Une petite référence Python

(mise & jour la plus récente: 11 novembre 2015)

Les nouveaux programmes des CPGE scientifiques (rentrée 2013) comportent un enseignement d’informatique pour tous,
et prévoient notamment l'utilisation du langage Python.

Cette introduction se concentre sur les questions prioritaires qui se posent aux débutants en Python : quelle est I'idée
générale, quels sont les types de données, les structures de contrdle, etc. Elle n’aborde pas des points importants :
programmation objet, construction d’interfaces graphiques, utilisation du module numpy, etc.

La version la plus récente de ce texte est disponible sur le site mathprepa.fr
Ce document est mis & disposition selon les termes de la licence Creative Commons :

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.fr

Pour toute suggestion, on peut me contacter & mon adresse électronique académique.

Jean-Michel Ferrard
Mathématiques, lycée Saint-Louis
44 Boulevard Saint-Michel,
75006, Paris

jean-miche.ferrard @ac-paris.fr

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Python
jean-miche.ferrard@ac-paris.fr mathprepa.fr 1/ 76

http://www.mathprepa.fr
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.fr
mailto:jean-miche.ferrard@ac-paris.fr
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

Table des matiéres

Premiers pas avec Python

1.1 Liens de téléchargement o L e
1.2 Dapplication Idle 0 v i e e e e e e e e e
1.3 Premiers essais avec Idle en mode « calculatrice » L L Lo
1.4 Variables : initialisation avant utilisation L L
1.5 Variables : affectations simultanées L
1.6 Le séparateur d'instructions «;»o
1.7 Noms de variables et mots TéSErves L e e e e e e e e e e e
1.8 Quelques fonctions intégrées L
1.9 La fenétre d’édition dans 'application Idle i
1.10 Importer un module personnel en mode interactif Lo
1.11 Importation simultanée de plusieurs modules personnels L.

Types numériques, comparaisons, intervalles

2.1 Quelques types (classes) de base
2.2 Opérations entre types NUMETIQUES v vttt v it et e e e e e e
2.3 Les opérateurs avec assignationo e
2.4 Les fonctions mathématiques du module math
2.5 Lemodule cmath L e
2.6 Arithmétique des entiers L e
2.7 Valeurs booléennes et comparaiSOnso e e
2.8 Egalité structurelle et égalité physique
Initiation a la programmation Python

3.1 Entrée au clavier (input) et affichage a Pécran (print)
3.2 Nécessité de délimiter des blocs d’instructions L oL
3.3 L’importance fondamentale de 'indentation en Python
3.4 Branchements conditionnels if...elif...else...) e
3.5 Expressions conditionnelles oL L e
3.6 Répétitions conditionnelles (while) L
3.7 Notion d'intervalle L
3.8 Répétitions inconditionnelles (boucles for) L Lo
3.9 Dinstruction pass L

Ecrire des fonctions Python

4.1 La valeur None, et 'instruction return e e e e e
4.2 Tespace de noms global e e
4.3 L’espace de noms local d’une fonction e e
4.4 Remarques sur les espaces de noms emboités Lo
4.5 Paramétres positionnels ou nommés, valeurs par défauto o000
4.6 Rattrapage des exceptions Lo
4.7 Fonctions lambda oL e e
4.8 Documentation des fonctions

Les séquences (chaines, tuples, listes)

5.1 Propriétés communes aux séquences (hors “mutations”) Lo
5.2 Séquences mutables ounon L L e e e
5.3 Listes définies “en compréhension”
5.4 Opérations de mutation de listes L
5.5 Lestuples o e
5.6 Les chaines de caractéres L L e

— =
OO O 30D U R

—
=~

18
18
18
19
20
21
22
22
24

26
26
27
28
29
29
30
30
31
31

32
32
33
34
36
37
38
40
40

TABLE DES MATIERES

TABLE DES MATIERES

5.7 Méthodes importantes sur les chaines (split, join, format) 49
5.8 Objets de type bytes et bytearray e 50
6 Dictionnaires, ensembles, itérateurs, générateurs, fichiers 52
6.1 Dictionnaires e e e e e e 52
6.2 Ensembles e e e 54
6.3 Ttérateurs L e e e 56
6.4 Fonctions utiles sur les itérateurs L 58
6.4.1 La fonction enumerate L. 58
6.4.2 Lafonction zip L e 58
6.4.3 Les fonction any et all e e 58
6.4.4 La fonction reversed e e e 58

6.5 Geénérateurs (instruction yield) L e 59
6.6 Fichiers e 61
7 Quelques fonctions de quelques modules... 64
7.1 Lemodule random e e e e e e 64
7.2 Lemodule decimal L e e e 65
7.3 Lemodule fractions L e e e 66
74 Lemodule string L 66
7.5 Lemodule itertools e e e 67
7.6 Les modules operator et functools L. L e 68
7.7 Lemodule time L e e e 68
7.8 La classe Counter du module collections vttt 70
7.9 La classe deque du module collections. Lo 71
7.10 Le module heapq L e 72
7.11 Le module bisect e e e 73
712 Le module copy 74
7.13 Autres modules et adresses utiles 75

http://creativecommons.org/licenses/by-sa/3.0/fr/

jean-miche.ferrard@ac-paris.fr

mathprepa.fr

une petite référence Python

3/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

Chapitre 1

Premiers pas avec Python

1.1 Liens de téléchargement

Tout commence par une visite du site officiel du langage Python : http://www.python.org
On suit le lien DOWNLOAD puis on installe les versions les plus récentes :
— d’une part Python2 : http://www.python.org/download/releases/2.7.4/ (datée du 15 mai 2013)
— d’autre part Python3 : http://www.python.org/download/releases/3.3.2/ (datée du 15 mai 2013)
Il est préférable d’installer a la fois Python2 et Python3 (il y a quelques incompatibilités, les plus notables concernant la
fonction print et la division en nombres entiers).
Chaque installation produit un dossier dans lequel on trouvera une application nommeée Idle.

Dans toute la suite de ce document on utilisera Python3.

1.2 L’application Idle

L’application Idle (Integrated DeveLopment Environment) permet a la fois :
— d’utiliser Python en mode interactif (entrer des commandes, recevoir une réponse, recommencer. . .)

— d’écrire et sauvegarder des programmes (on dit aussi des scripts ou mieux des modules) puis de les exécuter.

L’éditeur de 'application Idle propose en outre les fonctionnalités suivantes :
— coloration syntaxique (certains éléments du langage regoivent une couleur spécifique)
— autocomplétion (avec la touche Tab), rappels syntaxiques (a la parenthése ouvrante d’une fonction)
— indentation automatique aprés le caractére « : »
les blocs de langage sont reconnus par Python en fonction de leur niveau d’indentation (c’est-a-dire de leur décalage
par rapport a la marge gauche). Le passage a la ligne apreés le caractére « : » signifie 'ouverture d’un nouveau bloc

(qui sera automatiquement indenté). La fin d’un bloc de niveau n + 1 (et donc le retour au bloc de niveau n qui le
contient) est obtenue par un “effacement arriére” aprés retour a la ligne.

— débogueur intégré : possibilité de placer des points d’arrét, de poursuivre ’exécution du script en mode “pas & pas”
et de faire le point a chaque étape (ga n’est quand méme pas le point fort de Idle).
Il existe de nombreux environnements de développement pour Python, plus ou moins sophistiqués, mais on se contentera
ici d’utiliser 'application Idle, parfaitement adaptée a 'apprentissage du langage Python.
On lance donc (d’une fagon qui dépend du systéme d’exploitation utilisé) ’application Idle.
Un message d’information apparait, puis le curseur se positionne juste aprés le « prompt » représenté ici par >>>
Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 01:25:11)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "copyright", "credits" or "license()" for more information.
>>> _

On trouvera une aide compléte sur Idle a l'adresse suivante : http://docs.python.org/3.3/1library/idle.html

http://www.python.org
http://www.python.org/download/releases/2.7.4/
http://www.python.org/download/releases/3.3.2/
http://docs.python.org/3.3/library/idle.html

1.3 Premiers essais avec Idle en mode « calculatrice » CHAPITRE 1 : Premiers pas avec Python

1.3 Premiers essais avec Idle en mode « calculatrice »

A T'invite du « prompt » de I’application Idle, on peut commencer par entrer et évaluer des expressions trés simples (en
général sur une seule ligne) avec retour au prompt aprés évaluation.

Tout ce qui suit le caractére # est considéré comme un commentaire.

>>> 2xx100 # ici on calcule 2 élevé a la puissance 100
1267650600228229401496703205376
>>>

NB : pour I'exponentiation, on utilisera ** et non ~ (qui désigne en fait le « ou exclusif »).
Dans toute la suite, on omettra le caractére >>> final.

Les capacités d’édition dans la boucle interactive sont limitées. On ne peut pas, par exemple, placer le curseur sur une
ligne déja évaluée pour la modifier ou I’évaluer & nouveau. En revanche, on peut copier le contenu d’une ligne déja évaluée
et « coller » la copie de cette ligne au niveau du prompt.

Astuce : si on place le curseur sur une ligne déja ancienne (donc a priori inaccessible sauf par copier-coller), un simple
appui sur « Entrée » renvoie le contenu de cette ligne (ou celui de la zone sélectionnée) au niveau du prompt.

Astuce bis : les combinaisons de touches Ctr1+P et Ctrl+N (ou A1t+P et A1t+N) permettent de circuler dans I’historique
des lignes de commande déja entrées (P pour Previous, N pour Next).

Le mode interactif permet d’utiliser Python comme une calculatrice. Les parenthéses permettent de controler 'ordre des
opérations arithmétiques qui, sinon, sont soumises aux régles de priorité habituelles.

Astuce ter : il est possible de se référer au résultat du calcul précédent avec le caractére de soulignement _ (mais ¢a n’est
valable qu’en mode interactif) :

>>> 111%%2 # éléve 111 au carré

12321

>>> k%2 # éléve le résultat précédent au carré
151807041

>>> _*x%2 # éléve le résultat précédent au carré
23045377697175681

La présence d’un point décimal force le passage en mode « virgule flottante » :

>>> 2xx100 # 2 a la puissance 100, calcul exact
1267650600228229401496703205376
>>> %2 # le double du résultat précédent, en mode flottant

2.535301200456459e+30

Il est possible d’entrer une expression longue de plus d’une ligne (ou de forcer des passages a la ligne ne devant pas étre
interprétés comme des demandes d’évaluation) avec le caractére \ (mais cela devrait rester exceptionnel).

>>> 2Ceci est une chaine de caractéres,\

entrée sur plusieurs lignes,\

mais affichée sur une seule!’

’Ceci est une chaine de caractéres, entrée sur plusieurs lignes, mais affichée sur une seule!’

Bien str, on peut toujours faire des erreurs (ici une division par 0, c’est ballot) :

>>> 1/(1+2-3)
Traceback (most recent call last):
File "<pyshell#135>", line 1, in <module>
1/(1+2-3)
ZeroDivisionError: division by zero

NB : le numéro #135 n’est pas significatif ici, il est en fait incrémenté a toute nouvelle entrée interactive.

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 5/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

1.4 Variables : initialisation avant utilisation CHAPITRE 1 : Premiers pas avec Python

1.4 Variables : initialisation avant utilisation

Pour mémoriser des valeurs, on les associe (on les lie, on les affecte, on les assigne) a des identificateurs.

Le couple identificateur/valeur est appelé une variable.

>>> a = 2013 # on initialise la variable (nommée a) avec la valeur 2013
>>> ax(at+1)*(at+2) # on calcule 1’expression a(a+ 1)(a+2)
8169176730

Quand une variable a été créée, et si on évalue une expression contenant ’identificateur correspondant, celui-ci est remplacé
par la valeur de la variable a ce moment précis (cette valeur peut bien stir changer au cours du temps).

On note que lopérateur d’affectation (d’une valeur a un identificateur) est le signe =

Pour tester I’égalité de deux valeurs (résultat True si oui, False si non), on utilisera Uopérateur ==

>>> a =6 # ici on donne la valeur 6 a la variable a
>>> a == # puis on teste si le contenu de a est égal a 7
False

On gardera toujours a l’esprit la chronologie des affectations :

>>> x =1 # d’abord on donne & x la valeur 1

>>> y = x # maintenant y et x ont la méme valeur 1
>>> x =0 # finalement on donne a z la valeur 0
>>> y # mais y vaut toujours 1

1

Le nom d’une variable peut étre arbitrairement long, et Python différencie les majuscules des minuscules.

>>> nom_un_peu_long = 1234

>>> Nom_Un_Peu_Long = 5678

>>> Nom_Un_Peu_Long - nom_un_peu_long
4444

Python n’est pas un outil de calcul formel. Il faut donc toujours initialiser une variable avant de 1'utiliser :

>>> a = 10 # on initialise la variable a avec la valeur 10
>>> a + x # on demande la valeur ¢+ mais on n’a jamais initialisé la variable
Traceback (most recent call last):
File "<pyshell#134>", line 1, in <module>
atz
NameError: name ’z’ is not defined

Une méme variable (en fait un méme identificateur) peut étre successivement lié a des valeurs de types différents (entiers,
chaines de caractére, etc.). Il n’y a donc pas lieu de préciser au préalable le type de valeur que 1'on désire placer dans telle
ou telle variable (tout cela est réalisé au moment de 1’évaluation : c’est ce qu’on appelle le typage dynamique).

>>>n = 1234 # 1’identificateur n est d’abord 1ié & une valeur entiére

>>>n +n # il s’agit ici bien slir de 1’addition des entiers

2468

>>> n = "1234" # 1’identificateur n est maintenant 1ié & une chaine de caractéres
>>>mn +n # 1’opérateur + est ici synonyme de concaténation

712341234°

>>>n = [1,2,3,4] # 1’identificateur n est maintenant 1ié & une valeur de type liste
>>>n +n # 1a encore, l’opérateur + est synonyme de concaténation (des listes)
[1,2,3,4,1,2,3,4]

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 6/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

1.5 Variables : affectations simultanées CHAPITRE 1 : Premiers pas avec Python

1.5 Variables : affectations simultanées

11 est possible d’effectuer simultanément plusieurs affectations de variables (de méme type ou non) :

>>> a, b, ¢ =5, ’bonjour! ’, 3.14 # ici a regoit 5, b regoit ’bonjour! ’, c recoit 3.14

>>> a * b # le résultat est a (donc 5) fois la chaine ’bonjour! °
’bonjour! bonjour! bonjour! bonjour! bonjour! ’

>>> a + ¢ # la somme de 1l’entier a et du flottant ¢ est un flottant
8.14

On peut initialiser plusieurs variables avec une méme valeur en utilisant des = successifs.

>>x=y=2z-=1 # initialise les trois variables z,y,z & la valeur 1
>>> x, y, z # forme le triplet (z, y, 2)

(1, 1, 1

>>>a, b=c, d=3, 8 # pose a=c=3, et b=d=28

>>> (a, b) = (c, 4d) = (3, 8) # idem, mais c’est plus lisible comme ca

>>> a, b, c, d # forme le quadruplet (a, b, ¢, d)

(3, 8, 3, 8

L’affectation simultanée est un bon moyen d’échanger le contenu de deux variables :

>>>x, y=3,7 # on donne a z la valeur 3, a y la valeur 7
>>> x, y =5, X # on échange les valeurs de z et y

>>> [x, y] # on forme ici la liste des valeurs x puis y
[7, 3]

On peut bien str effectuer toute permutation sur un nombre quelconque de variables.

>>>a, b, c,d, e=1, 2, 3, 4, 5

>>>a, b, c,d, e=b, c, d, e, a # permutation circulaire sur a, b, ¢, d, e

>>> a, b, c, d, e # forme le tuple (a, b, ¢, d, ¢) des nouvelles valeurs
(2, 3, 4, 5, 1)

Comme dans toute évaluation, l'expression qui suit le signe = est évaluée en premier (donc avant que la premiére des
affectations ne soit réalisée).

>>>u, v=2,3 # ici u regoit 2, et v regoit 3

>>> u, v = v¥v, ukxu # & gauche de =, lire la séquence 9, 4 (avant toute affectation)
>>> u, v # donc ne pas croire qu’on a effectué u=11v2=9 puis v=u?2=28l1
9, 4

1.6 Le séparateur d’instructions «; »

Il est toujours possible d’évaluer plusieurs instructions consécutivement sur une méme ligne (et par exemple plusieurs
affectations de variables). Il suffit pour cela de les séparer par le caractére «; ».

>>>u =2; v=3 # ici u regoit 2, puis v regoit 3

>>> u = vkv; vV = uxu # ensuite u regoit v2=19, puis v regoit uw?=381
>>> u, v

(9, 81)

1.7 Noms de variables et mots réservés

Comme nom de variable, on peut utiliser tous les identificateurs de son choix, & 'exception de quelques mots qui sont
strictement réservés par le langage, et donc voici la liste :

and | assert | break | class | continue def del elif else | except
exec | finally for from | global if import in is lambda
not or pass | print raise return try while | yield

Toute tentative d’utiliser I'un de ces mots réservés comme identificateur se traduit par une erreur de syntaxe (il est a
noter que l'application Idle affiche les mots réservés avec une couleur spéciale).

http://creativecommons.org/licenses/by-sa/3.0/fr/ une [)etite référence I)ytIIOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 7/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

1.7 Noms de variables et mots réservés CHAPITRE 1 : Premiers pas avec Python

>>> lambda = 12345 # attention lambda est un mot réservé du langage
SyntaxError: invalid syntax
>>>

En revanche, les autres mots du langage (et principalement les fonctions chargées en mémoire lors du lancement de
l'interpréteur Python) peuvent étre “surchargées” (en général involontairement) sans provoquer d’erreur (du moins au
début!). C’est le cas, pour prendre un exemple, de la fonction len qui renvoie la longueur d’une chaine de caractéres.

>>> len(’abracadabra’) # la chaine de caractéres est de longueur 11

11

>>> len = 5 # volontairement ou non, on pose len =5

>>> len(’abracadabra’) # si on demande & nouveau la longueur d’une chaine, erreur!
<...o

TypeError: ’int’ object is mnot callable

Dans I'exemple précédent, Python nous dit que len est maintenant un objet de type int et qu’on ne peut pas I’appeler
c’est-a-dire I'utiliser comme nom d’une fonction : il n’est plus callable. Voici maintenant une situation ou il ne s’agit plus
d’une erreur a l’exécution, mais d’une erreur logique (& moins qu’on ne sache précisément ce qu’on veut faire). On définit
en effet une fonction len qui remplace la fonction initiale (rendant donc l'original inaccessible) :

>>> def len(x): return(5) # on définit une fonction len, renvoyant constamment la valeur 5

la ligne vide termine la définition de la fonction
>>> len(’abracadabra’) # la fonction initiale de longueur de chaine est maintenant inaccessible
5

NB : on verra plus loin comment définir des fonctions beaucoup plus élaborées (et intelligentes) avec Python!

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 8/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

1.8 Quelques fonctions intégrées CHAPITRE 1 : Premiers pas avec Python

1.8 Quelques fonctions intégrées

Au lancement de l'application Idle (donc de linterpréteur Python), un certain nombre de fonctions sont automatique-
ment chargées en mémoire (finalement pas si nombreuses : les fonctions plus spécialisées sont accessibles en important
explicitement des modules, comme on le verra plus tard). La liste des fonctions intégrées (built-in functions) a Python est

consultable & ’adresse suivante :

http://docs.python.org/3.3/library/library/functions.html

Voici une liste trés partielle de ces fonctions (uniquement celles qui ont un sens dans la perspective d’une premiére
introduction au langage Python) :

Function | Signification Exemples

abs valeur absolue (module) | abs(-5) = 5 ; abs(3+4j) = 5.0

bin chaine binaire bin(1096) = '0b10001001000' ; bin(2**10-1) = 'Obi1111111111'

bool valeur Vrai/Faux bool(1) = True ; bool(-3) = True ; bool(0) = False

chr caractére de code donné | chr(35) = '#' ; chr(65) = 'A' ; chr(97) = 'a'

complex forme un complexe complex(1l) = (1+0j) ; complex(3,4) = (3+4j)

divmod quotient /reste entiers divmod(42,5) = (8,2) ; divmod(42.,5) = (8.0, 2.0)

eval évalue une chaine eval('2x5') = 10 ; eval('2'x5) = 22222 ; eval(2*'5') = 55

float convertit en « flottant » | float(123) = 123.0 ; float(2%*x100) = 1.2676506002282294e+30

help aide sur un nom help(divmod) = ... divmod(z, y) -> (div, mod)

hex chaine héxadécimale hex(123456789) =- 'Ox75bcd15' ; hex(2**15-1) = '0Ox7fff'

input entrée au clavier n = int(input('Choisissez un nombre entier: '))

int convertit en entier int(3.7) = 3 ; int(-3.7) = -3 ; int("110",2) = 6

len longueur d’'un objet len('abcd') = 4 ; len([2,4,6]) = 3 ; len(range(3,8)) = 5

max calcul de maximum max(3,9,2) = 9 ; max([3,9,2]) = 9 ; max('a','B','Z') = 'a'

min calcul de minimum min(3,9,2) = 2 ; min([3,9,2]) = 2 ; min('a','B','Z') = 'B'

ord code d’un caractére ord('#') = 35 ; ord('A') = 65 ; ord('a') = 97

pow calcul de puissance pow(2,5) = 32 ; pow(0,0) = 1 ; pow(l6,1/2) = 4.0

print affiche a 'écran print(2+3) = (affiche 5) ; print('2+3') = (affiche '2+3')

rangs intervalle de valeurs range(3,11) = %ntervalle de valeurs 3,4,5,6,7,8,9,10
range(3,11,2) = intervalle de valeurs 3,5,7,9

repr convertit en chaine Le résultat est destiné a étre réutilisable par 'interpréteur Python

round arrondi round(2.5) = 2 ; round(2.6) = 3 ; round(1.456789,2) = 1.46

sorted | copie trie d'un objet zzg::gf;ifiﬁi) e [1b230581 e

str convertit en chaine Le résultat est destiné a étre affiché de fagon naturelle

sum calcul d’une somme sum([1,2,3]) = 6 ; sum([1,2,3],1000) = 1006

e | e) i | FER5) = Slane S wpate S e e

Remarque : les chaines de caractéres sont indifféremment encadrées par des guillemets simples ' ou doubles ". L’utilisation
de guillemets simples (resp. doubles) permet d’incorporer des guillemets doubles (resp. simples) comme un caractére
normal de la chaine.

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 9/ 76

http://docs.python.org/3.3/library/library/functions.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

1.9 La fenétre d’édition dans 'application Idle CHAPITRE 1 : Premiers pas avec Python

1.9 La fenétre d’édition dans I’application Idle

Dés qu’on commence & écrire des programmes de quelques lignes, on ne peut se contenter du mode interactif de I’application
Idle (le “Python Shell”). Pour sauvegarder son travail, le modifier, I'utiliser (le “lancer”), on utilise la fenétre d’édition de
I’application Idle. Voici comment tout cela peut se passer :

— on ouvre une nouvelle fenétre d’édition (File/New Window)

— on y écrit une succession de définitions et d’instructions, dans l'ordre ot on pourrait les entrer en mode interactif
— on sauvegarde le document avec l'extension .py (sans étre obligatoire, cette extension est recommandée)

— on peut tester la syntaxe du module (Run/Check Module)

— on lance exécution du module (Run/Run Module), ce qui raméne dans la fenétre du mode interactif (Python Shell)

— & tout moment, on peut revenir dans la fenétre d’édition, modifier le module, le lancer & nouveau (I’application Idle
nous suggérant de sauvegarder les modifications)

Quand on lance exécution du script (du module) :

— ¢’il ne I’était pas déja, le dossier out se trouve le module devient le dossier courant de Python

— les instructions qui composent le module sont évaluées dans 'ordre, comme si elles étaient entrées en mode interactif

— les variables qui sont créées au “top-level” du module sont maintenant considérées comme des variables globales (leur
contenu reste donc accessible aprés I’évaluation du module)

— T’évaluation du module (avec Run/Run Module) relance l'interpréteur Python, effacant donc les définitions qui préexis-
taient a cette évaluation

— en particulier, on peut ouvrir plusieurs modules sauvegardés préalablement, mais avec cette méthode on ne pourra

exécuter qu'un seul d’entre eux (si on veut utiliser conjointement plusieurs modules sauvegardés dans des fichiers
différents, on utilisera l'instruction import)

Voici par exemple & quoi pourrait ressembler un module contenant la définition d’une fonction de tri d’une liste (par la
méthode d’insertion), et permettant de tester cette fonction sur un exemple simple (les explications concernant tel ou tel
aspect de la programmation seront abordées plus tard) :

def tri_insertion(L, steps=True): # tri par insertion d’une liste L
''""trie L par insertions successives docstring de la fonction
steps=False n'affiche pas les étapes'''

=+

for i in range(1,len(L)): # on va insérer 1’élément n°i
j =1; v = L[i] # v = valeur & insérer, j position d’insertion
while j > 0 and L[j-1] > v: # tant que 1’élt a gauche de L[j] est > v
L[j] = L[j-11; j -= 1 # décale cet élt vers la droite et actualise j
L[j]l = v # insére la valeur v en position j
if steps: # si steps=True, affiche étape

print ("Aprés étape n°{}".format(i),L)

from random import sample # importe la fonction sample du module sample
L = sample(range(10,100),10) # 10 nombres différents de deux chiffres
print("Liste & trier:",L,"\n") # affiche la liste & trier

input (" (Appuyer sur Entrée pour trier)\n")

tri_insertion(L) # trie la liste L (sur place)

print("Liste aprés le tri:",L) # affiche la liste triée

Quelques remarques sur le module précédent :
— les lignes vides ne sont pas significatives.
— les commentaires, facultatifs, ne sont la que pour favoriser la relecture. Ils sont en revanche utiles dans la phase de
mise au point pour masquer/démasquer certaines lignes de codes.
— on remarquera les caractéres \n, destinés a ajouter des sauts de ligne dans les instructions print.

— la fonction tri_insertion est munie d’un argument facultatif steps, avec la valeur par défaut True, permettant
de spécifier si on souhaite afficher les étapes de la procédure de tri.

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 10/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

1.9 La fenétre d’édition dans 'application Idle CHAPITRE 1 : Premiers pas avec Python

Aprés avoir sauvegardé ce module dans le fichier nommé triparinsertion.py, on lance son exécution depuis la fenétre
de léditeur (choix Run/Run Module). Voici ce qu’on peut voir alors dans la fenétre Python Shell (on est donc revenu en
mode interactif). La ligne RESTART au début indique bien que l'interpréteur Python a été réinitialisé.

>> RESTART
>>>

Liste & trier: [85, 65, 26, 42, 32, 50, 40, 83, 19, 60]
(Appuyer sur Entrée pour trier)

aprés étape n°l [65, 85, 26, 42, 32, 50, 40, 83, 19, 60]
aprés étape n°2 [26, 65, 85, 42, 32, 50, 40, 83, 19, 60]
aprés étape n°3 [26, 42, 65, 85, 32, 50, 40, 83, 19, 60]
aprés étape n°4 [26, 32, 42, 65, 85, 50, 40, 83, 19, 60]
aprés étape n°5 [26, 32, 42, 50, 65, 85, 40, 83, 19, 60]
aprés étape n°6 [26, 32, 40, 42, 50, 65, 85, 83, 19, 60]
aprés étape n°7 [26, 32, 40, 42, 50, 65, 83, 85, 19, 60]
aprés étape n°8 [19, 26, 32, 40, 42, 50, 65, 83, 85, 60]
aprés étape n°9 [19, 26, 32, 40, 42, 50, 60, 65, 83, 85]

Liste aprés le tri: [19, 26, 32, 40, 42, 50, 60, 65, 83, 85]
>>>

Apreés I'exécution de ce module, toutes les définitions qu’il contient restent disponibles, notamment la fonction tri_insertion,
et la fonction sample importée depuis le module random (qui fait partie de la libraire standard).

Nous avons muni la fonction tri_insertion d’une docstring, que nous pouvons afficher avec help (nous voyons a cette
occasion que, dans le mode interactif, nous sommes dans un module prédéfini dont le nom est __main__) :

Help on function tri_insertion in module __main__:
tri_insertion(L, steps=True)
trie L par insertions successives

steps=False n’affiche pas les étapes

On peut alors utiliser la fonction sample pour créer une nouvelle liste, que nous trions avec la fonction tri_insert (mais
cette fois-ci en spécifiant I'argument steps=False pour ne pas voir s’afficher les étapes du tri).

>>> L = sample(range(100,1000),15); L # 15 entiers différents & trois chiffres

[620, 230, 185, 842, 268, 574, 110, 515, 233, 331, 760, 231, 707, 663, 181]

>>> tri_insertion(L,steps=False) # trie L par insertion, sans afficher les étapes
>>> L # la liste L a été triée sur place

[110, 181, 185, 230, 231, 233, 268, 331, 515, 574, 620, 663, 707, 760, 842]

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 11/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

1.10 Importer un module personnel en mode interactif CHAPITRE 1 : Premiers pas avec Python

1.10 Importer un module personnel en mode interactif

Nous avons besoin ici de quelques explications techniques, mais nous nous limiterons a ’essentiel.

On a vu qu'il est possible, dans I'application Idle, d’importer des modules intégrés (par exemple le module math), ou
seulement certaines fonctions d’un module (par exemple la fonction sample du module random), soit en mode interactif,
soit dans un module personnel (comme le module triparinsertion.py de la section précédente).

Quand on importe un module, Python doit pouvoir le trouver. Pour cela, il cherche dans le “répertoire courant”, et sinon
il utilise une liste (appelée Search Path) indiquant les dossiers dans lesquels il doit effectuer cette recherche : Python
parcourt ces dossiers dans 'ordre ou ils figurent dans cette liste, et il charge le module spécifié dés qu’il le trouve.

Bien str, c’est sans probléme pour les modules intégrés & Python, car leurs dossiers sont automatiquement ajoutés au
Search Path. Pour connaitre le contenu du Search Path, on utilise 'attribut path du module sys (nous avons ici
considérablement raccourci le résultat). Par ailleurs la fonction getcwd du module os donne le répertoire “courant”.

Voila ce que nous obtenons aprés avoir redémarré l'interpréteur Python par Ctrl-F6 dans U'application Idle (le systéme
utilisé est ici un Mac tournant sous Mountain Lion : les utilisateurs d’autres systémes d’exploitation traduiront) :

>>> import sys, os # importe les modules sys et os

>>> sys.path # demande le Search Path
[>’, ’/Users/jmf/Documents’, ’/Library/Frameworks/Python.framework/Versions/<...>]

>>> os.getcwd () # demande le répertoire courant
’/Users/ jmf /Documents’

On remarque que la premiére chaine de cette liste est vide, ce qui est caractéristique du fait que l'interpréteur a été
invoqué en mode interactif (et dans ce cas, cette chaine vide indique simplement le “répertoire courant”).

Nous allons reprendre I’exemple du module écrit dans la section précédente, que nous supposons sauvegardé sous le
nom triparinsertion.py et placé dans le sous-dossier python-modulesperso du dossier Documents.

Quand on lance un module depuis le menu Run/Run Module de I'application Idle, le dossier ou se trouve ce module est
ajouté en téte du Search Path, et il devient le nouveau “répertoire courant”. Il est donc le premier dossier a étre exploré
par Python quand il est & la recherche du code source d’un module.

Apreés avoir ouvert triparinsertion.py dans ’éditeur de Idle et 'avoir lancé par Run/Run Module, on voit effectivement
que le dossier de ce module apparait en téte du Search Path, et qu’il est maintenant le “répertoire courant” :

>>> import sys, os # importe les modules sys et os

>>> sys.path
[’/Users/jmf/Documents/python-modulesperso’, ’/Users/jmf/Documents’, ’/Library/Frameworks/<...>’]

>>> os.getcwd()
> /Users/ jmf /Documents/python-modulesperso’

Si on peut importer les modules de la librairie standard, il doit étre possible d’importer ceux que nous avons écrits. Mais
pour cela, ces modules doivent se trouver dans le “dossier courant”, ou dans un de ceux listés dans le Search Path.

Essayons par exemple d’importer triparinsertion.py, en mode interactif et aprés avoir redémarré 'interpréteur Python.

>>> RESTART
>>> import triparinsertion # pas d’extension py dans 1’import de modules!
Traceback (most recent call last):
File "<pyshell#76>", line 1, in <module>
import triparinsertion
ImportError: No module named 'triparinsertion'

Le message d’erreur est di au fait que nous venons de redémarrer Python en mode interactif, donc que le Search Path
commence & nouveau par une chaine vide (en tout cas, il ne contient plus le dossier exact ou se trouve notre module).

>>> import sys, os # importe les modules sys et os

>>> sys.path # demande le Search Path
[>’, ’/Users/jmf/Documents’, ’/Library/Frameworks/Python.framework/Versions/<...>]

>>> os.getcwd() # demande le répertoire courant
> /Users/jmf /Documents’

Il existe des solutions pour modifier le Search Path de Python, d’une fagon temporaire (jusqu’au prochain démarrage
de l'interpréteur) ou permanente (notamment en modifiant la variable d’environnement PYTHONPATH ou en utilisant des
fichiers avec extension pth, mais ¢a dépasse le cadre de cette introduction & Python.

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 12/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

1.10 Importer un module personnel en mode interactif CHAPITRE 1 : Premiers pas avec Python

Un solution économique et radicale est de placer tous ses modules personnels dans un dossier qui figure par défaut dans
le Search Path, par exemple ici dans ’/Users/jmf/Documents’.

Une autre solution consiste & changer simplement le dossier courant, avec la fonction chdir du module os (le changement
de dossier s’effectue de fagon absolue ou relative par rapport au dossier courant) :

H >>> os.chdir(’python-modulesperso’) # passe dans le sous-dossier python-modulesperso

Le nouveau dossier de travail contient le module triparinsertion.py, que nous pouvons maintenant importer :

>>> import triparinsertion # rappel: ne pas mettre l’extension py ici
Liste & trier: [20, 30, 32, 53, 95, 36, 11, 44, 65, 92]

(Appuyer sur Entrée pour trier)

aprés étape n°1 [20, 30, 32, 53, 95, 36, 11, 44, 65, 92]
aprés étape n°2 [20, 30, 32, 53, 95, 36, 11, 44, 65, 92]
aprés étape n°3 [20, 30, 32, 53, 95, 36, 11, 44, 65, 92]
aprés étape n°4 [20, 30, 32, 53, 95, 36, 11, 44, 65, 92]
aprés étape n°5 [20, 30, 32, 36, 53, 95, 11, 44, 65, 92]
aprés étape n°6 [11, 20, 30, 32, 36, 53, 95, 44, 65, 92]
aprés étape n°7 [11, 20, 30, 32, 36, 44, 53, 95, 65, 92]
aprés étape n°8 [11, 20, 30, 32, 36, 44, 53, 65, 95, 92]
aprés étape n°9 [11, 20, 30, 32, 36, 44, 53, 65, 92, 95]

Liste aprés le tri: [11, 20, 30, 32, 36, 44, 53, 65, 92, 95]

L’exemple précédent appelle plusieurs remarques :

— Le contenu du module triparinsertion.py a été exécuté intégralement, comme s’il avait été ouvert puis lancé par
Run/Run Module depuis la fenétre d’édition de Idle : ce n’est pas forcément le but recherché, notamment si on souhaite
seulement importer la définition de la fonction tri_insertion (nous allons revenir sur ce point).

— une deuxiéme tentative d’importation ne donne cette fois-ci aucun écho a I’écran :

H >>> import triparinsertion
>>>

c’est normal dans la mesure ot Python sait déja que le module a été importé, et qu’il n’y a pas lieu de recommencer.
— sinous demandons le contenu de ’espace de nom global, nous avons la confirmation que le module triparinsertion.py

a bien été chargé en mémoire (on y trouve aussi la trace des modules importés os et sys); on ne voit pas la fonction

tri_insertion ici, car elle est en quelque sorte enfermée dans le module triparinsertion.py (A suivre) :

>>> globals()

{’__loader__’: <class ’_frozen_importlib.BuiltinImporter’>,

’triparinsertion’: <module ’triparinsertion’ from ’./triparinsertion.py’>,
’__package__’: None, ’__builtins__’: <module ’builtins’>, ’__name__’: ’__main__’,

>__doc__’: None, ’sys’: <module ’sys’ (built-in)>,

’os’: <module ’os’ from ’/Library/Frameworks/Python.framework/Versions/3.3/1ib/python3.3/0s.py’>}

— une autre fagon de confirmer la présence du module triparinsertion en mémoire est d’utiliser la fonction dir;
a part quelques noms réservés (encadrés par des) on y retrouve la liste L utilisée pour tester le module, la fonction
sample utilisée pour construire L (et importée du package random), et notre fonction tri_insertion.

>>> dir(triparinsertion)
[’L>, ’>__builtins__’, ’>__cached__’, ’__doc__’, ’>__file__’, ’__initializing_ _’, ’>__loader__’,
’__name__’, ’__package__’, ’sample’, ’tri_insertion’]

= -

— si on essaie d’utiliser la fonction tri_insertion directement, on est décu!

>>> tri_insertion([8,2,7,6,3,5,1,4])
< 002>
NameError: name ’tri_insertion’ is not defined

I’explication est la suivante : 'importation du module triparinsertion s’accompagne de la création d’un “espace de
noms”, dans lequel on trouve les noms des objets définis dans le module ; ces noms sont alors vus commes des variables
locales au module et sont ainsi protégés contre tout risque d’homonymie.

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 13/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

1.11 Importation simultanée de plusieurs modules personnels CHAPITRE 1 : Premiers pas avec Python

— pour utiliser la fonction tri_insertion, il faut donc “qualifier” son nom par celui du module dont elle est issue :

>>> triparinsertion.tri_insertion([8,2,7,6,3,5,1,4])
aprés étape n°l [2, 8, 7, 6, 3, 5, 1, 4]
aprés étape n°2 [2, 7, 8, 6, 3, 5, 1, 4]
aprés étape n°3 [2, 6, 7, 8, 3, 5, 1, 4]
aprés étape n°4 [2, 3, 6, 7, 8, 5, 1, 4]
aprés étape n°5 [2, 3, 5, 6, 7, 8, 1, 4]
aprés étape n°6 [1, 2, 3, 5, 6, 7, 8, 4]
aprés étape n°7 [1, 2, 3, 4, 5, 6, 7, 8]

— évidemment, c’est un peu contraignant... on peut raccourcir tout ¢a en utilisant un alias lors de I'importation :

>>> import triparinsertion as tpi # importe triparinsertion.py en lui donnant 1l’alias tpi
>> L = [8,2,7,6,3,5,1,4] # crée une liste de test

>>> tpi.tri_insertion(L,steps=False) # appelle tri_insertion avec son nom qualifié

>>> L # la liste a été triée sur place

[1, 2! 3, 4’ 5’ 6’ 7’ 8]

— ce qui est plus étonnant est que la fonction sample, qui fait partie du module intégré random, et qui a été importée
par notre module triparinsertion (alias tpi) appartient a celui-ci

>>> sample(range(10,100),10) # la fonction sample est inconnue dans 1’espace global
<002

NameError: name ’sample’ is not defined

>>> tpi.sample(range(10,100),10) # en revanche, elle est dans notre module
[46, 51, 20, 65, 80, 95, 87, 34, 96, 21]

— il reste une derniére possibilité, qui est d’utiliser la syntaxe d’importation | from triparinsertion import * |;

les définitions du module entrent alors dans ’espace de nom global, et peuvent étre évoquées par leur nom court.

>>> from triparinsertion import * # rend globales toutes les définitions du module
>>> L = sample(range(100,1000),15); L # sample pour une liste de 15 entiers & 3 chiffres
[952, 900, 713, 356, 583, 895, 748, 760, 262, 182, 143, 482, 382, 644, 428]

>>> tri_insertion(L,steps=False) # appelle tri_insertion (nom court)

>>> L # renvoie la liste L triée sur place (pas d’étapes)
[143, 182, 262, 356, 382, 428, 482, 583, 644, 713, 748, 760, 895, 900, 952]

>>>

1.11 Importation simultanée de plusieurs modules personnels

Nous allons reprendre ’exemple du module triparinsertion, et nous allons ajouter un module triparselection.

Avant cela, il faut savoir que Python utilise en permanence un certain nombre d’identificateurs a son usage personnel
(mais qu’il est tout a fait possible de consulter et d’utiliser).

Il en est ainsi du nom __name__, qui désigne le nom du module en cours d’exécution (au “top-level”).
En mode interactif, le nom de ce module est __main__

>>> _ _name__ # demande le nom du module en cours d’exécution
’__main__° # c’est ’__main__’ en mode interactif

Nous avons vu que tout le code incorporé & un module est exécuté lors de la premiére importation, exactement comme si
ce module était lancé depuis la fenétre d’édition (menu Run/Run Module). Il y a cependant une grosse différence :

— dans le premier cas (avec import), le processus maitre (désigné par __name__) est le nom du module lui-méme.

__main__".

— dans le second cas (exécution du module par Run/Run Module) le processus maitre est ’

— il suffit donc d’utiliser un test ‘if __name__ == "__main__" ‘ dans le corps du module lui-méme pour isoler une
portion du code qui ne doit étre exécutée que si le module est lancé dans Idle par Run/Run Module (et pas si le
module est simplement importé).

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 14/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

1.11 Importation simultanée de plusieurs modules personnels

CHAPITRE 1 : Premiers pas avec Python

Pour illustrer ces notions, on a modifié le module triparinsertion.py, et on a ajouté un module triparselection.py

On suppose que ces modules sont sauvegardés dans un méme dossier (peu importe lequel).

On a modifié le fonctionnement par défaut des deux procédures de tri (pas d’affichage des étapes du calcul). En revanche,

dans le bloc qui suit le test if __name__

== "__main__", c’est-a-dire dans le bloc qui n’est exécuté que si le module est

lancé par Run/Run Module dans ’application Idle, on a écrit quelques lignes de test de la procédure de tri, avec cette
fois une indication steps=True pour que les étapes soient affichées.

et ettt e #
#---- module triparinsertion.py ----#
e L e e #

def tri_insertion(L,steps=False):
’>?’trie L par insertions
steps=True affiche les étapes’’’
for i in range(1,len(L)):
j =1i; v = L[]
while j > 0 and L[j-1] > v:
L[j] = L[j-11; j -=1
L[j] = v
if steps:
print("étape n°{}".format(i),L)

name__ == "__main__":

from random import sample

L = sample(range(10,100),10)
print("Liste & trier:",L,)

input ("\n(Appuyer sur Entrée)")
tri_insertion(L,steps=True)

print ("\nListe aprés tri_insertion:",L)

if

e e T #
#---- module triparselection.py ----#
Homm - #

def tri_selection(L,steps=False):

if

’?’trie L par sélections
steps=True affiche les étapes’’’
n = len(L)
for i in range(n-1):
p=1
for j in range(i+1l,n):
if L[j] < Llpl: p = j
L[i], L[p] = Llpl, LI[il
if steps:
print("étape n°{}".format(i),L)

name__ == "__main__":

from random import sample

L = sample(range(10,100),10)
print("Liste & trier:",L,)

input ("\n(Appuyer sur Entrée)")
tri_selection(L,steps=True)
print("\nListe aprés tri_selection:",L)

On ouvre triparselection.py dans l’éditeur de Idle, et on le lance par Run/Run Module.

Comme on le voit ci-dessous, la partie du code située apres le test if

__name__ == "__main__" est exécutée (on y voit

une liste de 10 entiers a deux chiffres, triée par sélections successives de I’élément minimum).

83]
83]
83]
83]
83]
83]
83]
83]
98]

[16, 37, 40, 52, 54, 68, 69, 70, 83, 98]

>>> RESTART
>>>

Liste & trier: [40, 68, 69, 37, 54, 16, 70, 98, 52, 83]
(Appuyer sur Entrée)

étape n°0 [16, 68, 69, 37, 54, 40, 70, 98, 52,
étape n°1 [16, 37, 69, 68, 54, 40, 70, 98, 52,
étape n°2 [16, 37, 40, 68, 54, 69, 70, 98, 52,
étape n°3 [16, 37, 40, 52, 54, 69, 70, 98, 68,
étape n°4 [16, 37, 40, 52, 54, 69, 70, 98, 68,
étape n°5 [16, 37, 40, 52, 54, 68, 70, 98, 69,
étape n°6 [16, 37, 40, 52, 54, 68, 69, 98, 70,
étape n°7 [16, 37, 40, 52, 54, 68, 69, 70, 98,
étape n°8 [16, 37, 40, 52, 54, 68, 69, 70, 83,
Liste aprés tri_selection:

>>>

Puisque nous avons lancé le module triparselection.py par Run/Run Module (donc comme si son contenu avait été
exécuté, ligne par ligne, en mode interactif), nous avons accés a la fonction sample du module random (mais il s’agit
plutot ici d’un “effet de bord”) et bien str de la fonction tri_selection.

Nous utilisons ici cette fonction sur une liste de 15 nombres a trois chiffres (et par défaut, Pargument steps vaut False :
il n’y a donc pas affichage des résultats intermédiaires) :

http://creativecommons.org/licenses/by-sa/3.0/fr/
jean-miche.ferrard@ac-paris.fr mathprepa.fr

une petite référence Python
15/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

1.11 Importation simultanée de plusieurs modules personnels CHAPITRE 1 : Premiers pas avec Python

>>> L = sample(range(100,1000),15); L
[236, 739, 876, 121, 225, 813, 604, 411, 732, 870, 877, 379, 213, 188, 364]

>>> tri_selection(L); L
[121, 188, 213, 225, 236, 364, 379, 411, 604, 732, 739, 813, 870, 876, 877]

Nous avons dit que les modules triparselection.py et triparinsertion.py se trouvaient dans le méme dossier, qui
est maintenant (du fait de ce qui précede) le dossier en cours.

Nous pouvons donc importer le module triparinsertion.py (attention & ne pas utiliser 'extension .py avec import!!).

H >>> import triparinsertion # importation avec les noms qualifiés
>>>

La premiére remarque qui vient & ’esprit est que “rien ne s’est passé” !

En fait, le module a bien été chargé, mais le code situé aprés le test if __name__ == "__main__" n’a pas été exécuté.
En effet, durant 'importation, c’est le module importé qui “prend la main” (sans mauvais jeu de mots, car pendant ce
temps 14 __name__ ce n’est plus " "

__main__" mais "triparinsertion").

La meilleure preuve est que nous pouvons maintenant appeler I’aide sur 'objet triparinsertion :

>>> help(triparinsertion)
Help on module triparinsertion:
NAME
triparinsertion
FUNCTIONS
tri_insertion(L, steps=False)
trie L par insertions
steps=True affiche les étapes
FILE
/Users/jmf/Documents/python-modulesperso/triparinsertion.py

L’autre preuve, bien siir, est que nous pouvons utiliser la fonction tri_insertion :

>>> L = sample(range(100,1000),15); L # sample vient du ‘‘Run Module’’ sur triparselection
[111, 478, 257, 418, 416, 824, 262, 288, 571, 469, 947, 283, 396, 275, 835]
>>> triparinsertion.tri_insertion(L); L # attention, utilisation d’un nom qualifié !

[111, 257, 262, 275, 283, 288, 396, 416, 418, 469, 478, 571, 824, 835, 947]

On va maintenant faire un petit bilan.

Si on veut importer conjointement triparinsertion.py et triparselection.py, le mieux est d’écrire un module (disons
test_tris.py, placé dans le méme répertoire qu’eux) qui importera nos deux modules.

Voici en quoi pourrait consister notre module test_tris.py :

e #
#---- module test_tris.py ----#
o ————————— - #

from triparinsertion import *

from triparselection import *

if __name__ == "__main__":
print("Le module test_tris.py est chargé")
print ("Il donne accés aux définitions suivantes")
print("1: tri_insertion(list,steps=False)")
print("2: tri_selection(list,steps=False)")

On ouvre test_tris.py dans ’éditeur de Idle, on fait Run/Run Module, et on obtient :

>>> RESTART
Le module test_tris.py est chargé

I1 donne accés aux définitions suivantes

1: tri_insertion(list,steps=False)

2: tri_selection(list,steps=False)
>>>

Nous avons ici utilisé des importations avec noms courts (from ... import *, s’il n’y a pas de risque d’homonymie c¢’est
le plus simple), et nous pouvons utiliser directement les identificateurs non qualifiés tri_insertion et tri_selection.

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 16/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

1.11 Importation simultanée de plusieurs modules personnels CHAPITRE 1 : Premiers pas avec Python

Bien entendu, au risque de nous répéter, nous avons accés aux docstrings de ces fonctions :

>>> help(tri_selection)
Help on function tri_selection in module triparselection

tri_selection(L, steps=False)
trie L par sélections
steps=True affiche les étapes

Pour tester tout ¢a, on importe sample du module random (car elle n’a pas été importée par la méthode précédente!)

>>> from random import sample

>>> L = sample(range(10,100),10); L2 = L[:]; L; # L2 = copie de sauvegarde de L
(84, 68, 44, 79, 77, 67, 63, 22, 61, 21]
>>> tri_selection(L,steps=True) # on va trier L sur place, avec les étapes

étape n°0 [21, 68, 44, 79, 77, 67, 63, 22, 61, 84]
étape n°1 [21, 22, 44, 79, 77, 67, 63, 68, 61, 84]
étape n°2 [21, 22, 44, 79, 77, 67, 63, 68, 61, 84]
étape n°3 [21, 22, 44, 61, 77, 67, 63, 68, 79, 84]
étape n°4 [21, 22, 44, 61, 63, 67, 77, 68, 79, 84]
étape n°5 [21, 22, 44, 61, 63, 67, 77, 68, 79, 84]
étape n°6 [21, 22, 44, 61, 63, 67, 68, 77, 79, 84]
étape n°7 [21, 22, 44, 61, 63, 67, 68, 77, 79, 84]
étape n°8 [21, 22, 44, 61, 63, 67, 68, 77, 79, 84]
>>> tri_insertion(L2,steps=True) # on va trier L2 sur place, avec les étapes

étape n°1 [68, 84, 44, 79, 77, 67, 63, 22, 61, 21]
étape n°2 [44, 68, 84, 79, 77, 67, 63, 22, 61, 21]
étape n°3 [44, 68, 79, 84, 77, 67, 63, 22, 61, 21]
étape n°4 [44, 68, 77, 79, 84, 67, 63, 22, 61, 21]
étape n°5 [44, 67, 68, 77, 79, 84, 63, 22, 61, 21]
étape n°6 [44, 63, 67, 68, 77, 79, 84, 22, 61, 21]
étape n°7 [22, 44, 63, 67, 68, 77, 79, 84, 61, 21]
étape n°8 [22, 44, 61, 63, 67, 68, 77, 79, 84, 21]
étape n°9 [21, 22, 44, 61, 63, 67, 68, 77, 79, 84]

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 17/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

Chapitre 2

Types numériques, comparaisons, intervalles

Toutes les valeurs utilisées en Python possédent un type (on devrait plutot dire une classe).

On va se limiter ici aux types numériques simples (booléens, entiers, flottants, nombres complexes), et reporter a plus
tard l’étude du type “chaine de caractéres” et des types composés (listes, tuples, intervalles, dictionnaires, etc.) dont les
valeurs sont obtenues par regroupements de valeurs de type simple.

2.1 Quelques types (classes) de base

11 suffit d’interroger la fonction type pour confirmer la classe de quelques valeurs autorisées :

>>> type(l == 2) # 1’égalité (fausse) 1==2 appartient & la classe ’bool’ des booléens
<class ’bool’>

>>> type(l + 2 + 3) # 1’expression 1+2+3 appartient a la classe ’int’ des entiers

<class ’int’>

>>> type(l + 2 + 3.) # & cause du point décimal, 1’expression 1+2+3. est un ’float’
<class ’float’>

>>> type(2 + 3j) # un nombre complexe. Attention, noter j ou J et pas ¢ ou [

<class ’complex’> # par ailleurs on notera 1j, ou 1.j, plutdét que j seul.

>>> type(2 ** 100) # la valeur 2! est de type ’int’

<class ’int’>

Le dernier exemple particulier. Jusqu’a la version 2 de Python, on disposait de deux classes d’entiers : la classe ’int’ (entiers
compris dans l'intervalle J = [-2"~1 2"71[avec n = 32 ou n = 64 suivant les systémes) et la classe "long’ (entiers longs)

pour les résultats entiers qui sortent de J (le passage de la classe ’int’ a la classe 'long’ s’effectuant automatiquement).
A partir de Python3, les classes ’int’ et ’long’ ont été fusionnées en une seule classe ’int’.

On notera que le nombre complexe i est noté j ou J en Python, et que cette lettre j (ou J) doit étre obligatoirement étre
utilisée comme suffixe d’une valeur (de type ’int’ ou ’float’) afin d’étre reconnue sans ambiguité :

>>> j =5 # on donne la valeur 5 & la variable j

>>> 2 +] # ici c’est la somme de 2 et du contenu de j
7

>>> 2 + 1j # mais ici c’est le nombre complexe 2+ ¢
(2+13)

2.2 Opérations entre types numériques

On consideére ici les types (les classes) ’int’, 'float’ et ’complex’.

Les valeurs de ces types (on dit aussi les instances de ces classes) partagent un certain nombre d’opérations arithmétiques
communes (addition, produit, etc.).

Quand on évalue une expression arithmétique contenant des valeurs numériques, on peut considérer la classe 'int’ comme
incluse dans la classe "float’, elle-méme incluse dans la classe ’complex’ (il serait plus exact de parler d’injections canoniques
de ’int’ vers 'float’; et de 'float’ vers ’complex’).

Lors de I’évaluation d’une telle expression, le calcul s’effectue dans la classe la plus étroite qui soit compatible avec tous
les arguments, et c’est dans cette classe qu’est renvoyé le résultat (c’est pour cette raison, par exemple, que la somme de
Pentier 2 et du flottant 3.0 est le flottant 5.0).

18

2.3 Les opérateurs avec assignation CHAPITRE 2 : Types numériques, comparaisons, intervalles

Voici les principales opérations sur les types numériques :

x+y X-y X*y x/y somme, différence, produit, quotient

pow(x, y) X*ky calcule x a la puissance y. Par défaut 0° =1

x//y xhy quotient et reste dans une division euclidienne entre entiers
divmod (x, y) renvoie la paire (x//y, x%hy)

abs (x) valeur absolue, module

int (x) float(x) conversion vers le type ’int’, ou vers le type 'float’

round (x) round(x,n) arrondit & I'entier le plus proche, ou valeur approchée & 10™ prés
z.real z.imag z.conjugate() partie réelle, partie imaginaire, conjugué

complex(x, y) X+y*1j renvoie le nombre complexe x + iy

NB : une source d’erreur classique concerne les divisions par / ou // (c’est une différence entre Python2 et Python3).

Avec Python3, opérateur // fournit le quotient entier dans la division euclidienne.

>>> 2013 // 17 # le quotient dans la division euclidienne: le résultat est un ’int’

118

>>> 2013 / 17 # le résultat dans la division dans R: le résultat est un ’float’
118.41176470588235

>>> 2013 // 17. # division entiére aussi, mais 17. est un ’float’, donc résultat ’float’
118.0

>>> (1+23)/(3-53j) # division de deux complexes (ici // donnerait une erreur de type)
(-0.20588235294117646+0.32352941176470593)

NB : dans la division (dite entiére) par // et %, le quotient et le reste dans la division de x par y sont respectivement
lentier q et le réel r tels que : x = qy+r,avec 0 <r<ysiy >0,et y <r <0siy<0.Sil'un au moins de = ou y est
un flottant, alors ¢ et r sont des flottants (bien que le flottant ¢ ait une valeur entiére...)

>>> divmod(20,7) #20=Tq+r, avec =2 et r=206 (et on a bien 0K r<7)
(2, 6)

>>> divmod (-20,7) # —20=T7q+r, avec q=—-3 et r=1 (et on a bien 0< r<7)
(-3, 1)

>>> divmod (20,-7) # 20=—-7q+r, avec q=—-3 et r=—1 (et on a bien —7< r< 0)
(-3, -1)

>>> divmod(-20,-7) # —20=—-Tq+r, avec =2 et r=—6 (et on a bien —7< r< 0)
(2, -6)

>>> divmod (20.,7) # ici les résultats sont des floats car le dividende est un float
(2.0, 6.0)

2.3 Les opérateurs avec assignation

Il est courant d’avoir & incrémenter une variable. L’instruction i = i+1 sera avantageusement remplacée par i += 1.
On dit que += est un opérateur avec assignation.

Voici la liste des opérateurs avec assignation de Python. Leur portée va bien au dela des types numériques : ils s’appliquent
a tous les types sur lesquels 'opération (addition, produit, etc.) a un sens.

Xx+=y équivauta x=x+y x-=y équivauta x=x-y Xx*=y équivauta x=x*y

x/=y équivauta x=x/y x%h=y équivauta x=x%y x*x*%=y équivaut & x=x**y

x//=y équivauta x=x//y

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 19/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

2.4 Les fonctions mathématiques du module math CHAPITRE 2 : Types numériques, comparaisons, intervalles

Voici trois exemples d’utilisation de l'opérateur avec assignation += sur des valeurs de différents types :

>>> x =9; x += 1; x # x contient 1l’entier 9, et lui ajoute 1

10

>>> x = "abc"; x += "de"; x # x contient la chaine ’abc’, et lui ajoute la chaine ’de’
’abcde’

>>> x = [1,2,3]; x += [4,5]; x # x contient la liste [1,2,3], et lui ajoute la liste [4,5]
(1, 2, 3, 4, 5]

2.4 Les fonctions mathématiques du module math

La plupart des fonctions mathématiques usuelles (racine carrée, sinus, logarithme, etc.) ne sont pas chargées en mémoire
au démarrage de l'interpréteur Python. Elles appartiennent & un module nommé math qu’il faut donc importer. Il y a
plusieurs possibilités (I'instruction choisie doit bien stir précéder l'utilisation des fonctions intégrées au module) :

import math charge la totalité du module math

les fonctions mathématiques sont alors accessibles sous la forme math.nom_de_la_fonction

from math import * charge la totalité du module math
on accéde aux fonctions du module sans utiliser le préfixe “math.”

from math import sqrt, log, exp (par exemple) charge seulement certaines fonctions du module
on accéde aux fonctions chargées sans le préfixe “math.”

Remarque : le mécanisme décrit ci-dessus est commun a tous les modules de Python (qu’ils soient intégrés a la distribution
elle-méme ou créés par des développeurs tiers). La méthode import nom_du_module est généralement conseillée, car elle
évite des conflits de noms potentiels (on sait toujours de quel module vient telle ou telle fonction).

Autre remarque : quand le nom d’un module est un peu long, on peut utiliser un alias. Par exemple, pour charger le
module itertools, on pourra écrire import itertools as it. De cette facon it devient un alias de itertools, et on
pourra par exemple utiliser la fonction accumulate en écrivant simplement it.accumulate.

Pour éviter la lourdeur due a l'utilisation du préfixe “math.”, on pourra utiliser la méthode from math import

On voit ici la premiére instruction (et la premiére erreur) au lancement de 'application Idle : tant qu’on ne l'a pas
importée, on ne peut pas utiliser la fonction sqrt car elle est inconnue de I'interpréteur Python.

Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 01:25:11)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "copyright", "credits" or "license()" for more information.
>>> sqrt(5)

Traceback (most recent call last):

[...]

NameError: name ’sqrt’ is mot defined

>>>

On importe donc la totalité du module math par U'instruction import math. L’erreur se produit & nouveau si on oublie
de préfixer par “math.” le nom de la fonction sqrt :

>>> import math # importe la totalité du module math

>>> sqrt(5) # i1 faut écrire math.sqrt(5) et pas seulement sqrt(5)
Traceback (most recent call last):

[...]

NameError: name ’sqrt’ is not defined

>>> math.sqrt(5) # comme ga c’est mieux

2.23606797749979

Voici comment on pourrait écrire I’expression 7 In(1 + V2 + \/§) aprés avoir chargé le module math :

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 20/ 76

>>> import math
>>> math.pi * math.log(l + math.sqrt(2) + math.sqrt(3))
4.467997504231714

Voici comment écrire la méme expression, mais aprés avoir importé le module math par from math import * :

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

2.5 Le module cmath CHAPITRE 2 : Types numériques, comparaisons, intervalles

>>> from math import *

>>> pi * log(l + sqrt(2) + sqrt(3))
4.467997504231714

Quand le module math a été chargé, on obtient le détail des fonctions qu’il contient en tapant help (math).

Voici l'essentiel des fonctions du module math, évaluées en un argument x quelconque :

e pi constantes e = 2.718281828459045 et m = 3.141592653589793
log(x) log2(x) loglO(x) log(b,x) | logarithme népérien, de base 2, de base 10, de base b

exp(x) expml(x) loglp(x) calcule ¥, e®—1 pour z “petit’, In(l4+z) pour x “petit”

cos (x) sin(x) tan(x) fonctions trigonométriques directes (z en radians)

degrees (x) radians(x) conversion radians — degrés, conversion degrés — radians
acos(x) asin(x) atan(x) fonctions trigonomeétriques réciproques de x (résultat en radians)
cosh(x) sinh(x) tanh(x) fonctions hyperboliques directes de z

acosh(x) asinh(x) atanh(x) fonctions hyperboliques réciproques de x

floor(x) ceil(x) trunc(x) partie entiére [z], entier plafond, tronque vers l'entier direction 0
sqrt(x) fabs(x) fmod(x,y) calcule \/z, x|, = mody (résultats de type float)
factorial(x) gamma (x) factorielle z! (x dans N), fonction d’Euler I'(x)

fsum(...) somme en mode flottant d’un objet itérable (par ex : une liste)

2.5 Le module cmath

Python met aussi & notre disposition un module cmath pour les calculs sur les nombres complexes. La plupart des noms
sont identiques a ceux du module math mais les fonctions sont ici considérées comme allant de C dans C (cette homonymie

plaide en la faveur d’une importation par import ... plutdt que par from ... import ...)
>>> import math # on charge le package math
>>> math.exp(2 + 3j) # et on essaie de calculer exp(2+3i), mais g¢a ne marche pas
< L2
TypeError: can’t convert complex to float
>>> import cmath # on charge le package cmath
>>> cmath.exp(2 + 3j) # et ¢a marche avec la fonction exp du package cth
(-7.315110094901103+1.04274365623590457)

Pour prolonger l’exemple précédent, et revenir sur les questions d’homonymie, si on charge le module math (avec la
syntaxe from math import *, puis le module cmath (avec la syntaxe from cmath import *), alors les fonctions de
cmath “recouvrent” celle de math (il est facile de deviner ce qui se passe si on inverse les deux chargements de module).

>>> from math import * # importe tout le package math (en mode ‘fonctions non préfixées’)
>>> from cmath import * # importe tout cmath (en mode ‘fonctions non préfixées’)
>>> exp(2 + 3j) # ici c’est la fonction exp du package cmath qui va s’appliger

(-7.315110094901103+1.04274365623590457)

En mémoire, un nombre complexe z est représenté par le couple (x,y) formé de ses parties réelle et imaginaire (qui sont
accessibles individuellement par z.real et z.imag). On sait que les fonctions du package cmath reprennent (et étendent
a C) celles du module math. On notera tout de méme les trois fonctions suivantes, spécifiques aux nombres complexes.

phase(z) argument de z, exprimé en radians dans Uintervalle | — , 7]

polar(z) forme polaire de z; équivalent & (abs(z), phase(z))

rect(r,f) | passage de la forme polaire re?? a la forme cartésienne x + iy

Il existe enfin d’autres modules de nature mathématique et numérique. On trouvera l’aide nécessaire & ’adresse suivante
(en changeant éventuellement la partie de 'adresse qui est relative au numeéro de version de Python) :

http://docs.python.org/3.3/library/numeric.html

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 21/ 76

http://docs.python.org/3.3/library/numeric.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

2.6 Arithmétique des entiers CHAPITRE 2 : Types numériques, comparaisons, intervalles

2.6 Arithmétique des entiers

Python permet de manipuler des entiers en décimal (base 10), binaire (base 2), octal (base 8) ou hexadécimal (base 16).
Pour exprimer un entier en base 2, (resp. 8, resp. 16), on le fait précéder de Ob (resp. Oo, resp. 0x).

Par exemple : 0xD5B, 006533, et 0b110101011011 représentent tous les trois la valeur 3419.

Voici les trois opérations binaires (“ou” inclusif, “ou” exclusif, “et”) spécifiques au type int.

Les résultats sont renvoyés au format décimal, et on peut les convertir au format binaire, octal ou hexadécimal (mais sous
forme de chaine de caractéres cette fois) avec les fonctions bin, oct et hex. On réalise pourquoi 'opérateur ~ ne peut pas
étre utilisé pour désigner I’exponentiation! Si veut calculer a™, on écrira donc a**n ou pow(a,n).

Fonction | Signification Exemples

bin(0b11001 | Ob01101) renvoie ’0b11101°
0b11001 | Ob01101 renvoie 29

looi
xly | oulogique (o)) 0419 | 0xd) remvoie 0xid’
0x19 | Oxd renvoie 29 ; 25 | 13 renvoie 29
bin(0b11001 ~0b01101) renvoie ’0b10100’
. . 0b11001 ~0b01101 renvoie 20
x'y ou exclusif (xor)

hex(0x19 ~0xd) renvoie ’0x14°
0x19~0xd renvoie 20 ; 25~13 renvoie 20

bin(0b11001&0b01101) renvoie ’0b1001°
0b11001 &0b01101 renvoie 9

hex(0x19&0xd) renvoie ’0x9°

0x19&0xd renvoie 9 ; 25& 13 renvoie 9

x&y et logique (and)

Voici les deux opérations de décalage de bits (multiplication ou division par des puissances de 2).

Fonction | Signification Exemples
%< décalage a gauche de n bits | 13<5 renvoie 416 ; bin(13<«5) renvoie ’0b110100000°’
multiplication de = par 2" | 0b1101<« 5 renvoie 416; bin(0b1101<«5) renvoie ’0b110100000°’
x> décalage a droite de n bits | 417>>5 renvoie 13 ; bin(417>5) renvoie ’0b1101°
division entiére de x par 2" | 0b110100001 > 5 renvoie 13; bin(0b110100001 > 5) renvoie ’0b1101°’
< complément & 2 bin(~0b111000) renvoie ’-0b111001°
T -—r—1—=z bin(~0b100000) renvoie ’-0b100001°

2.7 Valeurs booléennes et comparaisons

Les branchements du type “si condition alors... (sinon...)” servent & orienter le flux des instructions en fonction de la
réponse (vraie ou fausse) a une condition.

Cette condition résulte le plus souvent de la comparaison de deux valeurs.

Pour Python, les valeurs “vrai” et “faux” sont respectivement représentées par les constantes True et False (qui sont
d’ailleurs les deux seules valeurs du type bool) :

>>> type(True), type(False)
(<class ’bool’>, <class ’bool’>)

Mais toutes les valeurs numériques ont une traduction booléenne : 0 représente le “faux”, et toute valeur non nulle
représente le “vrai” (inversement True et False sont synonymes des entiers 1 et 0). Plus généralement : tout objet non
vide (chaine de caractéres, liste, etc.) est considéré comme “vrai”, les objets vides représentant donc la valeur “faux”.

Voici les opérateurs qui permettent de comparer des valeurs en Python :

< (strictement inférieur a) || > (strictement supérieur a)

<= (inférieur ou égal a) >= (supérieur ou égal a)

== (égal a) = (différent de)
http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl

PN Do g
jean-miche.ferrard@ac-paris.fr mathprepa.fr 22/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

2.7 Valeurs booléennes et comparaisons CHAPITRE 2 : Types numériques, comparaisons, intervalles

On notera bien stir la différence entre le test d’égalité == et I'instruction d’affectation =.
Voici maintenant les opérateurs qui permettent de combiner des valeurs booléennes entre elles :

or (oulogique) || and (et logique) || not (négation logique)

Quand deux valeurs numériques de types différents (entier, flottant, nombre complexe) sont comparées, elles sont converties
dans le type qui les contient toutes les deux (cela explique, comme on le voit dans ’exemple ci-aprés, que Python considére
comme égaux lentier 4 et le flottant 4.0, ou encore le flottant 0. et le nombre complexe 07).

H>>>1<2,3<=2,4!=5,4== ., 0. == 0j

(True, False, True, True, True)

On peut enchainer les comparaisons. Par exemple l'expression x < y < z signifie (z < y et y < 2).
De méme, Pexpression x < y > z!=t signifie (x <y et y > z et 2z £ t).

H>>>1<4>2!=O<3 # ici il faut lire: (1 < 4) et (4 > 2) et (2 #0) et 0 < 3
True

Les chaines de caractéres sont comparées selon 'ordre lexicographique (mais les caractéres eux-mémes sont évalués en
fonction de leur code numérique : les minuscules viennent donc avant les majuscules).

>>>)A’ <)Z) < 7a7 < 7Z7

True

>>> 2ABC? < ’ABc’ < ’AbC’ < ’Abc’ < ’aBC’ < ’aBc’ < ’abC’ < ’abc’ # huit chaines différentes

True
Dans une répétition by or by or --- or b, de “ou” logiques, les valeurs booléennes by, ...,b, sont évaluées de gauche a
droite, et I'évaluation s’arréte si 'une d’elles vaut true (car alors toute lexpression vaut true). Il en est de méme dans
une répétition b; and by and --- and b, de “et” logiques : I’évaluation s’arréte dés que 'une des valeurs by vaut false :

c’est ce qu’on appelle I’ évaluation paresseuse des booléens.

Dans l'exemple ci-dessous, les comparaisons 1/3 < 1/2 et 1/4 < 1/3 renvoient la valeur “vrai”, donc 1’évaluation continue
jusqu’a la comparaison 1/2 < 1/0 qui provoque une erreur :

>>> 1/3 < 1/2 and 1/4 < 1/3 and 1/2 < 1/0
<002
ZeroDivisionError: division by zero

Au contraire, dans le deuxiéme exemple, la comparaison 1/3 < 1/4 renvoie la valeur “faux”, ce qui interromp I’enchainement
K))

des “et” successifs (donc évite la derniére évaluation qui aurait conduit & une erreur de division par 0).

Dans le dernier exemple, c’est la comparaison vraie 1/4 < 1/3 qui arréte Penchainement des “ou” successifs :

>>> 1/3 < 1/2 and 1/3 < 1/4 and 1/2 < 1/0

False
>>> 1/2 < 1/3 or 1/4 < 1/3 or 1/2 < 1/0
True
Si z,y sont de types différents (I'une d’elle au moins étant non numeérique) les comparaisons © == y et z!= y sont

possibles (et renvoient respectivement False et True). Les autres comparaisons (inégalités) renvoient une erreur de type :

>>> 123 == "123" # L’entier 123 et la chaine "123", c¢a n’est pas la méme chose
False

>>> 123 <= "123" # Mais de la a les comparer...

<0

TypeError: unorderable types: int() <= str()

Remarque : les opérateurs <, <=, >, >=, l=, == ont le méme degré de priorité, plus faible que celui des opérateurs
arithmétiques. Mais ils sont prioritaires devant not, lui-méme prioritaire devant and, lui-méme prioritaire devant or.

Par exemple z +y < z se lit (x +y) < 2z, et non pas z + (y < z) :

>>x=1; y=3; z=4

>>>x +y <z # ici, on teste si la somme z 4y est strictement inférieure a 2
False
>>> x + (y < 2) # ici, y < z vaut True, c’est-a-dire 1, et donc on calcule x+1
2
http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl

jean-miche.ferrard@ac-paris.fr mathprepa.fr 23/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

2.8 Egalité structurelle et égalité physique CHAPITRE 2 : Types numériques, comparaisons, intervalles

2.8 Egalité structurelle et égalité physique

Quand on affecte une valeur & une variable (par exemple x = 2013), on crée en fait un pointeur (une adresse) pour
désigner cette valeur qu’il faut imaginer quelque part en mémoire.

Les variables Python sont donc des références (des adresses, des pointeurs) vers des valeurs. Pour connaitre I'adresse ou
se trouve exactement la valeur qu’on a associée a un identificateur, on utilise la fonction intégrée id.

L’égalité structurelle de deux objets signifie ’égalité de leurs valeurs, alors que 1'égalité physique signifie 1’égalité des
adresses de ces valeurs (bien str 1’égalité physique implique 1’égalité structurelle, mais la réciproque est fausse).

Pour tester ’égalité structurelle, on utilise 'opérateur ==, et pour 1’égalité physique, on utilise 'opérateur is.
Ces distinctions ne sont pas trés importantes quand on manipule des objets dits “non mutables” (comme les types de
base : entiers, flottants, nombres complexes, chaines de caractéres, et également les tuples qui seront étudiés plus tard).

En revanche, la distinction entre égalité physique et égalité structurelle prend tout son sens quand on modifie les éléments
d’objets “mutables” (comme les listes ou les dictionnaires).

Le mieux est de prendre des exemples, en commengant par du trés simple :

>>> x = 2013 # on initialise la variable x avec la valeur 2013.

>>> id(x) # voici exactement a quelle adresse de la mémoire se trouve la valeur 2013
4343755504

>>> y = 2013 # on initialise la variable y avec la méme valeur 2013.

>>> id(y) # on voit que les deux valeurs 2013 sont a des adresses différentes en mémoire
4343774064

>>> x == # on demande si les valeurs sont égales, la réponse est oui

True

>>> x is y # on demande si les valeurs sont a& la méme adresse, la réponse est non

False

Continuons sur la lancée de I'exemple précédent.

>>> y = x # on recopie la variable x dans la variable y

>>> (id(x), id(y)) # r et y se référent a4 la méme valeur, & un endroit précis de la mémoire
(4343755504, 4343755504)

>>> (x is y, x == y) # i1l y a égalité physique, donc égalité structurelle

(True, True)

Continuons, en modifiant maintenant le contenu de la seule variable y :

>>> y +=1 # on ajoute 1 au contenu de la variable y

>>> (x,y) # y contient maintenant 2014, mais x a conservé sa valeur 2013

(2013, 2014)

>>> (id(x), id(y)) # x pointe vers la méme adresse, mais pas y

(4343755504, 4343773200)

>>> (x ==y, x is y) # i1 n’y a plus égalité structurelle, et encore moins égalité physique
(False, False)

On va maintenant effectuer des opérations analogues, mais sur des listes (les objets de type liste seront étudiés en détail
un peu plus loin) :

>>> x = [1,2,3]; y = [1,2,3] # on met la liste [1,2,3] dans x, puis dans y

>>> (x is y, x == y) # les listes ne sont pas d& la méme adresse, mais ont la méme valeur
(False, True)
On continue sur cet exemple, en redéfinissant la liste y

>>>y =y +y # on concaténe la liste y a elle-méme

>>> (x, y) # x et y contiennnent donc deux listes de valeurs différentes
(f1, 2, 31, 1, 2, 3, 1, 2, 31)

On va maintenant recopier & nouveau x dans y, mais modifier seulement un élément de y.

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 24/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

2.8 Egalité structurelle et égalité physique CHAPITRE 2 : Types numériques, comparaisons, intervalles

>>>y = x # on recopie le contenu de z (la liste [1,2,3]) dans la variable y

>>> (id(x), id(y)) # x et y pointent sur une méme adresse en mémoire
(4361208752, 4361208752)

>>> y[0] = 999 # on place 999 en position 0 (le 1°r élément) de la liste contenue dans y
y p p

>>> (x, y) # on voit que la modification a été répercutée sur la liste contenue dans z !!
([999, 2, 31, [999, 2, 31)

>>> (id(x), id(y)) # en fait les variables x et y pointent toujours sur la méme adresse
(4361208752, 4361208752)

>>> x is y # il s’agit donc d’égalité physique

True

L’exemple précédent est important. Les listes Python sont des objets composites (formés d’éléments a priori disparates
mais rassemblés dans une méme structure). Si on modifie un élément d’une liste, Python ne modifie pas adresse de
celle-ci (en fait, il modifie seulement ’adresse de ’élément concerné dans cette liste).

Cela explique qu’aprés linstruction y = 2 (& lissue de laquelle 2 et y pointent sur une méme liste en mémoire), la
modification y[0] = 999 semble répercutée sur la liste contenue dans la variable z (tout simplement car les variables x et
y continuent & pointer sur la méme adresse).

L’instruction y = x n’a donc pas associé & y une nouvelle copie de la liste associée & z, elle a fait pointer y et = sur une
méme adresse (toute modification d’un des deux éléments x[k] ou y[k] sera donc “répercutée” sur l’autre).

Si on veut créer une copie d’une liste qui soit indépendante de l'original, on procédera de la fagon suivante :

>>> x = [1,2,3] # on place une liste dans la variable z

>>> y = x[:] # on place dans y une copie indépendante de cette liste
>>> (x, y) # les deux valeurs sont identiques

(f1, 2, 31, 1, 2, 3

>>> (id(x),id(y)) # mais les listes ne sont pas & la méme adresse
(4298413336, 4361210768)

>>> (x is y, x == y) # il y a égalité structurelle, mais pas égalité physique
(False, True)

>>> y[0] = 999 # on modifie le premier élément de la liste y

>>> (x, y) # mais ¢a ne se répercute plus sur la liste zx

(f1, 2, 31, [999, 2, 31)

Remarque : 'expression x[:] est un cas particulier de la syntaxe x[a:b] qui renvoie la liste des éléments de l'objet x
situés de la position a (incluse) a la position b (exclue). Par défaut a vaut 0 (c’est le début de Pobjet x) et b vaut la
longueur de cet objet. Ainsi x[:] renvoie donc la totalité de 'objet x (mais cette copie est indépendante de 'original).

Attention : la notion de “copie originale”, telle qu’elle a été évoquée ci-dessus (Uinstruction y = x[:]) n’est tout a fait
exacte que si la liste source (ici) ne contient que des objets “non mutables” (nombres, chaines, tuples). En effet, aprés
la copie, Padresse de y est différente de celle de x, mais Padresse de chaque y[i] reste celle de z[i].

Un exemple permettra d’y voir plus clair :

>>> x = [0,[10,20],2,[30,31,32]] # on fabrique une liste composite

>>> [id(x), [id(t) for t in x]] # 1’adresse de z, et celles des z[i] successifs
[4318592032, [4297261120, 4328417832, 4297261184, 4359646240]]

>>> vy =x[:1; ¥y # on effectue une copie "originale" de x dans y
[0, [10, 201, 2, [30, 31, 32]]

>>> [id(y), [id(t) for t in y]] # 1’adresse de y est nouvelle, pas celle des yli]
[4359645448, [4297261120, 4328417832, 4297261184, 4359646240]]

>>> y[0] = 1000; y[1][0] = 2013; y # modifions y[0] (non mutable) et y[l] (mutable)
[1000, [2013, 201, 2, [30, 31, 32]]

>>> x # pas d’impact sur z[0], mais impact sur z[1]

[0, [2013, 20], 2, [30, 31, 32]]

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 25/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

Chapitre 3

Initiation a la programmation Python

On a jusqu’ici utilisé Python en mode interactif, & la maniére d’une calculatrice. Les instructions (ou commandes) sont
ainsi, I'une aprés I'autre, entrées au clavier, interprétées et suivies d’'un résultat souvent réutilisé par la suite.

Si elle en vaut la peine, une séquence d’instructions peut étre sauvegardée dans un fichier texte (on parle de script Python).

On peut dés lors ouvrir ce script et l'exécuter, de fagon automatisée, comme si les instructions qu’il contient étaient a
nouveau entrées au clavier (chronologiquement de la premiére a la derniére ligne).

Dérouler les mémes instructions dans le méme ordre doit bien stir posséder un minimum d’intérét. Pour apporter un peu
de profondeur et/ou de fantaisie a tout ¢a, on peut, a 'intérieur du script lui-méme :

— répéter un certain nombre de fois un bloc d’instructions

— n’exécuter certaines instructions que si (ou que tant qu’) une condition est vraie

— appeler un autre script (et pourquoi pas le méme ? a suivre...)

— orienter le déroulement du script suivant certaines informations fournies par l'utilisateur (informations qui pourraient
par exemple &tre passées au démarrage du script : on parle alors des paramétres d’appel).

Evidemment, tout cela est possible en Python. On se contentera ici d’une premiére approche modeste (d’autant que de
nombreuses caractéristiques du langage n’ont pas encore été abordées).

3.1 Entrée au clavier (input) et affichage & I’écran (print)

Les interactions d’un script avec 1'utilisateur se feront essentiellement par ’attente de données entrées au clavier, et par
I’affichage de résultats ou de messages & I’écran.

L’expression ‘input(message) ‘ affiche message a Pécran (sans passer a la ligne), attend que 'utilisateur valide par

“Entrée” une réponse au clavier, et renvoie cette réponse sous forme de chaine de caractéres.

>>> n = input(’entrez un entier: ’) # ici on va placer la réponse dans la variable n

entrez un entier: 421

>>>n # le contenu de la variable n est une chaine de caractéres
74217

On peut bien sir directement convertir la réponse reque par input en un type particulier (int et float notamment) :

>>> n = int(input(’entrez votre réponse: ’))
entrez votre réponse: 1234

>>>n # ici la variable n contient bien un entier
1234

La fonction print permet d’afficher des informations & ’écran. Il s’agit le plus souvent de messages informatifs qui
peuvent intervenir & tout moment de I’exécution du script. On ne confondra pas avec l'instruction return dont le role est
de renvoyer le résultat d’une fonction (et qui met fin a 'exécution de celle-ci).

Les exemples ci-aprés illustrent quelques possibilités de la fonction print.
On voit que les chaines de caractéres sont affichées sans leurs délimiteurs extérieurs (guillemets ou apostrophes).

On voit également qu’il est possible d’afficher successivement plusieurs objets sur une méme ligne (ils sont alors séparés
par un espace, mais on peut préciser un autre séparateur avec 1’option sep=). Un affichage par print se termine par un
passage a la ligne (mais on peut préciser un autre mode de terminaison avec l'option end=)

26

3.2 Nécessité de délimiter des blocs d’instructions CHAPITRE 3 : Initiation a la programmation Python

>>> print(’a’, 11, ’b’, 2222, ’c’, 333); print(’d’, 1/3, ’e’, 1/7);

a 11 b 2222 ¢ 333

d 0.3333333333333333 e 0.14285714285714285

>>> print(’a’, 1, ’b’, 2, ’c’, 3, sep=’*x%’)

axk1xkbxkQkkCk*k3

>>> print(’a’, 1, ’b’, 2, ’c’, 3, end=’ --- ’); print(’d’, 5, ’e’, 7);
alb2c3---dbe7

3.2 Nécessité de délimiter des blocs d’instructions

Dans de nombreux langages de programmation (dans tous?), on est amené a grouper des instructions successives, et
a considérer ce groupe comme une seule “méta’-instruction. Mais encore faut-il trouver un moyen de marquer (par des
élements du langage et/ou par des dispositions visuelles) les limites d’un tel groupe d’instructions.

Notons par exemple groupe une suite d’instructions instruction_1; instruction_2; ...; instruction_p
Imaginons également une condition test, vraie ou fausse & un moment donné du déroulement du script.
On cherche & écrire une séquence d’instructions du genre :

Commencer ici...

Si la condition test est vraie, alors évaluer les instructions de groupe
De toutes fagons, continuer la...

Voici deux formulations possibles. La solution de gauche est pour le moins ambigué (est-ce qu’on évalue uniquement
instruction_1 si la condition test est vraie?). Seule la solution de droite est correcte car elle indique clairement les
limites du groupe d’instructions a évaluer si la condition test est vraie.

Formulation incorrecte Formulation correcte

Commencer ici...
Si la condition test est vraie, alors
Début de groupe
instruction_1
instruction_2

Commencer ici...

Si la condition test est vraie, alors
instruction_1

instruction_2

instruction_p

) instruction_p
De toutes fagons, continuer la...

Fin de groupe
De toutes facons, continuer la...

On peut aussi imaginer une séquence d’instructions du genre :

Commencer ici...
Tant que la condition test est vraie, évaluer les instructions de groupe
De toutes fagons, continuer la...

On encore, si var est une variable parcourant un ensemble ens de valeurs, on peut chercher a écrire :

Commencer ici...
Pour chacune des valeurs possibles de var dans ens, évaluer les instructions de groupe
De toutes fagons, continuer la...

Voici quelles seraient les formulations correctes pour traduire ces intentions :

Commencer ici... Commencer ici...
Tant que la condition test est vraie, alors Pour chacune des valeurs de var dans ens
Début de groupe Début de groupe
instruction_1 instruction_1
instruction_2 instruction_2
instruction_p instruction_p
Fin de groupe Fin de groupe
De toutes fagons, continuer la... De toutes fagons, continuer la...

Il faut donc un moyen non ambigu de poser les limites d’un groupe d’instructions. Dans le méme temps, il est d’usage
d’accentuer visuellement le groupe par une légére indentation (décalage vers la droite).

Dans les exemples précédents, instruction_1; ...; instruction_p peuvent également étre des instructions composées,
et donc contenir des groupes (des blocs) d’instructions.

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 27/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

3.3 L’importance fondamentale de I'indentation en Python CHAPITRE 3 : Initiation a la programmation Python

Chaque instruction du programme figure donc & un certain niveau de profondeur (si on convient que le niveau initial est
le niveau 0, on trouvera des instructions de niveau 1, de niveau 2, etc.). Ces niveaux sont d’autant plus faciles a identifier

pour le lecteur que le programmeur aura pris soin de les marquer visuellement par des indentations progressives.

Dans la plupart des langages, ces indentations n’ont rien d’obligatoire :
peuvent varier légérement, & I'intérieur d’un méme bloc, sans conséquence pour la logique du programme.

3.3 L’importance fondamentale de I’indentation en Python

La solution apportée par Python au probléme précédent est radicale :

elles constituent un simple confort visuel. Elles

‘ Dans un méme bloc, deux instructions de méme profondeur logique doivent avoir strictement la méme indentation‘

Avec une telle convention, il est inutile de marquer le début et la fin d’un bloc par des éléments du langage (comme des

accolades { et }, ou les mots réservés begin et end).

La contre-partie est un respect scrupuleux des indentations, mais on
est aidé en cela par ’éditeur de Idle, qui augmente automatiquement
I'indentation aprés chaque instruction d’en téte, et qui conserve cette
indentation a l'intérieur du bloc courant.

Pour sortir d’un bloc (donc diminuer I'indentation), un simple appui sur
la touche d’effacement arriére suffit.

Venons-en & quelques définitions :
(voir http://docs.python.org/3.3/reference/compound_stmts.html)

— une instruction composée est formée d’une ou de plusieurs clauses.

— une clause est formée :
a) d’un en-téte se terminant par le caractére : (deux-points),
b) d’une suite, contrdlée par linstruction d’en-téte.

— cette suite peut se réduire & une seule instruction simple, ou consister
en une instruction composée.

— une suite simple peut étre placée sur la méme ligne que l'en-téte,
aprés le caractére “:”

— une suite composée, appelée ici un bloc, doit débuter a la ligne qui
suit I’en-téte et, par rapport a celui-ci elle doit étre indentée de fagon
uniforme.

Si la ligne d’en-téte d’une clause est au niveau d’indentation n, le bloc
qui la suit est donc au niveau d’indentation n + 1 (la convention est
d’utiliser quatre caractéres pour séparer les deux niveaux).

On termine le bloc par un retour a I'indentation du niveau n (c’est-a-dire
celle de la ligne d’en-téte).

Un bloc (au niveau n + 1 si sa ligne d’en-téte est au niveau n) peut lui-
méme inclure des instructions composées donc des successions de clauses
(chacune d’elles pouvant donner lieu & la création de blocs qui sont alors
au niveau n + 2).

On a représenté ci-contre une situation imaginaire (mais typique) d’une
portion de script comportant une “clause 1”7 (instruction “en-tétel” suivie
du “bloc1”) et une “clause 2” (instruction “en-téte2”, suivie du “bloc2”).

Le “blocl” contient lui-méme une “clause3d”, et le “bloc2” contient une
“clause4” qui contient elle-méme une “claused”.

instruction

instruction

en-tétel : # (suivi du bloc 1)

instruction
en-téte3 : # (suivi du bloc 3)

instruction

instruction

instruction

instruction

instruction

en-téte2 : # (suivi du bloc 2)

instruction

instruction
en-téted : # (suivi du bloc 4)

instruction

instruction

en-téteb : # (suivi du bloc 5)

instruction

instruction

instruction

instruction

instruction

instruction

Rappel important : le bloc qui suit une ligne d’en-téte peut se réduire a une seule instruction. Dans ce cas, il est possible
de le placer & la suite du caractére “deux-points” qui termine la ligne d’en-téte.

Remarque : éviter d’utiliser des tabulations (plutot que des espaces) pour 'indentation des blocs!

http://creativecommons.org/licenses/by-sa/3.0/fr/
jean-miche.ferrard@ac-paris.fr mathprepa.fr

une petite référence Python

28/ 76

http://docs.python.org/3.3/reference/compound_stmts.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

3.4 Branchements conditionnels if...elif...else...) CHAPITRE 3 : Initiation a la programmation Python

3.4 Branchements conditionnels if...elif...else...)

Pour dévier le flot des instructions en fonction de la valeur (vraie/fausse, non_nulle/nulle, non_vide/vide) d’une expression
(appelée ici condition), Python met & notre disposition les clauses if, elif et else.

La clause if simple permet d’exécuter un bloc d’instructions si la condition est vraie :

condition : # si comndition est vraie

bloc_si_condition_vratie # alors on parcourt ce bloc

On peut rajouter une clause else (facultative, donc) pour exécuter un autre bloc si la condition est fausse :

condition: # si condition est vraie
bloc_si_condition_vraie # alors on parcourt ce bloc

: # sinon
bloc_si_condition_fausse # alors on parcourt ce bloc

Plutot que d’emboiter des clauses if, on peut utiliser une clause if suivie par une (des) clause(s) elif :

conditionl : # si conditionl est vraie
bloci_si_C1_vraie # alors on exécute ce blocl
conditione: # sinon si condition2 est vraie
bloc2_si_C1_fausse_mais_C2_vraie # alors on exécute ce bloc2
condition3: # sinon si condition3 est vraie
bloc3_si_C1C2_fausses_mats_C3_vraie # alors on exécute ce bloc3
conditionh : # sinon si conditionlN est vraie
blocN_si_CN_premiére_da_étre_vraie # alors on exécute ce blocN
: # (facultatif) si toutes les conditions sont fausses
bloc_else # alors on exécute ce bloc
Remarques :

— dans toutes les constructions ci-dessus, au plus un bloc est parcouru
— ne pas oublier le caractére “deux points” qui termine chacune des lignes d’en-téte!!!

— se souvenir que si un bloc se réduit a une instruction, on peut le placer directement aprés le “deux points”

if x % 2: # comprendre ici "si x est non nul modulo 2"
print("x est impair")

elif x % 4: # ici x est pair, et on teste son reste modulo 4
print("x est pair, mais pas multiple de 4")

elif x % 8: # ici x est multiple de 4, et on teste son reste modulo 8
print("x multiple de 4, mais pas de 8")

else: # si on en est 1a, c’est que x est multiple de 8
print("x est multiple de 8")

3.5 Expressions conditionnelles

Python offre la possibilité de former des expressions dont 1’évaluation est soumise & une condition.

La syntaxe est la suivante : ‘ expressionl if condition else expression?2 ‘

L’opérateur if else est ici un opérateur ternaire (il a trois arguments).
Le résultat est bien siir I’évaluation de expressionl si la condition est vraie, et sinon c’est celle de expression?2.

Remarque : cette construction ne permet pas l'utilisation du mot réservé elif (mais on voit sur le deuxiéme exemple
ci-dessous comment emboiter deux expressions conditionnelles).

>>> x = -1; print("x positif" if x>0 else "x négatif ou nul")
x négatif ou nul

>>> x = 0; print("x positif" if x>0 else "x négatif" if x<0 else "x nul")
x nul

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 29/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

3.6 Répétitions conditionnelles (while) CHAPITRE 3 : Initiation a la programmation Python

3.6 Répétitions conditionnelles (while)

Pour répéter un bloc d’instructions tant qu’une condition est réalisée, Python nous propose la clause while :

m condition : # tant que la condition est vraie
bloc_si_condition_vraie # alors on parcourt ce bloc

Quelques remarques classiques sur ce genre de construction :

— si condition est fausse dés le départ, le bloc qui suit n’est jamais parcouru.

— dans la plupart des cas, le bloc qui suit 'instruction d’en-téte while agit sur la condition, de sorte que celle-ci, vraie
au départ, devient fausse et provoque la sortie de la clause.

— on peut écrire une clause while avec une condition toujours vraie (par exemple while 1: ouwhile True:) a condition
(pour éviter une boucle infinie) de sortir par un autre moyen (notamment par break ou return).

Dans I’exemple ci-dessous, on illustre la clause while avec ’exemple classique de la suite dite de Syracuse.

Celle-ci est définie par une valeur initiale xq et la régle suivante : si x,, est pair alors x, 11 = x,/2 sinon 41 = 3z, + 1.
Une conjecture célebre dit que I'un des x,, vaut 1 (et la suite boucle alors sur les valeurs 1 -4 — 2 — 1).

On étudie ici le comportement trés intéressant obtenu pour la valeur initiale x¢ = 27 :

>>> x = 27 # on part de la valeur 27.
>>> while x != 1: # tant que z est différent de 1
if x % 2: x = 3*x+1 # si x est impair, on le remplace par 3z +1

else: x =x // 2
print(x, end=’ ?)

sinon, on le divise par 2

on affiche la valeur de z (sans passer & la ligne)

82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155
466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132
566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911
2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122
61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1

Le bloc qui fait suite & I'instruction while peut contenir deux instructions particuliéres, souvent attachées & un test if :

— provoque la sortie immédiate de la clause while.
— rameéne & I’évaluation de la condition (ce qui restait du bloc aprés continue est donc ignoré).

La construction while peut étre complétée par une clause else, exécutée si la condition qui suit le while est fausse :

condition : # tant que la condition est vraie
blocl_si_condition_vraie # alors on exécute ce bloc
: # mais quand la condition devient fausse
bloc2_si_condition_fausse # alors on exécute ce bloc
sauf si on est sorti de blocl par 1l’instruction break

L’utilisation de else attaché & un while est rare. Le bloc2 ci-dessus est en effet parcouru une seule fois, quand la condition
devient fausse, sauf si on sort du bloc n° 1 par une instruction break (auquel cas bloc2 est ignoré).

3.7 Notion d’intervalle

On est souvent amené a répéter plusieurs fois un bloc d’instructions en fonction des valeurs successives d’un compteur.
Une fagon simple (mais c’est loin d’étre la seule) d’indiquer la plage des valeurs possibles de ce compteur est d’utiliser un
intervalle (ou encore range dans le langage Python) :

— la syntaxe est | range(a,b,h) | ol a, b, h sont des valeurs entiéres.

— la valeur a (le début de U'intervalle) est facultative, et par défaut elle vaut 0.
si a est présent, la valeur h (le pas de 'intervalle) est facultative, et vaut 1 par défaut.
a<zr<b sia<b

— Ulintervalle range (a,b,h) est formé des valeurs © = a + kh, avec k entier tel que .
b<r<a sib<a

— retenons que la valeur b est toujours exclue de l'intervalle range(a,b,h)

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 30/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

3.8 Répétitions inconditionnelles (boucles for) CHAPITRE 3 : Initiation a la programmation Python

L’intervalle range (a,b,h) doit &tre vu comme une succession de valeurs, en partant de a, et en progressant vers b (sans
jamais l'atteindre!), dans le sens croissant ou décroissant selon que le pas est positif ou négatif. Ainsi :

— lintervalle range (7) représente la succession des valeurs 0,1,2,3,4,5,6

— lintervalle range (1,7) représente la succession des valeurs 1,2,3,4,5,6

— lintervalle range(1,7,2) représente la succession des valeurs 1,3,5

— Ulintervalle range (7,2) est vide (ici le pas a sa valeur par défaut, c’est-a-dire 1)

— Dlintervalle range (7,2,-1) représente la succession des valeurs 7,6,5,4,3

— si a < b, lintervalle range (a,b) est formé de b — a valeurs (il est notamment vide si a = b)

Pour tester 'appartenance d’une valeur a un intervalle, on utilise le mot réservé in (résultat True ou False).

Attention : les intervalles dont il est question ici sont des échantillons de valeurs entiéres, ce ne sont donc pas des intervalles
au sens mathématique du terme. Voici quelques exemples :

>>> r = range(100,1000,2) # intervalle des entiers pairs, de 100 inclus & 1000 exclu.
>>> 100 in r # 100 fait-il partie de 1’intervalle, réponse oui.

True

>>> 1000 in r # 1000 fait-il partie de 1l’intervalle, réponse non.

False

>>> 513 in r # 513 fait-il partie de 1’intervalle, réponse non.

False

3.8 Répétitions inconditionnelles (boucles for)

Pour répéter un certain nombre de fois un bloc d’instructions, on utilisera la construction suivante :

m variable objet: # pour chaque élément (nommé pour 1l’occasion wariable) de objet
bloc_d’instructions # on parcourt ce bloc

En fait, objet est ici est toute construction susceptible d’étre parcourue : on pense bien str aux intervalles (range), mais
aussi aux chaines (parcourues caractére par caractére), aux listes, aux tuples, aux dictionnaires (on en parlera plus tard).

for k in range(0,10): # pour k=0, puis k=1, etc. jusqu’a k=9
bloc_d’instructions # on parcourt ce bloc

for x in ’abcdef’: # pour x = ’a’, puis x = ’b’, etc. jusqu’a x = ’f’
bloc_d’instructions # on parcourt ce bloc

Le bloc qui fait suite & I'instruction for peut contenir deux instructions particuliéres, souvent attachées & un test if :
— provoque la sortie immédiate de la clause for.

— passe directement a I’étape suivante de la boucle (ce qui reste du bloc aprés continue est donc ignoré).

La construction for peut étre complétée par une clause else, parcourue quand la boucle est terminée :

m variable objet: # pour chaque élément (nommé pour 1l’occasion wariable) de objet
blocli_d’instructions # on parcourt ce bloc

else # quand la boucle est terminée
bloc2_d’instructions # on parcourt ce bloc

L’utilisation de else attaché a une boucle for est assez rare. Le bloc2 ci-dessus est en effet parcouru une seule fois, quand
la boucle est terminée, sauf si on sort du bloc n° 1 par une instruction break (auquel cas bloc2 est ignoré).

3.9 L’instruction pass

L’instruction pass ne fait... rien. Mais elle a son utilité dans la phase de mise au point d’un programme.

if n ==

<... boc de traitement du cas n=1...>
elif n == 2: pass # 13 on ne sait pas encore
else:

<... boc de traitement si n ¢ {1,2}...>

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 31/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

Chapitre 4

Ecrire des fonctions Python

Une fonction est un bloc d’instructions qui a regu un nom, dont le fonctionnement dépend d’un certain nombre de
paramétres (les arguments de la fonction) et qui renvoie un résultat (au moyen de l'instruction return).

nom_de_la_fonction (arguments): # le nom de la fonction, et les paramétres d’appel
bloc_d’instructions # on parcourt ce bloc

4.1 La valeur None, et l’instruction return

Python propose le type NoneType, dont la seule valeur est None : c’est une représentation du “rien”, de I’absence.

La séquence des arguments d’une fonction peut trés bien étre vide. Si f est une telle fonction, linstruction y = f()
appelle la fonction (provoque son exécution) et place le résultat dans la variable y. On notera que les parenthéses sont
indispensables, pour distinguer l'objet f qui est une fonction de 'objet f() qui est le résultat d’un appel a cette fonction.

Dans un tel cas, il est préférable de penser que f prend tout de méme un argument, a savoir la valeur None.

La valeur de retour d’une fonction est obtenue par une instruction | return wvaleur | dans le corps de la fonction.

u voir plusieurs instructions return dans un it évi n n rtira ré 1 u’en
Il peut y avoir plusieurs instructions ret dans une fonction (évidemment on ne sortira réellement de la fonction qu’e
passant par 'une et l'une seulement de ces instructions).

L’oubli de return est une erreur classique. Dans ce cas, la fonction renvoie la valeur None (c’est peut-étre le but).

Un affichage obtenu par print dans le corps d’une fonction ne doit pas étre considéré comme le résultat de la fonction
(c’est un simple effet de bord). D’ailleurs la fonction print renvoie la valeur None.

L’exemple suivant, extrémement simple, illustre la nécessité de 'instruction return :

en fait y ne contient rien (ou plutdt si, la valeur None)

>>> def f(x): print(x*x) # la fonction f, d’argument z, affiche le carré de x
>>> y = £(5) # on appelle f avec 1l’argument 5 et on met le ‘résultat’ damns y
25 # bien sfir, cet appel provoque 1l’affichage de la valeur 25
>>> y # mais ce n’était qu’un ‘effet de bord’
#
#

>>> type(y)

<class ’NoneType’>
>>> print (y)

None

on le voit bien en demandant le type de y

HH*

ou plus clairement en affichant le ‘contenu’ de y par print

On va maintenant modifier la fonction f :

>>> def f(x): x*x # on calcule toujours z2, mais il n’y a pas de print ni de return
>>> y = £(5) # on appelle f avec 1l’argument 5 et on met le ‘résultat’ dans y
>>> type(y) # il ne s’est rien passé a 1’écran (pas de print)

<class ’NoneType’> # et on voit que la valeur 52 est perdue, car f(5) a renvoyé None

On opére une nouvelle modification de la fonction f :

>>> def f(x): return x*x # on calcule toujours 2, on ne 1l’affiche pas, mais on le renvoie

>>> y = £(5) # on appelle f avec 1l’argument 5 et on met le résultat dans y
>>> y # effectivement, y contient maintenant la valeur 25
25

Remarque : un return vide (c’est-a-dire suivi d’aucune expression) renvoie la valeur None.

32

4.2 l’espace de noms global CHAPITRE 4 : Ecrire des fonctions Python

4.2 Despace de noms global

Pendant toute la durée de I’évaluation d’un script, Python peut ouvrir, utiliser et refermer des espaces de nom. 11 s’agit
d’éviter des conflits d’homonymie (deux identificateurs de méme nom, mais de contenus différents, et auxquels on veut
continuer & accéder sans que l'un “masque” lautre).

Au niveau interactif, on est dans l’espace “global”. Son contenu peut d’ailleurs étre visualisé avec la fonction globals
(qui ne prend pas d’arguments). Voici par exemple le contenu de I'espace de noms global quand on vient juste de lancer
Pinterpréteur (I'objet affiché est de type dictionnaire) :

>>> RESTART

>>> globals() # on vient de relancer 1l’interpréteur Python, et on demande les noms globaux
{’__package__’: None, ’__name__’: ’__main__’,

’__loader__’: <class ’_frozen_importlib.BuiltinImporter’>,

’__builtins__’: <module ’builtins’>, ’__doc__’: None}
Juste aprés, on crée trois variables globales z,y, 2z, et on appelle & nouveau la fonction globals. On voit que les noms
x,y, z et les contenus correspondants ont été ajoutés au dictionnaire :

>>x,y,z=1, 2, 3 # on crée les variables globales z,y,z

>>> globals() # elles apparaissent maintenant dans 1’espace de nom global
{’__package__’: None, ’y’: 2, ’x’: 1, ’__name__’: ’__main__’,
’__loader__’: <class ’_frozen_importlib.BuiltinImporter’>,
’__builtins__’: <module ’builtins’>, ’z’: 3, ’__doc__’: None}
Continuons, en important cette fois le module math (avec I'instruction import math). En appelant a nouveau la fonction
globals, on voit que le module math a été ajouté, mais qu’il ne représente qu’une seule entrée du dictionnaire (pour des

raisons de présentation, on a un peu raccourci le chemin d’accés au module) :

>>> import math

>>> globals()
{’__package__’: None, ’y’: 2, ’x’: 1, ’__name__’: ’__main__’,

’__loader__’: <class ’_frozen_importlib.BuiltinImporter’>,

’__builtins__’: <module ’builtins’>, ’z’: 3,

’math’: <module ’math’ from ’/Library/.../python3.3/lib-dynload/math.so’>, ’__doc__’: None}

Dans la méthode précédente de chargement du module math, les noms des fonctions qui composent ce module ne sont
pas directement présents dans ’espace global. Ces noms sont en effet présents dans ’espace de nom du module math, et
on peut y accéder a 'aide du préfixe “math.” (par exemple, on écrira math.sqrt(5)).

En revanche, on peut décider de charger le module math avec 'instruction from math import *.

Un nouvel appel a la fonction globals montre qu’alors tous les noms de ce module appartiennent a espace global (et le
dictionnaire est beaucoup plus volumineux : on a ici considérablement raccourci laffichage).

>>> from math import *

>>> globals()

{’isinf’: <built-in function isinf>, ’tanh’: <built-in function tanh>,
expml’: <built-in function expml>, ’isnan’: <built-in function isnan>,
’loglp’: <built-in function loglp>, ’copysign’: <built-in function copysign>,
<olu>
’e’: 2.718281828459045, ’log2’: <built-in function log2>,

’hypot’: <built-in function hypot>, ’asin’: <built-in function asin>}

Avec cette nouvelle méthode, les fonctions du module math sont donc directement accessibles par leur nom court (par
exemple sqrt plutot que math.sqrt). C’est peut-étre ce qu’on recherche, mais on s’expose a des problémes d’homonymie :
si deux fonctions portent le méme nom, la derniére & avoir été chargée en mémoire occulte la précédente.

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 33/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

4.3 L’espace de noms local d’une fonction CHAPITRE 4 : Ecrire des fonctions Python

4.3 L’espace de noms local d’une fonction

Quand une fonction f est appelée (et que débute son évaluation), elle crée un nouvel espace de noms : cela signifie que
les variables qui sont créées dans cette fonction ne sont visibles qu’a lintérieur de celle-ci (elles y sont locales). Notre
fonction f peut cependant continuer & accéder aux variables de ’espace global. De méme, si notre fonction f contient la
définition d’une fonction g, celle-ci crée un espace de noms inclus dans celui de f.

On peut lire les définitions locales d’'une fonction en évaluant I’expression locals().

Le mieux est de prendre quelques exemples, aprés avoir redémarré 'interpréteur Python.

>>> RESTART
>>a,b=1, 2 # au niveau interactif (au niveau ‘global’), on pose a=1 et b=2
>>> globals() # voici le dictionnaire de 1l’espace de nom global

{’b’: 2, ’a’: 1, ’__package__’: None, ’__loader__’: <class ’_frozen_importlib.BuiltinImporter’>,
’__doc__’: None, ’__builtins__’: <module ’builtins’>, ’__name__’: ’__main__’}

>>> locals() # au niveau interactif, ‘local’ et ‘global’ c’est pareil

{’b>: 2, ’a’: 1, ’__package__’: None, ’__loader__’: <class ’_frozen_importlib.BuiltinImporter’>,
’>__doc__’: None, ’__builtins__’: <module ’builtins’>, ’__name__’: ’__main__’}

On définit ensuite une fonction f (prenant deux arguments x et y) def fi}l{;lz)(;A- » locals())

a intérieur de laquelle on définit (puis on appelle) une fonction z -3 n

g (prenant un argument z). print (*B:*,locals())

Les deux fonctions f et g créent des variables et affichent, & plu- def g(z):

sieurs reprises, le contenu de I’expression locals() (pour qu’on print(°C:’,locals())
puisse retracer I’évolution de I’espace de nom local en cours). a=4;b=5

print(°D:’,locals())
print (’E:’,globals())
print (°F:’,locals())
A un moment donné, a l'intérieur de la fonction g, on demande g(6)
également D’affichage du dictionnaire de ’espace de noms global. print(°G:’,locals())

On accompagne cet affichage d’une lettre majuscule (de A’ 4°G’)
pour mieux suivre la chronologie.

On commence par rappeler le contenu du dictionnaire de 1'espace de noms global (on y trouve bien str un enregistrement
relatif & la fonction f). On voit & cette occasion que dans ce dictionnaire le contenu de la variable f est représenté par
“function f at...”, avec indication de I'adresse du code de la fonction en mémoire.

>>> globals()
{’f’>: <function f at 0x1040f0710>, ’b’: 2, ’a’: 1, ’__package__’: None,

’__loader__’: <class ’_frozen_importlib.BuiltinImporter’>, ’__doc__’: None,

’__builtins__’: <module ’builtins’>, ’__name__’: ’__main__’}

On appelle maintenant f avec les argments 10 et 20. On observe (et on commente aprés) les affichages obtenus :

>>> £(10,20)

{’y’: 20, °x’: 10}

{’a’: 3, ’y’>: 20, ’x’: 10}

{’g’: <function f.<locals>.g at 0x1040b8680>, ’a’: 3, ’y’: 20, ’x’: 10}
{’z’: 6}

{’z’: 6, ’a’: 4, ’b’: 5}

{’f’: <function f at 0x1040£f0710>, ’b’: 2, ’a’: 1, ’__package__’: None,

’__loader__’: <class ’_frozen_importlib.BuiltinImporter’>, ’__doc__’: None,

’__builtins__’: <module ’builtins’>, ’__name__’: ’__main__’}

G: {’g’>: <function f.<locals>.g at 0x1040b8680>, ’a’: 3, ’y’: 20, ’x’: 10}

m o Q = o =

Voici comment on peut interpréter les résultats précédents :

A : on vient d’entrer dans la fonction f, et celle-ci a créé deux variables locales x et ¥y, qui ont regu respectivement les
valeurs 10 et 20 passées lors de l'appel a f.

B : dans la fonction f, on a créé une variable locale a (et on lui a donné la valeur 3).

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 34/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

4.3 L’espace de noms local d’une fonction CHAPITRE 4 : Ecrire des fonctions Python

F : on est ici juste aprés la définition de g a U'intérieur de f. On voit que g a été ajoutée au dictionnaire de ’espace de
noms local & f, et la description du contenu de g (a savoir <function f.<locals>.g at 0x1040b8680>) indique
bien qu’il s’agit ici d’une fonction n’existant que dans ’espace de noms local & f.

C : on vient d’entrer dans la fonction g (appelée avec 'argument 6). La fonction g a donc créé une variable locale z avec
la valeur 6. On voit que ’espace de noms local est ici celui de g, et qu’il se réduit pour 'instant & la variable z.

D : La fonction g vient de créer deux variables locales a et b, avec les valeurs 4 et 5.

E : Depuis la fonction g on a demandé 'affichage du dictionnaire de I’espace de noms global. On y retrouve les enregis-
trements relatifs & f et aux variables globales a et b (définies avant ’appel de f) : on voit qu’elles ont conservé les
valeurs 1 et 2, et qu’elles ne sont donc pas affectées par les définitions locales de a et de b dans 'espace de g.

G : On est maintenant “sorti” de la fonction g, et on retrouve le dictionnaire de nom local & la fonction f. On voit
notamment que les variables locales z, a, b définies dans g n’existent plus : I’enregistrement relatif a la variable a
évoque en fait la variable locale définie dans f par I'instruction a = 3.

Quand cet appel a la fonction f est terminé, on revient au niveau interactif (global) et on retrouve le dictionnaire de
Pespace de nom global dans 1’état ou il était avant 1’évaluation de l'expression f(10,20). On y retrouve notamment les
deux variables globales a =1 et b= 2:

>>> globals() # re-voici le dictionnaire de 1l’espace de nom global

{°b’: 2, ’a’: 1, ’__package__’: None, ’__loader__’: <class ’_frozen_importlib.BuiltinImporter’>,

’>__doc__’: None, ’__builtins__’: <module ’builtins’>, ’__name__’: ’__main__’}

a=1[1, 2, 3]

On voit maintenant une situation diffé- def f(x):

rente, dans laquelle les variables concer- print (’A: a=’,a,’x=’,x,’id(a)=’,1id(a),’id(x)=,id(x))

nées ont un contenu de type liste (donc un x = [4,5,6]

contenu composite et mutable). print(°B: a=’,a,’x=’,x,’id(a)=’,id(a),’id(x)=’,id(x))
def x):

On r'edémarre Python, et on définit .les ﬁiir)u:(’c: a= a, %= ,x,’id(a)=",id(a) , id()=",1d(x))

fonctions f,g ci-contre. On place la liste <[0] = 9

[1,2, 3] dans la variable globale a. B 67 o, R i, P A, PG ARG

Avec les définitions précédentes, on évalue l'expression f(a). On voit (affichage A’) que la fonction f crée la variable
locale x et qu’elle y place le contenu de a. En fait, & cet instant, les deux variables a (globale) et = (locale) pointent sur
une liste unique & une adresse bien précise en mémoire (celle donnée par la fonction id).

Ensuite, on redéfinit la variable locale x, en y plagant [4, 5, 6]. On voit (affichage 'B’) que les deux variables a et = pointent
sur deux listes différentes en mémoire. C’est normal, car les valeurs sont différentes, mais le résultat aurait été le méme si
on avait écrit z = [1,2, 3] : on aurait défini une nouvelle liste en mémoire (égalité structurelle mais pas égalité physique).

>>> f(a)
A: a= [1, 2, 3] x= [1, 2, 3] id(a)= 4316768304 id(x)= 4316768304
B: a= [1, 2, 3] x= [4, 5, 6] id(a)= 4316768304 id(x)= 4316769960

On évalue maintenant ’expression g(a). On voit (affichage ’C’) que g crée la variable locale x et qu’elle y place le contenu
de a. A ce moment il y a égalité physique entre les deux. Ensuite I'instruction z[0] = 9 ne redéfinit par la liste =, mais
seulement 1'un de ses éléments, et cela ne modifie pas 'adresse de la liste en mémoire (ga modifie seulement 1’adresse
de la valeur correspondant a la premiére position de cette liste).

On a la confirmation de ce comportement avec l'affichage 'D’, ol on constate que la modification de la liste placée dans
la variable locale z s’est répercutée sur la liste placée dans la variable globale a (c’est normal, les deux variables pointent
sur la méme adresse, il y a encore égalité physique).

>>> g(a)
C: a= [1, 2, 3] x= [1, 2, 3] id(a)= 4352360600 id(x)= 4352360600
D: a= [9, 2, 3] x= [9, 2, 3] id(a)= 4352360600 id(x)= 4352360600

On retiendra donc que quand ils sont transmis en tant qu’argument d’une fonction, les objets composites mutables (et
en particulier les listes, mais c’est valable aussi pour les dictionnaires, qui seront abordés plus loin) sont transmis par
“adresse” plutét que par “valeur”.

Rappelons qu’on peut toujours faire une copie indépendante d’une liste a en écrivant I'instruction z = al:

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 35/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

4.4 Remarques sur les espaces de noms emboités CHAPITRE 4 : Ecrire des fonctions Python

4.4 Remarques sur les espaces de noms emboités

Chaque fonction crée son propre espace de noms. Il est possible (et courant) d’emboiter des définitions de fonctions, donc
des espaces de noms. Depuis le plus récent d’entre eux, on peut lire les variables définies dans les espaces de noms qui le
contiennent. A l'intérieur d’'un méme espace de noms, les variables deviennent visibles dans 1’ordre chronologique de leurs

définitions.

Par exemple, on définit ici la variable globale a = 1515. >>> a = 1515

Ensuite on définit une fonction g a I'intérieur d’une fonction f. >>> def £(0):

La variable locale a est définie dans f. Sa définition suit celle de def g(O): print(a)
g mais (et c’est le plus important) elle précéde 'appel a g. a = 200

Dans ces conditions (et on le constate lors d’un appel & f), la g0

fonction g “voit” la variable locale a (qui lui masque d’ailleurs la ;;;; O

variable globale a = 1515).

Autre exemple : on définit la variable globale a = 1515.

>>> a = 1515

On définit ensuite la fonction g a l'intérieur de la fonction f. 222 aett 20 .
def g(): print(a)
La fonction g ne redéfinit plus ici de variable locale a. g0
Quand on appelle f (qui appelle elle-méme g), on constate que g >>> £()
a accés en lecture a la variable globale a = 1515. 1515

Dans I’exemple suivant, on tente de créer la variable locale a = 2013 dans la fonction f, mais aprés 'appel a g.
Or la fonction g fait référence a la variable a. Il y a dans ce cas une ambiguité entre les deux définitions de a.

On voit que Python réagit par un message d’erreur approprié (qu’on a ici abrégé).

>>> a = 1515
>>> def £(O):
def g(): print(a)
g0
a = 2013
>>> ()
Traceback (most recent call last): <...>
NameError: free variable ’a’ referenced before assignment in enclosing scope

Voici une autre situation qui conduit a un message d’erreur (différent du précédent). La fonction f tente d’ajouter 1 au
contenu de la variable a. Mais I’écriture a = a+1 provoque ’évaluation dans f et tente de créer une variable locale a.

Le probleme est que le second membre a + 1 est évalué d’abord, ce que Python rejette car 'ambiguité est trop grande
entre les deux significations de la variable a.

>>> a = 1515
>>> def £(0):
a=a+ 1; print(a)
>>> £()
Traceback (most recent call last): <...>
UnboundLocalError: local variable ’a’ referenced before assignment

Si on souhaite utiliser (non seulement pour la lire mais pour la modifier), depuis l'intérieur d’une fonction, une variable
globale, il faut le préciser (au début de la fonction) par la directive global :

>>> a = 1515
>>> def £():
global a
a =a+ 1; print(a)
>>> £()
1516
>>> a
1516

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 36/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

4.5 Paramétres positionnels ou nommés, valeurs par défaut CHAPITRE 4 : Ecrire des fonctions Python

4.5 Paramétres positionnels ou nommeés, valeurs par défaut

Une fonction peut accepter un nombre quelconque de paramétres : leurs noms n’ont pas beaucoup d’importance (ils servent
a nommer localement les valeurs transmises lors de I’appel a la fonction). En revanche l'ordre dans lequel apparaissent
ces paramétres dans la définition de la fonction est important.

On peut donner une valeur par défaut & un ou plusieurs arguments d’une fonction. Pour cela, dans la définition de cette
fonction, et si on note arg le nom de 'argument et val sa valeur par défaut, on remplacera arg par arg = val.

Si un argument recoit une valeur par défaut, il peut donc étre omis lors de 'appel de la fonction.

Mais pour qu’il n’y ait aucune ambiguité, les arguments avec valeurs par défaut (dans la définition de la fonction) doivent
suivre ceux qui n’en ont pas.

def f(x, y, z, t): # f est une fonction avec quatre arguments, sans valeurs par défaut
def g(x, y, z, t=10): # définition de g ou, par défaut, t =10

def h(x, y, z=5, t=10): # définition de h ou, par défaut, z=05 et t =10

def k(x, y=2, z, t=10): # cette définition serait illégale

Dans les exemples précédents :
— pour appeler la fonction f, il faut écrire explicitement f(z,y, z,¢) en précisant les valeurs des quatre arguments.
— évaluer g(x,y, z) équivaut a évaluer g(z,y, z,10);

on peut bien sir écrire g(x,y, z,1000) si on tient & donner la valeur 1000 au quatriéme argument ¢.
— évaluer h(z,y) équivaut a évaluer h(z,y,5,10); évaluer h(z,y,999) équivaut a évaluer h(zx,y, 999, 10);

on peut bien str écrire g(z,y,9,6) si on tient & donner la valeur 9 a Pargument z et la valeur 6 a Pargument ¢.
— la définition de la fonction k est illégale;

par exemple, dans k(1,3,5), comment distinguer (z =1,y =3,2=5,t=10)de (x =1,y=2,2=3,t=5)"7
Les arguments avec valeurs par défaut offrent une possibilité intéressante lors de ’appel de la fonction.
On peut en effet remplacer f(--- ,valeur,---) par f(---,arg = valeur,---). Il faut bien str que le(s) nom(s) arg utilisés
ici dans I’appel de f correspondent au(x) nom(s) arg utilisés dans la définition de cette fonction.
Il faut également que les arguments ainsi nommeés suivent les arguments non nommeés lors de I'appel (ces derniers sont
alors simplement appelés arguments positionnels). Enfin, et c’est 1a le principal intérét, les arguments nommés peuvent
étre donnés dans n’importe quel ordre.
Pour comprendre comment ¢a fonctionne, prenons un exemple trés simple. La fonction f prend cing arguments : les deux
premiers sont obligatoires et les trois suivants sont optionnels (ils regoivent une valeur par défaut dans la définition de f).
Notre fonction f se résume & afficher les valeurs qu’elle recoit pour les cing variables locales xz, vy, z, t, u.

Voici la définition de f :

>>> def f(x, y, z=666, t=777, u=888):
print(’x=",x,’ y=’,y,’ z=’,z,’ t=’,t,’ u=’,u,sep="")

Ensuite, on effectue plusieurs appels a la fonction f, en omettant tout ou partie des arguments par défaut.

>>> f(1, 2) # ici z,t,u regoivent leur valeur par défaut

x=1 y=2 z=666 t=777 u=888

>>> £(1, 2, 3) # ici ¢ et u regoivent leur valeur par défaut

x=1 y=2 z=3 t=777 u=888

>>> f(1, 2, 3, 4) # ici seul u regoit sa valeur par défaut

x=1 y=2 z=3 t=4 u=888

>>> f(1, 2, 3, 4, 5) # ici les cinq arguments de f regoivent une valeur
x=1 y=2 z=3 t=4 u=5

Dans cette deuxiéme série d’exemples, on voit qu’il est possible de préciser des valeurs pour un ou plusieurs des arguments
optionnels, et ce dans un ordre quelconque, & condition de préciser d’abord les valeurs des deux arguments positionnels
(c’est-a~dire non nommeés) x et y.

>>> f(1, 2, u=b) # ici on précise u =25, mais z et ¢t gardent leur valeur par défaut
x=1 y=2 z=666 t=777 u=b

>>> f(1, 2, t=4, u=3) # ici on précise u=3 et t =4, mais par défaut z = 666

x=1 y=2 z=666 t=4 u=3

>>> f(1, 2, u=5, t=4, z=3) # ici on précise z=3, u=>5 et t=4, dans un ordre quelconque
x=1 y=2 z=3 t=4 u=b

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 37/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

4.6 Rattrapage des exceptions CHAPITRE 4 : Ecrire des fonctions Python

4.6 Rattrapage des exceptions

Quand une erreur se produit dans un script, elle provoque I'arrét du programme et l'affichage d’'un message d’erreur.

Pour éviter cette interruption brutale, on peut appliquer un traitement spécifique. Plus généralement, on peut traiter une
situation exceptionnelle dont on ne sait pas forcément ou et quand elle va survenir a l'intérieur d’un bloc donné. Plutét
que de parler d’erreur, on emploiera donc le terme “exception”. Et prévoir une réaction adaptée & une exception, c’est la
“rattraper”.

Pour le traitement des exceptions, Python offre la clause try: ... else.
La forme la plus simple est la suivante, ou le bloc2 est parcouru si une exception (quelle qu’elle soit) est rencontrée dans
le blocl (cette exception provoque I'arrét du blocl et le passage immédiat au bloc2) :

try |:

blocl_dans_lequel_une_exception_peut_survenir

except |:

bloc2_de_rattrapage_de_toutes_les_exceptions

On peut également prévoir un traitement particulier pour telle ou telle exception. Dans ce cas, on utilisera une construction
un peu plus élaborée, du genre :
try|:

bloci_dans_lequel_une_exception_peut_survenir

except |nom_de_l_exzception_4 :

blocA_de_rattrapage_de_l_exzception_A4

except |nom_de_l_exzception_B :

blocB_de_rattrapage_de_l_exception_B

except | nom_de_l_exzception_Z :
blocZ_de_rattrapage_de_l_exzception_Z

except |: # (facultatif)

bloc_de_rattrapage_de_toutes_les_exceptions_non_prévues_d_ce_stade
On peut appliquer un méme traitement & plusieurs exceptions. Pour cela, on écrira : except (erry,errs,...)
La construction except peut étre complétée par une clause else, exécutée si aucune exception n’a été levée/rattrapée.

Python posséde beaucoup d’exceptions prédéfinies (cf http://docs.python.org/3.3/1library/exceptions.html)

En voici juste quelques-unes :

IndexError se produit si on cherche & accéder & un élément d’une liste, en dehors des limites de celle-ci
NameError se produit quand on évoque une variable (locale ou globale) dont le nom n’existe pas
SyntaxError se produit quand Python échoue & lire une expression dont la syntaxe est erronée
TypeError se produit quand une opération est appliquée a un objet qui n’est pas du type adéquat
ZeroDivisionError | se produit quand un calcul arithmétique conduit & une division par 0

Le programme ci-dessous demande une expression numérique au clavier, et il renvoie la valeur de cette expression (et s’il
y a une erreur, quelle qu’elle soit, il demande & nouveau d’entrer une expression numeérique) :

def calcul():
fini = False
while not fini:
try: result = float(eval(input(’Entrez une expression numérique: ’)))
except: print(’Il y a eu une erreur, recommencez’)
else: fini = True
print(’Le résultat est:’,result)

Voici un exemple d’utilisation. On entre ici plusieurs expressions erronées. L’erreur n’est jamais la méme, mais le traitement
indifférencié par try:... except: ne permet pas de s’en rendre compte.

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 38/ 76

http://docs.python.org/3.3/library/exceptions.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

4.6 Rattrapage des exceptions CHAPITRE 4 : Ecrire des fonctions Python

>>> calcul()

Entrez une expression numérique: [1,2,3]
I1 y a eu une erreur, recommencez

Entrez une expression numérique: 1%

I1 y a eu une erreur, recommencez

Entrez une expression numérique: 1/0

I1 y a eu une erreur, recommencez

Entrez une expression numérique: 1/2+1/3
Le résultat est: 0.8333333333333333

On modifie maintenant le programme calcul en affinant un peu le traitement des erreurs. Il y a un message personnalisé
pour les exceptions les plus probables, mais la derniére clause except: permet de rattraper toutes les exceptions non
traitées a ce stade.

def calcul():

fini = False

while not fini:
try: result = float(eval(input (’Entrez une expression numérique: ’)))
except (TypeError, ValueError): print("Erreur de Valeur/Type")
except SyntaxError: print("Il y a une erreur de syntaxe")
except ZeroDivisionError: print("Il y a une division par zéro")
except: print("Quelque chose n’a pas fonctionné, mais quoi?")
else: fini = True

print(’Le résultat est:’,result)

Et voici un exemple d’utilisation de la procédure calcul :

>>> calcul()

Entrez une expression numérique: [1,2,3]
Erreur de Valeur/Type

Entrez une expression numérique: 1xx*

I1 y a une erreur de syntaxe

Entrez une expression numérique: 1/0

I1 y a une division par zéro

Entrez une expression numérique: sqrt(5)
Quelque chose n’a pas fonctionné, mais quoi?
Entrez une expression numérique: 1/2+2/3
Le résultat est: 1.1666666666666665

Les erreurs sont souvent subies (puis traitées), mais elles peuvent aussi étre provoquées (on dit alors levées).

Cela peut correspondre a la réalisation d’une situation trés particuliére ("exceptionnelle") et I'utilisation de clauses try. . .
except... peut constituer une bonne alternative aux clauses if... then...

Dans le petit programme suivant, on part a la recherche d’un élément cible dans une liste. Si I’élément cible est trouvé,
on léve Exception (ce qui est la classe d’exception la plus générale) et on répond par le message "Trouvé" (le parcours
de la liste est alors interrompu, bien sir). Sinon (et il faut pour cela aller jusqu’au bout de la liste), et donc s’il n’y a pas
d’erreur, la clause else affiche le message "Non trouvé".

def cherche(cible,liste):
try:
for elt in liste:
if elt == cible: raise Exception
except: print("Trouvé")
else: print("Non trouvé")

Voici un exemple d’utilisation de la fonction cherche :

>>> cherche(8,[2,6,1,9,8,3,4,0,7])
Trouveé

>>> cherche(5, [2,6,1,9,8,3,4,0,7])
Non trouvé

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 39/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

4.7 Fonctions lambda CHAPITRE 4 : Ecrire des fonctions Python

4.7 Fonctions lambda

En Python, une fonction lambda est une fonction anonyme (& laquelle on n’a pas donné de nom), et qu’on peut appliquer
“a la volée” dans une expression.

La syntaxe est : ‘ lambda parametres : expression‘ (remarque : lambda est un des mots réservés du langage).

Les fonctions lambda sont réservées a des situations relativement simples. Leur définition doit tenir sur une seule ligne,
et elles ne peuvent pas contenir d’instructions composées (pas d’affectation, pas de boucle, etc.). Elles consistent donc
essentiellement en la définition d’une expression calculée en fonction des parameétres qui lui sont passés.

Pour prendre un exemple simpliste (et pas trés utile), les deux définitions suivantes de la fonction f sont équivalentes :

>>> def f(x,y,z): >>> f = lambda x,y,z: 100*x+10xy+z
return 100*x+10*y+z >>> £(1,2,3)

>>> £(1,2,3) 123

123 >>>

On peut utiliser des fonctions anonymes dans des constructions avec map (ou il s’agit d’appliquer une méme fonction a
tous les éléments d’une liste, par exemple) ou filter (ou il s’agit cette fois de sélectionner des éléments répondant a un
certain critére). Mais il est toujours possible de contourner l'utilisation des fonctions lambda en utilisant des “listes par
compréhension” (cette notion sera abordée plus loin).

Voici par exemple deux fagons de calculer la liste des carrés des dix premiers entiers positifs.
La deuxiéme méthode est plus élégante (et surtout plus naturelle) :
H >>> list(map(lambda x: x*x, range(1,11))) H >>> [x*x for x in range(1,11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100] [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
Autre exemple, on forme la liste de tous les entiers de [1,20[qui ne sont pas divisibles par 3.
La encore, la deuxiéme méthode est préférable :

>>> list(filter(lambda x: x%3,range(20)))
(1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19]

>>> [x for x in range(20) if x%3]
[1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19]

Les fonctions lambda conduisent souvent & un style un peu difficile a lire, et on vient de voir qu’on peut s’en passer.

On verra cependant un exemple un peu plus convaincant dans la section suivante.

4.8 Documentation des fonctions

Il est recommandé de placer des commentaires dans les fonctions qu’on écrit, et d’éviter un code trop dense.

Prenons un exemple. La fonction suivante trie une liste par la méthode d’insertion :

def tri_insertion(L):
for i in range(1,len(L)):
v=L[i]; j=i
while j>0 and L[j-1]>v: L[jl=L[j-1]; j-=1
L[jl=v

Le code précédent est trop dense, et non commenté, ce qui ne favorise pas sa relecture. Il est recommandé d’utiliser plutot
le style suivant (méme si, pour ce qui est des commentaires, on force peut-étre ici un peu le trait) :

def tri_insertion(L): # trier une liste par insertion
for i in range(1,len(L)):

pré-condition de ce passage dans la boucle for: L[0],...,L[i-1] sont triés
= L[i] # il s’agit d’insérer v = L[i] parmi L[O],...,L[i-1]
=i, # soit j la position d’insertion de v (par défaut j = i)
tant qu’on n’est pas arrivé au début de la liste
et tant que 1’élément & gauche de L[j] est encore supérieur & la valeur v
while j > 0 and L[j-1] > v:

H H S

L[j]1 = L[j-1] # alors on le décale & droite pour faire de la place

j =1 # et on décrémente la (future) position d’insertion de v
L[j]1 = v # on insére la valeur v & la position j
post-condition de ce passage dans la boucle for: L[0],...,L[i] sont triés

Voici un exemple d’utilisation de cette fonction tri_insertion (on importe la fonction sample du module random, pour
créer ici une liste d’entiers différents d’un intervalle donné).

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 40/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

4.8 Documentation des fonctions CHAPITRE 4 : Ecrire des fonctions Python

>>> from random import sample # importe la fonction sample du module random

>>> seq = sample(range(10,101), 15) # liste de 15 entiers différents dans [10,100]

>>> seq_backup = seql:] # copie de sauvegarde

>>> seq # voici la liste qu’on va trier

[82, 93, 28, 36, 22, 34, 24, 46, 73, 10, 35, 95, 83, 59, 30]

>>> tri_insertion(seq) # on appelle la fonction tri_insertion sur cette liste
>>> seq # la liste a été triée ‘sur place’

(10, 22, 24, 28, 30, 34, 35, 36, 46, 59, 73, 82, 83, 93, 95]

>>> seq_backup # mais on a conservé l’original

[82, 93, 28, 36, 22, 34, 24, 46, 73, 10, 35, 95, 83, 59, 30]

La fonction help de Python permet d’afficher une aide succinte sur les fonctions intégrées.

Voici par exemple 'aide associée & la fonction divmod :

>>> help(divmod)
Help on built-in function divmod in module builtins:
divmod(...)
divmod(x, y) -> (div, mod)
Return the tuple ((x-x%y)/y, xhy). Invariant: div*y + mod == x.

Incorporer des commentaires & une fonction, c’est trés bien si on souhaite relire le code de celle-ci. Mais si on est seulement
intéressé par I'utilisation de cette fonction, il est intéressant de pouvoir disposer d’une aide sur les arguments qu’elle attend,
et sur la nature du résultat qu’elle renvoie.

La solution est d’utiliser une “chaine de documentation” (docstring en anglais) placée juste aprés la ligne de définition, et
délimitée par une paire de triples guillemets (ou de triples apostrophes). L’utilisation de ces délimiteurs triples permet de
faire courir la chaine de documentation sur plusieurs lignes.

A titre d’exemple, nous allons modifier la fonction tri_insertion en lui ajoutant un nouveau paramétre formel sous la
forme d’une fonction pour personnaliser la fagcon dont la liste est triée.

def tri_insertion(L, f = lambda x: x):
"""tri_insertion(L,f) trie la liste L dans 1’ordre croissant
des valeurs de la fonction f (par défaut, f est 1l’identité).'"
for i in range(1,len(L)):
j =1; v = L[]
while j > 0 and f(L[j-11) > £(v):
L[j] = L[j-11; j -=1
L[j]1 = v

Une fois validée cette nouvelle définition, la docstring est affichée en tapant help(tri_insertion) :

>>> help(tri_insertion)

Help on function tri_insertion in module __main__

tri_insertion(L, f=<function <lambda>>)
tri_insertion(L,f) trie la liste L dans 1l’ordre croissant
des valeurs de la fonction f (par défaut, f est 1l’identité).

Voici comment trier une liste d’entiers relatifs selon leurs valeurs absolues, ou par ordre décroissant. Cette nouvelle
définition de tri_insertion et I’exemple du tri décroissant illustrent une utilisation commode des fonctions lambda :

>>> from random import sample # importe la fonction sample du module random

>>> seq = sample(range(-99,100),10) # liste de 10 entiers différents dans [-99,99]

>>> seq_backup = seq[:]; seq # copie de sauvegarde, contenu initial de seq

(13, -5, -79, 68, -95, -59, 36, -14, -91, 30]

>>> tri_insertion(seq,abs); seq # tri par valeurs absolues, et nouveau contenu de seq
[-5, 13, -14, 30, 36, -59, 68, -79, -91, -95]

>>> seq = seq_backupl[:] # récupération de la sauvegarde

>>> tri_insertion(seq,lambda x: -x); seq # tri décroissant, et nouveau contenu

[68, 36, 30, 13, -5, -14, -59, -79, -91, -95]

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 41/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

Chapitre 5

Les séquences (chaines, tuples, listes)

5.1 Propriétés communes aux séquences (hors “mutations”)

Il n’y a pas & proprement parler de type séquence en Python, mais on désigne comme tels les objets qui appartiennent
a 'un des trois types suivants : les chaines de caractéres, les listes, et les tuples (il faudrait y ajouter les objets de type
bytes ou array bytes, qui seront évoqués plus tard). Les intervalles (c’est-a-dire les objets créés par U'instruction range)
peuvent aussi étre considérés comme des séquences. Au-dela des différences entre ces types de données, les séquences ont
un certain nombre de propriétés importantes en commun :

— elles sont composées d’'un nombre fini d’éléments auxquels on peut accéder par un indice. Ainsi seq[k] désigne
Pélément situé en position k dans la séquence seq (la numérotation commence a 0).

— un indice négatif signifie qu’on compte & partir de la fin. Ainsi seq[-1] désigne le dernier élément d’une séquence.

— on peut effectuer des coupes (le terme anglais est slice). Ainsi seq[i:j] désigne la séquence (chaine, liste ou tuple)
formée des éléments qui sont en position 4 (inclus) & j (exclu) dans la séquence seq

— on peut tester 'appartenance d’un élément a une séquence. La syntaxe est elt in seq (résultat booléen)
— on peut parcourir une séquence au sein d’une boucle for. La syntaxe est for elt in seq

— la longueur d’'une séquence seq (le nombre d’éléments dont elle est constituée) est donnée par len(seq)

Dans le tableau ci-dessous, s et ¢t désignent des séquences (chaines, listes ou tuples), x désigne un objet pouvant appartenir
a s, et on note 1, j, k,n des entiers :

Opérations communes a tous les types de séquences
x in s True si x est dans s, False sinon || x not in s | False si z est dans s, True sinon
s+t Concaténation de s et ¢ s*n, n*xs concaténe n copies de s
len(s) longueur de la séquence s s[i] le i-éme élément de s
s[i:j] coupe de s pour indices [i, j] s[i:j:k] idem, mais avec un “pas” k
min(s) le plus petit élément de s max(s) le plus grand élément de s
s.index(x) | le 1°f indice ou x est dans s s.count(x) | le nombre de = dans s

Dans les pages qui suivent, on reviendra en détail sur l'utilisation spécifique des listes, des tuples et des chaines de
caractéres, mais voici un bref apercu :

— Les chaines de caractéres sont délimitées par des guillemets doubles ("abc") ou simples ('abc'). Elles sont constituées
de caractéres au format unicode (qui permet de représenter les lettres de tous les alphabets).

— Les listes sont des successions d’objets (eux-mémes séparés par des virgules), délimitées par des crochets [et 1. Elles
peuvent contenir des objets de type quelconque. Un exemple de liste est [1,'a', [3.14, 'xyz']].

— Les tuples sont des successions d’objets (séparés par des virgules), délimitées par des parenthéses (et).
Les tuples peuvent contenir des objets de type quelconque. Un exemple de tuple est : (1,'a',[3.14, 'xyz']).

Contrairement aux listes, les tuples ne sont pas mutables (voir plus loin). On ne peut donc pas modifier ou supprimer
leurs éléments individuellement (on peut juste redéfinir un tuple dans sa totalité).

42

5.2 Séquences mutables ou non CHAPITRE 5 : Les séquences (chaines, tuples, listes)

Remarquons que les fonctions intégrées 1ist, tuple et str permettent de passer d’'un type de séquence a 'autre :

>>> s = [1,[2,3],"abc"] # une liste

>>> str(s) # on la transforme en chaine

"[1, [2, 3], 'abc']"

>>> tuple(s) # on la transforme en tuple

(1, [2, 3], 'abc')

>>> t = ("xyz",(1,3.14),[0,2]) # un tuple

>>> str(t) # on le transforme en chaine

"('xyz', (1, 3.14), [0, 2])"

>>> 1list(t) # on le transforme en liste

['xyz', (1, 3.14), [0, 2]1]

>>> ¢ = "abcdef" # une chalne de caractéres

>>> 1list(c) # on la transforme en la liste de ses caractéres
[Ial’ 'b', ICI’ 'd', |ev’ |fv]

>>> tuple(c) # on la transforme en le tuple de ses caractéres
(ta', 'b', 'c', 'd', 'e', 'f")

5.2 Séquences mutables ou non

Rappelons que quand on crée une variable, donc lorsqu’on lie un identificateur a un objet par l'instruction nom=obj, on
associe en fait a cet identificateur ’adresse en mémoire ou se trouve physiquement I'objet. On exprime cette situation en
disant qu’on crée une référence, ou encore un pointeur, vers ’objet.

Il y a une différence importante entre les listes d’une part, et les chaines et tuples de I'autre : les listes sont dites mutables,
mais les chaines et les tuples ne le sont pas.

Dire qu’'un objet est mutable, c’est dire qu’on peut en modifier (voire en supprimer) un (ou plusieurs) élément(s), sans
pour autant créer une nouvelle référence vers I'objet ainsi modifié (adresse du début de 'objet reste inchangée).

Par exemple, si on pose x = y = [5,2,9], on définit deux variables x et y contenant en fait ’adresse d’une unique liste.
On peut poser z[2] = 10 : on mute donc la liste dont le contenu est maintenant [5, 10, 9], mais dont ’adresse ne change
pas en mémoire. Les variables x et y pointent donc toujours vers la méme adresse, a laquelle on trouve la liste [5, 10, 9]
(pour 'utilisateur, tout se passe donc comme si la mutation de la liste a s’était répercutée sur la liste y).

Le caractére mutable des listes peut réserver quelques surprises. Considérons I’exemple suivant :

>>> x = [1,2,3]; id(x) # la variable z contient en fait 1’adresse de la liste [1,2,3]
4301154856

>>> y = [x,x,x,x]; id(y) # la variable y contient 1’adresse de la liste [x,x,x,x]
4359646312

>>> [id(e) for e in y] # les éléments de la liste y pointent 1l’adresse de la liste [1,2,3]
[4301154856, 4301154856, 4301154856, 4301154856]

>>> x = [4,5,6]; id(x) # on redéfinit le contenu de x. L’adresse change!

4359645952

>>> y # mais le contenu de la liste y n’a pas changé

(ft, 2, 31, 1, 2, 31, 1, 2, 3], [1, 2, 3]]

>>> [id(e) for e in y] # normal car les adresses pointent toujours sur la liste [1,2,3]
[4301154856, 4301154856, 4301154856, 4301154856]

Reprenons I’exemple précédent, en le modifiant 1égérement :

>>> x = [1,2,3]; id(x) # la variable x contient 1’adresse de la liste [1,2,3]

4359646384

>>> y = [x,x,x,x]; id(y) # la variable y contient 1’adresse de la liste [x,x,x,x]
4359646240

>>> [id(e) for e in y] # les éléments de la liste y pointent 1l’adresse de la liste [1,2,3]
[4359646384, 4359646384, 4359646384, 4359646384]

>>> x[0] = 9; id(x) # on mute la liste x, on ne la redéfinit pas: adresse inchangée!
4359646384

>>> y # toutes les composantes de y ont changé en méme temps

tte, 2, 31, (9, 2, 31, [9, 2, 31, [9, 2, 3]1]

>>> [id(e) for e in y] # normal car elles pointent la méme adresse, ol on a maintenant [9,2,3]
[4359646384, 4359646384, 4359646384, 4359646384]

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 43/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

5.3 Listes définies “en compréhension” CHAPITRE 5 : Les séquences (chaines, tuples, listes)

Dans 'exemple suivant, on place dans la variable z une liste contenant quatre exemplaires de la liste [1, 2, 3].

Dans un premier temps, on redéfinit 1'élément z[0]. Cela n’a pas d’impact sur z[1], z[2] et z[3].

Mais si on mute 1’élément z[1], par exemple, cette mutation se répercute sur les éléments z[2] et z[3] (car z[1], z[2] et z[3]
continuent & pointer sur la méme adresse).

>>> z = [[1,2,3]] * 4 # on définit z par concaténation de quatre listes identiques
>>> z

(f1, 2, 31, [1, 2, 31, (1, 2, 31, [1, 2, 3]1]

>>> z[0] = [5,6] # ici on redéfinit 1’élément z[0]

>>> z # ca n’a pas d’influence sur z[1], z[2] et z[3]

(s, 61, 1, 2, 31, [1, 2, 31, [1, 2, 3]]

>>> z[1][2] = 2013 # ici on mute 1’é&lément z[1]

>>> z # ga se répercute sur z[2] et z[3]

(fs, 61, [t1, 2, 2013], [1, 2, 2013], [1, 2, 2013]]

5.3 Listes définies “en compréhension”

Les listes peuvent étre formeées :

— en évaluant 'expression 1ist () ou []. On obtient la liste vide.

— en combinant des éléments [elty, elt;,..., elt,], ou en convertissant une séquence par list(seq).

— en “compréhension”, par [expr for indice in iterable]l, ou [expr for indice in iterable if condition].
La liste est ici formée des valeurs de expr quand indice parcourt iterable (et o condition est faculative). Un “itérable”
est tout objet qui peut étre traversé, parcouru : (les séquences, les ensembles, les dictionnaires...)
L’expression suivante forme par exemple la liste des 22 oi1 1 < 2 < 100, en se limitant & 2 = 3 modulo 10.

H >>> [x*x for x in range(1,100) if xJ%10 == 3]
[9, 169, 529, 1089, 1849, 2809, 3969, 5329, 6889, 8649]

n fai i uvent étr nstrui n compréhension” d’un n plus génére ncore.
En fait, les listes peuvent é&tre construites “en co éhension” d’une facon pl énérale encore

La syntaxe est alors

[expression for indice_l in iterable_1 [if condition_1]
for wndice_2 in iterable_2 [if condition_2]

for indice_n in iterable_n [if condition_n] 1]

Chacune des conditions est facultative (et la condition n” 4 s’applique a I'indice n”).

Dans cette syntaxe, expression est évaluée en fonction des valeurs des n-uplets (indicey,indices, ..., indice,) successifs
(dans P'ordre lexicographique) et le résultat est la liste de ces évaluations de expression.

I1 faut bien comprendre la chronologie : pour chacune des valeurs possibles de indice; (définies par iterable; et le test
éventuel conditiony), on fait varier indices (attention : iterables et conditions peuvent dépendre de indice;), puis (a
indicey et indices fixés) on fait varier indices, etc.

Ainsi la boucle sur indice; “contient” la boucle sur indices, qui contient elle-méme, etc., jusqu’a la boucle sur indice,,.
Voici deux premiers exemples ol une liste est formée par compréhension avec deux for imbriqués. On voit que cela

produit deux variables locales i et j, et que la premiére boucle “contient” la deuxiéme. Cette chronologie est importante,
comme on le voit sur le troisiéme exemple, qui conduit & une erreur.

>>> [100%i+j for i in range(1,5) for j in range(1,4)]

(101, 102, 103, 201, 202, 203, 301, 302, 303, 401, 402, 403]
>>> [100%i+j for i in range(1,5) for j in range(1,i+1)]
[101, 201, 202, 301, 302, 303, 401, 402, 403, 404]

>>> [100%i+j for j in range(1,i+1) for i in range(1,5)]
<0002

NameError: name ’i’ is not defined

Voici quatre autres exemples, qui doivent étre soigneusement comparés avec les précédents. Ici la liste calculée s’écrit
[expression for indice in intervalle], ou expression est elle-méme définie comme une liste en compréhension. La
boucle permettant de calculer expression est parcourue “sous le controle” de la boucle principale.

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 44/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

5.4 Opérations de mutation de listes CHAPITRE 5 : Les séquences (chaines, tuples, listes)

>>> [[100*i+j for i in range(1,5)] for j in range(1,4)]

[[101, 201, 301, 401], [102, 202, 302, 402], [103, 203, 303, 403]]
>>> [[100*i+j for j in range(1,4)] for i in range(1,5)]

(101, 102, 103], [201, 202, 203], [301, 302, 303], [401, 402, 403]]
>>> [[100*i+j for j in range(1,i+1)] for i in range(1,5)]

[[101], [201, 202], [301, 302, 3031, [401, 402, 403, 404]1]

>>> [[100*i+j for i in range(1,5)] for j in range(l,i+1)]

<0002

NameError: name ’i’ is not defined

L’utilisation de listes en compréhension permet des constructions élégantes. L’imbrication des définitions en compréhension
peut cependant conduire & des formulations assez délicates a relire, comme 'atteste cette fonction qui renvoie la liste des
facteurs premiers strictement inférieurs & n?, ol n est l'entier passé en argument :

H def cribleobscur(n):

return [p for p in range(2,n*n) if p not in [j for i in range(2,n) for j in range(2+i,n*n,i)]]

H >>> cribleobscur(10)
[2, 38, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]

5.4 Opérations de mutation de listes

Dans le tableau suivant, s est une séquence mutable (une liste, a priori), et = est un objet qu’on écrit, ajoute, supprime
ou recherche dans s. On note ¢t un objet “itérable” dont les éléments sont écrits dans s ou ajoutés a la fin de s.

Opérations communes aux séquences mutables, donc applicables aux listes
s[i] = x remplace s[i| par x del s[il supprime I’élément s]]
sli:jl = ¢t remplace s[i],...,s[j—1] par les élts de t || s[i:j:k] = t | idem mais avec le pas k
del s[i:j] supprime s[i], s[i + 1], ..., s[j —1] del s[i:j:k] | idem mais avec le pas k
s.append (x) ajoute un élément x a s s.clear() efface tous les éléments de s
s.copy O copie indépendante de s (idem s[:]) s.extend(t) ajoute les élts de l'itérable ¢ a s
s.insert(i,x) | insére x en position ¢ dans s s.pop(i) supprime et renvoie le i¢me élt de s
s.remove (x) supprime la 1°*® occurence de x dans s s.reverse() inverse 'ordre des éléments de s

Attention : la plupart des instructions précédentes renvoient la valeur None mais mutent la liste (sans changer son adresse).
Prenons quelques exemples, en placant une méme liste dans s et t, et en faisant une copie “fraiche” de cette liste dans w.
Les modifications sur s se répercutent dans ¢ mais pas dans u :

>>> s = t = list(range(10,20)); t # place dans s et ¢t la méme liste (méme adresse!)
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

>>> u = s.copy(); u # met dans u une copie indépendante de 1l’original
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

>>> s[3] = ’coucou’; t # remplace s[3], modification répercutée sur ¢
[10, 11, 12, ’coucou’, 14, 15, 16, 17, 18, 19]

>>> del s[3]; t # supprime s[3], modification répercutée sur ¢
[10, 11, 12, 14, 15, 16, 17, 18, 19]

>>> s.insert(3,0); t # insére 0 en position 3 dans s (idem dans t?)

[10, 11, 12, 0, 14, 15, 16, 17, 18, 19]

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 45/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

5.5 Les tuples CHAPITRE 5 : Les séquences (chaines, tuples, listes)

A la suite des instructions précédentes, on voit comment utiliser des coupes (slices) de la liste s :
>>> s[1:9:2] # 1it une coupe de longueur 4 dans s
[11, 0, 15, 17]

>>> §[1:9:2] = ’abcd’; t # remplace ces 4 élts par ceux de ’abcd’
[10, ’a’, 12, °’b’, 14, °c’, 16, ’d’, 18, 19]

>>> del s[1:5]; t # efface les éléments de positions 1 a 4
[10, ’c’, 16, ’d’, 18, 19]

Terminons cette série d’exemples par quelques manipulations supplémentaires sur la liste s :

>>> s.append(’xyz’); t # ajoute 1l’objet ’xyz’ & la fin de la liste
[10, ’c’, 16, ’d’, 18, 19, ’xyz’]

>>> s.extend(Cuvw’); t # compléte la liste par les éléments de ’uvw’
(10, ’c’, 16, ’d’, 18, 19, ’xyz’, ’u’, ’v’, ’w’]

>>> s.pop(5) # renvoie s[5], et le supprime de la liste

19

>>> s.remove(16); t # supprime la premiére occurence de la valeur 16
[10, ’C’, 7d’, 18, ’xyz’, 7u7’ ’V’, ’W’]

>>> s.reverse(); t # inverse la liste s (opération ‘sur place’)
[’W’, ’V’, 7u), ’xyz’, 18, ’d’, ’C’, 10]

>>> u

pendant ce temps-1la, 1l’original n’a pas changé

(10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Pour trier “sur place” la liste contenue dans une variable s, on écrit s.sort(), et pour obtenir une copie triée de cette
liste, mais sans affecter 'original, on évalue I’expression sorted(s). Dans tous les cas, il y a deux arguments facultatifs :

key=fonction (défaut key=None) pour préciser une clef de tri, et reverse=True/False (défaut reverse=False) pour
inverser l'ordre du tri.

>>> from random import sample # importe la fonction sample du module random
>>> s = sample(range(100,1000),10); s # liste de 10 entiers différents a trois chiffres
[831, 348, 562, 879, 130, 864, 758, 886, 756, 355]

>>> sorted(s) # renvoie la liste triée

[130, 348, 355, 562, 756, 758, 831, 864, 879, 886]

>>> s # mais 1l’original n’a pas été modifié

[831, 348, 562, 879, 130, 864, 758, 886, 756, 355]

>>> gs.sort(); s # ici le tri s’effectue sur place

[130, 348, 355, 562, 756, 758, 831, 864, 879, 886]

5.5 Les tuples

Les tuples sont des séquences non mutables d’objets séparés par une virgule, et délimitées par des parenthéses (et).
Les tuples peuvent étre formés :

— en évaluant 'expression tuple() ou (). On obtient le tuple vide.

— en combinant des éléments (elty, elt;,..., elt,), ou en convertissant une séquence par tuple(seq).

— en “compréhension”, par tuple(expr for indice in iterable), ou (expr for indice in iterable if condition) ;

on peut également utiliser la syntaxe plus générale suivante, (cf “listes en compréhension”).

tuple(expression for indice_l in iterable_1 [if condition_1]
for indice_2 in iterable_2 [if condition_2]

for indice_n in tterable_n [if condition_n])

Quelques remarques :

— Les parenthéses aux extrémités sont facultatives (I'important, ce sont les virgules) mais recommandées pour la lisibilité.

Pour former un tuple & un seul élément, il faut faire suivre cet élément d’une virgule.

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 46/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

5.5 Les tuples CHAPITRE 5 : Les séquences (chaines, tuples, listes)

— Les opérations sur les séquences non mutables s’appliquent aux tuples : appartenance (avec in ¢ et not in t), conca-
ténation (avec t+t') et répétition (avec t * n), longueur avec len(¢), accés indexés et coupes (avec t[i], t[i : j],
t[i:j:k]), minimum/maximum (max et min), recherche de valeur par index.t(x) et occurences par t.count (z).

Les tuples sont indiqués pour “packer” ensemble des données, si on ne souhaite pas les modifier individuellement (ce
qui serait de toutes fagons impossible ici pour cause de “non mutabilité”) ni augmenter ou diminuer leur nombre.

Tout comme les listes et les chaines, les tuples sont itérables, et peuvent donc étre parcourus par une boucle for.

Commengons par un premier exemple de tuple défini “en extension” :

>>> t = (123, ’abc’, 3.14); type(t) # on définit un tuple de longueur 3

<class ’tuple’>

>>> t[1] # on accéde en lecture & 1’é&lément en position 1
’abc’

>>> t[1] = ’uvw’ # impossible de modifier un élément !!!

<...> TypeError: ’tuple’ object does not support item assignment

Voici quelques exemples de manipulations d’un tuple ¢ défini en compréhension :

>>> t = tuple(x*x for x in range(1,9)); t # un tuple défini en compréhension

(1, 4, 9, 16, 25, 36, 49, 64)

>>> t[::-1] # le méme tuple, mais a 1l’envers

(64, 49, 36, 25, 16, 9, 4, 1)

>>> id(t) # voici 1l’adresse de t en mémoire
4361652568

>>> ¢t =t + (2013,); t # on ajoute 1’élément 2013 (NB la virgule!)
(1, 4, 9, 16, 25, 36, 49, 64, 2013)

>>> id(t) # mais attention, c’est un tout nouvel objet!!!
4361652432

>>> t[1:6:2] # le tuple (t[1],t[3],t[5])

(4, 16, 36)

>>> t[-1] # le dernier élément du tuple t

2013

Terminons par quelques opérations possibles sur les tuples :

>>> (1,2,3)+(4,5) # concaténation de deux tuples

(1, 2, 3, 4, 5)

>>> (1,2,3),(4,5) # on forme un ‘2uple’ (un ‘3uple’ puis un ‘2uple’)
(1, 2, 3), 4, 5)

>>> (0,)*5 # le ‘luple’ (0) répété 5 fois

(0, 0, 0, 0, 0

>>> x,y,z = (5,6,7) # on ‘dépacke’ un tuple
>>> z, y, X # on repacke, mais en changeant 1’ordre
(7, 6, 5)
>>> tuple(’pqrs’) # transforme ’pqrs’ (chaine donc itérable) en tuple
(:p)’ :q)’ ’I", 757)
>>> tuple([1,2,3,4]) # transforme une liste (donc itérable) en tuple
(1, 2’ 3’ 4)
http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl

PN Do g
jean-miche.ferrard@ac-paris.fr mathprepa.fr 47/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

5.6 Les chaines de caractéres CHAPITRE 5 : Les séquences (chaines, tuples, listes)

5.6 Les chaines de caractéres

Les chaines sont des séquences de caractéres non mutables.

On ne peut donc pas modifier un ou plusieurs caractéres. Si on ajoute un caractére (ou une autre chaine) par concaténation
A une chaine existante, le résultat est la création d’une nouvelle chaine & une nouvelle adresse en mémoire.

Les chaines sont délimitées par des guillemets simples 'bonjour') doubles "bonjour") ou triples ('''bonjour''").

L’utilisation de guillemets triples permet de faire courir une chaine de caractéres sur plusieurs lignes, comme on ’a vu
dans la section consacrée aux “chaines de documentation” (docstrings).

La possibilité de choisir entre les délimiteurs simples ou doubles permet d’insérer des guillemets dans une chaine (on
pourra par exemple former la chaine "c'est I'automne").

Les opérations sur les séquences non mutables s’appliquent aux chaines :

— appartenance (avec in ch et not in ch),

— concaténation (avec ch+ch') et répétition (avec ch * n),

— longueur avec len(ch), accés indexé et coupes (avec ch[i], ch[i:j], chli:j:k])
— minimum/maximum (max et min)

— recherche de x par ch.index(z) et occurences par ch.count (z).

Tout comme les listes et les tuples, les chaines sont itérables, et peuvent donc étre parcourues dans une boucle for.

Comme on le voit ici, on concaténe des chaines avec 'opérateur + (ou un simple espace), et on les répéte par * :

>>> 7abc’ + ’uvwxyz’ # concaténation de deux chaines
’abcuvwxyz’
>>> ’abc’ * 5 # répétition d’une méme chaine

’abcabcabcabcabc’

Voici quelques exemples d’opérations possibles sur les chaines de caractéres :

>>> st = ’abxyztcabaabaabcabw’ # définition d’une chaine

>>> for c in st: print(ord(c),end=’) # boucle d’affichage des codes des caractéres
97 98 120 121 122 116 99 97 98 97 97 98 97 97 98 99 97 98 119

>>> len(st), st[2:5], st[-1] # lecture de caractéres par leurs indices
(19, ’xyz’, ’w’)

>>> st::-1] # inverser 1’ordre des caractéres

’wbacbaabaabactzyxba’

>>> (’abc’ in st, ’abcd’ in st, ’ab’ not in st) # appartenance ou non
(True, False, False)

>>> st.count(’aba’), st.index(’aba’) # nombre d’occurences, premiére occurence
(2,7

>>> st.index(’aba’,8) # 1% occurence & partir de la position 8
10

>>> st[2]="h’ # impossible de modifier un caractére

<...> TypeError: ’str’ object does not support item assignment

>>> list(’abcbde’) # la liste des caractéres d’une chaine
[7a” 7b” ,C’, 7b), 7d7, ’e7]

Les chaines possédent un trés grand nombre de méthodes qui leur sont propres ; ces méthodes ont souvent un comportement
par défaut qui peut étre personnalisé en précisant la valeur de paramétres facultatifs. Comme il est impossible de tout
citer, voici une simple sélection :

(pour plus de détails consulter : http://docs.python.org/3.3/library/stdtypes.html#text-sequence-type-str)

Voir également la section suivante pour une analyse détaillée de certaines méthodes importantes.

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 48/ 76

http://docs.python.org/3.3/library/stdtypes.html#text-sequence-type-str
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

5.7 Méthodes importantes sur les chaines (split, join, format)

CHAPITRE 5 : Les séquences (chaines, tuples, listes)

str.endswith (suffix) renvoie True si la chaine str se termine par la chaine suffix
str.startswith(prefiz) renvoie True si la chaine str commence par la chaine prefiz
str.isalnum() renvoie True si str est formée uniquement de caractéres alphanumériques
str.isalpha() renvoie True si str est formée uniquement de caractéres alphabétiques
str.isdigit() renvoie True si str est formée uniquement de chiffres

str.lower () renvoie une chaine obtenue par passage en minuscules

str.upper () renvoie une chaine obtenue par passage en majuscules

str.strip() renvoie une chaine obtenue en supprimant les blancs au début et a la fin
str.replace(old,new[,n]) | renvoie une chaine obtenue en remplacant old par new, au plus n fois

str.find (sub) indice de la premiére occurence de sub (et -1 si non trouvé)

str.index (sub) comme find, mais erreur ValueError si non trouvé

str.rfind (sub) indice de la derniére occurence de sub (et -1 si non trouvé)

str.center(n[,cl) renvoie str centrée dans une chaine de longueur n, bordée par des ¢
str.1just(nl,cl) renvoie str justifiée & gauche dans une chaine de longueur n, complétée par des ¢
str.rjust(nl,cl) renvoie str justifiée & droite dans une chaine de longueur n, complétée par des ¢

5.7 Méthodes importantes sur les chaines (split, join, format)

— La méthode split permet de découper une chaine en une liste de sous-chaines, en effectuant les coupures sur des
caractéres bien précis (par défaut les espaces)

>>> g="

>>> t.split(’8tre’)
[, > ou ne pas ’, ’, 13 est la question’]
>>> t.split(maxsplit=4)
[’étre’, ’ou’, ’ne’, ’pas’, ’&tre, 1la est la question’]

plein de

>>> t.split()
[’plein’, ’de’, ’vide’, ’dans’, ’cette’, ’chaine’]

’ ’plein’,

vide

’de’, ’?, ’tirets’?,

>>> t = "8&tre ou ne pas étre, 1la est la question"
>>> t.split()
[’étre’, ’ou’, ’ne’, ’pas’, ’&tre,’, ’1la’, ’est’, ’la’, ’question’]
>>> t.split(sep=’,7)
[’étre ou ne pas &tre’, > 1la est la question’]

on découpe la chaine sur les espaces (comportement par défaut)
ici on découpe sur les virgules (il n’y en a qu’une)

on peut choisir une chaine comme séparateur

ici, on autorise au plus quatre coupures

dans cette chaine

dans un split.() tous les espaces sont supprimés.

>>> t="--plein-de--tirets---dans-cette--chaine--"

>>> t.split(’-?)
P9

ca n’est pas pareil si on splite sur un autre caractére
)),)7,)dans)’ ,Cette’, 7)’ ,Chaine’,))’ 7)]

— La méthode join est I'inverse de la méthode split. L’expression sep.join(iterable) regroupe les chaines éléments
de V'objet iterable (une liste de chaines, par exemple), en utilisant la chaine sep comme séparateur.

>>> 22 join([’abc’,’def’,’ghi’])
’abcdefghi’
>>> %2 join([’abc’,’def’,’ghi’])
>abc*def*ghi’
>>> 2-7-? join([’abc’,’def’,’ghi’])
’abc-7-def-7-ghi’

joint les chalnes de la liste, avec un séparateur vide

idem mais en séparant par *

on peut séparer par une chaine quelconque

La méthode join doit étre considérée comme une propriété de la chaine qui est spécifiée comme séparateur.

La méthode join est économique en mémoire et doit étre préférée a une boucle mettant les différentes chaines bout
a bout (complexité linéaire plutot que quadratique).

http://creativecommons.org/licenses/by-sa/3.0/fr/
jean-miche.ferrard@ac-paris.fr

mathprepa.fr

une petite référence Python
49/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

5.8 Objets de type bytes et bytearray CHAPITRE 5 : Les séquences (chaines, tuples, listes)

— La méthode format permet de formater une chaine (pour afficher, le plus souvent), en utisant un canevas contenant
des champs (qui servent a spécifier le format) et des arguments pour renseigner ces champs.

La syntaxe est canevas.format (arguments). Les champs de formatage (dans la chaine canevas) sont délimités par
des accolades, et chaque champ est renseigné par I’argument qui lui correspond. Il y a énormément de variantes!
On trouvera une description détaillée ici : http://docs.python.org/3.3/library/string.html#formatstrings

On trouvera des exemples ici : http://docs.python.org/3.3/library/string.html#formatexamples
Voici quelques exemples simples :

>>> canevas = 'Nom: {}, prénom: {}, date de naissance: {}'

>>> canevas.format('William', 'Shakespeare',1613)
'Nom: William, prénom: Shakespeare, date de naissance: 1613’

>>> canevas = 'Nom: {n}, prénom: {p}, date de naissance: {d}'

>>> canevas.format(d=1613,p='William',n='Shakespeare')
'Nom: Shakespeare, prénom: William, date de naissance: 1613’

>>> canevas = 'Le nombre décimal {0:d} s'écrit {0:b} en binaire et {0:x} en hexadécimal'

>>> canevas.format (2013)

"Le nombre décimal 2013 s'écrit 11111011101 en binaire et 7dd en hexadécimal"
>>> canevas = 'On sait bien que {0}+{1}+{2} = {1}+{0}+{2} = {0}+{2}+{1}'

>>> canevas.format(15,87,23)

'On sait bien que 15+87+23 = 87+15+23 = 15+23+87'

>>> canevas = '{0}/{1} vaut {2:.2f} (2 décimales) et {2:.7f} (7 décimales)'
>>> x, y = 20132013, 71; canevas.format(x,y,x/y)
'20132013/71 vaut 283549.48 (2 décimales) et 283549.4788732 (7 décimales)'

5.8 Objets de type bytes et bytearray

On sait que le code “Ascii” (American Standard Code for Information Interchange) permet de représenter, dans un registre
qui va de 0 & 127, les caractéres de 'alphabet anglais (ainsi que quelques caractéres non imprimables) et qu’il a été complété
(pour un registre de codes allant de 128 a 255) dans différents formats pour les caractéres accentués (notamment le code
“ISO 8859-1", ou encore “Latin-1”, utilisé pour les langues d’Europe de l'ouest).

Le code “Ascii étendu” identifie donc caractéres et octets (valeurs binaires sur 8 bits, de 0 & 28 — 1 = 255).

Pour coder tous (?7) les caractéres et symboles de tous (7) les alphabets (par exemple les caractéres des langues d’Asie),
il a fallu mettre au point une norme mondiale, dite “Unicode”.

Les chaines de caractéres Python sont des séquences non mutables de caractéres, et elle utilisent le format Unicode.
Cette universalité se paie du prix qui est la taille suivant laquelle chaque caractére est codé. Mais Python est suffisamment

optimisé pour qu’on n’ait pas a s’en soucier. On remarque simplement que la taille d’une chaine de caractéres peut dépendre
de la nature de ceux-ci, comme le montrent les exemples suivants.

>>> from sys import getsizeof # la fonction getsizeof permet de calculer une ‘empreinte mémoire’
>>> getsizeof ("abcdef") # six caractéres non accentués

55

>>> getsizeof ("abcdef") # on a remplacé la lettre ‘a’ par la lettre accentuée ‘&’

79

>>> getsizeof ("afydieh") # six caractéres de 1’alphabet grec

86

Les bytes ressemblent aux chaines de caractéres : ils sont des séquences non mutables d’entiers compris entre 0 et 255
(c’est-a~dire codés sur un octet, “byte” en anglais). On peut tout a fait les considérer comme des chaines de caractéres, a
condition de se limiter aux caractéres du code ascii standard (pas de caractére accentué).

On peut les créer avec le préfixe b (suivi d’une chaine alphabétique) ou par la fonction bytes (appliquée a un “iterate”).

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 50/ 76

http://docs.python.org/3.3/library/string.html#formatstrings
http://docs.python.org/3.3/library/string.html#formatexamples
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

5.8 Objets de type bytes et bytearray CHAPITRE 5 : Les séquences (chaines, tuples, listes)

>>> B = b’xyztu’; C = bytes(range(65,91)) # les deux objets B et C sont de type bytes

>>> (B, C) # voila comment Python les affiche

(b’xyztu’, b’ABCDEFGHIJKLMNOPQRSTUVWXYZ’)

>>> B[0], 1list(B), B[::-1], C[0::5] # on peut y accéder par index ou par coupe

(120, [120, 121, 122, 116, 117], b’utzyx’, b’AFKPUZ’)

>>> D = bytes(range(0,20)); D # le bytes des entiers de 0 & 19 (affichés en hexa)
b’ \x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13°

>>> 1ist (D) # on convertit ce bytes en liste

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

On peut appliquer aux “bytes” les fonctions communes sur les séquences non mutables. Comme ils s’apparentent étroite-
ment aux chaines de caractéres, ils possédent également la plupart des méthodes de la classe string.

Les objets de type bytearray sont des tableaux mutables d’entiers compris entre 0 et 255.

On peut appliquer aux objets de type bytearray les fonctions communes sur les séquences non mutables, mais également
les méthodes spécifiques aux séquences mutables (¢’est-a-dire les méthodes applicables aux listes). Comme ils s’apparentent
étroitement aux chaines de caractéres, ils possédent également la plupart des méthodes de la classe string.

>>> B = bytearray(10); B # un "bytearray" de taille 10, dont tous les élts sont nuls
bytearray (b’ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00)

>>> for k in range(0,9,2): B[k]=65+k # dans cette boucle, on modifie certains éléments de B
>>> B # affiche le nouveau contenu de B

bytearray (b’A\x00C\x00E\x00G\x00I\x00’)

>>> 1list(B) # convertit ce contenu en une liste

[65, 0, 67, 0, 69, 0, 71, 0, 73, 0]

>>> B.reverse() # 1’objet B, mutable, posséde la méthode reverse

>>> 1list(B) # on le vérifie en convertissant B en liste

(o, 73, o, 71, 0, 69, 0, 67, 0, 65]

>>> B.append(96); list(B) # nouvelle preuve de la mutabilité d’un bytearray

(o, 73, o, 71, o, 69, 0, 67, 0, 65, 96]

On retiendra que les objets de type bytes et bytearray sont adaptés au traitement des informations sur des entiers de
lintervalle [0,255]. Pour plus d’information, on pourra évaluer help(bytes) et help(bytearray).

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 51/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

Chapitre 6

Dictionnaires, ensembles, itérateurs,
générateurs, fichiers

6.1 Dictionnaires

Les dictionnaires sont des structures mutables, non ordonnées, formées d’enregistrements du type clé :valeur

Le seul moyen d’accéder a une valeur particuliére est par 'intermédiaire de sa clé.

Les dictionnaires peuvent étre formés :

en évaluant 'expression dict () ou {}. On obtient le dictionnaire vide

en délimitant par { et } une séquence de paires clé :valeur :

{clé;:val;, clés:valy,..., clé,:val,}

en évaluant par exemple : dict([[clé;,val,], [clés,vals],...,[clé,,val,]])

en ajoutant des paires clé:wvaleur & un dictionnaire existant. On a ici une différence essentielle avec les listes, pour
lesquelles il est seulement possible de modifier un élément existant ou d’ajouter un élément supplémentaire a la fin de

la liste avec la méthode append

en “compréhension”, par exemple D = {x:x*2 for x in range(10)}

Voici quelques méthodes applicables & un objet dic de type dictionnaire. On note ici cle une clé et val une valeur :

len(dic)

renvoie la longueur du dictionnaire (nombres de clés)

diclclel

renvoie la valeur associée a la clé (1éve KeyError si la clé est absente)

diclcle]l = val

crée (ou modifie) une paire clé/valeur

del diclclel

efface une paire clé/valeur

cle in dic renvoie True si la clé est présente dans le dictionnaire, False sinon
cle not in dic renvoie True si la clé est absente du dictionnaire, False sinon
dic.clear() efface le contenu du dictionnaire
dic.copy () renvoie une copie du dictionnaire, indépendante de ’original
dic.get(cle) renvoie la valeur associée a la clé, et renvoie None si la clé est absente.
dic.get(cle,def) renvoie la valeur associée a la clé, et la valeur de def si la clé est absente
dic.items () renvoie un itérable pour décrire les couples (clé,valeur) dans une boucle for
dic.keys () renvoie un itérable pour décrire les clés du dictionnaire dans une boucle for
dic.pop(cle) renvoie la valeur, et supprime la paire clé/valeur (KeyError si clé absente)
dic.pop(cle,def) renvoie la valeur, et supprime la paire clé/valeur (évalue def si clé absente)
dic.popitem() Renvoie une paire arbitraire (clé,valeur) et la supprime de dic (KeyError si dic vide)
dic.setdefaut (cle) renvoie la valeur si la clé est présente, sinon crée le couple cle:None
dic.setdefaut (cle,def) | renvoie la valeur si la clé est présente, sinon crée le couple cle:def

) , fusionne le dictionnaire dic2 sur le dictionnaire dic (remplace les valeurs si clés homo-
dic.update (dic2) . A . .

nymes). Ici dic2 peut aussi étre une liste de listes [cle,valeur]

dic.values() renvoie un itérable pour décrire les valeurs du dictionnaire dans une boucle for

52

6.1 Dictionnaires CHAPITRE 6 : Dictionnaires, ensembles, itérateurs, générateurs, fichiers

Les dictionnaires sont optimisés pour un accés aux valeurs par un “hachage” rapide sur les clés.

L’utilisateur n’a aucun moyen de savoir dans quel ordre les couples clés/valeurs sont placés dans le dictionnaire (et cette
question est en fait sans importance).

A ce titre, les dictionnaires ne sont pas des séquences (ils ne peuvent pas étre parcourus par un indice de position). Ils
sont cependant considérés comme des objets “itérables” (on peut donc les parcourir).

Si les valeurs placées dans un dictionnaire peuvent étre quelconques (et par exemple étre elles-mémes des dictionnaires),
les clés utilisées pour accéder & ces valeurs doivent étre d’un type non mutable (entiers, chaines, par exemple).

Dans un dictionnaire donné, les clés doivent étre uniques, mais elles ne doivent pas nécessairement étre du méme type.

Voici un exemple (trés simple!) de dictionnaire (les clés sont des noms, les valeurs des ages...) :

>>> ages = {'Paul':41, 'Léon':25, 'Jeanne':134} # crée un dictionnaires de trois entrées

>>> ages # 1l'ordre affiché est non prévisible

{'Paul': 41, 'Jeanne': 134, 'Léon': 25}

>>> 'Paul' in ages, 'Jean' in ages # teste la présence de deux clés

(True, False)

>>> ages['Jean'] # demander 1’age de Jean conduit & une erreur
<...> KeyError: 'Jean'

>>> ages.get('Jean',-1) # ici pas d’erreur, mais une valeur par défaut
-1

>>> ages['Marc'] = 33 # crée un nouvel enregistrement

>>> del ages['Paul'] # supprime un enregistrement

On continue & la suite de ’exemple précédent...

>>> for elt in ages: print(elt) # itérer un dictionnaire, c’est itérer les clés
Marc

Jeanne

Léo

>>> for (n,a) in ages.items(Q): # voici comment itérer sur les paires (clé,valeur)

print(’Son prénom est {} et son age est {} ans’.format(n,a))

Son prénom est Marc et son &dge est 33 ans
Son prénom est Jeanne et son age est 134 ans
Son prénom est Léon et son &4ge est 25 ans

>>> list(ages) # la conversion ne donne ici que les clés
[°’Marc’, ’Jeanne’, ’Léon’]

>>> list(ages.keys()) # autre fagon d’obtenir la liste des clés
[°’Marc’, ’Jeanne’, ’Léon’]

>>> list(ages.values()) # la liste des valeurs

[33, 134, 25]

>>> max(ages.values()) # la valeur maximum

134

>>> [(n,a) for n,a in ages.items()] # voici la liste des enregistrements

[(°Marc’, 33), (’Jeanne’, 134), (’Léon’, 25)]

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 53/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

6.2 Ensembles

CHAPITRE 6 : Dictionnaires, ensembles, itérateurs, générateurs, fichiers

6.2 Ensembles

Les objets de type “ensemble” (set dans le language Python) sont des structures de données qui modélisent la notion
mathématique d’ensemble. Un ensemble (au sens Python) peut contenir des valeurs de type quelconque (mais ce type
doit étre “hashable” : dans la pratique, cela exclut les listes, les dictionnaires et les ensembles), et une méme valeur ne
peut apparaitre qu’une seule fois. De plus les éléments d’un objet de type ensemble ne sont pas ordonnés (on ne peut pas
y accéder par un indice : on peut juste savoir si une valeur est ou n’est pas élément de ensemble).

On forme un ensemble par la séquence de ses éléments (valeurs), encadrée par { et }, ou en utilisant le constructeur set
(appliqué a un itérable quelconque).

>>> e = {1,5,2,3,2,7,5,2,1,3,2} # forme un ensemble par une séquence de valeurs entre { et }
>>> e = set([1,5,2,3,2,7,5,2,1,3,2]) # méme résultat en convertissant une liste

>>> e # dans un ensemble, tous les doublons ont été éliminés

{1, 2, 3, 5, 7}

>>> set(’abracadabra’) # 1’ensemble des caractéres distincts d’une chaine

{’d’, ’I”, :a), ’C’, ’b’}

Les objets de type “ensemble” sont mutables. Voici quelques méthodes applicables & un objet ens de type ensemble (set).
On note elt une valeur susceptible d’appartenir ou d’étre ajoutée a I’ensemble ens :

len(ens)

renvoie le cardinal (le nombre d’éléments) de I’ensemble

ens.add (elt)

ajoute un élément & un ensemble

ens.remove (elt)

ens.discard(elt)

retire un élément & un ensemble (KeyError si élément absent)

retire un élément & un ensemble s’il y est effectivement (pas d’erreur sinon)

elt in ens

renvoie True si I’élément est présent dans I’ensemble, False sinon

elt not in

ens

renvoie True si ’élément est absent de ’ensemble, False sinon

ens.clear()

efface le contenu de ’ensemble

ens.copy ()

renvoie une copie de ’ensemble, indépendante de 'original

ens.pop()

renvoie et supprime un élement arbitraire de I’ensemble (KeyError si ensemble vide)

On continue sur la lancée de 'exemple précédent (avec I'ensemble e = {1,2,3,5,7}) :

>>> e.discard(5)
>>> e

{1, 2, 3, 7}
>>> e.add(0)

>>> e

{0, 1, 2, 3, 7}
>>> 4 in e
False

on retire 1’élément 5 (pas d’erreur s’il avait été absent)

on ajoute 1’&lément O

on demande si 4 est dans 1l’ensemble

Les objets de type “ensemble” ont des méthodes pour les opérations ensemblistes usuelles :

ens;.isdisjoint (ensy) renvoie True si ens; et ensy sont disjoints

ens; <= enss renvoie True si ens; est inclus dans enss

ens; < enss renvoie True si ens; est inclus strictement dans enss
ensiy >= enss renvoie True si ens; contient ensy

ensiy > enss renvoie True si ens; contient strictement enss

ensy | ensy | enss | ... renvoie 'union des ensembles

ens; & enss & enss & ... | renvoie 'intersection des ensembles

ens] - enss renvoie la différence ensembliste ens; \ ensy

ens; = enss renvoie la différence symétrique ens; A enss

http://creativecommons.org/licenses/by-sa/3.0/fr/

jean-miche.ferrard@ac-paris.fr

une petite référence Python
mathprepa.fr 54/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

6.2 Ensembles CHAPITRE 6 : Dictionnaires, ensembles, itérateurs, générateurs, fichiers

Voici quelques exemples (on voit que l'ordre des éléments d’un ensemble est imprévisible) :

>>> m3 = set(range(0,50,3)); m3 # les multiples de 3 dans 1’intervalle [0,50[

{o, 33, 3, 36, 6, 39, 9, 42, 12, 45, 15, 48, 18, 21, 24, 27, 30}

>>> mb = set(range(0,50,5)); mb # les multiples de 5 dans 1’intervalle [0,50[

{o, 35, 5, 40, 10, 45, 15, 20, 25, 30}

>>> m7 = set(range(0,50,7)); m7 # les multiples de 7 dans 1’intervalle [0,50[

{0, 35, 7, 42, 14, 49, 21, 28}

>>> m5 | m7 # union des multiples de 5 ou de 7

{o, 35, 5, 7, 40, 10, 45, 14, 15, 49, 20, 21, 25, 28, 42, 30}

>>> sorted(mb | m7) # renvoie une liste (pas un ensemble!) triée

(o, 5, 7, 10, 14, 15, 20, 21, 25, 28, 30, 35, 40, 42, 45, 49]

>>> m3 - m7 # les multiples de 3 qui ne sont pas multiples de 7
{33, 3, 36, 6, 39, 9, 12, 45, 15, 48, 18, 24, 27, 30}

>>> m7 - m3 # les multiples de 7 qui ne sont pas multiples de 3
{49, 35, 28, 14, 7}

>>> m3 + m7 # attention, pas d’opération + sur les ensembles !!!
<...> TypeError: unsupported operand type(s) for +: ’set’ and ’set’

>>> m3 ~ mb # les multiples de 3 ou 5, mais pas de 15

{3, 5, 6, 9, 10, 12, 18, 20, 21, 24, 25, 27, 33, 35, 36, 39, 40, 42, 48}

>>> m3 & mb # les multiples de 3 et de 5 (c’est-a-dire ceux de 15)
{0, 45, 30, 15}

On dispose aussi d’opérations avec assignation permettant de modifier facilement un ensemble.

ensy |= ensy | remplace ens; par ens; Uensy || ens; &= enss | remplace ens; par ens; N enss

ensy -= ensy | remplace ens; par ens; \ enss || ens; "= enss | remplace ens; par ens; A enssg

En reprenant les ensembles m7 et m3 précédents, on illustre le caractére mutable des objets de type ensemble :

>>> m7bis = m7 # m7bis et m7 c’est pareil

>>> m7ter = m7.copy() # m7ter est une copie indépendante de m7

>>> m7 -= m3 # retire de m7 les é&léments de 1l’ensemble m3

>>> m7 # on obtient les multiples de 7 non multiples de 3
{35, 7, 14, 49, 28}

>>> m7bis # la modification s’est répercutée sur m7bis

{35, 7, 14, 49, 28}

>>> m7ter # mais pas sur m7ter, qui garde son indépendance!
{0, 35, 7, 42, 14, 49, 21, 28}

Remarque : Python propose également le type frozenset, pour modéliser les ensembles non mutables.

Les objets de type frozenset sont donc des ensembles “gelés”, dont on ne peut pas modifier le contenu ni la longueur (&
moins de redéfinir objet complétement).

Ils disposent des méthodes des objets de type set (sauf ceux qui ont trait & la mutabilité, bien sar).

On pourra se reporter a http://docs.python.org/3.3/1library/stdtypes.html#frozenset

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 55/ 76

http://docs.python.org/3.3/library/stdtypes.html#frozenset
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

6.3 Itérateurs CHAPITRE 6 : Dictionnaires, ensembles, itérateurs, générateurs, fichiers

6.3 Itérateurs

On connait la boucle for, qui permet de parcourir les différents éléments d’une liste, d’un tuple, d’une chaine, ou méme
d’un dictionnaire ou d’'un ensemble. Voici quelques exemple récapitulatifs, ot on itére la fonction print sur des objets
successifs (intervalle, liste, chaine, tuple, ensemble, dictionnaire) :

>>> obj = range(1,10) >>> obj = set(range(10,40,3))

>>> for x in obj: print(x,end=’ ’) >>> obj

123456789 {34, 37, 10, 13, 16, 19, 22, 25, 28, 31}
>>> obj = [x*x for x in range(1,10)] >>> for x in obj: print(x,end=’ ’)

>>> for x in obj: print(x,end=’> ’) 34 37 10 13 16 19 22 25 28 31

149 16 25 36 49 64 81 >>> obj = {x:x*x for x in range(1,10)}

>>> obj = ’bien le bonjour’ >>> for x in obj.keys(): print(x,end=’ ?)
>>> for x in obj: print(x,end=’ ’) 123456789

bien 1le bonjour >>> for x in obj.values(): print(x,end=’ ’)
>>> obj = tuple(range(1,10)) 149 16 25 36 49 64 81

>>> for x in obj: print(x,end=’) >>> for (x,y) in obj.items(): print(x,y,end=’ ’)
123456789 1124394165256 367 49 8649 81

Les itérables sont donc les objets qu’on peut parcourir, soit parce qu’ils sont présents physiquement en mémoire, soit
parce qu’ils sont capables de produire toutes leurs valeurs ¢ la demande. Pour illustrer cette différence un peu subtile, on
va construire un itérateur un peu particulier avec la fonction map :

>>> from sys import getsizeof # importe la fonction calculant la taille mémoire d’un objet
>>> m = map(x:x*x, range(1,100)) # pour mapper la fonction x — 22 sur 1l’intervalle [1,99[

>>> getsizeof (m) # la taille occupée en mémoire est minuscule

64

>>> m # en fait m pointe sur un "map object" quelque part en mémoire
<map object at 0x103d6bc90>

>>> next(m), next(m), next(m) # la fonction next permet d’avancer dans 1l’itérateur

(1,4,9)

>>> next(m), next(m), next(m) # aprés les trois premiéres valeurs, les trois suivantes

(16, 25, 36)

On voit ici que notre objet map contient un mécanisme permettant de délivrer des valeurs successives (et qu'’il est capable
de mémoriser a quel stade il en est resté). On peut ainsi accéder manuellement aux valeurs successives de l'objet m,
jusqu’a au dernier (un appel supplémentaire de next provoque alors lerreur StopIteration) :

>>> while True: print(next(m),end=’ ?)
49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729 784 841
900 961 1024 1089 1156 1225 1296 1369 1444 1521 1600 1681 1764 1849 1936 2025 2116 2209
2304 2401 2500 2601 2704 2809 2916 3025 3136 3249 3364 3481 3600 3721 3844 3969 4096 4225
4356 4489 4624 4761 4900 5041 5184 5329 5476 5625 5776 5929 6084 6241 6400 6561 6724 6889
7056 7225 7396 7569 7744 7921 8100 8281 8464 8649 8836 9025 9216 9409 9604 9801
Traceback (most recent call last):
File "<pyshell#57>", line 1, in <module>

while True: print(next(m),end=’ ’)

StopIteration

Revenons maintenant & la définition initiale de objet m, et créons une liste obtenue en convertissant cet objet (avec
le constructeur 1ist). De cette maniére, nous formons une liste m2 contenant simultanément toutes les valeurs qu’était
capable de produire I'objet m. Deux remarques s’imposent : d’une part la taille de ’objet m2 est beaucoup plus grande
que celle de m, et d’autre part la conversion de m en la liste m2 a visiblement “épuisé” le mécanisme d’itération de m :

>>> m = map(x:x*x, range(1,100)) # pour mapper la fonction z — 22 sur 1’intervalle [1,99[
>>> m2 = list(m) # on convertit m en liste
>>> getsizeof (m2) # la taille de m2 est beaucoup plus importante
992
>>> m2 # on a réduit ici 1’affichage, qui tient sur plusieurs lignes
(1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, <...>, 9025, 9216, 9409, 9604, 9801]
>>> list(m) # on voit que la conversion en liste a épuisé 1l’itérateur m !
(]
http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl

PN Do g
jean-miche.ferrard@ac-paris.fr mathprepa.fr 56/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

6.3 Itérateurs CHAPITRE 6 : Dictionnaires, ensembles, itérateurs, générateurs, fichiers

Prenons maintenant un exemple analogue au précédent, mais obtenu avec la fonction filter

>>> f = filter(lambda x: x)5 == 3, range(1,1000)) # filtre dans [1,999] les congrus & 3 modulo 5

>>> f # f est un "filter objet"

<filter object at 0x103d37a50>

>>> getsizeof (f) # il occupe trés peu de place en mémoire

64

>>> next(f), next(f), next(f) # on itére trois fois sur cet objet

(3, 8, 13)

>>> g = [x for x in range(1,1000) if x % 5 == 3] # liste des congrus & 3 modulo 5 dans [0,999]
>>> getsizeof (g) # la taille est beaucoup plus importante
1680

Autre exemple, avec la fonction zip, qui forme des tuples d’éléments de méme position dans différents itérables :

>>> z = zip([1,2,3],[4,5,6],[7,8,91) # on va synchroniser trois listes de méme longueur
>>> z # le résultat est un "zip object"
<zip object at 0x103d806c8>
>>> next(z) # la premiére itération renvoie le tuple (1,4,7)
1, 4, 7
>>> next(z) # 2éme itération: le tuple des seconds
(2, 5, 8)
>>> next(z) # 3éme itération: le tuple des troisiémes
(3, 6, 9
>>> next(z) # une itération de trop car c’était fini
Traceback (most recent call last):

File "<pyshell#100>", line 1, in <module>

next (z)

StopIteration

Nous terminons ce tour d’horizon en évocant les “intervalles” (obtenus par la fonction range de Python), et qui ont été
souvent utilisés jusqu’ici (notamment dans les boucles for) :

>>> r = range(0,10000,25) # 1’intervalle des valeurs de 0 a 9999, avec un pas de 5
>>> getsizeof (r) # ca ne prend pas de place en mémoire

48

>>> getsizeof (1ist(r)) # en revanche, si on forme la liste des valeurs....

3720

>>> next(r) # tiens, les ‘range’ ne sont donc pas des itérateurs
<...> TypeError: ’range’ object is not an iterator

>>> ir = iter(r) # en fait, le voici, 1’itérateur associé au range r

>>> ir

<range_iterator object at 0x103d24e10>

>>> next(ir), next(ir), next(ir) # trois itérations ‘4 la main’
(0, 25, 50)

Quand on évalue une boucle for pour parcourir un objet itérable, c’est le mécanisme next qui est mis en oeuvre dans les
coulisses, ’exception StopIteration étant traitée par la boucle for elle-méme.

Mais il en est ainsi de nombreux mécanismes qui opérent sur des objets itérables (la fonction in pour tester 'appartenance,
la fonction sum pour calculer une somme, etc).

Il y a une différence subtile entre “itérable” et “itérateur”, les itérateurs étant des fonctions permettant de parcourir les
itérables (mais ¢a fait un peu jargon, tout ¢a); si cette distinction est pertinente pour les “range”, elle ne l'est pas pour

97 Ll

les “zip”, “map” et autres “filter”, qui sont leur propre itérateur (got it ?)

Tout ¢a est en fait assez transparent dans la pratique. On retiendra surtout que 'utilisation d’itérateurs est un moyen
efficace ('empreinte mémoire est faible) d’accéder successivement aux différentes composantes d’un objet itérable (chaine,
liste, tuple, dictionnaire, ensemble, etc.) en évitant de créer simultanément toutes ces composantes en mémoire.

Derniére distinction intéressante : on peut créer plusieurs itérateurs sur un intervalle, ce qui permet de gérer simultanément
plusieurs parcours de celui-ci.

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 57/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

6.4 Fonctions utiles sur les itérateurs CHAPITRE 6 : Dictionnaires, ensembles, itérateurs, générateurs, fichiers

6.4 Fonctions utiles sur les itérateurs

6.4.1 La fonction enumerate

La fonction enumerate prend en argument un objet itérable seq et elle crée un itérateur renvoyant les couples (n,x)
formés des objets x successifs de seq et de leur numéro d’ordre n.

>>> from random import sample # on importe la fonction sample du module random

>>> L = sample(range(10,100),10); L # on crée une liste de 10 nombres différents & deux chiffres.
[64, 33, 98, 36, 15, 29, 21, 47, 78, 89]

>>> list(enumerate(L))] # on forme la liste des couples (n,L[n]), avec n> 0

((o,64), (1,33), (2,98), (3,36), (4,15), (5,29), (6,21), (7,47), (8,78), (9,89)]

>>> list(enumerate(L,start=1)) # ici, on fait débuter la numérotation a 1

[(1,64), (2,33), (3,98), (4,36), (5,15), (6,29), (7,21), (8,47), (9,78), (10,89)]

Avec la liste L ci-dessus. Voici comment calculer la somme des kL[k], si la numérotation démarre a k =1 :

>>> sum((n+1)*L[n] for n in range(len(L))) # sans enumerate
2932
>>> sum(n*x for (n,x) in enumerate(L,start=1)) # avec enumerate
2932

6.4.2 La fonction zip

La fonction zip renvoie un itérateur calculant les couples (z,y) d’éléments de méme position dans deux itérables (qui
peuvent trés bien ne pas étre de la méme longueur, on s’arréte alors a la plus courte séquence) :

>>> sl = range(1,10); s2 = ’abcdef’ # chiffres de 1 & 9, puis lettres de a & f
>>> list(zip(s1,s2)) # on zippe sl et s2, et on convertit en liste
[(1,’a’), (2,°b?), (3,’c’), (4,°d%), (5,%’), (6,’f’)]

>>> list(zip(s2,s1)) # on zippe s2 et sl, et on convertit en liste

(Ca’,1), (’b’,2), (°c’,3), (’d’,4), (’e’,5), (°f’,6)]
La fonction zip, associée a 'opérateur *, peut étre utilisée pour transposer une matrice de tuples :

>>>a = [(1, 2, 3), (4, 5, 6)] # une liste de deux tuples de longueur 3
>>> b = list(zip(*a)); b # forme la liste transposée
[(1, 4), (2, 5B, (3, 6)]

6.4.3 Les fonction any et all

La fonction any permet de savoir si 'un au moins des éléments d’un itérable est “vrai” (c’est-a-dire non nul, non vide).

La fonction all permet de savoir si tous les éléments d’un itérable sont “vrais” (c’est-a-dire non nuls, non vides).

>>> L = [5236,8075,9876,9503] # on forme une liste de quatre entiers

>>> any (x%17 for x in L) # 1’un d’eux au moins est-il non divisible par 177
True

>>> all(x%17 for x in L) # tous sont-ils non divisibles par 177

False

>>> [x%17 for x in L] # voici en fait la liste des restes modulo 17

[0, 0, 16, 0]

6.4.4 La fonction reversed
La fonction reversed permet d’itérer “a4 'envers” sur les valeurs d’un itérable.

>> s =1t =0

>>> for n in [8,5,6,2]: s = 10*%s + n # convertit la liste de chiffres en un entier
>>> for n in reversed([8,5,6,2]): t = 10*t + n # méme chose, mais & 1l’envers
>>> s, t

(8562, 2658)

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 58/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

6.5 Générateurs (instruction yield) CHAPITRE 6 : Dictionnaires, ensembles, itérateurs, générateurs, fichiers

6.5 Geénérateurs (instruction yield)

Rappelons qu'une fonction est un bloc d’instructions qui a re¢u un nom, dont le fonctionnement dépend d’un certain
nombre de paramétres (les arguments de la fonction) et qui renvoie un résultat (au moyen de l'instruction return).

nom_de_la_fonction (arguments): # le nom de la fonction, et les paramétres d’appels
bloc_d’instructions # on parcourt ce bloc

Dans la pratique, on appelle la fonction en lui passant des arguments, et elle nous renvoie ’expression qui suit le premier

return rencontré. Le parcours de la fonction est alors terminé (avec retour au programme “appelant”), et il faut procéder

a un nouvel appel a cette fonction pour que son contenu soit & nouveau évalué depuis le début.

Plusieurs appels & cette fonction peuvent ainsi produire une séquence de résultats.

On peut cependant imaginer un autre mécanisme. Notre fonction renverrait un résultat, puis resterait en sommeil (dans
Pétat o elle se trouve alors). Un nouvel appel de la fonction la “réveillerait” 1a ou on l'avait laissée, lui permettant de
nous renvoyer un nouveau résultat (et de se mettre, 1a encore, en attente). Dans ces situations d’attente, la fonction
conserverait son “contexte” (notamment la valeur de ses variables locales), pour permettre un redémarrage propre.

Ce mécanisme est exactement celui des générateurs, qui sont des fonctions définies comme on ’a vu jusqu’a présent, a

77 Ll

ceci prés que 'instruction return est remplacée par yield (mot anglais qui signifie “donner”, “produire”).
Un exemple classique permettra de comprendre ce dont il s’agit.
On sait que la suite de Fibonacci (F},)n>0 est définie par Fy = 0, Fy = 1, et, pour tout n > 2, F,, = F,,_1 + F,_».

Voici trois fonctions calculant a leur maniére les éléments successifs de la suite de Fibonacci (seule la troisiéme est un
générateur, car elle rend un résultat au moyen de yield).

def fibol(n): def fibo2(n): def fibo3(n):
_ _ i _ x, y=0,1 x, y=0,1
ior }Exin regrol]e’:(i)- ' for k in range(n): for k in range(n+1):
X, ¥ = yg x+y. X, ¥ =¥, xty yield x
1’append2x) return x X, ¥y =Y, Xty
return 1
>>> fibo1(10) # fibol(n) renvoie une liste de m + 1 valeurs
[o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> [fibo2(n) for n in range(0,11)] # liste des F_n renvoyés par fibo2 (0<n <9)
[o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> [u for u in fibo3(10)] # la liste des F_n obtenus avec fibo3, pour (0 <n <9)
[o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> 1ist(£ibo3(10)) # idem
(o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

La fonction fibol est un peu particuliére puisqu’un seul appel a fibo(n) génére la liste [Fy, F1,..., Fy,]. En revanche
I’expression £ibo2(n) renvoie le seul nombre de Fibonacci F;,. Evaluer [fibo2(n) for n in range(0,11)] est donc ici
assez maladroit puisque ga provoque des recalculs systématiques.

Les exemples ci-dessus ne permettent pas de distinguer la différence fondamentale de fonctionnement entre fibo3 et les
deux autres fonctions. Essayons d’y voir un peu plus clair! Tout d’abord, rien ne permet de différencier les objets fibol,
fibo2, et £ibo3 : ce sont trois objets de type “function”, situés quelque part en mémoire :

‘ >>> fibol, fibo2, fibo3
(<function fibol at 0x103f707a0>, <function fibo2 at 0x103f70830>, <function fibo3 at 0x103f708c0>)

La différence essentielle tient au résultat de I’évaluation de fibol(n) (c’est une liste), £ibo2(n) (c’est l'entier F,,) et
fibo3(n) (c’est un “générateur”). La premiére chose & bien comprendre est qu'évaluer £ibo3(n) ne provoque pas
I’exécution du code de la fonction fibo3 : cela met seulement en place un mécanisme, prét a se déclencher a notre
demande, et qui va fournir, au coup par coup, chacun des entiers Fy, F}, etc. jusqu’a F,.

>>> fibo1(10)

(o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> £ibo2(10)

55

>>> f£ibo3(10)

<generator object fibo3 at 0x103f77910>

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 59/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

6.5 Générateurs (instruction yield) CHAPITRE 6 : Dictionnaires, ensembles, itérateurs, générateurs, fichiers

Placons par exemple le générateur £ibo3(10) dans la variable f.
Pour demander a f de générer (de “yielder” diraient certains) une nouvelle valeur, on évalue next (f)

>>> next (f) # Actionne le générateur f. On obtient ici F_0=0.

0

>>> next(f) # entre deux évaluations de next(f), 1’état actuel du générateur est préservé
1

>>> next(f) # chaque évaluation de next(f) fournit une nouvelle valeur. ici F(2)=1

1

>>> next (f) # on obtient maintenant F(3) =2

2

>>> next(f), next(f), next(f), next(f) # quatre next(f) = quatre nouvelles valeurs F(k)
(33 5’ 8, 13)

>>> next(f), next(f), next(f) # encore trois nouvelles valeurs
(21, 34, 55)
>>> next(f) # c’est la demande de trop!

Traceback (most recent call last):
File "<pyshell#54>", line 1, in <module>
next (f)
StopIteration

L’exemple précédent montre que le générateur f=fibo3(10) constitue un mécanisme qui peut étre sollicité & tout moment
par next (f). Chaque appel renvoie la valeur qui suit I'instruction yield dans le corps de la fonction £ibo3.

On voit clairement que le code de la fonction fibo3 est “suspendu” entre deux appels successifs (avec préservation du
contenu des variables locales). D’autre part, le code de la fonction fibo3 montre que 'instruction yield est sollicitée
au sein de la boucle for k in range(0,n) (avec n = 10 dans notre exemple). Chaque évaluation de next (f) avance
d’une étape dans cette boucle. Quand cette boucle est terminée, ’évaluation de next (f) se traduit par une erreur de
type StopIretation (et c’est normal car on sort enfin du code de la fonction fibo3, mais pas par un yield).

Ce qui est spécialement intéressant dans le fonctionnement d’un générateur, c’est qu’il permet de former les valeurs
successives d’une suite virtuellement infinie. Modifions par exemple la fonction £ibo3 en supprimant 'argument n :

La fonction next accepte un argument par défaut, qui rattrape StopIteration quand on dépasse le nombre d’itérations :

>>> next(f,"c’est fini, 1a, ok?")
"c’est fini, 1a, ok?"

def fibo4():

x, y=0,1 # le début de la suite de Fibonacci

while True: # ad vitam aeternam
yield x # délivre la valeur courante de la suite
X, y =Y, Xty # actualise les deux termes consécutifs

L’expression fibo4 () crée alors un générateur qui permet de délivrer les valeurs successives de la suite de Fibonacci, ad
libitum, et au rythme qu’on veut...

>>> f = fibod () # prét a engendrer les nombres de Fibonacci
>>> [next(f) for k in range(0,10)] # les dix premiéres valeurs

(o, 1, 1, 2, 3, 5, 8, 13, 21, 34]

>>> [next(f) for k in range(0,5)] # les cing suivantes

[55, 89, 144, 233, 377]

Important : si f est un générateur, on peut en solliciter toutes les valeurs au moyen de boucles “for indice in £” (si
Pensemble des valeurs est fini, c’est préférable). Dans ce cas c’est la boucle qui déclenche elle-méme le mécanisme “next”
et qui rattrape l’exception de fin d’itération.

En reprenant les notations précédentes, voici comment “yielder” les 10 premiéres valeurs de la suite de Fibonacci.

>>> g = £ibo3(10) # crée le générateur (mais ne calcule pas les F_n !!)
>>> for k in g: print(k,end=’> ’) # demande et imprime les dix premiers F_n
01123581321 3455

Autre possibilité, déja évoquée, avec le constructeur 1ist (qui lui aussi prend en charge le mécanisme d’itération) :

>>> list(fibo3(15))
[o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 60/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

6.6 Fichiers CHAPITRE 6 : Dictionnaires, ensembles, itérateurs, générateurs, fichiers

6.6 Fichiers

On appelera fichier toute collection de données (textuelles ou binaires) enregistrée sur un support physique (un disque
dur, une clé usb, etc). Un fichier peut étre accessible en lecture seule, ou en lecture/écriture. Pour pouvoir étre consulté
et/ou modifié, il doit étre ouvert d’abord, puis fermé ensuite (mais Python se charge souvent de fermer le fichier lui-méme
quand tout est terminé).

Python propose la classe file pour modéliser la notion de fichier, et pour faciliter les interactions. Tout dépend beaucoup
du systéeme d’exploitation (Windows, Linux, Mac OSX, etc) mais la classe file offre des méthodes qui permettent de
masquer les différences.

Dans tous les cas, un fichier posséde un nom et réside (ou est créé) dans un dossier. Pour accéder au fichier, on a besoin
de son nom et du chemin d’accés a son dossier.

Par défaut, il s’agit du “dossier courant”, c’est-a-dire celui ou réside le script en cours d’exécution (ou alors le dernier
script utilisé, ou celui de I'application IDLE si on travaille en mode interactif).

Dans toute la suite de cette section, on suppose qu’on se place uniquement dans le “dossier courant”. Les fichiers seront
donc désignés par leur nom, simplement, sans indication d’un chemin d’acces.

Mais si on veut un contrdle précis sur les dossiers, on importera le module os (pour “operating system”) qui fournit
quelques fonctions utiles : os.chdir("chemin") désigne un nouveau dossier de travail, os.getcwd () renvoie le dossier de
travail actuel (“get current directory”).

On ne confondra pas les objets de type file tels qu’ils sont créés et manipulés par Python (voir plus loin) avec la
concrétisation “physique” de ces fichiers sur le disque. En fait, les objets file sont des abstractions permettant de
désigner commodément ces fichiers “physiques”.

On se contentera ici d’indiquer les principales fonctions ayant trait aux fichiers :

— QOuverture et fermeture :

myfile =open(str,mode/type,encoding) ‘et ‘myfile.close() ‘

Ici my file est I'identificateur associé a l'objet abstrait de type file, lui-méme associé au fichier physique dont le nom
est la chaine str, en spécifiant le mode et le type d’accés.

Par défaut, acces est 'rt', c’est-a~dire 'r' (lecture) et 't' (fichier texte).

Les modes d’acces sont 'r' (reading : lecture seule), 'w' (writing : avec effagage si le fichier s’il existe), 'x' (création

exclusivement, avec erreur si le fichier existe), 'a' (append : écriture a la fin du fichier 8’il existe).

Il convient d’indiquer 1’encodage quant on ouvre le fichier (par exemple en écrivant encoding = 'utf-8' si le fichier
texte est en Unicode, ou encoding = 'Latin-1', etc).

Les deux principaux types d’accés sont 'b' (binaire), 't' (texte).

— Lecture d’un fichier texte :

‘my file.read(n) ‘ (n caractéres, et par défaut la totalité du fichier) : le résultat est une chaine de caractéres.

‘my file.readline () ‘ renvoie une ligne de texte, terminée par le caractére \n de fin de ligne.

‘myfile.readlines() ‘ renvoie la liste de toutes les lignes de texte.

— Ecriture dans un fichier texte :

‘ my file.write(chaine) ‘ écrit une chaine de caractéres dans un fichier texte.

— Lecture/écriture dans un fichier binaire :

Le module pickle permet d’écrire/lire des données de type quelconque (on n’est donc plus obligé de préciser soit un
nombre de caractéres, soit une chaine). Le fichier doit étre ouvert en binaire, en écriture ('wb') ou en lecture ('rb').

Aprés‘ import pickle ‘7 la syntaxe est ‘ pickle.dump (0bj,myfile) ‘ (enregistrer obj) et ‘ obj=pickle.load(myfile) ‘

— Lecture séquentielle d’un fichier texte :

La syntaxe ’for ligne in my file‘ permet de lire séquentiellement les différentes lignes d’un fichier texte, celui-ci

étant donc traité comme un itérateur (c’est la boucle for qui se charge de tout, et en particulier du rattrapage de
Pexception quand la lecture du fichier est terminée). Cette syntaxe est supérieure & my file.readlines(), qui charge
la totalité du fichier en mémoire sous la forme d’une liste de chaines.

Nous allons traiter un petit exemple, a partir du texte du poéme “Nuit Rhénane” de Guillaume Apollinaire.

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Python
jean-miche.ferrard@ac-paris.fr mathprepa.fr 61/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

6.6 Fichiers CHAPITRE 6 : Dictionnaires, ensembles, itérateurs, générateurs, fichiers

>>> import os # importe le module os (‘operating system’)

>>> os.getcwd() # renvoie le dossier courant
’/Users/ jmf /Documents’

On crée un fichier texte, en écriture, encodé en utf-8, de nom “nuit-rhenane.txt” sur le disque. Dans la suite, on doit
utiliser 'identificateur poeme, et non pas “nuit-rhenane.txt”. C’est en effet 'objet poeme qui posséde les méthodes qu’on
va utiliser. On voit que poeme est en fait un objet de type TextIOWrapper (mais c’est sans grande importance) :

>>> poeme = open("nuit-rhenane.txt",’wt’,encoding=’utf-8)
>>> poeme
<_io.TextIOWrapper name=’nuit-rhenane.txt’ mode=’wt’ encoding=’utf-8’>

On écrit maintenant deux lignes dans le fichier. On les termine par le caractére de fin de ligne \n.

A chaque fois, la fonction write de I'objet poeme renvoie le nombre de caractéres enregistrés (y compris \n) :

>>> poeme.write("Mon verre est plein d’un vin trembleur comme une flamme\n")
56

>>> poeme.write("Ecoutez la chanson lente d’un batelier\n")

39

On peut bien str écrire plusieurs lignes de textes consécutivement, a condition de penser au séparateur \n.

Attention, ici le caractére \ qui termine la premicre ligne (juste aprés \n) ne fait pas partie de la chaine écrite : c¢’est une
commodité de I’éditeur Python pour indiquer un passage a la ligne non significatif (simplement parce que le texte entré
ici est trop long pour tenir sur une seule ligne a ’écran) :

>>> poeme.write("Qui raconte avoir vu sous la lune sept femmes\n\
Tordre leurs cheveux verts et longs jusqu’ad leurs pieds\n"))

102

>>> poeme.close() # maintenant, on décide de fermer le fichier.

Le poéme est incomplet, et voici les vers manquants, sous forme d’une liste (avec la place prévue pour les lignes vides).
Remarque : dans la saisie d’une liste aussi longue, I’éditeur de Python ne nécessite pas d’utiliser le caractére \, et il attend
sagement que la liste soit terminée par le caractére].

>>> liste = ["",

"Debout chantez plus haut en dansant une ronde",
"Que je n’entende plus le chant du batelier",

"Et mettez prés de moi toutes les filles blondes",

"Au regard immobile aux nattes repliées",

nn
>

"Le Rhin le Rhin est ivre ol les vignes se mirent",
"Tout 1’or des nuits tombe en tremblant s’y refléter",
"La voix chante toujours & en radle-mourir",

"Ces fées aux cheveux verts qui incantent 1’été",

nn
B

"Mon verre s’est brisé comme un éclat de rire"]

Le fichier ayant été fermé (mais incomplet), on décide de le réouvrir, mais attention, en mode append (sinon on effacerait
ce qui vient d’étre enregistré!). A I'aide d’une boucle for (en itérant sur les éléments v de liste), on écrit chacun des vers
manquants au poéme (attention a bien rajouter les caractéres \n de fin de ligne) :

>>> poeme = open("nuit-rhenane.txt",’a’,encoding=’utf-8’)
>>> for v in liste: poeme.write(v+"\n");
>>> poeme.close()

Ouvrons & nouveau le fichier poeme, mais en mode lecture. On lit les deux premiéres lignes (avec deux appels a
poem.readline()). On voit que les caractéres de terminaison \n figurent a la fin de chaque ligne lue :

>>> poeme = open("nuit-rhenane.txt",encoding=’utf-8’)

>>> poeme.readline()
"Mon verre est plein d’un vin trembleur comme une flamme\n"

>>> poeme.readline()
"Ecoutez la chanson lente d’un batelier\n"

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 62/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

6.6 Fichiers CHAPITRE 6 : Dictionnaires, ensembles, itérateurs, générateurs, fichiers

NB : si on est arrivé a la fin du fichier, readline renvoie une chaine vide (donc ne léve pas une exception).

Un appel 4 readlines () (attention au “s”) renvoie alors le reste du fichier, sous forme d’une liste de chaines, avec les \n
de terminaison (on n’a pas tout reproduit ici, méme si c’est beau). Puis on referme le fichier (c’est plus prudent).

>>> poeme.readlines()

[’Qui raconte avoir vu sous la lune sept femmes\n’,

"Tordre leurs cheveux verts et longs jusqu’a leurs pieds\n", ’\n’,
<...0>

"Ces fées aux cheveux verts qui incantent 1’été\n", ’\n’,

"Mon verre s’est brisé comme un éclat de rire\n"]

>>> poeme.close()

On l'ouvre ensuite (en mode par défaut : “text/read”) puis on lit et affiche le poéme par 'intermédiaire d’une boucle for.

Bien penser a l'option end="" sans laquelle les caractéres de fin de ligne (déja présents dans le fichier) seraient doublés
par le passage a la ligne inhérent & la fonction print :

>>> poeme = open("nuit-rhenane.txt",encoding=’utf-8’)
>>> for c¢ in poeme: print(c,end="")

Mon verre est plein d’un vin trembleur comme une flamme
Ecoutez la chanson lente d’un batelier

Qui raconte avoir vu sous la lune sept femmes

Tordre leurs cheveux verts et longs jusqu’ad leurs pieds

Debout chantez plus haut en dansant une ronde
Que je n’entende plus le chant du batelier

Et mettez prés de moi toutes les filles blondes
Au regard immobile aux nattes repliées

Le Rhin le Rhin est ivre od les vignes se mirent
Tout 1’or des nuits tombe en tremblant s’y refléter
La voix chante toujours a en rédle-mourir

Ces fées aux cheveux verts qui incantent 1’été

Mon verre s’est brisé comme un éclat de rire

Remarque importante :

— quand on ouvre un fichier-texte file en lecture, ’expression ‘ ch ="".join(file) ‘ renvoie dans ch une chaine obtenue

par concaténation de toutes les chaines du fichier (impressionnant!).

— L’expression | ch.split(sep='\n") ‘ renvoie alors la liste des chaines obtenues par séparation au niveau des \n.

Voici maintenant un petit exemple avec le module pickle.
On ouvre un fichier binaire en écriture, et on y inscrit les carrés des entiers de 1 a 9.

On l'ouvre ensuite en lecture, comme il s’agissait d’un fichier texte. La fonction read conduit bien str a une erreur (le
premier caractére n’est pas reconnu comme un code ascii, mais ce serait pareil si on avait précisé I'encodage utf-8).

>>> from pickle import *; myfile = open("essai",’wb’)

>>> for k in range(1,10): dump(kxk,myfile)

>>> myfile = open("essai"); myfile.read()

< o>

UnicodeDecodeError: ’ascii’ codec can’t decode byte 0x80 in position 0: ordinal not in range(128)

Tout va mieux en ouvrant le fichier en lecture binaire. On récupére les neuf données binaires écrites précédemment :

>>> myfile = open("essai",’rb’)
>>> [load(myfile) for k in range(1,10)]
(1, 4, 9, 16, 25, 36, 49, 64, 81]

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 63/ 76

http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

Chapitre 7

Quelques fonctions de quelques modules...

Chaque distribution Python est livrée avec un nombre considérable de modules qui augmentent la portée du langage.

On a déja parlé des modules math et cmath. On évoquera dans les pages suivantes une petite partie des fonctions et des
modules qu’il nous semble utile de connaitre.

La documentation de référence se trouve ici : http://docs.python.org/3.3/1library/index.html

Toujours pour obtenir de I’aide, une autre possibilité consiste a taper help(’modules’) dans IDLE (pour avoir la liste
des modules disponibles), ou help(’random’) si on veut de l’aide, par exemple, sur le module random.

7.1 Le module random

Adresse : http://docs.python.org/3.3/1library/random
Utilité : génération de valeurs pseudo-aléatoires
Syntaxe : import random, ou from random import *, ou from random import sample, etc.

Quelques fonctions utiles :

seed(n) réinitialise le générateur de nombres aléatoires en utilisant 1’entier n.
seed () idem mais en utilisant ’horloge du systéme.

randrange(a,b,h) | un entier aléatoire de [a, b[, avec le pas h (par défaut h = 1).
randrange(b) un entier aléatoire de [0, b|.

randint (a,b) un entier aléatoire de [a, b], donc synonyme de randrange (a,b+1)
choice(seq) un élément au hasard dans la séquence (non vide) seq

shuffle(seq) “rebat” aléatoirement la séquence (non vide) seq (opére sur place)
sample (pop, k) liste de k éléments distincts de pop (ensemble ou séquence)
random() le prochain réel pseudo-aléatoire dans [0, 1]

uniform(a,b) un réel pseudo-aléatoire dans [a, b]

gauss(m,o) réel pseudo-aléatoire, distribution gaussienne, moyenne m, écart-type o

Voici quelques exemples :

>>> from random import * # on importe le module random

>>> seed(1) on initialise le générateur de nombres aléatoires
>>> [randint(1,6) for k in range(10)] # on simule 10 lancers d’un dé honnéte

[2, 5, 1, 3, 1, 4, 4, 4, 6, 4]

>>> [randint(1,6) for k in range(10)] # on relance le dé encore 10 fois

[2, 1, 4, 1, 4, 4, 5, 1, 6, 4]

E=3

>>> seed(1) # on recale le générateur

>>> [randint(1,6) for k in range(10)] # on retrouve les 10 premiers lancers

[2, 5, 1, 3, 1, 4, 4, 4, 6, 4]

>>> sample(range(0,10),10) # voici une permutation aléatoire de {0,1,...,9}

4, 3, 1, 2, 0, 5, 9, 6, 8, 7]

>>> t = list(range(0,10)) on forme la liste [0,1,...,9]

>>> shuffle(t); t # on rebat cette liste aléatoirement (sur place)
[2, 9, 4, 1, 5, 7, 6, 3, 8, 0]

H

64

http://docs.python.org/3.3/library/index.html
http://docs.python.org/3.3/library/random

7.2 Le module decimal CHAPITRE 7 : Quelques fonctions de quelques modules...

7.2 Le module decimal

Adresse : http://docs.python.org/3.3/library/decimal.html

Utilité : calculs sur les nombres décimaux.

Syntaxe : import decimal, ou from decimal import *

Le module decimal permet d’effectuer des calculs exacts sur les nombres décimaux, dans les limites d’une précision fixée
par V'utilisateur (mais par défaut égale a 28 chiffres significatifs).

Dans la suite, on suppose que le module decimal a été importé par la commande from decimal import *

L’instruction ‘ getcontext () .prec = n|fixe la précision a n chiffres significatifs.

Les “nombres décimaux” (au sens du module decimal) sont obtenus par application du constructeur Decimal (noter le D
majuscule) appliqué & un entier ou a une chaine de caractéres (elle-méme une représentation d’un flottant, ce qui permet
a Putilisateur de former des valeurs décimales avec une précision donnée). Le module decimal “surcharge” les opérations
arithmétiques usuelles, ce qui permet d’effectuer des calculs exacts sur les décimaux (tant qu’on ne dépasse pas la limite
de précision qu’on s’est fixée). Commengons par un exemple simple, pour comprendre & quoi le module decimal peut é&tre
utile, et en quoi il s’attaque & des problémes posés par la représentation binaire habituelle des flottants.

>>> 0.7 * 0.7 # pour le carré de 0.7, on s’attendrait & trouver 0.49
0.48999999999999994 # mais il y a une imprécision due a la représentation binaire

>>> 0.7 * 0.7 == 0.49 # plus problématique, Python ne reconnait pas cette égalité évidente
False

>>> [0.5 #*x n for n in range(1,8)] # on calcule (0.5)», avec n€ {1,---,7} (pas d’erreurs)
[0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, 0.0078125]

>>> [0.1 ** n for n in [2,3,4]] # on calcule (0.1)», avec n € {2,3,4}
[0.010000000000000002, 0.0010000000000000002, 0.00010000000000000002]

Les “erreurs” ci-dessus ne sont que des conséquences de la représentation en base 2 des flottants : méme un nombre aussi
inoffensif que 0.1 = 1/(2 * 5) n’est pas représenté de fagon exacte en mémoire (contrairement a 0.5 = 271).

Voici ce qu’on obtient, avec les mémes “calculs”, en important le module decimal :

>>> from decimal import *

>>> [Decimal("0.1") ** n for n in range(2,6)]
[Decimal(’0.01’), Decimal(’0.001’), Decimal(’0.0001°’), Decimal(’0.00001°)]

>>> [Decimal("0.5") #** n for n in range(2,6)]
[Decimal (’0.25%), Decimal(’0.125’), Decimal(’0.0625°), Decimal(’0.03125%)]

Tout cela n’est peut-étre pas trés impressionnant, alors on va augmenter la précision :

>>> getcontext() .prec = 50 # augmente la précision a 50 chiffres

>>> Decimal(1)/Decimal (17) # 1/17 avec 50 chiffres significatifs
Decimal(’0.058823529411764705882352941176470588235294117647059°)

>>> Decimal(2) .sqrt() # /2 avec 50 chiffres significatifs
Decimal(’1.4142135623730950488016887242096980785696718753769°)

>>> Decimal (1) .exp() # le nombre e avec 50 chiffres significatifs
Decimal(’2.7182818284590452353602874713526624977572470937000°)

>>> Decimal(2).1n() # In2 avec 50 chiffres significatifs
Decimal(’0.69314718055994530941723212145817656807550013436026°)

>>> Decimal(2).1n() .as_tuple() [1] # on peut méme extraire les chiffres!

(6, 9’ 3’ 1’ 4’ 7’ 1’ 8’ 0, 5’ 5’ 9, 9’ 4’ 5’ 3’ 0’ 9’ 4’ 1, 7’ 2’ 3, 2’ 1’ 2’

i, 4, 5,8, 1,7,6,5,6,8,0,7,5,5,0,0,1, 3, 4, 3,6, 0,2, 6)

B

999 1
Toujours avec une précision de 50 chiffres, voici la valeur décimale de la somme > — :
n=1"T

>>> sum([Decimal (1) /Decimal(n) for n in range(1,1000)])
Decimal(’7.4844708605503449126565182043339001765216791697082)

Un certain nombre des fonctionnalités du module decimal sont des ajouts récents. Le nombre de fonctions mathématiques
qui sont compatibles avec ce module est essentiellement limité au logarithme, & I’exponentielle et & la racine carrée.

Pour plus d’informations, on lira les “recettes” (http://docs.python.org/3.3/1library/decimal.html#recipes) qui
montrent comment programmer le calcul de 7, e*, cos(z), sin(z) avec une précision donnée.

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 65/ 76

http://docs.python.org/3.3/library/decimal.html
http://docs.python.org/3.3/library/decimal.html#recipes
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

7.3 Le module fractions CHAPITRE 7 : Quelques fonctions de quelques modules...

7.3 Le module fractions

Adresse : http://docs.python.org/3.3/library/fractions.html

Utilité : calculs sur les rationnels.

Syntaxe : from fractions import Fraction

Le module fractions permet d’effectuer des calculs exacts sur les nombres rationnels.

Un nombre rationnel s’obtient par le constructeur Fraction qui prend en argument deux entiers (le numérateur, puis le
dénominateur qui par défaut vaut 1) ou une chaine (par exemple '12/17") ou un flottant (sous forme décimale).

Voici quelques exemples :

>>> from fractions import Fraction # importe la classe Fraction du module fractions

>>> Fraction(1,2) + Fraction(1,3)
Fraction(5, 6)

>>> sum([Fraction(1,n) for n in range(1,20)])
Fraction (275295799, 77597520)

>>> float(_)
3.547739657143682

>>> from math import pi

>>> Fraction(pi)

calcule ici 1/2 + 1/3

la somme des 1/n, pour 1< n< 20

convertit ce résultat en flottant

importe la valeur 7 depuis le module math

approximation rationnelle de 7

Fraction(884279719003555, 281474976710656)

>>> fp = Fraction(pi).limit_denominator(1000); fp # idem mais avec dénominateur < 1000
Fraction(355, 113)

>>> fp.numerator, fp.denominator # extrait le numérateur et le dénominateur
(365, 113)

7.4 Le module string

Adresse : http://docs.python.org/3.3/library/string.html
Utilité : quelques constantes utiles, et opérations de formatage avancé de chaines.
Syntaxe : import string, ou fromstring import *, ou from string import printable, etc.

Le module string permet des opérations avancées de formatage de chaines de caractéres (bien au-dela de ce que permet
la fonction intégrée format), mais c’est trés technique, et donc on se reportera a I’aide intégrée a Python.

Le module string contient quelques chaines de caractéres constantes qui peuvent se révéler utiles :

ascii_letters abcdefghijklmnopqrstuvwxyzABCDEFGHI JKLMNOPQRSTUVWXYZ

ascii_lowercase | abcdefghijklmnopqrstuvwxyz
ascii_uppercase | ABCDEFGHIJKLMNOPQRSTUVWXYZ
digits 0123456789

hexdigits 0123456789abcdef ABCDEF
octdigits 01234567
punctuation PUHSREN O x+, -/ 5<=>7e [\\]1~_“{I}~
printable renvoie digits + ascii_letters + punctuation + whitespace
whitespace \t\n\r\x0b\x0c (nb : le premier caractére est I’espace)
>>> from string import *; from random import * # importe string et random

>>> maj = list(ascii_uppercase) # liste des majuscules

>>> 72 join(sample(maj,10)) # un mot aléatoire de 10 majuscules distinctes

?UXMRSKJHCP’

>>> shuffle(maj) # rebat la liste maj sur place

>>> 72 join(maj) # renvoie le résultat sous forme de chaine

’VMZTYDIJRSHUXLCGWAQBEFPKNQO’

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 66/ 76

http://docs.python.org/3.3/library/fractions.html
http://docs.python.org/3.3/library/string.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

7.5 Le module itertools

CHAPITRE 7 : Quelques fonctions de quelques modules...

7.5 Le module itertools

Adresse : http://docs.python.org/3.3/1library/itertools.html

Utilité : création d’itérateurs pour boucles efficaces

Syntaxe :

Voici une sélection de fonctions issues du module itertools :

import itertools, ou from itertools import *, ou from itertools import accumulate, etc.

count (n, h)

crée un itérateur démarrant a n, de pas h (h = 1 par défaut)

cycle(s)

crée un itérateur produisant en boucle les valeurs d’une séquence finie s

repeat (z,n)

crée un itérateur produisant n fois la valeur x (si n absent, répétition infinie)

accumulate(s)

accumulate(s, f)

crée un itérateur produisant les sommes cumulées d’une séquence finie s.

crée un itérateur produisant les valeurs vo = sg, v1 = f(vo, 81), v1 = f(v1, s2), etc.

chain(s,s’,s"”,)

crée un itérateur produisant les valeurs de s, puis celles de s’, celles de s”, etc.

product(s,s’,s”,--+)
product (s,repeat=n)

crée un itérateur produisant les valeurs du produit cartésien s x s’ x s x - -
crée un itérateur produisant les valeurs du produit cartésien s”

permutations(s,n)

permutations(s)

crée un itérateur produisant les n-uples d’éléments distincts

crée un itérateur produisant les permutations d’éléments de la séquences s

combinations(s,n)

crée un itérateur produisant les n-uples ordonnés d’éléments distincts
(utiliser combinations_with_replacement pour des combinaisons avec répétitions)

Voici quelques exemples d’utilisation.

On a utilisé le constructeur 1ist pour visualiser facilement la liste des valeurs rendues par les différents itérateurs créés
ici, mais on répéte que I'utilité de ces itérateurs (on devrait plus précisément parler de générateurs) est de nous permettre
d’accéder aux valeurs successives d’une séquence, sans pour autant créer la totalité de cette séquence en mémoire.

Les générateurs tels qu’ils sont créés ici sont en général utilisés dans un “contexte d’itération” (boucle for). Ils peuvent
également étre utilisés “en mode manuel”, en leur demandant de délivrer leurs valeurs par des next successifs.

On visitera http://docs.python.org/3.3/1library/itertools.html#itertools-recipes pour de nombreux exemples

d’utilisation des fonctions du module itertools
>>> from itertools import *

>>> list(chain(’abcd’,’efg’))

[)a)’ 7b)’ ,C,, ,d)’ ,e)’ ,f), ,g)]

>>> list(accumulate(range(1,10)))

[1, 3, 6, 10, 15, 21, 28, 36, 45]

[1, 2, 6, 24, 120, 720, 5040, 40320, 362880]
>>> list(product (range(2),range(4)))

>>> [(x,y) for x in range(2) for y in range(4)]

>>> list(product (range(3) ,repeat=2))

>>> list(product (range(2) ,repeat=3))

>>> list(permutations(range(3)))
>>> list(permutations(range(4),2))

>>> list(combinations(range(5),2))

>>> ¢ = cycle(’abc’); [next(c) for k in range(14)]
[7a’, 7b” ,C’, ,a)’ ,b7’ ’C’, ’a)’ ’b)’ 7c)’ 7a,’

>>> list(accumulate(range(1,10),lambda x,y: x*y))

(o, 0y, <o, 1), (0, 2), (0, 3), (1, 0), (1, 1),

[(09 O), (0, 1)’ (O’ 2)’ (O’ 3)’ (1, O), (1’ 1)’

(¢o, oy, (o, 1, (0, 2>, (1, 0, (1, 1, (1, 2),

[(O) 1)’ (O, 2), (O) 3)’ (1) 0)’ (1, 2), (1, 3))

(¢, 1, ¢, 2, ©, 3), (0, 9, 1, 2), 1, 3),
>>> list(combinations_with_replacement (range(4),2))
(¢, o, (o, 1), (0, 2), (0, 3, (1, 1), 1, 2),

importe tout le module (noms courts)

14 valeurs du cycle a— b— c— a
)b7’ 707’ 7a7,)b)]

enchaine deux séquences de caractéres

sommes cumulées de {1,2,...,9}

produits cumulés de {1,2,...,9}

éléments de {0,1} x {0,1,2,3}

(1, 2), 1, 3)]

la méme chose sans itertools

(1, 2, 1, 3)]

les éléments de {0,1,2} x {0,1,2}

(2, 00, (2, 1), (2, 2)]

les éléments de {0,1} x {0,1} x {0,1}

[¢, o, oy, (o, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, O, 1), (1, 1, 0), (1, 1, 1)]

les 6 permutations de {0,1,2}

[¢o, 1, 2), (0, 2, 1), (1, O, 2), (1, 2, 0), (2, O, 1), (2, 1, O)]

les couples d’éléments de {0,1,2,3}

(2’ 0)) (2’ 1)3 (2, 3)) (3) 0)’ (3’ 1)3 (3, 2)]

les paires d’é&léments de {0,1,2,3,4}

(1, 4), (2, 3), (2, 9, G, D]

paires avec répétitions de {0,1,2,3}

(1, 3, (2, 2), (2, 3), (3, 3)]

http://creativecommons.org/licenses/by-sa/3.0/fr/
jean-miche.ferrard@ac-paris.fr mathprepa.fr

une petite référence Python
67/ 76

http://docs.python.org/3.3/library/itertools.html
http://docs.python.org/3.3/library/itertools.html#itertools-recipes
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

7.6 Les modules operator et functools CHAPITRE 7 : Quelques fonctions de quelques modules...

7.6 Les modules operator et functools

Adresses :

http://docs.python.org/3.3/library/operator.html

http://docs.python.org/3.3/library/functools.html
Le module operator offre une traduction fonctionnelle d’un grand nombre d’opérateurs. Par exemple, la fonction add est
la traduction préfixée de 'opérateur d’addition. La liste des traductions opérateur — fonction est trop longue pour étre

reproduite ici. On se contentera donc de quelques exemples (d’autant qu’il est a priori possible de contourner 'utilisation
de ce module en utilisant des listes en compréhension).

>>> from operator import *

>>> list(map(add, [1,2,3],[40,50,60])) # on mappe 1l’addition sur deux listes
[41, 52, 63]

>>> [x+y for x,y in zip([1,2,3],[40,50,60])] # idem avec zip et liste en compréhension
[41, 52, 63]

>>> from random import sample # importe la fonction sample du module random

>>> a = sample(range(100,1000),10); a # liste a de 10 entiers différents a trois chiffres
[632, 138, 575, 233, 912, 985, 654, 245, 731, 589]

>>> b = sample(range(100,1000),10); b # liste b de 10 entiers différents & trois chiffres
[988, 770, 254, 505, 838, 809, 110, 999, 684, 431]

>>> list(map(lt,a,b)) # mappe la fonction de comparaison <

[True, True, False, True, False, False, False, True, False, Falsel

>>> [x<y for x,y in zip(a,b)] # idem avec zip et liste en compréhension
[True, True, False, True, False, False, False, True, False, Falsel

Pour ce qui est du module functools, on retiendra essentiellement la fonction reduce :

reduce(f,s)
reduce(f,s,d)

calcule v1 = s1, vo = f(v1, 82), etc. puis vk = f(vg, Sk+1) etc. et renvoie la derniére valeur.
idem, mais en initialisant & partir d’une valeur d

>>> from operator import add # importe la fonction add du module operator
>>> from functools import reduce # importe la fonction reduce du module functools

>>> reduce(lambda x,y: 10*x+y, [7,3,4,8,6]) # conversion chiffres — base 10
73486

>>> reduce(add, [1,2,3,4,5]) # calcule la somme des éléments de la liste
15

>>> sum(x for x in [1,2,3,4,5]) # mais il y a plus simple (et sans module)
15

7.7 Le module time

Adresse : http://docs.python.org/3.3/library/time.html
Utilité : accéder a des mesures de durée, de dates, et effectuer des conversions durées/dates.
Syntaxe : import time, ou from time import *, ou from time import sleep, etc.

Le module time opére sur des dates exprimées en secondes depuis la date 0 du systéme d’exploitation (le ler janvier 1970
sur les systémes Unix), ou exprimées sous une forme structurée (avec indication de année, du mois, etc.).

Une date structurée peut étre renvoyée au format GMT (Greenwich Mean Time) mais le nouveau nom est plutot UTC
(Coordinated Universal Time) ou au format local (pour tenir compte du fuseau horaire tel qu’il est réglé sur la machine).

>>> from time import * # importe la totalité du module time

>>> 1t = localtime(); 1t # renvoie la date structurée locale actuelle

time.struct_time(tm_year=2013, tm_mon=2, tm_mday=3, tm_hour=14, tm_min=26, tm_sec=31,
tm_wday=6, tm_yday=34, tm_isdst=0)

>>> asctime(1lt) # convertit cette date en qqchose de plus lisible

’Sun Feb 3 14:26:31 2013’

>>> mktime(1t) # convertit en secondes depuis le ler janvier 1970 a OhOO
1359897991.0

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 68/ 76

http://docs.python.org/3.3/library/operator.html
http://docs.python.org/3.3/library/functools.html
http://docs.python.org/3.3/library/time.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

7.7 Le module time CHAPITRE 7 : Quelques fonctions de quelques modules...

Voici quelques fonctions du module time (on note dst une date structurée et sec une durée en secondes).

gmtime (sec) convertit un nombre de secondes (depuis la date 0) en la date GMT structurée
localtime(sec) convertit un nombre de secondes (depuis la date 0) en la date locale structurée

calendar.timegm(dst) | convertit une date structurée GMT en un nombre de secondes depuis la date 0

mktime (dst) convertit une date structurée locale en un nombre de secondes depuis la date 0
asctime (dst) convertit une date structurée en une chaine plus lisible
ctime(sec) convertit des secondes (depuis la date 0) en chaine (date locale)
ctime(0)=’Thu Jan 1 01:00:00 1970’ et ctime(1e9)=-’Sun Sep 9 03:46:40 2001’
strftime (ft,sec) convertit des secondes (depuis la date 0) en chaine, avec une chaine de formatage ft
strftime("%a, %d %b %Y %H:%M:%S", localtime())=- ’Sun, 03 Feb 2013 15:06:25’
strptime(ch, ft) convertit en date structurée une chaine ch (date lisible), avec formatage par ft

time.strptime("30 Nov 00", "%d %b %y") = time.struct_time(tm_year=2013,...

Plusieurs fonctions permettent de mesurer des durées (c’est utile pour étudier l'efficacité temporelle d’un algorithme).
Le sujet est rendu assez compliqué par les différences qui existent entre les plateformes (Windows, Mac, etc.).
Pour plus d’informations, consulter : http://www.python.org/dev/peps/pep-0418/

Voici quelques fonctions disponibles (pour mesurer une durée, on utilisera la différence entre deux valeurs renvoyées par
la fonction choisie, par exemple perf_counter, car les origines de ces “horloges” sont indéfinies).

sleep(sec) suspend 'exécution pendant le nombre indiqué sec de secondes

time () donne I’heure locale actuelle, exprimée en secondes depuis la date 0
(déconseillé pour mesurer des courtes durées, par manque de précision)

clock() valeur de ’horloge-processeur & un instant donné, exprimée en microsecondes
(efficace sous Windows, beaucoup moins sous Unix)

monotonic () horloge-processeur “monotone”, indépendante des modifications du systéme

perf_counter () | horloge précise sur toutes plateformes (depuis Python3.3)
process_time() | idem, mais n’inclut pas les pauses générées par la fonction sleep

Exemple : on va comparer trois fonctions formant la liste lc des k2, pour 0 < k < n (avec n entier passé en argument).

Ces fonctions ne renvoient pas lc (elles la fabriquent, def testl(n):
juste), mais le temps passé (sur 6 décimales). from time import perf_counter as pc
testl crée lc par ajouts des [k?] (mauvais!), test2 top = pcO; 1lc = []
par des append successifs (bien mieux) et test3 for k in range(n): lc = lc + [k*k]
forme la liste en compréhension (encore mieux) return round(pc()-top,6)
def test2(n): def test3(n):
from time import perf_counter as pc from time import perf_counter as pc
top = pc(O; lc = [] top = pc();
for k in range(n): lc.append(kx*k) lc = [kxk for k in range(n)]
return round(pc()-top,6) return round(pc()-top,6)

NB : on remarquera comment on a renommé localement la fonction perf_counter en pc.

Voici combien de temps mettent ces trois fonctions, pour n = 103, n = 10* et n = 10> (no comment pour test1) :

>>> [test1(10**n) for n in [3,4,5]] # testl est une trés mauvaise solution
[0.001771, 0.174184, 23.001052]

>>> [test2(10**n) for n in [3,4,5]] # la fonction test2 est bien meilleure
[0.000133, 0.001309, 0.012158]

>>> [test3(10**n) for n in [3,4,5]] # test3 est encore meilleure (et plus élégante)
[0.000142, 0.000712, 0.00709]

Remarque : a la place de la fonction perf_counter, on aurait pu utiliser les fonctions clock, time, process_time ou
monotonic. Il est difficile sur un seul exemple de se rendre compte de ce qui les différencie réellement. La documentation
Python recommande en tout cas de ne pas utiliser les fonctions time ou clock (soit par leur imprécision sur des mesures
de durées faibles, soit par dépendance relativement au systéme d’exploitation utilisé).

NB : On pourra aussi consulter les modules datetime (http://docs.python.org/3.3/library/datetime.html) et
calendar (http://docs.python.org/3.3/library/calendar.html)

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 69/ 76

http://www.python.org/dev/peps/pep-0418/
http://docs.python.org/3.3/library/datetime.html
http://docs.python.org/3.3/library/calendar.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

7.8 La classe Counter du module collections CHAPITRE 7 : Quelques fonctions de quelques modules...

7.8 La classe Counter du module collections

Adresse : http://docs.python.org/3.3/1library/collections.html#counter-objects
Syntaxe : from collections import Counter

La classe Counter permet de créer des dictionnaires spécialisés dans le comptage des occurences d’un motif particulier
dans un objet (par exemple le nombre de fois ot apparaissent les différentes lettres d’une chaine de caracteéres).

La classe Counter hérite des méthodes propres aux dictionnaires.

Le constructeur Counter accepte un itérable, et il crée un dictionnaire dont les clefs sont les éléments de l'itérable et dont
les valeurs correspondantes sont les nombres de fois ol ces éléments apparaissent dans l'itérable.

On crée ici un compteur indiquant le nombre d’occurences de chaque lettre d’une chaine.

>>> from collections import Counter # importe la classe Counter du module collections
>>> cnt = Counter(’abracadabra’); cnt # combien de fois certaines lettres dans ’abracadabra’
Counter({’a’: 5, ’r’: 2, ’b’: 2, ’d’: 1, ’c’: 1})

>>> cnt[’b’], cnt[’z’] # combien de fois ’b’, ou ’z’

(5, 0)

>>> list(cnt.elements()) # la liste des éléments, avec répétitions

’a>, ’r’, ’r’, ’a’, ’a’, ’a’, ’a’, ’a’, ’b’, ’b’, ’c’]

>>> cnt.most_common () # liste triée suivant les fréquences décroissantes
[Ca’, B), Cr’, 2), Cb’, 2), (Cd’, 1), (Cc’, 1)]

>>> cnt.most_common(3) # les trois éléments les plus fréquents

[Ca’, 5), Cr’, 2), (b’, 2)]

>>> cnt.most_common () [-1] # 1’élément le plus rare

(g2, i)

On peut créer des objets de type Counter a partir d’'une séquence d’objets du type valeur = frequence.

La classe Counter autorise des opérations ensemblistes (on agit sur les fréquences).

>>> c1 = Counter(a=5, b=3, c=2, d= 6, e=1); cl # on crée un premier Counter
Counter({’d’: 6, ’a’: 5, ’b’: 3, ’c’: 2, ’e’: 1})

>>> ¢2 = Counter(a=1, b=4, d= 6, e=1); c2 # puis un deuxiéme

Counter({’d’: 6, ’b’: 4, ’e’: 1, ’a’: 1})

>>> cl + c2 # ajoute les fréquences

Counter({’d’: 12, ’b’: 7, ’a’: 6, ’e’: 2, ’c’: 2})

>>> cl - c2 # on les soustrait (ne garde que les positives)
Counter({’a’: 4, ’c’: 2})

>>> cl & c2 # intersection (minimum des fréquences)
Counter({’d’: 6, ’b’: 3, ’e’: 1, ’a’: 1})

>>> cl1 | c2 # union (maximum des fréquences)
Counter({’d’: 6, ’a’: 5, ’b’: 4, ’c’: 2, ’e’: 1})

Les exemples suivants montrent comment utiliser la classe Counter pour mesurer des fréquences dans des simulations
d’expériences aléatoires.

>>> from random import randint

>>> g = (randint(1,6) for k in range(1000)) # un générateur de 1000 lancers d’un dé

>>> rf = Counter(g); rf # dictionnaire des résultats/fréquences
Counter({3: 175, 2: 172, 4: 171, 5: 167, 1: 159, 6: 156})
>>> [rf[r] for r in sorted(rf)] # extrait fréquences, dans 1’ordre des résultats r

[159, 172, 175, 171, 167, 156]
>>> g2 = (randint(1,6)+randint(1,6) for k in range(1000)) # génére 1000 sommes de deux dés

>>> rf2 = Counter(g2); rf2 # dictionnaire des sommes/fréquences
Counter ({7: 190, 6: 137, 8: 126, 9: 116, 5: 102, 4: 87, 10: 73, 3: 58, 11: 51, 2: 32, 12: 28})
>>> [rf2[k] for k in sorted(rf2)] # les fréquences selon les sommes croissantes

[32, 58, 87, 102, 137, 190, 126, 116, 73, 51, 28]

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 70/ 76

http://docs.python.org/3.3/library/collections.html#counter-objects
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

7.9 La classe deque du module collections CHAPITRE 7 : Quelques fonctions de quelques modules...

7.9 La classe deque du module collections

Adresse : http://docs.python.org/3.3/1library/collections.html#collections.deque
Syntaxe : from collections import deque

La classe deque permet de créer des listes & double entrée (a gauche et a droite). Les objets de la liste peuvent ainsi
étre ajoutés ou retirés, soit & gauche soit & droite, et en temps constant (on rappelle que les objets habituels de type
list ne sont accessibles en temps constant qu’en une seule extrémité). Le constructeur deque accepte un itérable (et
en argument optionnel une longueur maximum n, par défaut n est “infini”). Si n est précisé, et quand la liste atteint sa
longueur maximum, l'ajout d’éléments a gauche (resp. a droite) provoque la “sortie” d’autant d’éléments a droite (resp.
a gauche). Voici un échantillon des fonctions disponibles, & partir d’un exemple simple :

>>> from collections import deque # import la classe deque du module collections
>>> dq = deque([3,7,2],10); dq # liste & double entrée, longueur maximum 10
deque([3, 7, 2], maxlen=10)

On peut ajouter un ou plusieurs éléments, soit & droite, soit & gauche (attention a lordre a gauche) :

>>> dq.append(8); dq # on ajoute 8 a droite

deque([3, 7, 2, 8], maxlen=10)

>>> dq.appendleft(1); dq # on ajoute 1 & gauche

deque([1, 3, 7, 2, 8], maxlen=10)

>>> dq.extend([’a’,’b?,’c?,’d’]); dq # on étend par a,b,c,d & droite

deque([1, 3, 7, 2, 8, ’a’, ’b’, ’c’,’d’], maxlen=10)

>>> len(dq), maxlen(dq) # longueur actuelle, longueur maximum

(9, 10)

>>> dq.extendleft([’x’,’y’,’z’]); dq # compléte a gauche par x,y,z: c,d sortent & droite
deque([’z’, ’y’, ’x’, 1, 3, 7, 2, 8, ’a’, ’b’], maxlen=10)

On peut “popper” un élément a gauche, ou a droite :

>>> dq.pop(); dq # renvoie et efface 1’élément le plus a droite
)b)

deque([’z’, ’y’, ’x’, 1, 3, 7, 2, 8, ’a’], maxlen=10)

>>> dq.popleft(); dq # renvoie et efface 1’é&lément le plus a gauche
)Z’

deque([’y’>, ’x’, 1, 3, 7, 2, 8, ’a’], maxlen=10)

On peut supprimer n’importe quel élément, ou tester I'appartenance :

>>> dq.remove(7); dq # retire la premiére occurrence d’un élément
deque([’y’, ’x’, 1, 3, 2, 8, ’a’], maxlen=10)

>>> 7 in dq # on voit que 7 n’est plus dans la liste
False

>>> del(dq[4]); dq # supprime le quatriéme élément

deque([’y’, ’x’, 1, 3, 8, ’a’], maxlen=10)

>>> dql1], dq[-2] # le deuxiéme élément, 1l’avant-dernier

(x>, 8)

On peut renverser ordre, faire tourner, convertir au format liste “habituel” :

>>> dq.reverse(); dq # inverse 1’ordre

deque([’a’, 8, 3, 1, ’x’, ’y’], maxlen=10)

>>> dqg.rotate(2); dq # rotation de deux positions vers la droite
deque([’x’, ’y’, ’a’, 8, 3, 1], maxlen=10)

>>> dq.rotate(-3); dq # rotation de trois positions vers la gauche
deque([8, 3, 1, ’x’, ’y’, ’a’], maxlen=10)

>>> 1list(dq) # convertit en liste au sens usuel

[8, 33 1’ ,X’a ’Y’, ,a’]

>>> list(reversed(dq)) # liste usuelle, & partir d’une copie inversée
[7a” 7y” ,X,, 1, 3, 8]

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 71/ 76

http://docs.python.org/3.3/library/collections.html#collections.deque
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

7.10 Le module heapq CHAPITRE 7 : Quelques fonctions de quelques modules...

7.10 Le module heapq

Adresse : http://docs.python.org/3.3/library/heapq.html

Le module heapq implémente un modéle de liste triée “par tas”.
On dit qu’une liste £ est un un ¢as si pour tout k on a les inégalités : £[k] < £[2k + 1] et ([k] < £[2k + 2].

Par exemple, [3,5,9,7,11,13,14,8,12,15,18,17] est un tas,
qu’il est commode de représenter sous forme arborescente.
Les opérations de maintien de la structure de tas (ajouts ou sup-
pressions) y sont en temps logarithmique par rapport a la longueur
de la liste. La valeur minimum est située au début du tas.

Remarque : les tas implémentés dans le module heapq sont des “tas-min” (chaque élément parent est inférieur ou égal a
ses deux enfants), alors que 'habitude est plus souvent de considérer des “tax-max”. Pour la théorie, on se reportera a
son livre favori sur I'algorithmique et les structures de données.

>>> from heapq import * # importe le module heapq (avec les noms courts)
>>> t1 = [3,17,11,14,9,12,8,18,5,15,13,7] # une liste

>>> heapify(tl); ti # on transforme tl en tas, sur place

(3, 5, 7, 14, 9, 11, 8, 18, 17, 15, 13, 12]

>>> t2 = [3,5,9,7,11,13,14,8,12,15,18,17] # mémes éléments, mais c’est déja un tas

>>> heapify(t2); t2 # heapify ne modifie donc pas t2

[3, 5, 9, 7, 11, 13, 14, 8, 12, 15, 18, 17]

>>> heappush(t2,10); t2 # ajoute 10 au tas t2, et maintient le tas

(3, 5, 9, 7, 11, 10, 14, 8, 12, 15, 18, 17, 13]

>>> heappop(t2); t2 # "poppe" le minimum, et actualise le tas t2

3

5, 7, 9, 8, 11, 10, 14, 13, 12, 15, 18, 17]

>>> heappushpop(t2,16); t2 # ajoute 16, renvoie le minimum, maintient le tas
5

(7, 8, 9, 12, 11, 10, 14, 13, 16, 15, 18, 17] # voir aussi la fonction heapreplace

Le module heapq contient deux fonctions renvoyant la liste (ordonnée) des n plus grands (ou des n plus petits) éléments
d’un itérable. C’est efficace si n n’est pas trop grand (sinon utiliser sorted) et si n # 1 (sinon utiliser min ou max).

>>> from random import sample

>>> a = sample(range(100,1000),10); a # liste de 10 entiers différents de trois chiffres
[961, 196, 764, 487, 759, 608, 426, 697, 553, 420]

>>> nlargest(3,a) # la liste des 3 plus grands

[961, 764, 759]

>>> nsmallest(4,a) # la liste des 4 plus petits

[196, 420, 426, 487]

>>> nsmallest(3,a,lambda x: x % 10) # les trois avec le plus petit reste modulo 10
[420, 961, 553]

>>> nsmallest(3,a,lambda x: abs(x-500)) # les trois plus proches de 500

[487, 553, 426]

Le module heapq contient également une fonction merge permettant de fusionner deux ou plusieurs itérables (supposés
déja triés dans lordre croissant) en un seul générateur (comme toujours avec les générateurs, ’ensemble des valeurs n’est
pas chargé en mémoire en méme temps, mais il est disponible & la demande dans un contexte d’itération) :

>>>x = [1, 5, 8, 15, 19, 23, 25, 31] # premiére liste croissante
>>> vy = [2, 3, 6, 12, 14, 19, 26, 28, 30] # deuxiéme liste croissante
>>> z = [2, 10, 20, 40] # troisiéme liste croissante
>>> merge(x,y,z) # on les fusionne en un seul générateur

<generator object merge at 0x101603c30>

>>> list(merge(x,y,2)) # si on veut voir toutes les valeurs d’un coup
[1, 2, 2, 3, 5, 6, 8, 10, 12, 14, 15, 19, 19, 20, 23, 25, 26, 28, 30, 31, 40]

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 72/ 76

http://docs.python.org/3.3/library/heapq.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

7.11 Le module bisect CHAPITRE 7 : Quelques fonctions de quelques modules...

7.11 Le module bisect

Adresse : http://docs.python.org/3.3/1library/bisect.html
Le module bisect permet de rechercher des positions d’insertion (et d’insérer de nouvelles valeurs) dans une liste triée.

Les positions d’insertion peuvent étre calculées soit “par la gauche”, soit (par défaut) “par la droite” (c’est important si
on veut insérer des valeurs qui figurent déja dans la liste).

>>> from bisect import * # importe la totalité du module bisect (noms courts)
>>> tab = list(range(0,100,10)); tab # une liste triée dans 1l’ordre croissant

>>> bisect_left(tab,25) # la valeur 25 viendrait s’insérer en position 3

3

>>> bisect_left(tab,60) # 60 s’insérerait a gauche en position 7

7

>>> bisect(tab,60) # 60 s’insérerait & droite en position 8

8

>>> insort(tab,28); tab # on insére 28 dans la liste

(o, 10, 20, 28, 30, 40, 50, 60, 70, 80, 90]

On peut également effectuer des insertions (ou chercher des positions) en spécifiant un intervalle de positions (mais
attention, l'insertion effective risque alors de briser la nature globalement triée de la liste).

>>> tab # rappelons le contenu de la liste tab

[o, 10, 20, 28, 30, 40, 50, 60, 70, 80, 90]

>>> bisect(tab,75) # 75 devrait normalement s’insérer en position 9

9

>>> bisect(tab,75,10=2,hi=5) # mais si on impose [2,5], il viendrait en position 5
5

>>> insort(tab,75,hi=7); tab # on décide d’insérer 75 en position maximum 7

[0, 10, 20, 28, 30, 40, 50, 75, 60, 70, 80, 90]

>>> insort(tab,15,10=6); tab # on décide d’insérer 15 en position minimum 6

[0, 10, 20, 28, 30, 40, 15, 50, 75, 60, 70, 80, 90]

>>> insort(tab,5,l0=3,hi=7); tab # insére 5 en imposant 1’intervalle de positions [3,7]
[0, 10, 20, 5, 28, 30, 40, 15, 50, 75, 60, 70, 80, 90]

La documentation Python contient un certain nombre d’exemples montrant comment “humaniser” un peu les fonctions
précédentes, notamment dans les recherches d’occurrences dans une liste triée.

On trouvera ces fonctions ici : http://docs.python.org/3.3/library/bisect.html#searching-sorted-lists

Voici un exemple d’utilisation du module bisect (créer une liste triée par insertions successives d’entiers aléatoires) :

>>> from bisect import * # importe le package bisect (noms courts)

>>> from random import * # importe le package random (noms courts)

>>> seed(4); tab = [] # initialise graine aléatoire, tableau vide

>>> for k in range(1,15): # & quatorze reprises
insort(tab,randint (10,100)) # on insére un entier aléatoire a deux chiffres
print (tab) # on affiche le tableau aprés cette insertion

[40]

[40, 48]

[23, 40, 48]

[23, 40, 48, 60]

[23, 40, 48, 60, 71]

[23, 29, 40, 48, 60, 71]

[21, 23, 29, 40, 48, 60, 71]

[18, 21, 23, 29, 40, 48, 60, 71]

[12, 18, 21, 23, 29, 40, 48, 60, 71]

[12, 18, 21, 23, 29, 40, 48, 60, 61, 71]

[12, 18, 21, 23, 29, 40, 48, 60, 61, 71, 80]

[12, 18, 21, 23, 29, 40, 47, 48, 60, 61, 71, 80]
(12, 17, 18, 21, 23, 29, 40, 47, 48, 60, 61, 71, 80]
[12, 17, 18, 21, 23, 29, 38, 40, 47, 48, 60, 61, 71, 80]

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 73/ 76

http://docs.python.org/3.3/library/bisect.html
http://docs.python.org/3.3/library/bisect.html#searching-sorted-lists
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

7.12 Le module co CHAPITRE 7 : Quelques fonctions de quelques modules...
by

7.12 Le module copy

Adresse : http://docs.python.org/3.3/library/copy.html
Le module copy permet d’effectuer des copies “superficielles” ou “en profondeur” d’objets mutables, notamment de listes.
Pour cela, il met a notre disposition les fonctions copy et deepcopy.

Les “copies en profondeur” sont utiles pour les listes de listes (les matrices, par exemple), pour créer une copie y totalement
indépendante d’un objet original x (non seulement différence des adresses de = et y, mais différence des adresses des
éléments qui se correspondent dans x et y). Les exemples ci-dessous illustrent ces subtilités :

>>> from copy import * # importe les fonctions copy et deepcopy

>>> a = list(range(0,5)); a # place dans a la liste [0,1,2,3,4]

[0, 1, 2, 3, 4]

>>> id(a) # voici ol est située cette liste en mémoire

4318102808

>>> x = [2013, a, a, al; x # dans x, une liste avec 2013 puis trois exemplaires de a
[2013, [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]

>>> y = X3 ¥ # poser y = x, c’est faire pointer y sur la méme liste que z
[2013, [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]

>>> z = copy(x); z # effectue une copie ‘‘superficielle’’ (shallow copy)

[2013, [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]

>>> id(x), id(y), id(z) # x et y pointent sur la méme adresse, mais pas 2z
(4318102448, 4318102448, 4318102592)

>>> [id(e) for e in x] # les adresses des éléments de = (et aussi de y, forcément)
[4322826768, 4318102808, 4318102808, 4318102808]

>>> [id(e) for e in z] # les adresses internes & z sont les mémes que pour x !!!
[4322826768, 4318102808, 4318102808, 4318102808]

>>> x[0] = 9999 # modifier x[0] crée un nouvel objet donc une nouvelle adresse
>>> y # voici le nouveau contenu de = et de y

[9999, [0, 1, 2, 3, 41, [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]

>>> (id(x),id(y)) # c’est normal car les adresses de x,y sont restées les mémes
(4318102448, 4318102448)

>>> z # en revanche, la liste pointée par z n’a pas changé

[2013, [0, 1, 2, 3, 41, [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]1]

>>> id(z) # normal car l’adresse de z, inchangée, différe de celle de =
4318102592

>>> al[4] = -1000 # modifions maintenant seulement al4]

>>> id(a) # 1’adresse de la liste a n’a pas changé

4318102808

>>> y # donc la modification de a se voit dans z, et dans y

[9999, [0, 1, 2, 3, -1000], [0, 1, 2, 3, -1000], [0, 1, 2, 3, -1000]]

>>> z # mais aussi dans z !!!

[2013, [0, 1, 2, 3, -1000], [0, 1, 2, 3, -1000], [0, 1, 2, 3, -1000]]

>>> zzz = deepcopy(x) # on fait maintenant une copie ‘‘profonde’’ de x

>>> [id(e) for e in x] # rappelons les adresses des composantes de

[4322826800, 4318102808, 4318102808, 4318102808]

>>> [id(e) for e in zzz] # les composantes mutables de zzz ont changé d’adresse
[4322826800, 4318102880, 4318102880, 4318102880]

>>> al4]=777 # on modifie a nouveau un élément de a

>>> x # les composantes de x, pointant sur a, sont modifiées, normal
(9999, [0, 1, 2, 3, 7771, [0, 1, 2, 3, 7771, [0, 1, 2, 3, 777]]

>>> zzz # mais celles de zzz n’ont pas changé (normal aussi)

[9999, [0, 1, 2, 3, -1000], [0, 1, 2, 3, -1000], [0, 1, 2, 3, -1000]]

Important : U'instruction y = x[:] équivaut a une copie superficielle (c’est-a-dire & y = copy.copy(x)), ce qui permet
de se passer du module copy (& condition qu’on veuille copier des listes dont les composantes sont non mutables!!!)

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence PythOIl
jean-miche.ferrard@ac-paris.fr mathprepa.fr 74/ 76

http://docs.python.org/3.3/library/copy.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

7.13 Autres modules et adresses utiles CHAPITRE 7 : Quelques fonctions de quelques modules...

7.13 Autres modules et adresses utiles

Voici quelques modules qui pourraient s’avérer utiles... ou méme indispensables.
Tout dépend de ce qu’on veut faire avec Python.

Le module tkinter, par exemple, permet d’écrire des interfaces graphiques pilotées par événements (boites de dialogues,
tracés, gestion de la souris, etc.) et il ne saurait étre décrit en quelques pages (il y a des livres pour ¢a).

— le module os.path (opérations sur les chemins d’accés)
adresse : http://docs.python.org/3.3/library/os.path.html

— le module pickle (sauvegardes d’objets Python dans des fichiers)
adresse : http://docs.python.org/3.3/1library/pickle.html#module-pickle

— le module os (opérations liées au systéme d’exploitation)
adresse : http://docs.python.org/3.3/library/os.html

— le module io (opérations d’entrées-sorties, en mode texte ou binaire)
adresse : http://docs.python.org/3.3/library/io.html

— le module turtle (programmer les déplacements d’un crayon — d’une “tortue Logo” — & I’écran)
adresse : http://docs.python.org/3.3/library/turtle.html

— le module tkinter (conception d’interfaces graphiques, programmation par événements)
adresse : http://docs.python.org/3.3/library/tkinter.html

— le module tkinter.ttk (bibliothéque de widgets pour le module tkinter)
adresse : http://docs.python.org/3.3/library/tkinter.ttk.html

— le module tkinter.tix (widgets supplémentaires pour le module tkinter)
adresse : http://docs.python.org/3.3/1library/tkinter.tix.html

— le module 2to3 (portage de scripts Python2 vers Python3)
adresse : http://docs.python.org/3.3/1library/2to3.html

— le module timeit (chronométrer précisément des petits bouts de code Python)
adresse : http://docs.python.org/3.3/1library/timeit.html

— le module sys (paramétres et fonctions spécifiques au systéme d’exploitation)
adresse : http://docs.python.org/3.3/1library/sys.html
La liste précédente est trés loin d’étre exhaustive !
On pourra en particulier consulter les adresses suivantes :
— la libraire standard de Python : http://docs.python.org/3.3/1library/index.html

— L’environnement Canopy de la société ENTHOUGHT.
Le « must » pour le calcul scientifique avec Python : https://www.enthought.com/products/canopy/

— la page d’accueil de NumPy : http://www.numpy.org

— la page d’accueil de SciPy : http://www.scipy.org

— la page d’accueil de matplotlib : http://www.matplotlib.org/

— la page d’accueil de IPython (« Interactive Python ») : http://www.ipython.org/

— une liste d’éditeurs Python, si Idle ne suffit pas : http://wiki.python.org/moin/PythonEditors

— les milliers de modules disponibles (écrits par des développeurs tiers) : http://pypi.python.org/pypi

— aide a l'installation de modules tiers : http://docs.python.org/3.3/install/index.html

http://creativecommons.org/licenses/by-sa/3.0/fr/ une petite référence Python
jean-miche.ferrard@ac-paris.fr mathprepa.fr 75/ 76

http://docs.python.org/3.3/library/os.path.html
http://docs.python.org/3.3/library/pickle.html#module-pickle
http://docs.python.org/3.3/library/os.html
http://docs.python.org/3.3/library/io.html
http://docs.python.org/3.3/library/turtle.html
http://docs.python.org/3.3/library/tkinter.html
http://docs.python.org/3.3/library/tkinter.ttk.html
http://docs.python.org/3.3/library/tkinter.tix.html
http://docs.python.org/3.3/library/2to3.html
http://docs.python.org/3.3/library/timeit.html
http://docs.python.org/3.3/library/sys.html
http://docs.python.org/3.3/library/index.html
https://www.enthought.com/products/canopy/
http://www.numpy.org
http://www.scipy.org
http://www.matplotlib.org/
http://www.ipython.org/
http://wiki.python.org/moin/PythonEditors
http://pypi.python.org/pypi
http://docs.python.org/3.3/install/index.html
http://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-miche.ferrard@ac-paris.fr
http://www.mathprepa.fr

Mises a jour

La version la plus récente de ce document est disponible sur le site mathprepa.fr

Auteur

Jean-Michel Ferrard, jean-miche.ferrard@ac-paris.fr

Licence d’utilisation de ce document

CC BY-SA 3.0 FR http://creativecommons.org/licenses/by-sa/3.0/fr/

76

http://www.mathprepa.fr
mailto:jean-miche.ferrard@ac-paris.fr
http://creativecommons.org/licenses/by-sa/3.0/fr/

	Premiers pas avec Python
	Liens de téléchargement
	L’application Idle
	Premiers essais avec Idle en mode « calculatrice »
	Variables: initialisation avant utilisation
	Variables: affectations simultanées
	Le séparateur d’instructions « ; »
	Noms de variables et mots réservés
	Quelques fonctions intégrées
	La fenêtre d'édition dans l'application Idle
	Importer un module personnel en mode interactif
	Importation simultanée de plusieurs modules personnels

	Types numériques, comparaisons, intervalles
	Quelques types (classes) de base
	Opérations entre types numériques
	Les opérateurs avec assignation
	Les fonctions mathématiques du module math
	Le module cmath
	Arithmétique des entiers
	Valeurs booléennes et comparaisons
	Égalité structurelle et égalité physique

	Initiation à la programmation Python
	Entrée au clavier (input) et affichage à l’écran (print)
	Nécessité de délimiter des blocs d’instructions
	L’importance fondamentale de l’indentation en Python
	Branchements conditionnels if...elif...else...)
	Expressions conditionnelles
	Répétitions conditionnelles (while)
	Notion d’intervalle
	Répétitions inconditionnelles (boucles for)
	L'instruction pass

	Écrire des fonctions Python
	La valeur None, et l’instruction return
	l’espace de noms global
	L’espace de noms local d’une fonction
	Remarques sur les espaces de noms emboîtés
	Paramètres positionnels ou nommés, valeurs par défaut
	Rattrapage des exceptions
	Fonctions lambda
	Documentation des fonctions

	Les séquences (chaînes, tuples, listes)
	Propriétés communes aux séquences (hors ``mutations'')
	Séquences mutables ou non
	Listes définies ``en compréhension''
	Opérations de mutation de listes
	Les tuples
	Les chaînes de caractères
	Méthodes importantes sur les chaînes (split, join, format)
	Objets de type bytes et bytearray

	Dictionnaires, ensembles, itérateurs, générateurs, fichiers
	Dictionnaires
	Ensembles
	Itérateurs
	Fonctions utiles sur les itérateurs
	La fonction enumerate
	La fonction zip
	Les fonction any et all
	La fonction reversed

	Générateurs (instruction yield)
	Fichiers

	Quelques fonctions de quelques modules...
	Le module random
	Le module decimal
	Le module fractions
	Le module string
	Le module itertools
	Les modules operator et functools
	Le module time
	La classe Counter du module collections
	La classe deque du module collections
	Le module heapq
	Le module bisect
	Le module copy
	Autres modules et adresses utiles

