E, on peut écrire x = (x — g(f(z)) + g(f(x)) avec © — g(f(z)) € ker f et
9(f(z)) € Img.

c) Si f est inversible alors f o g = Id entraine g = f~1.

Cette condition suffisante est aussi évidemment nécessaire.

d) (gof)o(gof)=go(fog)of=gofetdoncgo f est un projecteur.

Exercice 23 : [énoncé]
a) Soit € Imf Nkerg.
Il existe a € E tel que = f(a) donc

z=fla)=(fogof)la)=(fog)(z)=0

Soit x € E.
Analyse :
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Supposons x = u + v avec u = f(a) € Imf et v € ker g.

g(x) = g o f(a) done (f 0 g)(2) = f(a) = u.

Synthese :

Posons u = (fog)(z) et v=1o—u.

Onauwelmf,z=u+wvet glv)=g(x)—g(u)=0ie. v € kerg.
b) On a immédiatement f(Img) C Imf.

Inversement, pour y € Imf, on peut écrire y = f(x) avec x € E.
Par symétrie, on a E = Img @ ker f et on peut écrire

z=g(a)+uavec a € E et u € ker f

On a alors y = f(g(a)) € f(Img) et I'on obtient U'inclusion Imf C f(Img).

Exercice 24 : [énoncé]

d=Id— f*={d— f)(Id+ f + -+ f*71) et aussi

d=Id+ f+-+ M HId - f).

Par suite Id — f est inversible et (Id — f)~' =Id+ f +--- + f*~ L

Exercice 25 : [énoncé]
Soient f € L(E) et t =t, ouu € E. Soit x € E

(fot)(x) = (to f)z) & f(x)+ f(u) = f(z) +u e flu) =u

Une translation est un endomorphisme commutent si, et seulement si, le vecteur
de translation est invariant par ’endomorphisme.

Exercice 26 : [énoncé]

Posons H = F N GL(E)

On a immédiatement H C GL(F), Idg € H et Yu,v € Hyuov € H.
Montrer que H est stable par passage a l'inverse.

Soit w € H. Considérons l'application ¢ : F' — F définie par

p(v) =uowv

L’application ¢ est évidemment linéaire et puisque u est inversible, cette
application est injective. Or F' est un K-espace vectoriel de dimension finie (car
sous-espace vectoriel de L(F), lui-méme de dimension finie) donc ¢ est un
automorphisme de F'. Par suite 'application ¢ est surjective et puisque Idg € F,
il existe v € F tel que

uov =1Idg

On en déduit u=! =v € F et donc u~! € H.

Exercice 27 : [énoncé]

a) (Id — p)? =1d — 2p + p? donc (Id — p)? = (Id — p) & p = p°.

b) po (Id — p) = 0 donc Im(Id — p) C ker p.

Inversement, soit « € kerp, on a (Id — p)(z) = 2 — p(x) =  donc = € Im(Id — p).
Ainsi kerp C Im(Id — p).

Finalement ker p = Im(Id — p) et de méme ker(Id — p) = Imp.

Exercice 28 : [énoncé]

(i)=(ii) Supposons (i)
p*=pogqop=pog=petg*=qgopog=gqop=qdoncp et qsont des
projecteurs.

Soit x € kerp. On a g(z) = q(p(x)) = 0g donc = € ker ¢q. Ainsi ker p C ker gq. Par
symétrie 1’égalité.

(ii)=(i) Supposons (ii)

Soit x € E. On peut écrire z = u + v avec u € Imgq et v € ker ¢ = ker p.
D’une part (po q)(z) = p(q(w)) + p(0g) = p(u) et d’autre part

p(z) = p(u) + p(v) = p(uw).

Ainsi pog = p et de méme gop =gq.

Exercice 29 : [énoncé]
(poq)?=pogopoq=p?oq®=pogqdonc poq est un projecteur.
Soit « € ker p + ker g, il existe (u,v) € kerp X ker g tels que = u + v et alors

(pogq)(z) = (pogq)(u)+(poq)(v) =(gop)(u) + (poq)(v) =0g

donc x € kerpog.
Ainsi
kerp+ kerq C kerpogq

Inversement, soit x € kerp o ¢q. On peut écrire £ = u + v avec u € kerp et v € Imp.

(poq)(x) = (gop)(x) = q(v) =0g

donc v € ker q. Par suite x € kerp + kergq.
Par double inclusion
kerp o g = ker p + ker g

Soit y € Imp o ¢, il existe € E tel que y = (po¢)(z). On a y = p(q(z)) € Imp et
y = q(p(x)) € Imq donc y € Imp N Imgq. Ainsi Imp o ¢ C Imp N Img.

Inversement, soit y € Imp N Img. Il existe x € E,y = q(z) et

y=p(y) = (pog)(z) € Impog.

Ainsi Imp N Img C Imp o ¢ puis I'égalité.
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Exercice 30 : [énoncé]

a) F et G sont des sous-espaces vectoriels car noyaux d’endomorphismes.
Soit £ € FNG. On a s(T) = ¥ et s(¥) = —& donc & = 0. Ainsi F'NG = {0}.
Soit ¥ € E. Posons @ = 3(Z + (%)) et ¥ = (7 — s(7)).

Ona #=u+7, s() =4 donc @ € F et s(¢¥) = —v donc ¥ € G.

Ainsi F+ G = E. F et G sont donc supplémentaires dans E.

b) vZ € E, (4, ?7) € F x G tel que & =4 + 7.

On a s(Z) = s(@) + s(¥) = 4 — U donc z est la symétrie par rapport & F
parallelement a G.

¢) F et G sont des sous-espaces vectoriels car noyaux d’endomorphismes.
Soit Z € FNG. On a f(Z) = et f(&¥) = aZ donc & = 0. Ainsi F NG = {7}.
Soit Z € E. Posons @ = 1 (f(Z) — o) et T = (& — f(Z)).
OnaZ=u+7, f(d) =d donc 4 € F et f(¥) = v donc ¥ € G.

Ainsi F + G = E. F et G sont donc supplémentaires dans E.

d)VZ e E, (4, ¥) € F x G tel que & = 4 + 7.

On a f(Z) = f(@) + f(¥) = @+ a¥ donc f est affinité par rapport a F'
parallelement & G et de rapport a.

Exercice 31 : [énoncé]

Soit Z € ker(f —Id) Nker(f —3Id). On a f(&) =Z e

Soit # € E. Posons @ = 3 (3% — f(&)) et ¥ = 1 (f(Z) — ).

OnaZ =4+ 0 avec @ € ker(f —Id) et ¥ € ker(f — 3Id) apres calculs.

f est Paffinité vectorielle par rapport a F' = ker(f — Id), parallelement &
G = ker(f — 31d) et de rapport 3.

t f(Z) = 3% donc & = 4.

Exercice 32 : [énoncé]

¢ :u— uop est un endomorphisme de £L(FE) donc L = Imy est un sous-espace
vectoriel de L(E).

1 v+ voq est un endomorphisme de £(E) donc M = Im1) est un sous-espace
vectoriel de L(E).

Soit f € LN M. Il existe u,v € L(E) tels que f =uop=wogq.

Ona fop=uop?=uop=fet fop=vogop=0cargop=0donc f=0.
Ainsi LN M = {0}.

Soit f€ L(E).Ona f=fold=fo(p+q)=fop+ foqge L+ M. Ainsi
L(E)=L+ M.

Finalement L et M sont supplémentaires dans L(E).

Exercice 33 : [énoncé]
a) Supposons kerp = kerg. On a

poq—p=po(q—1d)

Or Im(q — Id) = ker ¢ donc Im(q — Id) C kerp puis

poqg—p=0
Ainsi po g = p et de méme on obtient gop = gq.
Inversement, si poq=p et go p = q alors ker g C kerp et kerp C ker g d’ou
I’égalité ker p = ker q.
b) Supposons Imp = Img. On a ker(p — Id) = Imq donc (p — Id) o ¢ = 0 d’ou
poq=q. Et de fagon semblable, go p = p.
Inversement, 1’égalité p o ¢ = ¢ entraine Imqg C Imp et ’égalité q o p = p entraine
Imp C Img. Ainsi, la condition nécessaire et suffisante cherchée est

pog=gqetgop=p

Exercice 34 : [énoncé]
a) Calculons

r*=(p+q—qop)’=(p+q—qop)o(p+q—qop)
En développant et en exploitant p o ¢ = 0 on obtient,
r*=p’+qop+q®—q*op—qop’

En exploitant p? = p et ¢° = ¢, on parvient & r? = r donc 7 est un projecteur.
b) Pour tout z € E,

r(z) = p(z) + q(z — p(z)) € Imp + Img

donc
Imr C Imp + Img

Inversement, si € Imp + Imgq, on peut écrire x = a + b avec a € Imp et b € Img.
Puisque po g =0, on a p(b) = 0 et puisque a € Imp, on a p(a) = a.
Ainsi p(z) = a et donc b= —a =z — p(x).
Or b € Img donc b = ¢(b) puis b = q(x — p(z)) = q(z) — q(p(x)).
Finalement x = a + b = p(z) + ¢(z) — ¢(p(z)) = r(z) et donc z € Imr.
Ainsi

Imr = Imp + Imgq
Soit « € kerp Nkergq, on a r(z) = p(z) + g(x) — q(p(x)) = 0 donc x € kerr.
Inversement, soit = € kerr.
On a p(z) +¢(z —p(x)) = 0 donc p(z) = p(p(x)) = p(q(x —p(z))) = 0 car pog = 0.
Ainsi x € kerp. De plus p(x) + ¢(x — p(x)) = 0 sachant p(z) = 0 donne g(z) =0 et
donc x € kerg.
Finalement kerr C ker p N ker ¢ puis

kerr = kerp Nkergq
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Exercice 35 : [énoncé]
a) (<) Supposons pog=gop=_0. On a alors

(p+q)?=p"+pog+gop+a®=p+qg
(=) Supposons p + ¢ projecteur. Par les mémes calculs que ci-dessus
poq+qop=0
En composant cette relation avec p a droite et a gauche, on obtient
poqop—&—qop:()etpoq—f—poqop:()

On en déduit gop =poq puis pog=qop=0.
b) On a évidemment
Im(p 4 ¢) C Imp + Img

Inversement, pour z € Imp + Imq, on a © = a + b avec a € Imp et b € Img.
Puisque po ¢ =0, p(b) = 0 et donc p(x) = p(a) = a. De méme ¢(z) = b et donc
z = p(z) + q(r) € Im(p + q).
Ainsi

Im(p + q) = Imp + Imgqg

On a évidemment
ker p Nker g C ker(p + q)

Inversement pour = € ker(p + ¢), on a p(z) + q(x) = 0 donc p*(z) + p(q(z)) =0
puis p(z) = 0 car p> = p et poq = 0. Ainsi z € kerp et de méme x € kerq.
Finalement

ker p Nker ¢ = ker(p + q)

Exercice 36 : [énoncé]
a) Si x € kerp alors p(u(zx))
u(kerp) C Imp.

= u(z) + u(p(x)) = u(zr) donc u(z) € Imp. Ainsi

Si z € Imp alors p(z) = x donc u(z) = p(u(x)) — u(p(x)) = p(u(z)) — u(z) d’ou
2u(x) = p(u(x)). Par suite u(x) € Imp donc p(u(x)) = u(x) et enfin la relation
précédente donne u(z) = 0. Ainsi = € ker u.

b) Pour z € E, u(z) = u(p(z)) + u(x — p(x)).

Or u(p(z)) =0 car Imp C keru et u(x — p(x)) € u(ker p) C Imp C keru donc
u?(x) = 0.

¢) Supposons u? = 0. On a Imu C ker u. Soit p une projection sur Imu. On a
powu = u car les vecteurs de Imu sont invariants par p et on a uop =0 car

Imp = Imu C kerw. Ainsi, il existe une projection p pour laquelle u = pou — u o p.

La réciproque est vraie.

Exercice 37 : [énoncé]

pop=po(qop) = (poq)op=gqop = p et donc p est un projecteur. De méme q est
un projecteur et donc p et g sont diagonalisables. Si p et ¢ sont codiagonalisables
alors p et ¢ commutent et donc p = gop = p o ¢ = q. Réciproque immédiate.

Exercice 38 : [énoncé]
a) (Wou)> =voldrou=wvowudoncvou est un projecteur.
b) Le rang d’un projecteur est égal a sa trace donc

rg(vou) =tr(vou) =tr(uov) =tr(Idp) =p
On a

= dim Imv

Im(vowu) C Imv et dimIm(vou) =rg(vou)=rp>rg(v)

On en déduit
Im(v ou) = Imv

On a

keru C ker(vowu) et dimkeru=n—rgu >n—p=n—rg(vowu)=dimker(vou)

donc
ker(vou) =keru

Exercice 39 : [énoncé]
Si f est un projecteur alors f est la projection sur Imf parallelement a ker f
tandis que Id — f est la projection complémentaire sur ker f parallelement a Imf.
On en déduit

rgf +rg(ld — f) =rgf + dimker f =n

en vertu de la formule du rang.
Inversement, supposons

rgf +rg(ld— f)=n
Posons F = Imf et G = Im(Id — f).
Pour tout z € E, on a

v = f(2)+ (@~ f(x) € F+G

donc F C F+ G puis E=F +G.

Ordim F +dimG =rgf +rg(ld— f) =dimE donc E=F & G et la
décomposition d’un vecteur x en la somme de f(x) € F et de z — f(z) € G est
unique. Puisque f apparalt comme associant a x le vecteur de F' dans sa
décomposition en somme d’un vecteur de F' et de GG, on peut affirmer que f est la
projection du F' parallelement a G.
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Exercice 40 : [énoncé]
Puisque Imp C kerq, on a g o p = 0 et en développant puis en simplifiant

(p+q—pog’=p+qg—pogq

On peut donc conclure que 7 = p + ¢ — p o g est un projecteur.
Montrons
Imr = Imp + Imgq

L’inclusion C est immédiate car
Vo € E,r(z) = p(z —q(2)) + q(2)

Inversement, soit € Imp + Img. On peut écrire = p(a) + ¢q(b) avec a,b € E. On
a alors par le calcul

r(z) = r(p(a)) +r(q(b)) = p(a) + ¢(b) = =

et ainsi x € Imr.
Montrons aussi
ker r = ker p Nker q

L’inclusion D est immédiate. Inversement, pour = € kerr on a
p(x) +q(x) —poq(z) =0p

En appliquant ¢, on obtient g(z) = 0 puis on en déduit aussi p(z) = Og et ainsi
x € kerpNkergq.

Exercice 41 : [énoncé]

a) Evidemment ker f C ker(g o f) et Im(g o f) C Img.

Pour = € ker(go f), on a f(z) = f(g(f(x)) = f(0) =0 donc x € ker f.
Pour y € Imyg, il existe = € E tel que y = g(x) et alors

y =g(f(9(x)) = g(f(a)) € Im(g o f).

b) Si 2 € ker f N Img alors on peut écrire = = g(a) et puisque f(z) =0,

a = f(g(a)) =0 donc z = 0.

Pour = € E, on peut écrire x = (z — g(f(x))) + g(f(z)) avec x — g(f(z)) € ker f et
9(f(z)) € Img.

c) Si f est inversible alors f o g = Id entraine g = f~1.

Cette condition suffisante est aussi évidemment nécessaire.

d) (gof)o(gof)=go(fog)of=gofetdoncgo f est un projecteur.

Exercice 42 : [énoncé]
Puisque a ¢ H, on vérifie aisément

Vect(a) N H = {0g}

Soit ¢ une forme linéaire non nulle telle que H = ker ¢.
Pour tout « € F, on peut écrire

x = (z — Aa) + da avec A = p(z)/p(a)
Puisque ¢(x — Aa) =0, on a x — Aa € H et puisque Aa € Vect(a), on obtient

E = H + Vect(a)

Exercice 43 : [énoncé]

Bien entendu H N D = {0} mais ici aucun argument de dimension ne permet de
conclure directement.

Soit ¢ une forme linéaire dont H est le noyau et u un vecteur non nul de D.

Il est clair que p(u) # 0 et alors pour tout « € E, on peut écrire

x = (x — Au) + du avec A = p(z)/p(u)
On a alors  — A € H car o(x — Au) =0 et A\u € D donc E=H + D.

Exercice 44 : [énoncé]
Si F' # H alors il existe a € F tel que a ¢ H.
On a alors
H @ Vect(a) = E

et puisque H C F et Vect(a) C F, on peut conclure E = F

Exercice 45 : [énoncé]

Si f =0 : ok. Sinon, on introduit @ ¢ ker f de sorte que Vect et ker f soient
supplémentaires puis on introduit a de sorte que f(@) = ag(@) avant de conclure
via h = f — ag s’annule sur ker f et u.

Exercice 46 : [énoncé]

Par contraposée : si e n’est pas une base de E alors Vect(eq, . .
Soit H un hyperplan tel que Vect(eq, ..
nulle de noyau H.

Ona f(er) =...= f(en) =0 mais f #0.

., en) # E.

.,en) C H et f une forme linéaire non
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Exercice 47 : [énoncé] Exercice 50 : [énoncé]
SiV ={0}: ok On a
Sinon, soit (e, ..., e,) une base de V. fo(f+g)=1d

f(V) = f(Vect(es,...,ep)) = Vect(f(e1),..., flep))-

Donc f(V) est un sous-espace vectoriel de E de dimension inférieure & p. Or
V C f(V) donc dim f(V) > p et par suite dim f(V') = p. Par inclusion et égalité
des dimensions : f(V)=V.

donc, par le théoréeme d’isomorphisme, f + g est inversible et

frg=r"
On en déduit (f + g) o f = Id qui donne

Exercice 48 : [énoncé] fog=gof
Par définition

rg(f(z1),..., f(zp)) = dim Vect(f(z1), ..., f(zp)) = dim f(Vect(z1,...,2p)) Exercice 51 : [énoncé|

a) u=(x,y,2) €Eker f & v =y =2 u=(1,1,1) forme une base de ker f.

Par le théoréme du rang rgf = dimR? — dim ker f = 2.

Soit v = f(1,0,0) = (0,—1,1) et @ = f(0,1,0) = (1,0, —1) vecteurs non
colinéaires de Imf.

(v, W) est une famille libre formée de 2 = dim Imf vecteurs de Imf, c’est donc une

or f est injective donc

dim f(Vect(z1,...,xp)) = dim Vect(z1,. .., zp)

ot ainsi base de Im f
re(f(z1)s-o f(2p)) = v, 2p) b) ker f = {(z,y, —22 —y,—x — y)/ z,y € R} = Vect(u,v) avec u = (1,0,—2,—1)
et v=1(0,1,—-1,—1).
(u,v) est une famille libre, elle forme donc une base de ker f, par suite
Exercice 49 : [énoncé] dim ker f = 2.
a) Il existe x ¢ ker fP~! car fP~! % 0 par définition de p. Par le théoréme du rang : rg f = dimR* — dimker f = 2.
Supposons @=f(1,0,0,0) = (2,1,1) € Imf et b = £(0,1,0,0) = (1,1,0) € Imj.

Aoz + A f(z) + -+ /\p—lfpfl(l") =0 (a,b) forme une famille libre formée de 2 = dimImf vecteurs de Imf, c’est donc
une base de Imf.

En composant par fP~! la relation ci-dessus, on obtient
P par f c)kerf ={z=a+ib/ab e R,a+b=0}.

XofP Y (z) =0 Soit z; = 1 — i, on observe que ker f = Vect(z1), donc (z1) forme une base de ker f
et dimker f = 1.
car Par le théoréeme du rang : rg f = dimg C — dimker f = 1.
() =...= f222) =0 29 = f(1) =144 € Imf, donc (22) forme une base de Imf car rg f = 1.
II s’ensuit A\g = 0.
En composant par fP~2,..., f° la relation initiale, on obtient successivement

Exercice 52 : [énoncé]

a) Une petite analyse assure que le vecteur z ne peut appartenir au noyau de
P~ car sinon la famille introduite comporterait le vecteur nul et serait donc liée.
Introduisons donc z ¢ ker fP~1. Ceci est possible car, par hypothése, 'application
fP~! n’est pas nulle.

Supposons

Al=...=2p_1=0.

La famille (z, f(z), ..., fP~1(x)) est donc libre.

b) Comme cette famille est libre et composée de p vecteurs en dimension n on a
p < n.

Puisque fP =0, f* = f"Po fP=0.

)\01’ —+ Alf(x) + - + )\p,lfp_l(x) = OE

Diffusion autorisée a titre entiérement gratuit uniquement - dD



[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015

Corrections 23

En composant par fP~! la relation ci-dessus, on obtient
)\ofp_l(x) = OE

et donc Ao = 0 car fP~1(z) # Op.
En composant de méme par fP~2,..., O la relation initiale, on obtient
successivement

AL =0,..., A1 =0

La famille (z, f(z),..., fP~"(x)) est donc libre.

b) La famille précédente est composée de p vecteurs en dimension n et elle est
libre donc p < n.

Par suite

1= fr =0

Exercice 53 : [énoncé]

Si dim E = n alors dim £(E) = n? donc la famille (I, f, f2,..., f") est liée car
formée de n? + 1 élément. Une relation linéaire sur les éléments de cette famille
donne immédiatement un polynéme annulateur non nul.

Exercice 54 : [énoncé]

a) Si ker f = Imf alors f2 =0 et donc f est nilpotent.

Si f est nilpotent alors ker f # {0} et donc dimker f =1 ou 2. Or f # 0 donc il
reste dimker f = 1.

ker f C ker f2 donc dimker f2 =1 ou 2.

Si dim ker 2 = 1 alors ker f = ker f2 et classiquement (cf. noyaux itérés)

ker f™ = ker f pour tout n € N ce qui contredit la nilpotence de f.

Il reste donc dim ker f2 = 2 et donc f2 = 0. Ainsi f est nilpotent.

b) Si f = wow avec u et v nilpotents et nécessairement non nuls alors Imf C Imu
et kerv C ker f. Or ces espaces sont de dimension 1 donc Imf = Imu et

ker f = kerv. Mais Imf = ker f donc Imu = ker v puis ker u = Imv d’ott w o v = 0.
C’est absurde.

Exercice 55 : [énoncé]

Soient A, u € K et P,Q € K,, [X]. Clairement p(AP 4+ 1Q) = Ap(P) + pp(Q).
Soit P € kerp. On a ¢(P) = (0,...,0) donc P(ag) = P(a1) =...= P(a,) =0.
deg P < n et P admet au moins n + 1 racines distinctes donc P = 0.

ker p = {0} donc ¢ est injectif. De plus dim K,, [X] = dim K"*! donc ¢ est un
isomorphisme.

Exercice 56 : [énoncé]

© est clairement linéaire et si P € ker ¢ alors P a plus de racines (comptés avec
multiplicité) que son degré donc P = 0. Ainsi ¢ est injective et puisque

dim Ry, 41 [X] = dim R?"*2 ¢ est un isomorphisme.

Exercice 57 : [énoncé]
On a Im(f + g) C Imf + Img donc

rg(f+g) < dim(Imf +Img) = dim Im f 4+ dim Img — dim Im f NImg < rg(f) +rg(g)

Aussi
rg(f) =rg(f —g+g) <rg(f —g) +r1g(9)

donc
rg(f) —rg(g) <rg(f —9)

On conclut par symétrie sachant rg(f — g) = rg(g — f).

Exercice 58 : [énoncé]

Le rang d’une application linéaire composée est inférieur aux rangs des
applications linéaires qui la compose.

Dune part rg(f o g),1g(g 0 f) < rg(f) r8(9)

D’autre part rg(f) =rg(f ogo f) <rg(go f),rg(f o g),rg(g) et

rg(g) =rg(go fog) <rg(f)

Ces comparaisons permettent de conclure.

Exercice 59 : [énoncé]
Facilement Im(f + ¢g) C Imf + Img donc

rg(f +g) < dim(Imf + Img) <rg(f) +rg(g)
Puisque f = f+ g+ (—g),
rg(f) < rg(f +g) +18(—g) =r8(f +9) +rg(9)
Aussi rg(g) < rg(f + g) +rg(f) donc

rg(f) —rg(g)| < re(f +g)
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Exercice 60 : [énoncé]
a) Pour tout x € E, on a

(u+v)(z) =u(x) +v(zr) € Imu + Imv

donc
Im(u + v) C Imu + Imv
Puisque
dim (F + G) < dim F +dim G
on obtient

rg(u 4 v) < rgu + rgv

De plus, on peut écrire
u=(u+v)+(-v)

donc
rgu < rg(u +v) + rg(—v) = rg(u + v) + rgo
puis
rgu —rgv < rg(u + v)
Aussi
rgv —rgu < rg(u + v)
et donc

rg(u) —rg(v)| < rg(u +v)

b) Les endomorphismes u = v = Idg2 conviennent.
¢) Les endomorphismes u = v = 0 conviennent..

Exercice 61 : [énoncé]
(=) Supposons rg(f + g) = rgf + rgg.

Sachant Im(f + ¢g) C Imf + Img, on a rg(f + g) < rgf +rgg — dim (Imf N Img) et

donc dim(Imf NImg) < 0.

Ainsi Imf N Img = {0}.

Sachant ker f Nkerg C ker(f + g), on a

dim ker f + dim ker g — dim(ker f + ker g) < dimker(f + g).
Par la formule du rang, on obtient alors

dim E +rg(f + g) < rgf + rgg + dim(ker f + ker g) et donc
dim(ker f + kerg) > dim E. Ainsi ker f + kerg = F

(<) Supposons Imf NImg = {0} et ker f + kerg = E.
Montrons Im(f 4 ¢g) = Imf + Img.

On sait déja Im(f + ¢g) C Imf + Img.

Inversement, soit z € Imf + Img.
Il existe a,b € E tels que = f(a) + g(b).

Puisque E = ker f 4 ker g, on peut écrire a = u + v avec u € ker f et v € kerg. On

a alors f(a) = f(v).

De méme, on peut écrire g(b) = g(w) avec w € ker f.

On a alors z = f(v) + g(w) = (f + ¢9)(v + w) car f(w) =0 et g(v) = 0. Ainsi
z €Im(f +g).

Finalement Im(f + ¢g) = Imf + Img.

Par suite rg(f + g) = rgf + rgg — dim(Im f N Img) = rgf + rgg.

Exercice 62 : [énoncé]

a) Im(f og) C Imf donc rg(f o g) < rgf.

Im(fog)= f(Img) = Imfjimg.

Puisque la dimension d’une image est toujours inférieure a la dimension de
Pespace de départ rg(f o g) < dim Img = rgg.

b) rg(f o g) = dim f(Img).

Par le théoreme du rang appliqué a 'application linéaire fimg,

dim f(Img) + dimker f1mg = dimImg donc rg(f o g) = rgg — dimker fiimg-
Or ker fiimg C ker f donc dimker fiimg < dim E —rgf puis

rg(fog) >2rgf+rgg—dimE.

Exercice 63 : [énoncé]

a) Commencons par observer Im(g o f) C Img.

(<) Supposons E = Imf + kerg.

Soit y € Imyg, il existe = € E tel que y = g(x) et on peut écrire x = a + b avec
a €lImf etbekerg.

On a alors y = g(x) = g(a) + g(b) = g(a) € Im(g o f) car a € Imf.

Ainsi Img C Im(g o f) et donc Img = Im(g o f). Par suite rg(g o f) = rgg.
(=) Supposons rg(g o f) = rgg.

Par inclusion et égalité des dimensions, on a Img = Im(g o f).

Soit « € E et y = g(z). Puisque y € Img = Im(g o f), il existe a € E tel que
y=(go f)(a). Posons alors b =2 — f(a). On a x = f(a) + b, f(a) € Imf et
b € ker g car g(b) = g(z) — g(f(a)) =y — (9o f)(a) = 0.

Ainsi £ C Imf + ker g puis £ = Imf + ker g.

b) (<) Supposons Imf Nker g = {0}.

Soit (e1,...,ep) une base de Imf avec p = rgf.

On a Imf = Vect(ey, .. .,e,) donc Im(g o f) = Vect(g(e1), ..., g(ep)).
Supposons Aig(er) + -+ Apg(ep) = 0.

On a g(Aie1 + -+ Aep) = 0 donc e + -+ - + Aep, € kerg. Or

Aer + -+ Aep € Imf donc Aieq + -+ -+ Aep = 0 puisque Im f Nker g = {0}.
Puisque la famille (eq, ..., ep) est libre, on obtient A =... =X, =0.
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Ainsi la famille (g(e1),...,g(ep)) est libre et c’est donc une base de Im(g o f).
On en déduit rg(go f) =p =rgf.

(=) Par contraposée, supposons Imf Nker g # {0}.

Soit e; € Imf Nker g un vecteur non nul.

La famille (e1) est libre, on peut donc la compléter en une base (eq, ...
Imf.

On a Imf = Vect(eq, ..., e,) donc Im(g o f) = Vect(g(e1), ...
Or g(e1) =0 donc Im(g o f) = Vect(g(ez), ...
Ainsi rg(g o f) # rgf.

sep) de

ag(ep))'
,9(ep)) puis rg(go f) <p—1<p.

Exercice 64 : [énoncé]

(i) = (ii) : ok

(ii) = (iii) Supposons E = Imf + ker f.

L’inclusion Imf? C Imf est vraie indépendamment de I’hypothese.

Yy € Imf, 3z € E tel que y = f(x). Or on peut écrire z = u + v avec u € Imf et
v € ker f.

Puisque u € Imf, on peut écrire u = f(a) avec a € E. On a alors

y= f(f(a) +v) = f2(a)+ f(v) = f2(a) € Imf?. Ainsi Imf C Imf? puis I'égalité.
(iii) = (iv) Supposons Imf? = Imf.

Par le théoréme du rang : dim E = rgf + dimker f = rgf? + dim ker f2 donc
dim ker f = dim ker f2.

De plus l'inclusion ker f C ker f? est toujours vraie.

Par inclusion et égalité des dimensions : ker f = ker f2.

(iv) = (i) Supposons ker f = ker f2.

Soit y € Imf Nker f. On peut écrire y = f(z) avec x € E. Or f(y) = 0 donc
f?(x) = 0. Ainsi z € ker f2 = ker f et par suite y = f(z) = 0. Finalement

Imf Nker f = {0}.

De plus, par le théoréme du rang dim £ = dim Imf + dim ker f donc Im f et ker f
sont, supplémentaires dans F.

Exercice 65 : [énoncé]

go f =0 donne Imf C ker g donc rg(f) < dimker g = dim E — rg(g). Par suite
rg(f) +1g(g) < dim E.

f + g bijectif donne Imf + g = FE. Or Imf + g C Imf 4 Img d’ou

dim E < rg(f) +rg(g).

Exercice 66 : [énoncé]
(=) Si ker f = Imf alors f2 =0 car Imf C ker f.

De plus, par le théoreme du rang : dim F = rgf + dimker f = 2rgf car

dimker f = dim Imf.

(<) Si f2 =0 et n = 2rg(f) alors d'une part Imf C ker f et d’autre part, par le
théoréme du rang :

2rgf = rgf 4+ dimker f donc dim Imf = dim ker f. Par inclusion et égalité des
dimensions Im f = ker f.

Exercice 67 : [énoncé]
Puisque u® = 0, on a Imu? C keru et donc

rgu? < dimker u
Or par la formule du rang
rgu + dimkeru = dim £

donc
rgu +rgu? < dim E

Exercice 68 : [énoncé]
On a

f=fold=f>+fog
Montrons f o g = 0 en observant Img C ker f.
Pour cela montrons Img = ker f en observant

rgg = dimker f et ker f C Img

Puisque rgf + rgg = dim E' et puisque par la formule du rang,

rgf + dimker f = dim F, on peut affirmer rgg = dim ker f.

D’autre part, pour = € ker f, on a = f(z) + g(z) = g(z) donc z € Img. Ainsi
ker f C Img.

Par inclusion et égalité des dimension ker f = Img puis f o g = 0 donc f2 = f.
Ainsi f est un projecteur et g = Id — f est son projecteur complémentaire.

Exercice 69 : [énoncé]
On a

K" =Im(u 4+ v) C Imu + Imw
donc rg(u) 4+ rg(v) > n puis rgu +rgv =n
Si z € keru alors © = u(x) + v(z) = v(x) donc z € Imv. Par les dimensions, on
conclut ker u = Imv et de méme ker v = Imu. Par suite uov =wvou =0 et donc
aisément u? = u et v2 = v.
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Exercice 70 : [énoncé]

a) Viy € ImfPtl 37 € B, § = fP*1(&) = fP(f(Z)) € ImfP donc 1,11 C I,.

VZ € ker fP, on a fP(¥) = 0 donc fPTH(Z) = £(0) = 0 puis ¥ € ker fPT1. Ainsi
Np C Np+1.

b) La suite dim I, est une suite décroissante d’entiers naturels donc il existe s € N
tel que dim Iy = dim I 1. Par inclusion et égalité des dimensions, on a alors

Is = IS+1.

De plus, par le théoréme du rang :

dim Ny =dim F —dim I, = dim F — dim ;11 = dim Ny .

Par inclusion et égalité des dimensions, on a alors Ny = Ng1.

¢) Montrons par récurrence sur s > r que I, = I,..

La propriété est vraie au rang r.

Supposons la propriété vraie au rang s.

On sait déja que I441 C L.

vy € I, 3% € E tel que § = f5(Z) = [ (f"(X)).

Or f7(Z) € I, = I,41 donc Ji € E tel que f7(Z) = f1(a) et alors

7= @) € L.

Ainsi I;1 = I puis, par hypothese de récurrence : I;41 = I,.

Par le théoreme du rang : dim N, + dim I, = dim F = dim N, + dim I; donc par
inclusion et égalité des dimensions : Vs > r, Ny = N,..

d) Soit Z € I, N N,. Il existe & € E tel que & = f"(&) et on a () = 0.

Par suite @ € Na,., or Ny. = N, donc & = f"(&) = 0. Par suite I, N N,. = {0}.
De plus, par le théoreme du rang : dim I, + dim N, = dim E donc I, et N, sont
supplémentaires dans F.

Exercice 71 : [énoncé]

a) Pour tout y € ImfP*! il existe 2 € E tel que y = P (z) = fP(f(x)) € ImfP
donc I,41 C I,.

Pour tout x € ker fP, on a fP(z) = 0 donc fP1(z) = f(0) = 0 puis = € ker fP+1.
Ainsi Np C Np+1.

La suite (dim I,,) est une suite décroissante d’entiers naturels donc il existe un
rang s € N a partir duquel cette suite est stationnaire. De plus, par le théoreme
du rang les suites (dim I,,) et (dim NV,,) sont simultanément stationnaires. Par
inclusion et égalité des dimensions, les suites (I,) et (N,) sont simultanément
stationnaires.

b) Soit « € I, N N,.. Il existe u € E tel que x = f"(u) et on a f"(x) = 0.

Par suite u € Na,., or Na,. = N,. donc « = f"(u) = 0. Par suite I, N N, = {0}. De
plus, par le théoreme du rang : dim I, + dim N, = dim F donc I et N,. sont
supplémentaires dans F.

Exercice 72 : [énoncé]

a) Si & € kerh alors & € kergo f et si & € ker f alors & € kerg o f donc

ker h + ker f Ckergo f.

Inversement, soit Z € ker g o f. On peut écrire & = @ + U avec 4 € H et U € ker f.
(go f)(Z) =3 donc h(d) = (go f)(@) =0 d'ou & € ker h + ker f.

b) f réalise une bijection de H vers Imf donc rg(h) = rg(g|mys)

1g(gimy) + dimker gy = dim Imf donc

rg(h) = rg(f) — dimker g,y > rg(f) — dimker g.

¢) dimker g o f < dimker h + dim ker f.

dimker h = dim H —rg(h) < rg(f) — (rgf — dimker g) < dimker g puis l'inégalité
voulue.

Exercice 73 : [énoncé]
Pour ¢, 1 applications linéaires composables

rg(¢) o @) = dim Im)jim, = rge — dim (Imy N ker ¢))

Ainsi
rg(hogo f) =r1g(go f) — dim (Im(g o f) Nker h)
et
rg(h o g) = rgg — dim (Img N ker h)
Puisque
Im(g o f) C Img
on a

dim (Im(g o f) Nker h) < dim (Img Nker h)

ce qui fournit I'inégalité demandée.

Exercice 74 : [énoncé]

La deuxiéme inégalité est bien connue et provient de Im(u o v) C Imu qui donne
rg(uow) <rgu et de Im(u o v) = u(v(E)) = Imu,(p) qui donne rg(u) < rgv car le
rang d’une application linéaire est inférieure & la dimension de ’espace de départ.
Montrons maintenant la premiere inégalité.

Comme déja écrit Im(u o v) = Imuy,(g)y donc par la formule du rang

rg(uow) = dimv(E) — dim ker up, ()
Or ker up,(g) C keru donc

rg(uowv) > rgv — dimkeru = rgu + rgv — dim F'
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Exercice 75 : [énoncé]
Par le théoréme du rang,

dim (ker(g o f)) = dim E —rg(g o f)

Or
rg(go f) =dimg(f(E)) = rgg; (k)

Par le théoreme du rang,
rgg; () = dim f(E) — dim (ker g ¢(r))
Or ker g,7(p) C kerg donc
rg (91f(k)) = dim f(E) — dim (ker g)
Enfin, par le théoréme du rang,
dim f(F) = rgf = dim E — dim (ker f)

Au final,
dim (ker(g o f)) < dim (ker f) + dim (ker g)

Exercice 76 : [énoncé]
Considérons f;p restriction de f au départ de F' et a 'arrivée dans E.

ker fip = ker fNF et rgfir < rgf. L’application du théoreme du rang f;r permet

alors de conclure.

Exercice 77 : [énoncé]
La formule du rang du rang donne

dim F;, = dim Imu;, + dim ker uy,

donc, sachant dim Imuy = dim ker u; on obtient :

n

Z (-1)* dim B}, = Z (—1)k1 dimkeruk—i—z (=1)* dimker uy, = —dimkeru; =0

k=1 k=2 k=1

car Imu,, = {0} et ker u; = Imug = {0}.

Exercice 78 : [énoncé]
Soient k,¢ € N. Considérons le sous-espace vectoriel

F = ker u#t*
et introduisons ’application linéaire restreinte v : F' — E définie par
Yz € Fv(x) = u’(z)

On vérifie aisément
ker v C ker u’ et Imv C ker u*

La formule du rang appliquée a v donne
dim (ker ukH) =rgv + dim ker v

ce qui donne
dim (ker ukH) < dim (ker uk) + dim (ker ug)

Exercice 79 : [énoncé]
a)ker h C ker f donc dimker b < dimker f.
En appliquant la formule du rang a f et a A on obtient

dimker f =n —rgf et dimker h = rgg — rgh

On en déduit
rgf +rgg —n < rgh

Or Im(f o g) = Imh donc rg(f o g) = rgh et on peut conclure.

b) Un endomorphisme f vérifie f2 = 0 si, et seulement si, Imf C ker f ce qui

entraine, en dimension 3, rgf = 1.

Si ’endomorphisme f n’est pas nul, en choisissant « € F tel que = ¢ ker f et en

complétant le vecteur f(x) € ker f, en une base (f(z),y) de ker f, on obtient que

la matrice de f dans la base (z, f(x),y) est

0 0 O
1 00
0 00

Inversement, un endomorphisme f représenté par une telle matrice vérifie f2 = 0.
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Exercice 80 : [énoncé] Exercice 83 : [énoncé]
a) rg(f?) = rg(f) = Imf? = Imf car on sait Imf? C Imf. D’une part
Par le théoréme du rang ker f2 = ker f car on sait ker f C ker f2. rgf +rgg —dimImf NImg = dim F

b) Soit x € ker f NImf.
On peut écrire x = f(a). Comme f(x) =0, on a a € ker f2 = ker f donc x = 0.
Par le théoreme du rang, on conclut. dim ker f + dimker g — dimker f Nkerg = dim E

et d’autre part

En sommant et en exploitant la formule du rang

Exercice 81 : [énoncé] dimImf NImg + dimker f Nkerg <0
a) rg(f?) = rg(f) = Imf? = Imf car on sait Imf? C Imf.
Par le théoréme du rang ker f2 = ker f car on sait ker f C ker f2. donc Imf NImg = ker f Nker g = {0}.

b) Soit x € ker f NImf.
On peut écrire x = f(a). Comme f(x) =0, on a a € ker f2 = ker f donc x = 0.

Par le théoreme du rang, on conclut. Exercice 84 : [énonc¢]

Soit x € ker(f —Id) NIm(f — Id).
On a f(r) =z et on peut écrire z = (f —Id)(a) = f(a) — a.
f(x) = f(a) = f(a), f*(z) = f*(a) = f*(a) = a— f*(a) puis 2 + f(x) + f*(z) = 0.

Exercice 82 : [énoncé] Or z + f(z) + f?(x) = 3z donc = = 0.
On a Soit x € E.
Analyse : Supposons x = u + v avec u € ker(f —Id) et v € Im(f — Id).
dim (Imu N Imv) = rgu + rgv — dim (Imu + Imv) = rgu + rgv — dim E On peut écrire v = f(a) — a.
Ainsi x = u+ f(a) — a, f(z) = u+ f2(a) — f(a), f(x) = u+a— f*(a).
et Donc u = £ (z + f(z) + f2()).

Synthese : Posons u = % (z + f(z) + f*(z)) et v =2 — .
dim (ker u N ker v) = dim ker u+dim ker v—dim (ker u + ker v) = dim ker u+dim ker v—digy [, F(u) = u car f3(z) =z et

2 1 1 1 1 1 1
donc en sommant v=Ztr— (z) — §f2(x) —ge-3 (z) — ng(w) + gf?’(x)
dim (Imu N Imv) + dim (ker uw N kerv) =0
donc . )
car en vertu du théoréme du rang v=(f-1d) (33” + 3f2(:v)> € Im(f —1d)
dim F = rgu + dimker u = rgv + dim ker v Finalement ker(f —1d) & Im(f —1d) = E.
Par suite .
dim (Imu N Imv) = dim (ker u N kerv) = 0 Exe'rc1ce 85 : [énonce] o
a) Si x € ker f alors g(z) = (fogo f)(z) =0 donc = € ker g. Par symétrie
et donc

Imu N Imv = keru Nkerv = {0g} ker f = ker g.

Siy € Imf alors il existe a € E tel que y = f(a) = (go fog)(a) donc y € Img. Par

Les espaces Imu et Imv sont supplémentaires dans E. De méme pour ker u et ker v. o
symétrie

Imf = Img
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b) Soit x € FNG. 1l existe a € E tel que z = g(a) or Exercice 87 : [énoncé]

a) Soit € Imf Nker g.
fla)=(go fog)la)=(gof)z) =9(0)=0 Il existe a € F tel que z = f(a) donc
finst o € ker [ = kerg donx = gla) =0, v = fla) = (fogo f)la) = (fog)(x) = 0
oit z € E.

Analyse : Soit z € E.

Supposons x = u+ v avec u € F =ker f et v = g(a) € G = Img. Analyse :

On a Supposons x = u + v avec u = f(a) € Imf et v € kerg.

1) = (fog)(@) 9(z) = go f(a) done (f o g)(x) = f(a) = u.
done ?)ynthése : Fog)e) et
_ osons u = (fog)(z) et v=1o—u.

\ (go f)(x) = [f(a) Onauvelmf,z=u+wvetgv)=g(r)—glu)=01ie v €kerg.
Synthese : b) On a f(Img) C Imf et Yy € Imf on peut écrire y = f(x) avec x = g(a) + u et
Puisque (g o f)(z) € Img = Imf, il existe a € E tel que u € ker f.

(g0 f)(@) = f(a) On a alors y = f(g(a)) € f(Img).

Posons alors v = g(a) et u = z — v. On a immédiatement v € Img et © = u + v.

On a aussi u € ker f car Exercice 88 : [énonci]
f(u) = f(z) — f(v) € Imf a) fi=fiold=f;0 321 fj = fio fi donc f; est une projection vectorielle.
et b) Supposons Y z; = 0 avec z; € Imf;.
L U= e ~ e fog) = (9 N~ fl@ i appliouant T on obtient f(ns) — o1 — 0p car (o) — 0.
Ainsi Les espaces Im f; sont donc en somme directe.
f(u) € ker g N Imf Soit z € E, on peut écrire

puis

flu)=0 led(x)zi:fi(x)eznjlmfi

Exercice 86 : [énoncé] On peut alors conclure

Soit x € ker f NImg. On peut écrire x = g(a) avec a € E. ena Imf; = F
On a alors =1
flg(a)) =0
puis Exercice 89 : [énoncé]
z=g(a) = (go fog)(a)=g(0)=0 Puisque p1 + - - - + pm = Idg, on a pour tout x € F,
Soit x € E. On peut écrire z = a + b avec e
P z=pi(a) - +pmle) €D Fi
a=xz—g(f(x)) et b=g(f(x)) k=1
On vérifie immédiatement b € Img et on obtient a € ker f par Ainsi m
EC F;
la) = £(x) ~ Fla(F(a)) =0 21
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De plus donc n est pair.
. i Inversement si n est pair, n = 2p avec p € N
dim E' = trldp = Z trpk Si p = 0, 'endomorphisme nul convient.
k=1 Sip >0, soit e = (eq,...,eq) une base de E et f € L(E) défini par :
Or les pg sont des projecteurs, donc trp, = rgpy = dim Fy.
Ainsi . fe1) =0g, ..., flep) = 0p, fept1) = e1,..., flez) =€
dim £ = Z dim Fj Pour cet endomorphisme, il est clair que Vect(ey,...,e,) C Imf et
k=1 Vect(eq,...,e,) C ker f.
On peut alors conclure B = 3 Fy puis E — o F. P.ar suite d.1m Imf,dimker f > p et par le théoréme du rang
= k=1 dim Imf, dim ker f = p.
Par inclusion et égalité des dimensions
Exercice 90 : [énoncé] Imf = Vect(ei, ..., ep) = ker f
Supposons que w est un isomorphisme.
Puisque l'application w = v o u est injective, 'application u est injective.
Puisque ’'application w = v o u est surjective, application v est surjective. Exercice 92 : [énoncé]
Soit y € Imu Nkerv. Il existe v € E tel que y = u(z) et on a v(y) = 0 donc Posons e1 = (1,0,0), e2 = (1,1,0) et ez = (1,1,1).
w(z) = 0. Or kerw = {0} donc z = 0 puis y = 0p. Ainsi Il est immédiat d’observer que (e, e, e3) est une base de E.
Une application linéaire est entierement caractérisée par 'image des vecteurs
ImuNkerv={0p} d’une base, par suite f existe et est unique.
. o (z,y,2) = (x —y)e1 + (y — z)ea + zes donc
Soit y € F, v(y) € G et donc il existe z € E tel que w(z) = v(y). fla,y,2) = (@ —y)fer) + (y — 2) fe2) + zf(e3) = (y, @ — y + 2).
Posons alors a = u(z) et b=y —a. ker f = Vectu avec u = (1,0, —1).
On a immédiatement y = a +b et a € Imu. Par le théoréme du rang dimImf = 2 et donc Imf = R2.
De plus v(b) = v(y) — v(a) = v(y) — w(z) = 0 donc b € kerw.
Ainsi
Imu @ kerv = F Exercice 93 : [¢noncé]
Inversement, supposons u injective, v surjective et Imu et ker v supplémentaires a)CC L(E),0€C.
dans F. Soient \,p € K et g,h € C. On a
Soit « € kerw. On a v(u(x)) = 0 donc u(z) € kerv. Or u(z) € Imu donc u(x) =0p
car Imu Nkerv = {0 }. Puisque u est injective, z = O et ainsi kerw = {0g}. foAg+uh)=Afog)+ulfoh)=AMgof)+uhof)=(Ag+uh)of
Soit z €G. bIl existe yg Ft';tbel q}lle z= U(Iy) carlz) est_su}r’;]ecglve. ?n peut écrire donc Ag + jih € C.
y—u((az—&)—) aveE;c)zetde IE ervé:ar mu + kerv = F. On a alors b) Soit g = aold + arf + -+~ + an_y f7~1.
z =v(u(a)) = w(a) et donc Imw = G.
O = 24 4 fr= d C.
Finalement G est un isomorphisme. AiI;:i gof=af+af*+--+an1f fogdoncge
{aold+arf+ 4+ an_1f"" |ag,...,an-1 €K} CC
Exercice 91 : [énoncé] Inversement, soit g € C.
Si un tel endomorphisme f existe alors Puisque (2o, f(20), ..., f" " (x0)) est une base de E, il existe ag, a1, ...,a,-1 €K

dim F = rg(f) + dimker f = 2rg(f)

tels que : g(x) = apxo + a1 f(xo) + -+ + an_1 " (20). Introduisons
h = aoId + alf + -4 an,lfnfl.
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g,h € C et g(xg) = h(xo) donc
9(f(x0)) = f(g(z0)) = f(h(z0)) = h(f(x0))

et de maniere plus générale

9(f* (o)) = f*(g(wo)) = " (h(wo)) = h(f*(x0))

Ainsi g et h prennent mémes valeurs sur la base (zg, f(xo),..., f" 1(x)) donc
g=h.
Ainsi
CC{an1f" '+ +aif+aold|aog,...,an-1 €K}
puis I’égalité.
c) On a C = Vect(Id, £, f2,..., f*71).
De plus si agld + a1 f + -+ ap_1f"~ ' = 0 alors en évaluant en x

agxo + a1f<$0> + -+ anflfn_l(al‘o) =0

or la famille (xq, f(xo),- .., f" 1(x0)) est libre donc ag = a; = -+ = a,_1 = 0.
La famille (Id, f, f2,..., f*!) est une famille libre et génératrice de C, c’est donc
une base de C.

Par suite dimC = n.

Exercice 94 : [énoncé]
a) C(f) € L(E), 0 € C(f).
Soient A, u € K et g,h € C(f). On a

fo(Ag+ph) =A(fog)+u(foh)=Agof)+pulhof)=(Ag+ph)of

donc Ag + ph € C(f).
b) Supposons
Moa+ A f(a)+ -+ A1 " Ha) = 0p
En appliquant f"~1 & cette relation, on obtient Ao f" 1(a) = 0g et donc A\g = 0
car f""(a) # 0g.
En répétant 'opération, on obtient successivement la nullité de chaque A.
La famille (a, f(a),..., f" 1(a)) est alors libre puis base de E car constituée de
n = dim F vecteurs de E.
¢) L’application ¢, est linéaire car

Ca(Af + 1g) = Mf(a) + pg(a) = Apa(f) + ppalg)

Si @, (g) = 0g alors g(a) = 0g puis g(f(a)) = f(g9(a)) = 0g, etc. L’application g

est alors nulle sur une base et c¢’est donc I'application nulle. Ainsi ¢, est injective.

Soit b € E. Considérons I'application linéaire g définie par

g(a) =b, g(f(@) = f(b),....g(f" V() = f"~V(b)

L’application linéaire g est entierement définie par I'image d’une base et ’on
vérifie g o f = f o g sur chaque vecteur de cette base. Ainsi g € C(f) et l'on vérifie
va(g) =b. Ainsi @, est surjective.

d) Par I'isomorphisme dimC(f) = n.
Il est immédiat de vérifier Vect(Id, f, .
famille (Id, f,..., f*1).

Par inclusion et égalité des dimensions, on conclut C(f) = Vect(1d, f, ...

., f*1) C C(f) ainsi que la liberté de la
fn—l)_

Exercice 95 : [énoncé]

Par le théoreme du rang, la condition dim F' + dim G = dim F est nécessaire.
Montrons qu’elle est aussi suffisante.

Soit H un supplémentaire de G dans F. On a dim H = dim F =p

Soient (e1,...,&,) une base de E telle que (e1,...,¢,) soit base de H et
(Ept1,---,En) base de G.

Soit (e1,...,ep) une base de F.

Une application linéaire est caractérisée par I'image d’une base.

Soit u : E — E D'application linéaire définie par

Vi<i<pulg)=ec etVp+1<i<nulg)=0

Par construction, il est clair que F' C Imu et G C ker u.
Par le théoréme du rang et la relation dim F' 4+ dim G = dim E, on obtient
dim F' = rgu et dim G = dim ker u. Par inclusions et égalités des dimensions :

F =Imu et G =keru

Exercice 96 : [énoncé]

Puisque Imf? C Imf C RS, on a 3 < rgf < 6.

Sirgf = 6 alors f est un isomorphisme, donc f? aussi et rgf? = 6. Contradiction.
Sirgf =5 alors dimker f = 1. Considérons g = fy,s. Par le théoréme du rang
dimker g = 5 — rgg. Or Img C Imf? donc rgg < 3 et par suite dimker g > 2. Or
ker g C ker f donc dimker f > 2. Contradiction.

rgf = 3 et rgf = 4 sont possibles en considérant :

100000 100000
010000 010000
001000 001000
000000000000
000000 000100
000000 000000
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Exercice 97 : [énoncé] Exercice 100 : [énoncé]
ker ¢ est un hyperplan de E et Vectu une droite car u # Og puisque u ¢ ker ¢. Posons ¢, : R, [X] — R la forme linéaire définie par
ker ¢ + Vect(u) est un sous-espace vectoriel de E contenant ker ¢, donc de
dimension n — 1 ou n. er(P) = P(ak)
Si dim ker ¢ + Vect(u) = n — 1 alors par inclusion et égalité des dimensions

Supposons

ker ¢ + Vect(u) = ker ¢ Aowo + -+ A =0
Or u € ker v + Vect(u) et u ¢ ker . Ce cas est donc exclu. Pour tout polynéme P € R, [X], on a
Il reste dim ker ¢ 4+ Vect(u) = n i.e. MoP(ag) + -+ A Plan) = 0
ker p + Vect(u) = Considérons le polynéme d’interpolation de Lagrange
Comme de plus . H X —a
k =
dimker ¢ + dim Vect(u) =n —1+1=n=dimFE ik kT4

on peut affirmer que la somme est directe et donc ker ¢ et Vect(u) sont défini de sorte que
supplémentaires dans E. Ly € R, [X] et Li(aj) = d;

En prenant P = Ly, on obtient A\ = 0.
Exercice 98 : [énoncd] La famille (¢, ..., ®,) est libre et puisque formée de n + 1 = dim (R,, [X])*

. L , . o éléments de (R,, [X]), c’est une base de (R,, [X])*.
Soit ¢ une forme linéaire ne s’annulant pas sur z. Celle-ci n’est pas combinaison Pui
linéaire de la famille (f1,..., fn). Cette famille n’est donc pas génératrice et par wsque 1
suite elle est liée car formée de n = dim E* éléments de E*. @: P / P(t)dt
0
est une forme linéaire sur R,, [X], on peut affirmer qu’il existe (Ao, ..., \,) € R* 1

Exercice 99 : [énoncé]
Si f = 0 la propriété est immédiate.
Sinon f2 = 0 donne Imf C ker f et en vertu du théoréme du rang, dimImjf = 1.

Soit @ un vecteur directeur de la droite Imf. Pour tout = € R3, il existe un unique

a € R tel que f(z) = a.a. Posons p(x) = a ce qui définit ¢ : R3 — R.
Les identités
fQz + py) = (A + py)a

et
fOx 4 py) = M (z) + puf(y) = (Ao(x) + pe(y))a

avec a # Og donnent la linéarité

Pz + py) = Ap(x) + pe(y)

L’application ¢ est donc une forme linéaire sur R3.

unique vérifiant
o =Aowo+:+ Anpn

Exercice 101 : [énoncé]

Il est clair que les application F; sont éléments de (R,, [X])* espace de dimension
n + 1. Pour conclure, il suffit d’observer la liberté de la famille (Fy,..., Fy,).
Supposons A\gFy + -+ -+ A\, F, = 0.

En appliquant cette égalité aux polynomes 1,2X, ..., (n + 1)X™ on obtient les
équations formant le systeme linéaire :

Aoao + -+ Apa, =0
N2 + -4+ a2 =0

oag ™ 4+ 4 Xttt =0
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Par un déterminant de Vandermonde, ce systéme est de Cramer ce qui entraine
MN=...=2, =0

La famille est alors libre et constituée du bon nombre de vecteurs pour former une
base de (R, [X])*.

Exercice 102 : [énoncé]

Soient z,y € E tels que = # y.

Le vecteur x — y est non nul, il peut donc étre complété pour former une base de
E. La forme linéaire correspondant & la premiére application composante dans
cette base est alors solution du probléme posé.

Exercice 103 : [énoncd]

Si ker f = ker g alors le résultat est immeédiat.

Sinon, pour des raisons de dimension, ker f ¢ ker g et ker g ¢ ker f.

La somme d’un vecteur de ker f qui ne soit pas dans ker g et d’un vecteur de ker g
qui ne soit pas dans ker f est solution.

Exercice 104 : [énoncé]

Soit ¢ une forme linéaire ne s’annulant pas sur x. Celle-ci n’est pas combinaison
linéaire des (f1,..., fn).

Cette famille n’est donc pas génératrice et par suite elle est liée car formée de

n = dim E* éléments de E*.

Exercice 105 : [énoncé]

Pour f € E* et g € F*, posons f ® g Papplication définie sur F x F par
(f®g)(x,y) = f(x) + g(y). Il est facile d’observer f ® g € (F x F)*. Considérons
p: E* x F* - (E x F)* définie par ¢(f,9) = f ®g.

L’application ¢ est linéaire.

Si ¢(f,g) = 0 alors pour tout (z,y) € E x F, f(z)+ g(y) = 0.

Pour y = 0, on peut affirmer f = 0 et pour z = 0, on affirme g = 0. Ainsi

(f,9) = (0,0) et donc @ est injective.

Soit h € (E x F)*. Posons f : x + h(x,0), g : y — h(y,0). On vérifie aisément
fEE* ge F*eto(f,g) =hcar h(z,y) = h(x,0) + h(0,y).

Exercice 106 : [énoncé]

a) Si u et v s’annulent sur G, il en est de méme pour \u + pv.

b) Soit H un supplémentaire de G dans E. L’application ¢ : u — u;gy définie un
isomorphisme entre A et L(H, F'). En effet la connaissance d’une application
linéaire sur deux espaces supplémentaires la caractérise entierement, ici u;g = 0 et
donc ug détermine u. Par suite dim A = (dim F — dim G) x dim F.

Exercice 107 : [énoncé]
Posons F = {g € L(E)/f o g =0}. Soit g € L(E). On a clairement
g € F & Img C ker f. Par conséquent F' = L(E ker f) d’ou la dimension.

Exercice 108 : [énoncé]
a) Si f,g € L(E, F) annulent sur W, il en est de méme de \f + pug. ..
b) Soit V' un supplémentaire de W dans E. L’application

O:A— L(V,F)

qui a f € A associe sa restriction au départ de V est un isomorphisme car une
application linéaire est entierement déterminée par ses restrictions linéaires sur
deux espaces supplémentaires.

On en déduit

dimA=dim L(V,F) = (dim E — dim W) x dim F

Exercice 109 : [énoncé]

a) Ar et Bp sont des parties de £L(E) contenant I’endomorphisme nul.

Im(Af) C Imf avec égalité si A # 0 et Im(f + ¢g) C Imf + Img donc Ap est un
sous-espace vectoriel de L(F).

Aussi ker f C ker(Af) et ker f Nkerg C ker(f 4 g) donc B est un sous-espace
vectoriel de L(E).

Ap s’identifie avec L(E, F') donc

dim Ar = np

En introduisant G un supplémentaire de F' dans F, Bp est isomorphe & L(G, E)
et donc
dim Br = n(n — p)

b) ¢ est linéaire en vertu de la linéarité du produit de composition.

f€kerp<s Imf C keru
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donc ker ¢ = By puis
dimker ¢ = n(n — rgu)

¢) Si v € Imy alors il existe f € L(E) tel que v =wuo f et donc Imv C Imu.
Inversement si Imv C Imu alors en introduisant (e, ...,e,) une base de E, pour
tout 4, il existe f; € F tel que v(e;) = u(/f;). Considérons alors ’endomorphisme f
déterminé par f(e;) = f;. On vérifie v = uo f car ces deux applications prennent
mémes valeurs sur une base. Imy = Ay, donc

IgyY = Nrgu

Exercice 110 : [énoncé]

Notons A={g e L(E,F)/fogof=0}={ge L(E,F)/Im(g1ms) C ker f}
Soit G’ un supplémentaire de Imf dans E.

Un élément de A est entierement déterminée par :

- sa restriction de Imf a valeurs dans ker f et

- sa restriction de G a valeurs dans F'.

Par suite A est isomorphe a L(Imf, ker f) x L(G, F).

Il en découle dim A = dim E dim F' — (rgf)?2.

Exercice 111 : [énoncé]
a) P(X +1) et P(X) sont de polynoémes de mémes degré et de coefficients
dominants égaux donc

degP(X +1) — P(X) < degP
a moins que P = 0. Par suite

VP € K,y1[X], A(P) € K, [X]

Soient A\, u € Ket P,Q € K, 41 [X].

ANP+Q) = (APuQ)(X+1)—(AP-+pQ)(X) = A(P(X+1)— P(X))+4(Q(X+1)—
donc

AAP + pQ) = AA(P) + nA(Q)
b) On a

PekerAsP(X+1)-P(X)=0

En écrivant

P ekerA & P(X+1)

= P(X) © apta1 (X+1)+ - 4an(X+1)" = ap+a1 X+- - -+a, X"

En développant et en identifiant les coefficients, on obtient successivement,
an =0,...,a1 =0 et donc ker A = K, [X].
¢) Par la formule du rang

rgA = dimK, 41 [X] —dimkerA=n+2—-1=n+1=dimK, [X]

donc A est surjectif.

Exercice 112 : [énoncé]

a) On remarque que si deg P < m alors deg A(P) < m — 1.

On en déduit ImA C R, [X], ImA? C R,,_5 [X],...puis A" =0.

b) Introduisons l'endomorphisme T : P(X) — P(X + 1).

On a A =T —1d et par la formule du bindéme de Newton (T et Id commutent),

n+1
1
e S B

k=0
ar = (~1)* (”Zl>

n+1
X],> axP(X +k) =0
k=0

Ainsi pour

on a

VP eR, |

Exercice 113 : [énoncé]

a) A est clairement linéaire.

Soit P € C[X] non nul et n = deg P. On peut écrire P =ap+ a1 X + - -

avec an # 0.
P = alA )

+ a, X"

A+ ap, A(X™) or deg A(X),...,deg A(X" ) <n—1et

QMg A A(X™) *nfldoncdegA( )=n—1

b) Si P est constant alors A(P) = 0 et sinon A(P) # 0 donc ker A = C, [X].
Soit P € C,, [X]. La restriction A de A au départ C, 11 [X] et & arrivée dans
C,, [X] est bien définie, de noyau de dimension 1 et en vertu du théoréme du rang

surjective. Il s’ensuit que A est surjective.
¢) Notons T € L(C[X]) défini par T'(P) = P(X + 1).

A =T — 1T donc
" n
A" — -1 n—k Tk
S (k)

k=0

Diffusion autorisée a titre entiérement gratuit uniquement - dD



[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015

Corrections 35

avec T*(P) = P(X + k) donc

AWH—04WiX4V<@P@+M

k=0

d) Si deg P < n alors A™(P) = 0 donc

3 <Z> (—1)kP(k) =0

k=0

Exercice 114 : [énoncd]
a) Si P € K, [X] alors ¢(P) € K, [X].
Sideg P =n+1 alors (n+1)P et X P’ ont méme degré (n+ 1) et méme coeflicient
dominant donc deg(n+1)P — XP’' <n+1puis (n+1)P — XP' € K,, [X].
Finalement VP € K, 11 [X], ¢(P) € K,, [X] et donc 'application ¢ est bien définie.
Pour A\, p € Ket tout P,Q € K41 [X] :
QAP+ pQ) = (n+ 1)(AP + pQ) — X (AP + pQ)" =
AM(n+1)P—-XP)+pu((n+1)Q — XQ')
et donc s@(AP:E 1Q) = Ap(P) + pe(Q).
b) Soit P = > apX* € K11 [X]. ¢(P) =0« Vk €{0,1,...,n+ 1},

k=0
(n+ 1)ar = kay.
Ainsi P € kerp < Vk € {0,1...,n},a, = 0. Par suite ker p = Vect(X"*1).

¢) Par le théoréme du rang
rg(p) = dimK,, 41 [X] —dimkerp =n+2 — 1 = dimK,, [X] donc ¢ est surjective.

Exercice 115 : [énoncd]
a) ¢ est linaire. Si deg P = k € N alors deg ¢(P) = k donc ker ¢ = {0}. Par suite
© est bijective.

b) (Po,...,P,) est une famille de polynomes de degrés étagés, c’est donc une base
de R, [X].
Puisque P,(X + 1) € R,, [X], on peut écrire P, (X + 1) = Ak Py

k=0

n

) Po(X +2)+ P(X +1)=2(X+1)"et P, (X +2)+ P (X +1) = > 2\, XF

k=0
donc A, = CF.
n—1 n—1
P,=2X"-P,(X+1)=2X"- Y CkP, — P, puis P, =X" -1 > CFP;.
k=0 k=0

Exercice 116 : [énoncé]

Soient A\, u € R et P, P, € R[X].

Ona P, = AQy +1r(P1), Pa = AQ2 + r(P2) avec degr(Py),degr(Pz) < deg A.
Donc APy + uPy = A(AQ1 + uQ2) + Ar(Py) 4+ pr(Ps) avec

deg(Ar(Py) 4+ ur(Py)) < deg A.

Par suite r(AP; + pPs) = Ar(Py) + pr(P2). Finalement r est un endomorphisme
de R [X].

De plus pour tout P € R[X], on a r(P) = A x 0+ r(P) avec degr(P) < deg A
donc 7(r(P)) = r(P). Ainsi r? = r. r est un projecteur.

VPeR[X],r(P)=0&< AP
donc kerr = AR [X].
VP e R[X], r(P) € R,—1 [X]

en posant n = deg A. Donc Imr C R,,_; [X].
Inversement,
VP eR,_1[X], r(P)=P €lmr

Donc R,,—1 [X] C Imr.
Finalement Imr = R,,_1 [X].

Exercice 117 : [énoncé]
Supposons ¢ solution.
Soit P € R[X]. Par division euclidienne de P par (X — a)(X — b) on peut écrire

P=X-a)(X-0)QX)+aX+p
En évaluant cette identité en a et b, on détermine « et 3

_ P(b) - P(a)
b—a

bP(a) — aP(b)

t =
ot f b—a

Par linéarité de ¢ on obtient
@(P) = p(aX +p) =aX + 3

car ¢ (X —a)(X = b)Q(X)) = 0.
Ainsi P(b) - Pla)
— P(a
P) = X
o(P) o +
ce qui détermine ¢ de fagon unique.
Inversement, on vérifie aisément que 'application ¢ définie sur R [X] par la

relation précédente est un endomorphisme de R [X] résolvant le probléme posé.

bP(a) — aP(b)
b—a
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Exercice 118 : [énoncé]

Posons T : P(X) — P(X +1) et A =T —1d endomorphismes de R [X].
A(P) = P(X + 1) — P(X).

On vérifie que si deg P < p alors deg A(P) < p—1.

Soit P € R, [X].
Par ce qui précéde, on a APT1(P) = 0.
Or )
P+
p+1 -
Ap+1 _ 1 p+1 ka
2 (") e

car T et Id commutent.
On en déduit

o~

pi: <p+ 1) (“1)*P(X + k) =0

k=0

et en particulier pour tout n € N,

p+1
3 (p Z 1) (~1)*P(n+k) =0

k=0

Exercice 119 : [énoncé]
a) Siu € S, et si deux polynémes P, Q) conviennent pour exprimer u,41 en
fonction de u,, alors

Yn € N, P(n) = Q(n)

Puisque le polynéme P — () posseéde une infinité de racines, c’est le polynéme nul
et donc P = Q.

b) S, CRN 0 € S, (avec P = 0).

Soient A\, pp € R et u,v € Sy,

Pour tout n € N, on obtient aisément

(AU A+ p0) g1 = a(Au 4 pv)y + (AP, + pPy)(n)

et donc Au + pv € S, avec Pyyypw = AP, + uP, € R, [X].

Sp est un sous-espace vectoriel de RN donc c’est un R-espace vectoriel.

c) Ci-dessus, on a obtenu Pxyu0 = AP, + pP, ce qui correspond a la linéarité de
I’application ¢.

u € ker ¢ si, et seulement si, P, = 0 ce qui signifie que u est une suite géométrique
de raison a.

On en déduit que la suite (a™),en est un vecteur directeur de la droite vectorielle
qu’est le noyau de ¢.

L’image de ¢ est R, [X] car I'application ¢ est surjective puisque pour tout
polynéme P € R [X], on peut définir une suite élément de S, par la relation

ug € Ret Vn € N upy1 = au, + P(n)

d) La famille (Ro, R1,...,Rp) est une famille de polynémes de degrés étagés de
R, [X], elle forme donc une base de R, [X]. Pour k € [0, p], il est facile de
déterminer une suite u = (u,) € Sp vérifiant S, = Ry, car

Upt1 = QU + Ri(n) © tupir — (n+ 1)k = a(u, — nk)
Ainsi la suite

U,Z’I’Ll—>nk

convient.
Considérons alors la famille formée des suites

vin s a et vy cn e n® avec k € [0, p]

Supposons
AV A+ Xgvg + -+ Apup, =0

En appliquant ¢, on obtient
AoRo+- -+ AR, =0

donc A\p = ... = A, = 0 puis la relation initiale donne A = 0 car v # 0.
La famille (v, vo, ..., v,) est donc libre.
De plus, en vertu de la formule du rang

dimSp:dimker¢+rg¢):1+(p+1) =p+2

donc la famille (v,vg, ..., vp) est une base de .Sy,
e) En reprenant les notations qui précédent, on peut écrire

U = AU+ AgUg + A1V
On a
P, =XRy+ MR =-2X+7

Puisque Ry = —1 et Ry =1 — X, on obtient A\ = 2 et \g = —5.
Par suite
U, = A2" +2n—5
Puisque wyp = —2, on obtient A = 7.
Finalement
U, =32"+2n -5
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Exercice 120 : [énoncé]

a) Supposons que H est un supplémentaire commun & F; et F5.

Considérons la projection p sur F; parallelement a H. Par le théoreme du rang, p
induit par restriction un isomorphisme de tout supplémentaire de noyau vers
I'image de p. On en déduit que F; et Fy sont isomorphes.

b) En dimension finie, la réciproque est vraie car I'isomorphisme entraine ’égalité
des dimensions des espaces et on peut alors montrer 1’existence d’un
supplémentaire commun (voir l'exercice d’identifiant 181)

C’est en dimension infinie que nous allons construire un contre-exemple.

Posons E = K[X] et prenons F} = E, F; = X.E. Les espaces F; et F» sont
isomorphes via l'application P(X) — X P(X). Ils ne possédent pas de
supplémentaires communs car seul {0} est supplémentaire de F et cet espace
n’est pas supplémentaire de F.

Exercice 121 : [énoncé]

Notons que Imf C ker f car on suppose f2 = 0.

(=) Siz €ker f alors x = (fog)(x)+0 € Imf donc Imf = ker f.

(<) Soient F' un supplémentaire de Imf = ker f dans E. Par le théoréme du rang

dim F' = n — dimker f = dim Im f

L’application h = fjp : F' — Imf est un isomorphisme car elle est linéaire entre
deux espaces de dimensions finies égales et injective car ker h = F Nker f = {0g}.
Soit g € L(F) déterminé par

Gms =h""et g =0

On a
Vo elmf, (fog+gof)(z)=(fog)(z) = (foh !)(z)=x
car f2=0.
et
Ve e F, (fog+gof)z)=(gof)z)=h""(f(z)) ==
car g = 0.

On en déduit fog+go f =1dg.

Exercice 122 : [énoncé]

(<) ok

(=) Supposons Img C Imf. Soit H un supplémentaire de ker f dans E. f réalise
un isomorphisme ¢ de H vers Imf.

Lo ¢g. L’application h est bien définie car g est & valeurs dans

L est définie sur Imf. De plus, h est linéaire par composition et

foh=fop log

Posons h = ¢~
Img C Imf et ¢~

1 1

Puisque ¢! prend ses valeurs dans H, fo o™t = pop~! = Idy,s puis

foh:ldlmfog:g

Exercice 123 : [énoncé]

(«=) ok

(=) Supposons ker f C ker g. Soit H un supplémentaire de ker f dans E. f réalise
un isomorphisme de H vers Imf noté f;g. Soient K un supplémentaire de Im f
dans E et h € L(F) déterminé par

h[Imf :gOfFHl et h[K =0

(ou n’importe quelle autre application linéaire).
Pour tout z € ker f,

g(a) = 0= (ho )(x)

et pour tout x € H,

(ho f)(x) = h(fiu(x) = g(fig (fiu(2) = g(z)

Les applications g et h o f coincidant sur deux sous-espaces vectoriels
supplémentaires, elles sont égales.

Exercice 124 : [énoncé]

Si Imv ¢ Imu, il n’y a pas de solution.

Supposons Imv C Imu. Soit H un supplémentaire de ker u dans E. u|y réalise un
isomorphisme de H vers Imu. Tout f € L(F) s’écrit de maniére unique
f=Ffi+fravec fi =pgofetfo=preuof.
uof=veuofi=veugofi=ve fi :(u|H)_1ov.

Les solutions de 1’équation sont les f = (u‘H)*l ov+ fy avec fo € L(E, keru)
quelconque.
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